code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Tuple = logging.get_logger(__name__) def a__ ( snake_case__ , snake_case__ ) -> Optional[Any]: lowerCamelCase = RobertaPreLayerNormConfig.from_pretrained( snake_case_ , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict lowerCamelCase = torch.load(hf_hub_download(repo_id=snake_case_ , filename="""pytorch_model.bin""" ) ) lowerCamelCase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): lowerCamelCase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue lowerCamelCase = tensor_value lowerCamelCase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=snake_case_ , config=snake_case_ , state_dict=snake_case_ ) model.save_pretrained(snake_case_ ) # convert tokenizer lowerCamelCase = AutoTokenizer.from_pretrained(snake_case_ ) tokenizer.save_pretrained(snake_case_ ) if __name__ == "__main__": lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase : Optional[int] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
291
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __A ( UpperCamelCase__ ): def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = 5 # Realm tok UpperCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__a , exist_ok=__a ) UpperCAmelCase_ = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCAmelCase_ = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__a , exist_ok=__a ) def _lowercase (self : Optional[Any] ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def _lowercase (self : Any ): shutil.rmtree(self.tmpdirname ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = RealmConfig(num_block_records=self.num_block_records ) return config def _lowercase (self : List[str] ): UpperCAmelCase_ = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def _lowercase (self : Any ): UpperCAmelCase_ = np.array( [ B"This is the first record", B"This is the second record", B"This is the third record", B"This is the fourth record", B"This is the fifth record", B"This is a longer longer longer record", ] , dtype=__a , ) return block_records def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def _lowercase (self : int ): UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = self.get_dummy_retriever() UpperCAmelCase_ = retriever.tokenizer UpperCAmelCase_ = np.array([0, 3] , dtype="long" ) UpperCAmelCase_ = tokenizer(["Test question"] ).input_ids UpperCAmelCase_ = tokenizer( ["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids UpperCAmelCase_ = config.reader_seq_len UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = self.get_dummy_retriever() UpperCAmelCase_ = retriever.tokenizer UpperCAmelCase_ = np.array([0, 3, 5] , dtype="long" ) UpperCAmelCase_ = tokenizer(["Test question"] ).input_ids UpperCAmelCase_ = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids UpperCAmelCase_ = config.reader_seq_len UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual([False, True, True] , __a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path UpperCAmelCase_ = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , B"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: UpperCAmelCase_ = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) UpperCAmelCase_ = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , B"This is the first record" )
1
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowercase_ = logging.get_logger(__name__) @dataclass class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a=False , _a=False , _a=6.0 , _a=None , _a=False , _a=False , _a=None , _a="fp4" , _a=False , **_a , ): __a = load_in_abit __a = load_in_abit __a = llm_inta_threshold __a = llm_inta_skip_modules __a = llm_inta_enable_fpaa_cpu_offload __a = llm_inta_has_fpaa_weight __a = bnb_abit_quant_type __a = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: __a = torch.floataa elif isinstance(_a , _a ): __a = getattr(_a , _a ) elif isinstance(_a , torch.dtype ): __a = bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''' ) self.post_init() def __UpperCAmelCase ( self ): if not isinstance(self.llm_inta_threshold , _a ): raise ValueError('''llm_int8_threshold must be a float''' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _a ): raise ValueError('''llm_int8_skip_modules must be a list of strings''' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _a ): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''' ) if not isinstance(self.llm_inta_has_fpaa_weight , _a ): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''' ) if not isinstance(self.bnb_abit_quant_type , _a ): raise ValueError('''bnb_4bit_quant_type must be a string''' ) if not isinstance(self.bnb_abit_use_double_quant , _a ): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''' ) if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''' ) ) >= version.parse( '''0.39.0''' ): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''' ) def __UpperCAmelCase ( self ): return self.load_in_abit or self.load_in_abit def __UpperCAmelCase ( self ): if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def __UpperCAmelCase ( cls , _a , _a , **_a ): __a = cls(**_a ) __a = [] for key, value in kwargs.items(): if hasattr(_a , _a ): setattr(_a , _a , _a ) to_remove.append(_a ) for key in to_remove: kwargs.pop(_a , _a ) if return_unused_kwargs: return config, kwargs else: return config def __UpperCAmelCase ( self , _a ): with open(_a , '''w''' , encoding='''utf-8''' ) as writer: __a = self.to_dict() __a = json.dumps(_a , indent=2 , sort_keys=_a ) + '''\n''' writer.write(_a ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = str(output['''bnb_4bit_compute_dtype'''] ).split('''.''' )[1] return output def __repr__( self ): return f'''{self.__class__.__name__} {self.to_json_string()}''' def __UpperCAmelCase ( self , _a = True ): if use_diff is True: __a = self.to_diff_dict() else: __a = self.to_dict() return json.dumps(_a , indent=2 , sort_keys=_a ) + "\n" def __UpperCAmelCase ( self ): __a = self.to_dict() # get the default config dict __a = BitsAndBytesConfig().to_dict() __a = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: __a = value return serializable_config_dict
11
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _a ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __a = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sgugger/tiny-distilbert-classification''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , torchscript=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , fpaa=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) # set architectures equal to `None` __a = None __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_a , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tinier_bart''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tinier_bart''' __a = AutoConfig.from_pretrained(_a ) __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __a = PyTorchBenchmark(_a , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_a , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_a , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_a , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_a , '''env.csv''' ) , multi_process=_a , ) __a = PyTorchBenchmark(_a ) benchmark.run() self.assertTrue(Path(os.path.join(_a , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_a , '''env.csv''' ) ).exists() ) def __UpperCAmelCase ( self ): __a = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_a ): self.assertTrue(hasattr(_a , '''sequential''' ) ) self.assertTrue(hasattr(_a , '''cumulative''' ) ) self.assertTrue(hasattr(_a , '''current''' ) ) self.assertTrue(hasattr(_a , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , '''log.txt''' ) , log_print=_a , trace_memory_line_by_line=_a , multi_process=_a , ) __a = PyTorchBenchmark(_a ) __a = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_a , '''log.txt''' ) ).exists() )
11
1
def _lowerCAmelCase ( )->Union[str, Any]: '''simple docstring''' return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(lowercase__ , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'''{solution() = }''')
159
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _UpperCamelCase ( *lowercase__ , lowercase__ = None , lowercase__=True , lowercase__=2 ): from .. import __version__ __SCREAMING_SNAKE_CASE : Optional[Any] = take_from __SCREAMING_SNAKE_CASE : List[str] = () if not isinstance(args[0] , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(lowercase__ ).base_version ) >= version.parse(lowercase__ ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if isinstance(lowercase__ , lowercase__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowercase__ ),) __SCREAMING_SNAKE_CASE : List[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(lowercase__ , lowercase__ ): values += (getattr(lowercase__ , lowercase__ ),) __SCREAMING_SNAKE_CASE : List[str] = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: __SCREAMING_SNAKE_CASE : str = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: __SCREAMING_SNAKE_CASE : Any = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , lowercase__ , stacklevel=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1] __SCREAMING_SNAKE_CASE : Dict = call_frame.filename __SCREAMING_SNAKE_CASE : Optional[Any] = call_frame.lineno __SCREAMING_SNAKE_CASE : int = call_frame.function __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(lowercase__ ) == 0: return elif len(lowercase__ ) == 1: return values[0] return values
9
0
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: List[Any] , UpperCamelCase: Union[str, "sqlalchemy.sql.Selectable"] , UpperCamelCase: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , UpperCamelCase: Optional[Features] = None , UpperCamelCase: str = None , UpperCamelCase: bool = False , **UpperCamelCase: Optional[Any] , ): """simple docstring""" super().__init__(features=UpperCamelCase , cache_dir=UpperCamelCase , keep_in_memory=UpperCamelCase , **UpperCamelCase ) A__ = Sql( cache_dir=UpperCamelCase , features=UpperCamelCase , sql=UpperCamelCase , con=UpperCamelCase , **UpperCamelCase , ) def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = None A__ = None A__ = None A__ = None self.builder.download_and_prepare( download_config=UpperCamelCase , download_mode=UpperCamelCase , verification_mode=UpperCamelCase , base_path=UpperCamelCase , ) # Build dataset for splits A__ = self.builder.as_dataset( split="""train""" , verification_mode=UpperCamelCase , in_memory=self.keep_in_memory ) return dataset class a : """simple docstring""" def __init__( self: Any , UpperCamelCase: Dataset , UpperCamelCase: str , UpperCamelCase: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , UpperCamelCase: Optional[int] = None , UpperCamelCase: Optional[int] = None , **UpperCamelCase: Union[str, Any] , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) A__ = dataset A__ = name A__ = con A__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A__ = num_proc A__ = to_sql_kwargs def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = self.to_sql_kwargs.pop("""sql""" , UpperCamelCase ) A__ = self.to_sql_kwargs.pop("""con""" , UpperCamelCase ) A__ = self.to_sql_kwargs.pop("""index""" , UpperCamelCase ) A__ = self._write(index=UpperCamelCase , **self.to_sql_kwargs ) return written def UpperCamelCase ( self: Optional[int] , UpperCamelCase: Optional[Any] ): """simple docstring""" A__ , A__ , A__ = args A__ = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs A__ = query_table( table=self.dataset.data , key=slice(UpperCamelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) A__ = batch.to_pandas() A__ = df.to_sql(self.name , self.con , index=UpperCamelCase , **UpperCamelCase ) return num_rows or len(UpperCamelCase ) def UpperCamelCase ( self: List[Any] , UpperCamelCase: Optional[Any] , **UpperCamelCase: Dict ): """simple docstring""" A__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: A__ , A__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , UpperCamelCase , UpperCamelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
69
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ : List[Any] = logging.get_logger(__name__) @add_end_docstrings(_lowerCamelCase ) class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: Union[str, Any] , *UpperCamelCase: List[str] , **UpperCamelCase: Union[str, Any] ): """simple docstring""" super().__init__(*UpperCamelCase , **UpperCamelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def UpperCamelCase ( self: List[str] , UpperCamelCase: Any=None ): """simple docstring""" A__ = {} if top_k is not None: A__ = top_k return {}, {}, postprocess_params def __call__( self: Union[str, Any] , UpperCamelCase: Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCamelCase: Dict ): """simple docstring""" return super().__call__(UpperCamelCase , **UpperCamelCase ) def UpperCamelCase ( self: Any , UpperCamelCase: int ): """simple docstring""" A__ = load_image(UpperCamelCase ) A__ = self.image_processor(images=UpperCamelCase , return_tensors=self.framework ) return model_inputs def UpperCamelCase ( self: List[Any] , UpperCamelCase: Any ): """simple docstring""" A__ = self.model(**UpperCamelCase ) return model_outputs def UpperCamelCase ( self: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: int=5 ): """simple docstring""" if top_k > self.model.config.num_labels: A__ = self.model.config.num_labels if self.framework == "pt": A__ = model_outputs.logits.softmax(-1 )[0] A__ , A__ = probs.topk(UpperCamelCase ) elif self.framework == "tf": A__ = stable_softmax(model_outputs.logits , axis=-1 )[0] A__ = tf.math.top_k(UpperCamelCase , k=UpperCamelCase ) A__ , A__ = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) A__ = scores.tolist() A__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase , UpperCamelCase )]
69
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __snake_case ( __UpperCAmelCase ): def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(_snake_case , '''tf_padding''')) self.parent.assertTrue(hasattr(_snake_case , '''depth_multiplier''')) class __snake_case : def __init__( self : Dict , _snake_case : str , _snake_case : List[str]=13 , _snake_case : Dict=3 , _snake_case : Dict=32 , _snake_case : List[Any]=0.2_5 , _snake_case : int=8 , _snake_case : Dict=True , _snake_case : str=1024 , _snake_case : Tuple=32 , _snake_case : List[Any]="relu6" , _snake_case : int=0.1 , _snake_case : str=0.0_2 , _snake_case : Dict=True , _snake_case : str=True , _snake_case : Union[str, Any]=10 , _snake_case : str=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = min_depth UpperCAmelCase_ = tf_padding UpperCAmelCase_ = int(last_hidden_size * depth_multiplier) UpperCAmelCase_ = output_stride UpperCAmelCase_ = hidden_act UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase ( self : int , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = MobileNetVaModel(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase ( self : int , _snake_case : str , _snake_case : Tuple , _snake_case : List[str] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileNetVaForImageClassification(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): UpperCAmelCase__ : int = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Any = ( {'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : str = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = False def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = MobileNetVaModelTester(self) UpperCAmelCase_ = MobileNetVaConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''') def lowerCamelCase ( self : str): """simple docstring""" pass @unittest.skip(reason='''MobileNetV1 does not output attentions''') def lowerCamelCase ( self : List[Any]): """simple docstring""" pass def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" def check_hidden_states_output(_snake_case : Dict , _snake_case : Any , _snake_case : str): UpperCAmelCase_ = model_class(_snake_case) model.to(_snake_case) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 26 self.assertEqual(len(_snake_case) , _snake_case) UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) @slow def lowerCamelCase ( self : List[Any]): """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileNetVaModel.from_pretrained(_snake_case) self.assertIsNotNone(_snake_case) def A () -> List[str]: """simple docstring""" UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : Any): """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''') if is_vision_available() else None ) @slow def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''').to(_snake_case) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''pt''').to(_snake_case) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = torch.Size((1, 1001)) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5]).to(_snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
51
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase : def __init__(self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): A_ : str = parent A_ : int = batch_size A_ : Dict = seq_length A_ : Any = is_training A_ : List[str] = use_input_mask A_ : Any = use_token_type_ids A_ : int = use_labels A_ : str = vocab_size A_ : Any = hidden_size A_ : Optional[Any] = num_hidden_layers A_ : Dict = num_attention_heads A_ : Dict = intermediate_size A_ : Optional[int] = hidden_act A_ : int = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : Any = type_sequence_label_size A_ : Tuple = initializer_range A_ : int = num_labels A_ : Optional[int] = num_choices A_ : Optional[int] = scope def _a (self ): A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : List[str] = None if self.use_input_mask: A_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) A_ : int = None if self.use_token_type_ids: A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Tuple = None A_ : List[str] = None A_ : List[str] = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : str = ids_tensor([self.batch_size] , self.num_choices ) A_ : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a (self ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : List[Any] = BioGptModel(config=lowercase ) model.to(lowercase ) model.eval() A_ : List[Any] = model(lowercase , attention_mask=lowercase ) A_ : str = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): A_ : List[Any] = BioGptForCausalLM(config=lowercase ) model.to(lowercase ) model.eval() A_ : Dict = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ): A_ : Optional[Any] = BioGptModel(config=lowercase ) model.to(lowercase ) model.eval() # create attention mask A_ : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase ) A_ : Optional[Any] = self.seq_length // 2 A_ : List[Any] = 0 # first forward pass A_, A_ : List[str] = model(lowercase , attention_mask=lowercase ).to_tuple() # create hypothetical next token and extent to next_input_ids A_ : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids A_ : Union[str, Any] = ids_tensor((1,) , lowercase ).item() + 1 A_ : List[str] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) A_ : Optional[int] = random_other_next_tokens # append to next input_ids and attn_mask A_ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ : Any = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase )] , dim=1 , ) # get two different outputs A_ : List[Any] = model(lowercase , attention_mask=lowercase )["""last_hidden_state"""] A_ : Optional[int] = model(lowercase , past_key_values=lowercase , attention_mask=lowercase )["""last_hidden_state"""] # select random slice A_ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ : int = output_from_no_past[:, -1, random_slice_idx].detach() A_ : List[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase , lowercase , atol=1E-3 ) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ): A_ : Optional[int] = BioGptModel(config=lowercase ).to(lowercase ).eval() A_ : Union[str, Any] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase ) # first forward pass A_ : int = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) A_, A_ : int = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids A_ : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A_ : str = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and A_ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ : int = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) A_ : List[str] = model(lowercase , attention_mask=lowercase )["""last_hidden_state"""] A_ : Tuple = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[ """last_hidden_state""" ] # select random slice A_ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() A_ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase , lowercase , atol=1E-3 ) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase , lowercase=False ): A_ : Union[str, Any] = BioGptForCausalLM(lowercase ) model.to(lowercase ) if gradient_checkpointing: model.gradient_checkpointing_enable() A_ : Dict = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _a (self , lowercase , *lowercase ): A_ : Union[str, Any] = BioGptModel(lowercase ) A_ : str = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_01 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ): A_ : Union[str, Any] = self.num_labels A_ : Optional[int] = BioGptForTokenClassification(lowercase ) model.to(lowercase ) model.eval() A_ : Dict = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a (self ): A_ : List[Any] = self.prepare_config_and_inputs() ( ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ) : Dict = config_and_inputs A_ : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : int = (BioGptForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Optional[Any] = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : List[str] = False def _a (self ): A_ : Tuple = BioGptModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def _a (self ): self.config_tester.run_common_tests() def _a (self ): A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def _a (self ): A_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ : int = type self.model_tester.create_and_check_model(*lowercase ) def _a (self ): A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase ) def _a (self ): A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase , gradient_checkpointing=lowercase ) def _a (self ): A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase ) def _a (self ): A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase ) def _a (self ): A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase ) @slow def _a (self ): A_ : str = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(lowercase ) A_ : List[str] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A_ : List[str] = """left""" # Define PAD Token = EOS Token = 50256 A_ : Any = tokenizer.eos_token A_ : Dict = model.config.eos_token_id # use different length sentences to test batching A_ : List[Any] = [ """Hello, my dog is a little""", """Today, I""", ] A_ : List[str] = tokenizer(lowercase , return_tensors="""pt""" , padding=lowercase ) A_ : List[str] = inputs["""input_ids"""].to(lowercase ) A_ : List[Any] = model.generate( input_ids=lowercase , attention_mask=inputs["""attention_mask"""].to(lowercase ) , ) A_ : List[str] = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(lowercase ) A_ : List[Any] = model.generate(input_ids=lowercase ) A_ : List[str] = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() A_ : Union[str, Any] = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(lowercase ) A_ : Any = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) A_ : List[str] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) A_ : str = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) A_ : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) A_ : Union[str, Any] = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) @slow def _a (self ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : int = BioGptModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def _a (self ): A_, A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[Any] = 3 A_ : Union[str, Any] = input_dict["""input_ids"""] A_ : List[Any] = input_ids.ne(1 ).to(lowercase ) A_ : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A_ : Union[str, Any] = BioGptForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() A_ : Tuple = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a (self ): A_, A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() A_ : Tuple = 3 A_ : Dict = """multi_label_classification""" A_ : List[Any] = input_dict["""input_ids"""] A_ : Tuple = input_ids.ne(1 ).to(lowercase ) A_ : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A_ : Dict = BioGptForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() A_ : int = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): @slow def _a (self ): A_ : Dict = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) A_ : Optional[Any] = torch.tensor([[2, 4805, 9, 656, 21]] ) A_ : Dict = model(lowercase )[0] A_ : Any = 42384 A_ : Union[str, Any] = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , lowercase ) A_ : Union[str, Any] = torch.tensor( [[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) ) @slow def _a (self ): A_ : Union[str, Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A_ : Dict = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(lowercase ) torch.manual_seed(0 ) A_ : Dict = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(lowercase ) A_ : Optional[int] = model.generate( **lowercase , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=lowercase , ) A_ : Union[str, Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase ) A_ : Any = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(lowercase , lowercase )
206
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow a__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : Any = argparse.ArgumentParser() parser.add_argument('''-f''' ) _a : Dict = parser.parse_args() return args.f def __UpperCAmelCase ( __a : Optional[int] ,__a : List[str]="eval" ) -> Any: """simple docstring""" _a : Any = os.path.join(__a ,F"""{split}_results.json""" ) if os.path.exists(__a ): with open(__a ,'''r''' ) as f: return json.load(__a ) raise ValueError(F"""can't find {path}""" ) a__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> str: _a : Any = self.get_auto_remove_tmp_dir() _a : Optional[Any] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_glue.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def __lowercase ( self ) -> Dict: _a : Tuple = self.get_auto_remove_tmp_dir() _a : Tuple = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_clm_flax.main() _a : List[str] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 1_0_0 ) @slow def __lowercase ( self ) -> Optional[int]: _a : str = self.get_auto_remove_tmp_dir() _a : Optional[int] = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(_a , '''argv''' , _a ): run_summarization_flax.main() _a : Optional[int] = get_results(_a , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def __lowercase ( self ) -> Tuple: _a : List[str] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(_a , '''argv''' , _a ): run_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 4_2 ) @slow def __lowercase ( self ) -> Dict: _a : Optional[Any] = self.get_auto_remove_tmp_dir() _a : int = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_ta_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def __lowercase ( self ) -> Optional[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _a : Any = 7 if get_gpu_count() > 1 else 2 _a : List[Any] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_ner.main() _a : Dict = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def __lowercase ( self ) -> Any: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : Union[str, Any] = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(_a , '''argv''' , _a ): run_qa.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_f1'''] , 3_0 ) self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
15
import argparse import os import re import packaging.version a__ = '''examples/''' a__ = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } a__ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } a__ = '''README.md''' def __UpperCAmelCase ( __a : List[str] ,__a : int ,__a : Optional[Any] ) -> int: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Tuple = f.read() _a , _a : str = REPLACE_PATTERNS[pattern] _a : List[str] = replace.replace('''VERSION''' ,__a ) _a : List[Any] = re_pattern.sub(__a ,__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(__a ) def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a ,__a ) ,__a ,pattern='''examples''' ) def __UpperCAmelCase ( __a : List[Any] ,__a : List[str]=False ) -> int: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a ,__a ,__a ) if not patch: update_version_in_examples(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' _a : str = '''1. Want to contribute a new model?''' with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Optional[int] = f.readlines() # Find the start of the list. _a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _a : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _a : Tuple = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,) index += 1 with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] ,'''r''' ) as f: _a : Optional[Any] = f.read() _a : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def __UpperCAmelCase ( __a : Dict=False ) -> str: """simple docstring""" _a : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _a : List[Any] = default_version.base_version elif patch: _a : str = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _a : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _a : Dict = input(F"""Which version are you releasing? [{default_version}]""" ) if len(__a ) == 0: _a : int = default_version print(F"""Updating version to {version}.""" ) global_version_update(__a ,patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : str = get_version() _a : int = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _a : List[Any] = current_version.base_version # Check with the user we got that right. _a : Union[str, Any] = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(__a ) == 0: _a : List[str] = dev_version print(F"""Updating version to {version}.""" ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') a__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
15
1
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def _snake_case ( UpperCamelCase : int = 1000000 , UpperCamelCase : int = 10 ): UpperCAmelCase : defaultdict = defaultdict(UpperCamelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCAmelCase : str = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCAmelCase : Optional[Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(UpperCamelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
109
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets lowerCAmelCase_ = datasets.logging.get_logger(__name__) lowerCAmelCase_ = '''\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } ''' lowerCAmelCase_ = '''\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project\'s README at https://github.com/google-research/bleurt#readme for more information. ''' lowerCAmelCase_ = ''' BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: \'scores\': List of scores. Examples: >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> bleurt = datasets.load_metric("bleurt") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results["scores"]]) [1.03, 1.04] ''' lowerCAmelCase_ = { '''bleurt-tiny-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip''', '''bleurt-tiny-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip''', '''bleurt-base-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip''', '''bleurt-base-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip''', '''bleurt-large-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip''', '''bleurt-large-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip''', '''BLEURT-20-D3''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip''', '''BLEURT-20-D6''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip''', '''BLEURT-20-D12''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip''', '''BLEURT-20''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip''', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , ) def lowerCamelCase (self , __magic_name__ ) -> List[Any]: '''simple docstring''' if self.config_name == "default": logger.warning( '''Using default BLEURT-Base checkpoint for sequence maximum length 128. ''' '''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''' ) snake_case_ : Dict = '''bleurt-base-128''' if self.config_name.lower() in CHECKPOINT_URLS: snake_case_ : Optional[int] = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: snake_case_ : Union[str, Any] = self.config_name.upper() else: raise KeyError( F'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' ) # download the model checkpoint specified by self.config_name and set up the scorer snake_case_ : Any = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) snake_case_ : Dict = score.BleurtScorer(os.path.join(__magic_name__ , __magic_name__ ) ) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = self.scorer.score(references=__magic_name__ , candidates=__magic_name__ ) return {"scores": scores}
279
0
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _UpperCamelCase ( *snake_case_ , **snake_case_ ): '''simple docstring''' pass def _lowerCamelCase ( lowerCamelCase_ : Image ): """simple docstring""" UpperCAmelCase_ : Dict = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase_ :Optional[int] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : str = DepthEstimationPipeline(model=snake_case_ , image_processor=snake_case_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Dict = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , snake_case_ ) import datasets UpperCAmelCase_ : Optional[int] = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) UpperCAmelCase_ : Union[str, Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , snake_case_ , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @slow @require_torch def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Any = 'Intel/dpt-large' UpperCAmelCase_ : Dict = pipeline('depth-estimation' , model=snake_case_ ) UpperCAmelCase_ : Optional[int] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) UpperCAmelCase_ : Union[str, Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.3_04 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.6_62 ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
367
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase_ :int lowerCamelCase_ :int class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : list[list[Edge]] = [[] for _ in range(snake_case_ )] UpperCAmelCase_ : Any = size def __getitem__( self , snake_case_ ): '''simple docstring''' return iter(self._graph[vertex] ) @property def _UpperCamelCase ( self ): '''simple docstring''' return self._size def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(snake_case_ , snake_case_ ) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = deque([start_vertex] ) UpperCAmelCase_ : list[int | None] = [None] * self.size UpperCAmelCase_ : str = 0 while queue: UpperCAmelCase_ : Optional[int] = queue.popleft() UpperCAmelCase_ : List[str] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: UpperCAmelCase_ : Union[str, Any] = current_distance + edge.weight UpperCAmelCase_ : Union[str, Any] = distances[edge.destination_vertex] if ( isinstance(snake_case_ , snake_case_ ) and new_distance >= dest_vertex_distance ): continue UpperCAmelCase_ : Optional[Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
274
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowerCAmelCase__ = logging.get_logger(__name__) @dataclass class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=6.0 , __lowerCamelCase=None , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=None , __lowerCamelCase="fp4" , __lowerCamelCase=False , **__lowerCamelCase , ) -> str: _A : Optional[int] = load_in_abit _A : Union[str, Any] = load_in_abit _A : Union[str, Any] = llm_inta_threshold _A : Optional[int] = llm_inta_skip_modules _A : int = llm_inta_enable_fpaa_cpu_offload _A : List[Any] = llm_inta_has_fpaa_weight _A : Tuple = bnb_abit_quant_type _A : int = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: _A : Optional[int] = torch.floataa elif isinstance(__lowerCamelCase , __lowerCamelCase): _A : Optional[int] = getattr(__lowerCamelCase , __lowerCamelCase) elif isinstance(__lowerCamelCase , torch.dtype): _A : int = bnb_abit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype") self.post_init() def _lowerCamelCase ( self) -> Any: if not isinstance(self.llm_inta_threshold , __lowerCamelCase): raise ValueError("llm_int8_threshold must be a float") if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , __lowerCamelCase): raise ValueError("llm_int8_skip_modules must be a list of strings") if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , __lowerCamelCase): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean") if not isinstance(self.llm_inta_has_fpaa_weight , __lowerCamelCase): raise ValueError("llm_int8_has_fp16_weight must be a boolean") if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype") if not isinstance(self.bnb_abit_quant_type , __lowerCamelCase): raise ValueError("bnb_4bit_quant_type must be a string") if not isinstance(self.bnb_abit_use_double_quant , __lowerCamelCase): raise ValueError("bnb_4bit_use_double_quant must be a boolean") if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse( "0.39.0"): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version") def _lowerCamelCase ( self) -> List[str]: return self.load_in_abit or self.load_in_abit def _lowerCamelCase ( self) -> Any: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _lowerCamelCase ( cls , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Any: _A : Union[str, Any] = cls(**__lowerCamelCase) _A : Any = [] for key, value in kwargs.items(): if hasattr(__lowerCamelCase , __lowerCamelCase): setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) to_remove.append(__lowerCamelCase) for key in to_remove: kwargs.pop(__lowerCamelCase , __lowerCamelCase) if return_unused_kwargs: return config, kwargs else: return config def _lowerCamelCase ( self , __lowerCamelCase) -> List[Any]: with open(__lowerCamelCase , "w" , encoding="utf-8") as writer: _A : Optional[int] = self.to_dict() _A : Optional[int] = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase) + "\n" writer.write(__lowerCamelCase) def _lowerCamelCase ( self) -> Dict[str, Any]: _A : Optional[Any] = copy.deepcopy(self.__dict__) _A : int = str(output["bnb_4bit_compute_dtype"]).split(".")[1] return output def __repr__( self) -> List[str]: return F"{self.__class__.__name__} {self.to_json_string()}" def _lowerCamelCase ( self , __lowerCamelCase = True) -> str: if use_diff is True: _A : str = self.to_diff_dict() else: _A : Optional[Any] = self.to_dict() return json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase) + "\n" def _lowerCamelCase ( self) -> Dict[str, Any]: _A : List[str] = self.to_dict() # get the default config dict _A : Any = BitsAndBytesConfig().to_dict() _A : Optional[Any] = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: _A : Tuple = value return serializable_config_dict
11
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'facebook/nllb-large-en-ro': 10_24, 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off lowerCAmelCase__ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = NllbTokenizer __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=False , **__lowerCamelCase , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it _A : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token _A : Optional[int] = legacy_behaviour super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , legacy_behaviour=__lowerCamelCase , **__lowerCamelCase , ) _A : int = vocab_file _A : Optional[Any] = False if not self.vocab_file else True _A : Tuple = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) _A : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A : Optional[int] = src_lang if src_lang is not None else "eng_Latn" _A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang) _A : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : Tuple = [self.sep_token_id] _A : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : List[Any] = src_lang _A : Optional[int] = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase) _A : Tuple = tgt_lang_id return inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "eng_Latn" , __lowerCamelCase = None , __lowerCamelCase = "fra_Latn" , **__lowerCamelCase , ) -> BatchEncoding: _A : Tuple = src_lang _A : int = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> str: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Dict = self.convert_tokens_to_ids(__lowerCamelCase) if self.legacy_behaviour: _A : List[str] = [] _A : Dict = [self.eos_token_id, self.cur_lang_code] else: _A : Tuple = [self.cur_lang_code] _A : Optional[Any] = [self.eos_token_id] _A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) _A : int = self.convert_ids_to_tokens(self.suffix_tokens) _A : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Optional[Any] = self.convert_tokens_to_ids(__lowerCamelCase) if self.legacy_behaviour: _A : Tuple = [] _A : Any = [self.eos_token_id, self.cur_lang_code] else: _A : Union[str, Any] = [self.cur_lang_code] _A : str = [self.eos_token_id] _A : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens) _A : Dict = self.convert_ids_to_tokens(self.suffix_tokens) _A : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return _A : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase): copyfile(self.vocab_file , __lowerCamelCase) return (out_vocab_file,)
11
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'lxmert' snake_case_ = {} def __init__( self : int , snake_case : Dict=3_0522 , snake_case : Optional[int]=768 , snake_case : str=12 , snake_case : List[Any]=9500 , snake_case : Optional[Any]=1600 , snake_case : str=400 , snake_case : Dict=3072 , snake_case : Tuple="gelu" , snake_case : str=0.1 , snake_case : int=0.1 , snake_case : Any=512 , snake_case : List[str]=2 , snake_case : List[str]=0.02 , snake_case : Optional[int]=1e-12 , snake_case : List[str]=9 , snake_case : List[Any]=5 , snake_case : str=5 , snake_case : int=2048 , snake_case : int=4 , snake_case : Optional[Any]=6.67 , snake_case : List[str]=True , snake_case : List[Any]=True , snake_case : Tuple=True , snake_case : Any=True , snake_case : Tuple=True , snake_case : Tuple=True , snake_case : Tuple=True , **snake_case : List[Any] , ): '''simple docstring''' A__ : List[Any] = vocab_size A__ : List[Any] = hidden_size A__ : Union[str, Any] = num_attention_heads A__ : int = hidden_act A__ : Optional[int] = intermediate_size A__ : Tuple = hidden_dropout_prob A__ : Union[str, Any] = attention_probs_dropout_prob A__ : str = max_position_embeddings A__ : Dict = type_vocab_size A__ : Union[str, Any] = initializer_range A__ : Tuple = layer_norm_eps A__ : str = num_qa_labels A__ : List[str] = num_object_labels A__ : List[str] = num_attr_labels A__ : Any = l_layers A__ : Dict = x_layers A__ : Optional[Any] = r_layers A__ : Optional[int] = visual_feat_dim A__ : Union[str, Any] = visual_pos_dim A__ : Dict = visual_loss_normalizer A__ : str = task_matched A__ : List[Any] = task_mask_lm A__ : int = task_obj_predict A__ : Optional[Any] = task_qa A__ : Union[str, Any] = visual_obj_loss A__ : int = visual_attr_loss A__ : str = visual_feat_loss A__ : Union[str, Any] = {"""vision""": r_layers, """cross_encoder""": x_layers, """language""": l_layers} super().__init__(**snake_case )
296
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : List[Any] ): '''simple docstring''' super().__init__() A__ : int = nn.Linear(3 , 4 ) A__ : Union[str, Any] = nn.BatchNormad(4 ) A__ : Union[str, Any] = nn.Linear(4 , 5 ) def _UpperCamelCase ( self : str , snake_case : List[str] ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(snake_case ) ) ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : int = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , model.state_dict() ) A__ : List[str] = os.path.join(snake_case , """index.json""" ) self.assertTrue(os.path.isfile(snake_case ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: A__ : List[str] = os.path.join(snake_case , F'{key}.dat' ) self.assertTrue(os.path.isfile(snake_case ) ) # TODO: add tests on the fact weights are properly loaded def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Union[str, Any] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: A__ : str = torch.randn(2 , 3 , dtype=snake_case ) with TemporaryDirectory() as tmp_dir: A__ : List[str] = offload_weight(snake_case , """weight""" , snake_case , {} ) A__ : Union[str, Any] = os.path.join(snake_case , """weight.dat""" ) self.assertTrue(os.path.isfile(snake_case ) ) self.assertDictEqual(snake_case , {"""weight""": {"""shape""": [2, 3], """dtype""": str(snake_case ).split(""".""" )[1]}} ) A__ : str = load_offloaded_weight(snake_case , index["""weight"""] ) self.assertTrue(torch.equal(snake_case , snake_case ) ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : str = ModelForTest() A__ : Union[str, Any] = model.state_dict() A__ : Optional[int] = {k: v for k, v in state_dict.items() if """linear2""" not in k} A__ : List[Any] = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) A__ : Dict = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) A__ : int = {k: v for k, v in state_dict.items() if """weight""" in k} A__ : Tuple = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) A__ : Optional[Any] = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) # Duplicates are removed A__ : int = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : List[str] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} A__ : str = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] ) self.assertDictEqual(snake_case , {"""a.1""": 0, """a.2""": 2} ) A__ : Dict = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} A__ : int = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] ) self.assertDictEqual(snake_case , {"""a.1.a""": 0, """a.2.a""": 2} )
296
1
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = (DPMSolverSinglestepScheduler,) SCREAMING_SNAKE_CASE_ = (("num_inference_steps", 2_5),) def a_ ( self, **lowerCAmelCase__) -> int: snake_case_ = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf'), 'variance_type': None, } config.update(**lowerCAmelCase__) return config def a_ ( self, lowerCAmelCase__=0, **lowerCAmelCase__) -> List[Any]: snake_case_ = dict(self.forward_default_kwargs) snake_case_ = kwargs.pop('num_inference_steps', lowerCAmelCase__) snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample snake_case_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: snake_case_ = self.get_scheduler_config(**lowerCAmelCase__) snake_case_ = scheduler_class(**lowerCAmelCase__) scheduler.set_timesteps(lowerCAmelCase__) # copy over dummy past residuals snake_case_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__) snake_case_ = scheduler_class.from_pretrained(lowerCAmelCase__) new_scheduler.set_timesteps(lowerCAmelCase__) # copy over dummy past residuals snake_case_ = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case_ , snake_case_ = sample, sample for t in range(lowerCAmelCase__, time_step + scheduler.config.solver_order + 1): snake_case_ = scheduler.step(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__).prev_sample snake_case_ = new_scheduler.step(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def a_ ( self) -> Union[str, Any]: pass def a_ ( self, lowerCAmelCase__=0, **lowerCAmelCase__) -> int: snake_case_ = dict(self.forward_default_kwargs) snake_case_ = kwargs.pop('num_inference_steps', lowerCAmelCase__) snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample snake_case_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowerCAmelCase__) scheduler.set_timesteps(lowerCAmelCase__) # copy over dummy past residuals (must be after setting timesteps) snake_case_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__) snake_case_ = scheduler_class.from_pretrained(lowerCAmelCase__) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase__) # copy over dummy past residual (must be after setting timesteps) snake_case_ = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case_ = scheduler.step(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__).prev_sample snake_case_ = new_scheduler.step(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def a_ ( self, lowerCAmelCase__=None, **lowerCAmelCase__) -> Union[str, Any]: if scheduler is None: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(**lowerCAmelCase__) snake_case_ = scheduler_class(**lowerCAmelCase__) snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(**lowerCAmelCase__) snake_case_ = scheduler_class(**lowerCAmelCase__) snake_case_ = 10 snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase__) for i, t in enumerate(scheduler.timesteps): snake_case_ = model(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = scheduler.step(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__).prev_sample return sample def a_ ( self) -> List[Any]: snake_case_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) snake_case_ = 50 snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase__) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): snake_case_ = model(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = scheduler.step(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__).prev_sample snake_case_ = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.2574) < 1e-3 def a_ ( self) -> Dict: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__) def a_ ( self) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults snake_case_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) snake_case_ = self.full_loop(scheduler=lowerCAmelCase__) snake_case_ = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.2791) < 1e-3 snake_case_ = DEISMultistepScheduler.from_config(scheduler.config) snake_case_ = DPMSolverMultistepScheduler.from_config(scheduler.config) snake_case_ = UniPCMultistepScheduler.from_config(scheduler.config) snake_case_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) snake_case_ = self.full_loop(scheduler=lowerCAmelCase__) snake_case_ = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.2791) < 1e-3 def a_ ( self) -> str: self.check_over_configs(thresholding=lowerCAmelCase__) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCAmelCase__, prediction_type=lowerCAmelCase__, sample_max_value=lowerCAmelCase__, algorithm_type='dpmsolver++', solver_order=lowerCAmelCase__, solver_type=lowerCAmelCase__, ) def a_ ( self) -> Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__) def a_ ( self) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCAmelCase__, solver_type=lowerCAmelCase__, prediction_type=lowerCAmelCase__, algorithm_type=lowerCAmelCase__, ) snake_case_ = self.full_loop( solver_order=lowerCAmelCase__, solver_type=lowerCAmelCase__, prediction_type=lowerCAmelCase__, algorithm_type=lowerCAmelCase__, ) assert not torch.isnan(lowerCAmelCase__).any(), "Samples have nan numbers" def a_ ( self) -> Optional[Any]: self.check_over_configs(lower_order_final=lowerCAmelCase__) self.check_over_configs(lower_order_final=lowerCAmelCase__) def a_ ( self) -> Any: self.check_over_configs(lambda_min_clipped=-float('inf')) self.check_over_configs(lambda_min_clipped=-5.1) def a_ ( self) -> Any: self.check_over_configs(variance_type=lowerCAmelCase__) self.check_over_configs(variance_type='learned_range') def a_ ( self) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=lowerCAmelCase__, time_step=0) def a_ ( self) -> int: snake_case_ = self.full_loop() snake_case_ = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.2791) < 1e-3 def a_ ( self) -> Dict: snake_case_ = self.full_loop(use_karras_sigmas=lowerCAmelCase__) snake_case_ = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.2248) < 1e-3 def a_ ( self) -> Union[str, Any]: snake_case_ = self.full_loop(prediction_type='v_prediction') snake_case_ = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.1453) < 1e-3 def a_ ( self) -> Optional[Any]: snake_case_ = self.full_loop(prediction_type='v_prediction', use_karras_sigmas=lowerCAmelCase__) snake_case_ = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.0649) < 1e-3 def a_ ( self) -> Optional[int]: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(thresholding=lowerCAmelCase__, dynamic_thresholding_ratio=0) snake_case_ = scheduler_class(**lowerCAmelCase__) snake_case_ = 10 snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCAmelCase__) for i, t in enumerate(scheduler.timesteps): snake_case_ = model(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = scheduler.step(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__).prev_sample assert sample.dtype == torch.floataa
69
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase = TaTokenizerFast __UpperCamelCase = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
69
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def a ( __a ) -> List[str]: '''simple docstring''' UpperCamelCase__ :List[str] = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] UpperCamelCase__ :str = True if '''large''' in model_name or '''huge''' in model_name else False UpperCamelCase__ :Any = True if '''large''' in model_name or '''huge''' in model_name else False UpperCamelCase__ :Any = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: UpperCamelCase__ :Tuple = [3, 3, 3, 3] UpperCamelCase__ :Tuple = [5, 5, 5, 5] elif "fl4" in model_name: UpperCamelCase__ :Union[str, Any] = [4, 4, 4, 4] UpperCamelCase__ :Tuple = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: UpperCamelCase__ :int = [3, 3, 3, 3] if "lrf" in model_name: UpperCamelCase__ :Union[str, Any] = [3, 3, 3, 3] else: UpperCamelCase__ :List[str] = [2, 2, 2, 2] if "tiny" in model_name: UpperCamelCase__ :Dict = 96 elif "small" in model_name: UpperCamelCase__ :List[str] = 96 elif "base" in model_name: UpperCamelCase__ :Optional[int] = 128 elif "large" in model_name: UpperCamelCase__ :int = 192 elif "xlarge" in model_name: UpperCamelCase__ :Union[str, Any] = 256 elif "huge" in model_name: UpperCamelCase__ :Optional[int] = 352 # set label information UpperCamelCase__ :str = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: UpperCamelCase__ :Tuple = '''imagenet-22k-id2label.json''' else: UpperCamelCase__ :Union[str, Any] = '''imagenet-1k-id2label.json''' UpperCamelCase__ :List[str] = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase__ :List[Any] = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} UpperCamelCase__ :List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ :Any = FocalNetConfig( embed_dim=__lowerCAmelCase , depths=__lowerCAmelCase , focal_levels=__lowerCAmelCase , focal_windows=__lowerCAmelCase , use_conv_embed=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase , use_post_layernorm=__lowerCAmelCase , use_layerscale=__lowerCAmelCase , ) return config def a ( __a ) -> Union[str, Any]: '''simple docstring''' if "patch_embed.proj" in name: UpperCamelCase__ :int = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase__ :Any = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: UpperCamelCase__ :List[str] = '''encoder.''' + name if "encoder.layers" in name: UpperCamelCase__ :Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: UpperCamelCase__ :Tuple = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: UpperCamelCase__ :Optional[int] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: UpperCamelCase__ :List[Any] = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: UpperCamelCase__ :Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: UpperCamelCase__ :Dict = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": UpperCamelCase__ :Optional[Any] = '''layernorm.weight''' if name == "norm.bias": UpperCamelCase__ :Optional[Any] = '''layernorm.bias''' if "head" in name: UpperCamelCase__ :str = name.replace('''head''' , '''classifier''' ) else: UpperCamelCase__ :Optional[int] = '''focalnet.''' + name return name def a ( __a , __a , __a=False ) -> Any: '''simple docstring''' UpperCamelCase__ :Optional[Any] = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on UpperCamelCase__ :Tuple = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowerCAmelCase ) UpperCamelCase__ :Any = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ :Optional[Any] = state_dict.pop(__lowerCAmelCase ) UpperCamelCase__ :List[str] = val UpperCamelCase__ :List[str] = get_focalnet_config(__lowerCAmelCase ) UpperCamelCase__ :Dict = FocalNetForImageClassification(__lowerCAmelCase ) model.eval() # load state dict model.load_state_dict(__lowerCAmelCase ) # verify conversion UpperCamelCase__ :List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ :Optional[Any] = BitImageProcessor( do_resize=__lowerCAmelCase , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCAmelCase , crop_size=224 , do_normalize=__lowerCAmelCase , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase , ) UpperCamelCase__ :Union[str, Any] = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) UpperCamelCase__ :List[str] = processor(images=__lowerCAmelCase , return_tensors='''pt''' ) UpperCamelCase__ :int = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) UpperCamelCase__ :Optional[Any] = image_transforms(__lowerCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCAmelCase , atol=1e-4 ) UpperCamelCase__ :List[Any] = model(**__lowerCAmelCase ) UpperCamelCase__ :Dict = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": UpperCamelCase__ :Any = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": UpperCamelCase__ :List[Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": UpperCamelCase__ :Dict = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": UpperCamelCase__ :Tuple = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": UpperCamelCase__ :Tuple = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": UpperCamelCase__ :List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print(f'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(f'''{model_name}''' ) processor.push_to_hub(f'''{model_name}''' ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) __snake_case =parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
371
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" _a = AltDiffusionPipeline _a = TEXT_TO_IMAGE_PARAMS _a = TEXT_TO_IMAGE_BATCH_PARAMS _a = TEXT_TO_IMAGE_IMAGE_PARAMS _a = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ :List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCamelCase__ :int = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) UpperCamelCase__ :List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCamelCase__ :Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCamelCase__ :Optional[Any] = CLIPTextModel(UpperCamelCase_ ) UpperCamelCase__ :int = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) UpperCamelCase__ :Dict = 77 UpperCamelCase__ :Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=0 ): '''simple docstring''' if str(UpperCamelCase_ ).startswith('''mps''' ): UpperCamelCase__ :Dict = torch.manual_seed(UpperCamelCase_ ) else: UpperCamelCase__ :List[str] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase__ ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowerCAmelCase__ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ :Tuple = self.get_dummy_components() torch.manual_seed(0 ) UpperCamelCase__ :Dict = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase__ :Union[str, Any] = RobertaSeriesModelWithTransformation(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = text_encoder UpperCamelCase__ :Any = AltDiffusionPipeline(**UpperCamelCase_ ) UpperCamelCase__ :List[Any] = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :int = self.get_dummy_inputs(UpperCamelCase_ ) UpperCamelCase__ :Dict = '''A photo of an astronaut''' UpperCamelCase__ :Union[str, Any] = alt_pipe(**UpperCamelCase_ ) UpperCamelCase__ :Any = output.images UpperCamelCase__ :List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ :List[Any] = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ :int = self.get_dummy_components() UpperCamelCase__ :Union[str, Any] = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) UpperCamelCase__ :Dict = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase__ :str = RobertaSeriesModelWithTransformation(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = text_encoder UpperCamelCase__ :Union[str, Any] = AltDiffusionPipeline(**UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.get_dummy_inputs(UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = alt_pipe(**UpperCamelCase_ ) UpperCamelCase__ :str = output.images UpperCamelCase__ :int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ :List[Any] = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=UpperCamelCase_ ) UpperCamelCase__ :str = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :int = '''A painting of a squirrel eating a burger''' UpperCamelCase__ :int = torch.manual_seed(0 ) UpperCamelCase__ :Optional[Any] = alt_pipe([prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) UpperCamelCase__ :Union[str, Any] = output.images UpperCamelCase__ :Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) UpperCamelCase__ :List[str] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=UpperCamelCase_ , safety_checker=UpperCamelCase_ ) UpperCamelCase__ :Dict = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = '''A painting of a squirrel eating a burger''' UpperCamelCase__ :str = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = alt_pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''numpy''' ) UpperCamelCase__ :Any = output.images UpperCamelCase__ :int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ :int = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
219
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow SCREAMING_SNAKE_CASE :List[str] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE :List[str] = logging.getLogger() def UpperCAmelCase ( ) -> List[str]: """simple docstring""" __A = argparse.ArgumentParser() parser.add_argument("-f" ) __A = parser.parse_args() return args.f def UpperCAmelCase ( a_ , a_="eval" ) -> Dict: """simple docstring""" __A = os.path.join(a_ , F'''{split}_results.json''' ) if os.path.exists(a_ ): with open(a_ , "r" ) as f: return json.load(a_ ) raise ValueError(F'''can\'t find {path}''' ) SCREAMING_SNAKE_CASE :Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = self.get_auto_remove_tmp_dir() __A = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(A ,"argv" ,A ): run_flax_glue.main() __A = get_results(A ) self.assertGreaterEqual(result["eval_accuracy"] ,0.75 ) @slow def UpperCamelCase_ ( self : List[str] ): __A = self.get_auto_remove_tmp_dir() __A = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(A ,"argv" ,A ): run_clm_flax.main() __A = get_results(A ) self.assertLess(result["eval_perplexity"] ,1_00 ) @slow def UpperCamelCase_ ( self : int ): __A = self.get_auto_remove_tmp_dir() __A = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(A ,"argv" ,A ): run_summarization_flax.main() __A = get_results(A ,split="test" ) self.assertGreaterEqual(result["test_rouge1"] ,10 ) self.assertGreaterEqual(result["test_rouge2"] ,2 ) self.assertGreaterEqual(result["test_rougeL"] ,7 ) self.assertGreaterEqual(result["test_rougeLsum"] ,7 ) @slow def UpperCamelCase_ ( self : int ): __A = self.get_auto_remove_tmp_dir() __A = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(A ,"argv" ,A ): run_mlm_flax.main() __A = get_results(A ) self.assertLess(result["eval_perplexity"] ,42 ) @slow def UpperCamelCase_ ( self : Any ): __A = self.get_auto_remove_tmp_dir() __A = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(A ,"argv" ,A ): run_ta_mlm_flax.main() __A = get_results(A ) self.assertGreaterEqual(result["eval_accuracy"] ,0.42 ) @slow def UpperCamelCase_ ( self : Any ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __A = 7 if get_gpu_count() > 1 else 2 __A = self.get_auto_remove_tmp_dir() __A = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(A ,"argv" ,A ): run_flax_ner.main() __A = get_results(A ) self.assertGreaterEqual(result["eval_accuracy"] ,0.75 ) self.assertGreaterEqual(result["eval_f1"] ,0.3 ) @slow def UpperCamelCase_ ( self : int ): __A = self.get_auto_remove_tmp_dir() __A = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(A ,"argv" ,A ): run_qa.main() __A = get_results(A ) self.assertGreaterEqual(result["eval_f1"] ,30 ) self.assertGreaterEqual(result["eval_exact"] ,30 )
15
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 42 snake_case_ = 42 snake_case_ = None class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 2 @register_to_config def __init__( self : str ,A : float = 0.02 ,A : float = 1_00 ,A : float = 1.0_07 ,A : float = 80 ,A : float = 0.05 ,A : float = 50 ,): # standard deviation of the initial noise distribution __A = sigma_max # setable values __A = None __A = None __A = None # sigma(t_i) def UpperCamelCase_ ( self : str ,A : torch.FloatTensor ,A : Optional[int] = None ): return sample def UpperCamelCase_ ( self : Dict ,A : int ,A : Union[str, torch.device] = None ): __A = num_inference_steps __A = np.arange(0 ,self.num_inference_steps )[::-1].copy() __A = torch.from_numpy(A ).to(A ) __A = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __A = torch.tensor(A ,dtype=torch.floataa ,device=A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : torch.FloatTensor ,A : float ,A : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: __A = min(self.config.s_churn / self.num_inference_steps ,2**0.5 - 1 ) else: __A = 0 # sample eps ~ N(0, S_noise^2 * I) __A = self.config.s_noise * randn_tensor(sample.shape ,generator=A ).to(sample.device ) __A = sigma + gamma * sigma __A = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase_ ( self : Dict ,A : torch.FloatTensor ,A : float ,A : float ,A : torch.FloatTensor ,A : bool = True ,): __A = sample_hat + sigma_hat * model_output __A = (sample_hat - pred_original_sample) / sigma_hat __A = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=A ,derivative=A ,pred_original_sample=A ) def UpperCamelCase_ ( self : Optional[int] ,A : torch.FloatTensor ,A : float ,A : float ,A : torch.FloatTensor ,A : torch.FloatTensor ,A : torch.FloatTensor ,A : bool = True ,): __A = sample_prev + sigma_prev * model_output __A = (sample_prev - pred_original_sample) / sigma_prev __A = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=A ,derivative=A ,pred_original_sample=A ) def UpperCamelCase_ ( self : List[Any] ,A : Dict ,A : List[str] ,A : str ): raise NotImplementedError()
15
1
from timeit import timeit def _UpperCamelCase (a__ :int ): """simple docstring""" if number < 0: raise ValueError("""the value of input must not be negative""" ) UpperCamelCase__ = 0 while number: number &= number - 1 result += 1 return result def _UpperCamelCase (a__ :int ): """simple docstring""" if number < 0: raise ValueError("""the value of input must not be negative""" ) UpperCamelCase__ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def _UpperCamelCase (): """simple docstring""" def do_benchmark(a__ :int ) -> None: UpperCamelCase__ = """import __main__ as z""" print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(a__ ) = }""" ) UpperCamelCase__ = timeit("""z.get_set_bits_count_using_modulo_operator(25)""" , setup=a__ ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(a__ ) = }""" ) UpperCamelCase__ = timeit( """z.get_set_bits_count_using_brian_kernighans_algorithm(25)""" , setup=a__ , ) print(f"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(a__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
87
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch UpperCamelCase__ = random.Random() def _UpperCamelCase (a__ :Any , a__ :Union[str, Any]=1.0 , a__ :Tuple=None , a__ :str=None ): """simple docstring""" if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase=7 , __lowerCAmelCase=400 , __lowerCAmelCase=2000 , __lowerCAmelCase=10 , __lowerCAmelCase=160 , __lowerCAmelCase=8 , __lowerCAmelCase=0.0 , __lowerCAmelCase=4000 , __lowerCAmelCase=False , __lowerCAmelCase=True , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize UpperCamelCase__ = feature_size UpperCamelCase__ = chunk_length UpperCamelCase__ = hop_length def _lowerCamelCase ( self ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowerCamelCase ( self , __lowerCAmelCase=False , __lowerCAmelCase=False ): def _flatten(__lowerCAmelCase ): return list(itertools.chain(*__lowerCAmelCase ) ) if equal_length: UpperCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(__lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case : int = WhisperFeatureExtractor if is_speech_available() else None def _lowerCamelCase ( self ): UpperCamelCase__ = WhisperFeatureExtractionTester(self ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = feat_extract_first.save_pretrained(__lowerCAmelCase )[0] check_json_file_has_correct_format(__lowerCAmelCase ) UpperCamelCase__ = self.feature_extraction_class.from_pretrained(__lowerCAmelCase ) UpperCamelCase__ = feat_extract_first.to_dict() UpperCamelCase__ = feat_extract_second.to_dict() UpperCamelCase__ = feat_extract_first.mel_filters UpperCamelCase__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = os.path.join(__lowerCAmelCase , """feat_extract.json""" ) feat_extract_first.to_json_file(__lowerCAmelCase ) UpperCamelCase__ = self.feature_extraction_class.from_json_file(__lowerCAmelCase ) UpperCamelCase__ = feat_extract_first.to_dict() UpperCamelCase__ = feat_extract_second.to_dict() UpperCamelCase__ = feat_extract_first.mel_filters UpperCamelCase__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase__ = [np.asarray(__lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ = feature_extractor(__lowerCAmelCase , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__ = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features UpperCamelCase__ = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) # Test batched UpperCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ).input_features UpperCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ = np.asarray(__lowerCAmelCase ) UpperCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ).input_features UpperCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) # Test truncation required UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] UpperCamelCase__ = [np.asarray(__lowerCAmelCase ) for speech_input in speech_inputs] UpperCamelCase__ = [x[: feature_extractor.n_samples] for x in speech_inputs] UpperCamelCase__ = [np.asarray(__lowerCAmelCase ) for speech_input in speech_inputs_truncated] UpperCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ).input_features UpperCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) def _lowerCamelCase ( self ): import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(100 , 32 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech UpperCamelCase__ = ds.sort("""id""" ).select(range(__lowerCAmelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self ): # fmt: off UpperCamelCase__ = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on UpperCamelCase__ = self._load_datasamples(1 ) UpperCamelCase__ = WhisperFeatureExtractor() UpperCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __lowerCAmelCase , atol=1E-4 ) ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = self._load_datasamples(1 )[0] UpperCamelCase__ = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue UpperCamelCase__ = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__lowerCAmelCase )[0] self.assertTrue(np.all(np.mean(__lowerCAmelCase ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowerCAmelCase ) - 1 ) < 1E-3 ) )
87
1
from collections import deque from math import floor from random import random from time import time class _lowercase : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' lowerCamelCase__ : int = {} def lowerCAmelCase ( self : str , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any=1 ): '''simple docstring''' if self.graph.get(__lowerCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowerCamelCase__ : Optional[int] = [[w, v]] if not self.graph.get(__lowerCAmelCase ): lowerCamelCase__ : List[Any] = [] def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return list(self.graph ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ): '''simple docstring''' if self.graph.get(__lowerCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__lowerCAmelCase ) def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : int=-2 , __lowerCamelCase : Tuple=-1 ): '''simple docstring''' if s == d: return [] lowerCamelCase__ : str = [] lowerCamelCase__ : str = [] if s == -2: lowerCamelCase__ : Union[str, Any] = list(self.graph )[0] stack.append(__lowerCAmelCase ) visited.append(__lowerCAmelCase ) lowerCamelCase__ : List[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__lowerCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__lowerCAmelCase ) != 0: lowerCamelCase__ : List[str] = stack[len(__lowerCAmelCase ) - 1] else: lowerCamelCase__ : Optional[Any] = ss # check if se have reached the starting point if len(__lowerCAmelCase ) == 0: return visited def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int=-1 ): '''simple docstring''' if c == -1: lowerCamelCase__ : int = floor(random() * 10000 ) + 10 for i in range(__lowerCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCamelCase__ : List[str] = floor(random() * c ) + 1 if n != i: self.add_pair(__lowerCAmelCase , __lowerCAmelCase , 1 ) def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : int=-2 ): '''simple docstring''' lowerCamelCase__ : str = deque() lowerCamelCase__ : Optional[int] = [] if s == -2: lowerCamelCase__ : str = list(self.graph )[0] d.append(__lowerCAmelCase ) visited.append(__lowerCAmelCase ) while d: lowerCamelCase__ : Union[str, Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Any ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Tuple ): '''simple docstring''' return len(self.graph[u] ) def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : str=-2 ): '''simple docstring''' lowerCamelCase__ : str = [] lowerCamelCase__ : Dict = [] if s == -2: lowerCamelCase__ : List[str] = list(self.graph )[0] stack.append(__lowerCAmelCase ) visited.append(__lowerCAmelCase ) lowerCamelCase__ : int = s lowerCamelCase__ : Optional[Any] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : Optional[int] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__lowerCAmelCase ) != 0: lowerCamelCase__ : Dict = stack[len(__lowerCAmelCase ) - 1] else: lowerCamelCase__ : Union[str, Any] = ss # check if se have reached the starting point if len(__lowerCAmelCase ) == 0: return sorted_nodes def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Tuple = [] lowerCamelCase__ : str = list(self.graph )[0] stack.append(__lowerCAmelCase ) visited.append(__lowerCAmelCase ) lowerCamelCase__ : Dict = -2 lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : str = s lowerCamelCase__ : str = False lowerCamelCase__ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase__ : Dict = len(__lowerCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase__ : Optional[Any] = True if len(__lowerCAmelCase ) != 0: lowerCamelCase__ : List[str] = stack[len(__lowerCAmelCase ) - 1] else: lowerCamelCase__ : str = False indirect_parents.append(__lowerCAmelCase ) lowerCamelCase__ : Tuple = s lowerCamelCase__ : int = ss # check if se have reached the starting point if len(__lowerCAmelCase ) == 0: return list(__lowerCAmelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Tuple = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : int = list(self.graph )[0] stack.append(__lowerCAmelCase ) visited.append(__lowerCAmelCase ) lowerCamelCase__ : int = -2 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : Tuple = s lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : Tuple = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase__ : Optional[Any] = len(__lowerCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase__ : str = True if len(__lowerCAmelCase ) != 0: lowerCamelCase__ : Dict = stack[len(__lowerCAmelCase ) - 1] else: lowerCamelCase__ : Optional[Any] = False indirect_parents.append(__lowerCAmelCase ) lowerCamelCase__ : Any = s lowerCamelCase__ : Union[str, Any] = ss # check if se have reached the starting point if len(__lowerCAmelCase ) == 0: return False def lowerCAmelCase ( self : int , __lowerCamelCase : int=-2 , __lowerCamelCase : Optional[Any]=-1 ): '''simple docstring''' lowerCamelCase__ : List[str] = time() self.dfs(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ : Dict = time() return end - begin def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Tuple=-2 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = time() self.bfs(__lowerCAmelCase ) lowerCamelCase__ : List[str] = time() return end - begin class _lowercase : """simple docstring""" def __init__( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = {} def lowerCAmelCase ( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Dict=1 ): '''simple docstring''' if self.graph.get(__lowerCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowerCamelCase__ : Union[str, Any] = [[w, v]] # add the other way if self.graph.get(__lowerCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowerCamelCase__ : Any = [[w, u]] def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[str] ): '''simple docstring''' if self.graph.get(__lowerCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__lowerCAmelCase ) # the other way round if self.graph.get(__lowerCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__lowerCAmelCase ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : List[str]=-2 , __lowerCamelCase : Optional[Any]=-1 ): '''simple docstring''' if s == d: return [] lowerCamelCase__ : int = [] lowerCamelCase__ : Optional[Any] = [] if s == -2: lowerCamelCase__ : Any = list(self.graph )[0] stack.append(__lowerCAmelCase ) visited.append(__lowerCAmelCase ) lowerCamelCase__ : int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__lowerCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__lowerCAmelCase ) != 0: lowerCamelCase__ : List[str] = stack[len(__lowerCAmelCase ) - 1] else: lowerCamelCase__ : Dict = ss # check if se have reached the starting point if len(__lowerCAmelCase ) == 0: return visited def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : Any=-1 ): '''simple docstring''' if c == -1: lowerCamelCase__ : Union[str, Any] = floor(random() * 10000 ) + 10 for i in range(__lowerCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCamelCase__ : Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(__lowerCAmelCase , __lowerCAmelCase , 1 ) def lowerCAmelCase ( self : Any , __lowerCamelCase : Optional[Any]=-2 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = deque() lowerCamelCase__ : Optional[Any] = [] if s == -2: lowerCamelCase__ : List[Any] = list(self.graph )[0] d.append(__lowerCAmelCase ) visited.append(__lowerCAmelCase ) while d: lowerCamelCase__ : Tuple = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCAmelCase ( self : str , __lowerCamelCase : List[str] ): '''simple docstring''' return len(self.graph[u] ) def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : int = [] lowerCamelCase__ : int = list(self.graph )[0] stack.append(__lowerCAmelCase ) visited.append(__lowerCAmelCase ) lowerCamelCase__ : int = -2 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : int = s lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : List[str] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase__ : str = len(__lowerCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase__ : Union[str, Any] = True if len(__lowerCAmelCase ) != 0: lowerCamelCase__ : Dict = stack[len(__lowerCAmelCase ) - 1] else: lowerCamelCase__ : Dict = False indirect_parents.append(__lowerCAmelCase ) lowerCamelCase__ : int = s lowerCamelCase__ : str = ss # check if se have reached the starting point if len(__lowerCAmelCase ) == 0: return list(__lowerCAmelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : str = [] lowerCamelCase__ : Any = list(self.graph )[0] stack.append(__lowerCAmelCase ) visited.append(__lowerCAmelCase ) lowerCamelCase__ : List[Any] = -2 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : Union[str, Any] = s lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase__ : Union[str, Any] = len(__lowerCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : int = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase__ : str = True if len(__lowerCAmelCase ) != 0: lowerCamelCase__ : int = stack[len(__lowerCAmelCase ) - 1] else: lowerCamelCase__ : str = False indirect_parents.append(__lowerCAmelCase ) lowerCamelCase__ : Dict = s lowerCamelCase__ : List[str] = ss # check if se have reached the starting point if len(__lowerCAmelCase ) == 0: return False def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return list(self.graph ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : List[str]=-2 , __lowerCamelCase : int=-1 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = time() self.dfs(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ : List[Any] = time() return end - begin def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple=-2 ): '''simple docstring''' lowerCamelCase__ : List[Any] = time() self.bfs(__lowerCAmelCase ) lowerCamelCase__ : Union[str, Any] = time() return end - begin
184
from collections import deque class A : '''simple docstring''' def __init__( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> None: """simple docstring""" A__ = process_name # process name A__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time A__ = arrival_time A__ = burst_time # remaining burst time A__ = 0 # total time of the process wait in ready queue A__ = 0 # time from arrival time to completion time class A : '''simple docstring''' def __init__( self : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : list[int] , __lowerCAmelCase : deque[Process] , __lowerCAmelCase : int , ) -> None: """simple docstring""" A__ = number_of_queues # time slice of queues that round robin algorithm applied A__ = time_slices # unfinished process is in this ready_queue A__ = queue # current time A__ = current_time # finished process is in this sequence queue A__ = deque() def a_ ( self : Dict ) -> list[str]: """simple docstring""" A__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def a_ ( self : Tuple , __lowerCAmelCase : list[Process] ) -> list[int]: """simple docstring""" A__ = [] for i in range(len(__lowerCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def a_ ( self : Optional[Any] , __lowerCAmelCase : list[Process] ) -> list[int]: """simple docstring""" A__ = [] for i in range(len(__lowerCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def a_ ( self : Dict , __lowerCAmelCase : list[Process] ) -> list[int]: """simple docstring""" A__ = [] for i in range(len(__lowerCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def a_ ( self : int , __lowerCAmelCase : deque[Process] ) -> list[int]: """simple docstring""" return [q.burst_time for q in queue] def a_ ( self : Any , __lowerCAmelCase : Process ) -> int: """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def a_ ( self : Union[str, Any] , __lowerCAmelCase : deque[Process] ) -> deque[Process]: """simple docstring""" A__ = deque() # sequence deque of finished process while len(__lowerCAmelCase ) != 0: A__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__lowerCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 A__ = 0 # set the process's turnaround time because it is finished A__ = self.current_time - cp.arrival_time # set the completion time A__ = self.current_time # add the process to queue that has finished queue finished.append(__lowerCAmelCase ) self.finish_queue.extend(__lowerCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def a_ ( self : Optional[Any] , __lowerCAmelCase : deque[Process] , __lowerCAmelCase : int ) -> tuple[deque[Process], deque[Process]]: """simple docstring""" A__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__lowerCAmelCase ) ): A__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__lowerCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time A__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__lowerCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished A__ = 0 # set the finish time A__ = self.current_time # update the process' turnaround time because it is finished A__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__lowerCAmelCase ) self.finish_queue.extend(__lowerCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def a_ ( self : List[Any] ) -> deque[Process]: """simple docstring""" for i in range(self.number_of_queues - 1 ): A__ , A__ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A : Union[str, Any] = Process('''P1''', 0, 5_3) A : Optional[Any] = Process('''P2''', 0, 1_7) A : Optional[int] = Process('''P3''', 0, 6_8) A : int = Process('''P4''', 0, 2_4) A : Any = 3 A : List[Any] = [1_7, 2_5] A : Optional[Any] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) A : Optional[Any] = Process('''P1''', 0, 5_3) A : int = Process('''P2''', 0, 1_7) A : Optional[int] = Process('''P3''', 0, 6_8) A : Tuple = Process('''P4''', 0, 2_4) A : Union[str, Any] = 3 A : Optional[Any] = [1_7, 2_5] A : Tuple = deque([Pa, Pa, Pa, Pa]) A : Optional[int] = MLFQ(number_of_queues, time_slices, queue, 0) A : Dict = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
274
0
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process lowercase__ : List[Any] = logging.getLogger(__name__) lowercase__ : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) lowercase__ : Dict = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__magic_name__ )} , ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) _snake_case : bool = field( default=__magic_name__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) _snake_case : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _snake_case : bool = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def snake_case__ ( self : Optional[Any] ) -> str: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _snake_case : Optional[str] = field(default=__magic_name__ , metadata={'help': 'The input training data file (a text file).'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'An optional input train ref data file for whole word masking in Chinese.'} , ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'An optional input validation ref data file for whole word masking in Chinese.'} , ) _snake_case : bool = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) _snake_case : Optional[int] = field( default=5 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) _snake_case : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated. Default to the max input length of the model.' ) } , ) _snake_case : Optional[int] = field( default=__magic_name__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) _snake_case : float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) _snake_case : bool = field( default=__magic_name__ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) def snake_case__ ( self : str ) -> Optional[Any]: '''simple docstring''' if self.train_file is not None: _UpperCamelCase = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _UpperCamelCase = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a__ ( lowercase : Union[str, Any], lowercase : Union[str, Any] ) -> int: """simple docstring""" with open(lowercase, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = [json.loads(lowercase ) for line in f.read().splitlines() if (len(lowercase ) > 0 and not line.isspace())] assert len(lowercase ) == len(lowercase ) _UpperCamelCase = {c: dataset[c] for c in dataset.column_names} _UpperCamelCase = refs return Dataset.from_dict(lowercase ) def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''', lowercase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCamelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): _UpperCamelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", ) _UpperCamelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", ) else: _UpperCamelCase = {} if data_args.train_file is not None: _UpperCamelCase = data_args.train_file if data_args.validation_file is not None: _UpperCamelCase = data_args.validation_file _UpperCamelCase = data_args.train_file.split('''.''' )[-1] if extension == "txt": _UpperCamelCase = '''text''' _UpperCamelCase = load_dataset(lowercase, data_files=lowercase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCamelCase = AutoConfig.from_pretrained(model_args.config_name, **lowercase ) elif model_args.model_name_or_path: _UpperCamelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowercase ) else: _UpperCamelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) _UpperCamelCase = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _UpperCamelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowercase ) elif model_args.model_name_or_path: _UpperCamelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowercase ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: _UpperCamelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=lowercase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('''Training new model from scratch''' ) _UpperCamelCase = AutoModelForMaskedLM.from_config(lowercase ) model.resize_token_embeddings(len(lowercase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _UpperCamelCase = datasets['''train'''].column_names else: _UpperCamelCase = datasets['''validation'''].column_names _UpperCamelCase = '''text''' if '''text''' in column_names else column_names[0] _UpperCamelCase = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(lowercase : Tuple ): # Remove empty lines _UpperCamelCase = [line for line in examples['''text'''] if len(lowercase ) > 0 and not line.isspace()] return tokenizer(examples['''text'''], padding=lowercase, truncation=lowercase, max_length=data_args.max_seq_length ) _UpperCamelCase = datasets.map( lowercase, batched=lowercase, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: _UpperCamelCase = add_chinese_references(tokenized_datasets['''train'''], data_args.train_ref_file ) if data_args.validation_ref_file is not None: _UpperCamelCase = add_chinese_references( tokenized_datasets['''validation'''], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _UpperCamelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _UpperCamelCase = False # Data collator # This one will take care of randomly masking the tokens. _UpperCamelCase = DataCollatorForWholeWordMask(tokenizer=lowercase, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCamelCase = Trainer( model=lowercase, args=lowercase, train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None, eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None, tokenizer=lowercase, data_collator=lowercase, ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None _UpperCamelCase = trainer.train(resume_from_checkpoint=lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCamelCase = os.path.join(training_args.output_dir, '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(lowercase, '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, '''trainer_state.json''' ) ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = math.exp(eval_output['''eval_loss'''] ) _UpperCamelCase = perplexity _UpperCamelCase = os.path.join(training_args.output_dir, '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(lowercase, '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a__ ( lowercase : Optional[int] ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
287
'''simple docstring''' def a__ ( lowercase : int, lowercase : int ) -> int: """simple docstring""" return x if y == 0 else greatest_common_divisor(lowercase, x % y ) def a__ ( lowercase : int, lowercase : int ) -> int: """simple docstring""" return (x * y) // greatest_common_divisor(lowercase, lowercase ) def a__ ( lowercase : int = 20 ) -> int: """simple docstring""" _UpperCamelCase = 1 for i in range(1, n + 1 ): _UpperCamelCase = lcm(lowercase, lowercase ) return g if __name__ == "__main__": print(F"""{solution() = }""")
287
1
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar SCREAMING_SNAKE_CASE_ = TypeVar("""T""") class UpperCamelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self : Optional[Any] ,lowerCamelCase__ : bool = True ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = {} # dictionary of lists SCREAMING_SNAKE_CASE = directed def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : T ,lowerCamelCase__ : T ) -> GraphAdjacencyList[T]: '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase__ ) self.adj_list[destination_vertex].append(lowerCamelCase__ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: SCREAMING_SNAKE_CASE = [destination_vertex] SCREAMING_SNAKE_CASE = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase__ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: SCREAMING_SNAKE_CASE = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: SCREAMING_SNAKE_CASE = [destination_vertex] SCREAMING_SNAKE_CASE = [] return self def __repr__( self : Tuple ) -> str: '''simple docstring''' return pformat(self.adj_list )
296
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
296
1
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=1_3 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=9_9 , __UpperCamelCase=3_2 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=3_7 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_1_2 , __UpperCamelCase=1_6 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=4 , ): """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_attention_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_choices def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_attention_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_UpperCAmelCase , ) return config, input_ids, attention_mask def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class lowercase_ ( _UpperCAmelCase , unittest.TestCase ): A__ : Tuple = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = FlaxDistilBertModelTester(self ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase_ = model_class_name.from_pretrained("""distilbert-base-uncased""" ) UpperCamelCase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class lowercase_ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) UpperCamelCase_ = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCamelCase_ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] UpperCamelCase_ = (1, 1_1, 7_6_8) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCamelCase_ = np.array([[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
352
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase__ ( a__ : Dict ) -> List[Any]: UpperCamelCase_ = {} UpperCamelCase_ = tokenizer(example["""content"""] , truncation=a__ )["""input_ids"""] UpperCamelCase_ = len(example["""content"""] ) / len(output["""input_ids"""] ) return output _A = HfArgumentParser(PretokenizationArguments) _A = parser.parse_args() if args.num_workers is None: _A = multiprocessing.cpu_count() _A = AutoTokenizer.from_pretrained(args.tokenizer_dir) _A = time.time() _A = load_dataset(args.dataset_name, split='''train''') print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') _A = time.time() _A = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') _A = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
261
0
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : BigBirdConfig SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True def SCREAMING_SNAKE_CASE ( self : Tuple ): super().setup() __lowercase = nn.Dense(5 ,dtype=self.dtype ) def __call__( self : List[str] ,*lowercase__ : int ,**lowercase__ : int ): __lowercase = super().__call__(*lowercase__ ,**lowercase__ ) __lowercase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = FlaxBigBirdForNaturalQuestionsModule def _A ( A__ , A__ , A__ , A__ , A__ , A__ ): """simple docstring""" def cross_entropy(A__ , A__ , A__=None ): __lowercase = logits.shape[-1] __lowercase = (labels[..., None] == jnp.arange(A__ )[None]).astype('''f4''' ) __lowercase = jax.nn.log_softmax(A__ , axis=-1 ) __lowercase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: __lowercase = reduction(A__ ) return loss __lowercase = partial(A__ , reduction=jnp.mean ) __lowercase = cross_entropy(A__ , A__ ) __lowercase = cross_entropy(A__ , A__ ) __lowercase = cross_entropy(A__ , A__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : str = "google/bigbird-roberta-base" SCREAMING_SNAKE_CASE : int = 3_0_0_0 SCREAMING_SNAKE_CASE : int = 1_0_5_0_0 SCREAMING_SNAKE_CASE : int = 1_2_8 SCREAMING_SNAKE_CASE : int = 3 SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : int = 5 # tx_args SCREAMING_SNAKE_CASE : float = 3e-5 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : int = 2_0_0_0_0 SCREAMING_SNAKE_CASE : float = 0.0095 SCREAMING_SNAKE_CASE : str = "bigbird-roberta-natural-questions" SCREAMING_SNAKE_CASE : str = "training-expt" SCREAMING_SNAKE_CASE : str = "data/nq-training.jsonl" SCREAMING_SNAKE_CASE : str = "data/nq-validation.jsonl" def SCREAMING_SNAKE_CASE ( self : List[str] ): os.makedirs(self.base_dir ,exist_ok=lowercase__ ) __lowercase = os.path.join(self.base_dir ,self.save_dir ) __lowercase = self.batch_size_per_device * jax.device_count() @dataclass class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int = 4_0_9_6 # no dynamic padding on TPUs def __call__( self : Dict ,lowercase__ : int ): __lowercase = self.collate_fn(lowercase__ ) __lowercase = jax.tree_util.tree_map(lowercase__ ,lowercase__ ) return batch def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Tuple ): __lowercase , __lowercase = self.fetch_inputs(features['''input_ids'''] ) __lowercase = { '''input_ids''': jnp.array(lowercase__ ,dtype=jnp.intaa ), '''attention_mask''': jnp.array(lowercase__ ,dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] ,dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] ,dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] ,dtype=jnp.intaa ), } return batch def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : list ): __lowercase = [self._fetch_inputs(lowercase__ ) for ids in input_ids] return zip(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : list ): __lowercase = [1 for _ in range(len(lowercase__ ) )] while len(lowercase__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _A ( A__ , A__ , A__=None ): """simple docstring""" if seed is not None: __lowercase = dataset.shuffle(seed=A__ ) for i in range(len(A__ ) // batch_size ): __lowercase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(A__ ) @partial(jax.pmap , axis_name='''batch''' ) def _A ( A__ , A__ , **A__ ): """simple docstring""" def loss_fn(A__ ): __lowercase = model_inputs.pop('''start_labels''' ) __lowercase = model_inputs.pop('''end_labels''' ) __lowercase = model_inputs.pop('''pooled_labels''' ) __lowercase = state.apply_fn(**A__ , params=A__ , dropout_rng=A__ , train=A__ ) __lowercase , __lowercase , __lowercase = outputs return state.loss_fn( A__ , A__ , A__ , A__ , A__ , A__ , ) __lowercase , __lowercase = jax.random.split(A__ ) __lowercase = jax.value_and_grad(A__ ) __lowercase , __lowercase = grad_fn(state.params ) __lowercase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) __lowercase = jax.lax.pmean(A__ , '''batch''' ) __lowercase = state.apply_gradients(grads=A__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def _A ( A__ , **A__ ): """simple docstring""" __lowercase = model_inputs.pop('''start_labels''' ) __lowercase = model_inputs.pop('''end_labels''' ) __lowercase = model_inputs.pop('''pooled_labels''' ) __lowercase = state.apply_fn(**A__ , params=state.params , train=A__ ) __lowercase , __lowercase , __lowercase = outputs __lowercase = state.loss_fn(A__ , A__ , A__ , A__ , A__ , A__ ) __lowercase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class lowercase_ (train_state.TrainState ): """simple docstring""" SCREAMING_SNAKE_CASE : Callable = struct.field(pytree_node=lowerCamelCase__ ) @dataclass class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : Args SCREAMING_SNAKE_CASE : Callable SCREAMING_SNAKE_CASE : Callable SCREAMING_SNAKE_CASE : Callable SCREAMING_SNAKE_CASE : Callable SCREAMING_SNAKE_CASE : wandb SCREAMING_SNAKE_CASE : Callable = None def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any]=None ): __lowercase = model.params __lowercase = TrainState.create( apply_fn=model.__call__ ,params=lowercase__ ,tx=lowercase__ ,loss_fn=lowercase__ ,) if ckpt_dir is not None: __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = restore_checkpoint(lowercase__ ,lowercase__ ) __lowercase = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } __lowercase , __lowercase = build_tx(**lowercase__ ) __lowercase = train_state.TrainState( step=lowercase__ ,apply_fn=model.__call__ ,params=lowercase__ ,tx=lowercase__ ,opt_state=lowercase__ ,) __lowercase = args __lowercase = data_collator __lowercase = lr __lowercase = params __lowercase = jax_utils.replicate(lowercase__ ) return state def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : Dict ): __lowercase = self.args __lowercase = len(lowercase__ ) // args.batch_size __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(lowercase__ ,jax.device_count() ) for epoch in range(args.max_epochs ): __lowercase = jnp.array(0 ,dtype=jnp.floataa ) __lowercase = get_batched_dataset(lowercase__ ,args.batch_size ,seed=lowercase__ ) __lowercase = 0 for batch in tqdm(lowercase__ ,total=lowercase__ ,desc=F"Running EPOCH-{epoch}" ): __lowercase = self.data_collator(lowercase__ ) __lowercase , __lowercase , __lowercase = self.train_step_fn(lowercase__ ,lowercase__ ,**lowercase__ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: __lowercase = jax_utils.unreplicate(state.step ) __lowercase = running_loss.item() / i __lowercase = self.scheduler_fn(state_step - 1 ) __lowercase = self.evaluate(lowercase__ ,lowercase__ ) __lowercase = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(lowercase__ ) ) self.logger.log(lowercase__ ,commit=lowercase__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"-e{epoch}-s{i}" ,state=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Dict ,lowercase__ : Optional[Any] ): __lowercase = get_batched_dataset(lowercase__ ,self.args.batch_size ) __lowercase = len(lowercase__ ) // self.args.batch_size __lowercase = jnp.array(0 ,dtype=jnp.floataa ) __lowercase = 0 for batch in tqdm(lowercase__ ,total=lowercase__ ,desc='''Evaluating ... ''' ): __lowercase = self.data_collator(lowercase__ ) __lowercase = self.val_step_fn(lowercase__ ,**lowercase__ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ,lowercase__ : Any ): __lowercase = jax_utils.unreplicate(lowercase__ ) print(F"SAVING CHECKPOINT IN {save_dir}" ,end=''' ... ''' ) self.model_save_fn(lowercase__ ,params=state.params ) with open(os.path.join(lowercase__ ,'''opt_state.msgpack''' ) ,'''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args ,os.path.join(lowercase__ ,'''args.joblib''' ) ) joblib.dump(self.data_collator ,os.path.join(lowercase__ ,'''data_collator.joblib''' ) ) with open(os.path.join(lowercase__ ,'''training_state.json''' ) ,'''w''' ) as f: json.dump({'''step''': state.step.item()} ,lowercase__ ) print('''DONE''' ) def _A ( A__ , A__ ): """simple docstring""" print(F"RESTORING CHECKPOINT FROM {save_dir}" , end=''' ... ''' ) with open(os.path.join(A__ , '''flax_model.msgpack''' ) , '''rb''' ) as f: __lowercase = from_bytes(state.params , f.read() ) with open(os.path.join(A__ , '''opt_state.msgpack''' ) , '''rb''' ) as f: __lowercase = from_bytes(state.opt_state , f.read() ) __lowercase = joblib.load(os.path.join(A__ , '''args.joblib''' ) ) __lowercase = joblib.load(os.path.join(A__ , '''data_collator.joblib''' ) ) with open(os.path.join(A__ , '''training_state.json''' ) , '''r''' ) as f: __lowercase = json.load(A__ ) __lowercase = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = num_train_steps - warmup_steps __lowercase = optax.linear_schedule(init_value=A__ , end_value=A__ , transition_steps=A__ ) __lowercase = optax.linear_schedule(init_value=A__ , end_value=1e-7 , transition_steps=A__ ) __lowercase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _A ( A__ , A__ , A__ , A__ , A__ ): """simple docstring""" def weight_decay_mask(A__ ): __lowercase = traverse_util.flatten_dict(A__ ) __lowercase = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(A__ ) __lowercase = scheduler_fn(A__ , A__ , A__ , A__ ) __lowercase = optax.adamw(learning_rate=A__ , weight_decay=A__ , mask=A__ ) return tx, lr
104
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Any = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Any: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Optional[Any]: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE__ = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(__UpperCamelCase , id=__UpperCamelCase )
219
0
'''simple docstring''' class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = set_counts _lowerCAmelCase : List[Any] = max(lowercase__ ) _lowerCAmelCase : Dict = len(lowercase__ ) _lowerCAmelCase : Any = [1] * num_sets _lowerCAmelCase : Any = list(range(lowercase__ ) ) def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[str] = self.get_parent(lowercase__ ) _lowerCAmelCase : Dict = self.get_parent(lowercase__ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] _lowerCAmelCase : str = 0 _lowerCAmelCase : Dict = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 _lowerCAmelCase : List[Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] _lowerCAmelCase : str = 0 _lowerCAmelCase : int = src_parent _lowerCAmelCase : Optional[Any] = self.set_counts[src_parent] _lowerCAmelCase : Tuple = max(self.max_set , lowercase__ ) return True def a ( self , snake_case__ ): '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set _lowerCAmelCase : Optional[int] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
357
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCamelCase__ : """simple docstring""" __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = None __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = True __magic_name__ = None __magic_name__ = 1 __magic_name__ = None __magic_name__ = False __magic_name__ = None __magic_name__ = None def a ( self ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
25
0
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split UpperCamelCase = datasets.load_iris() UpperCamelCase = np.array(data['''data''']) UpperCamelCase = np.array(data['''target''']) UpperCamelCase = data['''target_names'''] UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = train_test_split(X, y) def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Optional[Any]): return np.linalg.norm(np.array(_lowerCamelCase) - np.array(_lowerCamelCase)) def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : Any=5): lowercase__ : int = zip(_lowerCamelCase , _lowerCamelCase) # List of distances of all points from the point to be classified lowercase__ : str = [] for data_point in data: lowercase__ : str = euclidean_distance(data_point[0] , _lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. lowercase__ : Dict = [i[1] for i in sorted(_lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowercase__ : Tuple = Counter(_lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
87
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict): # Initialise PyTorch model lowercase__ : List[str] = BertConfig.from_json_file(_lowerCamelCase) print(f'''Building PyTorch model from configuration: {config}''') lowercase__ : Optional[Any] = BertForPreTraining(_lowerCamelCase) # Load weights from tf checkpoint load_tf_weights_in_bert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''') torch.save(model.state_dict() , _lowerCamelCase) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
87
1
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _a ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any]=[] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = size[0] - overlap_pixels * 2 SCREAMING_SNAKE_CASE__ : Optional[int] = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels SCREAMING_SNAKE_CASE__ : Tuple = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 SCREAMING_SNAKE_CASE__ : str = np.pad(SCREAMING_SNAKE_CASE__ , mode="linear_ramp" , pad_width=SCREAMING_SNAKE_CASE__ , end_values=0 ) if "l" in remove_borders: SCREAMING_SNAKE_CASE__ : Union[str, Any] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: SCREAMING_SNAKE_CASE__ : int = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: SCREAMING_SNAKE_CASE__ : Union[str, Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: SCREAMING_SNAKE_CASE__ : Optional[Any] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _a ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: '''simple docstring''' return max(SCREAMING_SNAKE_CASE__ , min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def _a ( SCREAMING_SNAKE_CASE__ : [int] , SCREAMING_SNAKE_CASE__ : [int] , SCREAMING_SNAKE_CASE__ : [int] ) -> Optional[int]: '''simple docstring''' return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _a ( SCREAMING_SNAKE_CASE__ : [int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : [int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = list(SCREAMING_SNAKE_CASE__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap SCREAMING_SNAKE_CASE__ : Tuple = clamp_rect(SCREAMING_SNAKE_CASE__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def _a ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = Image.new("RGB" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE__ , (original_slice, 0) ) return result def _a ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tile.crop(SCREAMING_SNAKE_CASE__ ) return tile def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = n % d return n - divisor class lowerCamelCase (__lowerCamelCase ): """simple docstring""" def __init__( self : Any, _UpperCAmelCase : AutoencoderKL, _UpperCAmelCase : CLIPTextModel, _UpperCAmelCase : CLIPTokenizer, _UpperCAmelCase : UNetaDConditionModel, _UpperCAmelCase : DDPMScheduler, _UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], _UpperCAmelCase : int = 3_5_0, ) -> int: """simple docstring""" super().__init__( vae=_UpperCAmelCase, text_encoder=_UpperCAmelCase, tokenizer=_UpperCAmelCase, unet=_UpperCAmelCase, low_res_scheduler=_UpperCAmelCase, scheduler=_UpperCAmelCase, max_noise_level=_UpperCAmelCase, ) def A_ ( self : Dict, _UpperCAmelCase : int, _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : str, _UpperCAmelCase : List[Any], _UpperCAmelCase : Tuple, _UpperCAmelCase : str, **_UpperCAmelCase : str ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = ( min(image.size[0] - (tile_size + original_image_slice), x * tile_size ), min(image.size[1] - (tile_size + original_image_slice), y * tile_size ), min(image.size[0], (x + 1) * tile_size ), min(image.size[1], (y + 1) * tile_size ), ) SCREAMING_SNAKE_CASE__ : str = add_overlap_rect(_UpperCAmelCase, _UpperCAmelCase, image.size ) SCREAMING_SNAKE_CASE__ : List[str] = image.crop(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = translated_slice_x - (original_image_slice / 2) SCREAMING_SNAKE_CASE__ : Optional[int] = max(0, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = squeeze_tile(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = to_input.size SCREAMING_SNAKE_CASE__ : str = to_input.resize((tile_size, tile_size), Image.BICUBIC ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = super(_UpperCAmelCase, self ).__call__(image=_UpperCAmelCase, **_UpperCAmelCase ).images[0] SCREAMING_SNAKE_CASE__ : List[str] = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4), Image.BICUBIC ) SCREAMING_SNAKE_CASE__ : List[str] = unsqueeze_tile(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4), Image.BICUBIC ) SCREAMING_SNAKE_CASE__ : int = [] if x == 0: remove_borders.append("l" ) elif crop_rect[2] == image.size[0]: remove_borders.append("r" ) if y == 0: remove_borders.append("t" ) elif crop_rect[3] == image.size[1]: remove_borders.append("b" ) SCREAMING_SNAKE_CASE__ : int = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]), tile_border * 4, remove_borders=_UpperCAmelCase ), mode="L", ) final_image.paste( _UpperCAmelCase, (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4), _UpperCAmelCase ) @torch.no_grad() def __call__( self : int, _UpperCAmelCase : Union[str, List[str]], _UpperCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]], _UpperCAmelCase : int = 7_5, _UpperCAmelCase : float = 9.0, _UpperCAmelCase : int = 5_0, _UpperCAmelCase : Optional[Union[str, List[str]]] = None, _UpperCAmelCase : Optional[int] = 1, _UpperCAmelCase : float = 0.0, _UpperCAmelCase : Optional[torch.Generator] = None, _UpperCAmelCase : Optional[torch.FloatTensor] = None, _UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, _UpperCAmelCase : int = 1, _UpperCAmelCase : int = 1_2_8, _UpperCAmelCase : int = 3_2, _UpperCAmelCase : int = 3_2, ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = Image.new("RGB", (image.size[0] * 4, image.size[1] * 4) ) SCREAMING_SNAKE_CASE__ : List[str] = math.ceil(image.size[0] / tile_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = math.ceil(image.size[1] / tile_size ) SCREAMING_SNAKE_CASE__ : str = tcx * tcy SCREAMING_SNAKE_CASE__ : Any = 0 for y in range(_UpperCAmelCase ): for x in range(_UpperCAmelCase ): self._process_tile( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, prompt=_UpperCAmelCase, num_inference_steps=_UpperCAmelCase, guidance_scale=_UpperCAmelCase, noise_level=_UpperCAmelCase, negative_prompt=_UpperCAmelCase, num_images_per_prompt=_UpperCAmelCase, eta=_UpperCAmelCase, generator=_UpperCAmelCase, latents=_UpperCAmelCase, ) current_count += 1 if callback is not None: callback({"progress": current_count / total_tile_count, "image": final_image} ) return final_image def _a ( ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = "stabilityai/stable-diffusion-x4-upscaler" SCREAMING_SNAKE_CASE__ : Optional[Any] = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE__ , revision="fp16" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : List[Any] = pipe.to("cuda" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = Image.open("../../docs/source/imgs/diffusers_library.jpg" ) def callback(SCREAMING_SNAKE_CASE__ : int ): print(f'''progress: {obj["progress"]:.4f}''' ) obj["image"].save("diffusers_library_progress.jpg" ) SCREAMING_SNAKE_CASE__ : List[Any] = pipe(image=SCREAMING_SNAKE_CASE__ , prompt="Black font, white background, vector" , noise_level=40 , callback=SCREAMING_SNAKE_CASE__ ) final_image.save("diffusers_library.jpg" ) if __name__ == "__main__": main()
191
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Union[str, Any] = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
191
1
from __future__ import annotations def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): # noqa: E741 while r - l > 1: lowerCamelCase : Any = (l + r) // 2 if v[m] >= key: lowerCamelCase : List[str] = m else: lowerCamelCase : Dict = m # noqa: E741 return r def _a ( lowerCamelCase ): if len(lowerCamelCase ) == 0: return 0 lowerCamelCase : List[Any] = [0] * len(lowerCamelCase ) lowerCamelCase : Optional[int] = 1 lowerCamelCase : str = v[0] for i in range(1, len(lowerCamelCase ) ): if v[i] < tail[0]: lowerCamelCase : int = v[i] elif v[i] > tail[length - 1]: lowerCamelCase : Optional[Any] = v[i] length += 1 else: lowerCamelCase : Optional[int] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
287
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) _lowerCamelCase ="""pytorch_model.bin""" _lowerCamelCase ="""pytorch_model.bin.index.json""" _lowerCamelCase ="""adapter_config.json""" _lowerCamelCase ="""adapter_model.bin""" _lowerCamelCase ="""adapter_model.safetensors""" _lowerCamelCase ="""tf_model.h5""" _lowerCamelCase ="""tf_model.h5.index.json""" _lowerCamelCase ="""model.ckpt""" _lowerCamelCase ="""flax_model.msgpack""" _lowerCamelCase ="""flax_model.msgpack.index.json""" _lowerCamelCase ="""model.safetensors""" _lowerCamelCase ="""model.safetensors.index.json""" _lowerCamelCase ="""config.json""" _lowerCamelCase ="""preprocessor_config.json""" _lowerCamelCase =FEATURE_EXTRACTOR_NAME _lowerCamelCase ="""generation_config.json""" _lowerCamelCase ="""modelcard.json""" _lowerCamelCase ="""▁""" _lowerCamelCase =SENTENCEPIECE_UNDERLINE # Kept for backward compatibility _lowerCamelCase =[ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. _lowerCamelCase =[[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] _lowerCamelCase =[[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def _a ( lowerCamelCase ): if version.parse(lowerCamelCase ) < version.parse(lowerCamelCase ): if "dev" in min_version: lowerCamelCase : Optional[int] = ( """This example requires a source install from HuggingFace Transformers (see """ """`https://huggingface.co/docs/transformers/installation#install-from-source`),""" ) else: lowerCamelCase : int = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + """Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other """ """versions of HuggingFace Transformers.""" )
287
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='utf-8' , check=__a , ) assert hasattr(self , 'env' ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : List[str] = { 'enabled': True, 'processes_per_host': 8, } __a : str = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } __a : str = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} __a : Tuple = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=__a , instance_type=self.instance_type , debugger_hook_config=__a , hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 500, } , metric_definitions=self.env.metric_definitions , distribution=__a , py_version='py36' , ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' TrainingJobAnalytics(__a ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Tuple = self.create_estimator(__a ) # run training estimator.fit() # result dataframe __a : Optional[int] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a : Any = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __a : str = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a : Any = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __a )
294
'''simple docstring''' __lowercase : Optional[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} __lowercase : List[str] = ['a', 'b', 'c', 'd', 'e'] def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] ): __a : Any = start # add current to visited visited.append(_SCREAMING_SNAKE_CASE ) __a : Union[str, Any] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __a : Dict = topological_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(_SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: __a : List[Any] = topological_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": __lowercase : Union[str, Any] = topological_sort('a', [], []) print(sort)
294
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__:Optional[int] = { """configuration_clipseg""": [ """CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPSegConfig""", """CLIPSegTextConfig""", """CLIPSegVisionConfig""", ], """processing_clipseg""": ["""CLIPSegProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:List[Any] = [ """CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPSegModel""", """CLIPSegPreTrainedModel""", """CLIPSegTextModel""", """CLIPSegVisionModel""", """CLIPSegForImageSegmentation""", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys SCREAMING_SNAKE_CASE__:List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
261
"""simple docstring""" import operator def _lowerCamelCase( a , a = False , a = None ): __a = operator.lt if reverse else operator.gt __a = solution or [] if not arr: return solution __a = [arr.pop(0 )] for i, item in enumerate(a ): if _operator(a , sublist[-1] ): sublist.append(a ) arr.pop(a ) # merging sublist into solution list if not solution: solution.extend(a ) else: while sublist: __a = sublist.pop(0 ) for i, xx in enumerate(a ): if not _operator(a , a ): solution.insert(a , a ) break else: solution.append(a ) strand_sort(a , a , a ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
261
1
'''simple docstring''' def __UpperCAmelCase ( a_: int = 10, a_: int = 1_000, a_: bool = True ): assert ( isinstance(a_, a_ ) and isinstance(a_, a_ ) and isinstance(a_, a_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def __UpperCAmelCase ( a_: int, a_: int ): return int((number_a + number_a) / 2 ) def __UpperCAmelCase ( a_: int, a_: int, a_: int ): assert ( isinstance(a_, a_ ) and isinstance(a_, a_ ) and isinstance(a_, a_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(a_: int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) _UpperCAmelCase : Tuple = lower _UpperCAmelCase : Dict = higher _UpperCAmelCase : Tuple = [] while True: _UpperCAmelCase : Dict = get_avg(a_, a_ ) last_numbers.append(a_ ) if answer(a_ ) == "low": _UpperCAmelCase : Union[str, Any] = number elif answer(a_ ) == "high": _UpperCAmelCase : Optional[int] = number else: break print(f"""guess the number : {last_numbers[-1]}""" ) print(f"""details : {last_numbers!s}""" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = int(input("Enter lower value : " ).strip() ) _UpperCAmelCase : Dict = int(input("Enter high value : " ).strip() ) _UpperCAmelCase : Any = int(input("Enter value to guess : " ).strip() ) guess_the_number(a_, a_, a_ ) if __name__ == "__main__": main()
17
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __a = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A__ : """simple docstring""" UpperCamelCase_ : PreTrainedTokenizerBase UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels" _UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features] _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : int = len(features[0]["input_ids"] ) _UpperCAmelCase : str = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] _UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : Any = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", a_, a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : Union[str, Any] = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Optional[Any] = data_args.validation_file _UpperCAmelCase : Dict = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[int] = load_dataset( a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Dict = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )] _UpperCAmelCase : List[Any] = "sent1" _UpperCAmelCase : Optional[int] = "sent2" if data_args.max_seq_length is None: _UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _UpperCAmelCase : Dict = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Tuple = examples[question_header_name] _UpperCAmelCase : Optional[Any] = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ ) ] # Flatten out _UpperCAmelCase : List[str] = list(chain(*a_ ) ) _UpperCAmelCase : Dict = list(chain(*a_ ) ) # Tokenize _UpperCAmelCase : List[Any] = tokenizer( a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : int = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples ) _UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples ) _UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a_: Tuple ): _UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions _UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Any = Trainer( model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, ) # Training if training_args.do_train: _UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : List[str] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : str = train_result.metrics _UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) _UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) ) trainer.log_metrics("train", a_ ) trainer.save_metrics("train", a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) _UpperCAmelCase : Tuple = min(a_, len(a_ ) ) trainer.log_metrics("eval", a_ ) trainer.save_metrics("eval", a_ ) _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __UpperCAmelCase ( a_: int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
17
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean snake_case_ : str = 0 snake_case_ : Union[str, Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] snake_case_ : str = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right snake_case_ : List[Any] = tuple[int, int] class __snake_case : def __init__( self : Any , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : Node | None , ): """simple docstring""" UpperCAmelCase_ = pos_x UpperCAmelCase_ = pos_y UpperCAmelCase_ = (pos_y, pos_x) UpperCAmelCase_ = goal_x UpperCAmelCase_ = goal_y UpperCAmelCase_ = g_cost UpperCAmelCase_ = parent UpperCAmelCase_ = self.calculate_heuristic() UpperCAmelCase_ = self.g_cost + self.h_cost def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.pos_x - self.goal_x UpperCAmelCase_ = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_snake_case) + abs(_snake_case) else: return sqrt(dy**2 + dx**2) def __lt__( self : Union[str, Any] , _snake_case : Node): """simple docstring""" return self.f_cost < other.f_cost class __snake_case : def __init__( self : str , _snake_case : TPosition , _snake_case : TPosition): """simple docstring""" UpperCAmelCase_ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _snake_case) UpperCAmelCase_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , _snake_case) UpperCAmelCase_ = [self.start] UpperCAmelCase_ = [] UpperCAmelCase_ = False def lowerCamelCase ( self : Optional[int]): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ = self.open_nodes.pop(0) if current_node.pos == self.target.pos: return self.retrace_path(_snake_case) self.closed_nodes.append(_snake_case) UpperCAmelCase_ = self.get_successors(_snake_case) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_snake_case) else: # retrieve the best current path UpperCAmelCase_ = self.open_nodes.pop(self.open_nodes.index(_snake_case)) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_snake_case) else: self.open_nodes.append(_snake_case) return [self.start.pos] def lowerCamelCase ( self : Tuple , _snake_case : Node): """simple docstring""" UpperCAmelCase_ = [] for action in delta: UpperCAmelCase_ = parent.pos_x + action[1] UpperCAmelCase_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(_snake_case) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _snake_case , _snake_case , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _snake_case , )) return successors def lowerCamelCase ( self : Any , _snake_case : Node | None): """simple docstring""" UpperCAmelCase_ = node UpperCAmelCase_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) UpperCAmelCase_ = current_node.parent path.reverse() return path class __snake_case : def __init__( self : Any , _snake_case : TPosition , _snake_case : TPosition): """simple docstring""" UpperCAmelCase_ = AStar(_snake_case , _snake_case) UpperCAmelCase_ = AStar(_snake_case , _snake_case) UpperCAmelCase_ = False def lowerCamelCase ( self : List[Any]): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ = self.fwd_astar.open_nodes.pop(0) UpperCAmelCase_ = self.bwd_astar.open_nodes.pop(0) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _snake_case , _snake_case) self.fwd_astar.closed_nodes.append(_snake_case) self.bwd_astar.closed_nodes.append(_snake_case) UpperCAmelCase_ = current_bwd_node UpperCAmelCase_ = current_fwd_node UpperCAmelCase_ = { self.fwd_astar: self.fwd_astar.get_successors(_snake_case), self.bwd_astar: self.bwd_astar.get_successors(_snake_case), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_snake_case) else: # retrieve the best current path UpperCAmelCase_ = astar.open_nodes.pop( astar.open_nodes.index(_snake_case)) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_snake_case) else: astar.open_nodes.append(_snake_case) return [self.fwd_astar.start.pos] def lowerCamelCase ( self : int , _snake_case : Node , _snake_case : Node): """simple docstring""" UpperCAmelCase_ = self.fwd_astar.retrace_path(_snake_case) UpperCAmelCase_ = self.bwd_astar.retrace_path(_snake_case) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] snake_case_ : Any = (0, 0) snake_case_ : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) snake_case_ : str = time.time() snake_case_ : List[str] = AStar(init, goal) snake_case_ : Optional[int] = a_star.search() snake_case_ : Optional[Any] = time.time() - start_time print(f"AStar execution time = {end_time:f} seconds") snake_case_ : int = time.time() snake_case_ : Dict = BidirectionalAStar(init, goal) snake_case_ : str = time.time() - bd_start_time print(f"BidirectionalAStar execution time = {bd_end_time:f} seconds")
51
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_ (a__ , a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = IFPipeline __UpperCamelCase : Dict = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} __UpperCamelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" return self._get_dummy_components() def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ) -> List[Any]: """simple docstring""" if str(SCREAMING_SNAKE_CASE__ ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : Any = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __magic_name__ (self ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def __magic_name__ (self ) -> List[str]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __magic_name__ (self ) -> Tuple: """simple docstring""" self._test_save_load_local() def __magic_name__ (self ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Dict = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img SCREAMING_SNAKE_CASE__ : Union[str, Any] = IFImgaImgPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE__ : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting SCREAMING_SNAKE_CASE__ : Optional[Any] = IFInpaintingPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE__ : int = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : int = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 SCREAMING_SNAKE_CASE__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[str] = output.images[0] assert image.shape == (2_56, 2_56, 3) SCREAMING_SNAKE_CASE__ : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Dict = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE__ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , original_image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[Any] = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE__ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , original_image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Dict = output.images[0] assert image.shape == (2_56, 2_56, 3) SCREAMING_SNAKE_CASE__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase_ ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
25
0
def UpperCAmelCase_( a__ ): """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
19
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
1
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def __lowerCamelCase ( a_ : Optional[Any] ) -> Union[str, Any]: if isinstance(a_ , collections.abc.Iterable ): return x return (x, x) @require_flax class _SCREAMING_SNAKE_CASE: def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" pass def _UpperCamelCase ( self ) -> str: """simple docstring""" pass def _UpperCamelCase ( self ) -> str: """simple docstring""" pass def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = np.abs((a - b) ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,**SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :str = VisionTextDualEncoderConfig.from_vision_text_configs(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = FlaxVisionTextDualEncoderModel(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = model(input_ids=SCREAMING_SNAKE_CASE__ ,pixel_values=SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], config.projection_dim) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,**SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Any = self.get_vision_text_model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[str] = {'''vision_model''': vision_model, '''text_model''': text_model} __SCREAMING_SNAKE_CASE :List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = model(input_ids=SCREAMING_SNAKE_CASE__ ,pixel_values=SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,**SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :List[Any] = self.get_vision_text_model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = {'''vision_model''': vision_model, '''text_model''': text_model} __SCREAMING_SNAKE_CASE :Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = model(input_ids=SCREAMING_SNAKE_CASE__ ,pixel_values=SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = model(input_ids=SCREAMING_SNAKE_CASE__ ,pixel_values=SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = after_output[0] __SCREAMING_SNAKE_CASE :Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(SCREAMING_SNAKE_CASE__ ,1E-3 ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,**SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[int] = self.get_vision_text_model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = {'''vision_model''': vision_model, '''text_model''': text_model} __SCREAMING_SNAKE_CASE :List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = model( input_ids=SCREAMING_SNAKE_CASE__ ,pixel_values=SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,output_attentions=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = output.vision_model_output.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) ,vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE :int = to_atuple(vision_model.config.image_size ) __SCREAMING_SNAKE_CASE :Any = to_atuple(vision_model.config.patch_size ) __SCREAMING_SNAKE_CASE :Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __SCREAMING_SNAKE_CASE :Tuple = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) __SCREAMING_SNAKE_CASE :Optional[Any] = output.text_model_output.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" pt_model.to(SCREAMING_SNAKE_CASE__ ) pt_model.eval() # prepare inputs __SCREAMING_SNAKE_CASE :Tuple = inputs_dict __SCREAMING_SNAKE_CASE :Any = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __SCREAMING_SNAKE_CASE :int = pt_model(**SCREAMING_SNAKE_CASE__ ).to_tuple() __SCREAMING_SNAKE_CASE :int = fx_model(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) ,len(SCREAMING_SNAKE_CASE__ ) ,'''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] ,pt_outputs[:4] ): self.assert_almost_equals(SCREAMING_SNAKE_CASE__ ,pt_output.numpy() ,4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[str] = FlaxVisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[str] = fx_model_loaded(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) ,len(SCREAMING_SNAKE_CASE__ ) ,'''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] ,pt_outputs[:4] ): self.assert_almost_equals(SCREAMING_SNAKE_CASE__ ,pt_output.numpy() ,4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = VisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_flax=SCREAMING_SNAKE_CASE__ ) pt_model_loaded.to(SCREAMING_SNAKE_CASE__ ) pt_model_loaded.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE :int = pt_model_loaded(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) ,len(SCREAMING_SNAKE_CASE__ ) ,'''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] ,pt_outputs_loaded[:4] ): self.assert_almost_equals(SCREAMING_SNAKE_CASE__ ,pt_output_loaded.numpy() ,4E-2 ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = VisionTextDualEncoderConfig.from_vision_text_configs(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = VisionTextDualEncoderModel(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = FlaxVisionTextDualEncoderModel(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = convert_pytorch_state_dict_to_flax(pt_model.state_dict() ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = fx_state self.check_pt_flax_equivalence(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = VisionTextDualEncoderModel(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = FlaxVisionTextDualEncoderModel(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE__ ,fx_model.params ) self.check_pt_flax_equivalence(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = self.prepare_config_and_inputs() self.check_save_load(**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**SCREAMING_SNAKE_CASE__ ) @is_pt_flax_cross_test def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE :Optional[Any] = config_inputs_dict.pop('''vision_config''' ) __SCREAMING_SNAKE_CASE :List[Any] = config_inputs_dict.pop('''text_config''' ) __SCREAMING_SNAKE_CASE :Dict = config_inputs_dict self.check_equivalence_pt_to_flax(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) self.check_equivalence_flax_to_pt(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :List[str] = self.get_pretrained_model_and_inputs() __SCREAMING_SNAKE_CASE :int = model_a(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[str] = model_a(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = after_outputs[0] __SCREAMING_SNAKE_CASE :List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(SCREAMING_SNAKE_CASE__ ,1E-5 ) @require_flax class _SCREAMING_SNAKE_CASE( A , unittest.TestCase ): def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' ,'''hf-internal-testing/tiny-bert''' ,vision_from_pt=SCREAMING_SNAKE_CASE__ ,text_from_pt=SCREAMING_SNAKE_CASE__ ,) __SCREAMING_SNAKE_CASE :Union[str, Any] = 13 __SCREAMING_SNAKE_CASE :List[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __SCREAMING_SNAKE_CASE :str = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) __SCREAMING_SNAKE_CASE :str = random_attention_mask([batch_size, 4] ) __SCREAMING_SNAKE_CASE :Union[str, Any] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = FlaxViTModel(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = FlaxBertModel(SCREAMING_SNAKE_CASE__ ) return vision_model, text_model def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = FlaxViTModelTester(self ) __SCREAMING_SNAKE_CASE :Union[str, Any] = FlaxBertModelTester(self ) __SCREAMING_SNAKE_CASE :str = vit_model_tester.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE :str = bert_model_tester.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = vision_config_and_inputs __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _SCREAMING_SNAKE_CASE( A , unittest.TestCase ): def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' ,'''hf-internal-testing/tiny-bert''' ,vision_from_pt=SCREAMING_SNAKE_CASE__ ,text_from_pt=SCREAMING_SNAKE_CASE__ ,) __SCREAMING_SNAKE_CASE :str = 13 __SCREAMING_SNAKE_CASE :Optional[int] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __SCREAMING_SNAKE_CASE :str = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) __SCREAMING_SNAKE_CASE :Union[str, Any] = random_attention_mask([batch_size, 4] ) __SCREAMING_SNAKE_CASE :Union[str, Any] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = FlaxCLIPVisionModel(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = FlaxBertModel(SCREAMING_SNAKE_CASE__ ) return vision_model, text_model def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = FlaxCLIPVisionModelTester(self ) __SCREAMING_SNAKE_CASE :Tuple = FlaxBertModelTester(self ) __SCREAMING_SNAKE_CASE :str = clip_model_tester.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE :Tuple = bert_model_tester.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = vision_config_and_inputs __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :List[str] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @slow def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :str = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' ,logit_scale_init_value=1.0 ) __SCREAMING_SNAKE_CASE :Optional[int] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) __SCREAMING_SNAKE_CASE :List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] ,images=SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,return_tensors='''np''' ) __SCREAMING_SNAKE_CASE :Tuple = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,) __SCREAMING_SNAKE_CASE :List[Any] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image ,SCREAMING_SNAKE_CASE__ ,atol=1E-3 ) )
191
"""simple docstring""" import qiskit def __lowerCamelCase ( a_ : int , a_ : int ) -> qiskit.result.counts.Counts: __SCREAMING_SNAKE_CASE :Tuple = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register __SCREAMING_SNAKE_CASE :Union[str, Any] = qiskit.QuantumCircuit(a_ , a_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator __SCREAMING_SNAKE_CASE :Tuple = qiskit.execute(a_ , a_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a_ ) if __name__ == "__main__": lowerCamelCase_ = single_qubit_measure(2, 2) print(f'Total count for various states are: {counts}')
191
1
'''simple docstring''' from __future__ import annotations import csv import requests from bsa import BeautifulSoup def snake_case_ ( __SCREAMING_SNAKE_CASE : str = "" ): """simple docstring""" lowercase_ : Union[str, Any] = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' lowercase_ : Optional[Any] = BeautifulSoup(requests.get(__SCREAMING_SNAKE_CASE ).text , '''html.parser''' ) lowercase_ : List[Any] = soup.find_all('''td''' , attrs='''titleColumn''' ) lowercase_ : str = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) } def snake_case_ ( __SCREAMING_SNAKE_CASE : str = "IMDb_Top_250_Movies.csv" ): """simple docstring""" lowercase_ : int = get_imdb_top_aaa_movies() with open(__SCREAMING_SNAKE_CASE , '''w''' , newline='''''' ) as out_file: lowercase_ : Any = csv.writer(__SCREAMING_SNAKE_CASE ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
264
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=32 * 4 , __SCREAMING_SNAKE_CASE=32 * 6 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=32 , ): """simple docstring""" lowercase_ : Tuple = parent lowercase_ : Optional[int] = batch_size lowercase_ : Dict = is_training lowercase_ : Optional[Any] = use_auxiliary_loss lowercase_ : Optional[Any] = num_queries lowercase_ : Any = num_channels lowercase_ : str = min_size lowercase_ : str = max_size lowercase_ : Optional[Any] = num_labels lowercase_ : List[str] = mask_feature_size def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __SCREAMING_SNAKE_CASE ) lowercase_ : str = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__SCREAMING_SNAKE_CASE ) lowercase_ : str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__SCREAMING_SNAKE_CASE ) > 0.5 ).float() lowercase_ : str = (torch.rand((self.batch_size, self.num_labels) , device=__SCREAMING_SNAKE_CASE ) > 0.5).long() lowercase_ : Optional[int] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _snake_case ( self ): """simple docstring""" return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def _snake_case ( self ): """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = self.prepare_config_and_inputs() lowercase_ : Any = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[str] = output.encoder_hidden_states lowercase_ : List[Any] = output.pixel_decoder_hidden_states lowercase_ : int = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__SCREAMING_SNAKE_CASE ) , config.decoder_config.decoder_layers ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" with torch.no_grad(): lowercase_ : Any = MaskFormerModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : Dict = model(pixel_values=__SCREAMING_SNAKE_CASE , pixel_mask=__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = MaskFormerForInstanceSegmentation(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() def comm_check_on_output(__SCREAMING_SNAKE_CASE ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowercase_ : Tuple = model(pixel_values=__SCREAMING_SNAKE_CASE , pixel_mask=__SCREAMING_SNAKE_CASE ) lowercase_ : str = model(__SCREAMING_SNAKE_CASE ) comm_check_on_output(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = model( pixel_values=__SCREAMING_SNAKE_CASE , pixel_mask=__SCREAMING_SNAKE_CASE , mask_labels=__SCREAMING_SNAKE_CASE , class_labels=__SCREAMING_SNAKE_CASE ) comm_check_on_output(__SCREAMING_SNAKE_CASE ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCAmelCase_ = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def _snake_case ( self ): """simple docstring""" lowercase_ : int = MaskFormerModelTester(self ) lowercase_ : Tuple = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self ): """simple docstring""" lowercase_ , lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def _snake_case ( self ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def _snake_case ( self ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def _snake_case ( self ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def _snake_case ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def _snake_case ( self ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _snake_case ( self ): """simple docstring""" pass def _snake_case ( self ): """simple docstring""" lowercase_ , lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Dict = [*signature.parameters.keys()] lowercase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self ): """simple docstring""" for model_name in ["facebook/maskformer-swin-small-coco"]: lowercase_ : Tuple = MaskFormerModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Union[str, Any] = (self.model_tester.min_size,) * 2 lowercase_ : int = { '''pixel_values''': torch.randn((2, 3, *size) , device=__SCREAMING_SNAKE_CASE ), '''mask_labels''': torch.randn((2, 10, *size) , device=__SCREAMING_SNAKE_CASE ), '''class_labels''': torch.zeros(2 , 10 , device=__SCREAMING_SNAKE_CASE ).long(), } lowercase_ : Any = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = model(**__SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None ) def _snake_case ( self ): """simple docstring""" lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : List[str] = model_class(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = model(**__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.attentions is not None ) def _snake_case ( self ): """simple docstring""" if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowercase_ : Optional[Any] = self.all_model_classes[1] lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() lowercase_ : Optional[int] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() lowercase_ : Any = model(__SCREAMING_SNAKE_CASE , mask_labels=__SCREAMING_SNAKE_CASE , class_labels=__SCREAMING_SNAKE_CASE ).loss loss.backward() def _snake_case ( self ): """simple docstring""" lowercase_ : Any = self.all_model_classes[1] lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = self.model_tester.prepare_config_and_inputs() lowercase_ : Tuple = True lowercase_ : Optional[Any] = True lowercase_ : Tuple = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() lowercase_ : List[Any] = model(__SCREAMING_SNAKE_CASE , mask_labels=__SCREAMING_SNAKE_CASE , class_labels=__SCREAMING_SNAKE_CASE ) lowercase_ : Any = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase_ : Any = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowercase_ : List[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase_ : Tuple = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowercase : int = 1E-4 def snake_case_ ( ): """simple docstring""" lowercase_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def _snake_case ( self ): """simple docstring""" return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def _snake_case ( self ): """simple docstring""" lowercase_ : Any = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = self.default_image_processor lowercase_ : Dict = prepare_img() lowercase_ : Any = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__SCREAMING_SNAKE_CASE , (1, 3, 8_00, 10_88) ) with torch.no_grad(): lowercase_ : Any = model(**__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) lowercase_ : List[Any] = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) lowercase_ : Dict = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(__SCREAMING_SNAKE_CASE ) .eval() ) lowercase_ : List[str] = self.default_image_processor lowercase_ : Union[str, Any] = prepare_img() lowercase_ : List[str] = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__SCREAMING_SNAKE_CASE , (1, 3, 8_00, 10_88) ) with torch.no_grad(): lowercase_ : Tuple = model(**__SCREAMING_SNAKE_CASE ) # masks_queries_logits lowercase_ : Union[str, Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowercase_ : Any = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] lowercase_ : List[str] = torch.tensor(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) # class_queries_logits lowercase_ : Optional[int] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowercase_ : Any = torch.tensor( [ [1.6_5_1_2E0_0, -5.2_5_7_2E0_0, -3.3_5_1_9E0_0], [3.6_1_6_9E-0_2, -5.9_0_2_5E0_0, -2.9_3_1_3E0_0], [1.0_7_6_6E-0_4, -7.7_6_3_0E0_0, -5.1_2_6_3E0_0], ] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : int = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(__SCREAMING_SNAKE_CASE ) .eval() ) lowercase_ : Tuple = self.default_image_processor lowercase_ : Any = prepare_img() lowercase_ : Union[str, Any] = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__SCREAMING_SNAKE_CASE , (1, 3, 8_00, 10_88) ) with torch.no_grad(): lowercase_ : Union[str, Any] = model(**__SCREAMING_SNAKE_CASE ) # masks_queries_logits lowercase_ : Union[str, Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowercase_ : Optional[int] = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] lowercase_ : Dict = torch.tensor(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) # class_queries_logits lowercase_ : Any = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowercase_ : Union[str, Any] = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : int = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(__SCREAMING_SNAKE_CASE ) .eval() ) lowercase_ : int = self.default_image_processor lowercase_ : Optional[Any] = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='''pt''' , ) lowercase_ : Optional[int] = inputs['''pixel_values'''].to(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = [el.to(__SCREAMING_SNAKE_CASE ) for el in inputs['''mask_labels''']] lowercase_ : int = [el.to(__SCREAMING_SNAKE_CASE ) for el in inputs['''class_labels''']] with torch.no_grad(): lowercase_ : List[str] = model(**__SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None )
264
1
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = len(UpperCamelCase__ ) while cur > 1: # Find the maximum number in arr _a : str = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _a : Optional[int] = arr[mi::-1] + arr[mi + 1 : len(UpperCamelCase__ )] # Reverse whole list _a : Tuple = arr[cur - 1 :: -1] + arr[cur : len(UpperCamelCase__ )] cur -= 1 return arr if __name__ == "__main__": _snake_case = input('Enter numbers separated by a comma:\n').strip() _snake_case = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
294
"""simple docstring""" import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[Any] ) -> Dict: _a : Optional[int] = tempfile.mkdtemp() _a : Optional[Any] = SamImageProcessor() _a : int = SamProcessor(UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def _lowercase ( self : Tuple , **UpperCAmelCase__ : Any ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ).image_processor def _lowercase ( self : str ) -> int: shutil.rmtree(self.tmpdirname ) def _lowercase ( self : Tuple ) -> Dict: _a : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _a : Optional[int] = [Image.fromarray(np.moveaxis(UpperCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self : Dict ) -> Dict: _a : List[Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase__ , padding_value=1.0 ) _a : Tuple = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> Tuple: _a : Optional[Any] = self.get_image_processor() _a : int = SamProcessor(image_processor=UpperCAmelCase__ ) _a : Union[str, Any] = self.prepare_image_inputs() _a : List[str] = image_processor(UpperCAmelCase__ , return_tensors="""np""" ) _a : List[str] = processor(images=UpperCAmelCase__ , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def _lowercase ( self : Optional[Any] ) -> Optional[Any]: _a : Optional[Any] = self.get_image_processor() _a : Dict = SamProcessor(image_processor=UpperCAmelCase__ ) _a : Tuple = [torch.ones((1, 3, 5, 5) )] _a : Tuple = [[1764, 2646]] _a : Optional[int] = [[683, 1024]] _a : List[Any] = processor.post_process_masks(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _a : int = processor.post_process_masks( UpperCAmelCase__ , torch.tensor(UpperCAmelCase__ ) , torch.tensor(UpperCAmelCase__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np _a : Optional[Any] = [np.ones((1, 3, 5, 5) )] _a : Tuple = processor.post_process_masks(UpperCAmelCase__ , np.array(UpperCAmelCase__ ) , np.array(UpperCAmelCase__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _a : List[str] = [[1, 0], [0, 1]] with self.assertRaises(UpperCAmelCase__ ): _a : str = processor.post_process_masks(UpperCAmelCase__ , np.array(UpperCAmelCase__ ) , np.array(UpperCAmelCase__ ) ) @require_vision @require_tf class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Any ) -> List[str]: _a : List[str] = tempfile.mkdtemp() _a : Any = SamImageProcessor() _a : Union[str, Any] = SamProcessor(UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def _lowercase ( self : List[str] , **UpperCAmelCase__ : Any ) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ).image_processor def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def _lowercase ( self : Dict ) -> List[str]: _a : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _a : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: _a : Optional[int] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a : str = self.get_image_processor(do_normalize=UpperCAmelCase__ , padding_value=1.0 ) _a : Union[str, Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> str: _a : Union[str, Any] = self.get_image_processor() _a : Dict = SamProcessor(image_processor=UpperCAmelCase__ ) _a : int = self.prepare_image_inputs() _a : List[str] = image_processor(UpperCAmelCase__ , return_tensors="""np""" ) _a : List[str] = processor(images=UpperCAmelCase__ , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def _lowercase ( self : Optional[Any] ) -> int: _a : Optional[Any] = self.get_image_processor() _a : Dict = SamProcessor(image_processor=UpperCAmelCase__ ) _a : Any = [tf.ones((1, 3, 5, 5) )] _a : Tuple = [[1764, 2646]] _a : str = [[683, 1024]] _a : Union[str, Any] = processor.post_process_masks(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _a : Union[str, Any] = processor.post_process_masks( UpperCAmelCase__ , tf.convert_to_tensor(UpperCAmelCase__ ) , tf.convert_to_tensor(UpperCAmelCase__ ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np _a : List[Any] = [np.ones((1, 3, 5, 5) )] _a : Optional[int] = processor.post_process_masks( UpperCAmelCase__ , np.array(UpperCAmelCase__ ) , np.array(UpperCAmelCase__ ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _a : Dict = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): _a : List[Any] = processor.post_process_masks( UpperCAmelCase__ , np.array(UpperCAmelCase__ ) , np.array(UpperCAmelCase__ ) , return_tensors="""tf""" ) @require_vision @require_torchvision class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : str ) -> Optional[Any]: _a : Optional[Any] = tempfile.mkdtemp() _a : Dict = SamImageProcessor() _a : List[str] = SamProcessor(UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def _lowercase ( self : Any , **UpperCAmelCase__ : Dict ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ).image_processor def _lowercase ( self : Tuple ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def _lowercase ( self : str ) -> int: _a : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _a : int = [Image.fromarray(np.moveaxis(UpperCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def _lowercase ( self : int ) -> List[Any]: _a : Optional[Any] = self.get_image_processor() _a : Optional[Any] = SamProcessor(image_processor=UpperCAmelCase__ ) _a : Tuple = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) _a : str = [tf.convert_to_tensor(UpperCAmelCase__ )] _a : Optional[int] = [torch.tensor(UpperCAmelCase__ )] _a : Union[str, Any] = [[1764, 2646]] _a : List[str] = [[683, 1024]] _a : Optional[int] = processor.post_process_masks( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""tf""" ) _a : List[str] = processor.post_process_masks( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def _lowercase ( self : str ) -> Optional[Any]: _a : List[Any] = self.get_image_processor() _a : Any = SamProcessor(image_processor=UpperCAmelCase__ ) _a : Dict = self.prepare_image_inputs() _a : List[str] = image_processor(UpperCAmelCase__ , return_tensors="""pt""" )["""pixel_values"""].numpy() _a : str = processor(images=UpperCAmelCase__ , return_tensors="""pt""" )["""pixel_values"""].numpy() _a : Optional[Any] = image_processor(UpperCAmelCase__ , return_tensors="""tf""" )["""pixel_values"""].numpy() _a : Optional[int] = processor(images=UpperCAmelCase__ , return_tensors="""tf""" )["""pixel_values"""].numpy() self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ ) )
294
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCamelCase_ : List[Any] = """pt""" elif is_tf_available(): lowerCamelCase_ : List[Any] = """tf""" else: lowerCamelCase_ : Tuple = """jax""" class a__ ( __snake_case , unittest.TestCase ): A__ : Dict = PerceiverTokenizer A__ : Optional[int] = False def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: super().setUp() __a = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> int: return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def __SCREAMING_SNAKE_CASE ( self , **UpperCAmelCase ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=2_0 , UpperCAmelCase=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __a = [] for i in range(len(UpperCAmelCase ) ): try: __a = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __a = list(filter(lambda UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , UpperCAmelCase ) ) __a = list(filter(lambda UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCAmelCase ) , UpperCAmelCase ) ) if max_length is not None and len(UpperCAmelCase ) > max_length: __a = toks[:max_length] if min_length is not None and len(UpperCAmelCase ) < min_length and len(UpperCAmelCase ) > 0: while len(UpperCAmelCase ) < min_length: __a = toks + toks # toks_str = [t[1] for t in toks] __a = [t[0] for t in toks] # Ensure consistency __a = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) if " " not in output_txt and len(UpperCAmelCase ) > 1: __a = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCAmelCase ) ) if with_prefix_space: __a = ' ' + output_txt __a = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) return output_txt, output_ids def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = self.perceiver_tokenizer __a = 'Unicode €.' __a = tokenizer(UpperCAmelCase ) __a = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , UpperCAmelCase ) # decoding __a = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , '[CLS]Unicode €.[SEP]' ) __a = tokenizer('e è é ê ë' ) __a = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , UpperCAmelCase ) # decoding __a = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = self.perceiver_tokenizer __a = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __a = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on __a = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) if FRAMEWORK != "jax": __a = list(batch.input_ids.numpy()[0] ) else: __a = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.perceiver_tokenizer __a = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __a = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , UpperCAmelCase ) self.assertIn('attention_mask' , UpperCAmelCase ) self.assertNotIn('decoder_input_ids' , UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = self.perceiver_tokenizer __a = [ 'Summary of the text.', 'Another summary.', ] __a = tokenizer( text_target=UpperCAmelCase , max_length=3_2 , padding='max_length' , truncation=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: # safety check on max_len default value so we are sure the test works __a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test __a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __a = tempfile.mkdtemp() __a = ' He is very happy, UNwant\u00E9d,running' __a = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) __a = tokenizer.__class__.from_pretrained(UpperCAmelCase ) __a = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) shutil.rmtree(UpperCAmelCase ) __a = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __a = tempfile.mkdtemp() __a = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __a = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __a = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) __a = tokenizer.__class__.from_pretrained(UpperCAmelCase ) __a = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) __a = tokenizer.__class__.from_pretrained(UpperCAmelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __a = json.load(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __a = json.load(UpperCAmelCase ) __a = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] __a = added_tokens_extra_ids + [ 'an_additional_special_token' ] __a = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __a = tokenizer_class.from_pretrained( UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __a = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCAmelCase )] __a = tokenizer_class.from_pretrained( UpperCAmelCase , additional_special_tokens=UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: pass def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass def __SCREAMING_SNAKE_CASE ( self ) -> str: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __a = self.get_tokenizers(fast=UpperCAmelCase , do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __a = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __a = tokenizer.convert_tokens_to_string(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
197
from math import sqrt def lowerCAmelCase( __lowerCamelCase ): __a = 0 for i in range(1 , int(sqrt(__lowerCamelCase ) + 1 ) ): if n % i == 0 and i != sqrt(__lowerCamelCase ): total += i + n // i elif i == sqrt(__lowerCamelCase ): total += i return total - n def lowerCAmelCase( __lowerCamelCase = 1_0000 ): __a = sum( i for i in range(1 , __lowerCamelCase ) if sum_of_divisors(sum_of_divisors(__lowerCamelCase ) ) == i and sum_of_divisors(__lowerCamelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
197
1
"""simple docstring""" def _A ( UpperCamelCase_ : int = 10, UpperCamelCase_ : int = 1000, UpperCamelCase_ : bool = True) -> int: '''simple docstring''' assert ( isinstance(UpperCamelCase_, UpperCamelCase_) and isinstance(UpperCamelCase_, UpperCamelCase_) and isinstance(UpperCamelCase_, UpperCamelCase_) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)") return min_val if option else max_val def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int) -> int: '''simple docstring''' return int((number_a + number_a) / 2) def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int, UpperCamelCase_ : int) -> None: '''simple docstring''' assert ( isinstance(UpperCamelCase_, UpperCamelCase_) and isinstance(UpperCamelCase_, UpperCamelCase_) and isinstance(UpperCamelCase_, UpperCamelCase_) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)") if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value") def answer(UpperCamelCase_ : int) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started...") __lowercase = lower __lowercase = higher __lowercase = [] while True: __lowercase = get_avg(UpperCamelCase_, UpperCamelCase_) last_numbers.append(UpperCamelCase_) if answer(UpperCamelCase_) == "low": __lowercase = number elif answer(UpperCamelCase_) == "high": __lowercase = number else: break print(F"""guess the number : {last_numbers[-1]}""") print(F"""details : {last_numbers!s}""") def _A ( ) -> None: '''simple docstring''' __lowercase = int(input("Enter lower value : ").strip()) __lowercase = int(input("Enter high value : ").strip()) __lowercase = int(input("Enter value to guess : ").strip()) guess_the_number(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) if __name__ == "__main__": main()
17
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _a = 'CompVis/stable-diffusion-v1-1' _a = 'CompVis/stable-diffusion-v1-2' _a = 'CompVis/stable-diffusion-v1-3' _a = 'CompVis/stable-diffusion-v1-4' class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ): super()._init_() __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, ) self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea ) @property def _lowercase ( self : List[str] ): return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )} def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): __lowercase = "cuda" if torch.cuda.is_available() else "cpu" self.to(UpperCAmelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.2 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.3 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.4 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
17
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : str = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
370
'''simple docstring''' def lowerCAmelCase__ ( lowerCamelCase : int = 10 ): if not isinstance(lowerCamelCase ,lowerCamelCase ) or n < 0: raise ValueError('Invalid input' ) _A : Optional[Any] = 10**n _A : List[str] = 28433 * (pow(2 ,7830457 ,lowerCamelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
227
0
import math __A =1_0 __A =7 __A =BALLS_PER_COLOUR * NUM_COLOURS def lowerCamelCase_ ( lowerCamelCase__ = 2_0 ): lowerCamelCase_ = math.comb(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , lowerCamelCase__ ) lowerCamelCase_ = NUM_COLOURS * (1 - missing_colour / total) return F'{result:.9f}' if __name__ == "__main__": print(solution(2_0))
19
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __A ='''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __A =concatenate_datasets __A =DownloadConfig __A =DownloadManager __A =DownloadMode __A =DownloadConfig __A =DownloadMode __A =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
19
1
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( snake_case : Any , snake_case : str , snake_case : Any , snake_case : Tuple )-> List[str]: # Initialise PyTorch model _lowerCamelCase = FunnelConfig.from_json_file(snake_case ) print(f'Building PyTorch model from configuration: {config}' ) _lowerCamelCase = FunnelBaseModel(snake_case ) if base_model else FunnelModel(snake_case ) # Load weights from tf checkpoint load_tf_weights_in_funnel(snake_case , snake_case , snake_case ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , snake_case ) if __name__ == "__main__": A_ : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) A_ : Optional[int] =parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
80
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> list[int]: if num <= 0: raise ValueError('Input must be a positive integer' ) _lowerCamelCase = [True] * (num + 1) _lowerCamelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , snake_case ): _lowerCamelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() A_ : Optional[int] =int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
80
1
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : int = """xlnet""" _lowerCAmelCase : Union[str, Any] = ["""mems"""] _lowerCAmelCase : str = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Tuple , lowercase_ : Optional[int]=32000 , lowercase_ : Optional[int]=1024 , lowercase_ : List[str]=24 , lowercase_ : Tuple=16 , lowercase_ : Tuple=4096 , lowercase_ : Tuple="gelu" , lowercase_ : Dict=True , lowercase_ : Union[str, Any]="bi" , lowercase_ : List[Any]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0.1 , lowercase_ : int=512 , lowercase_ : Union[str, Any]=None , lowercase_ : Optional[int]=True , lowercase_ : str=False , lowercase_ : Tuple=False , lowercase_ : Optional[Any]=-1 , lowercase_ : List[Any]=False , lowercase_ : int="last" , lowercase_ : Tuple=True , lowercase_ : Dict="tanh" , lowercase_ : int=0.1 , lowercase_ : Optional[Any]=5 , lowercase_ : Union[str, Any]=5 , lowercase_ : Optional[Any]=5 , lowercase_ : Any=1 , lowercase_ : int=2 , **lowercase_ : Optional[Any] , ): snake_case_ : List[str] = vocab_size snake_case_ : int = d_model snake_case_ : Dict = n_layer snake_case_ : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) snake_case_ : List[Any] = d_model // n_head snake_case_ : Any = ff_activation snake_case_ : List[str] = d_inner snake_case_ : Tuple = untie_r snake_case_ : Any = attn_type snake_case_ : str = initializer_range snake_case_ : List[Any] = layer_norm_eps snake_case_ : Optional[Any] = dropout snake_case_ : Dict = mem_len snake_case_ : str = reuse_len snake_case_ : Optional[int] = bi_data snake_case_ : List[str] = clamp_len snake_case_ : List[Any] = same_length snake_case_ : int = summary_type snake_case_ : str = summary_use_proj snake_case_ : List[str] = summary_activation snake_case_ : Dict = summary_last_dropout snake_case_ : Optional[Any] = start_n_top snake_case_ : Dict = end_n_top snake_case_ : Any = bos_token_id snake_case_ : Tuple = pad_token_id snake_case_ : Union[str, Any] = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , lowercase_ , ) snake_case_ : Optional[int] = kwargs['''use_cache'''] snake_case_ : int = use_mems_eval snake_case_ : str = use_mems_train super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self : List[Any] ): logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def _snake_case ( self : Any , lowercase_ : Dict ): # Message copied from Transformer-XL documentation raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
264
"""simple docstring""" from __future__ import annotations def __lowercase ( _a , _a , _a , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
264
1
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = 'new-model' if is_tf_available(): class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = NewModelConfig @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self : Tuple): '''simple docstring''' lowerCAmelCase__ = 'bert-base-cased' lowerCAmelCase__ = AutoConfig.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) lowerCAmelCase__ = TFAutoModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) @slow def __snake_case ( self : Tuple): '''simple docstring''' lowerCAmelCase__ = 'bert-base-cased' lowerCAmelCase__ = AutoConfig.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) lowerCAmelCase__ = TFAutoModelForPreTraining.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) @slow def __snake_case ( self : Optional[Any]): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = AutoConfig.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) lowerCAmelCase__ = TFAutoModelForCausalLM.from_pretrained(lowercase__) lowerCAmelCase__ , lowerCAmelCase__ = TFAutoModelForCausalLM.from_pretrained(lowercase__ , output_loading_info=lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) @slow def __snake_case ( self : str): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = AutoConfig.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) lowerCAmelCase__ = TFAutoModelWithLMHead.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) @slow def __snake_case ( self : int): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = AutoConfig.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) lowerCAmelCase__ = TFAutoModelForMaskedLM.from_pretrained(lowercase__) lowerCAmelCase__ , lowerCAmelCase__ = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , output_loading_info=lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) @slow def __snake_case ( self : Union[str, Any]): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = AutoConfig.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) lowerCAmelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__) lowerCAmelCase__ , lowerCAmelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , output_loading_info=lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) @slow def __snake_case ( self : Union[str, Any]): '''simple docstring''' for model_name in ["bert-base-uncased"]: lowerCAmelCase__ = AutoConfig.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) lowerCAmelCase__ = TFAutoModelForSequenceClassification.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) @slow def __snake_case ( self : str): '''simple docstring''' for model_name in ["bert-base-uncased"]: lowerCAmelCase__ = AutoConfig.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) lowerCAmelCase__ = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) @slow @require_tensorflow_probability def __snake_case ( self : Optional[Any]): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCAmelCase__ = AutoConfig.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) lowerCAmelCase__ = TFAutoModelForTableQuestionAnswering.from_pretrained(lowercase__) lowerCAmelCase__ , lowerCAmelCase__ = TFAutoModelForTableQuestionAnswering.from_pretrained( lowercase__ , output_loading_info=lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) def __snake_case ( self : str): '''simple docstring''' lowerCAmelCase__ = TFAutoModelWithLMHead.from_pretrained(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) self.assertEqual(model.num_parameters() , 14_410) self.assertEqual(model.num_parameters(only_trainable=lowercase__) , 14_410) def __snake_case ( self : Tuple): '''simple docstring''' lowerCAmelCase__ = TFAutoModelWithLMHead.from_pretrained(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) self.assertEqual(model.num_parameters() , 14_410) self.assertEqual(model.num_parameters(only_trainable=lowercase__) , 14_410) def __snake_case ( self : Tuple): '''simple docstring''' lowerCAmelCase__ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny') self.assertIsInstance(lowercase__ , lowercase__) lowerCAmelCase__ = copy.deepcopy(model.config) lowerCAmelCase__ = ['FunnelBaseModel'] lowerCAmelCase__ = TFAutoModel.from_config(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase__) lowerCAmelCase__ = TFAutoModel.from_pretrained(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) def __snake_case ( self : int): '''simple docstring''' try: AutoConfig.register('new-model' , lowercase__) lowerCAmelCase__ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__): # Wrong config class will raise an error with self.assertRaises(lowercase__): auto_class.register(lowercase__ , lowercase__) auto_class.register(lowercase__ , lowercase__) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase__): auto_class.register(lowercase__ , lowercase__) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase__ = BertModelTester(self).get_config() lowerCAmelCase__ = NewModelConfig(**tiny_config.to_dict()) lowerCAmelCase__ = auto_class.from_config(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase__) lowerCAmelCase__ = auto_class.from_pretrained(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __snake_case ( self : Any): '''simple docstring''' with self.assertRaisesRegex( lowercase__ , 'bert-base is not a local folder and is not a valid model identifier'): lowerCAmelCase__ = TFAutoModel.from_pretrained('bert-base') def __snake_case ( self : Tuple): '''simple docstring''' with self.assertRaisesRegex( lowercase__ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): lowerCAmelCase__ = TFAutoModel.from_pretrained(lowercase__ , revision='aaaaaa') def __snake_case ( self : str): '''simple docstring''' with self.assertRaisesRegex( lowercase__ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCAmelCase__ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model') def __snake_case ( self : str): '''simple docstring''' with self.assertRaisesRegex(lowercase__ , 'Use `from_pt=True` to load this model'): lowerCAmelCase__ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only') def __snake_case ( self : List[Any]): '''simple docstring''' lowerCAmelCase__ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert') with RequestCounter() as counter: lowerCAmelCase__ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0) # With a sharded checkpoint lowerCAmelCase__ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded') with RequestCounter() as counter: lowerCAmelCase__ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
119
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase__ = logging.get_logger(__name__) class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = ['pixel_values'] def __init__( self : Tuple , lowercase__ : bool = True , lowercase__ : Dict[str, int] = None , lowercase__ : PILImageResampling = PILImageResampling.BICUBIC , lowercase__ : bool = True , lowercase__ : Union[int, float] = 1 / 255 , lowercase__ : bool = True , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : bool = True , **lowercase__ : List[Any] , ): '''simple docstring''' super().__init__(**lowercase__) lowerCAmelCase__ = size if size is not None else {'height': 384, 'width': 384} lowerCAmelCase__ = get_size_dict(lowercase__ , default_to_square=lowercase__) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase__ = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase__ = do_convert_rgb def __snake_case ( self : List[str] , lowercase__ : np.ndarray , lowercase__ : Dict[str, int] , lowercase__ : PILImageResampling = PILImageResampling.BICUBIC , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Dict , ): '''simple docstring''' lowerCAmelCase__ = get_size_dict(lowercase__ , default_to_square=lowercase__) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""") lowerCAmelCase__ = (size['height'], size['width']) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__) def __snake_case ( self : List[str] , lowercase__ : np.ndarray , lowercase__ : Union[int, float] , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Union[str, Any] , ): '''simple docstring''' return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__) def __snake_case ( self : Optional[Any] , lowercase__ : np.ndarray , lowercase__ : Union[float, List[float]] , lowercase__ : Union[float, List[float]] , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Any , ): '''simple docstring''' return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__) def __snake_case ( self : Any , lowercase__ : ImageInput , lowercase__ : Optional[bool] = None , lowercase__ : Optional[Dict[str, int]] = None , lowercase__ : PILImageResampling = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[float] = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[str, TensorType]] = None , lowercase__ : bool = None , lowercase__ : ChannelDimension = ChannelDimension.FIRST , **lowercase__ : Dict , ): '''simple docstring''' lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(lowercase__ , default_to_square=lowercase__) lowerCAmelCase__ = make_list_of_images(lowercase__) if not valid_images(lowercase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase__ = [convert_to_rgb(lowercase__) for image in images] # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(lowercase__) for image in images] if do_resize: lowerCAmelCase__ = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=lowercase__ , scale=lowercase__) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(lowercase__ , lowercase__) for image in images] lowerCAmelCase__ = BatchFeature(data={'pixel_values': images} , tensor_type=lowercase__) return encoded_outputs
119
1
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __lowerCAmelCase : Tuple =get_logger(__name__) __lowerCAmelCase : List[str] =Path(__file__).parent / """model_card_template.md""" __lowerCAmelCase : int =uuida().hex __lowerCAmelCase : Dict =os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES __lowerCAmelCase : Union[str, Any] =os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES __lowerCAmelCase : int =HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def UpperCAmelCase__ ( lowerCAmelCase__ :Union[Dict, str, None] = None ) -> str: '''simple docstring''' lowercase = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'; torch/{_torch_version}' if is_flax_available(): ua += f'; jax/{_jax_version}' ua += f'; flax/{_flax_version}' if is_onnx_available(): ua += f'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get("""DIFFUSERS_IS_CI""" , """""" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): ua += "; " + user_agent return ua def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None , lowerCAmelCase__ :Optional[str] = None ) -> int: '''simple docstring''' if token is None: lowercase = HfFolder.get_token() if organization is None: lowercase = whoami(lowerCAmelCase__ )["""name"""] return f'{username}/{model_id}' else: return f'{organization}/{model_id}' def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( """Modelcard rendering is based on Jinja templates.""" """ Please make sure to have `jinja` installed before using `create_model_card`.""" """ To install it, please run `pip install Jinja2`.""" ) if hasattr(lowerCAmelCase__ , """local_rank""" ) and args.local_rank not in [-1, 0]: return lowercase = args.hub_token if hasattr(lowerCAmelCase__ , """hub_token""" ) else None lowercase = get_full_repo_name(lowerCAmelCase__ , token=lowerCAmelCase__ ) lowercase = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="""en""" , license="""apache-2.0""" , library_name="""diffusers""" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=lowerCAmelCase__ , model_name=lowerCAmelCase__ , repo_name=lowerCAmelCase__ , dataset_name=args.dataset_name if hasattr(lowerCAmelCase__ , """dataset_name""" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(lowerCAmelCase__ , """gradient_accumulation_steps""" ) else None ) , adam_betaa=args.adam_betaa if hasattr(lowerCAmelCase__ , """adam_beta1""" ) else None , adam_betaa=args.adam_betaa if hasattr(lowerCAmelCase__ , """adam_beta2""" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(lowerCAmelCase__ , """adam_weight_decay""" ) else None , adam_epsilon=args.adam_epsilon if hasattr(lowerCAmelCase__ , """adam_epsilon""" ) else None , lr_scheduler=args.lr_scheduler if hasattr(lowerCAmelCase__ , """lr_scheduler""" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(lowerCAmelCase__ , """lr_warmup_steps""" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(lowerCAmelCase__ , """ema_inv_gamma""" ) else None , ema_power=args.ema_power if hasattr(lowerCAmelCase__ , """ema_power""" ) else None , ema_max_decay=args.ema_max_decay if hasattr(lowerCAmelCase__ , """ema_max_decay""" ) else None , mixed_precision=args.mixed_precision , ) lowercase = os.path.join(args.output_dir , """README.md""" ) model_card.save(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[str] , lowerCAmelCase__ :Optional[str] = None ) -> List[Any]: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash lowercase = str(Path(lowerCAmelCase__ ).as_posix() ) lowercase = re.search(R"""snapshots/([^/]+)/""" , lowerCAmelCase__ ) if search is None: return None lowercase = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(lowerCAmelCase__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __lowerCAmelCase : int =os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) __lowerCAmelCase : List[str] =os.path.join(hf_cache_home, """diffusers""") def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[str] = None , lowerCAmelCase__ :Optional[str] = None ) -> None: '''simple docstring''' if new_cache_dir is None: lowercase = DIFFUSERS_CACHE if old_cache_dir is None: lowercase = old_diffusers_cache lowercase = Path(lowerCAmelCase__ ).expanduser() lowercase = Path(lowerCAmelCase__ ).expanduser() for old_blob_path in old_cache_dir.glob("""**/blobs/*""" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowercase = new_cache_dir / old_blob_path.relative_to(lowerCAmelCase__ ) new_blob_path.parent.mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) os.replace(lowerCAmelCase__ , lowerCAmelCase__ ) try: os.symlink(lowerCAmelCase__ , lowerCAmelCase__ ) except OSError: logger.warning( """Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""" ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __lowerCAmelCase : Union[str, Any] =os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): __lowerCAmelCase : List[str] =0 else: with open(cache_version_file) as f: try: __lowerCAmelCase : Any =int(f.read()) except ValueError: __lowerCAmelCase : str =0 if cache_version < 1: __lowerCAmelCase : List[str] =os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: __lowerCAmelCase : Union[str, Any] ="""\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ """the directory exists and can be written to.""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> str: '''simple docstring''' if variant is not None: lowercase = weights_name.split(""".""" ) lowercase = splits[:-1] + [variant] + splits[-1:] lowercase = """.""".join(lowerCAmelCase__ ) return weights_name def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , *, lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :Any=None , ) -> Any: '''simple docstring''' lowercase = str(lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): return pretrained_model_name_or_path elif os.path.isdir(lowerCAmelCase__ ): if os.path.isfile(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ): # Load from a PyTorch checkpoint lowercase = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ): lowercase = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return model_file else: raise EnvironmentError( f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(lowerCAmelCase__ ).base_version ) >= version.parse("""0.20.0""" ) ): try: lowercase = hf_hub_download( lowerCAmelCase__ , filename=_add_variant(lowerCAmelCase__ , lowerCAmelCase__ ) , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , user_agent=lowerCAmelCase__ , subfolder=lowerCAmelCase__ , revision=revision or commit_hash , ) warnings.warn( f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , lowerCAmelCase__ , ) return model_file except: # noqa: E722 warnings.warn( f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(lowerCAmelCase__ , lowerCAmelCase__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(lowerCAmelCase__ , lowerCAmelCase__ )}\' so that the correct variant file can be added.' , lowerCAmelCase__ , ) try: # 2. Load model file as usual lowercase = hf_hub_download( lowerCAmelCase__ , filename=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , user_agent=lowerCAmelCase__ , subfolder=lowerCAmelCase__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' """listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a """ """token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """ """login`.""" ) except RevisionNotFoundError: raise EnvironmentError( f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' """this model name. Check the model page at """ f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' f' directory containing a file named {weights_name} or' """ \nCheckout your internet connection or see how to run the library in""" """ offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'.""" ) except EnvironmentError: raise EnvironmentError( f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' """'https://huggingface.co/models', make sure you don't have a local directory with the same name. """ f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' f'containing a file named {weights_name}' )
197
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class _A : def A__ ( self , __lowerCAmelCase ): """simple docstring""" raise NotImplementedError() def A__ ( self ): """simple docstring""" raise NotImplementedError() class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = False , **__lowerCAmelCase ): """simple docstring""" lowercase = tokenizer lowercase = skip_prompt lowercase = decode_kwargs # variables used in the streaming process lowercase = [] lowercase = 0 lowercase = True def A__ ( self , __lowerCAmelCase ): """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: lowercase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowercase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowercase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): lowercase = text[self.print_len :] lowercase = [] lowercase = 0 # If the last token is a CJK character, we print the characters. elif len(__lowerCAmelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowercase = text[self.print_len :] self.print_len += len(__lowerCAmelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowercase = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(__lowerCAmelCase ) self.on_finalized_text(__lowerCAmelCase ) def A__ ( self ): """simple docstring""" if len(self.token_cache ) > 0: lowercase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowercase = text[self.print_len :] lowercase = [] lowercase = 0 else: lowercase = """""" lowercase = True self.on_finalized_text(__lowerCAmelCase , stream_end=__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = False ): """simple docstring""" print(__lowerCAmelCase , flush=__lowerCAmelCase , end="""""" if not stream_end else None ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = None , **__lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) lowercase = Queue() lowercase = None lowercase = timeout def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = False ): """simple docstring""" self.text_queue.put(__lowerCAmelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ): """simple docstring""" return self def A__ ( self ): """simple docstring""" lowercase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
197
1
class A : def __init__( self, UpperCamelCase__ = "", UpperCamelCase__ = False ): """simple docstring""" lowerCAmelCase_ = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ = is_leaf lowerCAmelCase_ = prefix def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = 0 for q, w in zip(self.prefix, UpperCamelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" for word in words: self.insert(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if self.prefix == word: lowerCAmelCase_ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ = RadixNode(prefix=UpperCamelCase__, is_leaf=UpperCamelCase__ ) else: lowerCAmelCase_ = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = incoming_node.match( UpperCamelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCamelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ = remaining_prefix lowerCAmelCase_ = self.nodes[matching_string[0]] lowerCAmelCase_ = RadixNode(UpperCamelCase__, UpperCamelCase__ ) lowerCAmelCase_ = aux_node if remaining_word == "": lowerCAmelCase_ = True else: self.nodes[matching_string[0]].insert(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.nodes.get(word[0], UpperCamelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = incoming_node.match( UpperCamelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.nodes.get(word[0], UpperCamelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = incoming_node.match( UpperCamelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCamelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ = list(self.nodes.values() )[0] lowerCAmelCase_ = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ = merging_node.nodes return True def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ = 0 ): """simple docstring""" if self.prefix != "": print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __UpperCamelCase ( ): lowerCAmelCase_ = '''banana bananas bandana band apple all beast'''.split() lowerCAmelCase_ = RadixNode() root.insert_many(_A ) assert all(root.find(_A ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def __UpperCamelCase ( ): assert test_trie() def __UpperCamelCase ( ): lowerCAmelCase_ = RadixNode() lowerCAmelCase_ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(_A ) print('''Words:''' , _A ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
351
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class A ( __UpperCAmelCase ): __snake_case = 'gpt_neox' def __init__( self, UpperCamelCase__=5_0432, UpperCamelCase__=6144, UpperCamelCase__=44, UpperCamelCase__=64, UpperCamelCase__=2_4576, UpperCamelCase__="gelu", UpperCamelCase__=0.25, UpperCamelCase__=1_0000, UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.1, UpperCamelCase__=2048, UpperCamelCase__=0.02, UpperCamelCase__=1E-5, UpperCamelCase__=True, UpperCamelCase__=0, UpperCamelCase__=2, UpperCamelCase__=False, UpperCamelCase__=True, UpperCamelCase__=None, **UpperCamelCase__, ): """simple docstring""" super().__init__(bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, **UpperCamelCase__ ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = rotary_pct lowerCAmelCase_ = rotary_emb_base lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = hidden_dropout lowerCAmelCase_ = classifier_dropout lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = use_cache lowerCAmelCase_ = tie_word_embeddings lowerCAmelCase_ = use_parallel_residual lowerCAmelCase_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling, UpperCamelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}" ) lowerCAmelCase_ = self.rope_scaling.get('''type''', UpperCamelCase__ ) lowerCAmelCase_ = self.rope_scaling.get('''factor''', UpperCamelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(UpperCamelCase__, UpperCamelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
167
0
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): A_ = yaml.safe_load( "\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n" ) A_ = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } A_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" A_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" A_ = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Extra Ignored Subsection", "text": "", "is_empty_text": True, "subsections": [], } ], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } A_ = "\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" A_ = ( "The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README." ) A_ = "\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" A_ = ( "The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README." ) A_ = "\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" A_ = "The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README." A_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" A_ = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored)." A_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n" A_ = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'." A_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n" A_ = "The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`." A_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n" A_ = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty." A_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" A_ = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README." A_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n" A_ = "The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README." A_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" A_ = "The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README." A_ = "" A_ = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README." A_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" A_ = "The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections." @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def A_ ( snake_case , snake_case ): assert ReadMe.from_string(snake_case , snake_case ).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def A_ ( snake_case , snake_case ): with pytest.raises(snake_case , match=re.escape(expected_error.format(path="root" ) ) ): SCREAMING_SNAKE_CASE:List[Any] = ReadMe.from_string(snake_case , snake_case ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def A_ ( snake_case , snake_case ): with pytest.raises(snake_case , match=re.escape(expected_error.format(path="root" ) ) ): ReadMe.from_string(snake_case , snake_case ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def A_ ( snake_case ): ReadMe.from_string(snake_case , snake_case , suppress_parsing_errors=snake_case ) @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def A_ ( snake_case , snake_case ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE:List[str] = Path(snake_case ) / "README.md" with open(snake_case , "w+" ) as readme_file: readme_file.write(snake_case ) SCREAMING_SNAKE_CASE:List[Any] = ReadMe.from_readme(snake_case , snake_case ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def A_ ( snake_case , snake_case ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE:Optional[int] = Path(snake_case ) / "README.md" with open(snake_case , "w+" ) as readme_file: readme_file.write(snake_case ) SCREAMING_SNAKE_CASE:str = expected_error.format(path=snake_case ) with pytest.raises(snake_case , match=re.escape(snake_case ) ): SCREAMING_SNAKE_CASE:int = ReadMe.from_readme(snake_case , snake_case ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def A_ ( snake_case , snake_case ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE:Any = Path(snake_case ) / "README.md" with open(snake_case , "w+" ) as readme_file: readme_file.write(snake_case ) SCREAMING_SNAKE_CASE:str = expected_error.format(path=snake_case ) with pytest.raises(snake_case , match=re.escape(snake_case ) ): ReadMe.from_readme(snake_case , snake_case ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def A_ ( snake_case ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE:str = Path(snake_case ) / "README.md" with open(snake_case , "w+" ) as readme_file: readme_file.write(snake_case ) ReadMe.from_readme(snake_case , snake_case , suppress_parsing_errors=snake_case )
139
_lowercase: Dict = [ (1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def a( A : str ) -> int: """simple docstring""" a = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} a = 0 a = 0 while place < len(A ): if (place + 1 < len(A )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def a( A : int ) -> str: """simple docstring""" a = [] for arabic, roman in ROMAN: ((a) , (a)) = divmod(A , A ) result.append(roman * factor ) if number == 0: break return "".join(A ) if __name__ == "__main__": import doctest doctest.testmod()
227
0
def __A ( __lowerCamelCase ) -> list[int]: a = [0 for i in range(len(__lowerCamelCase ) )] # initialize interval's left pointer and right pointer a , a = 0, 0 for i in range(1 , len(__lowerCamelCase ) ): # case when current index is inside the interval if i <= right_pointer: a = min(right_pointer - i + 1 , z_result[i - left_pointer] ) a = min_edge while go_next(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: a , a = i, i + z_result[i] - 1 return z_result def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> bool: return i + z_result[i] < len(__lowerCamelCase ) and s[z_result[i]] == s[i + z_result[i]] def __A ( __lowerCamelCase , __lowerCamelCase ) -> int: a = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string a = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(__lowerCamelCase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
347
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : int = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): UpperCamelCase__ = '''nat''' UpperCamelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self :Any , __magic_name__ :int=4 , __magic_name__ :Dict=3 , __magic_name__ :List[str]=64 , __magic_name__ :Optional[int]=[3, 4, 6, 5] , __magic_name__ :int=[2, 4, 8, 16] , __magic_name__ :str=7 , __magic_name__ :Tuple=3.0 , __magic_name__ :Dict=True , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]="gelu" , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Tuple=1E-5 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :int=None , __magic_name__ :Any=None , **__magic_name__ :Dict , ): '''simple docstring''' super().__init__(**__magic_name__ ) a = patch_size a = num_channels a = embed_dim a = depths a = len(__magic_name__ ) a = num_heads a = kernel_size a = mlp_ratio a = qkv_bias a = hidden_dropout_prob a = attention_probs_dropout_prob a = drop_path_rate a = hidden_act a = layer_norm_eps a = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) ) a = layer_scale_init_value a = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(__magic_name__ ) + 1 )] a , a = get_aligned_output_features_output_indices( out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
347
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _UpperCamelCase ( ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=__A , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=__A , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=__A ) return parser.parse_args() def _UpperCamelCase ( ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = parse_args() # Import training_script as a module. UpperCamelCase__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCamelCase__ = script_fpath.stem UpperCamelCase__ = importlib.import_module(__A ) # Patch sys.argv UpperCamelCase__ = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
80
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __A ) -> float: '''simple docstring''' UpperCamelCase__ = 0.00 UpperCamelCase__ = 0 for resistor in resistors: if resistor <= 0: UpperCamelCase__ = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(__A ) first_sum += 1 / float(__A ) index += 1 return 1 / first_sum def _UpperCamelCase ( __A ) -> float: '''simple docstring''' UpperCamelCase__ = 0.00 UpperCamelCase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCamelCase__ = F'''Resistor at index {index} has a negative value!''' raise ValueError(__A ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
80
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _A ( _a ): def __a ( self : int ) -> str: """simple docstring""" lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCAmelCase , '''width_multiplier''' ) ) class _A : def __init__( self : int , _A : int , _A : int=13 , _A : Union[str, Any]=64 , _A : Optional[int]=2 , _A : Dict=3 , _A : Tuple="swish" , _A : int=3 , _A : Union[str, Any]=32 , _A : List[Any]=0.1 , _A : Union[str, Any]=0.02 , _A : Tuple=True , _A : Tuple=True , _A : Optional[int]=10 , _A : Optional[int]=None , _A : str=0.25 , _A : Any=0.0 , _A : Dict=0.0 , ) -> int: """simple docstring""" lowercase : str = parent lowercase : Union[str, Any] = batch_size lowercase : Tuple = image_size lowercase : int = patch_size lowercase : List[str] = num_channels lowercase : int = make_divisible(512 * width_multiplier , divisor=8 ) lowercase : Any = hidden_act lowercase : Tuple = conv_kernel_size lowercase : List[Any] = output_stride lowercase : Tuple = classifier_dropout_prob lowercase : Any = use_labels lowercase : Any = is_training lowercase : Any = num_labels lowercase : Dict = initializer_range lowercase : str = scope lowercase : List[str] = width_multiplier lowercase : Optional[Any] = ffn_dropout lowercase : Union[str, Any] = attn_dropout def __a ( self : int ) -> Dict: """simple docstring""" lowercase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : List[Any] = None lowercase : Tuple = None if self.use_labels: lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowercase : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self : List[str] ) -> List[str]: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __a ( self : List[str] , _A : Any , _A : List[Any] , _A : str , _A : int ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = MobileViTVaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase : List[str] = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __a ( self : Optional[Any] , _A : Any , _A : Any , _A : str , _A : List[Any] ) -> Dict: """simple docstring""" lowercase : Union[str, Any] = self.num_labels lowercase : Optional[Any] = MobileViTVaForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase : Union[str, Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : List[str] , _A : int , _A : int , _A : int , _A : str ) -> Union[str, Any]: """simple docstring""" lowercase : Tuple = self.num_labels lowercase : str = MobileViTVaForSemanticSegmentation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase : str = model(__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowercase : Union[str, Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __a ( self : Union[str, Any] ) -> int: """simple docstring""" lowercase : int = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase : List[str] = config_and_inputs lowercase : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _A ( _a , _a , unittest.TestCase ): _UpperCamelCase : str = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) _UpperCamelCase : Dict = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) _UpperCamelCase : str = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Dict = False _UpperCamelCase : int = False def __a ( self : Any ) -> Optional[int]: """simple docstring""" lowercase : Tuple = MobileViTVaModelTester(self ) lowercase : Tuple = MobileViTVaConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def __a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __a ( self : Dict ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __a ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __a ( self : List[str] ) -> int: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __a ( self : str ) -> Optional[Any]: """simple docstring""" pass def __a ( self : List[str] ) -> Any: """simple docstring""" lowercase , lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : List[Any] = model_class(__lowerCAmelCase ) lowercase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Tuple = [*signature.parameters.keys()] lowercase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def __a ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def __a ( self : Any ) -> Dict: """simple docstring""" def check_hidden_states_output(_A : Dict , _A : Optional[int] , _A : Optional[Any] ): lowercase : Optional[Any] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase : Union[str, Any] = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase : Union[str, Any] = outputs.hidden_states lowercase : Union[str, Any] = 5 self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowercase : Dict = 2 for i in range(len(__lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowercase , lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : List[Any] = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Tuple = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __a ( self : Tuple ) -> Dict: """simple docstring""" lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) def __a ( self : Optional[Any] ) -> str: """simple docstring""" lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCAmelCase ) @slow def __a ( self : str ) -> int: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = MobileViTVaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def snake_case( ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def __a ( self : Optional[int] ) -> List[Any]: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase : Any = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( __lowerCAmelCase ) lowercase : Any = self.default_image_processor lowercase : str = prepare_img() lowercase : Any = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase : Union[str, Any] = model(**__lowerCAmelCase ) # verify the logits lowercase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) lowercase : Any = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow def __a ( self : List[Any] ) -> str: """simple docstring""" lowercase : Union[str, Any] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase : List[str] = model.to(__lowerCAmelCase ) lowercase : Any = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase : Optional[Any] = prepare_img() lowercase : Dict = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase : Any = model(**__lowerCAmelCase ) lowercase : int = outputs.logits # verify the logits lowercase : Tuple = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowerCAmelCase ) lowercase : str = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=__lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : str = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase : int = model.to(__lowerCAmelCase ) lowercase : int = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase : Dict = prepare_img() lowercase : Tuple = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase : Any = model(**__lowerCAmelCase ) lowercase : List[Any] = outputs.logits.detach().cpu() lowercase : str = image_processor.post_process_semantic_segmentation(outputs=__lowerCAmelCase , target_sizes=[(50, 60)] ) lowercase : int = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowerCAmelCase ) lowercase : Tuple = image_processor.post_process_semantic_segmentation(outputs=__lowerCAmelCase ) lowercase : Optional[int] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowerCAmelCase )
371
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / 'model_card_template.md' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def snake_case( __magic_name__ = None ) -> str: '''simple docstring''' lowercase : List[Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__magic_name__ , __magic_name__ ): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__magic_name__ , __magic_name__ ): ua += "; " + user_agent return ua def snake_case( __magic_name__ , __magic_name__ = None , __magic_name__ = None ) -> Optional[Any]: '''simple docstring''' if token is None: lowercase : int = HfFolder.get_token() if organization is None: lowercase : List[str] = whoami(__magic_name__ )['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(__magic_name__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return lowercase : Optional[Any] = args.hub_token if hasattr(__magic_name__ , '''hub_token''' ) else None lowercase : int = get_full_repo_name(__magic_name__ , token=__magic_name__ ) lowercase : Dict = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__magic_name__ , model_name=__magic_name__ , repo_name=__magic_name__ , dataset_name=args.dataset_name if hasattr(__magic_name__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__magic_name__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__magic_name__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(__magic_name__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__magic_name__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__magic_name__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__magic_name__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__magic_name__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__magic_name__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(__magic_name__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__magic_name__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) lowercase : Any = os.path.join(args.output_dir , '''README.md''' ) model_card.save(__magic_name__ ) def snake_case( __magic_name__ , __magic_name__ = None ) -> int: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash lowercase : Dict = str(Path(__magic_name__ ).as_posix() ) lowercase : Any = re.search(r'''snapshots/([^/]+)/''' , __magic_name__ ) if search is None: return None lowercase : List[Any] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__magic_name__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, 'diffusers') def snake_case( __magic_name__ = None , __magic_name__ = None ) -> None: '''simple docstring''' if new_cache_dir is None: lowercase : str = DIFFUSERS_CACHE if old_cache_dir is None: lowercase : List[str] = old_diffusers_cache lowercase : str = Path(__magic_name__ ).expanduser() lowercase : Dict = Path(__magic_name__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowercase : List[Any] = new_cache_dir / old_blob_path.relative_to(__magic_name__ ) new_blob_path.parent.mkdir(parents=__magic_name__ , exist_ok=__magic_name__ ) os.replace(__magic_name__ , __magic_name__ ) try: os.symlink(__magic_name__ , __magic_name__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' 'the directory exists and can be written to.' ) def snake_case( __magic_name__ , __magic_name__ = None ) -> str: '''simple docstring''' if variant is not None: lowercase : List[str] = weights_name.split('''.''' ) lowercase : Any = splits[:-1] + [variant] + splits[-1:] lowercase : Tuple = '''.'''.join(__magic_name__ ) return weights_name def snake_case( __magic_name__ , *, __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , ) -> Dict: '''simple docstring''' lowercase : Union[str, Any] = str(__magic_name__ ) if os.path.isfile(__magic_name__ ): return pretrained_model_name_or_path elif os.path.isdir(__magic_name__ ): if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) ): # Load from a PyTorch checkpoint lowercase : Dict = os.path.join(__magic_name__ , __magic_name__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__magic_name__ , __magic_name__ , __magic_name__ ) ): lowercase : str = os.path.join(__magic_name__ , __magic_name__ , __magic_name__ ) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__magic_name__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: lowercase : int = hf_hub_download( __magic_name__ , filename=_add_variant(__magic_name__ , __magic_name__ ) , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , use_auth_token=__magic_name__ , user_agent=__magic_name__ , subfolder=__magic_name__ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __magic_name__ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__magic_name__ , __magic_name__ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__magic_name__ , __magic_name__ )}' so that the correct variant file can be added.""" , __magic_name__ , ) try: # 2. Load model file as usual lowercase : Dict = hf_hub_download( __magic_name__ , filename=__magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , use_auth_token=__magic_name__ , user_agent=__magic_name__ , subfolder=__magic_name__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""" )
116
0
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=a__ ): UpperCAmelCase__ : List[str] = ["onnx"] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[Any]: requires_backends(self, ['onnx'] ) @classmethod def snake_case_ ( cls, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[Any]: requires_backends(cls, ['onnx'] ) @classmethod def snake_case_ ( cls, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Tuple: requires_backends(cls, ['onnx'] )
119
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging __UpperCAmelCase = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] __UpperCAmelCase = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = ''' Hello world! cécé herlolip''' __UpperCAmelCase = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> List[str]: UpperCamelCase : int = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def UpperCamelCase ( snake_case__ : int , snake_case__ : List[str] , snake_case__ : int ) -> Any: UpperCamelCase : Dict = dct.pop(snake_case__ ) UpperCamelCase : Optional[Any] = val def UpperCamelCase ( snake_case__ : Dict ) -> Tuple: UpperCamelCase : int = torch.load(snake_case__ , map_location='cpu' ) UpperCamelCase : Dict = torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def UpperCamelCase ( snake_case__ : List[str] ) -> Dict: UpperCamelCase , UpperCamelCase : str = emb.weight.shape UpperCamelCase : Optional[int] = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) UpperCamelCase : List[str] = emb.weight.data return lin_layer @torch.no_grad() def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : str=None ) -> Optional[Any]: if not os.path.exists(snake_case__ ): UpperCamelCase : List[str] = torch.hub.load('pytorch/fairseq' , snake_case__ ).eval() else: UpperCamelCase : int = load_xsum_checkpoint(snake_case__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: UpperCamelCase : Tuple = checkpoint_path.replace('.' , '-' ) UpperCamelCase : Optional[int] = BartConfig.from_pretrained(snake_case__ ) UpperCamelCase : Optional[Any] = bart.encode(snake_case__ ).unsqueeze(0 ) UpperCamelCase : Any = BartTokenizer.from_pretrained(snake_case__ ).encode(snake_case__ , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(snake_case__ , snake_case__ ).all(): raise ValueError( F"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": UpperCamelCase : Union[str, Any] = bart.state_dict() remove_ignore_keys_(snake_case__ ) UpperCamelCase : int = state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase : Any = BartForSequenceClassification(snake_case__ ).eval() model.load_state_dict(snake_case__ ) UpperCamelCase : Any = bart.predict('mnli' , snake_case__ , return_logits=snake_case__ ) UpperCamelCase : Tuple = model(snake_case__ )[0] # logits else: # no classification heads to worry about UpperCamelCase : List[str] = bart.model.state_dict() remove_ignore_keys_(snake_case__ ) UpperCamelCase : List[str] = state_dict['decoder.embed_tokens.weight'] UpperCamelCase : Union[str, Any] = bart.extract_features(snake_case__ ) if hf_checkpoint_name == "facebook/bart-large": UpperCamelCase : List[str] = BartModel(snake_case__ ).eval() model.load_state_dict(snake_case__ ) UpperCamelCase : Optional[int] = model(snake_case__ ).model[0] else: UpperCamelCase : Union[str, Any] = BartForConditionalGeneration(snake_case__ ).eval() # an existing summarization ckpt model.model.load_state_dict(snake_case__ ) if hasattr(snake_case__ , 'lm_head' ): UpperCamelCase : Optional[int] = make_linear_from_emb(model.model.shared ) UpperCamelCase : Dict = model.model(snake_case__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) __UpperCAmelCase = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
119
1
'''simple docstring''' import argparse import json from tqdm import tqdm def __lowercase ( ) -> str: '''simple docstring''' _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=__lowercase , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=__lowercase , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=__lowercase , help="where to store parsed gold_data_path file" , ) _A = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: _A = json.load(__lowercase ) for dpr_record in tqdm(__lowercase ): _A = dpr_record["question"] _A = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(__lowercase ) + "\n" ) if __name__ == "__main__": main()
351
'''simple docstring''' def __lowercase ( __lowercase ) -> int: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): raise ValueError("multiplicative_persistence() only accepts integral values" ) if num < 0: raise ValueError("multiplicative_persistence() does not accept negative values" ) _A = 0 _A = str(__lowercase ) while len(__lowercase ) != 1: _A = [int(__lowercase ) for i in num_string] _A = 1 for i in range(0 , len(__lowercase ) ): total *= numbers[i] _A = str(__lowercase ) steps += 1 return steps def __lowercase ( __lowercase ) -> int: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): raise ValueError("additive_persistence() only accepts integral values" ) if num < 0: raise ValueError("additive_persistence() does not accept negative values" ) _A = 0 _A = str(__lowercase ) while len(__lowercase ) != 1: _A = [int(__lowercase ) for i in num_string] _A = 0 for i in range(0 , len(__lowercase ) ): total += numbers[i] _A = str(__lowercase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
174
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : torch.FloatTensor class snake_case__ (_UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : int , __lowerCamelCase : int = 6_55_36 , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 0 , __lowerCamelCase : str = "fourier" , __lowerCamelCase : bool = True , __lowerCamelCase : bool = False , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , __lowerCamelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , __lowerCamelCase : Tuple[str] = "UNetMidBlock1D" , __lowerCamelCase : str = None , __lowerCamelCase : Tuple[int] = (32, 32, 64) , __lowerCamelCase : str = None , __lowerCamelCase : int = 8 , __lowerCamelCase : int = 1 , __lowerCamelCase : bool = False , ) -> Tuple: super().__init__() a = sample_size # time if time_embedding_type == "fourier": a = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=__lowerCamelCase , log=__lowerCamelCase , flip_sin_to_cos=__lowerCamelCase ) a = 2 * block_out_channels[0] elif time_embedding_type == "positional": a = Timesteps( block_out_channels[0] , flip_sin_to_cos=__lowerCamelCase , downscale_freq_shift=__lowerCamelCase ) a = block_out_channels[0] if use_timestep_embedding: a = block_out_channels[0] * 4 a = TimestepEmbedding( in_channels=__lowerCamelCase , time_embed_dim=__lowerCamelCase , act_fn=__lowerCamelCase , out_dim=block_out_channels[0] , ) a = nn.ModuleList([] ) a = None a = nn.ModuleList([] ) a = None # down a = in_channels for i, down_block_type in enumerate(__lowerCamelCase ): a = output_channel a = block_out_channels[i] if i == 0: input_channel += extra_in_channels a = i == len(__lowerCamelCase ) - 1 a = get_down_block( __lowerCamelCase , num_layers=__lowerCamelCase , in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(__lowerCamelCase ) # mid a = get_mid_block( __lowerCamelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=__lowerCamelCase , add_downsample=__lowerCamelCase , ) # up a = list(reversed(__lowerCamelCase ) ) a = reversed_block_out_channels[0] if out_block_type is None: a = out_channels else: a = block_out_channels[0] for i, up_block_type in enumerate(__lowerCamelCase ): a = output_channel a = ( reversed_block_out_channels[i + 1] if i < len(__lowerCamelCase ) - 1 else final_upsample_channels ) a = i == len(__lowerCamelCase ) - 1 a = get_up_block( __lowerCamelCase , num_layers=__lowerCamelCase , in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(__lowerCamelCase ) a = output_channel # out a = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) a = get_out_block( out_block_type=__lowerCamelCase , num_groups_out=__lowerCamelCase , embed_dim=block_out_channels[0] , out_channels=__lowerCamelCase , act_fn=__lowerCamelCase , fc_dim=block_out_channels[-1] // 4 , ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Union[torch.Tensor, float, int] , __lowerCamelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]: a = timestep if not torch.is_tensor(__lowerCamelCase ): a = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(__lowerCamelCase ) and len(timesteps.shape ) == 0: a = timesteps[None].to(sample.device ) a = self.time_proj(__lowerCamelCase ) if self.config.use_timestep_embedding: a = self.time_mlp(__lowerCamelCase ) else: a = timestep_embed[..., None] a = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) a = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down a = () for downsample_block in self.down_blocks: a , a = downsample_block(hidden_states=__lowerCamelCase , temb=__lowerCamelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: a = self.mid_block(__lowerCamelCase , __lowerCamelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): a = down_block_res_samples[-1:] a = down_block_res_samples[:-1] a = upsample_block(__lowerCamelCase , res_hidden_states_tuple=__lowerCamelCase , temb=__lowerCamelCase ) # 5. post-process if self.out_block: a = self.out_block(__lowerCamelCase , __lowerCamelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=__lowerCamelCase )
107
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : str = {'vocab_file': 'spiece.model'} _lowerCamelCase : Optional[int] = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } _lowerCamelCase : str = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Tuple = 1 _lowerCamelCase : int = 2 _lowerCamelCase : Dict = 3 _lowerCamelCase : Union[str, Any] = 4 class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Any = """left""" def __init__( self : Dict , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int]=False , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : str=False , _lowerCamelCase : Optional[Any]="<s>" , _lowerCamelCase : List[str]="</s>" , _lowerCamelCase : Union[str, Any]="<unk>" , _lowerCamelCase : List[Any]="<sep>" , _lowerCamelCase : str="<pad>" , _lowerCamelCase : Dict="<cls>" , _lowerCamelCase : str="<mask>" , _lowerCamelCase : Optional[int]=["<eop>", "<eod>"] , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : Union[str, Any] , ): """simple docstring""" A_ : Optional[int] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token A_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : str = 3 A_ : Union[str, Any] = do_lower_case A_ : Tuple = remove_space A_ : int = keep_accents A_ : Optional[Any] = vocab_file A_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def a_ ( self : int ): """simple docstring""" return len(self.sp_model ) def a_ ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): """simple docstring""" A_ : str = self.__dict__.copy() A_ : Tuple = None return state def __setstate__( self : Tuple , _lowerCamelCase : int ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : List[Any] = {} A_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a_ ( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" if self.remove_space: A_ : str = ''' '''.join(inputs.strip().split() ) else: A_ : Any = inputs A_ : List[str] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: A_ : Any = unicodedata.normalize('''NFKD''' , _lowerCamelCase ) A_ : List[str] = ''''''.join([c for c in outputs if not unicodedata.combining(_lowerCamelCase )] ) if self.do_lower_case: A_ : str = outputs.lower() return outputs def a_ ( self : List[str] , _lowerCamelCase : str ): """simple docstring""" A_ : str = self.preprocess_text(_lowerCamelCase ) A_ : int = self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) A_ : List[Any] = [] for piece in pieces: if len(_lowerCamelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): A_ : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCamelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A_ : Tuple = cur_pieces[1:] else: A_ : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCamelCase ) else: new_pieces.append(_lowerCamelCase ) return new_pieces def a_ ( self : Any , _lowerCamelCase : List[Any] ): """simple docstring""" return self.sp_model.PieceToId(_lowerCamelCase ) def a_ ( self : Any , _lowerCamelCase : List[Any] ): """simple docstring""" return self.sp_model.IdToPiece(_lowerCamelCase ) def a_ ( self : List[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Any = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip() return out_string def a_ ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : bool = False , _lowerCamelCase : bool = None , _lowerCamelCase : bool = True , **_lowerCamelCase : int , ): """simple docstring""" A_ : int = kwargs.pop('''use_source_tokenizer''' , _lowerCamelCase ) A_ : List[str] = self.convert_ids_to_tokens(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A_ : Any = [] A_ : List[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) A_ : int = [] sub_texts.append(_lowerCamelCase ) else: current_sub_text.append(_lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens A_ : Optional[int] = ''''''.join(_lowerCamelCase ) A_ : Any = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A_ : Dict = self.clean_up_tokenization(_lowerCamelCase ) return clean_text else: return text def a_ ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" A_ : Optional[int] = [self.sep_token_id] A_ : List[str] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def a_ ( self : List[str] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is not None: return ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1, 1] return ([0] * len(_lowerCamelCase )) + [1, 1] def a_ ( self : int , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" A_ : List[Any] = [self.sep_token_id] A_ : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def a_ ( self : int , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A_ : List[str] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: A_ : str = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
167
0
from __future__ import annotations lowerCamelCase_ : Optional[Any] = list[tuple[int, int]] lowerCamelCase_ : int = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCamelCase_ : str = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class a__ : def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[Any]: __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() def __SCREAMING_SNAKE_CASE ( self ) -> float: __a = abs(self.pos_x - self.goal_x ) __a = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , UpperCAmelCase ) -> bool: return self.f_cost < other.f_cost class a__ : def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> Dict: __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCAmelCase ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , UpperCAmelCase ) __a = [self.start] __a = [] __a = False def __SCREAMING_SNAKE_CASE ( self ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(UpperCAmelCase ) self.closed_nodes.append(UpperCAmelCase ) __a = self.get_successors(UpperCAmelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(UpperCAmelCase ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(UpperCAmelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(UpperCAmelCase ) else: self.open_nodes.append(UpperCAmelCase ) if not self.reached: return [self.start.pos] return None def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> list[Node]: __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( UpperCAmelCase , UpperCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCAmelCase , ) ) return successors def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Path: __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path if __name__ == "__main__": lowerCamelCase_ : Any = (0, 0) lowerCamelCase_ : Tuple = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") lowerCamelCase_ : Optional[int] = GreedyBestFirst(init, goal) lowerCamelCase_ : List[Any] = greedy_bf.search() if path: for pos_x, pos_y in path: lowerCamelCase_ : str = 2 for elem in grid: print(elem)
367
def lowerCAmelCase( __lowerCamelCase ): if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) __a = '' while len(__lowerCamelCase ) % 3 != 0: __a = '0' + bin_string __a = [ bin_string[index : index + 3] for index in range(len(__lowerCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __a = 0 for index, val in enumerate(__lowerCamelCase ): oct_val += int(2 ** (2 - index) * int(__lowerCamelCase ) ) oct_string += str(__lowerCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
197
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = [0 for i in range(len(_SCREAMING_SNAKE_CASE ) )] # initialize interval's left pointer and right pointer snake_case_ , snake_case_ = 0, 0 for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): # case when current index is inside the interval if i <= right_pointer: snake_case_ = min(right_pointer - i + 1 , z_result[i - left_pointer] ) snake_case_ = min_edge while go_next(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: snake_case_ , snake_case_ = i, i + z_result[i] - 1 return z_result def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: return i + z_result[i] < len(_SCREAMING_SNAKE_CASE ) and s[z_result[i]] == s[i + z_result[i]] def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: snake_case_ = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string snake_case_ = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_SCREAMING_SNAKE_CASE ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
347
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[str] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[int] = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Dict = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[str] = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ) ->List[str]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any] ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[Any] = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[int] = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[Any] ) ->Tuple: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ) ->Tuple: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Tuple = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[Any] ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Tuple = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[Any] ) ->str: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] ) ->int: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int] ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[str] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any] ) ->List[str]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : Any , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[Any] ) ->List[str]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Dict = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[int] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : str ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[int] = ["""sentencepiece"""] def __init__( self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int] ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Dict = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ) ->Any: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[str] = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int] ) ->str: """simple docstring""" requires_backends(self , ["""sentencepiece"""] )
347
1
from torch import nn def lowerCamelCase_ ( _a : Optional[Any] ): '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
354
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = ["pixel_values"] def __init__( self: Optional[Any] ,lowerCamelCase_: bool = True ,lowerCamelCase_: Optional[Dict[str, int]] = None ,lowerCamelCase_: PILImageResampling = PILImageResampling.BICUBIC ,lowerCamelCase_: bool = True ,lowerCamelCase_: bool = True ,lowerCamelCase_: Union[int, float] = 1 / 255 ,lowerCamelCase_: Dict[str, int] = None ,lowerCamelCase_: bool = True ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,**lowerCamelCase_: Union[str, Any] ,) -> None: super().__init__(**lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = size if size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase_ : Union[str, Any] = get_size_dict(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase_ : Tuple = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ,param_name="""crop_size""" ) UpperCAmelCase_ : Union[str, Any] = do_resize UpperCAmelCase_ : Union[str, Any] = do_rescale UpperCAmelCase_ : str = do_normalize UpperCAmelCase_ : Optional[int] = do_center_crop UpperCAmelCase_ : str = crop_size UpperCAmelCase_ : List[str] = size UpperCAmelCase_ : Any = resample UpperCAmelCase_ : Tuple = rescale_factor UpperCAmelCase_ : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase_ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self: List[Any] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Dict[str, int] ,lowerCamelCase_: PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: Optional[int] ,) -> np.ndarray: UpperCAmelCase_ : Tuple = get_size_dict(lowerCamelCase_ ) if "shortest_edge" in size: UpperCAmelCase_ : Optional[Any] = get_resize_output_image_size(lowerCamelCase_ ,size=size["""shortest_edge"""] ,default_to_square=lowerCamelCase_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCAmelCase_ : Tuple = (size["""height"""], size["""width"""]) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(lowerCamelCase_ ,size=lowerCamelCase_ ,resample=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: List[Any] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Dict[str, int] ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: str ,) -> np.ndarray: UpperCAmelCase_ : Dict = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCamelCase_ ,size=(size["""height"""], size["""width"""]) ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: Optional[int] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: float ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: List[str] ) -> np.ndarray: return rescale(lowerCamelCase_ ,scale=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: List[str] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Union[float, List[float]] ,lowerCamelCase_: Union[float, List[float]] ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: Union[str, Any] ,) -> np.ndarray: return normalize(lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: Any ,lowerCamelCase_: ImageInput ,lowerCamelCase_: Optional[bool] = None ,lowerCamelCase_: Dict[str, int] = None ,lowerCamelCase_: PILImageResampling = None ,lowerCamelCase_: bool = None ,lowerCamelCase_: int = None ,lowerCamelCase_: Optional[bool] = None ,lowerCamelCase_: Optional[float] = None ,lowerCamelCase_: Optional[bool] = None ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: Optional[Union[str, TensorType]] = None ,lowerCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST ,**lowerCamelCase_: List[str] ,) -> BatchFeature: UpperCAmelCase_ : Tuple = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : str = get_size_dict(lowerCamelCase_ ,param_name="""crop_size""" ,default_to_square=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = resample if resample is not None else self.resample UpperCAmelCase_ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Optional[Any] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : int = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Dict = size if size is not None else self.size UpperCAmelCase_ : List[str] = get_size_dict(lowerCamelCase_ ) if not is_batched(lowerCamelCase_ ): UpperCAmelCase_ : Optional[int] = [images] if not valid_images(lowerCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase_ : Tuple = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: UpperCAmelCase_ : int = [self.resize(image=lowerCamelCase_ ,size=lowerCamelCase_ ,resample=lowerCamelCase_ ) for image in images] if do_center_crop: UpperCAmelCase_ : Optional[int] = [self.center_crop(image=lowerCamelCase_ ,size=lowerCamelCase_ ) for image in images] if do_rescale: UpperCAmelCase_ : str = [self.rescale(image=lowerCamelCase_ ,scale=lowerCamelCase_ ) for image in images] if do_normalize: UpperCAmelCase_ : Dict = [self.normalize(image=lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ) for image in images] UpperCAmelCase_ : Dict = [to_channel_dimension_format(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] UpperCAmelCase_ : Tuple = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase_ ,tensor_type=lowerCamelCase_ )
59
0
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class _SCREAMING_SNAKE_CASE : def __lowerCAmelCase ( self , __A ) -> int: raise NotImplementedError() def __lowerCAmelCase ( self ) -> Optional[Any]: raise NotImplementedError() class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A , __A = False , **__A ) -> int: lowerCAmelCase_ :List[str] = tokenizer lowerCAmelCase_ :Dict = skip_prompt lowerCAmelCase_ :Union[str, Any] = decode_kwargs # variables used in the streaming process lowerCAmelCase_ :Any = [] lowerCAmelCase_ :List[Any] = 0 lowerCAmelCase_ :List[Any] = True def __lowerCAmelCase ( self , __A ) -> str: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: lowerCAmelCase_ :Tuple = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowerCAmelCase_ :int = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowerCAmelCase_ :int = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): lowerCAmelCase_ :List[str] = text[self.print_len :] lowerCAmelCase_ :Tuple = [] lowerCAmelCase_ :Tuple = 0 # If the last token is a CJK character, we print the characters. elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowerCAmelCase_ :Union[str, Any] = text[self.print_len :] self.print_len += len(__A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowerCAmelCase_ :Tuple = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(__A ) self.on_finalized_text(__A ) def __lowerCAmelCase ( self ) -> Dict: # Flush the cache, if it exists if len(self.token_cache ) > 0: lowerCAmelCase_ :Optional[int] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowerCAmelCase_ :List[str] = text[self.print_len :] lowerCAmelCase_ :Optional[int] = [] lowerCAmelCase_ :int = 0 else: lowerCAmelCase_ :Tuple = """""" lowerCAmelCase_ :int = True self.on_finalized_text(__A , stream_end=__A ) def __lowerCAmelCase ( self , __A , __A = False ) -> Optional[Any]: print(__A , flush=__A , end="""""" if not stream_end else None ) def __lowerCAmelCase ( self , __A ) -> Dict: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E_00 and cp <= 0x9F_FF) or (cp >= 0x34_00 and cp <= 0x4D_BF) # or (cp >= 0x2_00_00 and cp <= 0x2_A6_DF) # or (cp >= 0x2_A7_00 and cp <= 0x2_B7_3F) # or (cp >= 0x2_B7_40 and cp <= 0x2_B8_1F) # or (cp >= 0x2_B8_20 and cp <= 0x2_CE_AF) # or (cp >= 0xF9_00 and cp <= 0xFA_FF) or (cp >= 0x2_F8_00 and cp <= 0x2_FA_1F) # ): # return True return False class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A , __A = False , __A = None , **__A ) -> Dict: super().__init__(__A , __A , **__A ) lowerCAmelCase_ :Union[str, Any] = Queue() lowerCAmelCase_ :Any = None lowerCAmelCase_ :List[Any] = timeout def __lowerCAmelCase ( self , __A , __A = False ) -> List[str]: self.text_queue.put(__A , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) -> Optional[Any]: return self def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :int = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
84
def __UpperCamelCase ( _lowerCAmelCase = 100_0000 ) -> int: """simple docstring""" A : str = limit + 1 A : Tuple = [0] * limit for first_term in range(1 , _lowerCAmelCase ): for n in range(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): A : Any = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a A : Optional[int] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
116
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class lowerCamelCase__ ( _lowerCAmelCase ): '''simple docstring''' _lowerCamelCase = "poolformer" def __init__( self ,lowerCamelCase_=3 ,lowerCamelCase_=1_6 ,lowerCamelCase_=1_6 ,lowerCamelCase_=3 ,lowerCamelCase_=4.0 ,lowerCamelCase_=[2, 2, 6, 2] ,lowerCamelCase_=[6_4, 1_2_8, 3_2_0, 5_1_2] ,lowerCamelCase_=[7, 3, 3, 3] ,lowerCamelCase_=[4, 2, 2, 2] ,lowerCamelCase_=[2, 1, 1, 1] ,lowerCamelCase_=4 ,lowerCamelCase_=0.0 ,lowerCamelCase_="gelu" ,lowerCamelCase_=True ,lowerCamelCase_=1E-5 ,lowerCamelCase_=0.02 ,**lowerCamelCase_ ,) -> Dict: A = num_channels A = patch_size A = stride A = padding A = pool_size A = hidden_sizes A = mlp_ratio A = depths A = patch_sizes A = strides A = num_encoder_blocks A = drop_path_rate A = hidden_act A = use_layer_scale A = layer_scale_init_value A = initializer_range super().__init__(**_lowercase ) class lowerCamelCase__ ( _lowerCAmelCase ): '''simple docstring''' _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCamelCase__ ( self ) -> Any: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCamelCase__ ( self ) -> List[Any]: return 2E-3
369
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE ) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCamelCase = Features({'''text''': Value('''string''' )} ) _lowerCamelCase = Features({'''labels''': ClassLabel} ) _lowerCamelCase = "text" _lowerCamelCase = "labels" def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Dict: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] ,lowerCamelCase_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) A = copy.deepcopy(self ) A = self.label_schema.copy() A = features[self.label_column] A = label_schema return task_template @property def UpperCamelCase__ ( self ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
77
0
"""simple docstring""" import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline lowerCAmelCase__ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": lowerCAmelCase__ = '''hopper-medium-v2''' lowerCAmelCase__ = gym.make(env_name) lowerCAmelCase__ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) lowerCAmelCase__ = env.reset() lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 1_000 lowerCAmelCase__ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy lowerCAmelCase__ = pipeline(obs, planning_horizon=32) # execute action in environment lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = env.step(denorm_actions) lowerCAmelCase__ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) lowerCAmelCase__ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
108
'''simple docstring''' from collections.abc import Generator def __magic_name__( ): __lowerCAmelCase , __lowerCAmelCase = 0, 1 while True: __lowerCAmelCase , __lowerCAmelCase = b, a + b yield b def __magic_name__( lowerCamelCase = 1_0_0_0): __lowerCAmelCase = 1 __lowerCAmelCase = fibonacci_generator() while len(str(next(lowerCamelCase))) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
174
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class _snake_case ( lowercase__): UpperCamelCase__ : Optional[Any] ="""transfo-xl""" UpperCamelCase__ : Dict =["""mems"""] UpperCamelCase__ : Optional[int] ={ """n_token""": """vocab_size""", """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Optional[Any], __lowercase : Optional[Any]=26_7735, __lowercase : int=[2_0000, 4_0000, 20_0000], __lowercase : Union[str, Any]=1024, __lowercase : Tuple=1024, __lowercase : Tuple=16, __lowercase : Optional[Any]=64, __lowercase : str=4096, __lowercase : Optional[int]=4, __lowercase : Union[str, Any]=False, __lowercase : Union[str, Any]=18, __lowercase : List[str]=1600, __lowercase : List[Any]=1000, __lowercase : Union[str, Any]=True, __lowercase : Tuple=True, __lowercase : Optional[Any]=0, __lowercase : List[str]=-1, __lowercase : int=True, __lowercase : Dict=0.1, __lowercase : Union[str, Any]=0.0, __lowercase : str=True, __lowercase : Optional[Any]="normal", __lowercase : str=0.01, __lowercase : Tuple=0.01, __lowercase : List[Any]=0.02, __lowercase : Any=1e-5, __lowercase : Union[str, Any]=0, **__lowercase : Union[str, Any], ): lowercase__ = vocab_size lowercase__ = [] self.cutoffs.extend(__lowercase ) if proj_share_all_but_first: lowercase__ = [False] + [True] * len(self.cutoffs ) else: lowercase__ = [False] + [False] * len(self.cutoffs ) lowercase__ = d_model lowercase__ = d_embed lowercase__ = d_head lowercase__ = d_inner lowercase__ = div_val lowercase__ = pre_lnorm lowercase__ = n_layer lowercase__ = n_head lowercase__ = mem_len lowercase__ = same_length lowercase__ = attn_type lowercase__ = clamp_len lowercase__ = sample_softmax lowercase__ = adaptive lowercase__ = dropout lowercase__ = dropatt lowercase__ = untie_r lowercase__ = init lowercase__ = init_range lowercase__ = proj_init_std lowercase__ = init_std lowercase__ = layer_norm_epsilon super().__init__(eos_token_id=__lowercase, **__lowercase ) @property def A__ ( self : Optional[Any] ): # Message copied from Transformer-XL documentation logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def A__ ( self : List[str], __lowercase : Union[str, Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
366
from pathlib import Path import fire def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = Path(SCREAMING_SNAKE_CASE_ ) lowercase__ = Path(SCREAMING_SNAKE_CASE_ ) dest_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) for path in src_dir.iterdir(): lowercase__ = [x.rstrip() for x in list(path.open().readlines() )][:n] lowercase__ = dest_dir.joinpath(path.name ) print(SCREAMING_SNAKE_CASE_ ) dest_path.open("w" ).write("\n".join(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": fire.Fire(minify)
224
0
from __future__ import annotations def _A ( SCREAMING_SNAKE_CASE__ : list[list[int]] ): for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(lowerCAmelCase__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(lowerCAmelCase__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
259
"""simple docstring""" from __future__ import annotations from collections.abc import Callable __lowerCAmelCase : str =list[list[float | int]] def UpperCAmelCase__ ( lowerCAmelCase__ :Matrix , lowerCAmelCase__ :Matrix ) -> Matrix: '''simple docstring''' lowercase = len(lowerCAmelCase__ ) lowercase = [[0 for _ in range(size + 1 )] for _ in range(lowerCAmelCase__ )] lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 for row in range(lowerCAmelCase__ ): for col in range(lowerCAmelCase__ ): lowercase = matrix[row][col] lowercase = vector[row][0] lowercase = 0 lowercase = 0 while row < size and col < size: # pivoting lowercase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowerCAmelCase__ , lowerCAmelCase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowercase , lowercase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , lowerCAmelCase__ ): lowercase = augmented[rowa][col] / augmented[row][col] lowercase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , lowerCAmelCase__ ): for row in range(lowerCAmelCase__ ): lowercase = augmented[row][col] / augmented[col][col] for cola in range(lowerCAmelCase__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 1_0 )] for row in range(lowerCAmelCase__ ) ] def UpperCAmelCase__ ( lowerCAmelCase__ :list[int] ) -> Callable[[int], int]: '''simple docstring''' lowercase = len(lowerCAmelCase__ ) lowercase = [[0 for _ in range(lowerCAmelCase__ )] for _ in range(lowerCAmelCase__ )] lowercase = [[0] for _ in range(lowerCAmelCase__ )] lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 for x_val, y_val in enumerate(lowerCAmelCase__ ): for col in range(lowerCAmelCase__ ): lowercase = (x_val + 1) ** (size - col - 1) lowercase = y_val lowercase = solve(lowerCAmelCase__ , lowerCAmelCase__ ) def interpolated_func(lowerCAmelCase__ :int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(lowerCAmelCase__ ) ) return interpolated_func def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**1_0 ) def UpperCAmelCase__ ( lowerCAmelCase__ :Callable[[int], int] = question_function , lowerCAmelCase__ :int = 1_0 ) -> int: '''simple docstring''' lowercase = [func(lowerCAmelCase__ ) for x_val in range(1 , order + 1 )] lowercase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] lowercase = 0 lowercase = 42 lowercase = 42 for poly in polynomials: lowercase = 1 while func(lowerCAmelCase__ ) == poly(lowerCAmelCase__ ): x_val += 1 ret += poly(lowerCAmelCase__ ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
197
0
from __future__ import annotations UpperCAmelCase_ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__, __magic_name__ ) -> str: """simple docstring""" UpperCamelCase__ : List[str] = graph # mapping node to its parent in resulting breadth first tree UpperCamelCase__ : Union[str, Any] = {} UpperCamelCase__ : int = source_vertex def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[Any] = {self.source_vertex} UpperCamelCase__ : Tuple = None UpperCamelCase__ : Any = [self.source_vertex] # first in first out queue while queue: UpperCamelCase__ : List[str] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCamelCase_ ) UpperCamelCase__ : Optional[int] = vertex queue.append(UpperCamelCase_ ) def UpperCamelCase__ ( self, __magic_name__ ) -> int: """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex UpperCamelCase__ : str = self.parent.get(UpperCamelCase_ ) if target_vertex_parent is None: UpperCamelCase__ : Optional[Any] = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(UpperCamelCase_ ) return self.shortest_path(UpperCamelCase_ ) + f"->{target_vertex}" if __name__ == "__main__": UpperCAmelCase_ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
357
from __future__ import annotations import bisect def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int , __UpperCAmelCase: int = 0 , __UpperCAmelCase: int = -1 ) -> int: if hi < 0: UpperCamelCase__ : Union[str, Any] = len(__UpperCAmelCase ) while lo < hi: UpperCamelCase__ : Optional[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: UpperCamelCase__ : Optional[int] = mid + 1 else: UpperCamelCase__ : Tuple = mid return lo def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int , __UpperCAmelCase: int = 0 , __UpperCAmelCase: int = -1 ) -> int: if hi < 0: UpperCamelCase__ : int = len(__UpperCAmelCase ) while lo < hi: UpperCamelCase__ : List[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: UpperCamelCase__ : Optional[int] = mid + 1 else: UpperCamelCase__ : int = mid return lo def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int , __UpperCAmelCase: int = 0 , __UpperCAmelCase: int = -1 ) -> None: sorted_collection.insert(bisect_left(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int , __UpperCAmelCase: int = 0 , __UpperCAmelCase: int = -1 ) -> None: sorted_collection.insert(bisect_right(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int ) -> int | None: UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : List[str] = len(__UpperCAmelCase ) - 1 while left <= right: UpperCamelCase__ : List[str] = left + (right - left) // 2 UpperCamelCase__ : Union[str, Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: UpperCamelCase__ : List[str] = midpoint - 1 else: UpperCamelCase__ : List[str] = midpoint + 1 return None def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int ) -> int | None: UpperCamelCase__ : Union[str, Any] = bisect.bisect_left(__UpperCAmelCase , __UpperCAmelCase ) if index != len(__UpperCAmelCase ) and sorted_collection[index] == item: return index return None def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: int ) -> int | None: if right < left: return None UpperCamelCase__ : Optional[int] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , midpoint + 1 , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = input('Enter numbers separated by comma:\n').strip() UpperCAmelCase_ = sorted(int(item) for item in user_input.split(',')) UpperCAmelCase_ = int(input('Enter a single number to be found in the list:\n')) UpperCAmelCase_ = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
247
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = {'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''FNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''FNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FNetForMaskedLM''', '''FNetForMultipleChoice''', '''FNetForNextSentencePrediction''', '''FNetForPreTraining''', '''FNetForQuestionAnswering''', '''FNetForSequenceClassification''', '''FNetForTokenClassification''', '''FNetLayer''', '''FNetModel''', '''FNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
59
0
from __future__ import annotations def lowerCamelCase__ ( a__ : list , a__ : int ) -> Optional[Any]: # Checks if the entire collection has been sorted if len(a__ ) <= 1 or n <= 1: return insert_next(a__ , n - 1 ) rec_insertion_sort(a__ , n - 1 ) def lowerCamelCase__ ( a__ : list , a__ : int ) -> Optional[int]: # Checks order between adjacent elements if index >= len(a__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order UpperCamelCase_ , UpperCamelCase_ = ( collection[index], collection[index - 1], ) insert_next(a__ , index + 1 ) if __name__ == "__main__": _A = input('''Enter integers separated by spaces: ''') _A = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
261
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
261
1
"""simple docstring""" def _snake_case ( lowercase__ : dict ) -> set: '''simple docstring''' lowerCAmelCase_ :Any = set() # edges = list of graph's edges lowerCAmelCase_ :List[Any] = get_edges(lowercase__ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = edges.pop() chosen_vertices.add(lowercase__ ) chosen_vertices.add(lowercase__ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowercase__ ) return chosen_vertices def _snake_case ( lowercase__ : dict ) -> set: '''simple docstring''' lowerCAmelCase_ :Dict = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
84
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCamelCase : Any = logging.getLogger(__name__) _UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCamelCase : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : lowerCamelCase__ : Optional[str] = field( default=_a , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_a)} , ) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "Pretrained config name or path if not the same as model_name"}) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "The input training data file (a text file)."}) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) lowerCamelCase__ : bool = field( default=_a , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) lowerCamelCase__ : bool = field( default=_a , metadata={"help": "Train with masked-language modeling loss instead of language modeling."}) lowerCamelCase__ : bool = field(default=_a , metadata={"help": "Whether ot not to use whole word mask."}) lowerCamelCase__ : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) lowerCamelCase__ : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) lowerCamelCase__ : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}) lowerCamelCase__ : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) lowerCamelCase__ : bool = field( default=_a , metadata={"help": "Overwrite the cached training and evaluation sets"}) def a_ ( _lowerCAmelCase : DataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[str] = None , ): '''simple docstring''' def _dataset(_lowerCAmelCase : Any , _lowerCAmelCase : Any=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask' ) return LineByLineWithRefDataset( tokenizer=_lowerCAmelCase , file_path=_lowerCAmelCase , block_size=args.block_size , ref_path=_lowerCAmelCase , ) return LineByLineTextDataset(tokenizer=_lowerCAmelCase , file_path=_lowerCAmelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=_lowerCAmelCase , file_path=_lowerCAmelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_lowerCAmelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_lowerCAmelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def a_ ( ): '''simple docstring''' lowercase__ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase__ , lowercase__ , lowercase__ : List[Any] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowercase__ : List[Any] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowercase__ : Any = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: lowercase__ : Union[str, Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.tokenizer_name: lowercase__ : Dict = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowercase__ : int = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name' ) if model_args.model_name_or_path: lowercase__ : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch' ) lowercase__ : int = AutoModelWithLMHead.from_config(_lowerCAmelCase ) model.resize_token_embeddings(len(_lowerCAmelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).' ) if data_args.block_size <= 0: lowercase__ : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: lowercase__ : int = min(data_args.block_size , tokenizer.max_len ) # Get datasets lowercase__ : Tuple = ( get_dataset(_lowerCAmelCase , tokenizer=_lowerCAmelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowercase__ : Optional[Any] = ( get_dataset(_lowerCAmelCase , tokenizer=_lowerCAmelCase , evaluate=_lowerCAmelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowercase__ : List[Any] = DataCollatorForPermutationLanguageModeling( tokenizer=_lowerCAmelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: lowercase__ : List[str] = DataCollatorForWholeWordMask( tokenizer=_lowerCAmelCase , mlm_probability=data_args.mlm_probability ) else: lowercase__ : str = DataCollatorForLanguageModeling( tokenizer=_lowerCAmelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowercase__ : Optional[int] = Trainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_collator=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , prediction_loss_only=_lowerCAmelCase , ) # Training if training_args.do_train: lowercase__ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_lowerCAmelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : List[Any] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowercase__ : Dict = trainer.evaluate() lowercase__ : List[Any] = math.exp(eval_output['eval_loss'] ) lowercase__ : int = {'perplexity': perplexity} lowercase__ : int = os.path.join(training_args.output_dir , 'eval_results_lm.txt' ) if trainer.is_world_master(): with open(_lowerCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , _lowerCAmelCase , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) results.update(_lowerCAmelCase ) return results def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
77
0
def UpperCamelCase ( _a ) -> Any: '''simple docstring''' lowercase_ :str = [0] * len(_a ) lowercase_ :List[str] = [] lowercase_ :Dict = [1] * len(_a ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_a ) ): if indegree[i] == 0: queue.append(_a ) while queue: lowercase_ :int = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase_ :List[Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_a ) print(max(_a ) ) # Adjacency list of Graph SCREAMING_SNAKE_CASE : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
252
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True , UpperCamelCase_ = False ): lowercase_ :List[str] = scheduler lowercase_ :Optional[Any] = optimizers if isinstance(UpperCamelCase_ , (list, tuple) ) else [optimizers] lowercase_ :Tuple = split_batches lowercase_ :str = step_with_optimizer lowercase_ :int = GradientState() def UpperCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step lowercase_ :Optional[Any] = AcceleratorState().num_processes for _ in range(UpperCamelCase_ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) else: self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase ( self ): return self.scheduler.get_last_lr() def UpperCamelCase ( self ): return self.scheduler.state_dict() def UpperCamelCase ( self , UpperCamelCase_ ): self.scheduler.load_state_dict(UpperCamelCase_ ) def UpperCamelCase ( self ): return self.scheduler.get_lr() def UpperCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.scheduler.print_lr(*UpperCamelCase_ , **UpperCamelCase_ )
252
1
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class UpperCAmelCase ( lowercase_ ): def UpperCAmelCase_ ( self :Optional[Any] )-> List[str]: A__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , "num_attention_heads" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , "num_encoder_blocks" ) ) class UpperCAmelCase : def __init__( self :List[str] , lowercase_ :Tuple , lowercase_ :Any=13 , lowercase_ :Dict=64 , lowercase_ :Union[str, Any]=3 , lowercase_ :List[str]=4 , lowercase_ :Tuple=[2, 2, 2, 2] , lowercase_ :Tuple=[8, 4, 2, 1] , lowercase_ :Optional[Any]=[16, 32, 64, 1_28] , lowercase_ :Tuple=[1, 4, 8, 16] , lowercase_ :List[str]=[1, 2, 4, 8] , lowercase_ :Union[str, Any]=True , lowercase_ :Tuple=True , lowercase_ :Optional[int]="gelu" , lowercase_ :List[Any]=0.1 , lowercase_ :List[Any]=0.1 , lowercase_ :str=0.0_2 , lowercase_ :Union[str, Any]=3 , lowercase_ :Union[str, Any]=None , )-> int: A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_encoder_blocks A__ = sr_ratios A__ = depths A__ = hidden_sizes A__ = downsampling_rates A__ = num_attention_heads A__ = is_training A__ = use_labels A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = num_labels A__ = scope def UpperCAmelCase_ ( self :Union[str, Any] )-> Optional[int]: A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self :List[str] )-> List[str]: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :Dict , lowercase_ :Dict , lowercase_ :Dict )-> Any: A__ = SegformerModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A__ = model(SCREAMING_SNAKE_CASE_ ) A__ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :Union[str, Any] , lowercase_ :List[Any] , lowercase_ :Dict )-> Optional[int]: A__ = self.num_labels A__ = SegformerForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) A__ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :List[Any] , lowercase_ :Any , lowercase_ :Union[str, Any] )-> Tuple: A__ = 1 A__ = SegformerForSemanticSegmentation(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A__ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(SCREAMING_SNAKE_CASE_ ) A__ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCAmelCase_ ( self :Optional[Any] )-> Any: A__ = self.prepare_config_and_inputs() A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): __lowercase = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __lowercase = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase = True __lowercase = False __lowercase = False __lowercase = False def UpperCAmelCase_ ( self :int )-> Any: A__ = SegformerModelTester(self ) A__ = SegformerConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ ( self :Tuple )-> Dict: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self :Dict )-> Optional[int]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ ( self :str )-> Union[str, Any]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ ( self :Any )-> int: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*SCREAMING_SNAKE_CASE_ ) @unittest.skip("SegFormer does not use inputs_embeds" ) def UpperCAmelCase_ ( self :Optional[int] )-> List[Any]: pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods" ) def UpperCAmelCase_ ( self :List[str] )-> Union[str, Any]: pass def UpperCAmelCase_ ( self :Optional[int] )-> int: A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(SCREAMING_SNAKE_CASE_ ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ ( self :Tuple )-> Union[str, Any]: A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) A__ = outputs.attentions A__ = sum(self.model_tester.depths ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) A__ = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) A__ = (self.model_tester.image_size // 32) ** 2 A__ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) A__ = len(SCREAMING_SNAKE_CASE_ ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(out_len + 1 , len(SCREAMING_SNAKE_CASE_ ) ) A__ = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def UpperCAmelCase_ ( self :List[Any] )-> Optional[Any]: def check_hidden_states_output(lowercase_ :Optional[int] , lowercase_ :List[Any] , lowercase_ :str ): A__ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) A__ = outputs.hidden_states A__ = self.model_tester.num_encoder_blocks self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ ( self :Any )-> str: if not self.model_tester.is_training: return A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: if model_class in get_values(SCREAMING_SNAKE_CASE_ ): continue A__ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() A__ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) A__ = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCAmelCase_ ( self :Dict )-> Tuple: pass @slow def UpperCAmelCase_ ( self :List[str] )-> Union[str, Any]: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = SegformerModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ): A__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase_ ( self :Tuple )-> Union[str, Any]: # only resize + normalize A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=SCREAMING_SNAKE_CASE_ , align=SCREAMING_SNAKE_CASE_ , do_random_crop=SCREAMING_SNAKE_CASE_ ) A__ = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( SCREAMING_SNAKE_CASE_ ) A__ = prepare_img() A__ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) A__ = encoded_inputs.pixel_values.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): A__ = model(SCREAMING_SNAKE_CASE_ ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) A__ = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self :Union[str, Any] )-> List[str]: # only resize + normalize A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=SCREAMING_SNAKE_CASE_ , align=SCREAMING_SNAKE_CASE_ , do_random_crop=SCREAMING_SNAKE_CASE_ ) A__ = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(SCREAMING_SNAKE_CASE_ ) A__ = prepare_img() A__ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) A__ = encoded_inputs.pixel_values.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): A__ = model(SCREAMING_SNAKE_CASE_ ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) A__ = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-1 ) ) @slow def UpperCAmelCase_ ( self :Any )-> Union[str, Any]: # only resize + normalize A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=SCREAMING_SNAKE_CASE_ , align=SCREAMING_SNAKE_CASE_ , do_random_crop=SCREAMING_SNAKE_CASE_ ) A__ = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( SCREAMING_SNAKE_CASE_ ) A__ = prepare_img() A__ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) A__ = encoded_inputs.pixel_values.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): A__ = model(SCREAMING_SNAKE_CASE_ ) A__ = outputs.logits.detach().cpu() A__ = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ , target_sizes=[(5_00, 3_00)] ) A__ = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE_ ) A__ = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ ) A__ = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE_ )
237
"""simple docstring""" from __future__ import annotations def UpperCamelCase_ ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ) -> bool: """simple docstring""" if len(lowerCAmelCase__ ) == 0: return False lowerCAmelCase_ : Union[str, Any] = len(lowerCAmelCase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowerCAmelCase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ : str = input("""Enter numbers separated by comma:\n""").strip() lowercase__ : Optional[int] = [int(item.strip()) for item in user_input.split(""",""")] lowercase__ : Optional[Any] = int(input("""Enter the number to be found in the list:\n""").strip()) lowercase__ : int = """""" if binary_search(sequence, target) else """not """ print(f'{target} was {not_str}found in {sequence}')
224
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_lowerCamelCase ) class a ( _lowerCamelCase ): snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"image": Image()} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "image" snake_case_ = "labels" def A_ ( self : Any , lowercase_ : int ): if self.label_column not in features: raise ValueError(F"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F"Column {self.label_column} is not a ClassLabel." ) snake_case_ = copy.deepcopy(self ) snake_case_ = self.label_schema.copy() snake_case_ = features[self.label_column] snake_case_ = label_schema return task_template @property def A_ ( self : Tuple ): return { self.image_column: "image", self.label_column: "labels", }
366
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class a ( _lowerCamelCase , unittest.TestCase ): snake_case_ = FlaxAutoencoderKL @property def A_ ( self : List[Any] ): snake_case_ = 4 snake_case_ = 3 snake_case_ = (32, 32) snake_case_ = jax.random.PRNGKey(0 ) snake_case_ = jax.random.uniform(lowercase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def A_ ( self : Tuple ): snake_case_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } snake_case_ = self.dummy_input return init_dict, inputs_dict
72
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
23
"""simple docstring""" from ...processing_utils import ProcessorMixin class UpperCAmelCase_ ( A_ ): lowercase__ = ['''image_processor''', '''feature_extractor'''] lowercase__ = '''TvltImageProcessor''' lowercase__ = '''TvltFeatureExtractor''' def __init__( self : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Optional[Any] ) -> Dict: '''simple docstring''' super().__init__(image_processor=snake_case_ , feature_extractor=snake_case_ ) A__ = image_processor A__ = feature_extractor def __call__( self : List[Any] , snake_case_ : List[str]=None , snake_case_ : Dict=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : Dict=False , snake_case_ : Union[str, Any]=False , *snake_case_ : List[str] , **snake_case_ : List[Any] , ) -> List[str]: '''simple docstring''' if images is None and audio is None: raise ValueError("You need to specify either an `images` or `audio` input to process." ) A__ = None if images is not None: A__ = self.image_processor(snake_case_ , mask_pixel=snake_case_ , *snake_case_ , **snake_case_ ) if images_mixed is not None: A__ = self.image_processor(snake_case_ , is_mixed=snake_case_ , *snake_case_ , **snake_case_ ) if audio is not None: A__ = self.feature_extractor( snake_case_ , *snake_case_ , sampling_rate=snake_case_ , mask_audio=snake_case_ , **snake_case_ ) A__ = {} if audio is not None: output_dict.update(snake_case_ ) if images is not None: output_dict.update(snake_case_ ) if images_mixed_dict is not None: output_dict.update(snake_case_ ) return output_dict @property def __magic_name__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ = self.image_processor.model_input_names A__ = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
247
0
from __future__ import annotations import pandas as pd def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[int] , SCREAMING_SNAKE_CASE :list[int] , SCREAMING_SNAKE_CASE :int ) -> list[int]: __lowerCAmelCase : int = [0] * no_of_processes __lowerCAmelCase : List[Any] = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = burst_time[i] __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : str = 999_999_999 __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : int = False # Process until all processes are completed while complete != no_of_processes: for j in range(SCREAMING_SNAKE_CASE ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __lowerCAmelCase : Dict = remaining_time[j] __lowerCAmelCase : List[str] = j __lowerCAmelCase : List[Any] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __lowerCAmelCase : Optional[int] = remaining_time[short] if minm == 0: __lowerCAmelCase : Dict = 999_999_999 if remaining_time[short] == 0: complete += 1 __lowerCAmelCase : List[Any] = False # Find finish time of current process __lowerCAmelCase : Optional[int] = increment_time + 1 # Calculate waiting time __lowerCAmelCase : Any = finish_time - arrival_time[short] __lowerCAmelCase : Dict = finar - burst_time[short] if waiting_time[short] < 0: __lowerCAmelCase : str = 0 # Increment time increment_time += 1 return waiting_time def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[int] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[int] ) -> list[int]: __lowerCAmelCase : Any = [0] * no_of_processes for i in range(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = burst_time[i] + waiting_time[i] return turn_around_time def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[int] , SCREAMING_SNAKE_CASE :list[int] , SCREAMING_SNAKE_CASE :int ) -> None: __lowerCAmelCase : str = 0 __lowerCAmelCase : Optional[Any] = 0 for i in range(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : int = total_waiting_time + waiting_time[i] __lowerCAmelCase : Any = total_turn_around_time + turn_around_time[i] print(F'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print("""Average turn around time =""" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('Enter how many process you want to analyze') _UpperCAmelCase = int(input()) _UpperCAmelCase = [0] * no_of_processes _UpperCAmelCase = [0] * no_of_processes _UpperCAmelCase = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('Enter the arrival time and burst time for process:--' + str(i + 1)) _UpperCAmelCase , _UpperCAmelCase = map(int, input().split()) _UpperCAmelCase = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _UpperCAmelCase = burst_time _UpperCAmelCase = no_of_processes _UpperCAmelCase = waiting_time _UpperCAmelCase = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) _UpperCAmelCase = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ 'Process', 'BurstTime', 'ArrivalTime', 'WaitingTime', 'TurnAroundTime', ], ) # Printing the dataFrame pd.set_option('display.max_rows', fcfs.shape[0] + 1) print(fcfs)
232
from math import isqrt def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> list[int]: __lowerCAmelCase : Tuple = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = False return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int = 10**8 ) -> int: __lowerCAmelCase : int = calculate_prime_numbers(max_number // 2 ) __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : List[Any] = len(SCREAMING_SNAKE_CASE ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
232
1
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class snake_case__ ( unittest.TestCase ): @slow def a__ ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(lowerCamelCase ): __a = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __a = FlaxAutoModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def a__ ( self ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(lowerCamelCase ): __a = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __a = FlaxAutoModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def a__ ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: __a = AutoTokenizer.from_pretrained(lowerCamelCase ) __a = FlaxBertModel.from_pretrained(lowerCamelCase ) __a = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCamelCase ): return model(**lowerCamelCase ) eval(**lowerCamelCase ).block_until_ready() @slow def a__ ( self ): for model_name in ["roberta-base", "roberta-large"]: __a = AutoTokenizer.from_pretrained(lowerCamelCase ) __a = FlaxRobertaModel.from_pretrained(lowerCamelCase ) __a = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCamelCase ): return model(**lowerCamelCase ) eval(**lowerCamelCase ).block_until_ready() def a__ ( self ): with self.assertRaisesRegex( lowerCamelCase , "bert-base is not a local folder and is not a valid model identifier" ): __a = FlaxAutoModel.from_pretrained("bert-base" ) def a__ ( self ): with self.assertRaisesRegex( lowerCamelCase , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __a = FlaxAutoModel.from_pretrained(lowerCamelCase , revision="aaaaaa" ) def a__ ( self ): with self.assertRaisesRegex( lowerCamelCase , "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" , ): __a = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def a__ ( self ): with self.assertRaisesRegex(lowerCamelCase , "Use `from_pt=True` to load this model" ): __a = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
261
"""simple docstring""" import random def _lowerCamelCase( a , a , a ): __a = a[left_index] __a = left_index + 1 for j in range(left_index + 1 , a ): if a[j] < pivot: __a , __a = a[i], a[j] i += 1 __a , __a = a[i - 1], a[left_index] return i - 1 def _lowerCamelCase( a , a , a ): if left < right: __a = random.randint(a , right - 1 ) __a , __a = ( a[left], a[pivot], ) # switches the pivot with the left most bound __a = partition(a , a , a ) quick_sort_random( a , a , a ) # recursive quicksort to the left of the pivot point quick_sort_random( a , pivot_index + 1 , a ) # recursive quicksort to the right of the pivot point def _lowerCamelCase( ): __a = input("Enter numbers separated by a comma:\n" ).strip() __a = [int(a ) for item in user_input.split("," )] quick_sort_random(a , 0 , len(a ) ) print(a ) if __name__ == "__main__": main()
261
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : Optional[int] = "▁" A_ : Dict = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} A_ : List[str] = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } A_ : Tuple = {"vinai/bartpho-syllable": 10_24} class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = VOCAB_FILES_NAMES lowerCamelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Any = ['input_ids', 'attention_mask'] def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_="<s>", lowerCamelCase_="</s>", lowerCamelCase_="</s>", lowerCamelCase_="<s>", lowerCamelCase_="<unk>", lowerCamelCase_="<pad>", lowerCamelCase_="<mask>", lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : List[Any] = AddedToken(lowerCamelCase_, lstrip=lowerCamelCase_, rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_, lowerCamelCase_ ) else mask_token lowerCamelCase__ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase_, eos_token=lowerCamelCase_, unk_token=lowerCamelCase_, sep_token=lowerCamelCase_, cls_token=lowerCamelCase_, pad_token=lowerCamelCase_, mask_token=lowerCamelCase_, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase_, ) lowerCamelCase__ : int = vocab_file lowerCamelCase__ : List[Any] = monolingual_vocab_file lowerCamelCase__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowerCamelCase__ : Optional[int] = {} lowerCamelCase__ : List[Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase_ ) not in self.fairseq_tokens_to_ids: lowerCamelCase__ : List[Any] = cnt cnt += 1 with open(lowerCamelCase_, 'r', encoding='utf-8' ) as f: for line in f.readlines(): lowerCamelCase__ : Tuple = line.strip().split()[0] lowerCamelCase__ : Any = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase_ ) not in self.fairseq_tokens_to_ids: lowerCamelCase__ : Optional[Any] = len(self.fairseq_tokens_to_ids ) lowerCamelCase__ : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.__dict__.copy() lowerCamelCase__ : Union[str, Any] = None lowerCamelCase__ : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): lowerCamelCase__ : Optional[int] = {} lowerCamelCase__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] lowerCamelCase__ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_, token_ids_a=lowerCamelCase_, already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [self.sep_token_id] lowerCamelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a__ (self ): '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase_, out_type=lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.fairseq_ids_to_tokens[index] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = ''.join(lowerCamelCase_ ).replace(lowerCamelCase_, ' ' ).strip() return out_string def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : List[str] = os.path.join( lowerCamelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : str = os.path.join( lowerCamelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'], ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_, 'wb' ) as fi: lowerCamelCase__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file, lowerCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase_, 'w', encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(lowerCamelCase_ )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
364
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCAmelCase : List[str] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCAmelCase : Any = ( subprocess.check_output(f"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode("utf-8").split() ) UpperCAmelCase : Dict = "|".join(sys.argv[1:]) UpperCAmelCase : Optional[int] = re.compile(rf"""^({joined_dirs}).*?\.py$""") UpperCAmelCase : List[str] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
252
def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str]=0 ): '''simple docstring''' return sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : x[column] ) def __lowerCamelCase ( lowerCamelCase__ : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : List[str]=float("""inf""" ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , lowerCamelCase__ ): lowerCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCamelCase = current_dis return min_dis def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any]=float("""inf""" ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , lowerCamelCase__ ): for j in range(max(0 , i - 6 ) , lowerCamelCase__ ): lowerCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCamelCase = current_dis return min_dis def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str] ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(lowerCamelCase__ , lowerCamelCase__ ) # recursion lowerCamelCase = points_counts // 2 lowerCamelCase = closest_pair_of_points_sqr( lowerCamelCase__ , points_sorted_on_y[:mid] , lowerCamelCase__ ) lowerCamelCase = closest_pair_of_points_sqr( lowerCamelCase__ , points_sorted_on_y[mid:] , points_counts - mid ) lowerCamelCase = min(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowerCamelCase__ ) lowerCamelCase = dis_between_closest_in_strip( lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) return min(lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = column_based_sort(lowerCamelCase__ , column=0 ) lowerCamelCase = column_based_sort(lowerCamelCase__ , column=1 ) return ( closest_pair_of_points_sqr( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase : Dict = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
252
1
"""simple docstring""" from __future__ import annotations def UpperCamelCase_ ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[list[str]] , lowerCAmelCase__ : int , ) -> None: """simple docstring""" lowerCAmelCase_ : Any = len(lowerCAmelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowerCAmelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCAmelCase__ , lowerCAmelCase__ , ) def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> None: """simple docstring""" lowerCAmelCase_ : list[list[str]] = [] depth_first_search([] , [] , [] , lowerCAmelCase__ , lowerCAmelCase__ ) # Print all the boards for board in boards: for column in board: print(lowerCAmelCase__ ) print('' ) print(len(lowerCAmelCase__ ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
289
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : List[str] = { """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """open-llama""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple=1_0_0_0_0_0 , SCREAMING_SNAKE_CASE_ : Optional[int]=4_0_9_6 , SCREAMING_SNAKE_CASE_ : List[Any]=1_1_0_0_8 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE_ : str="silu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=2_0_4_8 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-6 , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : Dict=1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Optional[int] , ): lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = hidden_size lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Optional[int] = num_attention_heads lowerCAmelCase_ : List[Any] = hidden_act lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : List[str] = rms_norm_eps lowerCAmelCase_ : List[Any] = use_cache lowerCAmelCase_ : Optional[int] = kwargs.pop( 'use_memorry_efficient_attention' , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : List[str] = attention_dropout_prob lowerCAmelCase_ : Tuple = use_stable_embedding lowerCAmelCase_ : Optional[Any] = shared_input_output_embedding lowerCAmelCase_ : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , tie_word_embeddings=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"got {self.rope_scaling}" ) lowerCAmelCase_ : int = self.rope_scaling.get('type' , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = self.rope_scaling.get('factor' , SCREAMING_SNAKE_CASE_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
289
1
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def UpperCAmelCase_ ( *__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Optional[Union[Dict, Any]] = None ,__lowerCamelCase : Optional[int]=True ,__lowerCamelCase : str=2 ): from .. import __version__ lowercase_ :List[Any] = take_from lowercase_ :Union[str, Any] = () if not isinstance(args[0] ,A_ ): lowercase_ :Optional[int] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(A_ ).base_version ) >= version.parse(A_ ): raise ValueError( F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' F' version {__version__} is >= {version_name}' ) lowercase_ :str = None if isinstance(A_ ,A_ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(A_ ),) lowercase_ :Dict = F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(A_ ,A_ ): values += (getattr(A_ ,A_ ),) lowercase_ :Tuple = F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: lowercase_ :Optional[int] = F'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: lowercase_ :Union[str, Any] = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message ,A_ ,stacklevel=A_ ) if isinstance(A_ ,A_ ) and len(A_ ) > 0: lowercase_ :int = inspect.getouterframes(inspect.currentframe() )[1] lowercase_ :Dict = call_frame.filename lowercase_ :Union[str, Any] = call_frame.lineno lowercase_ :Any = call_frame.function lowercase_ :List[str] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(A_ ) == 0: return elif len(A_ ) == 1: return values[0] return values
223
"""simple docstring""" def snake_case_ ( A_ : list[list] ): '''simple docstring''' _lowerCamelCase : Optional[int] = current_set.copy() for row_index, row in enumerate(A_ ): _lowerCamelCase : Tuple = row[0] for column_index, column in enumerate(A_ ): if magnitude == 0: _lowerCamelCase : List[Any] = column continue _lowerCamelCase : List[Any] = column / magnitude # Subtract to cancel term _lowerCamelCase : Union[str, Any] = current_set[0] _lowerCamelCase : Dict = [first_row] _lowerCamelCase : str = current_set[1::] for row in current_set: _lowerCamelCase : Union[str, Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(A_ ) continue for column_index in range(len(A_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(A_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _lowerCamelCase : Any = final_set[0] _lowerCamelCase : Any = [] _lowerCamelCase : Optional[int] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _lowerCamelCase : Dict = simplify(A_ ) for i in range(len(A_ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, A_ ) _lowerCamelCase : Tuple = resultant return final_set def snake_case_ ( A_ : list[list] ): '''simple docstring''' if len(A_ ) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) _lowerCamelCase : Dict = len(A_ ) + 1 if any(len(A_ ) != _length for item in equations ): raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) for row in equations: if any(not isinstance(A_, (int, float) ) for column in row ): raise ValueError('''solve_simultaneous() requires lists of integers''' ) if len(A_ ) == 1: return [equations[0][-1] / equations[0][0]] _lowerCamelCase : Optional[Any] = equations.copy() if any(0 in row for row in data_set ): _lowerCamelCase : str = data_set.copy() _lowerCamelCase : List[Any] = [] for row_index, row in enumerate(A_ ): if 0 not in row: _lowerCamelCase : Union[str, Any] = data_set.pop(A_ ) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''' ) data_set.insert(0, A_ ) _lowerCamelCase : List[str] = data_set.copy() _lowerCamelCase : int = simplify(A_ ) _lowerCamelCase : int = simplified[::-1] _lowerCamelCase : list = [] for row in simplified: _lowerCamelCase : Tuple = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _lowerCamelCase : Optional[Any] = row.copy()[: len(A_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(A_ ) == 0: solutions.append(0 ) continue _lowerCamelCase : Tuple = temp_row[1::] _lowerCamelCase : Tuple = temp_row[::-1] for column_index, column in enumerate(A_ ): current_solution -= column * solutions[column_index] solutions.append(A_ ) _lowerCamelCase : Optional[int] = [] for item in solutions: final.append(float(round(A_, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
72
0
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , ): __lowerCAmelCase : Union[str, Any] = cipher_alphabet or [chr(_UpperCamelCase ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) __lowerCAmelCase : Optional[int] = { 'a': 0.08497, 'b': 0.01492, 'c': 0.02202, 'd': 0.04253, 'e': 0.11162, 'f': 0.02228, 'g': 0.02015, 'h': 0.06094, 'i': 0.07546, 'j': 0.00153, 'k': 0.01292, 'l': 0.04025, 'm': 0.02406, 'n': 0.06749, 'o': 0.07507, 'p': 0.01929, 'q': 0.00095, 'r': 0.07587, 's': 0.06327, 't': 0.09356, 'u': 0.02758, 'v': 0.00978, 'w': 0.02560, 'x': 0.00150, 'y': 0.01994, 'z': 0.00077, } else: # Custom frequencies dictionary __lowerCAmelCase : Union[str, Any] = frequencies_dict if not case_sensitive: __lowerCAmelCase : int = ciphertext.lower() # Chi squared statistic values __lowerCAmelCase : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(_UpperCamelCase ) ): __lowerCAmelCase : str = '' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet __lowerCAmelCase : int = (alphabet_letters.index(letter.lower() ) - shift) % len( _UpperCamelCase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter __lowerCAmelCase : Tuple = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: __lowerCAmelCase : List[str] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message __lowerCAmelCase : str = decrypted_with_shift.lower().count(_UpperCamelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowerCAmelCase : Optional[Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowerCAmelCase : List[str] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message __lowerCAmelCase : Union[str, Any] = decrypted_with_shift.count(_UpperCamelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowerCAmelCase : List[str] = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowerCAmelCase : Optional[int] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary __lowerCAmelCase : List[str] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_UpperCamelCase ) -> tuple[float, str]: return chi_squared_statistic_values[key] __lowerCAmelCase : int = min( _UpperCamelCase , key=_UpperCamelCase , ) # Get all the data from the most likely cipher (key, decoded message) ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) : int = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
182
"""simple docstring""" # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : str = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowerCAmelCase : Union[str, Any] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } __lowerCAmelCase : List[str] = F"{src_lang}-{tgt_lang}" __lowerCAmelCase : Tuple = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) __lowerCAmelCase : Any = os.path.join(_UpperCamelCase , 'README.md' ) print(F"Generating {path}" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model_name.split("""-""") lowerCamelCase__ = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
182
1
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowercase : int = logging.get_logger(__name__) lowercase : List[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowercase : Dict = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any]) -> int: '''simple docstring''' for attribute in key.split("."): __UpperCamelCase : Dict = getattr(_lowerCamelCase , _lowerCamelCase) if weight_type is not None: __UpperCamelCase : Union[str, Any] = getattr(_lowerCamelCase , _lowerCamelCase).shape else: __UpperCamelCase : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": __UpperCamelCase : Any = value elif weight_type == "weight_g": __UpperCamelCase : List[str] = value elif weight_type == "weight_v": __UpperCamelCase : Any = value elif weight_type == "bias": __UpperCamelCase : int = value else: __UpperCamelCase : Tuple = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : str) -> str: '''simple docstring''' __UpperCamelCase : Optional[Any] = [] __UpperCamelCase : Tuple = fairseq_model.state_dict() __UpperCamelCase : Union[str, Any] = hf_model.feature_extractor __UpperCamelCase : Optional[int] = hf_model.adapter for name, value in fairseq_dict.items(): __UpperCamelCase : List[Any] = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) __UpperCamelCase : Optional[Any] = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."]): load_adapter(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) __UpperCamelCase : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: __UpperCamelCase : List[Any] = True if "*" in mapped_key: __UpperCamelCase : List[Any] = name.split(_lowerCamelCase)[0].split(".")[-2] __UpperCamelCase : Any = mapped_key.replace("*" , _lowerCamelCase) if "weight_g" in name: __UpperCamelCase : Union[str, Any] = "weight_g" elif "weight_v" in name: __UpperCamelCase : Optional[Any] = "weight_v" elif "bias" in name: __UpperCamelCase : Tuple = "bias" elif "weight" in name: __UpperCamelCase : Optional[int] = "weight" else: __UpperCamelCase : Union[str, Any] = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) continue if not is_used: unused_weights.append(_lowerCamelCase) logger.warning(F'Unused weights: {unused_weights}') def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict) -> List[Any]: '''simple docstring''' __UpperCamelCase : str = full_name.split("conv_layers.")[-1] __UpperCamelCase : Any = name.split(".") __UpperCamelCase : List[Any] = int(items[0]) __UpperCamelCase : Union[str, Any] = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __UpperCamelCase : Dict = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __UpperCamelCase : List[str] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __UpperCamelCase : Any = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __UpperCamelCase : Any = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(_lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int]) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Optional[int] = full_name.split("adaptor.")[-1] __UpperCamelCase : Tuple = name.split(".") if items[1].isdigit(): __UpperCamelCase : str = int(items[1]) else: __UpperCamelCase : Tuple = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' __UpperCamelCase : int = value logger.info(F'Adapter proj layer norm bias was initialized from {full_name}.') if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' __UpperCamelCase : Union[str, Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' __UpperCamelCase : Any = value logger.info(F'Adapter proj layer bias was initialized from {full_name}.') if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' __UpperCamelCase : Optional[int] = value logger.info(F'Adapter proj layer weight was initialized from {full_name}.') elif isinstance(_lowerCamelCase , _lowerCamelCase): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' __UpperCamelCase : Optional[Any] = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.') elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' __UpperCamelCase : Any = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.') else: unused_weights.append(_lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> Any: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : Any = emb.weight.shape __UpperCamelCase : Union[str, Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase) __UpperCamelCase : int = emb.weight.data return lin_layer @torch.no_grad() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Tuple , _lowerCamelCase : Any , _lowerCamelCase : Tuple , ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Dict = WavaVecaConfig.from_pretrained( _lowerCamelCase , add_adapter=_lowerCamelCase , adapter_stride=_lowerCamelCase , adapter_kernel_size=_lowerCamelCase , use_auth_token=_lowerCamelCase , output_hidden_size=_lowerCamelCase , ) __UpperCamelCase : Optional[Any] = MBartConfig.from_pretrained(_lowerCamelCase) # load model __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/")[:-1]), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) __UpperCamelCase : List[str] = model[0].eval() # load feature extractor __UpperCamelCase : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase , use_auth_token=_lowerCamelCase) # set weights for wav2vec2 encoder __UpperCamelCase : Optional[Any] = WavaVecaModel(_lowerCamelCase) recursively_load_weights_wavaveca(model.encoder , _lowerCamelCase) # load decoder weights __UpperCamelCase : int = MBartForCausalLM(_lowerCamelCase) __UpperCamelCase , __UpperCamelCase : str = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCamelCase) logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}') logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}') __UpperCamelCase : Optional[int] = SpeechEncoderDecoderModel(encoder=_lowerCamelCase , decoder=_lowerCamelCase) __UpperCamelCase : Dict = False __UpperCamelCase : Any = MBartaaTokenizer(_lowerCamelCase) tokenizer.save_pretrained(_lowerCamelCase) __UpperCamelCase : Optional[int] = hf_wavavec.config.to_dict() __UpperCamelCase : str = tokenizer.pad_token_id __UpperCamelCase : Dict = tokenizer.bos_token_id __UpperCamelCase : int = tokenizer.eos_token_id __UpperCamelCase : int = "mbart50" __UpperCamelCase : int = "wav2vec2" __UpperCamelCase : Tuple = tokenizer.eos_token_id __UpperCamelCase : Any = 250_004 __UpperCamelCase : Tuple = tokenizer.eos_token_id __UpperCamelCase : Tuple = SpeechEncoderDecoderConfig.from_dict(_lowerCamelCase) hf_wavavec.save_pretrained(_lowerCamelCase) feature_extractor.save_pretrained(_lowerCamelCase) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1024, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=250004, type=int, help='`decoder_start_token_id` of model config') lowercase : Union[str, Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
232
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase : Optional[int] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase : Optional[Any] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} lowercase : str = 'zero2' lowercase : Optional[int] = 'zero3' lowercase : Optional[Any] = [ZEROa, ZEROa] def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[str]) -> int: '''simple docstring''' __UpperCamelCase : Union[str, Any] = parameterized.to_safe_name("_".join(str(_lowerCamelCase) for x in param.args)) return F'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test lowercase : List[str] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCamelCase__ ( __lowercase): '''simple docstring''' @parameterized.expand(a , name_func=a ) def _lowerCamelCase ( self :Dict , a :Optional[Any] , a :str ) -> Optional[int]: self.run_and_check( stage=a , model=a , distributed=a , fpaa=a , ) @require_torch_multi_gpu @parameterized.expand(a , name_func=a ) def _lowerCamelCase ( self :List[str] , a :str , a :str ) -> List[Any]: self.run_and_check( stage=a , model=a , distributed=a , fpaa=a , ) @parameterized.expand(a , name_func=a ) def _lowerCamelCase ( self :List[Any] , a :List[str] , a :int ) -> Optional[int]: self.run_and_check( stage=a , model=a , distributed=a , fpaa=a , ) @require_torch_multi_gpu @parameterized.expand(a , name_func=a ) def _lowerCamelCase ( self :List[str] , a :List[Any] , a :Dict ) -> int: self.run_and_check( stage=a , model=a , distributed=a , fpaa=a , ) def _lowerCamelCase ( self :Any , a :List[str] ) -> Optional[Any]: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def _lowerCamelCase ( self :Optional[Any] , a :str , a :str , a :int = 1_0 , a :bool = True , a :bool = True , a :bool = True , ) -> Any: __UpperCamelCase : Optional[Any] = models[model] __UpperCamelCase : List[Any] = self.run_trainer( stage=a , model_name=a , eval_steps=a , num_train_epochs=1 , distributed=a , fpaa=a , ) self.do_checks(a ) return output_dir def _lowerCamelCase ( self :List[str] , a :str , a :str , a :int = 1_0 , a :int = 1 , a :bool = True , a :bool = True , ) -> Dict: __UpperCamelCase : int = self.get_auto_remove_tmp_dir("./xxx" , after=a ) __UpperCamelCase : int = f'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(a )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __UpperCamelCase : Dict = f'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() __UpperCamelCase : int = [f'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] __UpperCamelCase : Optional[Any] = self.get_launcher(a ) __UpperCamelCase : Optional[int] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(a , env=self.get_env() ) return output_dir def _lowerCamelCase ( self :Any , a :List[Any]=False ) -> List[Any]: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) __UpperCamelCase : List[Any] = min(2 , get_gpu_count() ) if distributed else 1 return f'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
232
1
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : List[str] = r"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n" class __magic_name__ ( lowerCAmelCase_ ): @add_start_docstrings(__snake_case ) def __call__( self , __snake_case , __snake_case , **__snake_case ) -> bool: '''simple docstring''' raise NotImplementedError('StoppingCriteria needs to be subclassed' ) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case = None ) -> int: '''simple docstring''' __a =max_length __a =max_position_embeddings @add_start_docstrings(__snake_case ) def __call__( self , __snake_case , __snake_case , **__snake_case ) -> bool: '''simple docstring''' __a =input_ids.shape[-1] __a =cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( 'This is a friendly reminder - the current text generation call will exceed the model\'s predefined ' f'maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ' 'exceptions, performance degradation, or nothing at all.' ) return is_done class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' warnings.warn( 'The class `MaxNewTokensCriteria` is deprecated. ' f'Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ' 'with `max_length = start_length + max_new_tokens` instead.' , __snake_case , ) __a =start_length __a =max_new_tokens __a =start_length + max_new_tokens @add_start_docstrings(__snake_case ) def __call__( self , __snake_case , __snake_case , **__snake_case ) -> bool: '''simple docstring''' return input_ids.shape[-1] >= self.max_length class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case = None ) -> int: '''simple docstring''' __a =max_time __a =time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(__snake_case ) def __call__( self , __snake_case , __snake_case , **__snake_case ) -> bool: '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class __magic_name__ ( lowerCAmelCase_ ): @add_start_docstrings(__snake_case ) def __call__( self , __snake_case , __snake_case , **__snake_case ) -> bool: '''simple docstring''' return any(criteria(__snake_case , __snake_case ) for criteria in self ) @property def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' for stopping_criterium in self: if isinstance(__snake_case , __snake_case ): return stopping_criterium.max_length elif isinstance(__snake_case , __snake_case ): return stopping_criterium.max_length return None def UpperCamelCase_( _snake_case : StoppingCriteriaList , _snake_case : int ): """simple docstring""" __a =stopping_criteria.max_length __a =deepcopy(_snake_case ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('You set different `max_length` for stopping criteria and `max_length` parameter' , _snake_case ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=_snake_case ) ) return new_stopping_criteria
359
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def __a ( _SCREAMING_SNAKE_CASE ) ->list[list[float]]: a__: Dict = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_SCREAMING_SNAKE_CASE ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix a__: str = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements a__: Dict = [[0.0, 0.0], [0.0, 0.0]] a__ , a__: Tuple = matrix[1][1], matrix[0][0] a__ , a__: Any = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_SCREAMING_SNAKE_CASE ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_SCREAMING_SNAKE_CASE ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule a__: Tuple = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix a__: List[str] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] a__: Tuple = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) a__: List[str] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) a__: Optional[Any] = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) a__: Tuple = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) a__: Optional[int] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) a__: Optional[Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) a__: Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) a__: Optional[Any] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) a__: Any = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) a__: List[str] = array(_SCREAMING_SNAKE_CASE ) for i in range(3 ): for j in range(3 ): a__: Tuple = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix a__: Any = array(_SCREAMING_SNAKE_CASE ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_SCREAMING_SNAKE_CASE ) # Calculate the inverse of the matrix return [[float(d(_SCREAMING_SNAKE_CASE ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
290
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging A_ = logging.get_logger(__name__) if is_vision_available(): import PIL class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = ['pixel_values'] def __init__( self : str , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = PILImageResampling.BICUBIC , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : bool = True , snake_case : Union[int, float] = 1 / 255 , snake_case : bool = True , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : bool = True , **snake_case : List[Any] , ): '''simple docstring''' super().__init__(**snake_case ) A__ : Dict = size if size is not None else {"""shortest_edge""": 224} A__ : Any = get_size_dict(snake_case , default_to_square=snake_case ) A__ : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} A__ : List[str] = get_size_dict(snake_case , default_to_square=snake_case , param_name="""crop_size""" ) A__ : int = do_resize A__ : Dict = size A__ : Tuple = resample A__ : Dict = do_center_crop A__ : Optional[Any] = crop_size A__ : Any = do_rescale A__ : Dict = rescale_factor A__ : Any = do_normalize A__ : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A__ : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD A__ : Union[str, Any] = do_convert_rgb def _UpperCamelCase ( self : Union[str, Any] , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : PILImageResampling = PILImageResampling.BICUBIC , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Optional[int] , ): '''simple docstring''' A__ : Dict = get_size_dict(snake_case , default_to_square=snake_case ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A__ : int = get_resize_output_image_size(snake_case , size=size["""shortest_edge"""] , default_to_square=snake_case ) return resize(snake_case , size=snake_case , resample=snake_case , data_format=snake_case , **snake_case ) def _UpperCamelCase ( self : Dict , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Dict , ): '''simple docstring''' A__ : List[Any] = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(snake_case , size=(size["""height"""], size["""width"""]) , data_format=snake_case , **snake_case ) def _UpperCamelCase ( self : Tuple , snake_case : np.ndarray , snake_case : Union[int, float] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Tuple , ): '''simple docstring''' return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case ) def _UpperCamelCase ( self : Optional[Any] , snake_case : np.ndarray , snake_case : Union[float, List[float]] , snake_case : Union[float, List[float]] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : List[str] , ): '''simple docstring''' return normalize(snake_case , mean=snake_case , std=snake_case , data_format=snake_case , **snake_case ) def _UpperCamelCase ( self : int , snake_case : ImageInput , snake_case : bool = None , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = None , snake_case : bool = None , snake_case : int = None , snake_case : bool = None , snake_case : float = None , snake_case : bool = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : bool = None , snake_case : Optional[Union[str, TensorType]] = None , snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , **snake_case : Optional[int] , ): '''simple docstring''' A__ : str = do_resize if do_resize is not None else self.do_resize A__ : Tuple = size if size is not None else self.size A__ : Tuple = get_size_dict(snake_case , param_name="""size""" , default_to_square=snake_case ) A__ : Tuple = resample if resample is not None else self.resample A__ : str = do_center_crop if do_center_crop is not None else self.do_center_crop A__ : List[Any] = crop_size if crop_size is not None else self.crop_size A__ : Union[str, Any] = get_size_dict(snake_case , param_name="""crop_size""" , default_to_square=snake_case ) A__ : int = do_rescale if do_rescale is not None else self.do_rescale A__ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor A__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize A__ : List[Any] = image_mean if image_mean is not None else self.image_mean A__ : Optional[int] = image_std if image_std is not None else self.image_std A__ : Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A__ : int = make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: A__ : Any = [convert_to_rgb(snake_case ) for image in images] # All transformations expect numpy arrays. A__ : Union[str, Any] = [to_numpy_array(snake_case ) for image in images] if do_resize: A__ : Optional[int] = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images] if do_center_crop: A__ : List[Any] = [self.center_crop(image=snake_case , size=snake_case ) for image in images] if do_rescale: A__ : int = [self.rescale(image=snake_case , scale=snake_case ) for image in images] if do_normalize: A__ : int = [self.normalize(image=snake_case , mean=snake_case , std=snake_case ) for image in images] A__ : List[str] = [to_channel_dimension_format(snake_case , snake_case ) for image in images] A__ : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=snake_case , tensor_type=snake_case )
359
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[Any]=13 , snake_case : Union[str, Any]=7 , snake_case : Optional[Any]=True , snake_case : str=True , snake_case : Dict=False , snake_case : Union[str, Any]=True , snake_case : Optional[Any]=99 , snake_case : str=32 , snake_case : Tuple=5 , snake_case : List[str]=4 , snake_case : Optional[int]=37 , snake_case : str="gelu" , snake_case : Tuple=0.1 , snake_case : Optional[int]=0.1 , snake_case : int=512 , snake_case : List[str]=16 , snake_case : str=2 , snake_case : Optional[int]=0.02 , snake_case : str=3 , snake_case : Dict=4 , snake_case : Optional[Any]=None , ): '''simple docstring''' A__ : int = parent A__ : Union[str, Any] = batch_size A__ : Optional[int] = seq_length A__ : List[Any] = is_training A__ : List[str] = use_input_mask A__ : Optional[Any] = use_token_type_ids A__ : List[Any] = use_labels A__ : Union[str, Any] = vocab_size A__ : List[Any] = hidden_size A__ : Any = num_hidden_layers A__ : Any = num_attention_heads A__ : Optional[int] = intermediate_size A__ : Any = hidden_act A__ : Tuple = hidden_dropout_prob A__ : Dict = attention_probs_dropout_prob A__ : Optional[int] = max_position_embeddings A__ : Tuple = type_vocab_size A__ : Union[str, Any] = type_sequence_label_size A__ : List[str] = initializer_range A__ : Any = num_labels A__ : Any = num_choices A__ : int = scope def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Tuple = None if self.use_input_mask: A__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Union[str, Any] = None if self.use_token_type_ids: A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : int = None A__ : int = None A__ : List[str] = None if self.use_labels: A__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : Tuple ): '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] ): '''simple docstring''' A__ : Optional[Any] = BioGptModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : List[Any] = model(snake_case , attention_mask=snake_case ) A__ : Dict = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Optional[int] , snake_case : List[str] , snake_case : str , snake_case : Optional[Any] , snake_case : List[str] , snake_case : List[Any] , snake_case : Tuple , snake_case : Optional[Any] , ): '''simple docstring''' A__ : List[str] = BioGptForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Any , snake_case : str , snake_case : Tuple , snake_case : int , snake_case : Optional[Any] , snake_case : Any , *snake_case : Dict ): '''simple docstring''' A__ : Union[str, Any] = BioGptModel(config=snake_case ) model.to(snake_case ) model.eval() # create attention mask A__ : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case ) A__ : Any = self.seq_length // 2 A__ : str = 0 # first forward pass A__ , A__ : List[Any] = model(snake_case , attention_mask=snake_case ).to_tuple() # create hypothetical next token and extent to next_input_ids A__ : int = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids A__ : List[str] = ids_tensor((1,) , snake_case ).item() + 1 A__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) A__ : int = random_other_next_tokens # append to next input_ids and attn_mask A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : List[Any] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case )] , dim=1 , ) # get two different outputs A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""] A__ : Optional[int] = model(snake_case , past_key_values=snake_case , attention_mask=snake_case )["""last_hidden_state"""] # select random slice A__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() A__ : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : str , snake_case : int , snake_case : Optional[Any] , *snake_case : str ): '''simple docstring''' A__ : Dict = BioGptModel(config=snake_case ).to(snake_case ).eval() A__ : Tuple = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case ) # first forward pass A__ : Dict = model(snake_case , attention_mask=snake_case , use_cache=snake_case ) A__ , A__ : List[Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids A__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : int = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : Optional[int] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) A__ : Any = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""] A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[ """last_hidden_state""" ] # select random slice A__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : Any = output_from_no_past[:, -3:, random_slice_idx].detach() A__ : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : Tuple , *snake_case : Union[str, Any] , snake_case : Union[str, Any]=False ): '''simple docstring''' A__ : Tuple = BioGptForCausalLM(snake_case ) model.to(snake_case ) if gradient_checkpointing: model.gradient_checkpointing_enable() A__ : Optional[Any] = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _UpperCamelCase ( self : int , snake_case : Optional[Any] , *snake_case : Optional[int] ): '''simple docstring''' A__ : int = BioGptModel(snake_case ) A__ : Union[str, Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _UpperCamelCase ( self : Any , snake_case : Dict , snake_case : Tuple , snake_case : int , snake_case : Union[str, Any] , snake_case : Dict , *snake_case : Any ): '''simple docstring''' A__ : Union[str, Any] = self.num_labels A__ : int = BioGptForTokenClassification(snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : str = config_and_inputs A__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) snake_case_ = (BioGptForCausalLM,) if is_torch_available() else () snake_case_ = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : List[str] = BioGptModelTester(self ) A__ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _UpperCamelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ : str = type self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*snake_case , gradient_checkpointing=snake_case ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case ) @slow def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Tuple = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case ) A__ : Optional[int] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A__ : Any = """left""" # Define PAD Token = EOS Token = 50256 A__ : Optional[int] = tokenizer.eos_token A__ : Dict = model.config.eos_token_id # use different length sentences to test batching A__ : Union[str, Any] = [ """Hello, my dog is a little""", """Today, I""", ] A__ : List[str] = tokenizer(snake_case , return_tensors="""pt""" , padding=snake_case ) A__ : str = inputs["""input_ids"""].to(snake_case ) A__ : Dict = model.generate( input_ids=snake_case , attention_mask=inputs["""attention_mask"""].to(snake_case ) , ) A__ : Optional[int] = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(snake_case ) A__ : Any = model.generate(input_ids=snake_case ) A__ : List[str] = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() A__ : str = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(snake_case ) A__ : Dict = model.generate(input_ids=snake_case , max_length=model.config.max_length - num_paddings ) A__ : Optional[Any] = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) A__ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case ) A__ : str = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case ) A__ : Optional[int] = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(snake_case , snake_case ) self.assertListEqual(snake_case , [non_padded_sentence, padded_sentence] ) @slow def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Optional[Any] = BioGptModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() A__ : Optional[int] = 3 A__ : List[Any] = input_dict["""input_ids"""] A__ : Dict = input_ids.ne(1 ).to(snake_case ) A__ : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A__ : Union[str, Any] = BioGptForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : int = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common() A__ : Any = 3 A__ : List[Any] = """multi_label_classification""" A__ : Dict = input_dict["""input_ids"""] A__ : Tuple = input_ids.ne(1 ).to(snake_case ) A__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A__ : Tuple = BioGptForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Optional[Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) A__ : str = torch.tensor([[2, 4805, 9, 656, 21]] ) A__ : Dict = model(snake_case )[0] A__ : Tuple = 4_2384 A__ : str = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : str = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : Tuple = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A__ : Any = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case ) torch.manual_seed(0 ) A__ : Tuple = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(snake_case ) A__ : Optional[int] = model.generate( **snake_case , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=snake_case , ) A__ : Optional[int] = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case ) A__ : List[str] = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(snake_case , snake_case )
296
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ,lowercase ,lowercase = 0 ,lowercase = 0 ): """simple docstring""" _UpperCAmelCase = right or len(lowercase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowercase ,lowercase ,left + 1 ,right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
289
"""simple docstring""" import math class a : def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : list[list[float]] , __lowerCAmelCase : list[int] ): _UpperCAmelCase = 0.0 _UpperCAmelCase = 0.0 for i in range(len(__lowerCAmelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : list[list[int | float]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : float ): for i in range(len(__lowerCAmelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def __UpperCAmelCase ( ): """simple docstring""" # Training Examples ( m, n ) _UpperCAmelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCAmelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCAmelCase = SelfOrganizingMap() _UpperCAmelCase = 3 _UpperCAmelCase = 0.5 for _ in range(lowercase ): for j in range(len(lowercase ) ): # training sample _UpperCAmelCase = training_samples[j] # Compute the winning vector _UpperCAmelCase = self_organizing_map.get_winner(lowercase ,lowercase ) # Update the winning vector _UpperCAmelCase = self_organizing_map.update(lowercase ,lowercase ,lowercase ,lowercase ) # classify test sample _UpperCAmelCase = [0, 0, 0, 1] _UpperCAmelCase = self_organizing_map.get_winner(lowercase ,lowercase ) # results print(f'''Clusters that the test sample belongs to : {winner}''' ) print(f'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
289
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCamelCase = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
370
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Dict: # initialize config if "resnet-50" in model_name: UpperCAmelCase_ = ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: UpperCAmelCase_ = ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) UpperCAmelCase_ = DetrConfig(use_timm_backbone=__UpperCamelCase , backbone_config=__UpperCamelCase ) # set label attributes UpperCAmelCase_ = '''panoptic''' in model_name if is_panoptic: UpperCAmelCase_ = 250 else: UpperCAmelCase_ = 91 UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''coco-detection-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Union[str, Any]: # here we list all keys to be renamed (original name on the left, our name on the right) UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : List[Any]=False ) -> Dict: UpperCAmelCase_ = '''''' if is_panoptic: UpperCAmelCase_ = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ = in_proj_weight_cross_attn[:256, :] UpperCAmelCase_ = in_proj_bias_cross_attn[:256] UpperCAmelCase_ = in_proj_weight_cross_attn[256:512, :] UpperCAmelCase_ = in_proj_bias_cross_attn[256:512] UpperCAmelCase_ = in_proj_weight_cross_attn[-256:, :] UpperCAmelCase_ = in_proj_bias_cross_attn[-256:] def SCREAMING_SNAKE_CASE ( ) -> int: UpperCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Any=None , __UpperCamelCase : Optional[Any]=False ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ = get_detr_config(__UpperCamelCase ) # load original model from torch hub UpperCAmelCase_ = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(f'Converting model {model_name}...' ) UpperCAmelCase_ = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=__UpperCamelCase ).eval() UpperCAmelCase_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(__UpperCamelCase ): if is_panoptic: UpperCAmelCase_ = '''detr.''' + src rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__UpperCamelCase , is_panoptic=__UpperCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ = DetrForSegmentation(__UpperCamelCase ) if is_panoptic else DetrForObjectDetection(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # verify our conversion on an image UpperCAmelCase_ = '''coco_panoptic''' if is_panoptic else '''coco_detection''' UpperCAmelCase_ = DetrImageProcessor(format=__UpperCamelCase ) UpperCAmelCase_ = processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase_ = encoding['''pixel_values'''] UpperCAmelCase_ = detr(__UpperCamelCase ) UpperCAmelCase_ = model(__UpperCamelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(f'nielsr/{model_name}' ) processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') _lowerCamelCase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
177
0
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = {'vocab_file': 'sentencepiece.model'} __UpperCamelCase : Optional[Any] = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } __UpperCamelCase : Optional[int] = { 'google/rembert': 256, } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Union[str, Any]="[CLS]" , UpperCamelCase__ : Optional[int]="[SEP]" , UpperCamelCase__ : Union[str, Any]="[UNK]" , UpperCamelCase__ : Tuple="[SEP]" , UpperCamelCase__ : List[Any]="[PAD]" , UpperCamelCase__ : Any="[CLS]" , UpperCamelCase__ : Tuple="[MASK]" , **UpperCamelCase__ : Dict , ): '''simple docstring''' super().__init__( do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , **UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case SCREAMING_SNAKE_CASE : Any = remove_space SCREAMING_SNAKE_CASE : Dict = keep_accents SCREAMING_SNAKE_CASE : Dict = vocab_file SCREAMING_SNAKE_CASE : Union[str, Any] = spm.SentencePieceProcessor() self.sp_model.Load(UpperCamelCase__ ) @property def __A ( self : List[Any] ): '''simple docstring''' return len(self.sp_model ) def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.__dict__.copy() SCREAMING_SNAKE_CASE : Optional[Any] = None return state def __setstate__( self : Optional[Any] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = d SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __A ( self : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.sp_model.EncodeAsPieces(UpperCamelCase__ ) return pieces def __A ( self : Tuple , UpperCamelCase__ : Optional[int] ): '''simple docstring''' return self.sp_model.PieceToId(UpperCamelCase__ ) def __A ( self : Union[str, Any] , UpperCamelCase__ : List[Any] ): '''simple docstring''' return self.sp_model.IdToPiece(UpperCamelCase__ ) def __A ( self : Optional[int] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.sp_model.decode_pieces(UpperCamelCase__ ) return out_string def __A ( self : Union[str, Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1] def __A ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(UpperCamelCase__ ) ) return SCREAMING_SNAKE_CASE : Tuple = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) return (out_vocab_file,)
182
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def A ( _lowercase , _lowercase , _lowercase ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , _lowercase ) SCREAMING_SNAKE_CASE : Tuple = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE : str = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Any = is_small_dataset(_lowercase ) assert result == expected
182
1
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class _lowerCamelCase( unittest.TestCase ): def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=30, lowerCamelCase=2, lowerCamelCase=3, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=37, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=10, lowerCamelCase=0.0_2, ) -> Optional[Any]: """simple docstring""" _lowercase : Union[str, Any] = parent _lowercase : List[Any] = batch_size _lowercase : Any = image_size _lowercase : str = patch_size _lowercase : List[Any] = num_channels _lowercase : Any = is_training _lowercase : int = use_labels _lowercase : str = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Dict = num_attention_heads _lowercase : str = intermediate_size _lowercase : Tuple = hidden_act _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : Union[str, Any] = type_sequence_label_size _lowercase : Optional[int] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase : List[Any] = (image_size // patch_size) ** 2 _lowercase : Any = num_patches + 1 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowercase : Any = ViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, ) return config, pixel_values def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Union[str, Any] = FlaxViTModel(config=lowerCamelCase) _lowercase : List[str] = model(lowerCamelCase) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _lowercase : Tuple = (self.image_size, self.image_size) _lowercase : Optional[Any] = (self.patch_size, self.patch_size) _lowercase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : Union[str, Any] = self.type_sequence_label_size _lowercase : List[Any] = FlaxViTForImageClassification(config=lowerCamelCase) _lowercase : Union[str, Any] = model(lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images _lowercase : List[Any] = 1 _lowercase : int = FlaxViTForImageClassification(lowerCamelCase) _lowercase : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _lowercase : str = model(lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ) : Dict = config_and_inputs _lowercase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCamelCase ( self) -> None: """simple docstring""" _lowercase : int = FlaxViTModelTester(self) _lowercase : List[Any] = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase , _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Optional[Any] = model_class(lowerCamelCase) _lowercase : int = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : str = [*signature.parameters.keys()] _lowercase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _lowercase : Optional[Any] = self._prepare_for_class(lowerCamelCase, lowerCamelCase) _lowercase : str = model_class(lowerCamelCase) @jax.jit def model_jitted(lowerCamelCase, **lowerCamelCase): return model(pixel_values=lowerCamelCase, **lowerCamelCase) with self.subTest('JIT Enabled'): _lowercase : Optional[int] = model_jitted(**lowerCamelCase).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): _lowercase : Optional[Any] = model_jitted(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase)) for jitted_output, output in zip(lowerCamelCase, lowerCamelCase): self.assertEqual(jitted_output.shape, output.shape) @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" for model_class_name in self.all_model_classes: _lowercase : Any = model_class_name.from_pretrained('google/vit-base-patch16-224') _lowercase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24))) self.assertIsNotNone(lowerCamelCase)
84
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json SCREAMING_SNAKE_CASE : Optional[Any] = "sshleifer/mar_enro_6_3_student" class _lowerCamelCase( _a ): def UpperCamelCase ( self) -> str: """simple docstring""" super().setUp() _lowercase : int = cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz', extract_compressed_file=lowerCamelCase, ) _lowercase : Any = F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" MarianMTModel.from_pretrained(lowerCamelCase) @slow @require_torch_gpu def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = { '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowercase : Optional[int] = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py')[1].strip() _lowercase : List[Any] = bash_script.replace('\\\n', '').strip().replace('"$@"', '') for k, v in env_vars_to_replace.items(): _lowercase : str = bash_script.replace(lowerCamelCase, str(lowerCamelCase)) _lowercase : Optional[Any] = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowercase : Tuple = F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowercase : int = ['finetune.py'] + bash_script.split() + args with patch.object(lowerCamelCase, 'argv', lowerCamelCase): _lowercase : Optional[int] = argparse.ArgumentParser() _lowercase : str = pl.Trainer.add_argparse_args(lowerCamelCase) _lowercase : List[str] = SummarizationModule.add_model_specific_args(lowerCamelCase, os.getcwd()) _lowercase : List[Any] = parser.parse_args() _lowercase : Union[str, Any] = main(lowerCamelCase) # Check metrics _lowercase : Tuple = load_json(model.metrics_save_path) _lowercase : Dict = metrics['val'][0] _lowercase : int = metrics['val'][-1] self.assertEqual(len(metrics['val']), (args.max_epochs / args.val_check_interval)) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''], lowerCamelCase) self.assertGreater(last_step_stats['val_avg_gen_time'], 0.0_1) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'], 1.0) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'], 2) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'], 17) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu']), 1.1) # check lightning ckpt can be loaded and has a reasonable statedict _lowercase : List[Any] = os.listdir(lowerCamelCase) _lowercase : Optional[Any] = [x for x in contents if x.endswith('.ckpt')][0] _lowercase : List[str] = os.path.join(args.output_dir, lowerCamelCase) _lowercase : List[Any] = torch.load(lowerCamelCase, map_location='cpu') _lowercase : str = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowercase : int = {os.path.basename(lowerCamelCase) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test']) == 1 class _lowerCamelCase( _a ): @timeout_decorator.timeout(6_00) @slow @require_torch_gpu def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[Any] = F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowercase : Optional[Any] = { '--fp16_opt_level=O1': '', '$MAX_LEN': 1_28, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowercase : Optional[int] = ( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py')[1].strip() ) _lowercase : Any = bash_script.replace('\\\n', '').strip().replace('"$@"', '') _lowercase : List[str] = bash_script.replace('--fp16 ', ' ') for k, v in env_vars_to_replace.items(): _lowercase : Optional[int] = bash_script.replace(lowerCamelCase, str(lowerCamelCase)) _lowercase : Any = self.get_auto_remove_tmp_dir() _lowercase : str = bash_script.replace('--fp16', '') _lowercase : Dict = 6 _lowercase : Tuple = ( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(lowerCamelCase, 'argv', lowerCamelCase): _lowercase : Dict = argparse.ArgumentParser() _lowercase : int = pl.Trainer.add_argparse_args(lowerCamelCase) _lowercase : Tuple = SummarizationDistiller.add_model_specific_args(lowerCamelCase, os.getcwd()) _lowercase : Optional[int] = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowercase : Tuple = distill_main(lowerCamelCase) # Check metrics _lowercase : Tuple = load_json(model.metrics_save_path) _lowercase : Any = metrics['val'][0] _lowercase : int = metrics['val'][-1] assert len(metrics['val']) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.0_1 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''], lowerCamelCase) # check lightning ckpt can be loaded and has a reasonable statedict _lowercase : List[str] = os.listdir(lowerCamelCase) _lowercase : List[Any] = [x for x in contents if x.endswith('.ckpt')][0] _lowercase : List[str] = os.path.join(args.output_dir, lowerCamelCase) _lowercase : Tuple = torch.load(lowerCamelCase, map_location='cpu') _lowercase : Dict = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowercase : List[Any] = {os.path.basename(lowerCamelCase) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test']) == 1
84
1
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' f'''{test_file} instead.''' ) _lowerCamelCase : Dict = components[-1] if not test_fn.endswith('py' ): raise ValueError(f'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( f'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) _lowerCamelCase : str = components[:-1] + [test_fn.replace('.py' , '' )] _lowerCamelCase : Dict = '''.'''.join(lowercase__ ) return test_module_path def _snake_case ( lowercase__ ): _lowerCamelCase : Union[str, Any] = get_module_path(lowercase__ ) _lowerCamelCase : Tuple = importlib.import_module(lowercase__ ) return test_module def _snake_case ( lowercase__ ): _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Any = get_test_module(lowercase__ ) for attr in dir(lowercase__ ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(lowercase__ , lowercase__ ) ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = get_test_module(lowercase__ ) for attr in dir(lowercase__ ): _lowerCamelCase : Optional[int] = getattr(lowercase__ , lowercase__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _lowerCamelCase : Any = getattr(lowercase__ , 'all_model_classes' , [] ) if len(lowercase__ ) > 0: test_classes.append(lowercase__ ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : Union[str, Any] = get_test_classes(lowercase__ ) _lowerCamelCase : List[str] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = test_class() if hasattr(lowercase__ , 'setUp' ): test.setUp() _lowerCamelCase : Dict = None if hasattr(lowercase__ , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _lowerCamelCase : Optional[Any] = test.model_tester.__class__ return model_tester def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : List[str] = get_test_classes(lowercase__ ) _lowerCamelCase : Tuple = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowercase__ ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Optional[Any] = get_test_classes_for_model(lowercase__ , lowercase__ ) _lowerCamelCase : Dict = [] for test_class in test_classes: _lowerCamelCase : Any = get_model_tester_from_test_class(lowercase__ ) if tester_class is not None: tester_classes.append(lowercase__ ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = get_test_classes(lowercase__ ) _lowerCamelCase : Any = {test_class: get_model_tester_from_test_class(lowercase__ ) for test_class in test_classes} return test_tester_mapping def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = get_model_classes(lowercase__ ) _lowerCamelCase : int = { model_class: get_test_classes_for_model(lowercase__ , lowercase__ ) for model_class in model_classes } return model_test_mapping def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[Any] = get_model_classes(lowercase__ ) _lowerCamelCase : Tuple = { model_class: get_tester_classes_for_model(lowercase__ , lowercase__ ) for model_class in model_classes } return model_to_tester_mapping def _snake_case ( lowercase__ ): if isinstance(lowercase__ , lowercase__ ): return o elif isinstance(lowercase__ , lowercase__ ): return o.__name__ elif isinstance(lowercase__ , (list, tuple) ): return [to_json(lowercase__ ) for x in o] elif isinstance(lowercase__ , lowercase__ ): return {to_json(lowercase__ ): to_json(lowercase__ ) for k, v in o.items()} else: return o
96
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
0
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _UpperCamelCase = '''src/diffusers''' # Matches is_xxx_available() _UpperCamelCase = re.compile(R'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla _UpperCamelCase = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') _UpperCamelCase = ''' {0} = None ''' _UpperCamelCase = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' _UpperCamelCase = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def UpperCamelCase_( snake_case__: List[str] ) -> Dict: UpperCAmelCase__ = _re_backend.findall(snake_case__ ) if len(snake_case__ ) == 0: return None return "_and_".join(snake_case__ ) def UpperCamelCase_( ) -> Optional[int]: with open(os.path.join(snake_case__ , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCAmelCase__ = f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase__ = 0 UpperCAmelCase__ = {} # Go through the end of the file while line_index < len(snake_case__ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 UpperCAmelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(snake_case__ ) and len(lines[line_index] ) > 1: UpperCAmelCase__ = lines[line_index] UpperCAmelCase__ = _re_single_line_import.search(snake_case__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(snake_case__ ) > 0: UpperCAmelCase__ = objects else: line_index += 1 return backend_specific_objects def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Union[str, Any]: if name.isupper(): return DUMMY_CONSTANT.format(snake_case__ ) elif name.islower(): return DUMMY_FUNCTION.format(snake_case__ , snake_case__ ) else: return DUMMY_CLASS.format(snake_case__ , snake_case__ ) def UpperCamelCase_( snake_case__: Any=None ) -> Tuple: if backend_specific_objects is None: UpperCAmelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase__ = {} for backend, objects in backend_specific_objects.items(): UpperCAmelCase__ = '[' + ', '.join(f"\"{b}\"" for b in backend.split('_and_' ) ) + ']' UpperCAmelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(snake_case__ , snake_case__ ) for o in objects] ) UpperCAmelCase__ = dummy_file return dummy_files def UpperCamelCase_( snake_case__: List[Any]=False ) -> Optional[int]: UpperCAmelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase__ = {'torch': 'pt'} # Locate actual dummy modules and read their content. UpperCAmelCase__ = os.path.join(snake_case__ , 'utils' ) UpperCAmelCase__ = { backend: os.path.join(snake_case__ , f"dummy_{short_names.get(snake_case__ , snake_case__ )}_objects.py" ) for backend in dummy_files.keys() } UpperCAmelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(snake_case__ ): with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCAmelCase__ = f.read() else: UpperCAmelCase__ = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"Updating diffusers.utils.dummy_{short_names.get(snake_case__ , snake_case__ )}_objects.py as the main " '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' f"diffusers.utils.dummy_{short_names.get(snake_case__ , snake_case__ )}_objects.py. Run `make fix-copies` " 'to fix this.' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _UpperCamelCase = parser.parse_args() check_dummies(args.fix_and_overwrite)
335
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BioGptTokenizer __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(__a ) ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = 'lower newer' return input_text, output_text def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ = 'lower' UpperCAmelCase__ = ['low', 'er</w>'] UpperCAmelCase__ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokens + ['<unk>'] UpperCAmelCase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
335
1
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : int , __snake_case : List[str] , __snake_case : Tuple=13 , __snake_case : Optional[int]=2 , __snake_case : Any=24 , __snake_case : int=16 , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Union[str, Any]=32 , __snake_case : List[Any]=5 , __snake_case : Any=4 , __snake_case : List[Any]=37 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : str=10 , __snake_case : int=0.02 , __snake_case : Tuple=None , __snake_case : str=2 , __snake_case : int=2 , ) -> Optional[int]: UpperCAmelCase : Tuple = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : Any = patch_size UpperCAmelCase : Tuple = max_length UpperCAmelCase : List[str] = num_mel_bins UpperCAmelCase : List[str] = is_training UpperCAmelCase : List[str] = use_labels UpperCAmelCase : int = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : List[Any] = hidden_dropout_prob UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Dict = scope UpperCAmelCase : int = frequency_stride UpperCAmelCase : Optional[Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase : Optional[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCAmelCase : Any = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCAmelCase : Optional[Any] = frequency_out_dimension * time_out_dimension UpperCAmelCase : List[str] = num_patches + 2 def A ( self : Dict ) -> int: UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = self.get_config() return config, input_values, labels def A ( self : Any ) -> str: return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def A ( self : int , __snake_case : int , __snake_case : Any , __snake_case : Optional[int] ) -> List[Any]: UpperCAmelCase : List[str] = ASTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase : Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Optional[int] ) -> str: UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[str] = config_and_inputs UpperCAmelCase : Dict = {'''input_values''': input_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCamelCase__ = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def A ( self : Optional[Any] , __snake_case : List[Any] , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Any ) -> Tuple: if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def A ( self : Tuple ) -> Tuple: UpperCAmelCase : Optional[Any] = ASTModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def A ( self : Union[str, Any] ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def A ( self : Tuple ) -> Tuple: pass def A ( self : Dict ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def A ( self : str ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = model_class(lowerCamelCase__ ) UpperCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Dict = [*signature.parameters.keys()] UpperCAmelCase : List[Any] = ['''input_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def A ( self : Any ) -> str: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) @slow def A ( self : Any ) -> Tuple: for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] = ASTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def snake_case_ ( ) -> Optional[Any]: UpperCAmelCase : Tuple = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) UpperCAmelCase , UpperCAmelCase : str = torchaudio.load(_SCREAMING_SNAKE_CASE ) return audio, sampling_rate @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : Optional[int] ) -> str: return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def A ( self : str ) -> List[Any]: UpperCAmelCase : Optional[int] = self.default_feature_extractor UpperCAmelCase : Union[str, Any] = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(lowerCamelCase__ ) UpperCAmelCase : List[str] = self.default_feature_extractor UpperCAmelCase , UpperCAmelCase : List[str] = prepare_audio() UpperCAmelCase : Tuple = audio.squeeze().numpy() UpperCAmelCase : int = feature_extractor(lowerCamelCase__ , sampling_rate=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): UpperCAmelCase : str = model(**lowerCamelCase__ ) # verify the logits UpperCAmelCase : Any = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) UpperCAmelCase : Union[str, Any] = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) )
23
from pathlib import Path import fire def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = Path(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = Path(_SCREAMING_SNAKE_CASE ) dest_dir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) for path in src_dir.iterdir(): SCREAMING_SNAKE_CASE = [x.rstrip() for x in list(path.open().readlines() )][:n] SCREAMING_SNAKE_CASE = dest_dir.joinpath(path.name ) print(_SCREAMING_SNAKE_CASE ) dest_path.open("""w""" ).write("""\n""".join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": fire.Fire(minify)
296
0
"""simple docstring""" __UpperCamelCase = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
312
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __UpperCamelCase = False __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''ybelkada/fonts''' def UpperCAmelCase ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' 'Pix2StructImageProcessor. Please upgrade torch.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: requires_backends(UpperCAmelCase , ['torch'] ) _check_torch_version() snake_case_ = image_tensor.unsqueeze(0 ) snake_case_ = torch.nn.functional.unfold(UpperCAmelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) snake_case_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase , UpperCAmelCase , -1 ) snake_case_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = 36 , UpperCAmelCase = "black" , UpperCAmelCase = "white" , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Image.Image: requires_backends(UpperCAmelCase , 'vision' ) # Add new lines so that each line is no more than 80 characters. snake_case_ = textwrap.TextWrapper(width=80 ) snake_case_ = wrapper.wrap(text=UpperCAmelCase ) snake_case_ = '\n'.join(UpperCAmelCase ) if font_bytes is not None and font_path is None: snake_case_ = io.BytesIO(UpperCAmelCase ) elif font_path is not None: snake_case_ = font_path else: snake_case_ = hf_hub_download(UpperCAmelCase , 'Arial.TTF' ) snake_case_ = ImageFont.truetype(UpperCAmelCase , encoding='UTF-8' , size=UpperCAmelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. snake_case_ = ImageDraw.Draw(Image.new('RGB' , (1, 1) , UpperCAmelCase ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = temp_draw.textbbox((0, 0) , UpperCAmelCase , UpperCAmelCase ) # Create the actual image with a bit of padding around the text. snake_case_ = text_width + left_padding + right_padding snake_case_ = text_height + top_padding + bottom_padding snake_case_ = Image.new('RGB' , (image_width, image_height) , UpperCAmelCase ) snake_case_ = ImageDraw.Draw(UpperCAmelCase ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase , fill=UpperCAmelCase , font=UpperCAmelCase ) return image def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(UpperCAmelCase , 'vision' ) # Convert to PIL image if necessary snake_case_ = to_pil_image(UpperCAmelCase ) snake_case_ = render_text(UpperCAmelCase , **UpperCAmelCase ) snake_case_ = max(header_image.width , image.width ) snake_case_ = int(image.height * (new_width / image.width) ) snake_case_ = int(header_image.height * (new_width / header_image.width) ) snake_case_ = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary snake_case_ = to_numpy_array(UpperCAmelCase ) if infer_channel_dimension_format(UpperCAmelCase ) == ChannelDimension.LAST: snake_case_ = to_channel_dimension_format(UpperCAmelCase , ChannelDimension.LAST ) return new_image class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["flattened_patches"] def __init__( self, lowerCAmelCase__ = True, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = 2048, lowerCAmelCase__ = False, **lowerCAmelCase__, ) -> None: super().__init__(**lowerCAmelCase__) snake_case_ = patch_size if patch_size is not None else {'height': 16, 'width': 16} snake_case_ = do_normalize snake_case_ = do_convert_rgb snake_case_ = max_patches snake_case_ = is_vqa def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> np.ndarray: requires_backends(self.extract_flattened_patches, 'torch') _check_torch_version() # convert to torch snake_case_ = to_channel_dimension_format(lowerCAmelCase__, ChannelDimension.FIRST) snake_case_ = torch.from_numpy(lowerCAmelCase__) snake_case_ , snake_case_ = patch_size['height'], patch_size['width'] snake_case_ , snake_case_ = get_image_size(lowerCAmelCase__) # maximize scale s.t. snake_case_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) snake_case_ = max(min(math.floor(scale * image_height / patch_height), lowerCAmelCase__), 1) snake_case_ = max(min(math.floor(scale * image_width / patch_width), lowerCAmelCase__), 1) snake_case_ = max(num_feasible_rows * patch_height, 1) snake_case_ = max(num_feasible_cols * patch_width, 1) snake_case_ = torch.nn.functional.interpolate( image.unsqueeze(0), size=(resized_height, resized_width), mode='bilinear', align_corners=lowerCAmelCase__, antialias=lowerCAmelCase__, ).squeeze(0) # [1, rows, columns, patch_height * patch_width * image_channels] snake_case_ = torch_extract_patches(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = patches.shape snake_case_ = patches_shape[1] snake_case_ = patches_shape[2] snake_case_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] snake_case_ = patches.reshape([rows * columns, depth]) # [rows * columns, 1] snake_case_ = torch.arange(lowerCAmelCase__).reshape([rows, 1]).repeat(1, lowerCAmelCase__).reshape([rows * columns, 1]) snake_case_ = torch.arange(lowerCAmelCase__).reshape([1, columns]).repeat(lowerCAmelCase__, 1).reshape([rows * columns, 1]) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] snake_case_ = row_ids.to(torch.floataa) snake_case_ = col_ids.to(torch.floataa) # [rows * columns, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.cat([row_ids, col_ids, patches], -1) # [max_patches, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.nn.functional.pad(lowerCAmelCase__, [0, 0, 0, max_patches - (rows * columns)]).float() snake_case_ = to_numpy_array(lowerCAmelCase__) return result def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__) -> np.ndarray: if image.dtype == np.uinta: snake_case_ = image.astype(np.floataa) # take mean across the whole `image` snake_case_ = np.mean(lowerCAmelCase__) snake_case_ = np.std(lowerCAmelCase__) snake_case_ = max(lowerCAmelCase__, 1.0 / math.sqrt(np.prod(image.shape))) return normalize(lowerCAmelCase__, mean=lowerCAmelCase__, std=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = ChannelDimension.FIRST, **lowerCAmelCase__, ) -> ImageInput: snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = patch_size if patch_size is not None else self.patch_size snake_case_ = max_patches if max_patches is not None else self.max_patches snake_case_ = self.is_vqa if kwargs.get('data_format', lowerCAmelCase__) is not None: raise ValueError('data_format is not an accepted input as the outputs are ') snake_case_ = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowerCAmelCase__) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.') snake_case_ = kwargs.pop('font_bytes', lowerCAmelCase__) snake_case_ = kwargs.pop('font_path', lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = [header_text] * len(lowerCAmelCase__) snake_case_ = [ render_header(lowerCAmelCase__, header_text[i], font_bytes=lowerCAmelCase__, font_path=lowerCAmelCase__) for i, image in enumerate(lowerCAmelCase__) ] if do_normalize: snake_case_ = [self.normalize(image=lowerCAmelCase__) for image in images] # convert to torch tensor and permute snake_case_ = [ self.extract_flattened_patches(image=lowerCAmelCase__, max_patches=lowerCAmelCase__, patch_size=lowerCAmelCase__) for image in images ] # create attention mask in numpy snake_case_ = [(image.sum(axis=-1) != 0).astype(np.floataa) for image in images] snake_case_ = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks}, tensor_type=lowerCAmelCase__) return encoded_outputs
312
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Any = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
95
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowercase__: Tuple = grid[0] for row_n in range(1 , len(__UpperCAmelCase ) ): lowercase__: Tuple = grid[row_n] lowercase__: Dict = fill_row(__UpperCAmelCase , __UpperCAmelCase ) lowercase__: Union[str, Any] = grid[row_n] return grid[-1][-1] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> list: current_row[0] += row_above[0] for cell_n in range(1 , len(__UpperCAmelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
177
0
"""simple docstring""" from collections.abc import Callable class _A : """simple docstring""" def __init__( self : Union[str, Any] , __UpperCAmelCase : Callable | None = None): # Stores actual heap items. a : list = [] # Stores indexes of each item for supporting updates and deletion. a : dict = {} # Stores current size of heap. a : Tuple = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. a : Tuple = key or (lambda __UpperCAmelCase: x) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : int): return int((i - 1) / 2) if i > 0 else None def __snake_case ( self : Optional[Any] , __UpperCAmelCase : int): a : Union[str, Any] = int(2 * i + 1) return left if 0 < left < self.size else None def __snake_case ( self : Optional[int] , __UpperCAmelCase : int): a : Dict = int(2 * i + 2) return right if 0 < right < self.size else None def __snake_case ( self : str , __UpperCAmelCase : int , __UpperCAmelCase : int): a : Optional[int] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. a : Any = self.arr[j], self.arr[i] def __snake_case ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int): return self.arr[i][1] < self.arr[j][1] def __snake_case ( self : List[str] , __UpperCAmelCase : int): a : Dict = self._left(__UpperCAmelCase) a : Tuple = self._right(__UpperCAmelCase) a : int = i if left is not None and not self._cmp(__UpperCAmelCase , __UpperCAmelCase): a : Optional[Any] = left if right is not None and not self._cmp(__UpperCAmelCase , __UpperCAmelCase): a : List[Any] = right return valid_parent def __snake_case ( self : Any , __UpperCAmelCase : int): a : str = self._parent(__UpperCAmelCase) while parent is not None and not self._cmp(__UpperCAmelCase , __UpperCAmelCase): self._swap(__UpperCAmelCase , __UpperCAmelCase) a : Any = parent, self._parent(__UpperCAmelCase) def __snake_case ( self : str , __UpperCAmelCase : int): a : str = self._get_valid_parent(__UpperCAmelCase) while valid_parent != index: self._swap(__UpperCAmelCase , __UpperCAmelCase) a : Optional[int] = valid_parent, self._get_valid_parent(__UpperCAmelCase) def __snake_case ( self : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : int): if item not in self.pos_map: return a : Tuple = self.pos_map[item] a : List[str] = [item, self.key(__UpperCAmelCase)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(__UpperCAmelCase) self._heapify_down(__UpperCAmelCase) def __snake_case ( self : str , __UpperCAmelCase : int): if item not in self.pos_map: return a : Union[str, Any] = self.pos_map[item] del self.pos_map[item] a : List[str] = self.arr[self.size - 1] a : List[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(__UpperCAmelCase) self._heapify_down(__UpperCAmelCase) def __snake_case ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : int): a : Any = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(__UpperCAmelCase)]) else: a : str = [item, self.key(__UpperCAmelCase)] a : List[str] = self.size self.size += 1 self._heapify_up(self.size - 1) def __snake_case ( self : Dict): return self.arr[0] if self.size else None def __snake_case ( self : Union[str, Any]): a : Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def lowercase ( )-> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
355
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowercase ( A_ , A_ , A_ , A_=5 )-> Union[str, Any]: '''simple docstring''' assert masked_input.count("<mask>" ) == 1 a : List[str] = torch.tensor(tokenizer.encode(A_ , add_special_tokens=A_ ) ).unsqueeze(0 ) # Batch size 1 a : Dict = model(A_ )[0] # The last hidden-state is the first element of the output tuple a : int = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() a : Optional[Any] = logits[0, masked_index, :] a : Dict = logits.softmax(dim=0 ) a , a : Any = prob.topk(k=A_ , dim=0 ) a : Optional[Any] = " ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(A_ ) )] ) a : str = tokenizer.mask_token a : Any = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): a : Dict = predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(A_ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(A_ ) , A_ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(A_ , A_ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __lowercase = CamembertTokenizer.from_pretrained("""camembert-base""") __lowercase = CamembertForMaskedLM.from_pretrained("""camembert-base""") model.eval() __lowercase = """Le camembert est <mask> :)""" print(fill_mask(masked_input, model, tokenizer, topk=3))
226
0
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
84
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _snake_case ( lowercase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ :List[Any] = FileLock(str(tmpdir / """foo.lock""" ) ) lowerCAmelCase_ :Union[str, Any] = FileLock(str(tmpdir / """foo.lock""" ) ) lowerCAmelCase_ :Dict = 0.01 with locka.acquire(): with pytest.raises(lowercase__ ): lowerCAmelCase_ :List[Any] = time.time() locka.acquire(lowercase__ ) assert time.time() - _start > timeout def _snake_case ( lowercase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ :List[Any] = """a""" * 1_0_0_0 + """.lock""" lowerCAmelCase_ :Optional[Any] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(lowercase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 lowerCAmelCase_ :Any = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowercase__ ): locka.acquire(0 )
84
1
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class snake_case_ : def __UpperCamelCase ( self : List[str] ) -> str: torch.manual_seed(0 ) lowercase__ : List[Any] = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowercase__ : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowercase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowercase__ : Union[str, Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="squaredcos_cap_v2" , beta_start=0.00_01 , beta_end=0.02 , thresholding=lowercase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) lowercase__ : str = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict ) -> List[Any]: torch.manual_seed(0 ) lowercase__ : Any = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowercase__ : Optional[int] = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.4_14 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowercase__ : Tuple = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="squaredcos_cap_v2" , beta_start=0.00_01 , beta_end=0.02 , thresholding=lowercase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) lowercase__ : List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="squaredcos_cap_v2" , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0 ) lowercase__ : List[str] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any ) -> Optional[int]: lowercase__ : str = self.get_dummy_components() lowercase__ : Optional[int] = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase__ : Dict = self.get_dummy_inputs(lowercase_ ) lowercase__ : Dict = inputs["prompt"] lowercase__ : List[str] = inputs["generator"] lowercase__ : Tuple = inputs["num_inference_steps"] lowercase__ : Union[str, Any] = inputs["output_type"] if "image" in inputs: lowercase__ : Optional[int] = inputs["image"] else: lowercase__ : List[Any] = None if "mask_image" in inputs: lowercase__ : int = inputs["mask_image"] else: lowercase__ : Union[str, Any] = None if "original_image" in inputs: lowercase__ : Tuple = inputs["original_image"] else: lowercase__ : Tuple = None lowercase__ : Optional[int] = pipe.encode_prompt(lowercase_ ) # inputs with prompt converted to embeddings lowercase__ : Optional[int] = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: lowercase__ : List[str] = image if mask_image is not None: lowercase__ : List[Any] = mask_image if original_image is not None: lowercase__ : Tuple = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowercase_ , lowercase_ , lowercase_ ) lowercase__ : str = pipe(**lowercase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowercase_ ) lowercase__ : Dict = self.pipeline_class.from_pretrained(lowercase_ ) pipe_loaded.to(lowercase_ ) pipe_loaded.set_progress_bar_config(disable=lowercase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowercase_ , lowercase_ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ : Union[str, Any] = self.get_dummy_inputs(lowercase_ ) lowercase__ : str = inputs["generator"] lowercase__ : Optional[Any] = inputs["num_inference_steps"] lowercase__ : Any = inputs["output_type"] # inputs with prompt converted to embeddings lowercase__ : Optional[Any] = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: lowercase__ : int = image if mask_image is not None: lowercase__ : Optional[int] = mask_image if original_image is not None: lowercase__ : Tuple = original_image lowercase__ : Tuple = pipe_loaded(**lowercase_ )[0] lowercase__ : Any = np.abs(to_np(lowercase_ ) - to_np(lowercase_ ) ).max() self.assertLess(lowercase_ , 1E-4 ) def __UpperCamelCase ( self : Optional[Any] ) -> int: lowercase__ : List[Any] = self.get_dummy_components() lowercase__ : Dict = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase__ : Optional[Any] = self.get_dummy_inputs(lowercase_ ) lowercase__ : Optional[Any] = pipe(**lowercase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowercase_ ) lowercase__ : Optional[int] = self.pipeline_class.from_pretrained(lowercase_ ) pipe_loaded.to(lowercase_ ) pipe_loaded.set_progress_bar_config(disable=lowercase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowercase__ : Dict = self.get_dummy_inputs(lowercase_ ) lowercase__ : Union[str, Any] = pipe_loaded(**lowercase_ )[0] lowercase__ : List[str] = np.abs(to_np(lowercase_ ) - to_np(lowercase_ ) ).max() self.assertLess(lowercase_ , 1E-4 )
356
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
0
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py SCREAMING_SNAKE_CASE_ : int = 'src/diffusers' # Matches is_xxx_available() SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla SCREAMING_SNAKE_CASE_ : int = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') SCREAMING_SNAKE_CASE_ : Any = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ : List[Any] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' SCREAMING_SNAKE_CASE_ : Any = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def _snake_case ( UpperCAmelCase_ : Union[str, Any] ): A__ = _re_backend.findall(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) == 0: return None return "_and_".join(UpperCAmelCase_ ) def _snake_case ( ): with open(os.path.join(UpperCAmelCase_ , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A__ = f.readlines() # Get to the point we do the actual imports for type checking A__ = 0 A__ = {} # Go through the end of the file while line_index < len(UpperCAmelCase_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block A__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 A__ = [] # Until we unindent, add backend objects to the list while line_index < len(UpperCAmelCase_ ) and len(lines[line_index] ) > 1: A__ = lines[line_index] A__ = _re_single_line_import.search(UpperCAmelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(UpperCAmelCase_ ) > 0: A__ = objects else: line_index += 1 return backend_specific_objects def _snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ): if name.isupper(): return DUMMY_CONSTANT.format(UpperCAmelCase_ ) elif name.islower(): return DUMMY_FUNCTION.format(UpperCAmelCase_ , UpperCAmelCase_ ) else: return DUMMY_CLASS.format(UpperCAmelCase_ , UpperCAmelCase_ ) def _snake_case ( UpperCAmelCase_ : Optional[Any]=None ): if backend_specific_objects is None: A__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename A__ = {} for backend, objects in backend_specific_objects.items(): A__ = """[""" + """, """.join(F"""\"{b}\"""" for b in backend.split("""_and_""" ) ) + """]""" A__ = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(UpperCAmelCase_ , UpperCAmelCase_ ) for o in objects] ) A__ = dummy_file return dummy_files def _snake_case ( UpperCAmelCase_ : List[Any]=False ): A__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py A__ = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. A__ = os.path.join(UpperCAmelCase_ , """utils""" ) A__ = { backend: os.path.join(UpperCAmelCase_ , F"""dummy_{short_names.get(UpperCAmelCase_ , UpperCAmelCase_ )}_objects.py""" ) for backend in dummy_files.keys() } A__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(UpperCAmelCase_ ): with open(UpperCAmelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A__ = f.read() else: A__ = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"""Updating diffusers.utils.dummy_{short_names.get(UpperCAmelCase_ , UpperCAmelCase_ )}_objects.py as the main """ """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ F"""diffusers.utils.dummy_{short_names.get(UpperCAmelCase_ , UpperCAmelCase_ )}_objects.py. Run `make fix-copies` """ """to fix this.""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : List[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') SCREAMING_SNAKE_CASE_ : str = parser.parse_args() check_dummies(args.fix_and_overwrite)
335
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : Dict ): # noqa: E741 A__ = len(UpperCAmelCase_ ) A__ = 0 A__ = [0] * n A__ = [False] * n A__ = [False] * n def dfs(UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] ): if parent == root: out_edge_count += 1 A__ = True A__ = at for to in l[at]: if to == parent: pass elif not visited[to]: A__ = dfs(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) A__ = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: A__ = True # AP found via cycle if at == low[to]: A__ = True else: A__ = min(low[at] , UpperCAmelCase_ ) return out_edge_count for i in range(UpperCAmelCase_ ): if not visited[i]: A__ = 0 A__ = dfs(UpperCAmelCase_ , UpperCAmelCase_ , -1 , UpperCAmelCase_ ) A__ = out_edge_count > 1 for x in range(len(UpperCAmelCase_ ) ): if is_art[x] is True: print(UpperCAmelCase_ ) # Adjacency list of graph SCREAMING_SNAKE_CASE_ : Optional[int] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
335
1
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: lowerCAmelCase = jnp.ones((batch_size, length) ) / length return scores def __UpperCAmelCase ( self : Optional[Any] ) -> str: lowerCAmelCase = None lowerCAmelCase = 2_0 lowerCAmelCase = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase__ ) # tweak scores to not be uniform anymore lowerCAmelCase = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCAmelCase = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCAmelCase = jax.nn.softmax(UpperCAmelCase__ , axis=-1 ) lowerCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCAmelCase = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase__ , scores.copy() , cur_len=UpperCAmelCase__ ) , axis=-1 ) lowerCAmelCase = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase__ , scores.copy() , cur_len=UpperCAmelCase__ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: lowerCAmelCase = None lowerCAmelCase = 1_0 lowerCAmelCase = 2 # create ramp distribution lowerCAmelCase = np.broadcast_to(np.arange(UpperCAmelCase__ )[None, :] , (batch_size, vocab_size) ).copy() lowerCAmelCase = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCAmelCase = FlaxTopKLogitsWarper(3 ) lowerCAmelCase = top_k_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCAmelCase = 5 lowerCAmelCase = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCAmelCase = np.broadcast_to(np.arange(UpperCAmelCase__ )[None, :] , (batch_size, length) ).copy() lowerCAmelCase = top_k_warp_safety_check(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def __UpperCAmelCase ( self : Any ) -> str: lowerCAmelCase = None lowerCAmelCase = 1_0 lowerCAmelCase = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCAmelCase = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCAmelCase = FlaxTopPLogitsWarper(0.8 ) lowerCAmelCase = np.exp(top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCAmelCase = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # check edge cases with negative and extreme logits lowerCAmelCase = np.broadcast_to(np.arange(UpperCAmelCase__ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCAmelCase = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCAmelCase = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCAmelCase = top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def __UpperCAmelCase ( self : int ) -> Union[str, Any]: lowerCAmelCase = 2_0 lowerCAmelCase = 4 lowerCAmelCase = 0 lowerCAmelCase = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=UpperCAmelCase__ ) # check that min length is applied at length 5 lowerCAmelCase = ids_tensor((batch_size, 2_0) , vocab_size=2_0 ) lowerCAmelCase = 5 lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = min_dist_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = 1_5 lowerCAmelCase = min_dist_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertFalse(jnp.isinf(UpperCAmelCase__ ).any() ) def __UpperCAmelCase ( self : Dict ) -> str: lowerCAmelCase = 2_0 lowerCAmelCase = 4 lowerCAmelCase = 0 lowerCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__ ) # check that all scores are -inf except the bos_token_id score lowerCAmelCase = ids_tensor((batch_size, 1) , vocab_size=2_0 ) lowerCAmelCase = 1 lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCAmelCase = 3 lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertFalse(jnp.isinf(UpperCAmelCase__ ).any() ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: lowerCAmelCase = 2_0 lowerCAmelCase = 4 lowerCAmelCase = 0 lowerCAmelCase = 5 lowerCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCAmelCase = ids_tensor((batch_size, 4) , vocab_size=2_0 ) lowerCAmelCase = 4 lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCAmelCase = 3 lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertFalse(jnp.isinf(UpperCAmelCase__ ).any() ) def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: lowerCAmelCase = 4 lowerCAmelCase = 1_0 lowerCAmelCase = 1_5 lowerCAmelCase = 2 lowerCAmelCase = 1 lowerCAmelCase = 1_5 # dummy input_ids and scores lowerCAmelCase = ids_tensor((batch_size, sequence_length) , UpperCAmelCase__ ) lowerCAmelCase = input_ids.copy() lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = scores.copy() # instantiate all dist processors lowerCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase = FlaxTopKLogitsWarper(3 ) lowerCAmelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=UpperCAmelCase__ ) lowerCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__ ) lowerCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) lowerCAmelCase = 1_0 # no processor list lowerCAmelCase = temp_dist_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = top_k_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = min_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = bos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = eos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # with processor list lowerCAmelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase = processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def __UpperCAmelCase ( self : int ) -> List[str]: lowerCAmelCase = 4 lowerCAmelCase = 1_0 lowerCAmelCase = 1_5 lowerCAmelCase = 2 lowerCAmelCase = 1 lowerCAmelCase = 1_5 # dummy input_ids and scores lowerCAmelCase = ids_tensor((batch_size, sequence_length) , UpperCAmelCase__ ) lowerCAmelCase = input_ids.copy() lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = scores.copy() # instantiate all dist processors lowerCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase = FlaxTopKLogitsWarper(3 ) lowerCAmelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=UpperCAmelCase__ ) lowerCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__ ) lowerCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) lowerCAmelCase = 1_0 # no processor list def run_no_processor_list(UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str ): lowerCAmelCase = temp_dist_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = top_k_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = min_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = bos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) lowerCAmelCase = eos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) return scores # with processor list def run_processor_list(UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] ): lowerCAmelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase = processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) return scores lowerCAmelCase = jax.jit(UpperCAmelCase__ ) lowerCAmelCase = jax.jit(UpperCAmelCase__ ) lowerCAmelCase = jitted_run_no_processor_list(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = jitted_run_processor_list(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
358
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : int , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any]=1_3 , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : int=9_9 , UpperCAmelCase__ : int=3_2 , UpperCAmelCase__ : List[str]=5 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Any=3_7 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Dict=5_1_2 , UpperCAmelCase__ : List[Any]=1_6 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : Dict=0.02 , UpperCAmelCase__ : str=4 , ) -> Union[str, Any]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_attention_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_choices def __UpperCAmelCase ( self : Any ) -> List[Any]: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_attention_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def __UpperCAmelCase ( self : Optional[Any] ) -> int: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self : int ) -> int: lowerCAmelCase = FlaxRobertaModelTester(self ) @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: for model_class_name in self.all_model_classes: lowerCAmelCase = model_class_name.from_pretrained('roberta-base' , from_pt=UpperCAmelCase__ ) lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase__ )
55
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __a :Optional[int] = logging.get_logger(__name__) __a :Tuple = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Optional[Any] = 'codegen' _lowerCamelCase : int = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Tuple , UpperCAmelCase : str=50400 , UpperCAmelCase : str=2048 , UpperCAmelCase : Optional[Any]=2048 , UpperCAmelCase : Tuple=4096 , UpperCAmelCase : str=28 , UpperCAmelCase : int=16 , UpperCAmelCase : int=64 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]="gelu_new" , UpperCAmelCase : str=0.0 , UpperCAmelCase : int=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=1E-5 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : int=True , UpperCAmelCase : Union[str, Any]=50256 , UpperCAmelCase : Dict=50256 , UpperCAmelCase : Dict=False , **UpperCAmelCase : Any , ): A_ = vocab_size A_ = n_ctx A_ = n_positions A_ = n_embd A_ = n_layer A_ = n_head A_ = n_inner A_ = rotary_dim A_ = activation_function A_ = resid_pdrop A_ = embd_pdrop A_ = attn_pdrop A_ = layer_norm_epsilon A_ = initializer_range A_ = use_cache A_ = bos_token_id A_ = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class _a ( snake_case_ ): """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ): super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , "pad_token_id" , UpperCAmelCase ): # TODO: how to do that better? A_ = 0 @property def __A ( self : Dict ): A_ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="inputs" ) A_ = {0: "batch", 1: "past_sequence + sequence"} else: A_ = {0: "batch", 1: "sequence"} return common_inputs @property def __A ( self : Union[str, Any] ): return self._config.n_layer @property def __A ( self : Optional[Any] ): return self._config.n_head def __A ( self : Optional[int] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ): A_ = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() A_ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch A_ , A_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values A_ = seqlen + 2 A_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A_ = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] A_ = common_inputs["attention_mask"] if self.use_past: A_ = ordered_inputs["attention_mask"].dtype A_ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def __A ( self : str ): return 13
312
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ['image_processor', 'tokenizer'] _lowerCamelCase : Tuple = 'OwlViTImageProcessor' _lowerCamelCase : List[Any] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Optional[Any] , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Any ): A_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) A_ = kwargs.pop("feature_extractor" ) A_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[str]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict="max_length" , UpperCAmelCase : Optional[Any]="np" , **UpperCAmelCase : Optional[int] ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(UpperCAmelCase , UpperCAmelCase ) or (isinstance(UpperCAmelCase , UpperCAmelCase ) and not isinstance(text[0] , UpperCAmelCase )): A_ = [self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )] elif isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(text[0] , UpperCAmelCase ): A_ = [] # Maximum number of queries across batch A_ = max([len(UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCAmelCase ) != max_num_queries: A_ = t + [" "] * (max_num_queries - len(UpperCAmelCase )) A_ = self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) encodings.append(UpperCAmelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": A_ = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A_ = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A_ = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) A_ = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A_ = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) A_ = BatchEncoding() A_ = input_ids A_ = attention_mask if query_images is not None: A_ = BatchEncoding() A_ = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ).pixel_values A_ = query_pixel_values if images is not None: A_ = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: A_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: A_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def __A ( self : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[Any] ): return self.image_processor.post_process(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : str , *UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ): return self.image_processor.post_process_object_detection(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : int , **UpperCAmelCase : int ): return self.image_processor.post_process_image_guided_detection(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : str ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def __A ( self : Union[str, Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def __A ( self : Optional[Any] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
312
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCAmelCase : List[str] = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
366
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
0
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__=1 ) -> List[str]: '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__=0 ) -> int: '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(_UpperCAmelCase , n_shave_prefix_segments=_UpperCAmelCase ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__=0 ) -> Any: '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(_UpperCAmelCase , n_shave_prefix_segments=_UpperCAmelCase ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None ) -> List[str]: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(_UpperCAmelCase ) UpperCAmelCase = key.reshape(_UpperCAmelCase ) UpperCAmelCase = value.reshape(_UpperCAmelCase ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if F"""input_blocks.{layer_id}""" in key] for layer_id in range(_UpperCAmelCase ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if F"""middle_block.{layer_id}""" in key] for layer_id in range(_UpperCAmelCase ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if F"""output_blocks.{layer_id}""" in key] for layer_id in range(_UpperCAmelCase ) } for i in range(1 , _UpperCAmelCase ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if F"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if F"""input_blocks.{i}.1""" in key] if F"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ F"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ F"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(_UpperCAmelCase ) UpperCAmelCase = {'''old''': F"""input_blocks.{i}.0""", '''new''': F"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , additional_replacements=[meta_path, resnet_op] , config=_UpperCAmelCase ) if len(_UpperCAmelCase ): UpperCAmelCase = renew_attention_paths(_UpperCAmelCase ) UpperCAmelCase = { '''old''': F"""input_blocks.{i}.1""", '''new''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { F"""input_blocks.{i}.1.qkv.bias""": { '''key''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, F"""input_blocks.{i}.1.qkv.weight""": { '''key''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=_UpperCAmelCase , config=_UpperCAmelCase , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(_UpperCAmelCase ) assign_to_checkpoint(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , config=_UpperCAmelCase ) UpperCAmelCase = renew_resnet_paths(_UpperCAmelCase ) assign_to_checkpoint(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , config=_UpperCAmelCase ) UpperCAmelCase = renew_attention_paths(_UpperCAmelCase ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , attention_paths_to_split=_UpperCAmelCase , config=_UpperCAmelCase ) for i in range(_UpperCAmelCase ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(_UpperCAmelCase , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase = layer.split('''.''' )[0], shave_segments(_UpperCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(_UpperCAmelCase ) else: UpperCAmelCase = [layer_name] if len(_UpperCAmelCase ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if F"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if F"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(_UpperCAmelCase ) UpperCAmelCase = renew_resnet_paths(_UpperCAmelCase ) UpperCAmelCase = {'''old''': F"""output_blocks.{i}.0""", '''new''': F"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , additional_replacements=[meta_path] , config=_UpperCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ F"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ F"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(_UpperCAmelCase ) == 2: UpperCAmelCase = [] if len(_UpperCAmelCase ): UpperCAmelCase = renew_attention_paths(_UpperCAmelCase ) UpperCAmelCase = { '''old''': F"""output_blocks.{i}.1""", '''new''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { F"""output_blocks.{i}.1.qkv.bias""": { '''key''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, F"""output_blocks.{i}.1.qkv.weight""": { '''key''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=_UpperCAmelCase , ) else: UpperCAmelCase = renew_resnet_paths(_UpperCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(_UpperCAmelCase ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(_UpperCAmelCase ), '''resnets''', str(_UpperCAmelCase ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") __A : Tuple = parser.parse_args() __A : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: __A : str = json.loads(f.read()) __A : str = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __A : List[Any] = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __A : Tuple = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) __A : str = VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1])) __A : Tuple = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
273
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A =1_6 __A =3_2 def a ( _UpperCAmelCase : Accelerator , _UpperCAmelCase : int = 16 ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCAmelCase : Any = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_UpperCAmelCase : List[Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCAmelCase : Optional[int] = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCAmelCase : Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_UpperCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCAmelCase : List[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCAmelCase : Any = 16 elif accelerator.mixed_precision != "no": __UpperCAmelCase : Tuple = 8 else: __UpperCAmelCase : Optional[int] = None return tokenizer.pad( _UpperCAmelCase , padding='''longest''' , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCAmelCase : Optional[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) __UpperCAmelCase : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __A =mocked_dataloaders # noqa: F811 def a ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Any ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _UpperCAmelCase ) == "1": __UpperCAmelCase : Dict = 2 # Initialize accelerator __UpperCAmelCase : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCAmelCase : List[Any] = config['''lr'''] __UpperCAmelCase : Optional[Any] = int(config['''num_epochs'''] ) __UpperCAmelCase : Optional[int] = int(config['''seed'''] ) __UpperCAmelCase : Any = int(config['''batch_size'''] ) __UpperCAmelCase : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __UpperCAmelCase : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCAmelCase : Tuple = batch_size // MAX_GPU_BATCH_SIZE __UpperCAmelCase : List[str] = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCAmelCase : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCAmelCase : Tuple = model.to(accelerator.device ) # Instantiate optimizer __UpperCAmelCase : Any = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler __UpperCAmelCase : str = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCAmelCase : int = model(**_UpperCAmelCase ) __UpperCAmelCase : str = outputs.loss __UpperCAmelCase : str = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __UpperCAmelCase : Tuple = 0 for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCAmelCase : Dict = model(**_UpperCAmelCase ) __UpperCAmelCase : str = outputs.logits.argmax(dim=-1 ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(_UpperCAmelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __UpperCAmelCase : Dict = predictions[: len(eval_dataloader.dataset ) - samples_seen] __UpperCAmelCase : List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) __UpperCAmelCase : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , _UpperCAmelCase ) def a ( ): '''simple docstring''' __UpperCAmelCase : int = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) __UpperCAmelCase : int = parser.parse_args() __UpperCAmelCase : Union[str, Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
226
0
from jiwer import compute_measures import datasets SCREAMING_SNAKE_CASE :Any = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE :Union[str, Any] = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE :str = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Value("string" ,id="sequence" ), "references": datasets.Value("string" ,id="sequence" ), } ) ,codebase_urls=["https://github.com/jitsi/jiwer/"] ,reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ] ,) def UpperCamelCase_ ( self : Union[str, Any] ,A : List[str]=None ,A : str=None ,A : str=False ): if concatenate_texts: return compute_measures(A ,A )["wer"] else: __A = 0 __A = 0 for prediction, reference in zip(A ,A ): __A = compute_measures(A ,A ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
124
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) SCREAMING_SNAKE_CASE :Tuple = 'pytorch_model.bin' SCREAMING_SNAKE_CASE :str = 'pytorch_model.bin.index.json' SCREAMING_SNAKE_CASE :int = 'adapter_config.json' SCREAMING_SNAKE_CASE :List[str] = 'adapter_model.bin' SCREAMING_SNAKE_CASE :Any = 'adapter_model.safetensors' SCREAMING_SNAKE_CASE :int = 'tf_model.h5' SCREAMING_SNAKE_CASE :Tuple = 'tf_model.h5.index.json' SCREAMING_SNAKE_CASE :List[Any] = 'model.ckpt' SCREAMING_SNAKE_CASE :Optional[int] = 'flax_model.msgpack' SCREAMING_SNAKE_CASE :List[Any] = 'flax_model.msgpack.index.json' SCREAMING_SNAKE_CASE :List[Any] = 'model.safetensors' SCREAMING_SNAKE_CASE :Any = 'model.safetensors.index.json' SCREAMING_SNAKE_CASE :int = 'config.json' SCREAMING_SNAKE_CASE :List[str] = 'preprocessor_config.json' SCREAMING_SNAKE_CASE :Optional[int] = FEATURE_EXTRACTOR_NAME SCREAMING_SNAKE_CASE :Optional[Any] = 'generation_config.json' SCREAMING_SNAKE_CASE :Dict = 'modelcard.json' SCREAMING_SNAKE_CASE :Optional[Any] = '▁' SCREAMING_SNAKE_CASE :Any = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility SCREAMING_SNAKE_CASE :Tuple = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. SCREAMING_SNAKE_CASE :Union[str, Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] SCREAMING_SNAKE_CASE :Tuple = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: __A = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: __A = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
124
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __A( _a ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """pegasus""" SCREAMING_SNAKE_CASE__ = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self , SCREAMING_SNAKE_CASE_=5_02_65 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=1 , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = d_model UpperCamelCase__ = encoder_ffn_dim UpperCamelCase__ = encoder_layers UpperCamelCase__ = encoder_attention_heads UpperCamelCase__ = decoder_ffn_dim UpperCamelCase__ = decoder_layers UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = activation_function UpperCamelCase__ = init_std UpperCamelCase__ = encoder_layerdrop UpperCamelCase__ = decoder_layerdrop UpperCamelCase__ = use_cache UpperCamelCase__ = encoder_layers UpperCamelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) @property def UpperCAmelCase_ (self ): return self.encoder_attention_heads @property def UpperCAmelCase_ (self ): return self.d_model
244
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A_ ( _a ): '''simple docstring''' a__ = "pegasus" a__ = ["past_key_values"] a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=0 , lowercase__=False , lowercase__=0 , lowercase__=1 , lowercase__=1 , **lowercase__ , ) -> str: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) @property def lowerCAmelCase_ (self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ (self ) -> int: return self.d_model
333
0
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) __snake_case : Optional[Any] = None __snake_case : Optional[Any] = { '7B': 1_1008, '13B': 1_3824, '30B': 1_7920, '65B': 2_2016, '70B': 2_8672, } __snake_case : Union[str, Any] = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : str=1, __snake_case : Tuple=256 ) -> str: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def __lowerCamelCase ( __snake_case : Tuple ) -> Tuple: """simple docstring""" with open(__snake_case, """r""" ) as f: return json.load(__snake_case ) def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Tuple ) -> Dict: """simple docstring""" with open(__snake_case, """w""" ) as f: json.dump(__snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Any, __snake_case : Any, __snake_case : Tuple=True ) -> Any: """simple docstring""" os.makedirs(__snake_case, exist_ok=__snake_case ) A__ : List[Any] =os.path.join(__snake_case, """tmp""" ) os.makedirs(__snake_case, exist_ok=__snake_case ) A__ : Dict =read_json(os.path.join(__snake_case, """params.json""" ) ) A__ : Dict =NUM_SHARDS[model_size] A__ : List[str] =params["""n_layers"""] A__ : int =params["""n_heads"""] A__ : str =n_heads // num_shards A__ : Tuple =params["""dim"""] A__ : Union[str, Any] =dim // n_heads A__ : str =1_00_00.0 A__ : Any =1.0 / (base ** (torch.arange(0, __snake_case, 2 ).float() / dims_per_head)) if "n_kv_heads" in params: A__ : Optional[Any] =params["""n_kv_heads"""] # for GQA / MQA A__ : int =n_heads_per_shard // num_key_value_heads A__ : int =dim // num_key_value_heads else: # compatibility with other checkpoints A__ : List[Any] =n_heads A__ : List[str] =n_heads_per_shard A__ : Dict =dim # permute for sliced rotary def permute(__snake_case : Tuple, __snake_case : Optional[int]=n_heads, __snake_case : int=dim, __snake_case : Optional[Any]=dim ): return w.view(__snake_case, dima // n_heads // 2, 2, __snake_case ).transpose(1, 2 ).reshape(__snake_case, __snake_case ) print(f"Fetching all parameters from the checkpoint at {input_base_path}." ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) A__ : List[str] =torch.load(os.path.join(__snake_case, """consolidated.00.pth""" ), map_location="""cpu""" ) else: # Sharded A__ : Optional[Any] =[ torch.load(os.path.join(__snake_case, f"consolidated.{i:02d}.pth" ), map_location="""cpu""" ) for i in range(__snake_case ) ] A__ : Optional[Any] =0 A__ : str ={"""weight_map""": {}} for layer_i in range(__snake_case ): A__ : Dict =f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded A__ : Dict ={ f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wq.weight"] ), f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wk.weight"] ), f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"], f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. A__ : Any ={ f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ f"layers.{layer_i}.attention_norm.weight" ].clone(), f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ f"layers.{layer_i}.ffn_norm.weight" ].clone(), } A__ : Optional[Any] =permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(__snake_case, __snake_case, __snake_case ) for i in range(__snake_case ) ], dim=0, ).reshape(__snake_case, __snake_case ) ) A__ : int =permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view( __snake_case, __snake_case, __snake_case ) for i in range(__snake_case ) ], dim=0, ).reshape(__snake_case, __snake_case ), __snake_case, __snake_case, __snake_case, ) A__ : int =torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view( __snake_case, __snake_case, __snake_case ) for i in range(__snake_case ) ], dim=0, ).reshape(__snake_case, __snake_case ) A__ : List[str] =torch.cat( [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(__snake_case )], dim=1 ) A__ : Optional[int] =torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(__snake_case )], dim=0 ) A__ : str =torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(__snake_case )], dim=1 ) A__ : List[str] =torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(__snake_case )], dim=0 ) A__ : List[Any] =inv_freq for k, v in state_dict.items(): A__ : Optional[Any] =filename param_count += v.numel() torch.save(__snake_case, os.path.join(__snake_case, __snake_case ) ) A__ : Tuple =f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded A__ : Tuple ={ """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: A__ : Any ={ """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__snake_case )], dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__snake_case )], dim=0 ), } for k, v in state_dict.items(): A__ : int =filename param_count += v.numel() torch.save(__snake_case, os.path.join(__snake_case, __snake_case ) ) # Write configs A__ : Union[str, Any] ={"""total_size""": param_count * 2} write_json(__snake_case, os.path.join(__snake_case, """pytorch_model.bin.index.json""" ) ) A__ : Optional[Any] =params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 A__ : List[Any] =params["""multiple_of"""] if """multiple_of""" in params else 256 A__ : int =LlamaConfig( hidden_size=__snake_case, intermediate_size=compute_intermediate_size(__snake_case, __snake_case, __snake_case ), num_attention_heads=params["""n_heads"""], num_hidden_layers=params["""n_layers"""], rms_norm_eps=params["""norm_eps"""], num_key_value_heads=__snake_case, ) config.save_pretrained(__snake_case ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) A__ : List[Any] =LlamaForCausalLM.from_pretrained(__snake_case, torch_dtype=torch.floataa, low_cpu_mem_usage=__snake_case ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__snake_case, safe_serialization=__snake_case ) shutil.rmtree(__snake_case ) def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Dict ) -> Tuple: """simple docstring""" A__ : List[Any] =LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}." ) A__ : List[str] =tokenizer_class(__snake_case ) tokenizer.save_pretrained(__snake_case ) def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : List[str] =argparse.ArgumentParser() parser.add_argument( """--input_dir""", help="""Location of LLaMA weights, which contains tokenizer.model and model folders""", ) parser.add_argument( """--model_size""", choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""], ) parser.add_argument( """--output_dir""", help="""Location to write HF model and tokenizer""", ) parser.add_argument("""--safe_serialization""", type=__snake_case, help="""Whether or not to save using `safetensors`.""" ) A__ : Any =parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir, input_base_path=os.path.join(args.input_dir, args.model_size ), model_size=args.model_size, safe_serialization=args.safe_serialization, ) A__ : List[Any] =os.path.join(args.input_dir, """tokenizer.model""" ) write_tokenizer(args.output_dir, __snake_case ) if __name__ == "__main__": main()
136
'''simple docstring''' def __lowerCamelCase ( __snake_case : int ) -> bool: """simple docstring""" if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True A__ : Any =4 A__ : int =(1 << p) - 1 for _ in range(p - 2 ): A__ : Dict =((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
136
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A__ : List[Any] =logging.get_logger(__name__) A__ : Any ="""▁""" A__ : Dict ={"""vocab_file""": """sentencepiece.bpe.model"""} A__ : Dict ={ """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model""" ), } } A__ : str ={ """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off A__ : List[str] =["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class UpperCAmelCase ( snake_case_ ): _lowercase: Any = VOCAB_FILES_NAMES _lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase: Any = PRETRAINED_VOCAB_FILES_MAP _lowercase: List[str] = ['''input_ids''', '''attention_mask'''] _lowercase: List[Any] = [] _lowercase: List[Any] = [] def __init__( self : Optional[int] , __snake_case : Optional[int] , __snake_case : Any="<s>" , __snake_case : Optional[Any]="</s>" , __snake_case : Any="</s>" , __snake_case : Union[str, Any]="<s>" , __snake_case : Dict="<unk>" , __snake_case : Tuple="<pad>" , __snake_case : Any="<mask>" , __snake_case : Union[str, Any]=None , __snake_case : Any=None , __snake_case : List[str]=None , __snake_case : List[Any] = None , __snake_case : Optional[int]=None , __snake_case : Dict=False , **__snake_case : Tuple , ) -> Optional[int]: _lowerCAmelCase = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase = legacy_behaviour super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , tokenizer_file=__snake_case , src_lang=__snake_case , tgt_lang=__snake_case , additional_special_tokens=__snake_case , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__snake_case , **__snake_case , ) _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) _lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase = 1 _lowerCAmelCase = len(self.sp_model ) _lowerCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__snake_case ) } _lowerCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} _lowerCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowerCAmelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _lowerCAmelCase = src_lang if src_lang is not None else """eng_Latn""" _lowerCAmelCase = self.lang_code_to_id[self._src_lang] _lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Any ) -> str: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None _lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict , __snake_case : Tuple ) -> Dict: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowercase__ ( self : Tuple ) -> List[str]: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: return self._src_lang @src_lang.setter def lowercase__ ( self : List[Any] , __snake_case : List[Any] ) -> List[Any]: _lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase__ ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] = None , __snake_case : int = False ) -> Dict: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) _lowerCAmelCase = [1] * len(self.prefix_tokens ) _lowerCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__snake_case )) + suffix_ones return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones def lowercase__ ( self : Tuple , __snake_case : str , __snake_case : Tuple = None ) -> List[str]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase__ ( self : Optional[Any] , __snake_case : str , __snake_case : List[Any] = None ) -> Union[str, Any]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : List[str] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , **__snake_case : List[str] ) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase = src_lang _lowerCAmelCase = self(__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , **__snake_case ) _lowerCAmelCase = self.convert_tokens_to_ids(__snake_case ) _lowerCAmelCase = tgt_lang_id return inputs def lowercase__ ( self : Dict ) -> Dict: _lowerCAmelCase = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self : Dict , __snake_case : Optional[Any] ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def lowercase__ ( self : Dict , __snake_case : Any ) -> Any: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase = self.sp_model.PieceToId(__snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase__ ( self : Union[str, Any] , __snake_case : int ) -> int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self : Optional[Any] , __snake_case : Optional[Any] ) -> Optional[int]: _lowerCAmelCase = """""".join(__snake_case ).replace(__snake_case , """ """ ).strip() return out_string def lowercase__ ( self : Tuple , __snake_case : Optional[int] , __snake_case : List[str] = None ) -> int: if not os.path.isdir(__snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , """wb""" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,) def lowercase__ ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : int = "eng_Latn" , __snake_case : Union[str, Any] = None , __snake_case : Dict = "fra_Latn" , **__snake_case : Any , ) -> Dict: _lowerCAmelCase = src_lang _lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(__snake_case , __snake_case , **__snake_case ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: return self.set_src_lang_special_tokens(self.src_lang ) def lowercase__ ( self : Tuple ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase__ ( self : Any , __snake_case : List[str] ) -> Dict: _lowerCAmelCase = self.lang_code_to_id[src_lang] if self.legacy_behaviour: _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase = [self.cur_lang_code] _lowerCAmelCase = [self.eos_token_id] def lowercase__ ( self : List[str] , __snake_case : str ) -> Optional[Any]: _lowerCAmelCase = self.lang_code_to_id[lang] if self.legacy_behaviour: _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase = [self.cur_lang_code] _lowerCAmelCase = [self.eos_token_id]
70
'''simple docstring''' import os def __snake_case ( UpperCAmelCase_ : str = "matrix.txt" ): with open(os.path.join(os.path.dirname(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) as in_file: lowerCamelCase_ = in_file.read() lowerCamelCase_ = [[int(UpperCAmelCase_ ) for cell in row.split("," )] for row in data.strip().splitlines()] lowerCamelCase_ = [[0 for cell in row] for row in grid] lowerCamelCase_ = len(grid[0] ) lowerCamelCase_ = [[0 for i in range(UpperCAmelCase_ )] for j in range(UpperCAmelCase_ )] lowerCamelCase_ = grid[0][0] for i in range(1 , UpperCAmelCase_ ): lowerCamelCase_ = grid[0][i] + dp[0][i - 1] for i in range(1 , UpperCAmelCase_ ): lowerCamelCase_ = grid[i][0] + dp[i - 1][0] for i in range(1 , UpperCAmelCase_ ): for j in range(1 , UpperCAmelCase_ ): lowerCamelCase_ = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f'''{solution() = }''')
55
0
"""simple docstring""" from __future__ import annotations def lowercase__( __SCREAMING_SNAKE_CASE : str ): return [ord(lowerCamelCase_ ) - 96 for elem in plain] def lowercase__( __SCREAMING_SNAKE_CASE : list[int] ): return "".join(chr(elem + 96 ) for elem in encoded ) def lowercase__( ): lowercase_ : Optional[Any] = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , lowerCamelCase_ ) print('Decoded:' , decode(lowerCamelCase_ ) ) if __name__ == "__main__": main()
358
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : int = set_counts lowercase_ : List[Any] = max(__UpperCamelCase ) lowercase_ : Union[str, Any] = len(__UpperCamelCase ) lowercase_ : Dict = [1] * num_sets lowercase_ : Optional[int] = list(range(__UpperCamelCase ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool: '''simple docstring''' lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase ) lowercase_ : int = self.get_parent(__UpperCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : Tuple = 0 lowercase_ : str = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : str = 0 lowercase_ : Tuple = src_parent lowercase_ : int = self.set_counts[src_parent] lowercase_ : str = max(self.max_set ,__UpperCamelCase ) return True def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
321
0
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} lowercase__ = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } lowercase__ = { 'allenai/longformer-base-4096': 4096, 'allenai/longformer-large-4096': 4096, 'allenai/longformer-large-4096-finetuned-triviaqa': 4096, 'allenai/longformer-base-4096-extra.pos.embd.only': 4096, 'allenai/longformer-large-4096-extra.pos.embd.only': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase_ : List[str] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase__ ) cs.append(2**8 + n ) n += 1 lowerCAmelCase_ : Dict = [chr(lowercase__ ) for n in cs] return dict(zip(lowercase__ , lowercase__ ) ) def __lowerCamelCase ( __UpperCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase_ : Dict = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase_ : List[str] = char return pairs class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Optional[Any] = VOCAB_FILES_NAMES a_ : Any = PRETRAINED_VOCAB_FILES_MAP a_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , a_ : List[str] , a_ : Any , a_ : List[Any]="replace" , a_ : Union[str, Any]="<s>" , a_ : str="</s>" , a_ : str="</s>" , a_ : Any="<s>" , a_ : Optional[Any]="<unk>" , a_ : Tuple="<pad>" , a_ : Optional[Any]="<mask>" , a_ : Any=False , **a_ : str , ): lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : Any = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : str = bytes_to_unicode() lowerCAmelCase_ : Any = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : List[Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Any = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def lowerCamelCase ( self : Tuple ): return len(self.encoder ) def lowerCamelCase ( self : Dict ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase ( self : Union[str, Any] , a_ : Any ): if token in self.cache: return self.cache[token] lowerCAmelCase_ : Optional[int] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : str = min(lowerCAmelCase__ , key=lambda a_ : self.bpe_ranks.get(lowerCAmelCase__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ : Any = bigram lowerCAmelCase_ : List[Any] = [] lowerCAmelCase_ : List[Any] = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : List[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = ''' '''.join(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = word return word def lowerCamelCase ( self : Tuple , a_ : List[Any] ): lowerCAmelCase_ : Optional[int] = [] for token in re.findall(self.pat , lowerCAmelCase__ ): lowerCAmelCase_ : str = ''''''.join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def lowerCamelCase ( self : Dict , a_ : Dict ): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def lowerCamelCase ( self : int , a_ : List[str] ): return self.decoder.get(lowerCAmelCase__ ) def lowerCamelCase ( self : str , a_ : str ): lowerCAmelCase_ : Dict = ''''''.join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCamelCase ( self : Optional[int] , a_ : str , a_ : Optional[str] = None ): if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Dict = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Optional[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Tuple = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCamelCase ( self : Any , a_ : List[int] , a_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] lowerCAmelCase_ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def lowerCamelCase ( self : Union[str, Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): lowerCAmelCase_ : Optional[Any] = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase ( self : str , a_ : Union[str, Any] , a_ : List[str]=False , **a_ : Any ): lowerCAmelCase_ : Tuple = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : int = ''' ''' + text return (text, kwargs)
241
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : str = '''ylacombe/bark-small''' __SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : str = '''en_speaker_1''' __SCREAMING_SNAKE_CASE : Any = '''This is a test string''' __SCREAMING_SNAKE_CASE : int = '''speaker_embeddings_path.json''' __SCREAMING_SNAKE_CASE : int = '''speaker_embeddings''' def __magic_name__( self :List[str] , **lowerCAmelCase__ :Union[str, Any] ) -> Any: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> int: shutil.rmtree(self.tmpdirname ) def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Optional[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__( self :List[str] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __SCREAMING_SNAKE_CASE : str = 35 __SCREAMING_SNAKE_CASE : str = 2 __SCREAMING_SNAKE_CASE : List[Any] = 8 __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''semantic_prompt''': np.ones(lowerCAmelCase__ ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__( self :Tuple ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = BarkProcessor(tokenizer=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = processor(text=self.input_string ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
9
0
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar _lowerCamelCase = TypeVar("""KT""") _lowerCamelCase = TypeVar("""VT""") class _snake_case (Generic[KT, VT]): def __init__( self ,_snake_case = "root" ,_snake_case = None ): UpperCAmelCase_ : Union[str, Any] = key UpperCAmelCase_ : int = value UpperCAmelCase_ : list[Node[KT, VT]] = [] def __repr__( self ): return f'''Node({self.key}: {self.value})''' @property def UpperCamelCase__ ( self ): return len(self.forward ) class _snake_case (Generic[KT, VT]): def __init__( self ,_snake_case = 0.5 ,_snake_case = 16 ): UpperCAmelCase_ : Node[KT, VT] = Node[KT, VT]() UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Optional[Any] = p UpperCAmelCase_ : List[str] = max_level def __str__( self ): UpperCAmelCase_ : str = list(self ) if len(_snake_case ) == 0: return f'''SkipList(level={self.level})''' UpperCAmelCase_ : Union[str, Any] = max((len(str(_snake_case ) ) for item in items) ,default=4 ) UpperCAmelCase_ : Tuple = max(_snake_case ,4 ) + 4 UpperCAmelCase_ : Any = self.head UpperCAmelCase_ : int = [] UpperCAmelCase_ : Union[str, Any] = node.forward.copy() lines.append(f'''[{node.key}]'''.ljust(_snake_case ,"-" ) + "* " * len(_snake_case ) ) lines.append(" " * label_size + "| " * len(_snake_case ) ) while len(node.forward ) != 0: UpperCAmelCase_ : Dict = node.forward[0] lines.append( f'''[{node.key}]'''.ljust(_snake_case ,"-" ) + " ".join(str(n.key ) if n.key == node.key else "|" for n in forwards ) ) lines.append(" " * label_size + "| " * len(_snake_case ) ) UpperCAmelCase_ : str = node.forward lines.append("None".ljust(_snake_case ) + "* " * len(_snake_case ) ) return f'''SkipList(level={self.level})\n''' + "\n".join(_snake_case ) def __iter__( self ): UpperCAmelCase_ : Optional[Any] = self.head while len(node.forward ) != 0: yield node.forward[0].key UpperCAmelCase_ : List[str] = node.forward[0] def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = 1 while random() < self.p and level < self.max_level: level += 1 return level def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Union[str, Any] = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: UpperCAmelCase_ : List[str] = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(_snake_case ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ , UpperCAmelCase_ : Any = self._locate_node(_snake_case ) if node is not None: for i, update_node in enumerate(_snake_case ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: UpperCAmelCase_ : Optional[int] = node.forward[i] else: UpperCAmelCase_ : List[str] = update_node.forward[:i] def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): UpperCAmelCase_ , UpperCAmelCase_ : int = self._locate_node(_snake_case ) if node is not None: UpperCAmelCase_ : List[Any] = value else: UpperCAmelCase_ : Any = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 ,_snake_case ): update_vector.append(self.head ) UpperCAmelCase_ : Tuple = level UpperCAmelCase_ : Union[str, Any] = Node(_snake_case ,_snake_case ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(_snake_case ) else: UpperCAmelCase_ : Optional[int] = new_node def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._locate_node(_snake_case ) if node is not None: return node.value return None def a__ ( ) -> Dict: """simple docstring""" UpperCAmelCase_ : Any = SkipList() skip_list.insert("Key1" , 3 ) skip_list.insert("Key2" , 12 ) skip_list.insert("Key3" , 41 ) skip_list.insert("Key4" , -19 ) UpperCAmelCase_ : List[Any] = skip_list.head UpperCAmelCase_ : Dict = {} while node.level != 0: UpperCAmelCase_ : str = node.forward[0] UpperCAmelCase_ : Union[str, Any] = node.value assert len(_SCREAMING_SNAKE_CASE ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def a__ ( ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = SkipList() skip_list.insert("Key1" , 10 ) skip_list.insert("Key1" , 12 ) skip_list.insert("Key5" , 7 ) skip_list.insert("Key7" , 10 ) skip_list.insert("Key10" , 5 ) skip_list.insert("Key7" , 7 ) skip_list.insert("Key5" , 5 ) skip_list.insert("Key10" , 10 ) UpperCAmelCase_ : Optional[int] = skip_list.head UpperCAmelCase_ : int = {} while node.level != 0: UpperCAmelCase_ : Optional[int] = node.forward[0] UpperCAmelCase_ : Any = node.value if len(_SCREAMING_SNAKE_CASE ) != 4: print() assert len(_SCREAMING_SNAKE_CASE ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def a__ ( ) -> str: """simple docstring""" UpperCAmelCase_ : List[str] = SkipList() assert skip_list.find("Some key" ) is None def a__ ( ) -> List[str]: """simple docstring""" UpperCAmelCase_ : int = SkipList() skip_list.insert("Key2" , 20 ) assert skip_list.find("Key2" ) == 20 skip_list.insert("Some Key" , 10 ) skip_list.insert("Key2" , 8 ) skip_list.insert("V" , 13 ) assert skip_list.find("Y" ) is None assert skip_list.find("Key2" ) == 8 assert skip_list.find("Some Key" ) == 10 assert skip_list.find("V" ) == 13 def a__ ( ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : str = SkipList() skip_list.delete("Some key" ) assert len(skip_list.head.forward ) == 0 def a__ ( ) -> Dict: """simple docstring""" UpperCAmelCase_ : Optional[Any] = SkipList() skip_list.insert("Key1" , 12 ) skip_list.insert("V" , 13 ) skip_list.insert("X" , 14 ) skip_list.insert("Key2" , 15 ) skip_list.delete("V" ) skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("Key2" ) is None def a__ ( ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : str = SkipList() skip_list.insert("Key1" , 12 ) skip_list.insert("V" , 13 ) skip_list.insert("X" , 14 ) skip_list.insert("Key2" , 15 ) skip_list.delete("V" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) == 14 assert skip_list.find("Key1" ) == 12 assert skip_list.find("Key2" ) == 15 skip_list.delete("X" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) == 12 assert skip_list.find("Key2" ) == 15 skip_list.delete("Key1" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) == 15 skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) is None def a__ ( ) -> str: """simple docstring""" UpperCAmelCase_ : str = SkipList() skip_list.insert("Key1" , 12 ) skip_list.insert("V" , 13 ) skip_list.insert("X" , 1_42 ) skip_list.insert("Key2" , 15 ) skip_list.delete("X" ) def traverse_keys(_SCREAMING_SNAKE_CASE : Any ): yield node.key for forward_node in node.forward: yield from traverse_keys(_SCREAMING_SNAKE_CASE ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def a__ ( ) -> Union[str, Any]: """simple docstring""" def is_sorted(_SCREAMING_SNAKE_CASE : Dict ): return all(next_item >= item for item, next_item in zip(_SCREAMING_SNAKE_CASE , lst[1:] ) ) UpperCAmelCase_ : Any = SkipList() for i in range(10 ): skip_list.insert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) def a__ ( ) -> List[str]: """simple docstring""" for _ in range(1_00 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def a__ ( ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : str = SkipList() skip_list.insert(2 , "2" ) skip_list.insert(4 , "4" ) skip_list.insert(6 , "4" ) skip_list.insert(4 , "5" ) skip_list.insert(8 , "4" ) skip_list.insert(9 , "4" ) skip_list.delete(4 ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
67
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class _snake_case (__SCREAMING_SNAKE_CASE): __A : int ="mra" def __init__( self ,_snake_case=5_02_65 ,_snake_case=7_68 ,_snake_case=12 ,_snake_case=12 ,_snake_case=30_72 ,_snake_case="gelu" ,_snake_case=0.1 ,_snake_case=0.1 ,_snake_case=5_12 ,_snake_case=1 ,_snake_case=0.02 ,_snake_case=1E-5 ,_snake_case="absolute" ,_snake_case=4 ,_snake_case="full" ,_snake_case=0 ,_snake_case=0 ,_snake_case=1 ,_snake_case=0 ,_snake_case=2 ,**_snake_case ,): super().__init__(pad_token_id=_snake_case ,bos_token_id=_snake_case ,eos_token_id=_snake_case ,**_snake_case ) UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : Dict = type_vocab_size UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Tuple = position_embedding_type UpperCAmelCase_ : Optional[Any] = block_per_row UpperCAmelCase_ : Any = approx_mode UpperCAmelCase_ : Dict = initial_prior_first_n_blocks UpperCAmelCase_ : str = initial_prior_diagonal_n_blocks
67
1
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = {'vocab_file': 'spiece.model'} lowerCamelCase : Tuple = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } lowerCamelCase : Optional[int] = { 'google/bigbird-roberta-base': 4_0_9_6, 'google/bigbird-roberta-large': 4_0_9_6, 'google/bigbird-base-trivia-itc': 4_0_9_6, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] _snake_case = [] def __init__( self , A , A="<unk>" , A="<s>" , A="</s>" , A="<pad>" , A="[SEP]" , A="[MASK]" , A="[CLS]" , A = None , **A , ) -> None: snake_case : List[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else bos_token snake_case : List[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token snake_case : Optional[int] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token snake_case : Any = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token snake_case : str = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else cls_token snake_case : List[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sep_token=A , mask_token=A , cls_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Optional[Any] = vocab_file snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> Optional[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : int = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: snake_case : Optional[int] = self.__dict__.copy() snake_case : Dict = None return state def __setstate__( self , A ) -> Tuple: snake_case : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : int = {} snake_case : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Any: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> Optional[Any]: snake_case : List[str] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Any: snake_case : Optional[Any] = [] snake_case : Union[str, Any] = """""" snake_case : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token snake_case : Tuple = True snake_case : Any = [] else: current_sub_tokens.append(A ) snake_case : Optional[Any] = False out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A = False , A = None , A = True , **A , ) -> str: snake_case : str = kwargs.pop("""use_source_tokenizer""" , A ) snake_case : Optional[Any] = self.convert_ids_to_tokens(A , skip_special_tokens=A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case : Any = [] snake_case : str = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A ) ) snake_case : Tuple = [] sub_texts.append(A ) else: current_sub_text.append(A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case : Any = re.sub(r""" (\[(MASK|SEP)\])""" , r"""\1""" , """ """.join(A ) ) else: snake_case : Union[str, Any] = """""".join(A ) snake_case : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case : List[str] = self.clean_up_tokenization(A ) return clean_text else: return text def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Dict = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def UpperCAmelCase ( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case : Union[str, Any] = [self.cls_token_id] snake_case : Dict = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : Any = [self.sep_token_id] snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
124
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""image_processor""", """tokenizer"""] _snake_case = """FlavaImageProcessor""" _snake_case = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , A=None , A=None , **A ) -> Tuple: snake_case : str = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A , ) snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) snake_case : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A , A ) snake_case : Dict = self.image_processor def __call__( self , A = None , A = None , A = True , A = False , A = False , A = None , A = 0 , A = None , A = None , A = None , A = None , A = None , A = False , A = False , A = False , A = False , A = True , A = None , **A , ) -> Tuple: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case : str = self.tokenizer( text=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_token_type_ids=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_length=A , verbose=A , return_tensors=A , **A , ) if images is not None: snake_case : Tuple = self.image_processor( A , return_image_mask=A , return_codebook_pixels=A , return_tensors=A , **A , ) if text is not None and images is not None: encoding.update(A ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A ) , tensor_type=A ) def UpperCAmelCase ( self , *A , **A ) -> List[str]: return self.tokenizer.batch_decode(*A , **A ) def UpperCAmelCase ( self , *A , **A ) -> int: return self.tokenizer.decode(*A , **A ) @property def UpperCAmelCase ( self ) -> str: snake_case : Any = self.tokenizer.model_input_names snake_case : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> Dict: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , A , ) return self.image_processor
124
1
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class lowerCAmelCase ( lowerCamelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = """efficientformer""" def __init__( self , lowerCAmelCase__ = [3, 2, 6, 4] , lowerCAmelCase__ = [48, 96, 224, 448] , lowerCAmelCase__ = [True, True, True, True] , lowerCAmelCase__ = 448 , lowerCAmelCase__ = 32 , lowerCAmelCase__ = 4 , lowerCAmelCase__ = 7 , lowerCAmelCase__ = 5 , lowerCAmelCase__ = 8 , lowerCAmelCase__ = 4 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 16 , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = 1e-5 , lowerCAmelCase__ = "gelu" , lowerCAmelCase__ = 0.02 , lowerCAmelCase__ = 1e-12 , lowerCAmelCase__ = 224 , lowerCAmelCase__ = 1e-05 , **lowerCAmelCase__ , ) -> Optional[Any]: super().__init__(**__snake_case ) SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_expansion_ratio SCREAMING_SNAKE_CASE = downsamples SCREAMING_SNAKE_CASE = dim SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = resolution SCREAMING_SNAKE_CASE = pool_size SCREAMING_SNAKE_CASE = downsample_patch_size SCREAMING_SNAKE_CASE = downsample_stride SCREAMING_SNAKE_CASE = downsample_pad SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = num_metaad_blocks SCREAMING_SNAKE_CASE = distillation SCREAMING_SNAKE_CASE = use_layer_scale SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = batch_norm_eps
357
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
38
0