code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : int ) -> int: '''simple docstring''' __lowerCAmelCase = [1] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0, 0, 0 __lowerCAmelCase = ugly_nums[ia] * 2 __lowerCAmelCase = ugly_nums[ia] * 3 __lowerCAmelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case_ ): __lowerCAmelCase = min(snake_case_ , snake_case_ , snake_case_ ) ugly_nums.append(snake_case_ ) if next_num == next_a: ia += 1 __lowerCAmelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __lowerCAmelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __lowerCAmelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'{ugly_numbers(200) = }')
229
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : list[int] , snake_case_ : list[int] ) -> tuple[float, float]: '''simple docstring''' if not len(snake_case_ ) == len(snake_case_ ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = equationa __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = equationa # Calculate the determinants of the matrices __lowerCAmelCase = aa * ba - aa * ba __lowerCAmelCase = ca * ba - ca * ba __lowerCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __lowerCAmelCase = determinant_x / determinant __lowerCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
229
1
"""simple docstring""" from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class _lowerCamelCase ( a_ ): _lowerCamelCase :Dict = "autoformer" _lowerCamelCase :Tuple = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : str , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : str = "student_t" , UpperCamelCase : str = "nll" , UpperCamelCase : int = 1 , UpperCamelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , UpperCamelCase : bool = True , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : int = 64 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : int = 32 , UpperCamelCase : int = 32 , UpperCamelCase : str = "gelu" , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : int = 1_00 , UpperCamelCase : float = 0.02 , UpperCamelCase : bool = True , UpperCamelCase : Any=True , UpperCamelCase : int = 10 , UpperCamelCase : int = 25 , UpperCamelCase : int = 3 , **UpperCamelCase : List[Any] , ) -> List[Any]: """simple docstring""" # time series specific configuration lowerCAmelCase__ : Optional[int] = prediction_length lowerCAmelCase__ : Optional[Any] = context_length if context_length is not None else prediction_length lowerCAmelCase__ : List[Any] = distribution_output lowerCAmelCase__ : Union[str, Any] = loss lowerCAmelCase__ : List[Any] = input_size lowerCAmelCase__ : Optional[Any] = num_time_features lowerCAmelCase__ : int = lags_sequence lowerCAmelCase__ : Optional[int] = scaling lowerCAmelCase__ : str = num_dynamic_real_features lowerCAmelCase__ : str = num_static_real_features lowerCAmelCase__ : Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(UpperCamelCase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) lowerCAmelCase__ : List[str] = cardinality else: lowerCAmelCase__ : Tuple = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(UpperCamelCase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) lowerCAmelCase__ : Optional[Any] = embedding_dimension else: lowerCAmelCase__ : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase__ : Any = num_parallel_samples # Transformer architecture configuration lowerCAmelCase__ : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase__ : int = d_model lowerCAmelCase__ : Union[str, Any] = encoder_attention_heads lowerCAmelCase__ : int = decoder_attention_heads lowerCAmelCase__ : List[str] = encoder_ffn_dim lowerCAmelCase__ : List[Any] = decoder_ffn_dim lowerCAmelCase__ : Optional[Any] = encoder_layers lowerCAmelCase__ : Tuple = decoder_layers lowerCAmelCase__ : Optional[Any] = dropout lowerCAmelCase__ : Optional[int] = attention_dropout lowerCAmelCase__ : Optional[int] = activation_dropout lowerCAmelCase__ : Optional[Any] = encoder_layerdrop lowerCAmelCase__ : Dict = decoder_layerdrop lowerCAmelCase__ : Tuple = activation_function lowerCAmelCase__ : List[Any] = init_std lowerCAmelCase__ : Union[str, Any] = use_cache # Autoformer lowerCAmelCase__ : int = label_length lowerCAmelCase__ : Optional[int] = moving_average lowerCAmelCase__ : List[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=UpperCamelCase , **UpperCamelCase ) @property def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
212
"""simple docstring""" import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask _A = logging.getLogger(__name__) class _lowerCamelCase ( a_ ): _lowerCamelCase :Union[str, Any] = "token-classification" def __init__( self : Dict , UpperCamelCase : Any ) -> Optional[int]: """simple docstring""" if type(UpperCamelCase ) == dict: lowerCAmelCase__ : Optional[int] = Namespace(**UpperCamelCase ) lowerCAmelCase__ : Tuple = import_module("""tasks""" ) try: lowerCAmelCase__ : Union[str, Any] = getattr(UpperCamelCase , hparams.task_type ) lowerCAmelCase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) lowerCAmelCase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowerCAmelCase__ : Dict = CrossEntropyLoss().ignore_index super().__init__(UpperCamelCase , len(self.labels ) , self.mode ) def _lowerCAmelCase ( self : int , **UpperCamelCase : List[Any] ) -> str: """simple docstring""" return self.model(**UpperCamelCase ) def _lowerCAmelCase ( self : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any ) -> Dict: """simple docstring""" lowerCAmelCase__ : Tuple = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": lowerCAmelCase__ : List[str] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCAmelCase__ : Tuple = self(**UpperCamelCase ) lowerCAmelCase__ : List[Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.hparams for mode in ["train", "dev", "test"]: lowerCAmelCase__ : Union[str, Any] = self._feature_file(UpperCamelCase ) if os.path.exists(UpperCamelCase ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , UpperCamelCase ) lowerCAmelCase__ : Tuple = torch.load(UpperCamelCase ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) lowerCAmelCase__ : Union[str, Any] = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCamelCase ) lowerCAmelCase__ : Tuple = self.token_classification_task.convert_examples_to_features( UpperCamelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCamelCase , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , UpperCamelCase ) torch.save(UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : bool = False ) -> DataLoader: """simple docstring""" lowerCAmelCase__ : int = self._feature_file(UpperCamelCase ) logger.info("""Loading features from cached file %s""" , UpperCamelCase ) lowerCAmelCase__ : int = torch.load(UpperCamelCase ) lowerCAmelCase__ : str = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowerCAmelCase__ : Any = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowerCAmelCase__ : Optional[int] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowerCAmelCase__ : Union[str, Any] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowerCAmelCase__ : Union[str, Any] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , batch_size=UpperCamelCase ) def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] ) -> List[str]: """simple docstring""" """Compute validation""" "" lowerCAmelCase__ : str = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": lowerCAmelCase__ : List[Any] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCAmelCase__ : Union[str, Any] = self(**UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = outputs[:2] lowerCAmelCase__ : Optional[Any] = logits.detach().cpu().numpy() lowerCAmelCase__ : Optional[Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCAmelCase ( self : Tuple , UpperCamelCase : Optional[int] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : str = torch.stack([x["""val_loss"""] for x in outputs] ).mean() lowerCAmelCase__ : Any = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) lowerCAmelCase__ : List[str] = np.argmax(UpperCamelCase , axis=2 ) lowerCAmelCase__ : str = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) lowerCAmelCase__ : Any = dict(enumerate(self.labels ) ) lowerCAmelCase__ : str = [[] for _ in range(out_label_ids.shape[0] )] lowerCAmelCase__ : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowerCAmelCase__ : Optional[int] = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(UpperCamelCase , UpperCamelCase ), """precision""": precision_score(UpperCamelCase , UpperCamelCase ), """recall""": recall_score(UpperCamelCase , UpperCamelCase ), """f1""": fa_score(UpperCamelCase , UpperCamelCase ), } lowerCAmelCase__ : Dict = dict(results.items() ) lowerCAmelCase__ : List[Any] = results return ret, preds_list, out_label_list def _lowerCAmelCase ( self : List[str] , UpperCamelCase : List[Any] ) -> Any: """simple docstring""" # when stable lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = self._eval_end(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCAmelCase ( self : Dict , UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" # updating to test_epoch_end instead of deprecated test_end lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self._eval_end(UpperCamelCase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowerCAmelCase__ : int = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCAmelCase ( UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] ) -> List[str]: """simple docstring""" # Add NER specific options BaseTransformer.add_model_specific_args(UpperCamelCase , UpperCamelCase ) parser.add_argument( """--task_type""" , default="""NER""" , type=UpperCamelCase , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=1_28 , type=UpperCamelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=UpperCamelCase , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=UpperCamelCase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": _A = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) _A = NERTransformer.add_model_specific_args(parser, os.getcwd()) _A = parser.parse_args() _A = NERTransformer(args) _A = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 _A = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) _A = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
212
1
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller _lowercase = 3 def _snake_case ( snake_case__ : int ): print('Generating primitive root of p' ) while True: A = random.randrange(3 , snake_case__ ) if pow(snake_case__ , 2 , snake_case__ ) == 1: continue if pow(snake_case__ , snake_case__ , snake_case__ ) == 1: continue return g def _snake_case ( snake_case__ : int ): print('Generating prime p...' ) A = rabin_miller.generate_large_prime(snake_case__ ) # select large prime number. A = primitive_root(snake_case__ ) # one primitive root on modulo p. A = random.randrange(3 , snake_case__ ) # private_key -> have to be greater than 2 for safety. A = cryptomath.find_mod_inverse(pow(snake_case__ , snake_case__ , snake_case__ ) , snake_case__ ) A = (key_size, e_a, e_a, p) A = (key_size, d) return public_key, private_key def _snake_case ( snake_case__ : str , snake_case__ : int ): if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ): print('\nWARNING:' ) print( F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.' ) sys.exit() A , A = generate_key(snake_case__ ) print(F'\nWriting public key to file {name}_pubkey.txt...' ) with open(F'{name}_pubkey.txt' , 'w' ) as fo: fo.write(F'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}' ) print(F'Writing private key to file {name}_privkey.txt...' ) with open(F'{name}_privkey.txt' , 'w' ) as fo: fo.write(F'{private_key[0]},{private_key[1]}' ) def _snake_case ( ): print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
74
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCamelCase_ ( snake_case_ : Any ) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def UpperCamelCase_ ( snake_case_ : Optional[Any] ) -> List[Any]: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = emb.weight.shape __lowerCAmelCase = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) __lowerCAmelCase = emb.weight.data return lin_layer def UpperCamelCase_ ( snake_case_ : Any ) -> Any: '''simple docstring''' __lowerCAmelCase = torch.load(snake_case_ , map_location="""cpu""" ) __lowerCAmelCase = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] __lowerCAmelCase = mam_aaa["""model"""] remove_ignore_keys_(snake_case_ ) __lowerCAmelCase = state_dict["""encoder.embed_tokens.weight"""].shape[0] __lowerCAmelCase = MaMaaaConfig( vocab_size=snake_case_ , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) __lowerCAmelCase = state_dict["""decoder.embed_tokens.weight"""] __lowerCAmelCase = MaMaaaForConditionalGeneration(snake_case_ ) model.model.load_state_dict(snake_case_ , strict=snake_case_ ) __lowerCAmelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _A : str = parser.parse_args() _A : Optional[int] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
229
0
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : List[Any] = embed_dim __UpperCAmelCase : str = depths __UpperCAmelCase : Dict = num_heads __UpperCAmelCase : str = window_size __UpperCAmelCase : int = mlp_ratio __UpperCAmelCase : Union[str, Any] = qkv_bias __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Optional[int] = use_absolute_embeddings __UpperCAmelCase : Any = patch_norm __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : Any = scope __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : int = encoder_stride def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) __UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = self.type_sequence_label_size __UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase : List[Any] = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = SwinvaModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 ) def __A ( self ) -> Any: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(__UpperCAmelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : str = outputs.attentions __UpperCAmelCase : Any = len(self.model_tester.depths ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : int = config.window_size**2 __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : Dict = len(__UpperCAmelCase ) # Check attention is always last and order is fine __UpperCAmelCase : Any = True __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): __UpperCAmelCase : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : Optional[int] = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) ) __UpperCAmelCase : Tuple = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # Swinv2 has a different seq_length __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : int = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __UpperCAmelCase : str = reshaped_hidden_states[0].shape __UpperCAmelCase : Any = ( reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : int = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Tuple = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> int: '''simple docstring''' return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __UpperCAmelCase ) __UpperCAmelCase : Tuple = self.default_image_processor __UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
350
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) __UpperCAmelCase : List[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) __UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) __UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' import torch __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = pipeline("""text-classification""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : int = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __UpperCAmelCase : Union[str, Any] = """HuggingFace is in""" __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""] __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase ) __UpperCAmelCase : Any = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , ) __UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(__UpperCAmelCase ): text_classifier(__UpperCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
16
0
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__ : def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: __lowerCamelCase = data __lowerCamelCase = [0X67_45_23_01, 0XEF_CD_AB_89, 0X98_BA_DC_FE, 0X10_32_54_76, 0XC3_D2_E1_F0] @staticmethod def __A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: return ((n << b) | (n >> (32 - b))) & 0XFF_FF_FF_FF def __A ( self : Optional[Any] ) -> Any: __lowerCamelCase = b'''\x80''' + b'''\x00''' * (63 - (len(self.data ) + 8) % 64) __lowerCamelCase = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def __A ( self : Optional[int] ) -> List[str]: return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> int: __lowerCamelCase = list(struct.unpack('''>16L''' , SCREAMING_SNAKE_CASE__ ) ) + [0] * 64 for i in range(16 , 80 ): __lowerCamelCase = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __A ( self : Union[str, Any] ) -> List[str]: __lowerCamelCase = self.padding() __lowerCamelCase = self.split_blocks() for block in self.blocks: __lowerCamelCase = self.expand_block(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.h for i in range(0 , 80 ): if 0 <= i < 20: __lowerCamelCase = (b & c) | ((~b) & d) __lowerCamelCase = 0X5A_82_79_99 elif 20 <= i < 40: __lowerCamelCase = b ^ c ^ d __lowerCamelCase = 0X6E_D9_EB_A1 elif 40 <= i < 60: __lowerCamelCase = (b & c) | (b & d) | (c & d) __lowerCamelCase = 0X8F_1B_BC_DC elif 60 <= i < 80: __lowerCamelCase = b ^ c ^ d __lowerCamelCase = 0XCA_62_C1_D6 __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = ( self.rotate(SCREAMING_SNAKE_CASE__ , 5 ) + f + e + k + expanded_block[i] & 0XFF_FF_FF_FF, a, self.rotate(SCREAMING_SNAKE_CASE__ , 30 ), c, d, ) __lowerCamelCase = ( self.h[0] + a & 0XFF_FF_FF_FF, self.h[1] + b & 0XFF_FF_FF_FF, self.h[2] + c & 0XFF_FF_FF_FF, self.h[3] + d & 0XFF_FF_FF_FF, self.h[4] + e & 0XFF_FF_FF_FF, ) return ("{:08x}" * 5).format(*self.h ) def __magic_name__ ( ) -> Union[str, Any]: __lowerCamelCase = B'''Test String''' assert SHAaHash(__lowerCAmelCase ).final_hash() == hashlib.shaa(__lowerCAmelCase ).hexdigest() # noqa: S324 def __magic_name__ ( ) -> List[Any]: __lowerCamelCase = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: __lowerCamelCase = f.read() else: __lowerCamelCase = bytes(__lowerCAmelCase , '''utf-8''' ) print(SHAaHash(__lowerCAmelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
270
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ : Dict = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowercase ): a__ : Any = """mask2former""" a__ : Dict = ["""swin"""] a__ : Any = {"""hidden_size""": """hidden_dim"""} def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Dict] = None , SCREAMING_SNAKE_CASE__ : int = 2_56 , SCREAMING_SNAKE_CASE__ : int = 2_56 , SCREAMING_SNAKE_CASE__ : int = 2_56 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : str = "relu" , SCREAMING_SNAKE_CASE__ : int = 6 , SCREAMING_SNAKE_CASE__ : int = 10 , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : int = 20_48 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : int = 4 , SCREAMING_SNAKE_CASE__ : int = 2_55 , SCREAMING_SNAKE_CASE__ : int = 1_00 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 2.0 , SCREAMING_SNAKE_CASE__ : float = 5.0 , SCREAMING_SNAKE_CASE__ : float = 5.0 , SCREAMING_SNAKE_CASE__ : int = 1_25_44 , SCREAMING_SNAKE_CASE__ : float = 3.0 , SCREAMING_SNAKE_CASE__ : float = 0.75 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : List[int] = [4, 8, 16, 32] , SCREAMING_SNAKE_CASE__ : bool = None , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> str: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''' ) __lowerCamelCase = CONFIG_MAPPING['''swin''']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=SCREAMING_SNAKE_CASE__ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = backbone_config.pop('''model_type''' ) __lowerCamelCase = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) __lowerCamelCase = backbone_config __lowerCamelCase = feature_size __lowerCamelCase = mask_feature_size __lowerCamelCase = hidden_dim __lowerCamelCase = encoder_feedforward_dim __lowerCamelCase = activation_function __lowerCamelCase = encoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = dropout __lowerCamelCase = dim_feedforward __lowerCamelCase = pre_norm __lowerCamelCase = enforce_input_projection __lowerCamelCase = common_stride __lowerCamelCase = ignore_value __lowerCamelCase = num_queries __lowerCamelCase = no_object_weight __lowerCamelCase = class_weight __lowerCamelCase = mask_weight __lowerCamelCase = dice_weight __lowerCamelCase = train_num_points __lowerCamelCase = oversample_ratio __lowerCamelCase = importance_sample_ratio __lowerCamelCase = init_std __lowerCamelCase = init_xavier_std __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = feature_strides __lowerCamelCase = output_auxiliary_logits __lowerCamelCase = decoder_layers super().__init__(**SCREAMING_SNAKE_CASE__ ) @classmethod def __A ( cls : Any , SCREAMING_SNAKE_CASE__ : PretrainedConfig , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: return cls( backbone_config=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def __A ( self : Any ) -> Dict[str, any]: __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.backbone_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
270
1
from abc import ABC, abstractmethod from typing import List, Optional class lowercase ( A__ ): '''simple docstring''' def __init__( self ) -> Tuple: """simple docstring""" # test for the above condition self.test() def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = False while not completed: if counter == 1: self.reset() UpperCAmelCase = self.advance() if not self.does_advance(_snake_case ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.update(_snake_case ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def snake_case_ ( self ) -> Any: """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def snake_case_ ( self , _snake_case ) -> Dict: """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def snake_case_ ( self , _snake_case ) -> str: """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def snake_case_ ( self ) -> Dict: """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def snake_case_ ( self , _snake_case=False ) -> int: """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class lowercase ( A__ ): '''simple docstring''' def __init__( self , _snake_case ) -> Any: """simple docstring""" super(_snake_case , self ).__init__() if not isinstance(_snake_case , _snake_case ) or len(_snake_case ) == 0: raise ValueError(f"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(_snake_case , _snake_case ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) UpperCAmelCase = token_ids UpperCAmelCase = len(self.token_ids ) UpperCAmelCase = -1 # the index of the currently fulfilled step UpperCAmelCase = False def snake_case_ ( self ) -> List[Any]: """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def snake_case_ ( self , _snake_case ) -> List[Any]: """simple docstring""" if not isinstance(_snake_case , _snake_case ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(_snake_case )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def snake_case_ ( self , _snake_case ) -> int: """simple docstring""" if not isinstance(_snake_case , _snake_case ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(_snake_case )}""" ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False if self.does_advance(_snake_case ): self.fulfilled_idx += 1 UpperCAmelCase = True if self.fulfilled_idx == (self.seqlen - 1): UpperCAmelCase = True UpperCAmelCase = completed else: # failed to make progress. UpperCAmelCase = True self.reset() return stepped, completed, reset def snake_case_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = False UpperCAmelCase = 0 def snake_case_ ( self ) -> List[Any]: """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def snake_case_ ( self , _snake_case=False ) -> List[str]: """simple docstring""" UpperCAmelCase = PhrasalConstraint(self.token_ids ) if stateful: UpperCAmelCase = self.seqlen UpperCAmelCase = self.fulfilled_idx UpperCAmelCase = self.completed return new_constraint class lowercase : '''simple docstring''' def __init__( self , _snake_case , _snake_case=True ) -> List[str]: """simple docstring""" UpperCAmelCase = max([len(_snake_case ) for one in nested_token_ids] ) UpperCAmelCase = {} for token_ids in nested_token_ids: UpperCAmelCase = root for tidx, token_id in enumerate(_snake_case ): if token_id not in level: UpperCAmelCase = {} UpperCAmelCase = level[token_id] if no_subsets and self.has_subsets(_snake_case , _snake_case ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' f""" {nested_token_ids}.""" ) UpperCAmelCase = root def snake_case_ ( self , _snake_case ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.trie for current_token in current_seq: UpperCAmelCase = start[current_token] UpperCAmelCase = list(start.keys() ) return next_tokens def snake_case_ ( self , _snake_case ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.next_tokens(_snake_case ) return len(_snake_case ) == 0 def snake_case_ ( self , _snake_case ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = list(root.values() ) if len(_snake_case ) == 0: return 1 else: return sum([self.count_leaves(_snake_case ) for nn in next_nodes] ) def snake_case_ ( self , _snake_case , _snake_case ) -> Any: """simple docstring""" UpperCAmelCase = self.count_leaves(_snake_case ) return len(_snake_case ) != leaf_count class lowercase ( A__ ): '''simple docstring''' def __init__( self , _snake_case ) -> Any: """simple docstring""" super(_snake_case , self ).__init__() if not isinstance(_snake_case , _snake_case ) or len(_snake_case ) == 0: raise ValueError(f"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(_snake_case , _snake_case ) for token_ids in nested_token_ids ): raise ValueError(f"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(_snake_case , _snake_case ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) UpperCAmelCase = DisjunctiveTrie(_snake_case ) UpperCAmelCase = nested_token_ids UpperCAmelCase = self.trie.max_height UpperCAmelCase = [] UpperCAmelCase = False def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.trie.next_tokens(self.current_seq ) if len(_snake_case ) == 0: return None else: return token_list def snake_case_ ( self , _snake_case ) -> Optional[Any]: """simple docstring""" if not isinstance(_snake_case , _snake_case ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_snake_case )}""" ) UpperCAmelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def snake_case_ ( self , _snake_case ) -> str: """simple docstring""" if not isinstance(_snake_case , _snake_case ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_snake_case )}""" ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False if self.does_advance(_snake_case ): self.current_seq.append(_snake_case ) UpperCAmelCase = True else: UpperCAmelCase = True self.reset() UpperCAmelCase = self.trie.reached_leaf(self.current_seq ) UpperCAmelCase = completed return stepped, completed, reset def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = False UpperCAmelCase = [] def snake_case_ ( self ) -> List[Any]: """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def snake_case_ ( self , _snake_case=False ) -> int: """simple docstring""" UpperCAmelCase = DisjunctiveConstraint(self.token_ids ) if stateful: UpperCAmelCase = self.seqlen UpperCAmelCase = self.current_seq UpperCAmelCase = self.completed return new_constraint class lowercase : '''simple docstring''' def __init__( self , _snake_case ) -> Dict: """simple docstring""" UpperCAmelCase = constraints # max # of steps required to fulfill a given constraint UpperCAmelCase = max([c.seqlen for c in constraints] ) UpperCAmelCase = len(_snake_case ) UpperCAmelCase = False self.init_state() def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = None UpperCAmelCase = [constraint.copy(stateful=_snake_case ) for constraint in self.constraints] def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCAmelCase = constraint.advance() if isinstance(_snake_case , _snake_case ): token_list.append(_snake_case ) elif isinstance(_snake_case , _snake_case ): token_list.extend(_snake_case ) else: UpperCAmelCase = self.inprogress_constraint.advance() if isinstance(_snake_case , _snake_case ): token_list.append(_snake_case ) elif isinstance(_snake_case , _snake_case ): token_list.extend(_snake_case ) if len(_snake_case ) == 0: return None else: return token_list def snake_case_ ( self , _snake_case ) -> int: """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCAmelCase , UpperCAmelCase = self.add(_snake_case ) # the entire list of constraints are fulfilled if self.completed: break def snake_case_ ( self , _snake_case ) -> Union[str, Any]: """simple docstring""" if not isinstance(_snake_case , _snake_case ): raise ValueError(f"""`token_id` should be an `int`, but is `{token_id}`.""" ) UpperCAmelCase , UpperCAmelCase = False, False if self.completed: UpperCAmelCase = True UpperCAmelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.inprogress_constraint.update(_snake_case ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_snake_case ) ) UpperCAmelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCAmelCase = None if len(self.pending_constraints ) == 0: # we're done! UpperCAmelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_snake_case ): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = pending_constraint.update(_snake_case ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_snake_case ) UpperCAmelCase = None if not complete and stepped: UpperCAmelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCAmelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCAmelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def snake_case_ ( self , _snake_case=True ) -> Dict: """simple docstring""" UpperCAmelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCAmelCase = [ constraint.copy(stateful=_snake_case ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCAmelCase = self.inprogress_constraint.copy(stateful=_snake_case ) UpperCAmelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
152
import string def _lowerCAmelCase ( A__: str ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase = '''''' for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase = string.ascii_uppercase.find(A__ ) UpperCAmelCase = num - key if num < 0: UpperCAmelCase = num + len(string.ascii_uppercase ) UpperCAmelCase = translated + string.ascii_uppercase[num] else: UpperCAmelCase = translated + symbol print(F"""Decryption using Key #{key}: {translated}""" ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = input('''Encrypted message: ''' ) UpperCAmelCase = message.upper() decrypt(A__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
152
1
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _a ( a :Dict , a :Union[str, Any] , a :Dict , a :str , a :str ) -> List[Any]: # load base model a = StableDiffusionPipeline.from_pretrained(a , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors a = load_file(a ) a = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: a = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) a = pipeline.text_encoder else: a = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) a = pipeline.unet # find the target layer a = layer_infos.pop(0 ) while len(a ) > -1: try: a = curr_layer.__getattr__(a ) if len(a ) > 0: a = layer_infos.pop(0 ) elif len(a ) == 0: break except Exception: if len(a ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: a = layer_infos.pop(0 ) a = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(a ) else: pair_keys.append(a ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: a = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) a = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a , a ).unsqueeze(2 ).unsqueeze(3 ) else: a = state_dict[pair_keys[0]].to(torch.floataa ) a = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a , a ) # update visited list for item in pair_keys: visited.append(a ) return pipeline if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." ) parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" ) parser.add_argument( "--lora_prefix_text_encoder", default="lora_te", type=str, help="The prefix of text encoder weight in safetensors", ) parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW") parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." ) parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = args.base_model_path UpperCAmelCase__ = args.checkpoint_path UpperCAmelCase__ = args.dump_path UpperCAmelCase__ = args.lora_prefix_unet UpperCAmelCase__ = args.lora_prefix_text_encoder UpperCAmelCase__ = args.alpha UpperCAmelCase__ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) UpperCAmelCase__ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class __a : def __init__( self : Union[str, Any] , __magic_name__ : Dict=2 , __magic_name__ : Dict=3 , __magic_name__ : Any=64 , __magic_name__ : List[Any]=None ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = np.random.default_rng(__magic_name__ ) UpperCAmelCase_ : Dict = length UpperCAmelCase_ : Tuple = rng.normal(size=(length,) ).astype(np.floataa ) UpperCAmelCase_ : str = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : int ) -> Union[str, Any]: """simple docstring""" return self.length def __getitem__( self : List[Any] , __magic_name__ : int ) -> Optional[int]: """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class __a (torch.nn.Module ): def __init__( self : Optional[int] , __magic_name__ : Union[str, Any]=0 , __magic_name__ : List[str]=0 , __magic_name__ : List[str]=False ) -> str: """simple docstring""" super().__init__() UpperCAmelCase_ : Any = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCAmelCase_ : Any = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCAmelCase_ : Optional[int] = True def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Union[str, Any]=None ) -> Union[str, Any]: """simple docstring""" if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) UpperCAmelCase_ : Optional[Any] = False return x * self.a[0] + self.b[0] class __a (torch.nn.Module ): def __init__( self : Any , __magic_name__ : Any=0 , __magic_name__ : List[str]=0 , __magic_name__ : Any=False ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase_ : Optional[int] = torch.nn.Parameter(torch.tensor(__magic_name__ ).float() ) UpperCAmelCase_ : str = torch.nn.Parameter(torch.tensor(__magic_name__ ).float() ) UpperCAmelCase_ : Tuple = True def UpperCAmelCase__ ( self : Any , __magic_name__ : List[Any]=None ) -> Optional[int]: """simple docstring""" if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) UpperCAmelCase_ : Dict = False return x * self.a + self.b def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : int = 16 ) -> List[Any]: from datasets import load_dataset from transformers import AutoTokenizer UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase_ : Optional[Any] = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} UpperCAmelCase_ : Union[str, Any] = load_dataset('''csv''', data_files=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = datasets['''train'''].unique('''label''' ) UpperCAmelCase_ : int = {v: i for i, v in enumerate(SCREAMING_SNAKE_CASE__ )} def tokenize_function(SCREAMING_SNAKE_CASE__ : List[Any] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : Union[str, Any] = tokenizer( examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__, padding='''max_length''' ) if "label" in examples: UpperCAmelCase_ : List[str] = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ : Tuple = datasets.map( SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''sentence1''', '''sentence2''', '''label'''], ) def collate_fn(SCREAMING_SNAKE_CASE__ : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' ) return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase_ : Tuple = DataLoader(tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=2 ) UpperCAmelCase_ : Optional[int] = DataLoader(tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=1 ) return train_dataloader, eval_dataloader
125
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ : Tuple = { """configuration_rag""": ["""RagConfig"""], """retrieval_rag""": ["""RagRetriever"""], """tokenization_rag""": ["""RagTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = [ """RagModel""", """RagPreTrainedModel""", """RagSequenceForGeneration""", """RagTokenForGeneration""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ """TFRagModel""", """TFRagPreTrainedModel""", """TFRagSequenceForGeneration""", """TFRagTokenForGeneration""", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
363
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
318
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 0 ) -> int: lowerCAmelCase__ : Any = right or len(SCREAMING_SNAKE_CASE_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
212
import os from distutils.util import strtobool def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: for e in env_keys: lowerCAmelCase__ : Union[str, Any] = int(os.environ.get(SCREAMING_SNAKE_CASE_ , -1 ) ) if val >= 0: return val return default def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> List[str]: lowerCAmelCase__ : Optional[int] = os.environ.get(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) return strtobool(SCREAMING_SNAKE_CASE_ ) == 1 # As its name indicates `strtobool` actually returns an int... def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="no" ) -> List[str]: lowerCAmelCase__ : Optional[int] = os.environ.get(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) return value
212
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : Dict = 384 if "tiny" in model_name: lowercase_ : Tuple = [3, 3, 9, 3] lowercase_ : int = [96, 192, 384, 768] if "small" in model_name: lowercase_ : List[Any] = [3, 3, 27, 3] lowercase_ : List[Any] = [96, 192, 384, 768] if "base" in model_name: lowercase_ : Optional[int] = [3, 3, 27, 3] lowercase_ : Optional[Any] = [128, 256, 512, 1024] lowercase_ : List[Any] = 512 if "large" in model_name: lowercase_ : Union[str, Any] = [3, 3, 27, 3] lowercase_ : Union[str, Any] = [192, 384, 768, 1536] lowercase_ : Optional[int] = 768 if "xlarge" in model_name: lowercase_ : str = [3, 3, 27, 3] lowercase_ : Union[str, Any] = [256, 512, 1024, 2048] lowercase_ : Union[str, Any] = 1024 # set label information lowercase_ : Tuple = 150 lowercase_ : Tuple = '''huggingface/label-files''' lowercase_ : List[str] = '''ade20k-id2label.json''' lowercase_ : Tuple = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase_ : Tuple = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : List[str] = {v: k for k, v in idalabel.items()} lowercase_ : Any = ConvNextConfig( depths=__SCREAMING_SNAKE_CASE , hidden_sizes=__SCREAMING_SNAKE_CASE , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) lowercase_ : Tuple = UperNetConfig( backbone_config=__SCREAMING_SNAKE_CASE , auxiliary_in_channels=__SCREAMING_SNAKE_CASE , num_labels=__SCREAMING_SNAKE_CASE , idalabel=__SCREAMING_SNAKE_CASE , labelaid=__SCREAMING_SNAKE_CASE , ) return config def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" lowercase_ : Optional[int] = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def snake_case_ ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Tuple = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = val def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" lowercase_ : Tuple = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } lowercase_ : Any = model_name_to_url[model_name] lowercase_ : Union[str, Any] = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''state_dict'''] lowercase_ : Union[str, Any] = get_upernet_config(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = UperNetForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase_ : Union[str, Any] = state_dict.pop(__SCREAMING_SNAKE_CASE ) if "bn" in key: lowercase_ : List[str] = key.replace('''bn''' , '''batch_norm''' ) lowercase_ : List[Any] = val # rename keys lowercase_ : int = create_rename_keys(__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) # verify on image lowercase_ : str = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' lowercase_ : Optional[Any] = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) lowercase_ : Union[str, Any] = SegformerImageProcessor() lowercase_ : Any = processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values with torch.no_grad(): lowercase_ : Tuple = model(__SCREAMING_SNAKE_CASE ) if model_name == "upernet-convnext-tiny": lowercase_ : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": lowercase_ : Union[str, Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": lowercase_ : Any = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": lowercase_ : Optional[Any] = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": lowercase_ : Optional[Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": _lowercase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[f"""upernet-convnext-{size}""" for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowercase : Optional[int] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
264
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" lowercase_ : Optional[int] = checkpoints.load_tax_checkpoint(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = flatten_dict(__SCREAMING_SNAKE_CASE ) return flax_params def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" lowercase_ : int = {} lowercase_ : Any = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } lowercase_ : Tuple = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowercase_ : Tuple = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowercase_ : Optional[Any] = new_key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowercase_ : Optional[Any] = new_key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowercase_ : List[Any] = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowercase_ : str = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Dict = flax_dict[key] lowercase_ : Any = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowercase_ : str = torch.from_numpy(converted_dict[key].T ) else: lowercase_ : str = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=False ): """simple docstring""" lowercase_ : List[str] = get_flax_param(__SCREAMING_SNAKE_CASE ) if not use_large: lowercase_ : List[str] = PixaStructVisionConfig() lowercase_ : Optional[Any] = PixaStructTextConfig() else: lowercase_ : Optional[int] = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) lowercase_ : Dict = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) lowercase_ : str = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = PixaStructForConditionalGeneration(__SCREAMING_SNAKE_CASE ) lowercase_ : int = rename_and_convert_flax_params(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) lowercase_ : str = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) lowercase_ : List[Any] = PixaStructImageProcessor() lowercase_ : int = PixaStructProcessor(image_processor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE ) if use_large: lowercase_ : Tuple = 4096 lowercase_ : Optional[int] = True # mkdir if needed os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) print('''Model saved in {}'''.format(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": _lowercase : str = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") _lowercase : Tuple = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
264
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ) -> Union[str, Any]: __UpperCamelCase =StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) __UpperCamelCase =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) sd_pipe.set_scheduler('sample_euler' ) __UpperCamelCase ='''A painting of a squirrel eating a burger''' __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =sd_pipe([prompt] , generator=_snake_case , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) __UpperCamelCase =output.images __UpperCamelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCamelCase =np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> str: __UpperCamelCase =StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __UpperCamelCase =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) sd_pipe.set_scheduler('sample_euler' ) __UpperCamelCase ='''A painting of a squirrel eating a burger''' __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =sd_pipe([prompt] , generator=_snake_case , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) __UpperCamelCase =output.images __UpperCamelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCamelCase =np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def _a ( self ) -> int: __UpperCamelCase =StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __UpperCamelCase =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) __UpperCamelCase ='''A painting of a squirrel eating a burger''' __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =sd_pipe( [prompt] , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=_snake_case , ) __UpperCamelCase =output.images __UpperCamelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCamelCase =np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
62
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 50 ) -> int: lowercase__ : int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
16
0
__UpperCAmelCase = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __UpperCAmelCase = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __UpperCAmelCase = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def __lowerCamelCase ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ): assert len(str(UpperCAmelCase_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: a__: Tuple =year // 100 a__: Tuple =(5 * (century % 4) + 2) % 7 a__: Optional[int] =year % 100 a__: Tuple =centurian % 12 a__: Optional[Any] =( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 a__: List[Any] =( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) a__: Union[str, Any] =(dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
352
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCamelCase__ ( _a , _a ): @register_to_config def __init__( self : str , _a : int = 7_6_8 , ): super().__init__() a__: Optional[Any] =nn.Parameter(torch.zeros(1 , _a ) ) a__: List[str] =nn.Parameter(torch.ones(1 , _a ) ) def _lowerCamelCase ( self : Tuple , _a : Optional[Union[str, torch.device]] = None , _a : Optional[torch.dtype] = None , ): a__: str =nn.Parameter(self.mean.to(_a ).to(_a ) ) a__: List[Any] =nn.Parameter(self.std.to(_a ).to(_a ) ) return self def _lowerCamelCase ( self : List[Any] , _a : Dict ): a__: str =(embeds - self.mean) * 1.0 / self.std return embeds def _lowerCamelCase ( self : List[Any] , _a : str ): a__: Optional[Any] =(embeds * self.std) + self.mean return embeds
42
0
'''simple docstring''' # Function to print upper half of diamond (pyramid) def _a( UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' for i in range(0, UpperCamelCase__ ): for _ in range(0, n - i - 1 ): # printing spaces print(''' ''', end='''''' ) for _ in range(0, i + 1 ): # printing stars print('''* ''', end='''''' ) print() def _a( UpperCamelCase__ : int ): '''simple docstring''' for i in range(UpperCamelCase__, 0, -1 ): for _ in range(UpperCamelCase__, 0, -1 ): # printing stars print('''* ''', end='''''' ) print() for _ in range(n - i + 1, 0, -1 ): # printing spaces print(''' ''', end='''''' ) def _a( UpperCamelCase__ : Tuple ): '''simple docstring''' if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(UpperCamelCase__ ) # upper half reverse_floyd(UpperCamelCase__ ) # lower half if __name__ == "__main__": print(R'| /\ | |- | |- |--| |\ /| |-') print(R'|/ \| |- |_ |_ |__| | \/ | |_') a_ = 1 while K: a_ = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) a_ = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
152
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class __SCREAMING_SNAKE_CASE : def __init__( self : Dict , __lowercase : int ) -> None: SCREAMING_SNAKE_CASE__ : List[Any] =value SCREAMING_SNAKE_CASE__ : Node | None =None SCREAMING_SNAKE_CASE__ : Node | None =None class __SCREAMING_SNAKE_CASE : def __init__( self : Dict , __lowercase : Node ) -> None: SCREAMING_SNAKE_CASE__ : Any =tree def __magic_name__ ( self : str , __lowercase : Node | None ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Union[str, Any] ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
152
1
"""simple docstring""" from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _lowercase ( __UpperCAmelCase ): lowercase_ = 42 lowercase_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
205
"""simple docstring""" def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : List[Any] = 1 for i in range(1, num + 1 ): fact *= i return fact def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : Optional[Any] = 0 while number > 0: lowerCamelCase : str = number % 10 sum_of_digits += last_digit lowerCamelCase : Tuple = number // 10 # Removing the last_digit from the given number return sum_of_digits def UpperCAmelCase ( a_ = 100 ): '''simple docstring''' lowerCamelCase : Optional[Any] = factorial(a_ ) lowerCamelCase : int = split_and_add(a_ ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
205
1
def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = len(_lowercase ), len(grid[0] ) if ( min(_lowercase , _lowercase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 count += depth_first_search(_lowercase , row + 1 , _lowercase , _lowercase ) count += depth_first_search(_lowercase , row - 1 , _lowercase , _lowercase ) count += depth_first_search(_lowercase , _lowercase , col + 1 , _lowercase ) count += depth_first_search(_lowercase , _lowercase , col - 1 , _lowercase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
303
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = 1 lowerCamelCase_ : str = 3 lowerCamelCase_ : Dict = (3_2, 3_2) lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Any = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(A ) @property def UpperCAmelCase__ (self ): def extract(*A , **A ): class __lowercase : def __init__(self ): lowerCamelCase_ : Any = torch.ones([0] ) def UpperCAmelCase__ (self , A ): self.pixel_values.to(A ) return self return Out() return extract def UpperCAmelCase__ (self ): lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : List[Any] = self.dummy_cond_unet lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : Union[str, Any] = self.dummy_vae lowerCamelCase_ : List[Any] = self.dummy_text_encoder lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Dict = 7_7 lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A ) lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : int = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Optional[Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , ) lowerCamelCase_ : int = output.images lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0] lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1] lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.dummy_cond_unet lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : List[Any] = self.dummy_vae lowerCamelCase_ : Dict = self.dummy_text_encoder lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Optional[Any] = 7_7 lowerCamelCase_ : str = self.dummy_image.to(A ) # put models in fp16 lowerCamelCase_ : Optional[int] = unet.half() lowerCamelCase_ : Dict = vae.half() lowerCamelCase_ : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : Any = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : str = torch.manual_seed(0 ) lowerCamelCase_ : Optional[int] = alt_pipe( [prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) ) lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : Any = torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : Dict = output.images[0] lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) ) lowerCamelCase_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) lowerCamelCase_ : int = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : List[Any] = torch.manual_seed(0 ) lowerCamelCase_ : Dict = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : List[str] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
318
0
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: SCREAMING_SNAKE_CASE : List[Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=None , a_=True , a_=True , a_=None , ): '''simple docstring''' __snake_case : int = size if size is not None else {'height': 20, 'width': 20} __snake_case : List[Any] = parent __snake_case : List[Any] = batch_size __snake_case : List[Any] = num_channels __snake_case : str = image_size __snake_case : Optional[Any] = min_resolution __snake_case : str = max_resolution __snake_case : List[Any] = size __snake_case : int = do_normalize __snake_case : Any = do_convert_rgb __snake_case : Tuple = [5_12, 10_24, 20_48, 40_96] __snake_case : Tuple = patch_size if patch_size is not None else {'height': 16, 'width': 16} def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' __snake_case : Any = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11, reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.', ) @require_torch @require_vision class _UpperCAmelCase ( _UpperCamelCase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =PixaStructImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = PixaStructImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_convert_rgb''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.image_processor_tester.prepare_dummy_image() __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) __snake_case : List[str] = 20_48 __snake_case : Dict = image_processor(_UpperCAmelCase , return_tensors='''pt''' , max_patches=_UpperCAmelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __snake_case : Dict = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __snake_case : Union[str, Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __snake_case : Union[str, Any] = image_processor( _UpperCAmelCase , return_tensors='''pt''' , max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __snake_case : Dict = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 __snake_case : List[str] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_UpperCAmelCase ): __snake_case : str = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_UpperCAmelCase ).flattened_patches __snake_case : Union[str, Any] = 'Hello' __snake_case : str = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_UpperCAmelCase , header_text=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __snake_case : Union[str, Any] = image_processor( _UpperCAmelCase , return_tensors='''pt''' , max_patches=_UpperCAmelCase , header_text=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) __snake_case : Any = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __snake_case : Dict = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __snake_case : str = image_processor( _UpperCAmelCase , return_tensors='''pt''' , max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __snake_case : Union[str, Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __snake_case : Optional[int] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __snake_case : Union[str, Any] = image_processor( _UpperCAmelCase , return_tensors='''pt''' , max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11, reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.', ) @require_torch @require_vision class _UpperCAmelCase ( _UpperCamelCase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =PixaStructImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = PixaStructImageProcessingTester(self , num_channels=4 ) __snake_case : Tuple = 3 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_convert_rgb''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __snake_case : int = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __snake_case : Optional[int] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __snake_case : Optional[Any] = image_processor( _UpperCAmelCase , return_tensors='''pt''' , max_patches=_UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
368
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ =['transformers', 'torch', 'note_seq'] def __init__(self , *a_ , **a_ ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
24
0
"""simple docstring""" def __lowercase ( _a , _a , _a , _a ): if height >= 1: move_tower(height - 1 , _a , _a , _a ) move_disk(_a , _a ) move_tower(height - 1 , _a , _a , _a ) def __lowercase ( _a , _a ): print('''moving disk from''' , _a , '''to''' , _a ) def __lowercase ( ): snake_case_ : List[Any] = int(input('''Height of hanoi: ''' ).strip() ) move_tower(_a , '''A''' , '''B''' , '''C''' ) if __name__ == "__main__": main()
264
"""simple docstring""" def __lowercase ( _a , _a , _a=False ): if isinstance(_a , _a ) and isinstance(_a , _a ): snake_case_ : Union[str, Any] = len(set_a.intersection(_a ) ) if alternative_union: snake_case_ : Any = len(_a ) + len(_a ) else: snake_case_ : str = len(set_a.union(_a ) ) return intersection / union if isinstance(_a , (list, tuple) ) and isinstance(_a , (list, tuple) ): snake_case_ : str = [element for element in set_a if element in set_b] if alternative_union: snake_case_ : Tuple = len(_a ) + len(_a ) return len(_a ) / union else: snake_case_ : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(_a ) / len(_a ) return len(_a ) / len(_a ) return None if __name__ == "__main__": lowercase__ : Any = {'''a''', '''b''', '''c''', '''d''', '''e'''} lowercase__ : Optional[Any] = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
264
1
"""simple docstring""" a :int = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} a :Union[str, Any] = ["a", "b", "c", "d", "e"] def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[Any] = start # add current to visited visited.append(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: SCREAMING_SNAKE_CASE__ : List[str] = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(__lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): for vertice in vertices: if vertice not in visited: SCREAMING_SNAKE_CASE__ : Dict = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # return sort return sort if __name__ == "__main__": a :Tuple = topological_sort("a", [], []) print(sort)
365
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example a :str = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example a :Dict = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _lowercase ( __lowerCAmelCase ) -> list[list[int]]: SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for i in range(len(__lowerCAmelCase ) ): SCREAMING_SNAKE_CASE__ : Any = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours SCREAMING_SNAKE_CASE__ : List[str] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__lowerCAmelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__lowerCAmelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(__lowerCAmelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. SCREAMING_SNAKE_CASE__ : Dict = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__lowerCAmelCase ) return next_generation def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> list[Image.Image]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for _ in range(__lowerCAmelCase ): # Create output image SCREAMING_SNAKE_CASE__ : int = Image.new("""RGB""" , (len(cells[0] ), len(__lowerCAmelCase )) ) SCREAMING_SNAKE_CASE__ : List[Any] = img.load() # Save cells to image for x in range(len(__lowerCAmelCase ) ): for y in range(len(cells[0] ) ): SCREAMING_SNAKE_CASE__ : str = 255 - cells[y][x] * 255 SCREAMING_SNAKE_CASE__ : Optional[Any] = (colour, colour, colour) # Save image images.append(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_generation(__lowerCAmelCase ) return images if __name__ == "__main__": a :Dict = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
56
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: list[int] ) -> int: '''simple docstring''' if not numbers: return 0 if not isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) or not all( isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for number in numbers ): raise ValueError("numbers must be an iterable of integers" ) A__ = A__ = A__ = numbers[0] for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): # update the maximum and minimum subarray products A__ = numbers[i] if number < 0: A__ , A__ = min_till_now, max_till_now A__ = max(SCREAMING_SNAKE_CASE_ , max_till_now * number ) A__ = min(SCREAMING_SNAKE_CASE_ , min_till_now * number ) # update the maximum product found till now A__ = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return max_prod
68
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowercase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowercase : list[int] = [ord(letter) for letter in string.ascii_lowercase] lowercase : set[int] = {ord(char) for char in VALID_CHARS} lowercase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> str | None: _snake_case = "" _snake_case = 42 _snake_case = 42 _snake_case = 42 for keychar, cipherchar in zip(cycle(__A ) , __A ): _snake_case = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__A ) return decoded def SCREAMING_SNAKE_CASE__ ( __A ) -> list[str]: _snake_case = [] for key in product(__A , repeat=3 ): _snake_case = try_key(__A , __A ) if encoded is not None: possibles.append(__A ) return possibles def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def SCREAMING_SNAKE_CASE__ ( __A = "p059_cipher.txt" ) -> int: _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = Path(__A ).parent.joinpath(__A ).read_text(encoding='utf-8' ) _snake_case = [int(__A ) for number in data.strip().split(',' )] _snake_case = filter_valid_chars(__A ) for common_word in COMMON_WORDS: _snake_case = filter_common_word(__A , __A ) if len(__A ) == 1: break _snake_case = possibles[0] return sum(ord(__A ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
42
0
def UpperCamelCase ( _a , _a , _a ) -> int: '''simple docstring''' def count_of_possible_combinations(_a ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_a ) def UpperCamelCase ( _a , _a , _a ) -> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( _a , _a ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowercase_ :Any = sum( count_of_possible_combinations_with_dp_array(target - item , _a ) for item in array ) lowercase_ :int = answer return answer lowercase_ :List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_a , _a ) def UpperCamelCase ( _a , _a , _a ) -> int: '''simple docstring''' lowercase_ :Tuple = [0] * (target + 1) lowercase_ :List[str] = 1 for i in range(1 , target + 1 ): for j in range(_a ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : List[str] = 3 SCREAMING_SNAKE_CASE : int = 5 SCREAMING_SNAKE_CASE : int = [1, 2, 5] print(combination_sum_iv(n, array, target))
252
from __future__ import annotations from random import random class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ = None ): lowercase_ :Tuple = value lowercase_ :Tuple = random() lowercase_ :Node | None = None lowercase_ :Node | None = None def __repr__( self ): from pprint import pformat if self.left is None and self.right is None: return f"'{self.value}: {self.prior:.5}'" else: return pformat( {f"{self.value}: {self.prior:.5}": (self.left, self.right)} , indent=1 ) def __str__( self ): lowercase_ :Optional[int] = str(self.value ) + ''' ''' lowercase_ :List[str] = str(self.left or '''''' ) lowercase_ :List[Any] = str(self.right or '''''' ) return value + left + right def UpperCamelCase ( _a , _a ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowercase_ , lowercase_ :List[Any] = split(root.left , _a ) return left, root else: lowercase_ , lowercase_ :Tuple = split(root.right , _a ) return root, right def UpperCamelCase ( _a , _a ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowercase_ :Tuple = merge(left.right , _a ) return left else: lowercase_ :Optional[int] = merge(_a , right.left ) return right def UpperCamelCase ( _a , _a ) -> Node | None: '''simple docstring''' lowercase_ :str = Node(_a ) lowercase_ , lowercase_ :Dict = split(_a , _a ) return merge(merge(_a , _a ) , _a ) def UpperCamelCase ( _a , _a ) -> Node | None: '''simple docstring''' lowercase_ , lowercase_ :List[str] = split(_a , value - 1 ) lowercase_ , lowercase_ :Tuple = split(_a , _a ) return merge(_a , _a ) def UpperCamelCase ( _a ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def UpperCamelCase ( _a , _a ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": lowercase_ :Any = insert(_a , int(arg[1:] ) ) elif arg[0] == "-": lowercase_ :Optional[int] = erase(_a , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def UpperCamelCase ( ) -> None: '''simple docstring''' lowercase_ :List[Any] = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) lowercase_ :Optional[Any] = input() while args != "q": lowercase_ :Union[str, Any] = interact_treap(_a , _a ) print(_a ) lowercase_ :str = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
252
1
from __future__ import annotations def a ( A__ : list[int] , A__ : list[int] , A__ : list[int] , A__ : list[list[str]] , A__ : int , ) -> None: """simple docstring""" _lowercase =len(A__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(A__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A__ , A__ , ) def a ( A__ : int ) -> None: """simple docstring""" _lowercase =[] depth_first_search([] , [] , [] , A__ , A__ ) # Print all the boards for board in boards: for column in board: print(A__ ) print('' ) print(len(A__ ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
205
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = ["""input_features"""] def __init__( self , lowerCAmelCase=80 , lowerCAmelCase=16_000 , lowerCAmelCase=160 , lowerCAmelCase=30 , lowerCAmelCase=400 , lowerCAmelCase=0.0 , lowerCAmelCase=False , **lowerCAmelCase , ) -> Any: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , return_attention_mask=lowerCAmelCase , **lowerCAmelCase , ) _lowercase =n_fft _lowercase =hop_length _lowercase =chunk_length _lowercase =chunk_length * sampling_rate _lowercase =self.n_samples // hop_length _lowercase =sampling_rate _lowercase =mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=lowerCAmelCase , norm='slaney' , mel_scale='slaney' , ) def A__ ( self , lowerCAmelCase ) -> np.ndarray: '''simple docstring''' _lowercase =spectrogram( lowerCAmelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) _lowercase =log_spec[:, :-1] _lowercase =np.maximum(lowerCAmelCase , log_spec.max() - 8.0 ) _lowercase =(log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def A__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: _lowercase =np.array(lowerCAmelCase , np.intaa ) _lowercase =[] for vector, length in zip(lowerCAmelCase , attention_mask.sum(-1 ) ): _lowercase =(vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: _lowercase =padding_value normed_input_values.append(lowerCAmelCase ) else: _lowercase =[(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , lowerCAmelCase , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "max_length" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase =isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase =is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase =[np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): _lowercase =np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase =raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase =[np.asarray([raw_speech] ).T] _lowercase =BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding _lowercase =self.pad( lowerCAmelCase , padding=lowerCAmelCase , max_length=max_length if max_length else self.n_samples , truncation=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: _lowercase =self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) _lowercase =np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format _lowercase =padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) _lowercase =[self._np_extract_fbank_features(lowerCAmelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , lowerCAmelCase ): _lowercase =[np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in input_features] else: _lowercase =input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _lowercase =padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: _lowercase =padded_inputs.convert_to_tensors(lowerCAmelCase ) return padded_inputs def A__ ( self ) -> Dict[str, Any]: '''simple docstring''' _lowercase =copy.deepcopy(self.__dict__ ) _lowercase =self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
205
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = 'ZinengTang/tvlt-base' lowerCAmelCase__ : Any = tempfile.mkdtemp() def _lowerCamelCase ( self : Union[str, Any] , **a : Optional[int] ): '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **a ) def _lowerCamelCase ( self : List[str] , **a : Any ): '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **a ) def _lowerCamelCase ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.get_image_processor() lowerCAmelCase__ : int = self.get_feature_extractor() lowerCAmelCase__ : List[str] = TvltProcessor(image_processor=a , feature_extractor=a ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , a ) self.assertIsInstance(processor.image_processor , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : int = self.get_image_processor() lowerCAmelCase__ : str = self.get_feature_extractor() lowerCAmelCase__ : List[str] = TvltProcessor(image_processor=a , feature_extractor=a ) lowerCAmelCase__ : List[str] = np.ones([12_000] ) lowerCAmelCase__ : Dict = feature_extractor(a , return_tensors='np' ) lowerCAmelCase__ : Dict = processor(audio=a , return_tensors='np' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.get_image_processor() lowerCAmelCase__ : Dict = self.get_feature_extractor() lowerCAmelCase__ : List[str] = TvltProcessor(image_processor=a , feature_extractor=a ) lowerCAmelCase__ : Optional[int] = np.ones([3, 224, 224] ) lowerCAmelCase__ : List[str] = image_processor(a , return_tensors='np' ) lowerCAmelCase__ : int = processor(images=a , return_tensors='np' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Dict = self.get_image_processor() lowerCAmelCase__ : List[str] = self.get_feature_extractor() lowerCAmelCase__ : Dict = TvltProcessor(image_processor=a , feature_extractor=a ) lowerCAmelCase__ : List[str] = np.ones([12_000] ) lowerCAmelCase__ : Optional[Any] = np.ones([3, 224, 224] ) lowerCAmelCase__ : int = processor(audio=a , images=a ) self.assertListEqual(list(inputs.keys() ) , ['audio_values', 'audio_mask', 'pixel_values', 'pixel_mask'] ) # test if it raises when no input is passed with pytest.raises(a ): processor() def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.get_image_processor() lowerCAmelCase__ : Union[str, Any] = self.get_feature_extractor() lowerCAmelCase__ : List[str] = TvltProcessor(image_processor=a , feature_extractor=a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='`processor` and `image_processor`+`feature_extractor` model input names do not match' , )
307
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
307
1
"""simple docstring""" from __future__ import annotations __UpperCamelCase : Dict = 1.6021e-19 # units = C def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
106
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : def __init__(self : str , a__ : Dict , a__ : Tuple=None , a__ : List[Any]=None , a__ : Dict=None , a__ : Union[str, Any]="resnet50" , a__ : Dict=3 , a__ : str=32 , a__ : int=3 , a__ : Dict=True , a__ : Any=True , ): """simple docstring""" __snake_case = parent __snake_case = out_indices if out_indices is not None else [4] __snake_case = stage_names __snake_case = out_features __snake_case = backbone __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = use_pretrained_backbone __snake_case = is_training def a (self : Union[str, Any] ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = self.get_config() return config, pixel_values def a (self : Any ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def a (self : List[Any] , a__ : int , a__ : int ): """simple docstring""" __snake_case = TimmBackbone(config=a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(a__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def a (self : str ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () A_ : Optional[Any] = {'feature-extraction': TimmBackbone} if is_torch_available() else {} A_ : List[Any] = False A_ : Dict = False A_ : Any = False A_ : List[Any] = False def a (self : Tuple ): """simple docstring""" __snake_case = TimmBackboneModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ ) def a (self : Any ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : int ): """simple docstring""" __snake_case = '''resnet18''' __snake_case = '''microsoft/resnet-18''' __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ ) __snake_case = AutoBackbone.from_pretrained(a__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ , out_indices=[1, 2, 3] ) __snake_case = AutoBackbone.from_pretrained(a__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def a (self : str ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def a (self : Union[str, Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : Optional[int] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''Safetensors is not supported by timm.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a (self : Tuple ): """simple docstring""" pass def a (self : Tuple ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True __snake_case = self.has_attentions # no need to test all models as different heads yield the same functionality __snake_case = self.all_model_classes[0] __snake_case = model_class(a__ ) model.to(a__ ) __snake_case = self._prepare_for_class(a__ , a__ ) __snake_case = model(**a__ ) __snake_case = outputs[0][-1] # Encoder-/Decoder-only models __snake_case = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __snake_case = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def a (self : Optional[int] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __snake_case = copy.deepcopy(a__ ) __snake_case = None __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __snake_case = copy.deepcopy(a__ ) __snake_case = False __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ )
24
0
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :"DiagonalGaussianDistribution" class snake_case__ (A__ , A__ ): """simple docstring""" __lowerCAmelCase :Dict = True @register_to_config def __init__( self , __lowercase = 3 , __lowercase = 3 , __lowercase = ("DownEncoderBlock2D",) , __lowercase = ("UpDecoderBlock2D",) , __lowercase = (6_4,) , __lowercase = 1 , __lowercase = "silu" , __lowercase = 4 , __lowercase = 3_2 , __lowercase = 3_2 , __lowercase = 0.1_8_2_1_5 , ) -> Union[str, Any]: """simple docstring""" super().__init__() # pass init params to Encoder a__ : Optional[int] = Encoder( in_channels=__lowercase , out_channels=__lowercase , down_block_types=__lowercase , block_out_channels=__lowercase , layers_per_block=__lowercase , act_fn=__lowercase , norm_num_groups=__lowercase , double_z=__lowercase , ) # pass init params to Decoder a__ : str = Decoder( in_channels=__lowercase , out_channels=__lowercase , up_block_types=__lowercase , block_out_channels=__lowercase , layers_per_block=__lowercase , norm_num_groups=__lowercase , act_fn=__lowercase , ) a__ : Tuple = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) a__ : Dict = nn.Convad(__lowercase , __lowercase , 1 ) a__ : Dict = False a__ : List[Any] = False # only relevant if vae tiling is enabled a__ : int = self.config.sample_size a__ : int = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) a__ : int = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) a__ : List[str] = 0.2_5 def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=False ) -> List[str]: """simple docstring""" if isinstance(__lowercase , (Encoder, Decoder) ): a__ : List[Any] = value def SCREAMING_SNAKE_CASE__( self , __lowercase = True ) -> Dict: """simple docstring""" a__ : Tuple = use_tiling def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" self.enable_tiling(__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Optional[int] = True def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : Any = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def SCREAMING_SNAKE_CASE__( self ) -> Dict[str, AttentionProcessor]: """simple docstring""" a__ : List[Any] = {} def fn_recursive_add_processors(__lowercase , __lowercase , __lowercase ): if hasattr(__lowercase , """set_processor""" ): a__ : Optional[int] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , __lowercase , __lowercase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowercase , __lowercase , __lowercase ) return processors def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[Any]: """simple docstring""" a__ : List[str] = len(self.attn_processors.keys() ) if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(__lowercase )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase ): if hasattr(__lowercase , """set_processor""" ): if not isinstance(__lowercase , __lowercase ): module.set_processor(__lowercase ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , __lowercase , __lowercase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = True ) -> AutoencoderKLOutput: """simple docstring""" if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__lowercase , return_dict=__lowercase ) if self.use_slicing and x.shape[0] > 1: a__ : List[Any] = [self.encoder(__lowercase ) for x_slice in x.split(1 )] a__ : str = torch.cat(__lowercase ) else: a__ : List[Any] = self.encoder(__lowercase ) a__ : str = self.quant_conv(__lowercase ) a__ : List[str] = DiagonalGaussianDistribution(__lowercase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__lowercase , return_dict=__lowercase ) a__ : List[Any] = self.post_quant_conv(__lowercase ) a__ : Dict = self.decoder(__lowercase ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowercase ) @apply_forward_hook def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_slicing and z.shape[0] > 1: a__ : Union[str, Any] = [self._decode(__lowercase ).sample for z_slice in z.split(1 )] a__ : Dict = torch.cat(__lowercase ) else: a__ : Tuple = self._decode(__lowercase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase ) -> Dict: """simple docstring""" a__ : Optional[Any] = min(a.shape[2] , b.shape[2] , __lowercase ) for y in range(__lowercase ): a__ : int = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase ) -> Optional[Any]: """simple docstring""" a__ : int = min(a.shape[3] , b.shape[3] , __lowercase ) for x in range(__lowercase ): a__ : List[str] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = True ) -> AutoencoderKLOutput: """simple docstring""" a__ : Any = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) a__ : int = int(self.tile_latent_min_size * self.tile_overlap_factor ) a__ : Tuple = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. a__ : List[Any] = [] for i in range(0 , x.shape[2] , __lowercase ): a__ : Optional[Any] = [] for j in range(0 , x.shape[3] , __lowercase ): a__ : Any = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] a__ : Union[str, Any] = self.encoder(__lowercase ) a__ : Optional[Any] = self.quant_conv(__lowercase ) row.append(__lowercase ) rows.append(__lowercase ) a__ : int = [] for i, row in enumerate(__lowercase ): a__ : Tuple = [] for j, tile in enumerate(__lowercase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: a__ : List[str] = self.blend_v(rows[i - 1][j] , __lowercase , __lowercase ) if j > 0: a__ : Optional[int] = self.blend_h(row[j - 1] , __lowercase , __lowercase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__lowercase , dim=3 ) ) a__ : List[Any] = torch.cat(__lowercase , dim=2 ) a__ : str = DiagonalGaussianDistribution(__lowercase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" a__ : Dict = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) a__ : int = int(self.tile_sample_min_size * self.tile_overlap_factor ) a__ : Tuple = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. a__ : Optional[int] = [] for i in range(0 , z.shape[2] , __lowercase ): a__ : Union[str, Any] = [] for j in range(0 , z.shape[3] , __lowercase ): a__ : Dict = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] a__ : Union[str, Any] = self.post_quant_conv(__lowercase ) a__ : str = self.decoder(__lowercase ) row.append(__lowercase ) rows.append(__lowercase ) a__ : Optional[int] = [] for i, row in enumerate(__lowercase ): a__ : Tuple = [] for j, tile in enumerate(__lowercase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: a__ : int = self.blend_v(rows[i - 1][j] , __lowercase , __lowercase ) if j > 0: a__ : int = self.blend_h(row[j - 1] , __lowercase , __lowercase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__lowercase , dim=3 ) ) a__ : str = torch.cat(__lowercase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = False , __lowercase = True , __lowercase = None , ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" a__ : Tuple = sample a__ : Optional[int] = self.encode(__lowercase ).latent_dist if sample_posterior: a__ : List[str] = posterior.sample(generator=__lowercase ) else: a__ : int = posterior.mode() a__ : str = self.decode(__lowercase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowercase )
266
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments _lowercase : str =logging.getLogger(__name__) @dataclass class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :Optional[float] = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) __lowerCAmelCase :bool = field(default=A__ , metadata={"help": "Whether to SortishSamler or not."} ) __lowerCAmelCase :bool = field( default=A__ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) __lowerCAmelCase :bool = field(default=A__ , metadata={"help": "whether to use adafactor"} ) __lowerCAmelCase :Optional[float] = field( default=A__ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) __lowerCAmelCase :Optional[float] = field( default=A__ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) __lowerCAmelCase :Optional[float] = field(default=A__ , metadata={"help": "Dropout probability. Goes into model.config."} ) __lowerCAmelCase :Optional[float] = field( default=A__ , metadata={"help": "Attention dropout probability. Goes into model.config."} ) __lowerCAmelCase :Optional[str] = field( default="linear" , metadata={"help": f"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
266
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( _lowerCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"] def __init__( self : Optional[Any] , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCamelCase : bool = True , _UpperCamelCase : Union[int, float] = 1 / 2_5_5 , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : bool = True , **_UpperCamelCase : Union[str, Any] , ) ->str: super().__init__(**lowercase_ ) snake_case_ = size if size is not None else {'''shortest_edge''': 2_2_4} snake_case_ = get_size_dict(lowercase_ , default_to_square=lowercase_ ) snake_case_ = crop_size if crop_size is not None else {'''height''': 2_5_6, '''width''': 2_5_6} snake_case_ = get_size_dict(lowercase_ , param_name='''crop_size''' ) snake_case_ = do_resize snake_case_ = size snake_case_ = resample snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_center_crop snake_case_ = crop_size snake_case_ = do_flip_channel_order def snake_case__( self : int , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PIL.Image.BILINEAR , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Optional[int] , ) ->List[Any]: snake_case_ = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case_ = get_resize_output_image_size(lowercase_ , size=size['''shortest_edge'''] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def snake_case__( self : List[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Tuple , ) ->Union[str, Any]: snake_case_ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(lowercase_ , size=(size['''height'''], size['''width''']) , data_format=lowercase_ , **lowercase_ ) def snake_case__( self : Optional[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : int , ) ->int: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def snake_case__( self : Optional[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None ) ->Optional[int]: return flip_channel_order(lowercase_ , data_format=lowercase_ ) def snake_case__( self : Dict , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : Dict , ) ->Tuple: snake_case_ = do_resize if do_resize is not None else self.do_resize snake_case_ = resample if resample is not None else self.resample snake_case_ = do_rescale if do_rescale is not None else self.do_rescale snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) snake_case_ = size if size is not None else self.size snake_case_ = get_size_dict(lowercase_ , default_to_square=lowercase_ ) snake_case_ = crop_size if crop_size is not None else self.crop_size snake_case_ = get_size_dict(lowercase_ , param_name='''crop_size''' ) snake_case_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowercase_ ) for image in images] if do_resize: snake_case_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: snake_case_ = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: snake_case_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: snake_case_ = [self.flip_channel_order(image=lowercase_ ) for image in images] snake_case_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] snake_case_ = {'''pixel_values''': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Tuple] = None ) ->List[Any]: snake_case_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowercase_ ): snake_case_ = target_sizes.numpy() snake_case_ = [] for idx in range(len(lowercase_ ) ): snake_case_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase_ ) snake_case_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: snake_case_ = logits.argmax(dim=1 ) snake_case_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
8
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a : @staticmethod def A_ ( *lowercase_ : int , **lowercase_ : str ): pass @is_pipeline_test @require_vision @require_timm @require_torch class a ( unittest.TestCase ): snake_case_ = MODEL_FOR_OBJECT_DETECTION_MAPPING def A_ ( self : Any , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : List[str] ): snake_case_ = ObjectDetectionPipeline(model=lowercase_ , image_processor=lowercase_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def A_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : int ): snake_case_ = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' , threshold=0.0 ) self.assertGreater(len(lowercase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowercase_ , { '''score''': ANY(lowercase_ ), '''label''': ANY(lowercase_ ), '''box''': {'''xmin''': ANY(lowercase_ ), '''ymin''': ANY(lowercase_ ), '''xmax''': ANY(lowercase_ ), '''ymax''': ANY(lowercase_ )}, } , ) import datasets snake_case_ = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) snake_case_ = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] snake_case_ = object_detector(lowercase_ , threshold=0.0 ) self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for outputs in batch_outputs: self.assertGreater(len(lowercase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowercase_ , { '''score''': ANY(lowercase_ ), '''label''': ANY(lowercase_ ), '''box''': {'''xmin''': ANY(lowercase_ ), '''ymin''': ANY(lowercase_ ), '''xmax''': ANY(lowercase_ ), '''ymax''': ANY(lowercase_ )}, } , ) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def A_ ( self : int ): pass @require_torch def A_ ( self : Tuple ): snake_case_ = '''hf-internal-testing/tiny-detr-mobilenetsv3''' snake_case_ = AutoModelForObjectDetection.from_pretrained(lowercase_ ) snake_case_ = AutoFeatureExtractor.from_pretrained(lowercase_ ) snake_case_ = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ ) snake_case_ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=0.0 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ] , ) snake_case_ = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], ] , ) @require_torch @slow def A_ ( self : Optional[int] ): snake_case_ = '''facebook/detr-resnet-50''' snake_case_ = AutoModelForObjectDetection.from_pretrained(lowercase_ ) snake_case_ = AutoFeatureExtractor.from_pretrained(lowercase_ ) snake_case_ = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ ) snake_case_ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) snake_case_ = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] , ) @require_torch @slow def A_ ( self : Tuple ): snake_case_ = '''facebook/detr-resnet-50''' snake_case_ = pipeline('''object-detection''' , model=lowercase_ ) snake_case_ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) snake_case_ = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] , ) @require_torch @slow def A_ ( self : str ): snake_case_ = 0.9985 snake_case_ = '''facebook/detr-resnet-50''' snake_case_ = pipeline('''object-detection''' , model=lowercase_ ) snake_case_ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=lowercase_ ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) @require_torch @require_pytesseract @slow def A_ ( self : Dict ): snake_case_ = '''Narsil/layoutlmv3-finetuned-funsd''' snake_case_ = 0.9993 snake_case_ = pipeline('''object-detection''' , model=lowercase_ , threshold=lowercase_ ) snake_case_ = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, ] , )
56
0
'''simple docstring''' from __future__ import annotations import math def lowercase__ ( __UpperCamelCase )-> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase__ ( __UpperCamelCase )-> list[int]: UpperCamelCase = str(__UpperCamelCase ) UpperCamelCase = [n] for i in range(1 , len(__UpperCamelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def lowercase__ ( __UpperCamelCase )-> bool: if len(str(__UpperCamelCase ) ) > 3: if not is_prime(int(str(__UpperCamelCase )[-3:] ) ) or not is_prime(int(str(__UpperCamelCase )[:3] ) ): return False return True def lowercase__ ( __UpperCamelCase = 11 )-> list[int]: UpperCamelCase = [] UpperCamelCase = 13 while len(__UpperCamelCase ) != count: if validate(__UpperCamelCase ): UpperCamelCase = list_truncated_nums(__UpperCamelCase ) if all(is_prime(__UpperCamelCase ) for i in list_nums ): list_truncated_primes.append(__UpperCamelCase ) num += 2 return list_truncated_primes def lowercase__ ( )-> int: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f'{sum(compute_truncated_primes(1_1)) = }')
370
'''simple docstring''' from PIL import Image def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Image: def brightness(__UpperCamelCase ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 SCREAMING_SNAKE_CASE__ = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
183
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Optional[Any] = (PNDMScheduler,) UpperCamelCase : Dict = (("num_inference_steps", 5_0),) def __A ( self , **A ) -> Dict: '''simple docstring''' lowerCamelCase = { """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**A ) return config def __A ( self , A=0 , **A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = dict(self.forward_default_kwargs ) lowerCamelCase = kwargs.pop("""num_inference_steps""" , A ) lowerCamelCase = self.dummy_sample lowerCamelCase = 0.1 * sample lowerCamelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCamelCase = self.get_scheduler_config(**A ) lowerCamelCase = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals lowerCamelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) lowerCamelCase = scheduler_class.from_pretrained(A ) new_scheduler.set_timesteps(A ) # copy over dummy past residuals lowerCamelCase = dummy_past_residuals[:] lowerCamelCase = scheduler.step_prk(A , A , A , **A ).prev_sample lowerCamelCase = new_scheduler.step_prk(A , A , A , **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCamelCase = scheduler.step_plms(A , A , A , **A ).prev_sample lowerCamelCase = new_scheduler.step_plms(A , A , A , **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __A ( self ) -> Union[str, Any]: '''simple docstring''' pass def __A ( self , A=0 , **A ) -> Dict: '''simple docstring''' lowerCamelCase = dict(self.forward_default_kwargs ) lowerCamelCase = kwargs.pop("""num_inference_steps""" , A ) lowerCamelCase = self.dummy_sample lowerCamelCase = 0.1 * sample lowerCamelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCamelCase = self.get_scheduler_config() lowerCamelCase = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals (must be after setting timesteps) lowerCamelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) lowerCamelCase = scheduler_class.from_pretrained(A ) # copy over dummy past residuals new_scheduler.set_timesteps(A ) # copy over dummy past residual (must be after setting timesteps) lowerCamelCase = dummy_past_residuals[:] lowerCamelCase = scheduler.step_prk(A , A , A , **A ).prev_sample lowerCamelCase = new_scheduler.step_prk(A , A , A , **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCamelCase = scheduler.step_plms(A , A , A , **A ).prev_sample lowerCamelCase = new_scheduler.step_plms(A , A , A , **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __A ( self , **A ) -> Tuple: '''simple docstring''' lowerCamelCase = self.scheduler_classes[0] lowerCamelCase = self.get_scheduler_config(**A ) lowerCamelCase = scheduler_class(**A ) lowerCamelCase = 10 lowerCamelCase = self.dummy_model() lowerCamelCase = self.dummy_sample_deter scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.prk_timesteps ): lowerCamelCase = model(A , A ) lowerCamelCase = scheduler.step_prk(A , A , A ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowerCamelCase = model(A , A ) lowerCamelCase = scheduler.step_plms(A , A , A ).prev_sample return sample def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = dict(self.forward_default_kwargs ) lowerCamelCase = kwargs.pop("""num_inference_steps""" , A ) for scheduler_class in self.scheduler_classes: lowerCamelCase = self.get_scheduler_config() lowerCamelCase = scheduler_class(**A ) lowerCamelCase = self.dummy_sample lowerCamelCase = 0.1 * sample if num_inference_steps is not None and hasattr(A , """set_timesteps""" ): scheduler.set_timesteps(A ) elif num_inference_steps is not None and not hasattr(A , """set_timesteps""" ): lowerCamelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCamelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCamelCase = dummy_past_residuals[:] lowerCamelCase = scheduler.step_prk(A , 0 , A , **A ).prev_sample lowerCamelCase = scheduler.step_prk(A , 1 , A , **A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCamelCase = scheduler.step_plms(A , 0 , A , **A ).prev_sample lowerCamelCase = scheduler.step_plms(A , 1 , A , **A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __A ( self ) -> Any: '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=A ) def __A ( self ) -> List[str]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=A ) lowerCamelCase = self.scheduler_classes[0] lowerCamelCase = self.get_scheduler_config(steps_offset=1 ) lowerCamelCase = scheduler_class(**A ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def __A ( self ) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=A , beta_end=A ) def __A ( self ) -> str: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A ) def __A ( self ) -> List[str]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def __A ( self ) -> int: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=A ) def __A ( self ) -> List[Any]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=A ) def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = 27 for scheduler_class in self.scheduler_classes: lowerCamelCase = self.dummy_sample lowerCamelCase = 0.1 * sample lowerCamelCase = self.get_scheduler_config() lowerCamelCase = scheduler_class(**A ) scheduler.set_timesteps(A ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowerCamelCase = scheduler.step_prk(A , A , A ).prev_sample def __A ( self ) -> Dict: '''simple docstring''' with self.assertRaises(A ): lowerCamelCase = self.scheduler_classes[0] lowerCamelCase = self.get_scheduler_config() lowerCamelCase = scheduler_class(**A ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.full_loop() lowerCamelCase = torch.sum(torch.abs(A ) ) lowerCamelCase = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = self.full_loop(prediction_type="""v_prediction""" ) lowerCamelCase = torch.sum(torch.abs(A ) ) lowerCamelCase = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.full_loop(set_alpha_to_one=A , beta_start=0.01 ) lowerCamelCase = torch.sum(torch.abs(A ) ) lowerCamelCase = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.full_loop(set_alpha_to_one=A , beta_start=0.01 ) lowerCamelCase = torch.sum(torch.abs(A ) ) lowerCamelCase = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
252
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple ): '''simple docstring''' if gpta_config_file == "": lowerCamelCase = GPTaConfig() else: lowerCamelCase = GPTaConfig.from_json_file(lowerCamelCase__ ) lowerCamelCase = GPTaModel(lowerCamelCase__ ) # Load weights from numpy load_tf_weights_in_gpta(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model lowerCamelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowerCamelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowerCamelCase__ ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) UpperCAmelCase : Tuple = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
252
1
lowerCamelCase__ : dict[str, float] = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4E-1_9, "britishthermalunit_it": 1_055.05_585, "footpound": 1.35_5818, } def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : float ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: SCREAMING_SNAKE_CASE_ = ( f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" f"Valid values are: {', '.join(__UpperCAmelCase )}" ) raise ValueError(__UpperCAmelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
210
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=768 ): super().__init__(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = proj_size SCREAMING_SNAKE_CASE_ = CLIPVisionModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = PaintByExampleMapper(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE_ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : int=False ): SCREAMING_SNAKE_CASE_ = self.model(pixel_values=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = clip_output.pooler_output SCREAMING_SNAKE_CASE_ = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE_ = self.final_layer_norm(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.proj_out(_lowerCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Optional[Any] ): super().__init__() SCREAMING_SNAKE_CASE_ = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE_ = config.hidden_size SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = nn.ModuleList( [ BasicTransformerBlock(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , activation_fn='gelu' , attention_bias=_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ] ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] ): for block in self.blocks: SCREAMING_SNAKE_CASE_ = block(_lowerCAmelCase ) return hidden_states
210
1
def a_ ( ) -> int: """simple docstring""" return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(_A , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'''{solution() = }''')
307
class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE: def __init__( self: List[str] ) -> Union[str, Any]: snake_case__ = [ [], [], [], ] def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: int , UpperCamelCase: int ) -> None: try: if len(self.queues[priority] ) >= 1_00: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(UpperCamelCase ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def lowerCAmelCase_ ( self: List[Any] ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self: Union[str, Any] ) -> str: return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class __SCREAMING_SNAKE_CASE: def __init__( self: Union[str, Any] ) -> Any: snake_case__ = [] def lowerCAmelCase_ ( self: str , UpperCamelCase: int ) -> None: if len(self.queue ) == 1_00: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(UpperCamelCase ) def lowerCAmelCase_ ( self: int ) -> int: if not self.queue: raise UnderFlowError('The queue is empty' ) else: snake_case__ = min(self.queue ) self.queue.remove(UpperCamelCase ) return data def __str__( self: Optional[Any] ) -> str: return str(self.queue ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
307
1
def lowerCamelCase ( a_ ) -> int: assert isinstance(a_ , a_ ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase_ = F'''The input value of [n={number}] has to be > 0''' raise ValueError(a_ ) else: lowerCAmelCase_ = sylvester(number - 1 ) lowerCAmelCase_ = num - 1 lowerCAmelCase_ = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
14
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]: def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ): lowerCAmelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCAmelCase_ = math.floor(val / multiple ) * multiple if x < min_val: lowerCAmelCase_ = math.ceil(val / multiple ) * multiple return x lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = output_size # determine new height and width lowerCAmelCase_ = output_height / input_height lowerCAmelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCAmelCase_ = scale_width else: # fit height lowerCAmelCase_ = scale_height lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ ) lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ ) return (new_height, new_width) class a_ ( a_ ): '''simple docstring''' __a: Union[str, Any] = ['''pixel_values'''] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of lowerCAmelCase_ = resample lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCAmelCase_ = get_resize_output_image_size( lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict: '''simple docstring''' return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image: '''simple docstring''' lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCAmelCase_ = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowercase_ ): lowerCAmelCase_ = target_sizes.numpy() lowerCAmelCase_ = [] for idx in range(len(lowercase_ ) ): lowerCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ ) lowerCAmelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: lowerCAmelCase_ = logits.argmax(dim=1 ) lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
14
1
"""simple docstring""" import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowercase_ = parser.parse_args() if args.model_type == "roberta": lowercase_ = RobertaForMaskedLM.from_pretrained(args.model_name) lowercase_ = 'roberta' elif args.model_type == "gpt2": lowercase_ = GPTaLMHeadModel.from_pretrained(args.model_name) lowercase_ = 'transformer' lowercase_ = model.state_dict() lowercase_ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowercase_ = state_dict[F'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowercase_ = F'''{prefix}.embeddings.{w}.weight''' lowercase_ = state_dict[param_name] for w in ["weight", "bias"]: lowercase_ = F'''{prefix}.embeddings.LayerNorm.{w}''' lowercase_ = state_dict[param_name] # Transformer Blocks # lowercase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowercase_ = state_dict[ F'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] lowercase_ = state_dict[F'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowercase_ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowercase_ = state_dict[F'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: lowercase_ = state_dict[F'''lm_head.dense.{w}'''] lowercase_ = state_dict[F'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowercase_ = state_dict[F'''{prefix}.ln_f.{w}'''] lowercase_ = state_dict['lm_head.weight'] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
266
"""simple docstring""" from __future__ import annotations from typing import Any def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if not postfix_notation: return 0 __A = {'''+''', '''-''', '''*''', '''/'''} __A = [] for token in postfix_notation: if token in operations: __A , __A = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__UpperCamelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
266
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''xlm-roberta-xl''' def __init__( self : Any , _UpperCAmelCase : Tuple=250880 , _UpperCAmelCase : List[str]=2560 , _UpperCAmelCase : Union[str, Any]=36 , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : str=10240 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=514 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : List[str]=1e-05 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Dict="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : List[Any] , ) -> str: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
241
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): return [sentence[i : i + ngram_size] for i in range(len(lowerCAmelCase__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
241
1
"""simple docstring""" from typing import Any class lowercase : def __init__( self : Tuple , _lowerCamelCase : Any ): """simple docstring""" A_ : str = data A_ : List[str] = None class lowercase : def __init__( self : Union[str, Any] ): """simple docstring""" A_ : Optional[Any] = None def a_ ( self : Dict ): """simple docstring""" A_ : Tuple = self.head while temp is not None: print(temp.data , end=''' ''' ) A_ : Tuple = temp.next print() def a_ ( self : List[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Optional[Any] = Node(__SCREAMING_SNAKE_CASE ) A_ : str = self.head A_ : List[Any] = new_node def a_ ( self : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : int ): """simple docstring""" if node_data_a == node_data_a: return else: A_ : Union[str, Any] = self.head while node_a is not None and node_a.data != node_data_a: A_ : str = node_a.next A_ : Dict = self.head while node_a is not None and node_a.data != node_data_a: A_ : Union[str, Any] = node_a.next if node_a is None or node_a is None: return A_ , A_ : int = node_a.data, node_a.data if __name__ == "__main__": _lowerCamelCase : Optional[int] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
167
"""simple docstring""" import string def lowerCamelCase__ ( _lowerCamelCase : str ) -> None: for key in range(len(string.ascii_uppercase ) ): lowerCamelCase_ = '' for symbol in message: if symbol in string.ascii_uppercase: lowerCamelCase_ = string.ascii_uppercase.find(_lowerCamelCase ) lowerCamelCase_ = num - key if num < 0: lowerCamelCase_ = num + len(string.ascii_uppercase ) lowerCamelCase_ = translated + string.ascii_uppercase[num] else: lowerCamelCase_ = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def lowerCamelCase__ ( ) -> None: lowerCamelCase_ = input('Encrypted message: ' ) lowerCamelCase_ = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
183
0
def __lowercase ( ) -> int: '''simple docstring''' return 1 def __lowercase ( _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def __lowercase ( _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(_SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(_SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(_SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(_SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(_SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(_SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE = 2_00 ) -> int: '''simple docstring''' return two_pound(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution(int(input().strip())))
193
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE_ = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE_ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE_ = [1, 1_0_8_8, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE_ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE_ = """tabby, tabby cat""" SCREAMING_SNAKE_CASE_ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : str ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 3 ,lowerCamelCase__ : int = 1 ,lowerCamelCase__ : int = 1 ,lowerCamelCase__ : Optional[str] = "relu" ,) -> Union[str, Any]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = nn.Convad( lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=lowerCamelCase__ ,stride=lowerCamelCase__ ,padding=kernel_size // 2 ,groups=lowerCamelCase__ ,bias=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = nn.BatchNormad(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = ACTaFN[activation] if activation is not None else nn.Identity() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.convolution(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.normalization(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.activation(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] ,lowerCamelCase__ : RegNetConfig ) -> List[str]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) SCREAMING_SNAKE_CASE = config.num_channels def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) SCREAMING_SNAKE_CASE = self.embedder(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 2 ) -> List[str]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = nn.Convad(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,stride=lowerCamelCase__ ,bias=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = nn.BatchNormad(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Tensor ) -> Tensor: '''simple docstring''' SCREAMING_SNAKE_CASE = self.convolution(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.normalization(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ) -> int: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) SCREAMING_SNAKE_CASE = nn.Sequential( nn.Convad(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ) ,nn.Sigmoid() ,) def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.pooler(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.attention(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = hidden_state * attention return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,lowerCamelCase__ : RegNetConfig ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 1 ) -> str: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE = max(1 ,out_channels // config.groups_width ) SCREAMING_SNAKE_CASE = ( RegNetShortCut(lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE = nn.Sequential( RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ,groups=lowerCamelCase__ ,activation=config.hidden_act ) ,RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,activation=lowerCamelCase__ ) ,) SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = hidden_state SCREAMING_SNAKE_CASE = self.layer(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.shortcut(lowerCamelCase__ ) hidden_state += residual SCREAMING_SNAKE_CASE = self.activation(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,lowerCamelCase__ : RegNetConfig ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 1 ) -> Optional[int]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE = max(1 ,out_channels // config.groups_width ) SCREAMING_SNAKE_CASE = ( RegNetShortCut(lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE = nn.Sequential( RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ,groups=lowerCamelCase__ ,activation=config.hidden_act ) ,RegNetSELayer(lowerCamelCase__ ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,activation=lowerCamelCase__ ) ,) SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = hidden_state SCREAMING_SNAKE_CASE = self.layer(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.shortcut(lowerCamelCase__ ) hidden_state += residual SCREAMING_SNAKE_CASE = self.activation(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int ,lowerCamelCase__ : RegNetConfig ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 2 ,lowerCamelCase__ : int = 2 ,) -> Tuple: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer SCREAMING_SNAKE_CASE = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ,) ,*[layer(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) for _ in range(depth - 1 )] ,) def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.layers(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,lowerCamelCase__ : RegNetConfig ) -> str: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCamelCase__ ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) SCREAMING_SNAKE_CASE = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCamelCase__ ,config.depths[1:] ): self.stages.append(RegNetStage(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,depth=lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : Tensor ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : bool = True ) -> BaseModelOutputWithNoAttention: '''simple docstring''' SCREAMING_SNAKE_CASE = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) SCREAMING_SNAKE_CASE = stage_module(lowerCamelCase__ ) if output_hidden_states: SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ ,hidden_states=lowerCamelCase__ ) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : List[Any] = RegNetConfig __snake_case : Union[str, Any] = "regnet" __snake_case : Optional[Any] = "pixel_values" __snake_case : List[Any] = True def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : int ) -> Any: '''simple docstring''' if isinstance(lowerCamelCase__ ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode="""fan_out""" ,nonlinearity="""relu""" ) elif isinstance(lowerCamelCase__ ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : str=False ) -> str: '''simple docstring''' if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): SCREAMING_SNAKE_CASE = value SCREAMING_SNAKE_CASE_ = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE_ = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : str ,lowerCamelCase__ : str ) -> Any: '''simple docstring''' super().__init__(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = config SCREAMING_SNAKE_CASE = RegNetEmbeddings(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = RegNetEncoder(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=lowerCamelCase__ ,config_class=_CONFIG_FOR_DOC ,modality="""vision""" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Tensor ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = self.embedder(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.encoder( lowerCamelCase__ ,output_hidden_states=lowerCamelCase__ ,return_dict=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = encoder_outputs[0] SCREAMING_SNAKE_CASE = self.pooler(lowerCamelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ ,pooler_output=lowerCamelCase__ ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Any ,lowerCamelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' super().__init__(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = config.num_labels SCREAMING_SNAKE_CASE = RegNetModel(lowerCamelCase__ ) # classification head SCREAMING_SNAKE_CASE = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=lowerCamelCase__ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Optional[torch.FloatTensor] = None ,lowerCamelCase__ : Optional[torch.LongTensor] = None ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: '''simple docstring''' SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = self.regnet(lowerCamelCase__ ,output_hidden_states=lowerCamelCase__ ,return_dict=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE = self.classifier(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE = """single_label_classification""" else: SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() ,labels.squeeze() ) else: SCREAMING_SNAKE_CASE = loss_fct(lowerCamelCase__ ,lowerCamelCase__ ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE = CrossEntropyLoss() SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE = loss_fct(lowerCamelCase__ ,lowerCamelCase__ ) if not return_dict: SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCamelCase__ ,logits=lowerCamelCase__ ,hidden_states=outputs.hidden_states )
193
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : str = field(default='''audio-classification''' ,metadata={'''include_in_asdict_even_if_is_default''': True} ) __a : ClassVar[Features] = Features({'''audio''': Audio()} ) __a : ClassVar[Features] = Features({'''labels''': ClassLabel} ) __a : str = "audio" __a : str = "labels" def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.label_column not in features: raise ValueError(F"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , lowerCAmelCase__ ): raise ValueError(F"Column {self.label_column} is not a ClassLabel." ) __lowercase = copy.deepcopy(self ) __lowercase = self.label_schema.copy() __lowercase = features[self.label_column] __lowercase = label_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self ) -> Dict[str, str]: '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
210
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Optional[Any] = (KDPMaDiscreteScheduler,) __a : Dict = 10 def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> int: '''simple docstring''' __lowercase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCAmelCase__ ) return config def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(prediction_type='''v_prediction''' ) __lowercase = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __lowercase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = model(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase__ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' if torch_device == "mps": return __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __lowercase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = model(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase__ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' if torch_device == "mps": return __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter.to(lowerCAmelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = model(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase__ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase__ ) ) if str(lowerCAmelCase__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
210
1
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __snake_case ( snake_case_ ): __lowerCamelCase : Optional[int] = 42 class __snake_case ( nn.Module ): def __init__( self , snake_case__=3 , snake_case__=3 , snake_case__=("DownEncoderBlock2D",) , snake_case__=(64,) , snake_case__=2 , snake_case__=32 , snake_case__="silu" , snake_case__=True , ) -> int: '''simple docstring''' super().__init__() UpperCAmelCase : str =layers_per_block UpperCAmelCase : Dict =torch.nn.Convad( snake_case__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase : Dict =None UpperCAmelCase : Union[str, Any] =nn.ModuleList([] ) # down UpperCAmelCase : Union[str, Any] =block_out_channels[0] for i, down_block_type in enumerate(snake_case__ ): UpperCAmelCase : Optional[int] =output_channel UpperCAmelCase : Union[str, Any] =block_out_channels[i] UpperCAmelCase : Optional[int] =i == len(snake_case__ ) - 1 UpperCAmelCase : Optional[Any] =get_down_block( snake_case__ , num_layers=self.layers_per_block , in_channels=snake_case__ , out_channels=snake_case__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=snake_case__ , resnet_groups=snake_case__ , attention_head_dim=snake_case__ , temb_channels=snake_case__ , ) self.down_blocks.append(snake_case__ ) # mid UpperCAmelCase : int =UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=snake_case__ , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=snake_case__ , temb_channels=snake_case__ , ) # out UpperCAmelCase : Optional[int] =nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=snake_case__ , eps=1e-6 ) UpperCAmelCase : Any =nn.SiLU() UpperCAmelCase : List[str] =2 * out_channels if double_z else out_channels UpperCAmelCase : List[Any] =nn.Convad(block_out_channels[-1] , snake_case__ , 3 , padding=1 ) UpperCAmelCase : Any =False def UpperCAmelCase__ ( self , snake_case__ ) -> Any: '''simple docstring''' UpperCAmelCase : List[Any] =x UpperCAmelCase : Tuple =self.conv_in(snake_case__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(snake_case__ ): def custom_forward(*snake_case__ ): return module(*snake_case__ ) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0''' ): for down_block in self.down_blocks: UpperCAmelCase : List[Any] =torch.utils.checkpoint.checkpoint( create_custom_forward(snake_case__ ) , snake_case__ , use_reentrant=snake_case__ ) # middle UpperCAmelCase : Dict =torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , snake_case__ , use_reentrant=snake_case__ ) else: for down_block in self.down_blocks: UpperCAmelCase : Dict =torch.utils.checkpoint.checkpoint(create_custom_forward(snake_case__ ) , snake_case__ ) # middle UpperCAmelCase : List[Any] =torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , snake_case__ ) else: # down for down_block in self.down_blocks: UpperCAmelCase : int =down_block(snake_case__ ) # middle UpperCAmelCase : Union[str, Any] =self.mid_block(snake_case__ ) # post-process UpperCAmelCase : Any =self.conv_norm_out(snake_case__ ) UpperCAmelCase : int =self.conv_act(snake_case__ ) UpperCAmelCase : List[str] =self.conv_out(snake_case__ ) return sample class __snake_case ( nn.Module ): def __init__( self , snake_case__=3 , snake_case__=3 , snake_case__=("UpDecoderBlock2D",) , snake_case__=(64,) , snake_case__=2 , snake_case__=32 , snake_case__="silu" , snake_case__="group" , ) -> int: '''simple docstring''' super().__init__() UpperCAmelCase : List[str] =layers_per_block UpperCAmelCase : Optional[Any] =nn.Convad( snake_case__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase : List[Any] =None UpperCAmelCase : Dict =nn.ModuleList([] ) UpperCAmelCase : Tuple =in_channels if norm_type == 'spatial' else None # mid UpperCAmelCase : Optional[Any] =UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=snake_case__ , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=snake_case__ , temb_channels=snake_case__ , ) # up UpperCAmelCase : int =list(reversed(snake_case__ ) ) UpperCAmelCase : List[Any] =reversed_block_out_channels[0] for i, up_block_type in enumerate(snake_case__ ): UpperCAmelCase : Tuple =output_channel UpperCAmelCase : Any =reversed_block_out_channels[i] UpperCAmelCase : Optional[Any] =i == len(snake_case__ ) - 1 UpperCAmelCase : Optional[int] =get_up_block( snake_case__ , num_layers=self.layers_per_block + 1 , in_channels=snake_case__ , out_channels=snake_case__ , prev_output_channel=snake_case__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=snake_case__ , resnet_groups=snake_case__ , attention_head_dim=snake_case__ , temb_channels=snake_case__ , resnet_time_scale_shift=snake_case__ , ) self.up_blocks.append(snake_case__ ) UpperCAmelCase : Dict =output_channel # out if norm_type == "spatial": UpperCAmelCase : Dict =SpatialNorm(block_out_channels[0] , snake_case__ ) else: UpperCAmelCase : str =nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=snake_case__ , eps=1e-6 ) UpperCAmelCase : List[Any] =nn.SiLU() UpperCAmelCase : str =nn.Convad(block_out_channels[0] , snake_case__ , 3 , padding=1 ) UpperCAmelCase : int =False def UpperCAmelCase__ ( self , snake_case__ , snake_case__=None ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =z UpperCAmelCase : Tuple =self.conv_in(snake_case__ ) UpperCAmelCase : Tuple =next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(snake_case__ ): def custom_forward(*snake_case__ ): return module(*snake_case__ ) return custom_forward if is_torch_version('''>=''' , '''1.11.0''' ): # middle UpperCAmelCase : Dict =torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , snake_case__ , snake_case__ , use_reentrant=snake_case__ ) UpperCAmelCase : Any =sample.to(snake_case__ ) # up for up_block in self.up_blocks: UpperCAmelCase : Dict =torch.utils.checkpoint.checkpoint( create_custom_forward(snake_case__ ) , snake_case__ , snake_case__ , use_reentrant=snake_case__ ) else: # middle UpperCAmelCase : Optional[Any] =torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =sample.to(snake_case__ ) # up for up_block in self.up_blocks: UpperCAmelCase : List[str] =torch.utils.checkpoint.checkpoint(create_custom_forward(snake_case__ ) , snake_case__ , snake_case__ ) else: # middle UpperCAmelCase : List[Any] =self.mid_block(snake_case__ , snake_case__ ) UpperCAmelCase : List[Any] =sample.to(snake_case__ ) # up for up_block in self.up_blocks: UpperCAmelCase : int =up_block(snake_case__ , snake_case__ ) # post-process if latent_embeds is None: UpperCAmelCase : List[str] =self.conv_norm_out(snake_case__ ) else: UpperCAmelCase : Tuple =self.conv_norm_out(snake_case__ , snake_case__ ) UpperCAmelCase : Optional[Any] =self.conv_act(snake_case__ ) UpperCAmelCase : Optional[int] =self.conv_out(snake_case__ ) return sample class __snake_case ( nn.Module ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__="random" , snake_case__=False , snake_case__=True ) -> Dict: '''simple docstring''' super().__init__() UpperCAmelCase : Tuple =n_e UpperCAmelCase : Any =vq_embed_dim UpperCAmelCase : Optional[Any] =beta UpperCAmelCase : List[str] =legacy UpperCAmelCase : List[str] =nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) UpperCAmelCase : int =remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) ) UpperCAmelCase : Any =self.used.shape[0] UpperCAmelCase : Optional[int] =unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCAmelCase : int =self.re_embed UpperCAmelCase : Any =self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: UpperCAmelCase : Optional[Any] =n_e UpperCAmelCase : Any =sane_index_shape def UpperCAmelCase__ ( self , snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : Tuple =inds.shape assert len(snake_case__ ) > 1 UpperCAmelCase : List[str] =inds.reshape(ishape[0] , -1 ) UpperCAmelCase : Optional[int] =self.used.to(snake_case__ ) UpperCAmelCase : Optional[int] =(inds[:, :, None] == used[None, None, ...]).long() UpperCAmelCase : Tuple =match.argmax(-1 ) UpperCAmelCase : List[str] =match.sum(2 ) < 1 if self.unknown_index == "random": UpperCAmelCase : Dict =torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: UpperCAmelCase : Optional[Any] =self.unknown_index return new.reshape(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ ) -> Any: '''simple docstring''' UpperCAmelCase : Tuple =inds.shape assert len(snake_case__ ) > 1 UpperCAmelCase : int =inds.reshape(ishape[0] , -1 ) UpperCAmelCase : str =self.used.to(snake_case__ ) if self.re_embed > self.used.shape[0]: # extra token UpperCAmelCase : Optional[int] =0 # simply set to zero UpperCAmelCase : int =torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , snake_case__ ) return back.reshape(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : str =z.permute(0 , 2 , 3 , 1 ).contiguous() UpperCAmelCase : List[Any] =z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCAmelCase : List[str] =torch.argmin(torch.cdist(snake_case__ , self.embedding.weight ) , dim=1 ) UpperCAmelCase : Optional[Any] =self.embedding(snake_case__ ).view(z.shape ) UpperCAmelCase : int =None UpperCAmelCase : List[str] =None # compute loss for embedding if not self.legacy: UpperCAmelCase : Optional[int] =self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: UpperCAmelCase : Optional[Any] =torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients UpperCAmelCase : Any =z + (z_q - z).detach() # reshape back to match original input shape UpperCAmelCase : int =z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: UpperCAmelCase : Tuple =min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis UpperCAmelCase : int =self.remap_to_used(snake_case__ ) UpperCAmelCase : Optional[Any] =min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: UpperCAmelCase : Union[str, Any] =min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Optional[Any]: '''simple docstring''' if self.remap is not None: UpperCAmelCase : Any =indices.reshape(shape[0] , -1 ) # add batch axis UpperCAmelCase : Optional[int] =self.unmap_to_all(snake_case__ ) UpperCAmelCase : Any =indices.reshape(-1 ) # flatten again # get quantized latent vectors UpperCAmelCase : List[str] =self.embedding(snake_case__ ) if shape is not None: UpperCAmelCase : Tuple =z_q.view(snake_case__ ) # reshape back to match original input shape UpperCAmelCase : Dict =z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __snake_case ( snake_case_ ): def __init__( self , snake_case__ , snake_case__=False ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[Any] =parameters UpperCAmelCase : Optional[int] =torch.chunk(snake_case__ , 2 , dim=1 ) UpperCAmelCase : Dict =torch.clamp(self.logvar , -30.0 , 20.0 ) UpperCAmelCase : List[str] =deterministic UpperCAmelCase : Any =torch.exp(0.5 * self.logvar ) UpperCAmelCase : Union[str, Any] =torch.exp(self.logvar ) if self.deterministic: UpperCAmelCase : str =torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def UpperCAmelCase__ ( self , snake_case__ = None ) -> torch.FloatTensor: '''simple docstring''' UpperCAmelCase : Optional[Any] =randn_tensor( self.mean.shape , generator=snake_case__ , device=self.parameters.device , dtype=self.parameters.dtype ) UpperCAmelCase : Dict =self.mean + self.std * sample return x def UpperCAmelCase__ ( self , snake_case__=None ) -> List[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__=[1, 2, 3] ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) UpperCAmelCase : Dict =np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=snake_case__ ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return self.mean
356
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
78
0
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" assert isinstance(lowercase_ , lowercase_ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: A__ = f"""The input value of [n={number}] has to be > 0""" raise ValueError(lowercase_ ) else: A__ = sylvester(number - 1 ) A__ = num - 1 A__ = num return lower * upper + 1 if __name__ == "__main__": print(F'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
14
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" A__ = args.pruning_method A__ = args.threshold A__ = args.model_name_or_path.rstrip('''/''' ) A__ = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) A__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: A__ = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = TopKBinarizer.apply(lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ , A__ = -0.1, 1.1 A__ = torch.sigmoid(lowercase_ ) A__ = s * (r - l) + l A__ = s_bar.clamp(min=0.0 , max=1.0 ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: A__ = os.path.join( os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" ) if not os.path.isdir(lowercase_ ): shutil.copytree(lowercase_ , lowercase_ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) _lowerCamelCase : int = parser.parse_args() main(args)
14
1
from graphs.minimum_spanning_tree_kruskal import kruskal def lowerCamelCase ( ) -> int: lowerCAmelCase_ = 9 lowerCAmelCase_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCAmelCase_ = kruskal(a_ , a_ ) lowerCAmelCase_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(a_ ) == sorted(a_ )
367
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[Any]: # load base model lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowerCAmelCase_ = load_file(a_ ) lowerCAmelCase_ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.text_encoder else: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.unet # find the target layer lowerCAmelCase_ = layer_infos.pop(0 ) while len(a_ ) > -1: try: lowerCAmelCase_ = curr_layer.__getattr__(a_ ) if len(a_ ) > 0: lowerCAmelCase_ = layer_infos.pop(0 ) elif len(a_ ) == 0: break except Exception: if len(a_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowerCAmelCase_ = layer_infos.pop(0 ) lowerCAmelCase_ = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(a_ ) else: pair_keys.append(a_ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 ) else: lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ) # update visited list for item in pair_keys: visited.append(a_ ) return pipeline if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = args.base_model_path lowerCamelCase_ = args.checkpoint_path lowerCamelCase_ = args.dump_path lowerCamelCase_ = args.lora_prefix_unet lowerCamelCase_ = args.lora_prefix_text_encoder lowerCamelCase_ = args.alpha lowerCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowerCamelCase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
0
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ = get_tests_dir("""fixtures""") lowercase__ = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") lowercase__ = get_tests_dir("""fixtures/dummy-config.json""") class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Dict = 0 def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Optional[int] = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(a_ , a_ ) def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Optional[int] = AutoFeatureExtractor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def lowerCamelCase ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ : List[Any] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally lowerCAmelCase_ : Tuple = AutoFeatureExtractor.from_pretrained(a_ ).to_dict() config_dict.pop("feature_extractor_type" ) lowerCAmelCase_ : Tuple = WavaVecaFeatureExtractor(**a_ ) # save in new folder model_config.save_pretrained(a_ ) config.save_pretrained(a_ ) lowerCAmelCase_ : int = AutoFeatureExtractor.from_pretrained(a_ ) # make sure private variable is not incorrectly saved lowerCAmelCase_ : List[str] = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(a_ , a_ ) def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : List[Any] = AutoFeatureExtractor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def lowerCamelCase ( self : Optional[int] ): with self.assertRaisesRegex( a_ , "bert-base is not a local folder and is not a valid model identifier" ): lowerCAmelCase_ : int = AutoFeatureExtractor.from_pretrained("bert-base" ) def lowerCamelCase ( self : Optional[Any] ): with self.assertRaisesRegex( a_ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowerCAmelCase_ : List[Any] = AutoFeatureExtractor.from_pretrained(a_ , revision="aaaaaa" ) def lowerCamelCase ( self : List[str] ): with self.assertRaisesRegex( a_ , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): lowerCAmelCase_ : List[str] = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" ) def lowerCamelCase ( self : Optional[Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(a_ ): lowerCAmelCase_ : Optional[Any] = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(a_ ): lowerCAmelCase_ : Dict = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=a_ ) lowerCAmelCase_ : Tuple = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=a_ ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(a_ ) lowerCAmelCase_ : Union[str, Any] = AutoFeatureExtractor.from_pretrained(a_ , trust_remote_code=a_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) def lowerCamelCase ( self : Optional[Any] ): try: AutoConfig.register("custom" , a_ ) AutoFeatureExtractor.register(a_ , a_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a_ ): AutoFeatureExtractor.register(a_ , a_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase_ : List[Any] = CustomFeatureExtractor.from_pretrained(a_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(a_ ) lowerCAmelCase_ : List[str] = AutoFeatureExtractor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase ( self : Any ): class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : List[Any] = True try: AutoConfig.register("custom" , a_ ) AutoFeatureExtractor.register(a_ , a_ ) # If remote code is not set, the default is to use local lowerCAmelCase_ : Tuple = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase_ : Dict = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=a_ ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase_ : List[Any] = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=a_ ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(not hasattr(a_ , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
241
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCamelCase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' a_ : Optional[Any] = IFInpaintingSuperResolutionPipeline a_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} a_ : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) a_ : int = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowerCamelCase ( self : Optional[Any] ): return self._get_superresolution_dummy_components() def lowerCamelCase ( self : Optional[Any] , a_ : List[str] , a_ : Union[str, Any]=0 ): if str(a_ ).startswith("mps" ): lowerCAmelCase_ : List[Any] = torch.manual_seed(a_ ) else: lowerCAmelCase_ : str = torch.Generator(device=a_ ).manual_seed(a_ ) lowerCAmelCase_ : List[str] = floats_tensor((1, 3, 16, 16) , rng=random.Random(a_ ) ).to(a_ ) lowerCAmelCase_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) lowerCAmelCase_ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) lowerCAmelCase_ : Any = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCamelCase ( self : List[Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase ( self : Optional[int] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowerCamelCase ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase ( self : Tuple ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase ( self : List[str] ): self._test_save_load_local() def lowerCamelCase ( self : Optional[int] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
241
1
"""simple docstring""" from math import sqrt def lowercase ( a__ : int ) -> bool: assert isinstance(a__ , a__ ) and ( number >= 0 ), "'number' must been an int and positive" _UpperCamelCase = True # 0 and 1 are none primes. if number <= 1: _UpperCamelCase = False for divisor in range(2 , int(round(sqrt(a__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: _UpperCamelCase = False break # precondition assert isinstance(a__ , a__ ), "'status' must been from type bool" return status def lowercase ( a__ : Union[str, Any] ) -> Any: assert isinstance(a__ , a__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N _UpperCamelCase = list(range(2 , n + 1 ) ) _UpperCamelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a__ ) ): for j in range(i + 1 , len(a__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): _UpperCamelCase = 0 # filters actual prime numbers. _UpperCamelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(a__ , a__ ), "'ans' must been from type list" return ans def lowercase ( a__ : int ) -> Union[str, Any]: assert isinstance(a__ , a__ ) and (n > 2), "'N' must been an int and > 2" _UpperCamelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a__ ): ans.append(a__ ) # precondition assert isinstance(a__ , a__ ), "'ans' must been from type list" return ans def lowercase ( a__ : List[str] ) -> int: assert isinstance(a__ , a__ ) and number >= 0, "'number' must been an int and >= 0" _UpperCamelCase = [] # this list will be returns of the function. # potential prime number factors. _UpperCamelCase = 2 _UpperCamelCase = number if number == 0 or number == 1: ans.append(a__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a__ ): while quotient != 1: if is_prime(a__ ) and (quotient % factor == 0): ans.append(a__ ) quotient /= factor else: factor += 1 else: ans.append(a__ ) # precondition assert isinstance(a__ , a__ ), "'ans' must been from type list" return ans def lowercase ( a__ : Union[str, Any] ) -> str: assert isinstance(a__ , a__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" _UpperCamelCase = 0 # prime factorization of 'number' _UpperCamelCase = prime_factorization(a__ ) _UpperCamelCase = max(a__ ) # precondition assert isinstance(a__ , a__ ), "'ans' must been from type int" return ans def lowercase ( a__ : int ) -> Optional[Any]: assert isinstance(a__ , a__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" _UpperCamelCase = 0 # prime factorization of 'number' _UpperCamelCase = prime_factorization(a__ ) _UpperCamelCase = min(a__ ) # precondition assert isinstance(a__ , a__ ), "'ans' must been from type int" return ans def lowercase ( a__ : List[Any] ) -> Optional[int]: assert isinstance(a__ , a__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a__ ), "compare bust been from type bool" return number % 2 == 0 def lowercase ( a__ : Optional[Any] ) -> Any: assert isinstance(a__ , a__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a__ ), "compare bust been from type bool" return number % 2 != 0 def lowercase ( a__ : List[str] ) -> List[str]: assert ( isinstance(a__ , a__ ) and (number > 2) and is_even(a__ ) ), "'number' must been an int, even and > 2" _UpperCamelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' _UpperCamelCase = get_prime_numbers(a__ ) _UpperCamelCase = len(a__ ) # run variable for while-loops. _UpperCamelCase = 0 _UpperCamelCase = None # exit variable. for break up the loops _UpperCamelCase = True while i < len_pn and loop: _UpperCamelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: _UpperCamelCase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a__ , a__ ) and (len(a__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowercase ( a__ : Any , a__ : List[str] ) -> Union[str, Any]: assert ( isinstance(a__ , a__ ) and isinstance(a__ , a__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." _UpperCamelCase = 0 while numbera != 0: _UpperCamelCase = numbera % numbera _UpperCamelCase = numbera _UpperCamelCase = rest # precondition assert isinstance(a__ , a__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowercase ( a__ : Tuple , a__ : Union[str, Any] ) -> List[str]: assert ( isinstance(a__ , a__ ) and isinstance(a__ , a__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." _UpperCamelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' _UpperCamelCase = prime_factorization(a__ ) _UpperCamelCase = prime_factorization(a__ ) elif numbera == 1 or numbera == 1: _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = max(a__ , a__ ) _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: _UpperCamelCase = prime_fac_a.count(a__ ) _UpperCamelCase = prime_fac_a.count(a__ ) for _ in range(max(a__ , a__ ) ): ans *= n else: _UpperCamelCase = prime_fac_a.count(a__ ) for _ in range(a__ ): ans *= n done.append(a__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: _UpperCamelCase = prime_fac_a.count(a__ ) for _ in range(a__ ): ans *= n done.append(a__ ) # precondition assert isinstance(a__ , a__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowercase ( a__ : Optional[int] ) -> Union[str, Any]: assert isinstance(a__ , a__ ) and (n >= 0), "'number' must been a positive int" _UpperCamelCase = 0 _UpperCamelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a__ ): ans += 1 # precondition assert isinstance(a__ , a__ ) and is_prime( a__ ), "'ans' must been a prime number and from type int" return ans def lowercase ( a__ : Tuple , a__ : List[str] ) -> Tuple: assert ( is_prime(a__ ) and is_prime(a__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" _UpperCamelCase = p_number_a + 1 # jump to the next number _UpperCamelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a__ ): number += 1 while number < p_number_a: ans.append(a__ ) number += 1 # fetch the next prime number. while not is_prime(a__ ): number += 1 # precondition assert ( isinstance(a__ , a__ ) and ans[0] != p_number_a and ans[len(a__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowercase ( a__ : int ) -> List[str]: assert isinstance(a__ , a__ ) and (n >= 1), "'n' must been int and >= 1" _UpperCamelCase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a__ ) # precondition assert ans[0] == 1 and ans[len(a__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowercase ( a__ : List[str] ) -> str: assert isinstance(a__ , a__ ) and ( number > 1 ), "'number' must been an int and >= 1" _UpperCamelCase = get_divisors(a__ ) # precondition assert ( isinstance(a__ , a__ ) and (divisors[0] == 1) and (divisors[len(a__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowercase ( a__ : List[Any] , a__ : Union[str, Any] ) -> Optional[int]: assert ( isinstance(a__ , a__ ) and isinstance(a__ , a__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. _UpperCamelCase = gcd(abs(a__ ) , abs(a__ ) ) # precondition assert ( isinstance(a__ , a__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowercase ( a__ : int ) -> Dict: assert isinstance(a__ , a__ ) and (n >= 0), "'n' must been a int and >= 0" _UpperCamelCase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowercase ( a__ : str ) -> Optional[Any]: assert isinstance(a__ , a__ ) and (n >= 0), "'n' must been an int and >= 0" _UpperCamelCase = 0 _UpperCamelCase = 1 _UpperCamelCase = 1 # this will be return for _ in range(n - 1 ): _UpperCamelCase = ans ans += fiba _UpperCamelCase = tmp return ans
54
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
54
1
from __future__ import annotations from math import gcd def UpperCamelCase__( UpperCamelCase__ : int , UpperCamelCase__ : int = 2 , UpperCamelCase__ : int = 1 , UpperCamelCase__ : int = 3 , )->int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('''The input value cannot be less than 2''' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: return (pow(UpperCamelCase__ , 2 ) + step) % modulus for _ in range(UpperCamelCase__ ): # These track the position within the cycle detection logic. A__ = seed A__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. A__ = rand_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = rand_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = rand_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. A__ = gcd(hare - tortoise , UpperCamelCase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. A__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse a__: int = argparse.ArgumentParser() parser.add_argument( 'num', type=int, help='The value to find a divisor of', ) parser.add_argument( '--attempts', type=int, default=3, help='The number of attempts before giving up', ) a__: Dict = parser.parse_args() a__: List[str] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"{args.num} is probably prime") else: a__: Optional[int] = args.num // divisor print(F"{args.num} = {divisor} * {quotient}")
193
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a__: List[str] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''sequence-classification''' def __init__( self,__lowerCamelCase ): if type(__lowerCamelCase ) == dict: A__ = Namespace(**__lowerCamelCase ) A__ = glue_output_modes[hparams.task] A__ = glue_tasks_num_labels[hparams.task] super().__init__(__lowerCamelCase,__lowerCamelCase,self.mode ) def UpperCamelCase ( self,**__lowerCamelCase ): return self.model(**__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: A__ = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None A__ = self(**__lowerCamelCase ) A__ = outputs[0] A__ = self.trainer.lr_schedulers[0]['''scheduler'''] A__ = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase ( self ): A__ = self.hparams A__ = processors[args.task]() A__ = processor.get_labels() for mode in ["train", "dev"]: A__ = self._feature_file(__lowerCamelCase ) if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''',__lowerCamelCase ) else: logger.info('''Creating features from dataset file at %s''',args.data_dir ) A__ = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) A__ = convert_examples_to_features( __lowerCamelCase,self.tokenizer,max_length=args.max_seq_length,label_list=self.labels,output_mode=args.glue_output_mode,) logger.info('''Saving features into cached file %s''',__lowerCamelCase ) torch.save(__lowerCamelCase,__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = False ): A__ = '''dev''' if mode == '''test''' else mode A__ = self._feature_file(__lowerCamelCase ) logger.info('''Loading features from cached file %s''',__lowerCamelCase ) A__ = torch.load(__lowerCamelCase ) A__ = torch.tensor([f.input_ids for f in features],dtype=torch.long ) A__ = torch.tensor([f.attention_mask for f in features],dtype=torch.long ) A__ = torch.tensor([f.token_type_ids for f in features],dtype=torch.long ) if self.hparams.glue_output_mode == "classification": A__ = torch.tensor([f.label for f in features],dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": A__ = torch.tensor([f.label for f in features],dtype=torch.float ) return DataLoader( TensorDataset(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ),batch_size=__lowerCamelCase,shuffle=__lowerCamelCase,) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: A__ = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None A__ = self(**__lowerCamelCase ) A__ , A__ = outputs[:2] A__ = logits.detach().cpu().numpy() A__ = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase ( self,__lowerCamelCase ): A__ = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() A__ = np.concatenate([x['''pred'''] for x in outputs],axis=0 ) if self.hparams.glue_output_mode == "classification": A__ = np.argmax(__lowerCamelCase,axis=1 ) elif self.hparams.glue_output_mode == "regression": A__ = np.squeeze(__lowerCamelCase ) A__ = np.concatenate([x['''target'''] for x in outputs],axis=0 ) A__ = [[] for _ in range(out_label_ids.shape[0] )] A__ = [[] for _ in range(out_label_ids.shape[0] )] A__ = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task,__lowerCamelCase,__lowerCamelCase )} A__ = dict(results.items() ) A__ = results return ret, preds_list, out_label_list def UpperCamelCase ( self,__lowerCamelCase ): A__ , A__ , A__ = self._eval_end(__lowerCamelCase ) A__ = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase ( self,__lowerCamelCase ): A__ , A__ , A__ = self._eval_end(__lowerCamelCase ) A__ = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase ( __lowerCamelCase,__lowerCamelCase ): BaseTransformer.add_model_specific_args(__lowerCamelCase,__lowerCamelCase ) parser.add_argument( '''--max_seq_length''',default=128,type=__lowerCamelCase,help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ),) parser.add_argument( '''--task''',default='''''',type=__lowerCamelCase,required=__lowerCamelCase,help='''The GLUE task to run''',) parser.add_argument( '''--gpus''',default=0,type=__lowerCamelCase,help='''The number of GPUs allocated for this, it is by default 0 meaning none''',) parser.add_argument( '''--overwrite_cache''',action='''store_true''',help='''Overwrite the cached training and evaluation sets''' ) return parser def UpperCamelCase__( )->Any: A__ = argparse.ArgumentParser() add_generic_args(UpperCamelCase__ , os.getcwd() ) A__ = GLUETransformer.add_model_specific_args(UpperCamelCase__ , os.getcwd() ) A__ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: A__ = os.path.join( '''./results''' , f"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , ) os.makedirs(args.output_dir ) A__ = GLUETransformer(UpperCamelCase__ ) A__ = generic_train(UpperCamelCase__ , UpperCamelCase__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: A__ = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=UpperCamelCase__ ) ) A__ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(UpperCamelCase__ ) if __name__ == "__main__": main()
193
1
def lowercase (SCREAMING_SNAKE_CASE_ : int = 50 ) -> int: SCREAMING_SNAKE_CASE = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
365
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> bool: SCREAMING_SNAKE_CASE = int(number**0.5 ) return number == sq * sq def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> tuple[int, int]: SCREAMING_SNAKE_CASE = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE = x_den * y_den * z_den SCREAMING_SNAKE_CASE = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) top //= hcf bottom //= hcf return top, bottom def lowercase (SCREAMING_SNAKE_CASE_ : int = 35 ) -> int: SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = Fraction(0 ) SCREAMING_SNAKE_CASE = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 SCREAMING_SNAKE_CASE = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE = x_den * y_den SCREAMING_SNAKE_CASE = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE = add_three( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) unique_s.add(SCREAMING_SNAKE_CASE_ ) # n=2 SCREAMING_SNAKE_CASE = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE = x_den * x_den * y_den * y_den if is_sq(SCREAMING_SNAKE_CASE_ ) and is_sq(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = int(sqrt(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = int(sqrt(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE = add_three( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) unique_s.add(SCREAMING_SNAKE_CASE_ ) # n=-1 SCREAMING_SNAKE_CASE = x_num * y_num SCREAMING_SNAKE_CASE = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE = add_three( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) unique_s.add(SCREAMING_SNAKE_CASE_ ) # n=2 SCREAMING_SNAKE_CASE = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(SCREAMING_SNAKE_CASE_ ) and is_sq(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = int(sqrt(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = int(sqrt(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE = add_three( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) unique_s.add(SCREAMING_SNAKE_CASE_ ) for num, den in unique_s: total += Fraction(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
38
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=2 , UpperCamelCase__=8 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=16 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=36 , UpperCamelCase__="gelu" , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ) -> Union[str, Any]: lowerCamelCase : Tuple = parent lowerCamelCase : Optional[Any] = batch_size lowerCamelCase : Dict = seq_length lowerCamelCase : int = is_training lowerCamelCase : Dict = use_input_mask lowerCamelCase : Optional[Any] = use_token_type_ids lowerCamelCase : Optional[int] = use_labels lowerCamelCase : List[Any] = vocab_size lowerCamelCase : List[Any] = hidden_size lowerCamelCase : Dict = num_hidden_layers lowerCamelCase : Tuple = num_attention_heads lowerCamelCase : Union[str, Any] = intermediate_size lowerCamelCase : List[Any] = hidden_act lowerCamelCase : Tuple = hidden_dropout_prob lowerCamelCase : List[str] = attention_probs_dropout_prob lowerCamelCase : List[str] = max_position_embeddings lowerCamelCase : int = type_vocab_size lowerCamelCase : Any = type_sequence_label_size lowerCamelCase : List[str] = initializer_range lowerCamelCase : Dict = num_labels lowerCamelCase : Optional[int] = num_choices lowerCamelCase : Any = scope def _lowercase ( self ) -> Any: lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : Optional[Any] = None if self.use_input_mask: lowerCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase : Any = None lowerCamelCase : List[str] = None lowerCamelCase : List[Any] = None if self.use_labels: lowerCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self ) -> List[str]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def _lowercase ( self ) -> List[str]: lowerCamelCase : str = self.get_config() lowerCamelCase : Optional[Any] = 300 return config def _lowercase ( self ) -> Optional[int]: ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : List[str] = self.prepare_config_and_inputs() lowerCamelCase : List[str] = True lowerCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: lowerCamelCase : Dict = MraModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : List[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowerCamelCase : Optional[int] = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowerCamelCase : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Union[str, Any]: lowerCamelCase : Union[str, Any] = True lowerCamelCase : Dict = MraModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : Optional[int] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowerCamelCase : List[Any] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowerCamelCase : List[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: lowerCamelCase : Tuple = MraForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : Union[str, Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: lowerCamelCase : str = MraForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : int = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: lowerCamelCase : str = self.num_labels lowerCamelCase : Union[str, Any] = MraForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : Dict = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: lowerCamelCase : int = self.num_labels lowerCamelCase : str = MraForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : List[str] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: lowerCamelCase : Any = self.num_choices lowerCamelCase : Dict = MraForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase : Optional[int] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Tuple = config_and_inputs lowerCamelCase : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ (lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : List[str] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase_ : int = False lowerCamelCase_ : Dict = False lowerCamelCase_ : str = False lowerCamelCase_ : List[Any] = False lowerCamelCase_ : Optional[int] = () def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : Optional[Any] = MraModelTester(self ) lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase ( self ) -> Tuple: lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self ) -> List[str]: lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase : Optional[Any] = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self ) -> Dict: lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def _lowercase ( self ) -> Tuple: lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def _lowercase ( self ) -> List[Any]: lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def _lowercase ( self ) -> int: lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def _lowercase ( self ) -> int: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : int = MraModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip(reason="MRA does not output attentions" ) def _lowercase ( self ) -> Optional[int]: return @require_torch class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> int: lowerCamelCase : Dict = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) lowerCamelCase : Dict = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowerCamelCase : Dict = model(UpperCamelCase__ )[0] lowerCamelCase : str = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , UpperCamelCase__ ) lowerCamelCase : List[str] = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : Any = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) lowerCamelCase : List[str] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowerCamelCase : Optional[int] = model(UpperCamelCase__ )[0] lowerCamelCase : Union[str, Any] = 5_0265 lowerCamelCase : int = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) lowerCamelCase : List[str] = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def _lowercase ( self ) -> List[str]: lowerCamelCase : List[str] = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) lowerCamelCase : Optional[int] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): lowerCamelCase : Any = model(UpperCamelCase__ )[0] lowerCamelCase : int = 5_0265 lowerCamelCase : Optional[Any] = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) lowerCamelCase : Any = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
48
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , lowercase_ ).groups()[0] class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :List[str] , lowercase_ :Dict , lowercase_ :List[str]=None , lowercase_ :Optional[Any]=None ) -> Optional[int]: UpperCAmelCase = file_names UpperCAmelCase = image_transform UpperCAmelCase = label_to_id def __len__( self :Optional[int] ) -> Optional[Any]: return len(self.file_names ) def __getitem__( self :int , lowercase_ :str ) -> List[str]: UpperCAmelCase = self.file_names[idx] UpperCAmelCase = PIL.Image.open(lowercase_ ) UpperCAmelCase = raw_image.convert('RGB' ) if self.image_transform is not None: UpperCAmelCase = self.image_transform(lowercase_ ) UpperCAmelCase = extract_label(lowercase_ ) if self.label_to_id is not None: UpperCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def _lowerCAmelCase ( lowercase_ , lowercase_ ): # Initialize accelerator if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['lr'] UpperCAmelCase = int(config['num_epochs'] ) UpperCAmelCase = int(config['seed'] ) UpperCAmelCase = int(config['batch_size'] ) UpperCAmelCase = config['image_size'] if not isinstance(lowercase_ , (list, tuple) ): UpperCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": UpperCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): UpperCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: UpperCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: UpperCAmelCase = os.path.split(lowercase_ )[-1].split('.' )[0] accelerator.init_trackers(lowercase_ , lowercase_ ) # Grab all the image filenames UpperCAmelCase = [os.path.join(args.data_dir , lowercase_ ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences UpperCAmelCase = [extract_label(lowercase_ ) for fname in file_names] UpperCAmelCase = list(set(lowercase_ ) ) id_to_label.sort() UpperCAmelCase = {lbl: i for i, lbl in enumerate(lowercase_ )} # Set the seed before splitting the data. np.random.seed(lowercase_ ) torch.manual_seed(lowercase_ ) torch.cuda.manual_seed_all(lowercase_ ) # Split our filenames between train and validation UpperCAmelCase = np.random.permutation(len(lowercase_ ) ) UpperCAmelCase = int(0.8 * len(lowercase_ ) ) UpperCAmelCase = random_perm[:cut] UpperCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop UpperCAmelCase = Compose([RandomResizedCrop(lowercase_ , scale=(0.5, 1.0) ), ToTensor()] ) UpperCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=lowercase_ , label_to_id=lowercase_ ) # For evaluation, we use a deterministic Resize UpperCAmelCase = Compose([Resize(lowercase_ ), ToTensor()] ) UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=lowercase_ , label_to_id=lowercase_ ) # Instantiate dataloaders. UpperCAmelCase = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4 ) UpperCAmelCase = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = create_model('resnet50d' , pretrained=lowercase_ , num_classes=len(lowercase_ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): UpperCAmelCase = False for param in model.get_classifier().parameters(): UpperCAmelCase = True # We normalize the batches of images to be a bit faster. UpperCAmelCase = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) UpperCAmelCase = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler UpperCAmelCase = OneCycleLR(optimizer=lowercase_ , max_lr=lowercase_ , epochs=lowercase_ , steps_per_epoch=len(lowercase_ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly UpperCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` UpperCAmelCase = os.path.splitext(lowercase_ )[0] if "epoch" in training_difference: UpperCAmelCase = int(training_difference.replace('epoch_' , '' ) ) + 1 UpperCAmelCase = None else: UpperCAmelCase = int(training_difference.replace('step_' , '' ) ) UpperCAmelCase = resume_step // len(lowercase_ ) resume_step -= starting_epoch * len(lowercase_ ) # Now we train the model for epoch in range(lowercase_ , lowercase_ ): model.train() if args.with_tracking: UpperCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step UpperCAmelCase = accelerator.skip_first_batches(lowercase_ , lowercase_ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader UpperCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch['image'] - mean) / std UpperCAmelCase = model(lowercase_ ) UpperCAmelCase = torch.nn.functional.cross_entropy(lowercase_ , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(lowercase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , lowercase_ ) accelerator.save_state(lowercase_ ) model.eval() UpperCAmelCase = 0 UpperCAmelCase = 0 for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch['image'] - mean) / std with torch.no_grad(): UpperCAmelCase = model(lowercase_ ) UpperCAmelCase = outputs.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['label']) ) UpperCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() UpperCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { 'accuracy': 100 * eval_metric, 'train_loss': total_loss.item() / len(lowercase_ ), 'epoch': epoch, } , step=lowercase_ , ) if checkpointing_steps == "epoch": UpperCAmelCase = F"""epoch_{epoch}""" if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , lowercase_ ) accelerator.save_state(lowercase_ ) if args.with_tracking: accelerator.end_training() def _lowerCAmelCase ( ): UpperCAmelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=lowercase_ , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=lowercase_ , default=lowercase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=lowercase_ , default=lowercase_ , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=lowercase_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=lowercase_ , default=lowercase_ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=lowercase_ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
78
0
from functools import reduce lowerCamelCase : List[Any] = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def snake_case_ ( lowerCAmelCase_ : Optional[int] = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase_ , lowerCAmelCase_ : str(int(a__ ) * int(a__ ) ) , n[i : i + 13] ) ) for i in range(len(a__ ) - 12 ) ) if __name__ == "__main__": print(f'''{solution() = }''')
369
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = (DPMSolverSDEScheduler,) _A : Dict = 10 def lowerCAmelCase ( self : Optional[int] , **__a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__a ) return config def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config() __lowercase : Any = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[Any] = self.dummy_model() __lowercase : str = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Optional[Any] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Union[str, Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Optional[Any] = scheduler.step(__a , __a , __a ) __lowercase : str = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Union[str, Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : int = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[int] = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Dict = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Dict = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[int] = model(__a , __a ) __lowercase : Optional[int] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : List[str] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : int = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase : int = scheduler.scale_model_input(__a , __a ) __lowercase : List[str] = model(__a , __a ) __lowercase : List[str] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : List[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : List[str] = self.dummy_model() __lowercase : Optional[int] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma __lowercase : str = sample.to(__a ) for t in scheduler.timesteps: __lowercase : List[Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Any = scheduler.step(__a , __a , __a ) __lowercase : Optional[Any] = output.prev_sample __lowercase : Any = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
306
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCAmelCase : List[Any] = logging.get_logger(__name__) def lowerCAmelCase ( _lowerCAmelCase : List[str] ): """simple docstring""" if isinstance(lowercase_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase_ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class _UpperCamelCase ( UpperCAmelCase__ ): UpperCAmelCase_ = ["""pixel_values"""] def __init__( self :Any , lowerCamelCase :bool = True , lowerCamelCase :Dict[str, int] = None , lowerCamelCase :PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase :bool = True , lowerCamelCase :Dict[str, int] = None , lowerCamelCase :bool = True , lowerCamelCase :Union[int, float] = 1 / 255 , lowerCamelCase :bool = True , lowerCamelCase :Optional[Union[float, List[float]]] = None , lowerCamelCase :Optional[Union[float, List[float]]] = None , **lowerCamelCase :Tuple , ) -> None: super().__init__(**UpperCAmelCase__ ) UpperCAmelCase__ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) UpperCAmelCase__ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase__ = get_size_dict(UpperCAmelCase__ , param_name="crop_size" ) UpperCAmelCase__ = do_resize UpperCAmelCase__ = size UpperCAmelCase__ = do_center_crop UpperCAmelCase__ = crop_size UpperCAmelCase__ = resample UpperCAmelCase__ = do_rescale UpperCAmelCase__ = rescale_factor UpperCAmelCase__ = do_normalize UpperCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self :int , lowerCamelCase :np.ndarray , lowerCamelCase :Dict[str, int] , lowerCamelCase :PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase :Tuple , ) -> np.ndarray: UpperCAmelCase__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "shortest_edge" in size: UpperCAmelCase__ = get_resize_output_image_size(UpperCAmelCase__ , size["shortest_edge"] , default_to_square=UpperCAmelCase__ ) elif "height" in size and "width" in size: UpperCAmelCase__ = (size["height"], size["width"]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self :Optional[Any] , lowerCamelCase :np.ndarray , lowerCamelCase :Dict[str, int] , lowerCamelCase :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase :Union[str, Any] , ) -> np.ndarray: UpperCAmelCase__ = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(UpperCAmelCase__ , size=(size["height"], size["width"]) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :np.ndarray , lowerCamelCase :Union[int, float] , lowerCamelCase :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase :Optional[Any] , ) -> Union[str, Any]: return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self :str , lowerCamelCase :np.ndarray , lowerCamelCase :Union[float, List[float]] , lowerCamelCase :Union[float, List[float]] , lowerCamelCase :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase :List[Any] , ) -> np.ndarray: return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self :List[Any] , lowerCamelCase :ImageInput , lowerCamelCase :bool = None , lowerCamelCase :Dict[str, int] = None , lowerCamelCase :PILImageResampling = None , lowerCamelCase :bool = None , lowerCamelCase :Dict[str, int] = None , lowerCamelCase :bool = None , lowerCamelCase :float = None , lowerCamelCase :bool = None , lowerCamelCase :Optional[Union[float, List[float]]] = None , lowerCamelCase :Optional[Union[float, List[float]]] = None , lowerCamelCase :Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase__ = to_numpy_array(UpperCAmelCase__ ) if do_resize: UpperCAmelCase__ = self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) if do_center_crop: UpperCAmelCase__ = self.center_crop(UpperCAmelCase__ , size=UpperCAmelCase__ ) if do_rescale: UpperCAmelCase__ = self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) if do_normalize: UpperCAmelCase__ = self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) UpperCAmelCase__ = to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) return image def UpperCAmelCase_ ( self :Dict , lowerCamelCase :ImageInput , lowerCamelCase :bool = None , lowerCamelCase :Dict[str, int] = None , lowerCamelCase :PILImageResampling = None , lowerCamelCase :bool = None , lowerCamelCase :Dict[str, int] = None , lowerCamelCase :bool = None , lowerCamelCase :float = None , lowerCamelCase :bool = None , lowerCamelCase :Optional[Union[float, List[float]]] = None , lowerCamelCase :Optional[Union[float, List[float]]] = None , lowerCamelCase :Optional[Union[str, TensorType]] = None , lowerCamelCase :ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase :Optional[Any] , ) -> PIL.Image.Image: UpperCAmelCase__ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ = resample if resample is not None else self.resample UpperCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ = image_std if image_std is not None else self.image_std UpperCAmelCase__ = size if size is not None else self.size UpperCAmelCase__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) UpperCAmelCase__ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ = get_size_dict(UpperCAmelCase__ , param_name="crop_size" ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase__ = make_batched(UpperCAmelCase__ ) UpperCAmelCase__ = [ [ self._preprocess_image( image=UpperCAmelCase__ , do_resize=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , do_center_crop=UpperCAmelCase__ , crop_size=UpperCAmelCase__ , do_rescale=UpperCAmelCase__ , rescale_factor=UpperCAmelCase__ , do_normalize=UpperCAmelCase__ , image_mean=UpperCAmelCase__ , image_std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , ) for img in video ] for video in videos ] UpperCAmelCase__ = {"pixel_values": videos} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
169
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = encoder_stride A__ = num_attention_outputs A__ = embed_dim A__ = embed_dim + 1 A__ = resolution A__ = depths A__ = hidden_sizes A__ = dim A__ = mlp_expansion_ratio def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' A__ = TFEfficientFormerModel(config=UpperCAmelCase__) A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images A__ = 1 A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: '''simple docstring''' A__ = TFEfficientFormerModelTester(self) A__ = ConfigTester( self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''') def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict): A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) if hasattr(self.model_tester , '''encoder_seq_length'''): A__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1: A__ = seq_length * self.model_tester.chunk_length else: A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: A__ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase__ , (list, tuple)) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int: '''simple docstring''' A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''') def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''): A__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model A__ = model_class(UpperCAmelCase__) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes A__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__) for key, val in model.input_signature.items() if key in model.dummy_inputs } A__ = model(UpperCAmelCase__) self.assertTrue(outputs_dict is not None) def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.0555, 0.4825, -0.0852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.1312, 0.4353, -1.0499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
14
0
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Tuple = prime_factors(UpperCamelCase__ ) if is_square_free(UpperCamelCase__ ): return -1 if len(UpperCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
324
"""simple docstring""" _snake_case = 8.31_44_62 # Unit - J mol-1 K-1 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
324
1
"""simple docstring""" import re def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' try: __SCREAMING_SNAKE_CASE = split_input(lowerCAmelCase_ ) if upper: __SCREAMING_SNAKE_CASE = "".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __SCREAMING_SNAKE_CASE = "".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return to_simple_case(lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' try: __SCREAMING_SNAKE_CASE = to_simple_case(lowerCAmelCase_ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return to_complex_case(lowerCAmelCase_ , lowerCAmelCase_ , "_" ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return to_complex_case(lowerCAmelCase_ , lowerCAmelCase_ , "-" ) if __name__ == "__main__": __import__('''doctest''').testmod()
54
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging a__ : Union[str, Any] = logging.get_logger(__name__) def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __SCREAMING_SNAKE_CASE = json.loads(lowerCAmelCase_ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __SCREAMING_SNAKE_CASE = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __SCREAMING_SNAKE_CASE = json.loads(lowerCAmelCase_ ) if not mpi_options.get("sagemaker_mpi_enabled" , lowerCAmelCase_ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : str = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def UpperCAmelCase_ ( self : List[str] ) -> Any: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , UpperCAmelCase__ , ) @cached_property def UpperCAmelCase_ ( self : List[str] ) -> "torch.device": logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: __SCREAMING_SNAKE_CASE = torch.device("cpu" ) __SCREAMING_SNAKE_CASE = 0 elif is_sagemaker_model_parallel_available(): __SCREAMING_SNAKE_CASE = smp.local_rank() __SCREAMING_SNAKE_CASE = torch.device("cuda" , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) __SCREAMING_SNAKE_CASE = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) __SCREAMING_SNAKE_CASE = torch.device("cuda" , self.local_rank ) __SCREAMING_SNAKE_CASE = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __SCREAMING_SNAKE_CASE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __SCREAMING_SNAKE_CASE = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) __SCREAMING_SNAKE_CASE = torch.device("cuda" , self.local_rank ) __SCREAMING_SNAKE_CASE = 1 if device.type == "cuda": torch.cuda.set_device(UpperCAmelCase__ ) return device @property def UpperCAmelCase_ ( self : Dict ) -> Any: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: return not is_sagemaker_model_parallel_available() @property def UpperCAmelCase_ ( self : Tuple ) -> int: return False
54
1
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
355
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
0
import socket def lowercase ( ) -> List[Any]: _snake_case : Tuple = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _snake_case : Union[str, Any] = socket.gethostname() _snake_case : Optional[int] = 12_312 sock.connect((host, port) ) sock.send(b"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: _snake_case : List[Any] = sock.recv(1_024 ) if not data: break out_file.write(SCREAMING_SNAKE_CASE__ ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
317
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter UpperCAmelCase_ : Any = '''Create a default config file for Accelerate with only a few flags set.''' def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[int]="no" , __magic_name__ : str = default_json_config_file , __magic_name__ : bool = False ) -> str: """simple docstring""" UpperCamelCase :Any = Path(__magic_name__ ) path.parent.mkdir(parents=__magic_name__ , exist_ok=__magic_name__ ) if path.exists(): print( f"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False UpperCamelCase :Dict = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) UpperCamelCase :Optional[Any] = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): UpperCamelCase :Union[str, Any] = torch.cuda.device_count() UpperCamelCase :List[Any] = num_gpus UpperCamelCase :Dict = False if num_gpus > 1: UpperCamelCase :Any = """MULTI_GPU""" else: UpperCamelCase :Any = """NO""" elif is_xpu_available() and use_xpu: UpperCamelCase :Optional[Any] = torch.xpu.device_count() UpperCamelCase :Optional[int] = num_xpus UpperCamelCase :int = False if num_xpus > 1: UpperCamelCase :Union[str, Any] = """MULTI_XPU""" else: UpperCamelCase :Union[str, Any] = """NO""" elif is_npu_available(): UpperCamelCase :List[Any] = torch.npu.device_count() UpperCamelCase :Optional[Any] = num_npus UpperCamelCase :Tuple = False if num_npus > 1: UpperCamelCase :Optional[Any] = """MULTI_NPU""" else: UpperCamelCase :List[Any] = """NO""" else: UpperCamelCase :Any = 0 UpperCamelCase :Optional[Any] = True UpperCamelCase :Optional[Any] = 1 UpperCamelCase :List[str] = """NO""" UpperCamelCase :int = ClusterConfig(**__magic_name__ ) config.to_json_file(__magic_name__ ) return path def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" UpperCamelCase :Dict = parser.add_parser("""default""" , parents=__magic_name__ , help=__magic_name__ , formatter_class=__magic_name__ ) parser.add_argument( """--config_file""" , default=__magic_name__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=__magic_name__ , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=__magic_name__ ) return parser def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] ) -> List[str]: """simple docstring""" UpperCamelCase :Optional[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f"""accelerate configuration saved at {config_file}""" )
38
0
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCAmelCase__ : Any ='''src/diffusers''' # Matches is_xxx_available() UpperCAmelCase__ : List[str] =re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla UpperCAmelCase__ : Tuple =re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') UpperCAmelCase__ : Optional[int] =''' {0} = None ''' UpperCAmelCase__ : List[str] =''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' UpperCAmelCase__ : Any =''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def _lowercase ( _UpperCAmelCase ) -> Optional[Any]: lowerCamelCase =_re_backend.findall(_UpperCAmelCase ) if len(_UpperCAmelCase ) == 0: return None return "_and_".join(_UpperCAmelCase ) def _lowercase ( ) -> List[str]: with open(os.path.join(_UpperCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase =f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase =0 lowerCamelCase ={} # Go through the end of the file while line_index < len(_UpperCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 lowerCamelCase =[] # Until we unindent, add backend objects to the list while line_index < len(_UpperCAmelCase ) and len(lines[line_index] ) > 1: lowerCamelCase =lines[line_index] lowerCamelCase =_re_single_line_import.search(_UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_UpperCAmelCase ) > 0: lowerCamelCase =objects else: line_index += 1 return backend_specific_objects def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: if name.isupper(): return DUMMY_CONSTANT.format(_UpperCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(_UpperCAmelCase , _UpperCAmelCase ) else: return DUMMY_CLASS.format(_UpperCAmelCase , _UpperCAmelCase ) def _lowercase ( _UpperCAmelCase=None ) -> Optional[int]: if backend_specific_objects is None: lowerCamelCase =read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase ={} for backend, objects in backend_specific_objects.items(): lowerCamelCase ="""[""" + """, """.join(F"""\"{b}\"""" for b in backend.split("""_and_""" ) ) + """]""" lowerCamelCase ="""# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_UpperCAmelCase , _UpperCAmelCase ) for o in objects] ) lowerCamelCase =dummy_file return dummy_files def _lowercase ( _UpperCAmelCase=False ) -> Dict: lowerCamelCase =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase ={"""torch""": """pt"""} # Locate actual dummy modules and read their content. lowerCamelCase =os.path.join(_UpperCAmelCase , """utils""" ) lowerCamelCase ={ backend: os.path.join(_UpperCAmelCase , F"""dummy_{short_names.get(_UpperCAmelCase , _UpperCAmelCase )}_objects.py""" ) for backend in dummy_files.keys() } lowerCamelCase ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_UpperCAmelCase ): with open(_UpperCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase =f.read() else: lowerCamelCase ="""""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"""Updating diffusers.utils.dummy_{short_names.get(_UpperCAmelCase , _UpperCAmelCase )}_objects.py as the main """ """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ F"""diffusers.utils.dummy_{short_names.get(_UpperCAmelCase , _UpperCAmelCase )}_objects.py. Run `make fix-copies` """ """to fix this.""" ) if __name__ == "__main__": UpperCAmelCase__ : List[Any] =argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCAmelCase__ : Union[str, Any] =parser.parse_args() check_dummies(args.fix_and_overwrite)
358
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCAmelCase__ : Union[str, Any] =logging.getLogger(__name__) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> int: return (preds == labels).mean() @dataclass class __A : __A = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __A = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __A = field( default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __A = field( default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __A : __A = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) __A = field(metadata={"""help""": """Should contain the data files for the task."""} ) __A = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __A = field( default=a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _lowercase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase , lowerCamelCase , lowerCamelCase =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , _UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: lowerCamelCase =processors[data_args.task_name]() lowerCamelCase =processor.get_labels() lowerCamelCase =len(_UpperCAmelCase ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowerCamelCase =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCamelCase =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowerCamelCase =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCamelCase =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_UpperCAmelCase ) -> Dict: lowerCamelCase =np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_UpperCAmelCase , p.label_ids )} # Data collator lowerCamelCase =DataCollatorWithPadding(_UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCamelCase =Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , compute_metrics=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCamelCase ={} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCamelCase =trainer.evaluate() lowerCamelCase =os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(_UpperCAmelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , _UpperCAmelCase , _UpperCAmelCase ) writer.write("""%s = %s\n""" % (key, value) ) results.update(_UpperCAmelCase ) return results def _lowercase ( _UpperCAmelCase ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
262
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = 'https://openaipublic.azureedge.net/jukebox/models/' UpperCAmelCase_ = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: __lowerCamelCase = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: __lowerCamelCase = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: __lowerCamelCase = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: __lowerCamelCase = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: __lowerCamelCase = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: __lowerCamelCase = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __lowerCamelCase = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: __lowerCamelCase = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def lowerCamelCase__ ( A__ : List[str] , A__ : Dict , A__ : Optional[Any] , A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = {} import re __lowerCamelCase = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) __lowerCamelCase = re.compile( R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) __lowerCamelCase = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) __lowerCamelCase = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) __lowerCamelCase = re.compile( R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) __lowerCamelCase = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) __lowerCamelCase = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) __lowerCamelCase = re.compile( R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) __lowerCamelCase = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(A__ ): __lowerCamelCase = re_encoder_block_conv_in.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) __lowerCamelCase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' __lowerCamelCase = re_encoder_block_conv_in.sub(A__ , A__ ) elif re_encoder_block_resnet.fullmatch(A__ ): __lowerCamelCase = re_encoder_block_resnet.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) __lowerCamelCase = {"""1""": 1, """3""": 2}[groups[-2]] __lowerCamelCase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' __lowerCamelCase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __lowerCamelCase = prefix + resnet_block __lowerCamelCase = re_encoder_block_resnet.sub(A__ , A__ ) elif re_encoder_block_proj_out.fullmatch(A__ ): __lowerCamelCase = re_encoder_block_proj_out.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' __lowerCamelCase = re_encoder_block_proj_out.sub(A__ , A__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(A__ ): __lowerCamelCase = re_decoder_block_conv_out.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 __lowerCamelCase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' __lowerCamelCase = re_decoder_block_conv_out.sub(A__ , A__ ) elif re_decoder_block_resnet.fullmatch(A__ ): __lowerCamelCase = re_decoder_block_resnet.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 __lowerCamelCase = {"""1""": 1, """3""": 2}[groups[-2]] __lowerCamelCase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' __lowerCamelCase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __lowerCamelCase = prefix + resnet_block __lowerCamelCase = re_decoder_block_resnet.sub(A__ , A__ ) elif re_decoder_block_proj_in.fullmatch(A__ ): __lowerCamelCase = re_decoder_block_proj_in.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' __lowerCamelCase = re_decoder_block_proj_in.sub(A__ , A__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(A__ ): __lowerCamelCase = re_prior_cond_conv_out.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 __lowerCamelCase = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' __lowerCamelCase = re_prior_cond_conv_out.sub(A__ , A__ ) elif re_prior_cond_resnet.fullmatch(A__ ): __lowerCamelCase = re_prior_cond_resnet.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 __lowerCamelCase = {"""1""": 1, """3""": 2}[groups[-2]] __lowerCamelCase = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' __lowerCamelCase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __lowerCamelCase = prefix + resnet_block __lowerCamelCase = re_prior_cond_resnet.sub(A__ , A__ ) elif re_prior_cond_proj_in.fullmatch(A__ ): __lowerCamelCase = re_prior_cond_proj_in.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' __lowerCamelCase = re_prior_cond_proj_in.sub(A__ , A__ ) # keep original key else: __lowerCamelCase = original_key __lowerCamelCase = replace_key(A__ ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: __lowerCamelCase = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) __lowerCamelCase = original_key __lowerCamelCase = original_key __lowerCamelCase = value return new_dict @torch.no_grad() def lowerCamelCase__ ( A__ : str=None , A__ : List[Any]=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): __lowerCamelCase = requests.get(f'{PREFIX}{file}' , allow_redirects=A__ ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=A__ ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , """wb""" ).write(r.content ) __lowerCamelCase = MODEL_MAPPING[model_name.split("""/""" )[-1]] __lowerCamelCase = JukeboxConfig.from_pretrained(A__ ) __lowerCamelCase = JukeboxModel(A__ ) __lowerCamelCase = [] __lowerCamelCase = {} for i, dict_name in enumerate(A__ ): __lowerCamelCase = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["""model"""] __lowerCamelCase = {} for k in old_dic.keys(): if k.endswith(""".b""" ): __lowerCamelCase = old_dic[k] elif k.endswith(""".w""" ): __lowerCamelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __lowerCamelCase = old_dic[k] else: __lowerCamelCase = old_dic[k] __lowerCamelCase = """vqvae""" if i == 0 else f'priors.{3 - i}' __lowerCamelCase = fix_jukebox_keys(A__ , model.state_dict() , A__ , A__ ) weight_dict.append(A__ ) __lowerCamelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(A__ ) for i in range(len(A__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(A__ ).mkdir(exist_ok=A__ ) with open(f'{pytorch_dump_folder_path}/mapping.json' , """w""" ) as txtfile: json.dump(A__ , A__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) return weight_dict if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) UpperCAmelCase_ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
12
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : Tuple = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def __snake_case ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any=8 ) -> Dict: '''simple docstring''' _UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _UpperCAmelCase : Dict = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __snake_case ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict=512 , SCREAMING_SNAKE_CASE__ : int=512 ) -> str: '''simple docstring''' _UpperCAmelCase : Optional[int] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _UpperCAmelCase : str = np.array(pil_image.convert("RGB" ) ) _UpperCAmelCase : Any = arr.astype(np.floataa ) / 127.5 - 1 _UpperCAmelCase : List[Any] = np.transpose(SCREAMING_SNAKE_CASE__ , [2, 0, 1] ) _UpperCAmelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) return image class UpperCAmelCase_ ( UpperCamelCase__ ): def __init__( self : List[Any] , A : UNetaDConditionModel , A : DDPMScheduler , A : VQModel , ): super().__init__() self.register_modules( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) _UpperCAmelCase : str = 2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case_ ( self : Optional[Any] , A : str , A : Union[str, Any] , A : int ): _UpperCAmelCase : Any = min(int(num_inference_steps * strength ) , UpperCamelCase_ ) _UpperCAmelCase : List[str] = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : Union[str, Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def snake_case_ ( self : Any , A : Union[str, Any] , A : Union[str, Any] , A : Optional[Any] , A : Optional[int] , A : Dict , A : int , A : Dict=None ): if not isinstance(UpperCamelCase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCamelCase_ )}' ) _UpperCAmelCase : str = image.to(device=UpperCamelCase_ , dtype=UpperCamelCase_ ) _UpperCAmelCase : Optional[Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: _UpperCAmelCase : int = image else: if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): _UpperCAmelCase : str = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCamelCase_ ) ] _UpperCAmelCase : int = torch.cat(UpperCamelCase_ , dim=0 ) else: _UpperCAmelCase : str = self.movq.encode(UpperCamelCase_ ).latent_dist.sample(UpperCamelCase_ ) _UpperCAmelCase : Union[str, Any] = self.movq.config.scaling_factor * init_latents _UpperCAmelCase : List[str] = torch.cat([init_latents] , dim=0 ) _UpperCAmelCase : Tuple = init_latents.shape _UpperCAmelCase : Optional[int] = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) # get latents _UpperCAmelCase : Optional[Any] = self.scheduler.add_noise(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _UpperCAmelCase : int = init_latents return latents def snake_case_ ( self : str , A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _UpperCAmelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _UpperCAmelCase : Tuple = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def snake_case_ ( self : int , A : Optional[Any]=0 ): if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _UpperCAmelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _UpperCAmelCase : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. _UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case_ ( self : List[str] ): if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self : List[Any] , A : Union[torch.FloatTensor, List[torch.FloatTensor]] , A : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , A : Union[torch.FloatTensor, List[torch.FloatTensor]] , A : int = 5_1_2 , A : int = 5_1_2 , A : int = 1_0_0 , A : float = 4.0 , A : float = 0.3 , A : int = 1 , A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A : Optional[str] = "pil" , A : bool = True , ): _UpperCAmelCase : List[Any] = self._execution_device _UpperCAmelCase : Tuple = guidance_scale > 1.0 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _UpperCAmelCase : int = torch.cat(UpperCamelCase_ , dim=0 ) _UpperCAmelCase : Optional[Any] = image_embeds.shape[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _UpperCAmelCase : Any = torch.cat(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: _UpperCAmelCase : Tuple = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) _UpperCAmelCase : List[str] = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) _UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _UpperCAmelCase : Tuple = [image] if not all(isinstance(UpperCamelCase_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f'Input is in incorrect format: {[type(UpperCamelCase_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor' ) _UpperCAmelCase : Any = torch.cat([prepare_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for i in image] , dim=0 ) _UpperCAmelCase : List[Any] = image.to(dtype=image_embeds.dtype , device=UpperCamelCase_ ) _UpperCAmelCase : Any = self.movq.encode(UpperCamelCase_ )["latents"] _UpperCAmelCase : Optional[Any] = latents.repeat_interleave(UpperCamelCase_ , dim=0 ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.get_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _UpperCAmelCase : Optional[int] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _UpperCAmelCase , _UpperCAmelCase : Dict = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) _UpperCAmelCase : Optional[int] = self.prepare_latents( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase : Union[str, Any] = {"image_embeds": image_embeds} _UpperCAmelCase : str = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) _UpperCAmelCase , _UpperCAmelCase : Any = noise_pred.chunk(2 ) _UpperCAmelCase , _UpperCAmelCase : int = variance_pred.chunk(2 ) _UpperCAmelCase : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _UpperCAmelCase : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _UpperCAmelCase , _UpperCAmelCase : Any = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : List[str] = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0] # post-processing _UpperCAmelCase : Dict = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _UpperCAmelCase : int = image * 0.5 + 0.5 _UpperCAmelCase : Dict = image.clamp(0 , 1 ) _UpperCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _UpperCAmelCase : Optional[int] = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
355
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = GPTSanJapaneseTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : List[str] = {'do_clean_text': False, 'add_prefix_space': False} def snake_case_ ( self : Any ): super().setUp() # fmt: off _UpperCAmelCase : Any = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on _UpperCAmelCase : Optional[int] = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 _UpperCAmelCase : List[Any] = {"unk_token": "<unk>"} _UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(A ) ) def snake_case_ ( self : int , **A : List[str] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **A ) def snake_case_ ( self : int , A : Any ): _UpperCAmelCase : Optional[Any] = "こんにちは、世界。 \nこんばんは、㔺界。😀" _UpperCAmelCase : List[Any] = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def snake_case_ ( self : Optional[Any] , A : str ): _UpperCAmelCase , _UpperCAmelCase : str = self.get_input_output_texts(A ) _UpperCAmelCase : List[Any] = tokenizer.encode(A , add_special_tokens=A ) _UpperCAmelCase : Union[str, Any] = tokenizer.decode(A , clean_up_tokenization_spaces=A ) return text, ids def snake_case_ ( self : Any ): pass # TODO add if relevant def snake_case_ ( self : Union[str, Any] ): pass # TODO add if relevant def snake_case_ ( self : int ): pass # TODO add if relevant def snake_case_ ( self : List[str] ): _UpperCAmelCase : List[Any] = self.get_tokenizer() # Testing tokenization _UpperCAmelCase : Optional[int] = "こんにちは、世界。 こんばんは、㔺界。" _UpperCAmelCase : Dict = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] _UpperCAmelCase : List[Any] = tokenizer.tokenize(A ) self.assertListEqual(A , A ) # Testing conversion to ids without special tokens _UpperCAmelCase : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _UpperCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , A ) # Testing conversion to ids with special tokens _UpperCAmelCase : str = tokens + [tokenizer.unk_token] _UpperCAmelCase : Any = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , A ) def snake_case_ ( self : Any ): _UpperCAmelCase : Union[str, Any] = self.get_tokenizer() # Testing tokenization _UpperCAmelCase : Dict = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" _UpperCAmelCase : Tuple = "こんにちは、、、、世界。こんばんは、、、、世界。" _UpperCAmelCase : int = tokenizer.encode(A ) _UpperCAmelCase : Optional[Any] = tokenizer.decode(A ) self.assertEqual(A , A ) @slow def snake_case_ ( self : Dict ): _UpperCAmelCase : List[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _UpperCAmelCase : List[Any] = "こんにちは、世界。" _UpperCAmelCase : List[str] = "こんばんは、㔺界。😀" _UpperCAmelCase : Any = "こんにちは、世界。こんばんは、世界。😀" _UpperCAmelCase : Union[str, Any] = tokenizer.encode(prefix_text + input_text ) _UpperCAmelCase : Tuple = tokenizer.encode("" , prefix_text=prefix_text + input_text ) _UpperCAmelCase : Optional[int] = tokenizer.encode(A , prefix_text=A ) _UpperCAmelCase : Tuple = tokenizer.decode(A ) _UpperCAmelCase : Optional[Any] = tokenizer.decode(A ) _UpperCAmelCase : Tuple = tokenizer.decode(A ) self.assertEqual(A , A ) self.assertEqual(A , A ) self.assertEqual(A , A ) @slow def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _UpperCAmelCase : Any = "こんにちは、世界。" _UpperCAmelCase : List[Any] = "こんばんは、㔺界。😀" _UpperCAmelCase : Optional[Any] = len(tokenizer.encode(A ) ) - 2 _UpperCAmelCase : List[Any] = len(tokenizer.encode(A ) ) - 2 _UpperCAmelCase : List[str] = [1] + [0] * (len_prefix + len_text + 1) _UpperCAmelCase : str = [1] * (len_prefix + len_text + 1) + [0] _UpperCAmelCase : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _UpperCAmelCase : Union[str, Any] = tokenizer(prefix_text + input_text ).token_type_ids _UpperCAmelCase : Any = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids _UpperCAmelCase : List[Any] = tokenizer(A , prefix_text=A ).token_type_ids self.assertListEqual(A , A ) self.assertListEqual(A , A ) self.assertListEqual(A , A ) @slow def snake_case_ ( self : List[str] ): _UpperCAmelCase : str = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _UpperCAmelCase : Dict = tokenizer.encode("あンいワ" ) _UpperCAmelCase : str = tokenizer.encode("" , prefix_text="あンいワ" ) _UpperCAmelCase : Dict = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(A ) , tokenizer.decode(A ) ) self.assertEqual(tokenizer.decode(A ) , tokenizer.decode(A ) ) self.assertNotEqual(A , A ) self.assertNotEqual(A , A ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def snake_case_ ( self : List[str] ): _UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _UpperCAmelCase : Tuple = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] _UpperCAmelCase : Tuple = tokenizer(A , padding=A ) _UpperCAmelCase : str = tokenizer.batch_encode_plus(A , padding=A ) # fmt: off _UpperCAmelCase : str = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _UpperCAmelCase : str = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _UpperCAmelCase : int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , A ) self.assertListEqual(x_token.token_type_ids , A ) self.assertListEqual(x_token.attention_mask , A ) self.assertListEqual(x_token_a.input_ids , A ) self.assertListEqual(x_token_a.token_type_ids , A ) self.assertListEqual(x_token_a.attention_mask , A ) def snake_case_ ( self : List[Any] ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def snake_case_ ( self : int ): # tokenizer has no padding token pass
202
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = '▁' lowercase__ : Dict = {'vocab_file': 'sentencepiece.bpe.model'} lowercase__ : Dict = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } lowercase__ : Optional[Any] = { 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off lowercase__ : int = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Dict = VOCAB_FILES_NAMES _snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Any = PRETRAINED_VOCAB_FILES_MAP _snake_case : Optional[Any] = ['input_ids', 'attention_mask'] _snake_case : List[int] = [] _snake_case : List[int] = [] def __init__( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : Dict="</s>" , lowerCAmelCase__ : Dict="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : Any="<pad>" , lowerCAmelCase__ : List[Any]="<mask>" , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : str=False , **lowerCAmelCase__ : int , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCamelCase = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) _UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase = 1 _UpperCamelCase = len(self.sp_model ) _UpperCamelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } _UpperCamelCase = {v: k for k, v in self.lang_code_to_id.items()} _UpperCamelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _UpperCamelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _UpperCamelCase = src_lang if src_lang is not None else '''eng_Latn''' _UpperCamelCase = self.lang_code_to_id[self._src_lang] _UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None _UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str] , lowerCAmelCase__ : str ) -> str: '''simple docstring''' _UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def snake_case__ ( self : int ) -> Dict: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def snake_case__ ( self : Union[str, Any] ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def snake_case__ ( self : str , lowerCAmelCase__ : str ) -> None: '''simple docstring''' _UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = [1] * len(self.prefix_tokens ) _UpperCamelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def snake_case__ ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case__ ( self : Dict , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case__ ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] , lowerCAmelCase__ : Optional[str] , **lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _UpperCamelCase = src_lang _UpperCamelCase = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = self.convert_tokens_to_ids(lowerCAmelCase__ ) _UpperCamelCase = tgt_lang_id return inputs def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] ) -> str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case__ ( self : Any , lowerCAmelCase__ : List[str] ) -> Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case__ ( self : Any , lowerCAmelCase__ : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ''''''.join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , ''' ''' ).strip() return out_string def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCamelCase = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , '''wb''' ) as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def snake_case__ ( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str = "eng_Latn" , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : str = "fra_Latn" , **lowerCAmelCase__ : Any , ) -> BatchEncoding: '''simple docstring''' _UpperCamelCase = src_lang _UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> str: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def snake_case__ ( self : Dict ) -> Optional[int]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' _UpperCamelCase = self.lang_code_to_id[src_lang] if self.legacy_behaviour: _UpperCamelCase = [] _UpperCamelCase = [self.eos_token_id, self.cur_lang_code] else: _UpperCamelCase = [self.cur_lang_code] _UpperCamelCase = [self.eos_token_id] def snake_case__ ( self : Dict , lowerCAmelCase__ : str ) -> None: '''simple docstring''' _UpperCamelCase = self.lang_code_to_id[lang] if self.legacy_behaviour: _UpperCamelCase = [] _UpperCamelCase = [self.eos_token_id, self.cur_lang_code] else: _UpperCamelCase = [self.cur_lang_code] _UpperCamelCase = [self.eos_token_id]
324
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging lowercase__ : Any = logging.get_logger(__name__) class __lowerCAmelCase : """simple docstring""" _snake_case : List[str] = None @experimental def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : Tuple, lowercase : List[Any], lowercase : Dict, lowercase : Union[str, Any], lowercase : Optional[Any] ) -> int: """simple docstring""" if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) return _map_with_joblib(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) def a__ ( lowercase : Dict, lowercase : str, lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : Optional[int], lowercase : Optional[Any], lowercase : Optional[int] ) -> List[str]: """simple docstring""" _UpperCamelCase = num_proc if num_proc <= len(lowercase ) else len(lowercase ) _UpperCamelCase = [] # We organize the splits ourselve (contiguous splits) for index in range(lowercase ): _UpperCamelCase = len(lowercase ) // num_proc _UpperCamelCase = len(lowercase ) % num_proc _UpperCamelCase = div * index + min(lowercase, lowercase ) _UpperCamelCase = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"""Error dividing inputs iterable among processes. """ F"""Total number of objects {len(lowercase )}, """ F"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( F"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) _UpperCamelCase , _UpperCamelCase = None, None if not disable_tqdm: _UpperCamelCase , _UpperCamelCase = (RLock(),), tqdm.set_lock with Pool(lowercase, initargs=lowercase, initializer=lowercase ) as pool: _UpperCamelCase = pool.map(lowercase, lowercase ) logger.info(F"""Finished {num_proc} processes""" ) _UpperCamelCase = [obj for proc_res in mapped for obj in proc_res] logger.info(F"""Unpacked {len(lowercase )} objects""" ) return mapped def a__ ( lowercase : str, lowercase : Tuple, lowercase : List[str], lowercase : List[str], lowercase : Any, lowercase : int, lowercase : Optional[Any] ) -> Any: """simple docstring""" import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=lowercase ): return joblib.Parallel()( joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def a__ ( lowercase : str ) -> Optional[int]: """simple docstring""" _UpperCamelCase = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: _UpperCamelCase = None
324
1
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a ) -> Dict: _a : Any = n _a : Any = [None] * self.n _a : Tuple = 0 # index of the first element _a : str = 0 _a : List[Any] = 0 def __len__( self ) -> int: return self.size def __lowercase ( self ) -> bool: return self.size == 0 def __lowercase ( self ) -> Dict: return False if self.is_empty() else self.array[self.front] def __lowercase ( self , _a ) -> int: if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) _a : Union[str, Any] = data _a : Optional[int] = (self.rear + 1) % self.n self.size += 1 return self def __lowercase ( self ) -> Any: if self.size == 0: raise Exception('''UNDERFLOW''' ) _a : Optional[int] = self.array[self.front] _a : Optional[int] = None _a : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
15
import argparse import os import re import packaging.version a__ = '''examples/''' a__ = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } a__ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } a__ = '''README.md''' def __UpperCAmelCase ( __a : List[str] ,__a : int ,__a : Optional[Any] ) -> int: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Tuple = f.read() _a , _a : str = REPLACE_PATTERNS[pattern] _a : List[str] = replace.replace('''VERSION''' ,__a ) _a : List[Any] = re_pattern.sub(__a ,__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(__a ) def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a ,__a ) ,__a ,pattern='''examples''' ) def __UpperCAmelCase ( __a : List[Any] ,__a : List[str]=False ) -> int: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a ,__a ,__a ) if not patch: update_version_in_examples(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' _a : str = '''1. Want to contribute a new model?''' with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Optional[int] = f.readlines() # Find the start of the list. _a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _a : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _a : Tuple = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,) index += 1 with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] ,'''r''' ) as f: _a : Optional[Any] = f.read() _a : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def __UpperCAmelCase ( __a : Dict=False ) -> str: """simple docstring""" _a : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _a : List[Any] = default_version.base_version elif patch: _a : str = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _a : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _a : Dict = input(F"""Which version are you releasing? [{default_version}]""" ) if len(__a ) == 0: _a : int = default_version print(F"""Updating version to {version}.""" ) global_version_update(__a ,patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : str = get_version() _a : int = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _a : List[Any] = current_version.base_version # Check with the user we got that right. _a : Union[str, Any] = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(__a ) == 0: _a : List[str] = dev_version print(F"""Updating version to {version}.""" ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') a__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
15
1
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class A_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self :Union[str, Any] ) -> Tuple: debug_launcher(test_script.main ) def UpperCAmelCase__ ( self :Any ) -> Optional[int]: debug_launcher(test_ops.main )
78
def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase: List[Any] = f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 0: return False __lowerCAmelCase: str = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
322
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart SCREAMING_SNAKE_CASE :Optional[int] = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE :int = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = BartTokenizer def __init__( self : Any ,A : Dict=None ,A : Any=None ,A : List[str]=None ,A : Any="replace" ,A : Dict="<s>" ,A : Optional[int]="</s>" ,A : Any="</s>" ,A : Union[str, Any]="<s>" ,A : int="<unk>" ,A : int="<pad>" ,A : Optional[Any]="<mask>" ,A : List[str]=False ,A : str=True ,**A : Tuple ,): super().__init__( A ,A ,tokenizer_file=A ,errors=A ,bos_token=A ,eos_token=A ,sep_token=A ,cls_token=A ,unk_token=A ,pad_token=A ,mask_token=A ,add_prefix_space=A ,trim_offsets=A ,**A ,) __A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" ,A ) != add_prefix_space: __A = getattr(A ,pre_tok_state.pop("type" ) ) __A = add_prefix_space __A = pre_tok_class(**A ) __A = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __A = "post_processor" __A = getattr(self.backend_tokenizer ,A ,A ) if tokenizer_component_instance: __A = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __A = tuple(state["sep"] ) if "cls" in state: __A = tuple(state["cls"] ) __A = False if state.get("add_prefix_space" ,A ) != add_prefix_space: __A = add_prefix_space __A = True if state.get("trim_offsets" ,A ) != trim_offsets: __A = trim_offsets __A = True if changes_to_apply: __A = getattr(A ,state.pop("type" ) ) __A = component_class(**A ) setattr(self.backend_tokenizer ,A ,A ) @property def UpperCamelCase_ ( self : Any ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase_ ( self : List[str] ,A : List[Any] ): __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else value __A = value def UpperCamelCase_ ( self : Optional[Any] ,*A : List[Any] ,**A : Optional[int] ): __A = kwargs.get("is_split_into_words" ,A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A ,**A ) def UpperCamelCase_ ( self : Tuple ,*A : int ,**A : Dict ): __A = kwargs.get("is_split_into_words" ,A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*A ,**A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,A : Optional[str] = None ): __A = self._tokenizer.model.save(A ,name=A ) return tuple(A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : Tuple ,A : str=None ): __A = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase_ ( self : Optional[Any] ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
124
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] ,A : Optional[Any] ,A : List[Any] ): super().__init__() # make sure scheduler can always be converted to DDIM __A = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=A ,scheduler=A ) @torch.no_grad() def __call__( self : Tuple ,A : int = 1 ,A : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A : float = 0.0 ,A : int = 50 ,A : Optional[bool] = None ,A : Optional[str] = "pil" ,A : bool = True ,): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size ,A ): __A = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __A = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(A ,A ) and len(A ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(A )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __A = randn_tensor(A ,generator=A ,device=self.device ,dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __A = self.unet(A ,A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __A = self.scheduler.step( A ,A ,A ,eta=A ,use_clipped_model_output=A ,generator=A ).prev_sample __A = (image / 2 + 0.5).clamp(0 ,1 ) __A = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __A = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
124
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__: Optional[int] = logging.get_logger(__name__) UpperCamelCase__: int = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """vit""" def __init__( self : Dict , __snake_case : int=768 , __snake_case : Optional[int]=12 , __snake_case : Any=12 , __snake_case : Optional[Any]=3072 , __snake_case : Any="gelu" , __snake_case : str=0.0 , __snake_case : str=0.0 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=1E-12 , __snake_case : List[str]=224 , __snake_case : Tuple=16 , __snake_case : Dict=3 , __snake_case : List[str]=True , __snake_case : Optional[int]=16 , **__snake_case : Dict , ) -> Optional[Any]: super().__init__(**__snake_case ) UpperCAmelCase : str = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : str = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : List[str] = hidden_dropout_prob UpperCAmelCase : Any = attention_probs_dropout_prob UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Optional[int] = layer_norm_eps UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : Any = patch_size UpperCAmelCase : Union[str, Any] = num_channels UpperCAmelCase : Any = qkv_bias UpperCAmelCase : Union[str, Any] = encoder_stride class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = version.parse("""1.11""" ) @property def A ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def A ( self : Union[str, Any] ) -> float: return 1E-4
23
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def lowerCAmelCase ( lowerCAmelCase_ )-> Union[str, Any]: return EnvironmentCommand() class snake_case__( UpperCAmelCase__ ): '''simple docstring''' @staticmethod def lowercase_ ( __lowercase ) -> List[Any]: lowerCAmelCase_ : List[str] = parser.add_parser('''env''' ) download_parser.set_defaults(func=__lowercase ) def lowercase_ ( self ) -> int: lowerCAmelCase_ : Optional[Any] = huggingface_hub.__version__ lowerCAmelCase_ : str = '''not installed''' lowerCAmelCase_ : str = '''NA''' if is_torch_available(): import torch lowerCAmelCase_ : Any = torch.__version__ lowerCAmelCase_ : str = torch.cuda.is_available() lowerCAmelCase_ : List[str] = '''not installed''' if is_transformers_available(): import transformers lowerCAmelCase_ : Any = transformers.__version__ lowerCAmelCase_ : Optional[Any] = '''not installed''' if is_accelerate_available(): import accelerate lowerCAmelCase_ : List[Any] = accelerate.__version__ lowerCAmelCase_ : List[str] = '''not installed''' if is_xformers_available(): import xformers lowerCAmelCase_ : Optional[Any] = xformers.__version__ lowerCAmelCase_ : int = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(__lowercase ) ) return info @staticmethod def lowercase_ ( __lowercase ) -> str: return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
262
0
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder lowerCAmelCase : Any ='''base_with_context''' def UpperCAmelCase_ ( __lowerCamelCase : Dict ,__lowerCamelCase : List[Any] ): lowercase_ :Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) lowercase_ :Optional[int] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) ,requires_grad=_lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): lowercase_ :Union[str, Any] = weights[F'layers_{lyr_num}'] lowercase_ :Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) lowercase_ :List[Any] = ly_weight["""attention"""] lowercase_ :int = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) lowercase_ :Tuple = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) lowercase_ :List[str] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) lowercase_ :Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) lowercase_ :List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) lowercase_ :Tuple = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) lowercase_ :Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) lowercase_ :Tuple = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) lowercase_ :Optional[int] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : Union[str, Any] ): lowercase_ :Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) lowercase_ :int = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) ,requires_grad=_lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): lowercase_ :Union[str, Any] = weights[F'layers_{lyr_num}'] lowercase_ :Tuple = ly_weight["""attention"""] lowercase_ :Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) lowercase_ :int = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) lowercase_ :Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) lowercase_ :Tuple = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) lowercase_ :Any = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) lowercase_ :int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) lowercase_ :List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) lowercase_ :Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) lowercase_ :List[str] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) lowercase_ :Optional[int] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def UpperCAmelCase_ ( __lowerCamelCase : Optional[Any] ,__lowerCamelCase : int ): lowercase_ :Optional[Any] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) lowercase_ :Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) lowercase_ :Optional[Any] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) ,requires_grad=_lowerCAmelCase ) lowercase_ :int = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowercase_ :int = weights[F'layers_{lyr_num}'] lowercase_ :int = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) lowercase_ :Any = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) lowercase_ :Optional[Any] = ly_weight["""self_attention"""] lowercase_ :int = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) lowercase_ :List[str] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) lowercase_ :List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) lowercase_ :str = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) lowercase_ :str = ly_weight["""MultiHeadDotProductAttention_0"""] lowercase_ :int = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) lowercase_ :Tuple = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) lowercase_ :str = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) lowercase_ :Any = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) lowercase_ :Optional[int] = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) lowercase_ :Tuple = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) lowercase_ :Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) lowercase_ :List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) lowercase_ :List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) lowercase_ :Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) lowercase_ :int = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) lowercase_ :Tuple = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def UpperCAmelCase_ ( __lowerCamelCase : Dict ): lowercase_ :str = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowercase_ :List[Any] = jnp.tree_util.tree_map(onp.array ,_lowerCAmelCase ) lowercase_ :Dict = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] lowercase_ :Optional[Any] = os.path.join(args.checkpoint_path ,".." ,"config.gin" ) lowercase_ :List[str] = inference.parse_training_gin_file(_lowerCAmelCase ,_lowerCAmelCase ) lowercase_ :Dict = inference.InferenceModel(args.checkpoint_path ,_lowerCAmelCase ) lowercase_ :Optional[int] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ,variance_type="fixed_large" ) lowercase_ :Any = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] ,vocab_size=synth_model.model.module.config.vocab_size ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj="gated-gelu" ,) lowercase_ :Dict = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims ,targets_context_length=synth_model.sequence_length["targets_context"] ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj="gated-gelu" ,) lowercase_ :List[Any] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims ,targets_length=synth_model.sequence_length["targets_context"] ,max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time ,d_model=synth_model.model.module.config.emb_dim ,num_layers=synth_model.model.module.config.num_decoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,) lowercase_ :int = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] ,_lowerCAmelCase ) lowercase_ :Union[str, Any] = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] ,_lowerCAmelCase ) lowercase_ :Any = load_decoder(ta_checkpoint["target"]["decoder"] ,_lowerCAmelCase ) lowercase_ :Tuple = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) lowercase_ :Tuple = SpectrogramDiffusionPipeline( notes_encoder=_lowerCAmelCase ,continuous_encoder=_lowerCAmelCase ,decoder=_lowerCAmelCase ,scheduler=_lowerCAmelCase ,melgan=_lowerCAmelCase ,) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help='''Path to the original jax model checkpoint.''', ) lowerCAmelCase : Dict =parser.parse_args() main(args)
371
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase : Any ={ '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase : int =logging.get_logger(__name__) class a_ ( _lowerCAmelCase ): __A = "maskformer" __A = {"hidden_size": "mask_feature_size"} __A = ["resnet", "swin"] __A = ["detr"] def __init__( self : List[Any] , lowercase : int = 256 , lowercase : int = 256 , lowercase : float = 0.1 , lowercase : bool = False , lowercase : Optional[Dict] = None , lowercase : Optional[Dict] = None , lowercase : float = 0.02 , lowercase : float = 1.0 , lowercase : float = 1.0 , lowercase : float = 1.0 , lowercase : float = 20.0 , lowercase : Optional[bool] = None , **lowercase : Any , ): """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase_ :Any = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(lowercase , lowercase ): lowercase_ :Optional[int] = backbone_config.pop("model_type" ) lowercase_ :Optional[int] = CONFIG_MAPPING[backbone_model_type] lowercase_ :int = config_class.from_dict(lowercase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' F'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase_ :Optional[Any] = DetrConfig() else: # verify that the decoder is supported lowercase_ :Tuple = ( decoder_config.pop("model_type" ) if isinstance(lowercase , lowercase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'Transformer Decoder {decoder_type} not supported, please use one of' F' {",".join(self.decoders_supported )}' ) if isinstance(lowercase , lowercase ): lowercase_ :str = CONFIG_MAPPING[decoder_type] lowercase_ :List[str] = config_class.from_dict(lowercase ) lowercase_ :str = backbone_config lowercase_ :Union[str, Any] = decoder_config # main feature dimension for the model lowercase_ :Any = fpn_feature_size lowercase_ :Optional[int] = mask_feature_size # initializer lowercase_ :List[Any] = init_std lowercase_ :Union[str, Any] = init_xavier_std # Hungarian matcher && loss lowercase_ :List[str] = cross_entropy_weight lowercase_ :int = dice_weight lowercase_ :List[str] = mask_weight lowercase_ :Optional[Any] = use_auxiliary_loss lowercase_ :str = no_object_weight lowercase_ :int = output_auxiliary_logits lowercase_ :Optional[Any] = self.decoder_config.encoder_attention_heads lowercase_ :int = self.decoder_config.num_hidden_layers super().__init__(**lowercase ) @classmethod def lowercase__ ( cls : Tuple , lowercase : PretrainedConfig , lowercase : PretrainedConfig , **lowercase : Union[str, Any] ): """simple docstring""" return cls( backbone_config=lowercase , decoder_config=lowercase , **lowercase , ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :str = copy.deepcopy(self.__dict__ ) lowercase_ :int = self.backbone_config.to_dict() lowercase_ :List[Any] = self.decoder_config.to_dict() lowercase_ :Optional[Any] = self.__class__.model_type return output
147
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
89
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _A : Optional[int] = """ Human: <<task>> Assistant: """ _A : List[Any] = """huggingface-tools/default-prompts""" _A : Optional[int] = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""} def __magic_name__ ( __snake_case : int , __snake_case : List[Any] , __snake_case : Dict="run" ) -> Union[str, Any]: if prompt_or_repo_id is None: lowercase : List[Any] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , __snake_case ) is not None: return prompt_or_repo_id lowercase : Optional[int] = cached_file( __snake_case , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(__snake_case , "r" , encoding="utf-8" ) as f: return f.read()
202
0
from collections.abc import Callable def lowerCamelCase__ ( UpperCamelCase__ : Callable[[float], float] , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: '''simple docstring''' _snake_case = a _snake_case = b if function(__lowerCAmelCase ) == 0: # one of the a or b is a root for the function return a elif function(__lowerCAmelCase ) == 0: return b elif ( function(__lowerCAmelCase ) * function(__lowerCAmelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _snake_case = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__lowerCAmelCase ) == 0: return mid elif function(__lowerCAmelCase ) * function(__lowerCAmelCase ) < 0: _snake_case = mid else: _snake_case = mid _snake_case = start + (end - start) / 2.0 return mid def lowerCamelCase__ ( UpperCamelCase__ : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
353
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' _snake_case = VideoMAEConfig() set_architecture_configs(UpperCamelCase__ , UpperCamelCase__ ) if "finetuned" not in model_name: _snake_case = False if "finetuned" in model_name: _snake_case = 'huggingface/label-files' if "kinetics" in model_name: _snake_case = 400 _snake_case = 'kinetics400-id2label.json' elif "ssv2" in model_name: _snake_case = 174 _snake_case = 'something-something-v2-id2label.json' else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) _snake_case = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> int: '''simple docstring''' if "small" in model_name: _snake_case = 384 _snake_case = 1_536 _snake_case = 12 _snake_case = 16 _snake_case = 12 _snake_case = 3 _snake_case = 192 _snake_case = 768 elif "large" in model_name: _snake_case = 1_024 _snake_case = 4_096 _snake_case = 24 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 512 _snake_case = 2_048 elif "huge" in model_name: _snake_case = 1_280 _snake_case = 5_120 _snake_case = 32 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 640 _snake_case = 2_560 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"' ) def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' if "encoder." in name: _snake_case = name.replace('encoder.' , '' ) if "cls_token" in name: _snake_case = name.replace('cls_token' , 'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: _snake_case = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: _snake_case = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: _snake_case = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _snake_case = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' ) if "decoder.blocks" in name: _snake_case = name.replace('decoder.blocks' , 'decoder.decoder_layers' ) if "blocks" in name: _snake_case = name.replace('blocks' , 'videomae.encoder.layer' ) if "attn.proj" in name: _snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "bias" not in name: _snake_case = name.replace('attn' , 'attention.self' ) if "attn" in name: _snake_case = name.replace('attn' , 'attention.attention' ) if "norm1" in name: _snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: _snake_case = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: _snake_case = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: _snake_case = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.weight' , 'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.bias' , 'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: _snake_case = name.replace('head' , 'classifier' ) return name def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(UpperCamelCase__ ) if key.startswith('encoder.' ): _snake_case = key.replace('encoder.' , '' ) if "qkv" in key: _snake_case = key.split('.' ) if key.startswith('decoder.blocks' ): _snake_case = config.decoder_hidden_size _snake_case = int(key_split[2] ) _snake_case = 'decoder.decoder_layers.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = config.hidden_size _snake_case = int(key_split[1] ) _snake_case = 'videomae.encoder.layer.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val return orig_state_dict def lowerCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' _snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _snake_case = np.load(UpperCamelCase__ ) return list(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' _snake_case = get_videomae_config(UpperCamelCase__ ) if "finetuned" in model_name: _snake_case = VideoMAEForVideoClassification(UpperCamelCase__ ) else: _snake_case = VideoMAEForPreTraining(UpperCamelCase__ ) # download original checkpoint, hosted on Google Drive _snake_case = 'pytorch_model.bin' gdown.cached_download(UpperCamelCase__ , UpperCamelCase__ , quiet=UpperCamelCase__ ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' ) if "model" in files: _snake_case = files['model'] else: _snake_case = files['module'] _snake_case = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # verify model on basic input _snake_case = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) _snake_case = prepare_video() _snake_case = image_processor(UpperCamelCase__ , return_tensors='pt' ) if "finetuned" not in model_name: _snake_case = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) _snake_case = torch.load(UpperCamelCase__ ) _snake_case = model(**UpperCamelCase__ ) _snake_case = outputs.logits _snake_case = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one _snake_case = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) else: print('Logits:' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": _snake_case = outputs.loss assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(UpperCamelCase__ , organization='nielsr' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase_ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
295
0
class UpperCAmelCase : '''simple docstring''' def __init__( self : int ,A : int ): __A = n __A = [None] * self.n __A = 0 # index of the first element __A = 0 __A = 0 def __len__( self : Tuple ): return self.size def UpperCamelCase_ ( self : int ): return self.size == 0 def UpperCamelCase_ ( self : str ): return False if self.is_empty() else self.array[self.front] def UpperCamelCase_ ( self : Union[str, Any] ,A : Dict ): if self.size >= self.n: raise Exception("QUEUE IS FULL" ) __A = data __A = (self.rear + 1) % self.n self.size += 1 return self def UpperCamelCase_ ( self : Union[str, Any] ): if self.size == 0: raise Exception("UNDERFLOW" ) __A = self.array[self.front] __A = None __A = (self.front + 1) % self.n self.size -= 1 return temp
15
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 42 snake_case_ = 42 snake_case_ = None class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 2 @register_to_config def __init__( self : str ,A : float = 0.02 ,A : float = 1_00 ,A : float = 1.0_07 ,A : float = 80 ,A : float = 0.05 ,A : float = 50 ,): # standard deviation of the initial noise distribution __A = sigma_max # setable values __A = None __A = None __A = None # sigma(t_i) def UpperCamelCase_ ( self : str ,A : torch.FloatTensor ,A : Optional[int] = None ): return sample def UpperCamelCase_ ( self : Dict ,A : int ,A : Union[str, torch.device] = None ): __A = num_inference_steps __A = np.arange(0 ,self.num_inference_steps )[::-1].copy() __A = torch.from_numpy(A ).to(A ) __A = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __A = torch.tensor(A ,dtype=torch.floataa ,device=A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : torch.FloatTensor ,A : float ,A : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: __A = min(self.config.s_churn / self.num_inference_steps ,2**0.5 - 1 ) else: __A = 0 # sample eps ~ N(0, S_noise^2 * I) __A = self.config.s_noise * randn_tensor(sample.shape ,generator=A ).to(sample.device ) __A = sigma + gamma * sigma __A = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase_ ( self : Dict ,A : torch.FloatTensor ,A : float ,A : float ,A : torch.FloatTensor ,A : bool = True ,): __A = sample_hat + sigma_hat * model_output __A = (sample_hat - pred_original_sample) / sigma_hat __A = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=A ,derivative=A ,pred_original_sample=A ) def UpperCamelCase_ ( self : Optional[int] ,A : torch.FloatTensor ,A : float ,A : float ,A : torch.FloatTensor ,A : torch.FloatTensor ,A : torch.FloatTensor ,A : bool = True ,): __A = sample_prev + sigma_prev * model_output __A = (sample_prev - pred_original_sample) / sigma_prev __A = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=A ,derivative=A ,pred_original_sample=A ) def UpperCamelCase_ ( self : List[Any] ,A : Dict ,A : List[str] ,A : str ): raise NotImplementedError()
15
1
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata _lowerCamelCase : str = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class SCREAMING_SNAKE_CASE ( tr.AbstractTransform ): def __init__( self : int, __A : str = " " ): UpperCAmelCase : Optional[int] = sentence_delimiter def __magic_name__ ( self : Dict, __A : str ): return list(__A ) def __magic_name__ ( self : List[Any], __A : List[str] ): UpperCAmelCase : Union[str, Any] = [] for sent_idx, sentence in enumerate(__A ): chars.extend(self.process_string(__A ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__A ) - 1: chars.append(self.sentence_delimiter ) return chars _lowerCamelCase : Optional[int] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: _lowerCamelCase : Dict = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) _lowerCamelCase : int = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" _lowerCamelCase : Union[str, Any] = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" _lowerCamelCase : Optional[Any] = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def __magic_name__ ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Value('''string''', id='''sequence''' ), '''references''': datasets.Value('''string''', id='''sequence''' ), } ), codebase_urls=['''https://github.com/jitsi/jiwer/'''], reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ], ) def __magic_name__ ( self : Dict, __A : Any, __A : Optional[Any], __A : Dict=False ): if concatenate_texts: return jiwer.compute_measures( __A, __A, truth_transform=__A, hypothesis_transform=__A, )["wer"] UpperCAmelCase : Any = 0 UpperCAmelCase : Tuple = 0 for prediction, reference in zip(__A, __A ): UpperCAmelCase : str = jiwer.compute_measures( __A, __A, truth_transform=__A, hypothesis_transform=__A, ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
352
from ..utils import DummyObject, requires_backends class __UpperCAmelCase ( metaclass=lowerCamelCase__ ): UpperCamelCase = ["""onnx"""] def __init__( self : int, *__A : Optional[Any], **__A : Dict ): requires_backends(self, ['''onnx'''] ) @classmethod def __magic_name__ ( cls : Any, *__A : Any, **__A : Dict ): requires_backends(cls, ['''onnx'''] ) @classmethod def __magic_name__ ( cls : Tuple, *__A : List[str], **__A : List[str] ): requires_backends(cls, ['''onnx'''] )
99
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib lowerCamelCase : Any = get_logger() lowerCamelCase : Optional[dict] = None class __lowercase (TensorFormatter[Mapping, """jax.Array""", Mapping] ): """simple docstring""" def __init__( self , A=None , A=None , **A ) -> Optional[Any]: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f"""Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` """ """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) snake_case : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case : Optional[Any] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ f"""device: {str(jax.devices()[0] )}.""" ) snake_case : List[Any] = str(jax.devices()[0] ) snake_case : Optional[Any] = jnp_array_kwargs @staticmethod def UpperCAmelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def UpperCAmelCase ( self , A ) -> List[Any]: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def UpperCAmelCase ( self , A ) -> List[str]: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case : List[Any] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case : Optional[Any] = {"""dtype""": jnp.intaa} else: snake_case : Any = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case : List[Any] = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): snake_case : Optional[int] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def UpperCAmelCase ( self , A ) -> Dict: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): snake_case : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def UpperCAmelCase ( self , A ) -> str: return map_nested(self._recursive_tensorize , A , map_list=A ) def UpperCAmelCase ( self , A ) -> Mapping: snake_case : Optional[int] = self.numpy_arrow_extractor().extract_row(A ) snake_case : Union[str, Any] = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def UpperCAmelCase ( self , A ) -> "jax.Array": snake_case : int = self.numpy_arrow_extractor().extract_column(A ) snake_case : Tuple = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) snake_case : Any = self.recursive_tensorize(A ) snake_case : Any = self._consolidate(A ) return column def UpperCAmelCase ( self , A ) -> Mapping: snake_case : Union[str, Any] = self.numpy_arrow_extractor().extract_batch(A ) snake_case : Optional[Any] = self.python_features_decoder.decode_batch(A ) snake_case : str = self.recursive_tensorize(A ) for column_name in batch: snake_case : int = self._consolidate(batch[column_name] ) return batch
124
from __future__ import annotations import math lowerCamelCase : Optional[int] = '2020.9.26' lowerCamelCase : int = 'xcodz-dot, cclaus, dhruvmanila' def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> tuple[float, float]: if not all(isinstance(lowercase ,(float, int) ) for val in locals().values() ): snake_case : Dict = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(lowercase ) snake_case : List[str] = ((x * distance) / (z + distance)) * scale snake_case : Dict = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> tuple[float, float, float]: if not isinstance(lowercase ,lowercase ): raise TypeError("""Axis must be a str""" ) snake_case : Tuple = locals() del input_variables["axis"] if not all(isinstance(lowercase ,(float, int) ) for val in input_variables.values() ): snake_case : int = ( """Input values except axis must either be float or int: """ f"""{list(input_variables.values() )}""" ) raise TypeError(lowercase ) snake_case : int = (angle % 360) / 450 * 180 / math.pi if axis == "z": snake_case : str = x * math.cos(lowercase ) - y * math.sin(lowercase ) snake_case : List[Any] = y * math.cos(lowercase ) + x * math.sin(lowercase ) snake_case : Optional[int] = z elif axis == "x": snake_case : Optional[Any] = y * math.cos(lowercase ) - z * math.sin(lowercase ) snake_case : Optional[int] = z * math.cos(lowercase ) + y * math.sin(lowercase ) snake_case : Optional[int] = x elif axis == "y": snake_case : List[str] = x * math.cos(lowercase ) - z * math.sin(lowercase ) snake_case : Tuple = z * math.cos(lowercase ) + x * math.sin(lowercase ) snake_case : Optional[int] = y else: raise ValueError("""not a valid axis, choose one of 'x', 'y', 'z'""" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(f"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
124
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCAmelCase : Dict = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :int , *snake_case :str , **snake_case :Tuple ): '''simple docstring''' super().__init__(*snake_case , **snake_case ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :int=None ): '''simple docstring''' A_ : Tuple = {} if top_k is not None: A_ : Union[str, Any] = top_k return {}, {}, postprocess_params def __call__( self :List[str] , snake_case :Union[str, List[str], "Image.Image", List["Image.Image"]] , **snake_case :Tuple ): '''simple docstring''' return super().__call__(snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :Optional[Any] ): '''simple docstring''' A_ : Any = load_image(snake_case ) A_ : Optional[int] = self.image_processor(images=snake_case , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE ( self :Any , snake_case :str ): '''simple docstring''' A_ : Tuple = self.model(**snake_case ) return model_outputs def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :Optional[int] , snake_case :List[str]=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: A_ : Optional[Any] = self.model.config.num_labels if self.framework == "pt": A_ : List[Any] = model_outputs.logits.softmax(-1 )[0] A_ , A_ : Tuple = probs.topk(snake_case ) elif self.framework == "tf": A_ : List[str] = stable_softmax(model_outputs.logits , axis=-1 )[0] A_ : Tuple = tf.math.top_k(snake_case , k=snake_case ) A_ , A_ : Any = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}" ) A_ : Union[str, Any] = scores.tolist() A_ : Union[str, Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(snake_case , snake_case )]
70
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _lowerCAmelCase : str = logging.get_logger(__name__) @dataclass class __magic_name__ : """simple docstring""" def __init__( self :Dict , snake_case :List[str]=False , snake_case :Optional[Any]=False , snake_case :Union[str, Any]=6.0 , snake_case :Union[str, Any]=None , snake_case :Union[str, Any]=False , snake_case :str=False , snake_case :Optional[Any]=None , snake_case :int="fp4" , snake_case :int=False , **snake_case :Optional[Any] , ): '''simple docstring''' A_ : int = load_in_abit A_ : Union[str, Any] = load_in_abit A_ : str = llm_inta_threshold A_ : str = llm_inta_skip_modules A_ : List[Any] = llm_inta_enable_fpaa_cpu_offload A_ : Optional[int] = llm_inta_has_fpaa_weight A_ : Optional[int] = bnb_abit_quant_type A_ : Dict = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: A_ : List[Any] = torch.floataa elif isinstance(snake_case , snake_case ): A_ : Any = getattr(snake_case , snake_case ) elif isinstance(snake_case , torch.dtype ): A_ : Union[str, Any] = bnb_abit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" ) self.post_init() def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' if not isinstance(self.llm_inta_threshold , snake_case ): raise ValueError("llm_int8_threshold must be a float" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , snake_case ): raise ValueError("llm_int8_skip_modules must be a list of strings" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , snake_case ): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" ) if not isinstance(self.llm_inta_has_fpaa_weight , snake_case ): raise ValueError("llm_int8_has_fp16_weight must be a boolean" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" ) if not isinstance(self.bnb_abit_quant_type , snake_case ): raise ValueError("bnb_4bit_quant_type must be a string" ) if not isinstance(self.bnb_abit_use_double_quant , snake_case ): raise ValueError("bnb_4bit_use_double_quant must be a boolean" ) if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return self.load_in_abit or self.load_in_abit def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def SCREAMING_SNAKE_CASE ( cls :List[str] , snake_case :Dict , snake_case :str , **snake_case :Dict ): '''simple docstring''' A_ : str = cls(**snake_case ) A_ : Any = [] for key, value in kwargs.items(): if hasattr(snake_case , snake_case ): setattr(snake_case , snake_case , snake_case ) to_remove.append(snake_case ) for key in to_remove: kwargs.pop(snake_case , snake_case ) if return_unused_kwargs: return config, kwargs else: return config def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :Union[str, os.PathLike] ): '''simple docstring''' with open(snake_case , "w" , encoding="utf-8" ) as writer: A_ : List[Any] = self.to_dict() A_ : int = json.dumps(snake_case , indent=2 , sort_keys=snake_case ) + "\n" writer.write(snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : List[str] = copy.deepcopy(self.__dict__ ) A_ : Optional[int] = str(output["bnb_4bit_compute_dtype"] ).split("." )[1] return output def __repr__( self :List[str] ): '''simple docstring''' return f"{self.__class__.__name__} {self.to_json_string()}" def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :bool = True ): '''simple docstring''' if use_diff is True: A_ : List[str] = self.to_diff_dict() else: A_ : int = self.to_dict() return json.dumps(snake_case , indent=2 , sort_keys=snake_case ) + "\n" def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : List[Any] = self.to_dict() # get the default config dict A_ : Optional[Any] = BitsAndBytesConfig().to_dict() A_ : List[Any] = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: A_ : int = value return serializable_config_dict
70
1
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example __lowercase = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example __lowercase = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowercase ( A_ )-> list[list[int]]: '''simple docstring''' a : str = [] for i in range(len(A_ ) ): a : str = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours a : Union[str, Any] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(A_ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(A_ ) - 1: neighbour_count += cells[i + 1][j] if i < len(A_ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. a : Tuple = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(A_ ) return next_generation def lowercase ( A_ , A_ )-> list[Image.Image]: '''simple docstring''' a : List[str] = [] for _ in range(A_ ): # Create output image a : str = Image.new("RGB" , (len(cells[0] ), len(A_ )) ) a : Union[str, Any] = img.load() # Save cells to image for x in range(len(A_ ) ): for y in range(len(cells[0] ) ): a : Optional[Any] = 255 - cells[y][x] * 255 a : str = (colour, colour, colour) # Save image images.append(A_ ) a : Tuple = new_generation(A_ ) return images if __name__ == "__main__": __lowercase = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
40
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _a : def __init__(self, SCREAMING_SNAKE_CASE_ = "cpu", SCREAMING_SNAKE_CASE_ = "openai/clip-vit-large-patch14" ) -> None: UpperCAmelCase_: Optional[Any] = device UpperCAmelCase_: Optional[Any] = CLIPTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] UpperCAmelCase_: Optional[Any] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] UpperCAmelCase_: Optional[Any] = torchvision.transforms.Normalize(self.image_mean, self.image_std ) UpperCAmelCase_: Tuple = torchvision.transforms.Resize(224 ) UpperCAmelCase_: Any = torchvision.transforms.CenterCrop(224 ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCAmelCase_: Dict = self.resize(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = self.center_crop(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = self.normalize(SCREAMING_SNAKE_CASE_ ) return images def __call__(self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCAmelCase_: Dict = self.tokenizer(text=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = self.preprocess_img(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _a ( nn.Module ): def __init__(self, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=0.0_1, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="image", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, ) -> None: super().__init__() UpperCAmelCase_: List[Any] = None UpperCAmelCase_: List[str] = device if device else get_device() if vqgan: UpperCAmelCase_: int = vqgan else: UpperCAmelCase_: Optional[Any] = load_vqgan(self.device, conf_path=SCREAMING_SNAKE_CASE_, ckpt_path=SCREAMING_SNAKE_CASE_ ) self.vqgan.eval() if clip: UpperCAmelCase_: List[str] = clip else: UpperCAmelCase_: Any = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) UpperCAmelCase_: Optional[int] = ProcessorGradientFlow(device=self.device ) UpperCAmelCase_: Optional[int] = iterations UpperCAmelCase_: List[Any] = lr UpperCAmelCase_: str = log UpperCAmelCase_: Tuple = make_grid UpperCAmelCase_: List[str] = return_val UpperCAmelCase_: Dict = quantize UpperCAmelCase_: int = self.vqgan.decoder.z_shape def __snake_case (self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=True ) -> List[Any]: UpperCAmelCase_: Tuple = [] if output_path is None: UpperCAmelCase_: Optional[int] = """./animation.gif""" if input_path is None: UpperCAmelCase_: Tuple = self.save_path UpperCAmelCase_: List[Any] = sorted(glob(input_path + """/*""" ) ) if not len(SCREAMING_SNAKE_CASE_ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(SCREAMING_SNAKE_CASE_ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) UpperCAmelCase_: Dict = total_duration / len(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = [frame_duration] * len(SCREAMING_SNAKE_CASE_ ) if extend_frames: UpperCAmelCase_: List[str] = 1.5 UpperCAmelCase_: List[Any] = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(SCREAMING_SNAKE_CASE_ ) ) imageio.mimsave(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, duration=SCREAMING_SNAKE_CASE_ ) print(f'gif saved to {output_path}' ) def __snake_case (self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None ) -> Optional[int]: if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError UpperCAmelCase_: List[Any] = preprocess(Image.open(SCREAMING_SNAKE_CASE_ ), target_image_size=256 ).to(self.device ) UpperCAmelCase_: Union[str, Any] = preprocess_vqgan(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ , *UpperCAmelCase_: str = self.vqgan.encode(SCREAMING_SNAKE_CASE_ ) return z def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: List[Any] = self.latent.detach().requires_grad_() UpperCAmelCase_: Optional[int] = base_latent + transform_vector if self.quantize: UpperCAmelCase_ , *UpperCAmelCase_: Optional[Any] = self.vqgan.quantize(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: Tuple = trans_latent return self.vqgan.decode(SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> List[str]: UpperCAmelCase_: Any = self.clip_preprocessor(text=SCREAMING_SNAKE_CASE_, images=SCREAMING_SNAKE_CASE_, return_tensors="""pt""", padding=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = self.clip(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = clip_outputs.logits_per_image if weights is not None: UpperCAmelCase_: Any = similarity_logits * weights return similarity_logits.sum() def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: UpperCAmelCase_: Dict = self._get_clip_similarity(pos_prompts["""prompts"""], SCREAMING_SNAKE_CASE_, weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: UpperCAmelCase_: Tuple = self._get_clip_similarity(neg_prompts["""prompts"""], SCREAMING_SNAKE_CASE_, weights=neg_prompts["""weights"""] ) else: UpperCAmelCase_: Any = torch.tensor([1], device=self.device ) UpperCAmelCase_: List[str] = -torch.log(SCREAMING_SNAKE_CASE_ ) + torch.log(SCREAMING_SNAKE_CASE_ ) return loss def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCAmelCase_: Tuple = torch.randn_like(self.latent, requires_grad=SCREAMING_SNAKE_CASE_, device=self.device ) UpperCAmelCase_: str = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCAmelCase_: Optional[int] = self._add_vector(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = loop_post_process(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = self._get_CLIP_loss(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) print("""CLIP loss""", SCREAMING_SNAKE_CASE_ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=SCREAMING_SNAKE_CASE_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: wandb.init(reinit=SCREAMING_SNAKE_CASE_, project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: UpperCAmelCase_: str = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = image.resize((256, 256) ) wandb.log("""Original Image""", wandb.Image(SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if not prompts: return [] UpperCAmelCase_: Tuple = [] UpperCAmelCase_: str = [] if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: Optional[Any] = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(SCREAMING_SNAKE_CASE_, (tuple, list) ): UpperCAmelCase_: str = prompt[0] UpperCAmelCase_: List[str] = float(prompt[1] ) elif ":" in prompt: UpperCAmelCase_ , UpperCAmelCase_: int = prompt.split(""":""" ) UpperCAmelCase_: int = float(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: str = prompt UpperCAmelCase_: Dict = 1.0 processed_prompts.append(SCREAMING_SNAKE_CASE_ ) weights.append(SCREAMING_SNAKE_CASE_ ) return { "prompts": processed_prompts, "weights": torch.tensor(SCREAMING_SNAKE_CASE_, device=self.device ), } def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, ) -> Optional[Any]: if image_path: UpperCAmelCase_: Optional[int] = self._get_latent(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: str = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) assert pos_prompts, "You must provide at least one positive prompt." UpperCAmelCase_: List[Any] = self.process_prompts(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = self.process_prompts(SCREAMING_SNAKE_CASE_ ) if save_final and save_path is None: UpperCAmelCase_: Optional[int] = os.path.join("""./outputs/""", """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: List[str] = save_path + """_""" + get_timestamp() os.makedirs(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = save_path UpperCAmelCase_: Optional[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: Tuple = loop_post_process(SCREAMING_SNAKE_CASE_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ): if show_intermediate: show_pil(SCREAMING_SNAKE_CASE_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f'iter_{iter:03d}.png' ) ) if self.log: wandb.log({"""Image""": wandb.Image(SCREAMING_SNAKE_CASE_ )} ) if show_final: show_pil(SCREAMING_SNAKE_CASE_ ) if save_final: transformed_img.save(os.path.join(self.save_path, f'iter_{iter:03d}_final.png' ) )
147
0
from __future__ import annotations class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase ): a , a :Union[str, Any] = text, pattern a , a :List[str] = len(_lowerCamelCase ), len(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def SCREAMING_SNAKE_CASE__ ( self ): # searches pattern in text and returns index positions a :int = [] for i in range(self.textLen - self.patLen + 1 ): a :Any = self.mismatch_in_text(_lowerCamelCase ) if mismatch_index == -1: positions.append(_lowerCamelCase ) else: a :Dict = self.match_in_pattern(self.text[mismatch_index] ) a :int = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions snake_case : List[str] = '''ABAABA''' snake_case : List[Any] = '''AB''' snake_case : Dict = BoyerMooreSearch(text, pattern) snake_case : str = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
281
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _snake_case : def __init__( self , _lowerCamelCase , ): a :List[str] = parent a :Dict = 13 a :Optional[int] = 7 a :Optional[Any] = 30 a :Optional[Any] = self.seq_length + self.mem_len a :Tuple = 15 a :List[str] = True a :List[Any] = True a :List[Any] = 99 a :Optional[Any] = [10, 50, 80] a :Optional[int] = 32 a :List[Any] = 32 a :Dict = 4 a :List[Any] = 8 a :Optional[Any] = 128 a :Dict = 2 a :List[Any] = 2 a :str = None a :str = 1 a :List[Any] = 0 a :List[str] = 3 a :str = self.vocab_size - 1 a :Optional[Any] = 0.01 def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a :Tuple = None if self.use_labels: a :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a :Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def SCREAMING_SNAKE_CASE__ ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :int = TFTransfoXLModel(_lowerCamelCase ) a , a :List[Any] = model(_lowerCamelCase ).to_tuple() a :List[str] = {'''input_ids''': input_ids_a, '''mems''': mems_a} a , a :Optional[int] = model(_lowerCamelCase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :str = TFTransfoXLLMHeadModel(_lowerCamelCase ) a , a :Tuple = model(_lowerCamelCase ).to_tuple() a :Any = {'''input_ids''': input_ids_a, '''labels''': lm_labels} a , a :Dict = model(_lowerCamelCase ).to_tuple() a , a :Dict = model([input_ids_a, mems_a] ).to_tuple() a :str = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} a , a :Any = model(_lowerCamelCase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Optional[Any] = TFTransfoXLForSequenceClassification(_lowerCamelCase ) a :Any = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ): a :str = self.prepare_config_and_inputs() ((a) , (a) , (a) , (a)) :Optional[int] = config_and_inputs a :Union[str, Any] = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class _snake_case ( _snake_case , _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ = () if is_tf_available() else () SCREAMING_SNAKE_CASE__ = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def SCREAMING_SNAKE_CASE__ ( self ): a :str = TFTransfoXLModelTester(self ) a :str = ConfigTester(self , config_class=_lowerCamelCase , d_embed=37 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): self.model_tester.set_seed() a :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): self.model_tester.set_seed() a :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a , a :Any = self.model_tester.prepare_config_and_inputs_for_common() a :int = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: a :Any = model_class(_lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: a :Dict = model.get_output_embeddings() assert isinstance(_lowerCamelCase , tf.keras.layers.Layer ) a :Dict = model.get_bias() assert name is None else: a :int = model.get_output_embeddings() assert x is None a :Optional[int] = model.get_bias() assert name is None def SCREAMING_SNAKE_CASE__ ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a :List[Any] = TFTransfoXLModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @require_tf class _snake_case ( unittest.TestCase ): @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def SCREAMING_SNAKE_CASE__ ( self ): a :Any = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off a :Union[str, Any] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off a :List[Any] = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> a :Optional[Any] = model.generate(_lowerCamelCase , max_length=200 , do_sample=_lowerCamelCase ) self.assertListEqual(output_ids[0].numpy().tolist() , _lowerCamelCase )
281
1
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowerCAmelCase = '''bert-base-cased''' lowerCAmelCase = '''google/pegasus-xsum''' lowerCAmelCase = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowerCAmelCase = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowerCAmelCase = '''patrickvonplaten/t5-tiny-random''' lowerCAmelCase = '''sshleifer/bart-tiny-random''' lowerCAmelCase = '''sshleifer/tiny-mbart''' lowerCAmelCase = '''sshleifer/tiny-marian-en-de''' def _lowerCamelCase( lowercase__ , lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= '\n'.join(lowercase__ ) Path(lowercase__ ).open('w' ).writelines(lowercase__ ) def _lowerCamelCase( lowercase__ ) -> Tuple: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(lowercase__ , F'{split}.source' ) , lowercase__ ) _dump_articles(os.path.join(lowercase__ , F'{split}.target' ) , lowercase__ ) return tmp_dir class A ( A_ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def _A (self , lowerCAmelCase ): __lowercase= AutoTokenizer.from_pretrained(lowerCAmelCase ) __lowercase= make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowercase= max(len(tokenizer.encode(lowerCAmelCase ) ) for a in ARTICLES ) __lowercase= max(len(tokenizer.encode(lowerCAmelCase ) ) for a in SUMMARIES ) __lowercase= 4 __lowercase= 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __lowercase, __lowercase= 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. __lowercase= SeqaSeqDataset( lowerCAmelCase , data_dir=lowerCAmelCase , type_path='train' , max_source_length=lowerCAmelCase , max_target_length=lowerCAmelCase , src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , ) __lowercase= DataLoader(lowerCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __lowercase= shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def _A (self , lowerCAmelCase ): __lowercase= AutoTokenizer.from_pretrained(lowerCAmelCase ) __lowercase= make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowercase= max(len(tokenizer.encode(lowerCAmelCase ) ) for a in ARTICLES ) __lowercase= max(len(tokenizer.encode(lowerCAmelCase ) ) for a in SUMMARIES ) __lowercase= 4 __lowercase= LegacySeqaSeqDataset( lowerCAmelCase , data_dir=lowerCAmelCase , type_path='train' , max_source_length=2_0 , max_target_length=lowerCAmelCase , ) __lowercase= DataLoader(lowerCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def _A (self ): __lowercase= AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) __lowercase= Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __lowercase= tmp_dir.joinpath('train.source' ).open().readlines() __lowercase= Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCAmelCase , lowerCAmelCase , 1_2_8 , lowerCAmelCase ) __lowercase= {x.name for x in tmp_dir.iterdir()} __lowercase= {x.name for x in save_dir.iterdir()} __lowercase= save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCAmelCase ) < len(lowerCAmelCase ) assert len(lowerCAmelCase ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCAmelCase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def _A (self ): if not FAIRSEQ_AVAILABLE: return __lowercase, __lowercase, __lowercase= self._get_dataset(max_len=6_4 ) __lowercase= 6_4 __lowercase= ds.make_dynamic_sampler(lowerCAmelCase , required_batch_size_multiple=lowerCAmelCase ) __lowercase= [len(lowerCAmelCase ) for x in batch_sampler] assert len(set(lowerCAmelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCAmelCase ) == len(lowerCAmelCase ) # no dropped or added examples __lowercase= DataLoader(lowerCAmelCase , batch_sampler=lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 ) __lowercase= [] __lowercase= [] for batch in data_loader: __lowercase= batch['input_ids'].shape __lowercase= src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __lowercase= np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCAmelCase ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCAmelCase ) assert num_src_per_batch[0] == max(lowerCAmelCase ) if failures: raise AssertionError(f'too many tokens in {len(lowerCAmelCase )} batches' ) def _A (self ): __lowercase, __lowercase, __lowercase= self._get_dataset(max_len=5_1_2 ) __lowercase= 2 __lowercase= ds.make_sortish_sampler(lowerCAmelCase , shuffle=lowerCAmelCase ) __lowercase= DataLoader(lowerCAmelCase , batch_size=lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 ) __lowercase= DataLoader(lowerCAmelCase , batch_size=lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCAmelCase ) __lowercase= tokenizer.pad_token_id def count_pad_tokens(lowerCAmelCase , lowerCAmelCase="input_ids" ): return [batch[k].eq(lowerCAmelCase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCAmelCase , k='labels' ) ) < sum(count_pad_tokens(lowerCAmelCase , k='labels' ) ) assert sum(count_pad_tokens(lowerCAmelCase ) ) < sum(count_pad_tokens(lowerCAmelCase ) ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) def _A (self , lowerCAmelCase=1_0_0_0 , lowerCAmelCase=1_2_8 ): if os.getenv('USE_REAL_DATA' , lowerCAmelCase ): __lowercase= 'examples/seq2seq/wmt_en_ro' __lowercase= max_len * 2 * 6_4 if not Path(lowerCAmelCase ).joinpath('train.len' ).exists(): save_len_file(lowerCAmelCase , lowerCAmelCase ) else: __lowercase= 'examples/seq2seq/test_data/wmt_en_ro' __lowercase= max_len * 4 save_len_file(lowerCAmelCase , lowerCAmelCase ) __lowercase= AutoTokenizer.from_pretrained(lowerCAmelCase ) __lowercase= SeqaSeqDataset( lowerCAmelCase , data_dir=lowerCAmelCase , type_path='train' , max_source_length=lowerCAmelCase , max_target_length=lowerCAmelCase , n_obs=lowerCAmelCase , ) return ds, max_tokens, tokenizer def _A (self ): __lowercase, __lowercase, __lowercase= self._get_dataset() __lowercase= set(DistributedSortishSampler(lowerCAmelCase , 2_5_6 , num_replicas=2 , rank=0 , add_extra_examples=lowerCAmelCase ) ) __lowercase= set(DistributedSortishSampler(lowerCAmelCase , 2_5_6 , num_replicas=2 , rank=1 , add_extra_examples=lowerCAmelCase ) ) assert idsa.intersection(lowerCAmelCase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def _A (self , lowerCAmelCase ): __lowercase= AutoTokenizer.from_pretrained(lowerCAmelCase , use_fast=lowerCAmelCase ) if tok_name == MBART_TINY: __lowercase= SeqaSeqDataset( lowerCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) __lowercase= train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __lowercase= SeqaSeqDataset( lowerCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) __lowercase= train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCAmelCase ) == 1 if tok_name == BART_TINY else len(lowerCAmelCase ) == 0
295
def _lowerCamelCase( lowercase__ , lowercase__ = " " ) -> list: '''simple docstring''' __lowercase= [] __lowercase= 0 for index, char in enumerate(lowercase__ ): if char == separator: split_words.append(string[last_index:index] ) __lowercase= index + 1 elif index + 1 == len(lowercase__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
295
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = "bert" def __init__( self , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1e-12 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , )->Optional[int]: '''simple docstring''' super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) A_ : Any = vocab_size A_ : int = hidden_size A_ : int = num_hidden_layers A_ : Tuple = num_attention_heads A_ : int = hidden_act A_ : Union[str, Any] = intermediate_size A_ : Optional[Any] = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : Optional[int] = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : Any = initializer_range A_ : List[str] = layer_norm_eps A_ : Dict = position_embedding_type A_ : Dict = use_cache A_ : Tuple = classifier_dropout class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" @property def _snake_case ( self )->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A_ : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A_ : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
360
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , )->Any: '''simple docstring''' A_ : List[Any] = parent A_ : int = batch_size A_ : str = seq_length A_ : int = is_training A_ : Any = use_token_type_ids A_ : Union[str, Any] = use_labels A_ : Any = vocab_size A_ : Dict = hidden_size A_ : Dict = num_hidden_layers A_ : int = num_attention_heads A_ : Optional[Any] = intermediate_size A_ : Dict = hidden_act A_ : List[str] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Union[str, Any] = max_position_embeddings A_ : Optional[int] = type_vocab_size A_ : str = type_sequence_label_size A_ : Tuple = initializer_range A_ : Union[str, Any] = num_labels A_ : List[str] = num_choices A_ : Union[str, Any] = scope A_ : Any = self.vocab_size - 1 def _snake_case ( self )->Any: '''simple docstring''' A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Any = None if self.use_token_type_ids: A_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : str = None A_ : Union[str, Any] = None A_ : Optional[int] = None if self.use_labels: A_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) A_ : Optional[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) A_ : List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' A_ : int = OpenAIGPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : int = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) A_ : Tuple = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) A_ : Any = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' A_ : int = OpenAIGPTLMHeadModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : Tuple = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' A_ : List[Any] = OpenAIGPTDoubleHeadsModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : str = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )->str: '''simple docstring''' A_ : Any = self.num_labels A_ : List[Any] = OpenAIGPTForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self )->int: '''simple docstring''' A_ : Dict = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Optional[int] = config_and_inputs A_ : int = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _lowerCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False )->Optional[int]: '''simple docstring''' A_ : Optional[Any] = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A_ : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE , ) A_ : List[Any] = inputs_dict['''labels'''] A_ : Any = inputs_dict['''labels'''] A_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE , ) A_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def _snake_case ( self )->Any: '''simple docstring''' A_ : Any = OpenAIGPTModelTester(self ) A_ : int = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , n_embd=37 ) def _snake_case ( self )->Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self )->Tuple: '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Any: '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )->List[str]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[int] = OpenAIGPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Optional[int] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) # the president is A_ : Union[str, Any] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A_ : Dict = model.generate(_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE ) self.assertListEqual(output_ids[0].tolist() , _SCREAMING_SNAKE_CASE )
65
0
"""simple docstring""" def lowercase ( A_ , A_ )-> str: '''simple docstring''' a : list[list[str]] = [[] for _ in range(A__ )] a : Optional[int] = key - 1 if key <= 0: raise ValueError("Height of grid can\'t be 0 or negative" ) if key == 1 or len(A__ ) <= key: return input_string for position, character in enumerate(A__ ): a : Union[str, Any] = position % (lowest * 2) # puts it in bounds a : List[Any] = min(A__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(A__ ) a : Any = [''.join(A__ ) for row in temp_grid] a : Optional[Any] = ''.join(A__ ) return output_string def lowercase ( A_ , A_ )-> str: '''simple docstring''' a : Optional[int] = [] a : str = key - 1 if key <= 0: raise ValueError("Height of grid can\'t be 0 or negative" ) if key == 1: return input_string a : list[list[str]] = [[] for _ in range(A__ )] # generates template for position in range(len(A__ ) ): a : List[Any] = position % (lowest * 2) # puts it in bounds a : Tuple = min(A__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("*" ) a : List[Any] = 0 for row in temp_grid: # fills in the characters a : Optional[int] = input_string[counter : counter + len(A__ )] grid.append(list(A__ ) ) counter += len(A__ ) a : Any = '' # reads as zigzag for position in range(len(A__ ) ): a : List[Any] = position % (lowest * 2) # puts it in bounds a : Optional[Any] = min(A__ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def lowercase ( A_ )-> dict[int, str]: '''simple docstring''' a : Dict = {} for key_guess in range(1 , len(A__ ) ): # tries every key a : Tuple = decrypt(A__ , A__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
40
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : List[Any] = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
99
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : str = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase : ClassVar[Features] = Features({'''image''': Image()} ) UpperCamelCase : ClassVar[Features] = Features({'''labels''': ClassLabel} ) UpperCamelCase : str = "image" UpperCamelCase : str = "labels" def _lowercase ( self : Tuple , UpperCAmelCase__ : List[str] ) -> str: if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , UpperCAmelCase__ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) _a : int = copy.deepcopy(self ) _a : Optional[Any] = self.label_schema.copy() _a : str = features[self.label_column] _a : Any = label_schema return task_template @property def _lowercase ( self : Any ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
324
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case = logging.getLogger(__name__) _snake_case = 'pytorch_model.bin' @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , ) UpperCamelCase : Optional[List[str]] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) UpperCamelCase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a : Any = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ ) _a : Any = dataset.select(range(UpperCamelCase__ ) ) _a : Tuple = dataset.remove_columns(["""label""", """probability"""] ) _a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) _a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) _a : Union[str, Any] = dataset.shuffle(seed=args.seed ) _a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ ) _a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _a : Any = STTrainingArguments(output_dir=UpperCamelCase__ ) _a : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _a : Union[str, Any] = {} _a : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a : int = args.train_file _a : List[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a : Union[str, Any] = args.eval_file for key in data_files: _a : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _a : str = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format _a : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _a : str = None _a : int = None _a : str = 0 _a : List[Any] = False # Show the progress bar _a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _a : Union[str, Any] = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a : str = os.path.join(UpperCamelCase__ , """stage-1""" ) _a : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" ) _a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" ) # Update arguments_dict _a : int = model_path _a : Dict = data_files["""train"""] _a : int = current_output_dir _a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ ) _a : List[Any] = iteration _a : int = data_dir_format(iteration + 1 ) _a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) ) _a : Union[str, Any] = config.idalabel _a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" ) _a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , """r""" ) as f: _a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a : Any = eval_result if best_iteration is None: _a : Union[str, Any] = new_iteration _a : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a : Union[str, Any] = new_iteration _a : List[str] = new_eval_result _a : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _a : Tuple = new_iteration _a : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a : Union[str, Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , UpperCamelCase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
324
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( snake_case_ ): _lowercase: Optional[int] = (UniPCMultistepScheduler,) _lowercase: List[str] = (('''num_inference_steps''', 25),) def lowercase__ ( self : Union[str, Any] , **__snake_case : Dict ) -> List[Any]: _lowerCAmelCase = { """num_train_timesteps""": 10_00, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """solver_type""": """bh2""", } config.update(**__snake_case ) return config def lowercase__ ( self : Dict , __snake_case : Any=0 , **__snake_case : Union[str, Any] ) -> List[str]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("""num_inference_steps""" , __snake_case ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**__snake_case ) _lowerCAmelCase = scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) _lowerCAmelCase = scheduler_class.from_pretrained(__snake_case ) new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase , _lowerCAmelCase = sample, sample for t in range(__snake_case , time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample _lowerCAmelCase = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : Optional[int] , __snake_case : List[Any]=0 , **__snake_case : Tuple ) -> Tuple: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("""num_inference_steps""" , __snake_case ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) _lowerCAmelCase = scheduler_class.from_pretrained(__snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample _lowerCAmelCase = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : Optional[Any] , __snake_case : Optional[Any]=None , **__snake_case : str ) -> Optional[Any]: if scheduler is None: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**__snake_case ) _lowerCAmelCase = scheduler_class(**__snake_case ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**__snake_case ) _lowerCAmelCase = scheduler_class(**__snake_case ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__snake_case ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(__snake_case , __snake_case ) _lowerCAmelCase = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample return sample def lowercase__ ( self : Dict ) -> Tuple: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("""num_inference_steps""" , __snake_case ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**__snake_case ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__snake_case , """set_timesteps""" ): scheduler.set_timesteps(__snake_case ) elif num_inference_steps is not None and not hasattr(__snake_case , """set_timesteps""" ): _lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase = scheduler.timesteps[5] _lowerCAmelCase = scheduler.timesteps[6] _lowerCAmelCase = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample _lowerCAmelCase = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self : int ) -> Any: # make sure that iterating over schedulers with same config names gives same results # for defaults _lowerCAmelCase = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = self.full_loop(scheduler=__snake_case ) _lowerCAmelCase = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 _lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = self.full_loop(scheduler=__snake_case ) _lowerCAmelCase = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 def lowercase__ ( self : str ) -> Union[str, Any]: for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=__snake_case ) def lowercase__ ( self : Any ) -> Union[str, Any]: self.check_over_configs(thresholding=__snake_case ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__snake_case , prediction_type=__snake_case , sample_max_value=__snake_case , solver_order=__snake_case , solver_type=__snake_case , ) def lowercase__ ( self : Any ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__snake_case ) def lowercase__ ( self : Any ) -> Any: for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__snake_case , solver_type=__snake_case , prediction_type=__snake_case , ) _lowerCAmelCase = self.full_loop( solver_order=__snake_case , solver_type=__snake_case , prediction_type=__snake_case , ) assert not torch.isnan(__snake_case ).any(), "Samples have nan numbers" def lowercase__ ( self : List[Any] ) -> str: self.check_over_configs(lower_order_final=__snake_case ) self.check_over_configs(lower_order_final=__snake_case ) def lowercase__ ( self : Optional[Any] ) -> Any: for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=__snake_case , time_step=0 ) def lowercase__ ( self : int ) -> Any: _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 def lowercase__ ( self : Optional[Any] ) -> Dict: _lowerCAmelCase = self.full_loop(prediction_type="""v_prediction""" ) _lowerCAmelCase = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.10_14 ) < 1E-3 def lowercase__ ( self : str ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(thresholding=__snake_case , dynamic_thresholding_ratio=0 ) _lowerCAmelCase = scheduler_class(**__snake_case ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(__snake_case ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(__snake_case , __snake_case ) _lowerCAmelCase = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample assert sample.dtype == torch.floataa def lowercase__ ( self : Any , **__snake_case : List[Any] ) -> List[str]: for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**__snake_case ) _lowerCAmelCase = scheduler_class(**__snake_case ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
70
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL A__ : List[str] =logging.get_logger(__name__) def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if isinstance(lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class UpperCAmelCase ( snake_case_ ): _lowercase: Any = ['''pixel_values'''] def __init__( self : Tuple , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BILINEAR , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 2_55 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , **__snake_case : str , ) -> None: super().__init__(**__snake_case ) _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 2_56} _lowerCAmelCase = get_size_dict(__snake_case , default_to_square=__snake_case ) _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} _lowerCAmelCase = get_size_dict(__snake_case , param_name="""crop_size""" ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = resample _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = offset _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : int , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BILINEAR , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[Any] , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" in size: _lowerCAmelCase = get_resize_output_image_size(__snake_case , size["""shortest_edge"""] , default_to_square=__snake_case ) elif "height" in size and "width" in size: _lowerCAmelCase = (size["""height"""], size["""width"""]) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def lowercase__ ( self : Union[str, Any] , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : List[Any] , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(__snake_case , size=(size["""height"""], size["""width"""]) , data_format=__snake_case , **__snake_case ) def lowercase__ ( self : Union[str, Any] , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : bool = True , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[Any] , ) -> Dict: _lowerCAmelCase = image.astype(np.floataa ) if offset: _lowerCAmelCase = image - (scale / 2) return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def lowercase__ ( self : Optional[int] , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Tuple , ) -> np.ndarray: return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def lowercase__ ( self : List[Any] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. _lowerCAmelCase = to_numpy_array(__snake_case ) if do_resize: _lowerCAmelCase = self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) if do_center_crop: _lowerCAmelCase = self.center_crop(__snake_case , size=__snake_case ) if do_rescale: _lowerCAmelCase = self.rescale(image=__snake_case , scale=__snake_case , offset=__snake_case ) if do_normalize: _lowerCAmelCase = self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) _lowerCAmelCase = to_channel_dimension_format(__snake_case , __snake_case ) return image def lowercase__ ( self : List[Any] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : ChannelDimension = ChannelDimension.FIRST , **__snake_case : List[str] , ) -> PIL.Image.Image: _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = offset if offset is not None else self.offset _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(__snake_case , default_to_square=__snake_case ) _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(__snake_case , param_name="""crop_size""" ) if not valid_images(__snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) _lowerCAmelCase = make_batched(__snake_case ) _lowerCAmelCase = [ [ self._preprocess_image( image=__snake_case , do_resize=__snake_case , size=__snake_case , resample=__snake_case , do_center_crop=__snake_case , crop_size=__snake_case , do_rescale=__snake_case , rescale_factor=__snake_case , offset=__snake_case , do_normalize=__snake_case , image_mean=__snake_case , image_std=__snake_case , data_format=__snake_case , ) for img in video ] for video in videos ] _lowerCAmelCase = {"""pixel_values""": videos} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
70
1
'''simple docstring''' import os import string import sys a_ : Any = 1 << 8 a_ : List[Any] = { "tab": ord("\t"), "newline": ord("\r"), "esc": 2_7, "up": 6_5 + ARROW_KEY_FLAG, "down": 6_6 + ARROW_KEY_FLAG, "right": 6_7 + ARROW_KEY_FLAG, "left": 6_8 + ARROW_KEY_FLAG, "mod_int": 9_1, "undefined": sys.maxsize, "interrupt": 3, "insert": 5_0, "delete": 5_1, "pg_up": 5_3, "pg_down": 5_4, } a_ : List[Any] = KEYMAP["up"] a_ : List[Any] = KEYMAP["left"] if sys.platform == "win32": a_ : Optional[int] = [] a_ : Optional[int] = { B"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, B"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(1_0): a_ : Any = ord(str(i)) def _A () -> Optional[int]: '''simple docstring''' if os.name == "nt": import msvcrt _a = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowerCAmelCase__ ) == 0: # Read the keystroke _a = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _a = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _a = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowerCAmelCase__ ) if ord(lowerCAmelCase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26 ) ) _a = chr(KEYMAP['esc'] ) except KeyError: _a = cha[1] else: _a = ch.decode(lowerCAmelCase__ ) else: _a = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _a = sys.stdin.fileno() _a = termios.tcgetattr(lowerCAmelCase__ ) try: tty.setraw(lowerCAmelCase__ ) _a = sys.stdin.read(1 ) finally: termios.tcsetattr(lowerCAmelCase__ , termios.TCSADRAIN , lowerCAmelCase__ ) return ch def _A () -> Any: '''simple docstring''' _a = get_raw_chars() if ord(lowerCAmelCase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowerCAmelCase__ ) == KEYMAP["esc"]: _a = get_raw_chars() if ord(lowerCAmelCase__ ) == KEYMAP["mod_int"]: _a = get_raw_chars() if ord(lowerCAmelCase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowerCAmelCase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowerCAmelCase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
104
'''simple docstring''' def _A (lowerCAmelCase__ :list ) -> float: '''simple docstring''' _a = 0 while len(lowerCAmelCase__ ) > 1: _a = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): _a = files.index(min(lowerCAmelCase__ ) ) temp += files[min_index] files.pop(lowerCAmelCase__ ) files.append(lowerCAmelCase__ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
104
1
def lowerCAmelCase_ ( _snake_case : Any ) -> str: '''simple docstring''' __magic_name__ : Tuple = len(_snake_case ) for i in range(length - 1 ): __magic_name__ : Dict = i for k in range(i + 1 , _snake_case ): if collection[k] < collection[least]: __magic_name__ : Tuple = k if least != i: __magic_name__ , __magic_name__ : List[str] = (collection[i], collection[least]) return collection if __name__ == "__main__": snake_case : Optional[int] = input("Enter numbers separated by a comma:\n").strip() snake_case : Any = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
281
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() snake_case : Optional[Any] = logging.get_logger(__name__) def lowerCAmelCase_ ( _snake_case : Union[str, Any] , _snake_case : Union[str, Any]=False ) -> List[str]: '''simple docstring''' __magic_name__ : Union[str, Any] = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __magic_name__ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def lowerCAmelCase_ ( _snake_case : Any , _snake_case : Any , _snake_case : Dict=False ) -> int: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __magic_name__ : int = "" else: __magic_name__ : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __magic_name__ : Optional[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) __magic_name__ : int = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : Dict = in_proj_weight[ : config.hidden_size, : ] __magic_name__ : List[str] = in_proj_bias[: config.hidden_size] __magic_name__ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __magic_name__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __magic_name__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] __magic_name__ : int = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( _snake_case : List[str] ) -> List[str]: '''simple docstring''' __magic_name__ : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : int , _snake_case : Union[str, Any] ) -> Optional[int]: '''simple docstring''' __magic_name__ : int = dct.pop(_snake_case ) __magic_name__ : List[Any] = val def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' __magic_name__ : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" __magic_name__ : List[str] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : Any , _snake_case : int=False ) -> Dict: '''simple docstring''' __magic_name__ : List[str] = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=_snake_case , ) __magic_name__ : List[str] = ViTHybridConfig(backbone_config=_snake_case , image_size=384 , num_labels=1000 ) __magic_name__ : str = False # load original model from timm __magic_name__ : Union[str, Any] = timm.create_model(_snake_case , pretrained=_snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys __magic_name__ : List[Any] = timm_model.state_dict() if base_model: remove_classification_head_(_snake_case ) __magic_name__ : Tuple = create_rename_keys(_snake_case , _snake_case ) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) read_in_q_k_v(_snake_case , _snake_case , _snake_case ) __magic_name__ : List[str] = "huggingface/label-files" __magic_name__ : int = "imagenet-1k-id2label.json" __magic_name__ : Optional[int] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type="dataset" ) , "r" ) ) __magic_name__ : int = {int(_snake_case ): v for k, v in idalabel.items()} __magic_name__ : List[str] = idalabel __magic_name__ : List[str] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": __magic_name__ : List[str] = ViTHybridModel(_snake_case ).eval() else: __magic_name__ : str = ViTHybridForImageClassification(_snake_case ).eval() model.load_state_dict(_snake_case ) # create image processor __magic_name__ : List[Any] = create_transform(**resolve_data_config({} , model=_snake_case ) ) __magic_name__ : int = transform.transforms __magic_name__ : List[str] = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } __magic_name__ : int = ViTHybridImageProcessor( do_resize=_snake_case , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_snake_case , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_snake_case , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __magic_name__ : List[Any] = prepare_img() __magic_name__ : Any = transform(_snake_case ).unsqueeze(0 ) __magic_name__ : Tuple = processor(_snake_case , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_snake_case , _snake_case ) # verify logits with torch.no_grad(): __magic_name__ : Optional[int] = model(_snake_case ) __magic_name__ : List[str] = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: __magic_name__ : List[str] = timm_model.forward_features(_snake_case ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_snake_case , outputs.pooler_output , atol=1E-3 ) else: __magic_name__ : Any = timm_model(_snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_snake_case , outputs.logits , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_snake_case ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
281
1
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def _a ( _lowercase : Dict[str, torch.Tensor] ): '''simple docstring''' __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Optional[int] = [] for rt in rc.restypes: __UpperCAmelCase : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) __UpperCAmelCase : Any = {name: i for i, name in enumerate(_lowercase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) __UpperCAmelCase : Tuple = torch.tensor( _lowercase , dtype=torch.intaa , device=protein['''aatype'''].device , ) __UpperCAmelCase : Union[str, Any] = torch.tensor( _lowercase , dtype=torch.intaa , device=protein['''aatype'''].device , ) __UpperCAmelCase : List[Any] = torch.tensor( _lowercase , dtype=torch.floataa , device=protein['''aatype'''].device , ) __UpperCAmelCase : Optional[int] = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein __UpperCAmelCase : Any = restype_atomaa_to_atomaa[protein_aatype] __UpperCAmelCase : Any = restype_atomaa_mask[protein_aatype] __UpperCAmelCase : str = residx_atomaa_mask __UpperCAmelCase : int = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back __UpperCAmelCase : Optional[Any] = restype_atomaa_to_atomaa[protein_aatype] __UpperCAmelCase : str = residx_atomaa_to_atomaa.long() # create the corresponding mask __UpperCAmelCase : int = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): __UpperCAmelCase : int = rc.restype_atoa[restype_letter] __UpperCAmelCase : Optional[Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: __UpperCAmelCase : int = rc.atom_order[atom_name] __UpperCAmelCase : str = 1 __UpperCAmelCase : Union[str, Any] = restype_atomaa_mask[protein_aatype] __UpperCAmelCase : Optional[Any] = residx_atomaa_mask return protein def _a ( _lowercase : Dict[str, torch.Tensor] ): '''simple docstring''' __UpperCAmelCase : int = tree_map(lambda _lowercase : torch.tensor(_lowercase , device=batch['''aatype'''].device ) , _lowercase , np.ndarray ) __UpperCAmelCase : List[Any] = tensor_tree_map(lambda _lowercase : np.array(_lowercase ) , make_atomaa_masks(_lowercase ) ) return out
240
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : torch.FloatTensor class a ( _a , _a ): """simple docstring""" @register_to_config def __init__( self : str , snake_case : int = 32 , snake_case : int = 64 , snake_case : int = 20 , snake_case : int = 768 , snake_case : Tuple=77 , snake_case : List[Any]=4 , snake_case : float = 0.0 , snake_case : str = "silu" , snake_case : Optional[str] = None , snake_case : Optional[str] = None , snake_case : Optional[str] = "linear" , snake_case : Optional[str] = "prd" , snake_case : Optional[int] = None , snake_case : Optional[int] = None , snake_case : Optional[int] = None , ) -> List[str]: super().__init__() __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : List[str] = attention_head_dim __UpperCAmelCase : int = num_attention_heads * attention_head_dim __UpperCAmelCase : List[Any] = additional_embeddings __UpperCAmelCase : Any = time_embed_dim or inner_dim __UpperCAmelCase : Any = embedding_proj_dim or embedding_dim __UpperCAmelCase : Union[str, Any] = clip_embed_dim or embedding_dim __UpperCAmelCase : List[Any] = Timesteps(snake_case , snake_case , 0 ) __UpperCAmelCase : Optional[Any] = TimestepEmbedding(snake_case , snake_case , out_dim=snake_case , act_fn=snake_case ) __UpperCAmelCase : str = nn.Linear(snake_case , snake_case ) if embedding_proj_norm_type is None: __UpperCAmelCase : str = None elif embedding_proj_norm_type == "layer": __UpperCAmelCase : str = nn.LayerNorm(snake_case ) else: raise ValueError(f'unsupported embedding_proj_norm_type: {embedding_proj_norm_type}' ) __UpperCAmelCase : List[Any] = nn.Linear(snake_case , snake_case ) if encoder_hid_proj_type is None: __UpperCAmelCase : Union[str, Any] = None elif encoder_hid_proj_type == "linear": __UpperCAmelCase : Any = nn.Linear(snake_case , snake_case ) else: raise ValueError(f'unsupported encoder_hid_proj_type: {encoder_hid_proj_type}' ) __UpperCAmelCase : Dict = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , snake_case ) ) if added_emb_type == "prd": __UpperCAmelCase : Any = nn.Parameter(torch.zeros(1 , 1 , snake_case ) ) elif added_emb_type is None: __UpperCAmelCase : List[Any] = None else: raise ValueError( f'`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.' ) __UpperCAmelCase : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( snake_case , snake_case , snake_case , dropout=snake_case , activation_fn='''gelu''' , attention_bias=snake_case , ) for d in range(snake_case ) ] ) if norm_in_type == "layer": __UpperCAmelCase : Tuple = nn.LayerNorm(snake_case ) elif norm_in_type is None: __UpperCAmelCase : List[Any] = None else: raise ValueError(f'Unsupported norm_in_type: {norm_in_type}.' ) __UpperCAmelCase : Dict = nn.LayerNorm(snake_case ) __UpperCAmelCase : Any = nn.Linear(snake_case , snake_case ) __UpperCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10_000.0 ) causal_attention_mask.triu_(1 ) __UpperCAmelCase : str = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , snake_case , persistent=snake_case ) __UpperCAmelCase : Tuple = nn.Parameter(torch.zeros(1 , snake_case ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.zeros(1 , snake_case ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase__ ( self : int ) -> Dict[str, AttentionProcessor]: __UpperCAmelCase : Optional[Any] = {} def fn_recursive_add_processors(snake_case : str , snake_case : torch.nn.Module , snake_case : Dict[str, AttentionProcessor] ): if hasattr(snake_case , '''set_processor''' ): __UpperCAmelCase : Union[str, Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'{name}.{sub_name}' , snake_case , snake_case ) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case , snake_case , snake_case ) return processors def lowerCamelCase__ ( self : Optional[Any] , snake_case : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(snake_case , snake_case ) and len(snake_case ) != count: raise ValueError( f'A dict of processors was passed, but the number of processors {len(snake_case )} does not match the' f' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(snake_case : str , snake_case : torch.nn.Module , snake_case : int ): if hasattr(snake_case , '''set_processor''' ): if not isinstance(snake_case , snake_case ): module.set_processor(snake_case ) else: module.set_processor(processor.pop(f'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'{name}.{sub_name}' , snake_case , snake_case ) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case , snake_case , snake_case ) def lowerCamelCase__ ( self : str ) -> Tuple: self.set_attn_processor(AttnProcessor() ) def lowerCamelCase__ ( self : Optional[Any] , snake_case : List[Any] , snake_case : Union[torch.Tensor, float, int] , snake_case : torch.FloatTensor , snake_case : Optional[torch.FloatTensor] = None , snake_case : Optional[torch.BoolTensor] = None , snake_case : bool = True , ) -> List[Any]: __UpperCAmelCase : Any = hidden_states.shape[0] __UpperCAmelCase : Optional[int] = timestep if not torch.is_tensor(snake_case ): __UpperCAmelCase : str = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(snake_case ) and len(timesteps.shape ) == 0: __UpperCAmelCase : Any = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps * torch.ones(snake_case , dtype=timesteps.dtype , device=timesteps.device ) __UpperCAmelCase : Tuple = self.time_proj(snake_case ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __UpperCAmelCase : int = timesteps_projected.to(dtype=self.dtype ) __UpperCAmelCase : Optional[int] = self.time_embedding(snake_case ) if self.embedding_proj_norm is not None: __UpperCAmelCase : Optional[Any] = self.embedding_proj_norm(snake_case ) __UpperCAmelCase : str = self.embedding_proj(snake_case ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __UpperCAmelCase : Dict = self.encoder_hidden_states_proj(snake_case ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) __UpperCAmelCase : Optional[int] = self.proj_in(snake_case ) __UpperCAmelCase : Optional[Any] = self.positional_embedding.to(hidden_states.dtype ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(snake_case ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __UpperCAmelCase : Optional[int] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __UpperCAmelCase : Union[str, Any] = hidden_states[:, None, :] __UpperCAmelCase : Union[str, Any] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __UpperCAmelCase : Any = self.prd_embedding.to(hidden_states.dtype ).expand(snake_case , -1 , -1 ) additional_embeds.append(snake_case ) __UpperCAmelCase : Dict = torch.cat( snake_case , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __UpperCAmelCase : str = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __UpperCAmelCase : Union[str, Any] = F.pad( snake_case , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __UpperCAmelCase : Optional[int] = hidden_states + positional_embeddings if attention_mask is not None: __UpperCAmelCase : List[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10_000.0 __UpperCAmelCase : str = F.pad(snake_case , (0, self.additional_embeddings) , value=0.0 ) __UpperCAmelCase : Optional[int] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __UpperCAmelCase : Optional[int] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __UpperCAmelCase : str = self.norm_in(snake_case ) for block in self.transformer_blocks: __UpperCAmelCase : Optional[int] = block(snake_case , attention_mask=snake_case ) __UpperCAmelCase : int = self.norm_out(snake_case ) if self.prd_embedding is not None: __UpperCAmelCase : Optional[int] = hidden_states[:, -1] else: __UpperCAmelCase : List[Any] = hidden_states[:, additional_embeddings_len:] __UpperCAmelCase : Dict = self.proj_to_clip_embeddings(snake_case ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=snake_case ) def lowerCamelCase__ ( self : Optional[int] , snake_case : List[str] ) -> str: __UpperCAmelCase : Dict = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
240
1
from statistics import mean import numpy as np def __lowercase ( a__ , a__ , a__ , a__ ) -> list: __SCREAMING_SNAKE_CASE = 0 # Number of processes finished __SCREAMING_SNAKE_CASE = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __SCREAMING_SNAKE_CASE = [0] * no_of_process # List to include calculation results __SCREAMING_SNAKE_CASE = [0] * no_of_process # Sort by arrival time. __SCREAMING_SNAKE_CASE = [burst_time[i] for i in np.argsort(__A )] __SCREAMING_SNAKE_CASE = [process_name[i] for i in np.argsort(__A )] arrival_time.sort() while no_of_process > finished_process_count: __SCREAMING_SNAKE_CASE = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __SCREAMING_SNAKE_CASE = arrival_time[i] __SCREAMING_SNAKE_CASE = 0 # Index showing the location of the process being performed __SCREAMING_SNAKE_CASE = 0 # Saves the current response ratio. __SCREAMING_SNAKE_CASE = 0 for i in range(0 , __A ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __SCREAMING_SNAKE_CASE = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __SCREAMING_SNAKE_CASE = temp __SCREAMING_SNAKE_CASE = i # Calculate the turn around time __SCREAMING_SNAKE_CASE = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __SCREAMING_SNAKE_CASE = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __lowercase ( a__ , a__ , a__ , a__ ) -> list: __SCREAMING_SNAKE_CASE = [0] * no_of_process for i in range(0 , __A ): __SCREAMING_SNAKE_CASE = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowerCAmelCase__ : Tuple =5 lowerCAmelCase__ : Union[str, Any] =['''A''', '''B''', '''C''', '''D''', '''E'''] lowerCAmelCase__ : int =[1, 2, 3, 4, 5] lowerCAmelCase__ : List[str] =[1, 2, 3, 4, 5] lowerCAmelCase__ : Optional[Any] =calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowerCAmelCase__ : Any =calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
257
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } UpperCamelCase__ = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } UpperCamelCase__ = '</w>' UpperCamelCase__ = '@@ ' def lowerCAmelCase_ ( __A ) -> str: '''simple docstring''' UpperCAmelCase__ = set() UpperCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ = char return pairs # Speech2Text2 has no max input length UpperCamelCase__ = {'facebook/s2t-wav2vec2-large-en-de': 1_0_2_4} class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Dict = ['input_ids', 'attention_mask'] def __init__(self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict="<s>" , __UpperCAmelCase : Tuple="<pad>" , __UpperCAmelCase : str="</s>" , __UpperCAmelCase : int="<unk>" , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : str=None , **__UpperCAmelCase : Optional[Any] , ) -> Tuple: """simple docstring""" super().__init__( unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase__ = do_lower_case with open(__UpperCAmelCase , encoding="utf-8" ) as vocab_handle: UpperCAmelCase__ = json.load(__UpperCAmelCase ) UpperCAmelCase__ = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) UpperCAmelCase__ = None UpperCAmelCase__ = None else: with open(__UpperCAmelCase , encoding="utf-8" ) as merges_handle: UpperCAmelCase__ = merges_handle.read().split("\n" )[:-1] UpperCAmelCase__ = [tuple(merge.split()[:2] ) for merge in merges] UpperCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) UpperCAmelCase__ = {} @property def lowercase_ (self : List[str] ) -> int: """simple docstring""" return len(self.decoder ) def lowercase_ (self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ (self : Dict , __UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase__ = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] UpperCAmelCase__ = get_pairs(__UpperCAmelCase ) if not pairs: return token while True: UpperCAmelCase__ = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ = bigram UpperCAmelCase__ = [] UpperCAmelCase__ = 0 while i < len(__UpperCAmelCase ): try: UpperCAmelCase__ = word.index(__UpperCAmelCase , __UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ = j if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ = tuple(__UpperCAmelCase ) UpperCAmelCase__ = new_word if len(__UpperCAmelCase ) == 1: break else: UpperCAmelCase__ = get_pairs(__UpperCAmelCase ) UpperCAmelCase__ = " ".join(__UpperCAmelCase ) if word == "\n " + BPE_TOKEN_MERGES: UpperCAmelCase__ = "\n" + BPE_TOKEN_MERGES if word.endswith(__UpperCAmelCase ): UpperCAmelCase__ = word.replace(__UpperCAmelCase , "" ) UpperCAmelCase__ = word.replace(" " , __UpperCAmelCase ) UpperCAmelCase__ = word return word def lowercase_ (self : Tuple , __UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding." ) if self.do_lower_case: UpperCAmelCase__ = text.lower() UpperCAmelCase__ = text.split() UpperCAmelCase__ = [] for token in text: if token: split_tokens.extend(list(self.bpe(__UpperCAmelCase ).split(" " ) ) ) return split_tokens def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str ) -> int: """simple docstring""" return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowercase_ (self : Any , __UpperCAmelCase : int ) -> str: """simple docstring""" UpperCAmelCase__ = self.decoder.get(__UpperCAmelCase , self.unk_token ) return result def lowercase_ (self : Dict , __UpperCAmelCase : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = " ".join(__UpperCAmelCase ) # make sure @@ tokens are concatenated UpperCAmelCase__ = "".join(string.split(__UpperCAmelCase ) ) return string def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + "\n" ) UpperCAmelCase__ = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) UpperCAmelCase__ = token_index writer.write(" ".join(__UpperCAmelCase ) + "\n" ) index += 1 return (vocab_file, merges_file)
65
0
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor snake_case : Tuple = logging.get_logger(__name__) class _snake_case ( _snake_case ): def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
281
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCamelCase ( UpperCAmelCase_ : dict ): """simple docstring""" return (data["data"], data["target"]) def __lowerCamelCase ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : np.ndarray ): """simple docstring""" a :Optional[Any] = XGBClassifier() classifier.fit(UpperCAmelCase_ , UpperCAmelCase_ ) return classifier def __lowerCamelCase ( ): """simple docstring""" a :List[Any] = load_iris() a , a :Any = data_handling(UpperCAmelCase_ ) a , a , a , a :Tuple = train_test_split( UpperCAmelCase_ , UpperCAmelCase_ , test_size=0.25 ) a :List[Any] = iris['''target_names'''] # Create an XGBoost Classifier from the training data a :Optional[int] = xgboost(UpperCAmelCase_ , UpperCAmelCase_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , display_labels=UpperCAmelCase_ , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
281
1
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowercase__ : str = get_logger(__name__) class __lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[str] = None ) -> List[str]: '''simple docstring''' _UpperCamelCase = ( os.path.join(lowerCAmelCase__ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _UpperCamelCase = Extractor def snake_case__ ( self : List[Any] , lowerCAmelCase__ : str ) -> str: '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _UpperCamelCase = os.path.abspath(lowerCAmelCase__ ) return os.path.join(self.extract_dir , hash_url_to_filename(lowerCAmelCase__ ) ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : bool ) -> bool: '''simple docstring''' return force_extract or ( not os.path.isfile(lowerCAmelCase__ ) and not (os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ )) ) def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : bool = False ) -> str: '''simple docstring''' _UpperCamelCase = self.extractor.infer_extractor_format(lowerCAmelCase__ ) if not extractor_format: return input_path _UpperCamelCase = self._get_output_path(lowerCAmelCase__ ) if self._do_extract(lowerCAmelCase__ , lowerCAmelCase__ ): self.extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return output_path class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @classmethod @abstractmethod def snake_case__ ( cls : Any , lowerCAmelCase__ : Union[Path, str] , **lowerCAmelCase__ : int ) -> bool: '''simple docstring''' ... @staticmethod @abstractmethod def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None: '''simple docstring''' ... class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" _snake_case : List[bytes] = [] @staticmethod def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : int ) -> Dict: '''simple docstring''' with open(lowerCAmelCase__ , '''rb''' ) as f: return f.read(lowerCAmelCase__ ) @classmethod def snake_case__ ( cls : int , lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : bytes = b"" ) -> bool: '''simple docstring''' if not magic_number: _UpperCamelCase = max(len(lowerCAmelCase__ ) for cls_magic_number in cls.magic_numbers ) try: _UpperCamelCase = cls.read_magic_number(lowerCAmelCase__ , lowerCAmelCase__ ) except OSError: return False return any(magic_number.startswith(lowerCAmelCase__ ) for cls_magic_number in cls.magic_numbers ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @classmethod def snake_case__ ( cls : Tuple , lowerCAmelCase__ : Union[Path, str] , **lowerCAmelCase__ : int ) -> bool: '''simple docstring''' return tarfile.is_tarfile(lowerCAmelCase__ ) @staticmethod def snake_case__ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' def resolved(lowerCAmelCase__ : str ) -> str: return os.path.realpath(os.path.abspath(lowerCAmelCase__ ) ) def badpath(lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ).startswith(lowerCAmelCase__ ) def badlink(lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str ) -> bool: # Links are interpreted relative to the directory containing the link _UpperCamelCase = resolved(os.path.join(lowerCAmelCase__ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=lowerCAmelCase__ ) _UpperCamelCase = resolved(lowerCAmelCase__ ) for finfo in members: if badpath(finfo.name , lowerCAmelCase__ ): logger.error(f"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(lowerCAmelCase__ , lowerCAmelCase__ ): logger.error(f"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(lowerCAmelCase__ , lowerCAmelCase__ ): logger.error(f"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None: '''simple docstring''' os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) _UpperCamelCase = tarfile.open(lowerCAmelCase__ ) tar_file.extractall(lowerCAmelCase__ , members=TarExtractor.safemembers(lowerCAmelCase__ , lowerCAmelCase__ ) ) tar_file.close() class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Union[str, Any] = [b'\x1F\x8B'] @staticmethod def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None: '''simple docstring''' with gzip.open(lowerCAmelCase__ , '''rb''' ) as gzip_file: with open(lowerCAmelCase__ , '''wb''' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase__ , lowerCAmelCase__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Dict = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def snake_case__ ( cls : Optional[int] , lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : bytes = b"" ) -> bool: '''simple docstring''' if super().is_extractable(lowerCAmelCase__ , magic_number=lowerCAmelCase__ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowerCAmelCase__ , '''rb''' ) as fp: _UpperCamelCase = _EndRecData(lowerCAmelCase__ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _UpperCamelCase = fp.read(lowerCAmelCase__ ) # CD is where we expect it to be if len(lowerCAmelCase__ ) == sizeCentralDir: _UpperCamelCase = struct.unpack(lowerCAmelCase__ , lowerCAmelCase__ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None: '''simple docstring''' os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) with zipfile.ZipFile(lowerCAmelCase__ , '''r''' ) as zip_file: zip_file.extractall(lowerCAmelCase__ ) zip_file.close() class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Union[str, Any] = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None: '''simple docstring''' with lzma.open(lowerCAmelCase__ ) as compressed_file: with open(lowerCAmelCase__ , '''wb''' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase__ , lowerCAmelCase__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : List[str] = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None: '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) _UpperCamelCase = rarfile.RarFile(lowerCAmelCase__ ) rf.extractall(lowerCAmelCase__ ) rf.close() class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : List[str] = [b'\x28\xb5\x2F\xFD'] @staticmethod def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None: '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd _UpperCamelCase = zstd.ZstdDecompressor() with open(lowerCAmelCase__ , '''rb''' ) as ifh, open(lowerCAmelCase__ , '''wb''' ) as ofh: dctx.copy_stream(lowerCAmelCase__ , lowerCAmelCase__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = [b'\x42\x5A\x68'] @staticmethod def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None: '''simple docstring''' with bza.open(lowerCAmelCase__ , '''rb''' ) as compressed_file: with open(lowerCAmelCase__ , '''wb''' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase__ , lowerCAmelCase__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Any = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None: '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) with pyazr.SevenZipFile(lowerCAmelCase__ , '''r''' ) as archive: archive.extractall(lowerCAmelCase__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = [b'\x04\x22\x4D\x18'] @staticmethod def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None: '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(lowerCAmelCase__ , '''rb''' ) as compressed_file: with open(lowerCAmelCase__ , '''wb''' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase__ , lowerCAmelCase__ ) class __lowerCAmelCase : """simple docstring""" # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) _snake_case : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case__ ( cls : str ) -> str: '''simple docstring''' return max( len(lowerCAmelCase__ ) for extractor in cls.extractors.values() if issubclass(lowerCAmelCase__ , lowerCAmelCase__ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : int ) -> int: '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(lowerCAmelCase__ , magic_number_length=lowerCAmelCase__ ) except OSError: return b"" @classmethod def snake_case__ ( cls : Tuple , lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : bool = False ) -> bool: '''simple docstring''' warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=lowerCAmelCase__ , ) _UpperCamelCase = cls.infer_extractor_format(lowerCAmelCase__ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case__ ( cls : Dict , lowerCAmelCase__ : Union[Path, str] ) -> str: # <Added version="2.4.0"/> '''simple docstring''' _UpperCamelCase = cls._get_magic_number_max_length() _UpperCamelCase = cls._read_magic_number(lowerCAmelCase__ , lowerCAmelCase__ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowerCAmelCase__ , magic_number=lowerCAmelCase__ ): return extractor_format @classmethod def snake_case__ ( cls : Union[str, Any] , lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Optional[BaseExtractor] = "deprecated" , ) -> None: '''simple docstring''' os.makedirs(os.path.dirname(lowerCAmelCase__ ) , exist_ok=lowerCAmelCase__ ) # Prevent parallel extractions _UpperCamelCase = str(Path(lowerCAmelCase__ ).with_suffix('''.lock''' ) ) with FileLock(lowerCAmelCase__ ): shutil.rmtree(lowerCAmelCase__ , ignore_errors=lowerCAmelCase__ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=lowerCAmelCase__ , ) _UpperCamelCase = extractor if extractor != '''deprecated''' else extractor_format else: _UpperCamelCase = cls.extractors[extractor_format] return extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=lowerCAmelCase__ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowerCAmelCase__ ): return extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ )
324
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=1 / 255 , lowerCAmelCase__ : Tuple=True , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_pad def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> str: '''simple docstring''' if not batched: _UpperCamelCase = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): _UpperCamelCase , _UpperCamelCase = image.size else: _UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2] if w < h: _UpperCamelCase = int(self.size['''shortest_edge'''] * h / w ) _UpperCamelCase = self.size['''shortest_edge'''] elif w > h: _UpperCamelCase = self.size['''shortest_edge'''] _UpperCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _UpperCamelCase = self.size['''shortest_edge'''] _UpperCamelCase = self.size['''shortest_edge'''] else: _UpperCamelCase = [] for image in image_inputs: _UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] _UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = DeformableDetrImageProcessingTester(self ) @property def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_rescale''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) _UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) def snake_case__ ( self : Tuple ) -> Any: '''simple docstring''' pass def snake_case__ ( self : int ) -> Any: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self : str ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case__ ( self : int ) -> Tuple: '''simple docstring''' _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = {'''image_id''': 39769, '''annotations''': target} # encode them _UpperCamelCase = DeformableDetrImageProcessor() _UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='''pt''' ) # verify pixel values _UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) # verify area _UpperCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) ) # verify boxes _UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) ) # verify image_id _UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) ) # verify is_crowd _UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) ) # verify class_labels _UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) ) # verify orig_size _UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) ) # verify size _UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) ) @slow def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} _UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='''pt''' ) # verify pixel values _UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) # verify area _UpperCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) ) # verify boxes _UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) ) # verify image_id _UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) ) # verify is_crowd _UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) ) # verify class_labels _UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) ) # verify masks _UpperCamelCase = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowerCAmelCase__ ) # verify orig_size _UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) ) # verify size _UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
324
1
'''simple docstring''' from __future__ import annotations class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict , __a : int = 0 ): _a = key def UpperCamelCase__ ( self : List[str] , __a : str , __a : int ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) _a = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content] def UpperCamelCase__ ( self : Union[str, Any] , __a : str , __a : int ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) _a = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content] def UpperCamelCase__ ( self : Any , __a : str , __a : int = 0 ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) _a = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned _a = "" for ch in content: ans += chr(ord(_UpperCAmelCase ) ^ key ) return ans def UpperCamelCase__ ( self : Union[str, Any] , __a : str , __a : int = 0 ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) _a = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned _a = "" for ch in content: ans += chr(ord(_UpperCAmelCase ) ^ key ) return ans def UpperCamelCase__ ( self : Any , __a : str , __a : int = 0 ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) try: with open(_UpperCAmelCase ) as fin, open("encrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCAmelCase , _UpperCAmelCase ) ) except OSError: return False return True def UpperCamelCase__ ( self : Tuple , __a : str , __a : int ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) try: with open(_UpperCAmelCase ) as fin, open("decrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCAmelCase , _UpperCAmelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
367
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) lowerCAmelCase_ : List[Any] = logging.getLogger(__name__) lowerCAmelCase_ : List[Any] = {'facebook/bart-base': BartForConditionalGeneration} lowerCAmelCase_ : int = {'facebook/bart-base': BartTokenizer} def _lowerCamelCase ( ) -> Union[str, Any]: _a = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=lowercase , default=lowercase , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=lowercase , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=lowercase , default=lowercase , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=lowercase , help="Path to pretrained model or model identifier from huggingface.co/models." , required=lowercase , ) parser.add_argument( "--config_name" , type=lowercase , default=lowercase , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=lowercase , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=lowercase , default=lowercase , help="Where to store the final ONNX file." ) _a = parser.parse_args() return args def _lowerCamelCase ( lowercase : Any , lowercase : Tuple="cpu" ) -> Optional[Any]: _a = model_dict[model_name].from_pretrained(lowercase ).to(lowercase ) _a = tokenizer_dict[model_name].from_pretrained(lowercase ) if model_name in ["facebook/bart-base"]: _a = 0 _a = None _a = 0 return huggingface_model, tokenizer def _lowerCamelCase ( lowercase : List[str] , lowercase : Tuple , lowercase : int , lowercase : Any , lowercase : Dict ) -> Any: model.eval() _a = None _a = torch.jit.script(BARTBeamSearchGenerator(lowercase ) ) with torch.no_grad(): _a = "My friends are cool but they eat too many carbs." _a = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="pt" ).to(model.device ) _a = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=lowercase , max_length=lowercase , early_stopping=lowercase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( lowercase , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , lowercase , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=lowercase , ) logger.info("Model exported to {}".format(lowercase ) ) _a = remove_dup_initializers(os.path.abspath(lowercase ) ) logger.info("Deduplicated and optimized model written to {}".format(lowercase ) ) _a = onnxruntime.InferenceSession(lowercase ) _a = ort_sess.run( lowercase , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(lowercase ), "max_length": np.array(lowercase ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def _lowerCamelCase ( ) -> Any: _a = parse_args() _a = 5 _a = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _a = torch.device(args.device ) _a , _a = load_model_tokenizer(args.model_name_or_path , lowercase ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(lowercase ) if args.max_length: _a = args.max_length if args.num_beams: _a = args.num_beams if args.output_file_path: _a = args.output_file_path else: _a = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(lowercase , lowercase , lowercase , lowercase , lowercase ) if __name__ == "__main__": main()
346
0
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase__ = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : str = PegasusConfig SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : Tuple = 'gelu' def __init__( self : Any ,lowercase__ : Tuple ,lowercase__ : Dict=1_3 ,lowercase__ : Optional[int]=7 ,lowercase__ : Tuple=True ,lowercase__ : Optional[int]=False ,lowercase__ : Union[str, Any]=9_9 ,lowercase__ : str=3_2 ,lowercase__ : Tuple=5 ,lowercase__ : List[str]=4 ,lowercase__ : Dict=3_7 ,lowercase__ : Optional[int]=0.1 ,lowercase__ : int=0.1 ,lowercase__ : Union[str, Any]=2_0 ,lowercase__ : Optional[Any]=2 ,lowercase__ : int=1 ,lowercase__ : Optional[Any]=0 ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ).clip(3 ,self.vocab_size ) __lowercase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) ,1 ) __lowercase = np.concatenate([input_ids, eos_tensor] ,axis=1 ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) __lowercase = prepare_pegasus_inputs_dict(lowercase__ ,lowercase__ ,lowercase__ ) return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : str ,lowercase__ : Optional[int] ,lowercase__ : Optional[int] ): __lowercase = 2_0 __lowercase = model_class_name(lowercase__ ) __lowercase = model.encode(inputs_dict['''input_ids'''] ) __lowercase , __lowercase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __lowercase = model.init_cache(decoder_input_ids.shape[0] ,lowercase__ ,lowercase__ ) __lowercase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) ,dtype='''i4''' ) __lowercase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) __lowercase = model.decode( decoder_input_ids[:, :-1] ,lowercase__ ,decoder_attention_mask=lowercase__ ,past_key_values=lowercase__ ,decoder_position_ids=lowercase__ ,) __lowercase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype='''i4''' ) __lowercase = model.decode( decoder_input_ids[:, -1:] ,lowercase__ ,decoder_attention_mask=lowercase__ ,past_key_values=outputs_cache.past_key_values ,decoder_position_ids=lowercase__ ,) __lowercase = model.decode(lowercase__ ,lowercase__ ) __lowercase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=F"Max diff is {diff}" ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : str ): __lowercase = 2_0 __lowercase = model_class_name(lowercase__ ) __lowercase = model.encode(inputs_dict['''input_ids'''] ) __lowercase , __lowercase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __lowercase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] ,axis=-1 ,) __lowercase = model.init_cache(decoder_input_ids.shape[0] ,lowercase__ ,lowercase__ ) __lowercase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) __lowercase = model.decode( decoder_input_ids[:, :-1] ,lowercase__ ,decoder_attention_mask=lowercase__ ,past_key_values=lowercase__ ,decoder_position_ids=lowercase__ ,) __lowercase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype='''i4''' ) __lowercase = model.decode( decoder_input_ids[:, -1:] ,lowercase__ ,past_key_values=outputs_cache.past_key_values ,decoder_attention_mask=lowercase__ ,decoder_position_ids=lowercase__ ,) __lowercase = model.decode(lowercase__ ,lowercase__ ,decoder_attention_mask=lowercase__ ) __lowercase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=F"Max diff is {diff}" ) def _A ( A__ , A__ , A__ , A__=None , A__=None , ): """simple docstring""" if attention_mask is None: __lowercase = np.not_equal(A__ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __lowercase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE : Tuple = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Any = False def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = FlaxPegasusModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase__ ,lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase__ ,lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = model_class(lowercase__ ) @jax.jit def encode_jitted(lowercase__ : List[Any] ,lowercase__ : Dict=None ,**lowercase__ : Optional[int] ): return model.encode(input_ids=lowercase__ ,attention_mask=lowercase__ ) with self.subTest('''JIT Enabled''' ): __lowercase = encode_jitted(**lowercase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __lowercase = encode_jitted(**lowercase__ ).to_tuple() self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) for jitted_output, output in zip(lowercase__ ,lowercase__ ): self.assertEqual(jitted_output.shape ,output.shape ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = model_class(lowercase__ ) __lowercase = model.encode(inputs_dict['''input_ids'''] ,inputs_dict['''attention_mask'''] ) __lowercase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : str ): return model.decode( decoder_input_ids=lowercase__ ,decoder_attention_mask=lowercase__ ,encoder_outputs=lowercase__ ,) with self.subTest('''JIT Enabled''' ): __lowercase = decode_jitted(**lowercase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __lowercase = decode_jitted(**lowercase__ ).to_tuple() self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) for jitted_output, output in zip(lowercase__ ,lowercase__ ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained('''google/pegasus-large''' ,from_pt=lowercase__ ) __lowercase = np.ones((1, 1) ) __lowercase = model(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) __lowercase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) __lowercase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] __lowercase = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] __lowercase = tokenizer(lowercase__ ,return_tensors='''np''' ,truncation=lowercase__ ,max_length=5_1_2 ,padding=lowercase__ ) __lowercase = model.generate(**lowercase__ ,num_beams=2 ).sequences __lowercase = tokenizer.batch_decode(lowercase__ ,skip_special_tokens=lowercase__ ) assert tgt_text == decoded
104
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def _A ( A__ ): """simple docstring""" __lowercase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(A__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __lowercase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements __lowercase = [[0.0, 0.0], [0.0, 0.0]] __lowercase , __lowercase = matrix[1][1], matrix[0][0] __lowercase , __lowercase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(A__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(A__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __lowercase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix __lowercase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __lowercase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __lowercase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __lowercase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __lowercase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __lowercase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __lowercase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __lowercase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __lowercase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __lowercase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __lowercase = array(A__ ) for i in range(3 ): for j in range(3 ): __lowercase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __lowercase = array(A__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(A__ ) # Calculate the inverse of the matrix return [[float(d(A__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
104
1
'''simple docstring''' def _snake_case ( A , A ) -> float: return base * power(A , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') __UpperCAmelCase = int(input('''Enter the base: ''').strip()) __UpperCAmelCase = int(input('''Enter the exponent: ''').strip()) __UpperCAmelCase = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents __UpperCAmelCase = 1 / result print(f"""{base} to the power of {exponent} is {result}""")
366
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __UpperCAmelCase = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __UpperCAmelCase = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __UpperCAmelCase = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _snake_case ( A , A ) -> List[Any]: return float((preds == labels).mean() ) def _snake_case ( A , A , A="binary" ) -> int: lowerCAmelCase__ = simple_accuracy(A , A ) lowerCAmelCase__ = float(fa_score(y_true=A , y_pred=A , average=A ) ) return { "accuracy": acc, "f1": fa, } def _snake_case ( A , A ) -> List[Any]: lowerCAmelCase__ = {} for id_pred, label in zip(A , A ): lowerCAmelCase__ = F"""{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}""" lowerCAmelCase__ = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase__ = [(pred, label)] lowerCAmelCase__ , lowerCAmelCase__ = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase__ , lowerCAmelCase__ = zip(*A ) lowerCAmelCase__ = fa_score(y_true=A , y_pred=A , average='''macro''' ) fas.append(A ) lowerCAmelCase__ = int(sum(pred == label for pred, label in preds_labels ) == len(A ) ) ems.append(A ) lowerCAmelCase__ = float(sum(A ) / len(A ) ) lowerCAmelCase__ = sum(A ) / len(A ) lowerCAmelCase__ = float(fa_score(y_true=A , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Dict: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(lowerCamelCase_ , lowerCamelCase_ )} elif self.config_name == "cb": return acc_and_fa(lowerCamelCase_ , lowerCamelCase_ , fa_avg='''macro''' ) elif self.config_name == "record": lowerCAmelCase__ = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] lowerCAmelCase__ = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(lowerCamelCase_ , lowerCamelCase_ )[0] elif self.config_name == "multirc": return evaluate_multirc(lowerCamelCase_ , lowerCamelCase_ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
228
0
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor snake_case : List[Any] = logging.getLogger(__name__) snake_case : Optional[int] = 50 # max width of layer names snake_case : Any = 70 # max width of quantizer names def __lowercase ( __lowerCAmelCase : Tuple ): a__ = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=__lowerCAmelCase , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=__lowerCAmelCase , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=__lowerCAmelCase , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=__lowerCAmelCase , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=__lowerCAmelCase , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=__lowerCAmelCase , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def __lowercase ( __lowerCAmelCase : Union[str, Any] ): if args.calibrator == "max": a__ = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) a__ = 'histogram' elif args.calibrator == "mse": a__ = 'histogram' else: raise ValueError(F'Invalid calibrator {args.calibrator}' ) a__ = QuantDescriptor(num_bits=args.aprec , calib_method=__lowerCAmelCase ) a__ = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__lowerCAmelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(__lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Dict=False ): logger.info('Configuring Model for Quantization' ) logger.info(F'using quantization package {pytorch_quantization.__file__}' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__lowerCAmelCase , ['embeddings'] , which='weight' , _disabled=__lowerCAmelCase ) if args.quant_disable: set_quantizer_by_name(__lowerCAmelCase , [''] , _disabled=__lowerCAmelCase ) if args.quant_disable_keyword: set_quantizer_by_name(__lowerCAmelCase , args.quant_disable_keyword , _disabled=__lowerCAmelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(__lowerCAmelCase , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=__lowerCAmelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(__lowerCAmelCase , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=__lowerCAmelCase ) if args.recalibrate_weights: recalibrate_weights(__lowerCAmelCase ) if args.fuse_qkv: fuse_qkv(__lowerCAmelCase , __lowerCAmelCase ) if args.clip_gelu: clip_gelu(__lowerCAmelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] ): logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'{name:80}: {module}' ) def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ): logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ): def fusea(__lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ): for mod in [qq, qk, qv]: if not hasattr(__lowerCAmelCase , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return a__ = qq._amax.detach().item() a__ = qk._amax.detach().item() a__ = qv._amax.detach().item() a__ = max(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) qq._amax.fill_(__lowerCAmelCase ) qk._amax.fill_(__lowerCAmelCase ) qv._amax.fill_(__lowerCAmelCase ) logger.info(F' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F'FUSE_QKV: {name:{name_width}}' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] ): for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): a__ = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__lowerCAmelCase ) a__ = mod._input_quantizer._amax.data.detach().item() logger.info(F'CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}' ) def __lowercase ( __lowerCAmelCase : Optional[Any] ): for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: a__ = mod.weight.shape[0] a__ = mod._weight_quantizer._amax.detach() a__ = torch.ones(__lowerCAmelCase , dtype=amax.dtype , device=amax.device ) * amax print(F'expanding {name} {amax} -> {mod._weight_quantizer._amax}' ) def __lowercase ( __lowerCAmelCase : Union[str, Any] ): for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) a__ = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) a__ = set(range(len(mod.weight.size() ) ) ) - axis_set a__ = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__lowerCAmelCase , keepdims=__lowerCAmelCase ).detach() logger.info(F'RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}' ) a__ = amax def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int]=2_5 , __lowerCAmelCase : List[Any]=1_8_0 , __lowerCAmelCase : Tuple=None ): if ignore is None: a__ = [] elif not isinstance(__lowerCAmelCase , __lowerCAmelCase ): a__ = [ignore] a__ = 0 for name, mod in model.named_modules(): if not hasattr(__lowerCAmelCase , 'weight' ): continue a__ = max(__lowerCAmelCase , len(__lowerCAmelCase ) ) for name, mod in model.named_modules(): a__ = getattr(__lowerCAmelCase , '_input_quantizer' , __lowerCAmelCase ) a__ = getattr(__lowerCAmelCase , '_weight_quantizer' , __lowerCAmelCase ) if not hasattr(__lowerCAmelCase , 'weight' ): continue if type(__lowerCAmelCase ) in ignore: continue if [True for s in ignore if type(__lowerCAmelCase ) is str and s in name]: continue a__ = F'Act:{input_q.extra_repr()}' a__ = F'Wgt:{weight_q.extra_repr()}' a__ = F'{name:{name_width}} {act_str} {wgt_str}' if len(__lowerCAmelCase ) <= line_width: logger.info(__lowerCAmelCase ) else: logger.info(F'{name:{name_width}} {act_str}' ) logger.info(F'{" ":{name_width}} {wgt_str}' ) def __lowercase ( __lowerCAmelCase : Dict ): a__ = 0 for name, mod in model.named_modules(): if isinstance(__lowerCAmelCase , pytorch_quantization.nn.TensorQuantizer ): print(F'{name:80} {mod}' ) count += 1 print(F'{count} TensorQuantizers found in model' ) def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict ): a__ = getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if quantizer_mod is not None: assert hasattr(__lowerCAmelCase , __lowerCAmelCase ) setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: logger.warning(F'{name} has no {quantizer}' ) def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int]="both" , **__lowerCAmelCase : str ): a__ = F'Warning: changing {which} quantizers of {name:{qname_width}}' for k, v in kwargs.items(): s += F' {k}={v}' if which in ["input", "both"]: set_quantizer(__lowerCAmelCase , __lowerCAmelCase , '_input_quantizer' , __lowerCAmelCase , __lowerCAmelCase ) if which in ["weight", "both"]: set_quantizer(__lowerCAmelCase , __lowerCAmelCase , '_weight_quantizer' , __lowerCAmelCase , __lowerCAmelCase ) logger.info(__lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , **__lowerCAmelCase : Optional[Any] ): for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , '_input_quantizer' ) or hasattr(__lowerCAmelCase , '_weight_quantizer' ): for n in names: if re.search(__lowerCAmelCase , __lowerCAmelCase ): set_quantizers(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) elif name.endswith('_quantizer' ): for n in names: if re.search(__lowerCAmelCase , __lowerCAmelCase ): a__ = F'Warning: changing {name:{name_width}}' for k, v in kwargs.items(): s += F' {k}={v}' setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) logger.info(__lowerCAmelCase )
240
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int ): # Construct model if gpta_config_file == "": a__ = GPTaConfig() else: a__ = GPTaConfig.from_json_file(__lowerCAmelCase ) a__ = GPTaModel(__lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model a__ = pytorch_dump_folder_path + '/' + WEIGHTS_NAME a__ = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , __lowerCAmelCase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": snake_case : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) snake_case : Any = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
240
1
"""simple docstring""" from typing import List import numpy as np def __a ( _SCREAMING_SNAKE_CASE ) ->int: a__: Dict = {key: len(_SCREAMING_SNAKE_CASE ) for key, value in gen_kwargs.items() if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( 'Sharding is ambiguous for this dataset: ' + 'we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n' + '\n'.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ' + 'and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.' ) ) a__: Optional[Any] = max(lists_lengths.values() , default=0 ) return max(1 , _SCREAMING_SNAKE_CASE ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[range]: a__: Optional[int] = [] for group_idx in range(_SCREAMING_SNAKE_CASE ): a__: Union[str, Any] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break a__: Optional[int] = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 a__: List[Any] = range(_SCREAMING_SNAKE_CASE , start + num_shards_to_add ) shards_indices_per_group.append(_SCREAMING_SNAKE_CASE ) return shards_indices_per_group def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[dict]: a__: Any = _number_of_shards_in_gen_kwargs(_SCREAMING_SNAKE_CASE ) if num_shards == 1: return [dict(_SCREAMING_SNAKE_CASE )] else: a__: Dict = _distribute_shards(num_shards=_SCREAMING_SNAKE_CASE , max_num_jobs=_SCREAMING_SNAKE_CASE ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(_SCREAMING_SNAKE_CASE ) ) ] def __a ( _SCREAMING_SNAKE_CASE ) ->dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , _SCREAMING_SNAKE_CASE ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->dict: a__: int = {len(_SCREAMING_SNAKE_CASE ) for value in gen_kwargs.values() if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} a__: Dict = {} for size in list_sizes: a__: Optional[int] = list(range(_SCREAMING_SNAKE_CASE ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes a__: List[str] = dict(_SCREAMING_SNAKE_CASE ) for key, value in shuffled_kwargs.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__: Optional[int] = [value[i] for i in indices_per_size[len(_SCREAMING_SNAKE_CASE )]] return shuffled_kwargs
203
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = Dict[str, Any] lowercase__ = List[Prediction] @add_end_docstrings(__lowerCAmelCase ) class __snake_case ( __lowerCAmelCase ): def __init__( self , *lowercase , **lowercase) -> Dict: '''simple docstring''' super().__init__(*lowercase , **lowercase) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.') requires_backends(self , 'vision') self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items())) def lowerCamelCase_ ( self , **lowercase) -> int: '''simple docstring''' a__: Optional[Any] = {} if "threshold" in kwargs: a__: Dict = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self , *lowercase , **lowercase) -> Union[Predictions, List[Prediction]]: '''simple docstring''' return super().__call__(*lowercase , **lowercase) def lowerCamelCase_ ( self , lowercase) -> List[Any]: '''simple docstring''' a__: Optional[Any] = load_image(lowercase) a__: List[Any] = torch.IntTensor([[image.height, image.width]]) a__: Any = self.image_processor(images=[image] , return_tensors='pt') if self.tokenizer is not None: a__: Any = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt') a__: List[str] = target_size return inputs def lowerCamelCase_ ( self , lowercase) -> int: '''simple docstring''' a__: Any = model_inputs.pop('target_size') a__: Union[str, Any] = self.model(**lowercase) a__: List[str] = outputs.__class__({'target_size': target_size, **outputs}) if self.tokenizer is not None: a__: Union[str, Any] = model_inputs['bbox'] return model_outputs def lowerCamelCase_ ( self , lowercase , lowercase=0.9) -> Optional[Any]: '''simple docstring''' a__: int = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. a__ , a__: str = target_size[0].tolist() def unnormalize(lowercase): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 10_00), (height * bbox[1] / 10_00), (width * bbox[2] / 10_00), (height * bbox[3] / 10_00), ])) a__ , a__: Optional[Any] = model_outputs['logits'].squeeze(0).softmax(dim=-1).max(dim=-1) a__: str = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] a__: Union[str, Any] = [unnormalize(lowercase) for bbox in model_outputs['bbox'].squeeze(0)] a__: Dict = ['score', 'label', 'box'] a__: Any = [dict(zip(lowercase , lowercase)) for vals in zip(scores.tolist() , lowercase , lowercase) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel a__: List[str] = self.image_processor.post_process_object_detection(lowercase , lowercase , lowercase) a__: Tuple = raw_annotations[0] a__: List[str] = raw_annotation['scores'] a__: int = raw_annotation['labels'] a__: int = raw_annotation['boxes'] a__: List[Any] = scores.tolist() a__: Any = [self.model.config.idalabel[label.item()] for label in labels] a__: Dict = [self._get_bounding_box(lowercase) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] a__: Optional[Any] = ['score', 'label', 'box'] a__: List[Any] = [ dict(zip(lowercase , lowercase)) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes']) ] return annotation def lowerCamelCase_ ( self , lowercase) -> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.') a__ , a__ , a__ , a__: List[Any] = box.int().tolist() a__: Optional[int] = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
203
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType snake_case : Optional[int] = logging.get_logger(__name__) snake_case : List[Any] = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class _snake_case ( snake_case ): UpperCamelCase__ = 'deberta-v2' def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1e-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ): super().__init__(**_a ) __magic_name__ : Union[str, Any] = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : int = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Any = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : str = attention_probs_dropout_prob __magic_name__ : Union[str, Any] = max_position_embeddings __magic_name__ : Optional[Any] = type_vocab_size __magic_name__ : Dict = initializer_range __magic_name__ : Optional[int] = relative_attention __magic_name__ : Any = max_relative_positions __magic_name__ : Dict = pad_token_id __magic_name__ : str = position_biased_input # Backwards compatibility if type(_a ) == str: __magic_name__ : Dict = [x.strip() for x in pos_att_type.lower().split("|" )] __magic_name__ : Optional[int] = pos_att_type __magic_name__ : Union[str, Any] = vocab_size __magic_name__ : Any = layer_norm_eps __magic_name__ : Optional[int] = kwargs.get("pooler_hidden_size" , _a ) __magic_name__ : List[Any] = pooler_dropout __magic_name__ : Union[str, Any] = pooler_hidden_act class _snake_case ( snake_case ): @property def SCREAMING_SNAKE_CASE ( self ): if self.task == "multiple-choice": __magic_name__ : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: __magic_name__ : Optional[Any] = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE ( self ): return 12 def SCREAMING_SNAKE_CASE ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ): __magic_name__ : Dict = super().generate_dummy_inputs(preprocessor=_a , framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
281
import argparse import collections import json import os import re import string import sys import numpy as np snake_case : Dict = re.compile(R"\b(a|an|the)\b", re.UNICODE) snake_case : Optional[int] = None def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Any = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=_snake_case , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=_snake_case , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def lowerCAmelCase_ ( _snake_case : Optional[Any] ) -> Tuple: '''simple docstring''' __magic_name__ : Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __magic_name__ : str = bool(qa["answers"]["text"] ) return qid_to_has_ans def lowerCAmelCase_ ( _snake_case : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' def remove_articles(_snake_case : List[str] ): return ARTICLES_REGEX.sub(" " , _snake_case ) def white_space_fix(_snake_case : Optional[int] ): return " ".join(text.split() ) def remove_punc(_snake_case : Optional[int] ): __magic_name__ : Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_snake_case : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_snake_case ) ) ) ) def lowerCAmelCase_ ( _snake_case : Any ) -> Optional[Any]: '''simple docstring''' if not s: return [] return normalize_answer(_snake_case ).split() def lowerCAmelCase_ ( _snake_case : str , _snake_case : Dict ) -> Tuple: '''simple docstring''' return int(normalize_answer(_snake_case ) == normalize_answer(_snake_case ) ) def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : int ) -> str: '''simple docstring''' __magic_name__ : Any = get_tokens(_snake_case ) __magic_name__ : Optional[int] = get_tokens(_snake_case ) __magic_name__ : Tuple = collections.Counter(_snake_case ) & collections.Counter(_snake_case ) __magic_name__ : Tuple = sum(common.values() ) if len(_snake_case ) == 0 or len(_snake_case ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 __magic_name__ : Dict = 1.0 * num_same / len(_snake_case ) __magic_name__ : Optional[Any] = 1.0 * num_same / len(_snake_case ) __magic_name__ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase_ ( _snake_case : Optional[Any] , _snake_case : List[Any] ) -> List[Any]: '''simple docstring''' __magic_name__ : Union[str, Any] = {} __magic_name__ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __magic_name__ : Union[str, Any] = qa["id"] __magic_name__ : Any = [t for t in qa["answers"]["text"] if normalize_answer(_snake_case )] if not gold_answers: # For unanswerable questions, only correct answer is empty string __magic_name__ : Tuple = [""] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue __magic_name__ : Any = preds[qid] # Take max over all gold answers __magic_name__ : List[Any] = max(compute_exact(_snake_case , _snake_case ) for a in gold_answers ) __magic_name__ : int = max(compute_fa(_snake_case , _snake_case ) for a in gold_answers ) return exact_scores, fa_scores def lowerCAmelCase_ ( _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : str = {} for qid, s in scores.items(): __magic_name__ : Dict = na_probs[qid] > na_prob_thresh if pred_na: __magic_name__ : str = float(not qid_to_has_ans[qid] ) else: __magic_name__ : Optional[int] = s return new_scores def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : List[str] , _snake_case : Tuple=None ) -> Tuple: '''simple docstring''' if not qid_list: __magic_name__ : Any = len(_snake_case ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: __magic_name__ : Tuple = len(_snake_case ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : str , _snake_case : str ) -> Dict: '''simple docstring''' for k in new_eval: __magic_name__ : int = new_eval[k] def lowerCAmelCase_ ( _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : Optional[Any] , _snake_case : Union[str, Any] ) -> str: '''simple docstring''' plt.step(_snake_case , _snake_case , color="b" , alpha=0.2 , where="post" ) plt.fill_between(_snake_case , _snake_case , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_snake_case ) plt.savefig(_snake_case ) plt.clf() def lowerCAmelCase_ ( _snake_case : Dict , _snake_case : Any , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[int]=None , _snake_case : int=None ) -> str: '''simple docstring''' __magic_name__ : Union[str, Any] = sorted(_snake_case , key=lambda _snake_case : na_probs[k] ) __magic_name__ : Optional[int] = 0.0 __magic_name__ : str = 1.0 __magic_name__ : str = 0.0 __magic_name__ : List[str] = [1.0] __magic_name__ : str = [0.0] __magic_name__ : Optional[Any] = 0.0 for i, qid in enumerate(_snake_case ): if qid_to_has_ans[qid]: true_pos += scores[qid] __magic_name__ : List[str] = true_pos / float(i + 1 ) __magic_name__ : Any = true_pos / float(_snake_case ) if i == len(_snake_case ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_snake_case ) recalls.append(_snake_case ) if out_image: plot_pr_curve(_snake_case , _snake_case , _snake_case , _snake_case ) return {"ap": 100.0 * avg_prec} def lowerCAmelCase_ ( _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Any , _snake_case : List[Any] ) -> Union[str, Any]: '''simple docstring''' if out_image_dir and not os.path.exists(_snake_case ): os.makedirs(_snake_case ) __magic_name__ : Any = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return __magic_name__ : str = make_precision_recall_eval( _snake_case , _snake_case , _snake_case , _snake_case , out_image=os.path.join(_snake_case , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) __magic_name__ : Union[str, Any] = make_precision_recall_eval( _snake_case , _snake_case , _snake_case , _snake_case , out_image=os.path.join(_snake_case , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) __magic_name__ : str = {k: float(_snake_case ) for k, v in qid_to_has_ans.items()} __magic_name__ : str = make_precision_recall_eval( _snake_case , _snake_case , _snake_case , _snake_case , out_image=os.path.join(_snake_case , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(_snake_case , _snake_case , "pr_exact" ) merge_eval(_snake_case , _snake_case , "pr_f1" ) merge_eval(_snake_case , _snake_case , "pr_oracle" ) def lowerCAmelCase_ ( _snake_case : int , _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[Any] ) -> Dict: '''simple docstring''' if not qid_list: return __magic_name__ : Dict = [na_probs[k] for k in qid_list] __magic_name__ : str = np.ones_like(_snake_case ) / float(len(_snake_case ) ) plt.hist(_snake_case , weights=_snake_case , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(_snake_case , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def lowerCAmelCase_ ( _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : List[str] , _snake_case : Dict ) -> List[Any]: '''simple docstring''' __magic_name__ : Union[str, Any] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) __magic_name__ : List[str] = num_no_ans __magic_name__ : Dict = cur_score __magic_name__ : Dict = 0.0 __magic_name__ : Any = sorted(_snake_case , key=lambda _snake_case : na_probs[k] ) for i, qid in enumerate(_snake_case ): if qid not in scores: continue if qid_to_has_ans[qid]: __magic_name__ : Union[str, Any] = scores[qid] else: if preds[qid]: __magic_name__ : List[Any] = -1 else: __magic_name__ : Optional[int] = 0 cur_score += diff if cur_score > best_score: __magic_name__ : Optional[int] = cur_score __magic_name__ : List[Any] = na_probs[qid] return 100.0 * best_score / len(_snake_case ), best_thresh def lowerCAmelCase_ ( _snake_case : int , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : List[Any] , _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' __magic_name__ , __magic_name__ : List[str] = find_best_thresh(_snake_case , _snake_case , _snake_case , _snake_case ) __magic_name__ , __magic_name__ : int = find_best_thresh(_snake_case , _snake_case , _snake_case , _snake_case ) __magic_name__ : Optional[int] = best_exact __magic_name__ : List[Any] = exact_thresh __magic_name__ : Dict = best_fa __magic_name__ : Any = fa_thresh def lowerCAmelCase_ ( ) -> int: '''simple docstring''' with open(OPTS.data_file ) as f: __magic_name__ : Optional[Any] = json.load(_snake_case ) __magic_name__ : List[Any] = dataset_json["data"] with open(OPTS.pred_file ) as f: __magic_name__ : Optional[Any] = json.load(_snake_case ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: __magic_name__ : Any = json.load(_snake_case ) else: __magic_name__ : Any = {k: 0.0 for k in preds} __magic_name__ : str = make_qid_to_has_ans(_snake_case ) # maps qid to True/False __magic_name__ : Tuple = [k for k, v in qid_to_has_ans.items() if v] __magic_name__ : Optional[Any] = [k for k, v in qid_to_has_ans.items() if not v] __magic_name__ , __magic_name__ : Union[str, Any] = get_raw_scores(_snake_case , _snake_case ) __magic_name__ : Optional[Any] = apply_no_ans_threshold(_snake_case , _snake_case , _snake_case , OPTS.na_prob_thresh ) __magic_name__ : Optional[Any] = apply_no_ans_threshold(_snake_case , _snake_case , _snake_case , OPTS.na_prob_thresh ) __magic_name__ : List[Any] = make_eval_dict(_snake_case , _snake_case ) if has_ans_qids: __magic_name__ : int = make_eval_dict(_snake_case , _snake_case , qid_list=_snake_case ) merge_eval(_snake_case , _snake_case , "HasAns" ) if no_ans_qids: __magic_name__ : List[Any] = make_eval_dict(_snake_case , _snake_case , qid_list=_snake_case ) merge_eval(_snake_case , _snake_case , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , OPTS.out_image_dir ) histogram_na_prob(_snake_case , _snake_case , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(_snake_case , _snake_case , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(_snake_case , _snake_case ) else: print(json.dumps(_snake_case , indent=2 ) ) if __name__ == "__main__": snake_case : int = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
281
1
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = inspect.getfile(accelerate.test_utils ) a :str = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 a :Any = test_metrics @require_cpu def SCREAMING_SNAKE_CASE__ ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def SCREAMING_SNAKE_CASE__ ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def SCREAMING_SNAKE_CASE__ ( self ): self.test_metrics.main() @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self ): print(F'''Found {torch.cuda.device_count()} devices.''' ) a :List[Any] = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() )
364
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = MgpstrTokenizer SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() # fmt: off a :int = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on a :List[str] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) a :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) def SCREAMING_SNAKE_CASE__ ( self , **_lowerCamelCase ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :str = '''tester''' a :Union[str, Any] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): a :Any = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) a :str = tokenizer.encode([special_token] , add_special_tokens=_lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ) , 1 ) a :Tuple = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) self.assertTrue(special_token not in decoded ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): a , a :Tuple = self.get_input_output_texts(_lowerCamelCase ) a :Tuple = tokenizer.tokenize(_lowerCamelCase ) a :int = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) a :Optional[int] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) a :Any = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertNotEqual(len(_lowerCamelCase ) , 0 ) a :str = tokenizer.decode(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _lowerCamelCase ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass
281
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
61
'''simple docstring''' import math def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase__ = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=1 , **SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' UpperCAmelCase__ = factor * value UpperCAmelCase__ = value while not is_prime(SCREAMING_SNAKE_CASE__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE__ ) return value
346
0
from math import factorial def snake_case (UpperCAmelCase__ = 1_0_0 ) -> int: return sum(int(UpperCAmelCase__ ) for x in str(factorial(UpperCAmelCase__ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
352
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Tuple = logging.get_logger(__name__) A_ : Dict = { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/config.json', # See all XGLM models at https://huggingface.co/models?filter=xglm } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Tuple ='''xglm''' a : List[Any] =['''past_key_values'''] a : Union[str, Any] ={ '''num_attention_heads''': '''attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowerCamelCase=2_5_6_0_0_8 , _lowerCamelCase=2_0_4_8 , _lowerCamelCase=1_0_2_4 , _lowerCamelCase=4_0_9_6 , _lowerCamelCase=2_4 , _lowerCamelCase=1_6 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , **_lowerCamelCase , ): UpperCamelCase_: Optional[Any] = vocab_size UpperCamelCase_: Optional[int] = max_position_embeddings UpperCamelCase_: List[str] = d_model UpperCamelCase_: List[Any] = ffn_dim UpperCamelCase_: List[Any] = num_layers UpperCamelCase_: List[Any] = attention_heads UpperCamelCase_: Tuple = activation_function UpperCamelCase_: Tuple = dropout UpperCamelCase_: Tuple = attention_dropout UpperCamelCase_: Optional[Any] = activation_dropout UpperCamelCase_: List[str] = layerdrop UpperCamelCase_: Any = init_std UpperCamelCase_: Any = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase_: Union[str, Any] = use_cache super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
292
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : List[str] = logging.get_logger(__name__) A_ : List[str] = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """pix2struct_text_model""" UpperCAmelCase = ["""past_key_values"""] UpperCAmelCase = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self ,a_=50_244 ,a_=768 ,a_=64 ,a_=2_048 ,a_=12 ,a_=12 ,a_=32 ,a_=128 ,a_=0.1 ,a_=1E-6 ,a_=1.0 ,a_="gelu_new" ,a_=0 ,a_=False ,a_=0 ,a_=1 ,a_=False ,a_=True ,**a_ ,) -> Tuple: _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Tuple = d_kv _UpperCAmelCase : List[Any] = d_ff _UpperCAmelCase : str = num_layers _UpperCAmelCase : Tuple = num_heads _UpperCAmelCase : int = relative_attention_num_buckets _UpperCAmelCase : Optional[int] = relative_attention_max_distance _UpperCAmelCase : List[str] = dropout_rate _UpperCAmelCase : List[Any] = layer_norm_epsilon _UpperCAmelCase : Union[str, Any] = initializer_factor _UpperCAmelCase : List[str] = use_cache _UpperCAmelCase : str = eos_token_id _UpperCAmelCase : str = decoder_start_token_id # for backwards compatibility _UpperCAmelCase : Dict = dense_act_fn super().__init__( pad_token_id=a_ ,eos_token_id=a_ ,decoder_start_token_id=a_ ,tie_word_embeddings=a_ ,is_decoder=a_ ,**a_ ,) @classmethod def _snake_case ( cls ,a_ ,**a_ ) -> List[Any]: cls._set_token_in_kwargs(a_ ) _UpperCAmelCase ,_UpperCAmelCase : List[str] = cls.get_config_dict(a_ ,**a_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _UpperCAmelCase : int = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a_ ,**a_ ) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """pix2struct_vision_model""" def __init__( self ,a_=768 ,a_=768 ,a_=2_048 ,a_=64 ,a_=12 ,a_=12 ,a_="gelu_new" ,a_=1E-6 ,a_=0.0 ,a_=0.0 ,a_=1E-1_0 ,a_=1.0 ,a_=4_096 ,a_=32 ,a_=128 ,**a_ ,) -> Dict: super().__init__(**a_ ) _UpperCAmelCase : Union[str, Any] = hidden_size _UpperCAmelCase : Dict = patch_embed_hidden_size _UpperCAmelCase : List[Any] = d_ff _UpperCAmelCase : List[Any] = dropout_rate _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : str = initializer_range _UpperCAmelCase : Union[str, Any] = initializer_factor _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Optional[Any] = layer_norm_eps _UpperCAmelCase : int = dense_act_fn _UpperCAmelCase : List[str] = seq_len _UpperCAmelCase : int = relative_attention_num_buckets _UpperCAmelCase : Any = relative_attention_max_distance _UpperCAmelCase : Union[str, Any] = d_kv @classmethod def _snake_case ( cls ,a_ ,**a_ ) -> List[Any]: cls._set_token_in_kwargs(a_ ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = cls.get_config_dict(a_ ,**a_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _UpperCAmelCase : List[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a_ ,**a_ ) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """pix2struct""" UpperCAmelCase = True def __init__( self ,a_=None ,a_=None ,a_=1.0 ,a_=0.02 ,a_=False ,a_=False ,a_=True ,**a_ ,) -> str: super().__init__(tie_word_embeddings=a_ ,is_encoder_decoder=a_ ,**a_ ) if text_config is None: _UpperCAmelCase : Tuple = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: _UpperCAmelCase : List[Any] = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) _UpperCAmelCase : List[Any] = PixaStructTextConfig(**a_ ) _UpperCAmelCase : str = PixaStructVisionConfig(**a_ ) _UpperCAmelCase : List[Any] = self.text_config.decoder_start_token_id _UpperCAmelCase : str = self.text_config.pad_token_id _UpperCAmelCase : Union[str, Any] = self.text_config.eos_token_id _UpperCAmelCase : Dict = initializer_factor _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : Optional[int] = self.initializer_range _UpperCAmelCase : Any = self.initializer_range _UpperCAmelCase : Optional[Any] = is_vqa @classmethod def _snake_case ( cls ,a_ ,a_ ,**a_ ) -> Tuple: return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**a_ ) def _snake_case ( self ) -> Dict: _UpperCAmelCase : Tuple = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Dict = self.text_config.to_dict() _UpperCAmelCase : Optional[int] = self.vision_config.to_dict() _UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
215
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) a = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
228
0
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = 42 __lowercase = jnp.floataa __lowercase = True def lowerCamelCase ( self ): """simple docstring""" super().setup() _snake_case = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" _snake_case = super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = FlaxBigBirdForNaturalQuestionsModule def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A , __A , __A ) -> int: def cross_entropy(__A , __A , __A=None ): _snake_case = logits.shape[-1] _snake_case = (labels[..., None] == jnp.arange(__A )[None]).astype('f4' ) _snake_case = jax.nn.log_softmax(__A , axis=-1 ) _snake_case = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _snake_case = reduction(__A ) return loss _snake_case = partial(__A , reduction=jnp.mean ) _snake_case = cross_entropy(__A , __A ) _snake_case = cross_entropy(__A , __A ) _snake_case = cross_entropy(__A , __A ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __UpperCAmelCase : __lowercase = """google/bigbird-roberta-base""" __lowercase = 30_00 __lowercase = 1_05_00 __lowercase = 1_28 __lowercase = 3 __lowercase = 1 __lowercase = 5 # tx_args __lowercase = 3e-5 __lowercase = 0.0 __lowercase = 2_00_00 __lowercase = 0.0_0_9_5 __lowercase = """bigbird-roberta-natural-questions""" __lowercase = """training-expt""" __lowercase = """data/nq-training.jsonl""" __lowercase = """data/nq-validation.jsonl""" def lowerCamelCase ( self ): """simple docstring""" os.makedirs(self.base_dir , exist_ok=lowerCAmelCase_ ) _snake_case = os.path.join(self.base_dir , self.save_dir ) _snake_case = self.batch_size_per_device * jax.device_count() @dataclass class __UpperCAmelCase : __lowercase = 42 __lowercase = 40_96 # no dynamic padding on TPUs def __call__( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.collate_fn(lowerCAmelCase_ ) _snake_case = jax.tree_util.tree_map(lowerCAmelCase_ , lowerCAmelCase_ ) return batch def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case = self.fetch_inputs(features['input_ids'] ) _snake_case = { 'input_ids': jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ), 'attention_mask': jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa ), } return batch def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = [self._fetch_inputs(lowerCAmelCase_ ) for ids in input_ids] return zip(*lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = [1 for _ in range(len(lowerCAmelCase_ ) )] while len(lowerCAmelCase_ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( __A , __A , __A=None ) -> List[str]: if seed is not None: _snake_case = dataset.shuffle(seed=__A ) for i in range(len(__A ) // batch_size ): _snake_case = dataset[i * batch_size : (i + 1) * batch_size] yield dict(__A ) @partial(jax.pmap , axis_name='batch' ) def SCREAMING_SNAKE_CASE__ ( __A , __A , **__A ) -> Optional[int]: def loss_fn(__A ): _snake_case = model_inputs.pop('start_labels' ) _snake_case = model_inputs.pop('end_labels' ) _snake_case = model_inputs.pop('pooled_labels' ) _snake_case = state.apply_fn(**__A , params=__A , dropout_rng=__A , train=__A ) _snake_case , _snake_case , _snake_case = outputs return state.loss_fn( __A , __A , __A , __A , __A , __A , ) _snake_case , _snake_case = jax.random.split(__A ) _snake_case = jax.value_and_grad(__A ) _snake_case , _snake_case = grad_fn(state.params ) _snake_case = jax.lax.pmean({'loss': loss} , axis_name='batch' ) _snake_case = jax.lax.pmean(__A , 'batch' ) _snake_case = state.apply_gradients(grads=__A ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def SCREAMING_SNAKE_CASE__ ( __A , **__A ) -> int: _snake_case = model_inputs.pop('start_labels' ) _snake_case = model_inputs.pop('end_labels' ) _snake_case = model_inputs.pop('pooled_labels' ) _snake_case = state.apply_fn(**__A , params=state.params , train=__A ) _snake_case , _snake_case , _snake_case = outputs _snake_case = state.loss_fn(__A , __A , __A , __A , __A , __A ) _snake_case = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class __UpperCAmelCase ( train_state.TrainState ): __lowercase = struct.field(pytree_node=_lowerCamelCase ) @dataclass class __UpperCAmelCase : __lowercase = 42 __lowercase = 42 __lowercase = 42 __lowercase = 42 __lowercase = 42 __lowercase = 42 __lowercase = None def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ): """simple docstring""" _snake_case = model.params _snake_case = TrainState.create( apply_fn=model.__call__ , params=lowerCAmelCase_ , tx=lowerCAmelCase_ , loss_fn=lowerCAmelCase_ , ) if ckpt_dir is not None: _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = restore_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } _snake_case , _snake_case = build_tx(**lowerCAmelCase_ ) _snake_case = train_state.TrainState( step=lowerCAmelCase_ , apply_fn=model.__call__ , params=lowerCAmelCase_ , tx=lowerCAmelCase_ , opt_state=lowerCAmelCase_ , ) _snake_case = args _snake_case = data_collator _snake_case = lr _snake_case = params _snake_case = jax_utils.replicate(lowerCAmelCase_ ) return state def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.args _snake_case = len(lowerCAmelCase_ ) // args.batch_size _snake_case = jax.random.PRNGKey(0 ) _snake_case = jax.random.split(lowerCAmelCase_ , jax.device_count() ) for epoch in range(args.max_epochs ): _snake_case = jnp.array(0 , dtype=jnp.floataa ) _snake_case = get_batched_dataset(lowerCAmelCase_ , args.batch_size , seed=lowerCAmelCase_ ) _snake_case = 0 for batch in tqdm(lowerCAmelCase_ , total=lowerCAmelCase_ , desc=F'Running EPOCH-{epoch}' ): _snake_case = self.data_collator(lowerCAmelCase_ ) _snake_case , _snake_case , _snake_case = self.train_step_fn(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: _snake_case = jax_utils.unreplicate(state.step ) _snake_case = running_loss.item() / i _snake_case = self.scheduler_fn(state_step - 1 ) _snake_case = self.evaluate(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(lowerCAmelCase_ ) ) self.logger.log(lowerCAmelCase_ , commit=lowerCAmelCase_ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = get_batched_dataset(lowerCAmelCase_ , self.args.batch_size ) _snake_case = len(lowerCAmelCase_ ) // self.args.batch_size _snake_case = jnp.array(0 , dtype=jnp.floataa ) _snake_case = 0 for batch in tqdm(lowerCAmelCase_ , total=lowerCAmelCase_ , desc='Evaluating ... ' ): _snake_case = self.data_collator(lowerCAmelCase_ ) _snake_case = self.val_step_fn(lowerCAmelCase_ , **lowerCAmelCase_ ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = jax_utils.unreplicate(lowerCAmelCase_ ) print(F'SAVING CHECKPOINT IN {save_dir}' , end=' ... ' ) self.model_save_fn(lowerCAmelCase_ , params=state.params ) with open(os.path.join(lowerCAmelCase_ , 'opt_state.msgpack' ) , 'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(lowerCAmelCase_ , 'args.joblib' ) ) joblib.dump(self.data_collator , os.path.join(lowerCAmelCase_ , 'data_collator.joblib' ) ) with open(os.path.join(lowerCAmelCase_ , 'training_state.json' ) , 'w' ) as f: json.dump({'step': state.step.item()} , lowerCAmelCase_ ) print('DONE' ) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> List[Any]: print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=' ... ' ) with open(os.path.join(__A , 'flax_model.msgpack' ) , 'rb' ) as f: _snake_case = from_bytes(state.params , f.read() ) with open(os.path.join(__A , 'opt_state.msgpack' ) , 'rb' ) as f: _snake_case = from_bytes(state.opt_state , f.read() ) _snake_case = joblib.load(os.path.join(__A , 'args.joblib' ) ) _snake_case = joblib.load(os.path.join(__A , 'data_collator.joblib' ) ) with open(os.path.join(__A , 'training_state.json' ) , 'r' ) as f: _snake_case = json.load(__A ) _snake_case = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A ) -> Union[str, Any]: _snake_case = num_train_steps - warmup_steps _snake_case = optax.linear_schedule(init_value=__A , end_value=__A , transition_steps=__A ) _snake_case = optax.linear_schedule(init_value=__A , end_value=1e-7 , transition_steps=__A ) _snake_case = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A , __A ) -> Any: def weight_decay_mask(__A ): _snake_case = traverse_util.flatten_dict(__A ) _snake_case = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(__A ) _snake_case = scheduler_fn(__A , __A , __A , __A ) _snake_case = optax.adamw(learning_rate=__A , weight_decay=__A , mask=__A ) return tx, lr
371
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowercase : Tuple = False lowercase : str = logging.get_logger(__name__) lowercase : List[str] = "ybelkada/fonts" def SCREAMING_SNAKE_CASE__ ( ) -> Any: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' 'Pix2StructImageProcessor. Please upgrade torch.' ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Optional[int]: requires_backends(__A , ['torch'] ) _check_torch_version() _snake_case = image_tensor.unsqueeze(0 ) _snake_case = torch.nn.functional.unfold(__A , (patch_height, patch_width) , stride=(patch_height, patch_width) ) _snake_case = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , __A , __A , -1 ) _snake_case = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def SCREAMING_SNAKE_CASE__ ( __A , __A = 36 , __A = "black" , __A = "white" , __A = 5 , __A = 5 , __A = 5 , __A = 5 , __A = None , __A = None , ) -> Image.Image: requires_backends(__A , 'vision' ) # Add new lines so that each line is no more than 80 characters. _snake_case = textwrap.TextWrapper(width=80 ) _snake_case = wrapper.wrap(text=__A ) _snake_case = '\n'.join(__A ) if font_bytes is not None and font_path is None: _snake_case = io.BytesIO(__A ) elif font_path is not None: _snake_case = font_path else: _snake_case = hf_hub_download(__A , 'Arial.TTF' ) _snake_case = ImageFont.truetype(__A , encoding='UTF-8' , size=__A ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. _snake_case = ImageDraw.Draw(Image.new('RGB' , (1, 1) , __A ) ) _snake_case , _snake_case , _snake_case , _snake_case = temp_draw.textbbox((0, 0) , __A , __A ) # Create the actual image with a bit of padding around the text. _snake_case = text_width + left_padding + right_padding _snake_case = text_height + top_padding + bottom_padding _snake_case = Image.new('RGB' , (image_width, image_height) , __A ) _snake_case = ImageDraw.Draw(__A ) draw.text(xy=(left_padding, top_padding) , text=__A , fill=__A , font=__A ) return image def SCREAMING_SNAKE_CASE__ ( __A , __A , **__A ) -> Dict: requires_backends(__A , 'vision' ) # Convert to PIL image if necessary _snake_case = to_pil_image(__A ) _snake_case = render_text(__A , **__A ) _snake_case = max(header_image.width , image.width ) _snake_case = int(image.height * (new_width / image.width) ) _snake_case = int(header_image.height * (new_width / header_image.width) ) _snake_case = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary _snake_case = to_numpy_array(__A ) if infer_channel_dimension_format(__A ) == ChannelDimension.LAST: _snake_case = to_channel_dimension_format(__A , ChannelDimension.LAST ) return new_image class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = ["""flattened_patches"""] def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = 20_48 , lowerCAmelCase_ = False , **lowerCAmelCase_ , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _snake_case = patch_size if patch_size is not None else {'height': 16, 'width': 16} _snake_case = do_normalize _snake_case = do_convert_rgb _snake_case = max_patches _snake_case = is_vqa def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" requires_backends(self.extract_flattened_patches , 'torch' ) _check_torch_version() # convert to torch _snake_case = to_channel_dimension_format(lowerCAmelCase_ , ChannelDimension.FIRST ) _snake_case = torch.from_numpy(lowerCAmelCase_ ) _snake_case , _snake_case = patch_size['height'], patch_size['width'] _snake_case , _snake_case = get_image_size(lowerCAmelCase_ ) # maximize scale s.t. _snake_case = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) _snake_case = max(min(math.floor(scale * image_height / patch_height ) , lowerCAmelCase_ ) , 1 ) _snake_case = max(min(math.floor(scale * image_width / patch_width ) , lowerCAmelCase_ ) , 1 ) _snake_case = max(num_feasible_rows * patch_height , 1 ) _snake_case = max(num_feasible_cols * patch_width , 1 ) _snake_case = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode='bilinear' , align_corners=lowerCAmelCase_ , antialias=lowerCAmelCase_ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] _snake_case = torch_extract_patches(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = patches.shape _snake_case = patches_shape[1] _snake_case = patches_shape[2] _snake_case = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] _snake_case = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] _snake_case = torch.arange(lowerCAmelCase_ ).reshape([rows, 1] ).repeat(1 , lowerCAmelCase_ ).reshape([rows * columns, 1] ) _snake_case = torch.arange(lowerCAmelCase_ ).reshape([1, columns] ).repeat(lowerCAmelCase_ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] _snake_case = row_ids.to(torch.floataa ) _snake_case = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] _snake_case = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] _snake_case = torch.nn.functional.pad(lowerCAmelCase_ , [0, 0, 0, max_patches - (rows * columns)] ).float() _snake_case = to_numpy_array(lowerCAmelCase_ ) return result def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ ): """simple docstring""" if image.dtype == np.uinta: _snake_case = image.astype(np.floataa ) # take mean across the whole `image` _snake_case = np.mean(lowerCAmelCase_ ) _snake_case = np.std(lowerCAmelCase_ ) _snake_case = max(lowerCAmelCase_ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _snake_case = patch_size if patch_size is not None else self.patch_size _snake_case = max_patches if max_patches is not None else self.max_patches _snake_case = self.is_vqa if kwargs.get('data_format' , lowerCAmelCase_ ) is not None: raise ValueError('data_format is not an accepted input as the outputs are ' ) _snake_case = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _snake_case = [convert_to_rgb(lowerCAmelCase_ ) for image in images] # All transformations expect numpy arrays. _snake_case = [to_numpy_array(lowerCAmelCase_ ) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.' ) _snake_case = kwargs.pop('font_bytes' , lowerCAmelCase_ ) _snake_case = kwargs.pop('font_path' , lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = [header_text] * len(lowerCAmelCase_ ) _snake_case = [ render_header(lowerCAmelCase_ , header_text[i] , font_bytes=lowerCAmelCase_ , font_path=lowerCAmelCase_ ) for i, image in enumerate(lowerCAmelCase_ ) ] if do_normalize: _snake_case = [self.normalize(image=lowerCAmelCase_ ) for image in images] # convert to torch tensor and permute _snake_case = [ self.extract_flattened_patches(image=lowerCAmelCase_ , max_patches=lowerCAmelCase_ , patch_size=lowerCAmelCase_ ) for image in images ] # create attention mask in numpy _snake_case = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] _snake_case = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks} , tensor_type=lowerCAmelCase_ ) return encoded_outputs
160
0
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params __lowerCAmelCase : Any =[ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ): for pegasus_name, hf_name in PATTERNS: A__ = k.replace(__snake_case , __snake_case ) return k def UpperCamelCase ( _lowerCamelCase : dict , _lowerCamelCase : dict ): A__ = DEFAULTS.copy() cfg_kwargs.update(__snake_case ) A__ = PegasusConfig(**__snake_case ) A__ = PegasusForConditionalGeneration(__snake_case ) A__ = torch_model.model.state_dict() A__ = {} for k, v in tf_weights.items(): A__ = rename_state_dict_key(__snake_case ) if new_k not in sd: raise ValueError(F"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: A__ = v.T A__ = torch.tensor(__snake_case , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected A__ = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) A__ = mapping["shared.weight"] A__ = mapping["shared.weight"] A__ = {k: torch.zeros_like(__snake_case ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**__snake_case ) A__ = torch_model.model.load_state_dict(__snake_case , strict=__snake_case ) A__ = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], F"no matches found for the following torch keys {unexpected_missing}" assert extra == [], F"no matches found for the following tf keys {extra}" return torch_model def UpperCamelCase ( _lowerCamelCase : List[str]="./ckpt/aeslc/model.ckpt-32000" ): A__ = tf.train.list_variables(__snake_case ) A__ = {} A__ = ["Adafactor", "global_step"] for name, shape in tqdm(__snake_case , desc="converting tf checkpoint to dict" ): A__ = any(pat in name for pat in ignore_name ) if skip_key: continue A__ = tf.train.load_variable(__snake_case , __snake_case ) A__ = array return tf_weights def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : str ): # save tokenizer first A__ = Path(__snake_case ).parent.name A__ = task_specific_params[F"summarization_{dataset}"]["max_position_embeddings"] A__ = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=__snake_case ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__snake_case ) # convert model A__ = get_tf_weights_as_numpy(__snake_case ) A__ = task_specific_params[F"summarization_{dataset}"] if dataset == "large": A__ = task_specific_params A__ = convert_pegasus(__snake_case , __snake_case ) torch_model.save_pretrained(__snake_case ) A__ = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(__snake_case , Path(__snake_case ) / "pytorch_model.bin" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") __lowerCAmelCase : Union[str, Any] =parser.parse_args() if args.save_dir is None: __lowerCAmelCase : Any =Path(args.tf_ckpt_path).parent.name __lowerCAmelCase : Dict =os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
237
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _A : int = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class a__ ( a_, unittest.TestCase ): __lowerCAmelCase = DebertaVaTokenizer __lowerCAmelCase = DebertaVaTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def __magic_name__ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase : Any = DebertaVaTokenizer(_a , unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self , _a ): lowercase : int = "this is a test" lowercase : Tuple = "this is a test" return input_text, output_text def __magic_name__ ( self ): lowercase : List[Any] = "<pad>" lowercase : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __magic_name__ ( self ): lowercase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "[PAD]" ) self.assertEqual(len(_a ) , 30_001 ) def __magic_name__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def __magic_name__ ( self ): # fmt: off lowercase : List[str] = " \tHeLLo!how \n Are yoU? " lowercase : str = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on lowercase : Union[str, Any] = DebertaVaTokenizer(_a , do_lower_case=_a ) lowercase : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : str = DebertaVaTokenizerFast(_a , do_lower_case=_a ) lowercase : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def __magic_name__ ( self ): pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def __magic_name__ ( self ): pass def __magic_name__ ( self ): # fmt: off lowercase : Optional[Any] = "I was born in 92000, and this is falsé." lowercase : Tuple = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on lowercase : List[Any] = DebertaVaTokenizer(_a , split_by_punct=_a ) lowercase : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : Union[str, Any] = DebertaVaTokenizerFast(_a , split_by_punct=_a ) lowercase : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): # fmt: off lowercase : int = "I was born in 92000, and this is falsé." lowercase : Tuple = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on lowercase : List[str] = DebertaVaTokenizer(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : Union[str, Any] = DebertaVaTokenizerFast(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): # fmt: off lowercase : List[Any] = "I was born in 92000, and this is falsé." lowercase : Optional[int] = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on lowercase : List[Any] = DebertaVaTokenizer(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : Optional[int] = DebertaVaTokenizerFast(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): # fmt: off lowercase : int = "I was born in 92000, and this is falsé." lowercase : Dict = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on lowercase : Union[str, Any] = DebertaVaTokenizer(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : Union[str, Any] = DebertaVaTokenizerFast(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): # fmt: off lowercase : Dict = " \tHeLLo!how \n Are yoU? " lowercase : str = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on lowercase : Optional[int] = DebertaVaTokenizer(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : List[str] = DebertaVaTokenizerFast(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : str = self.get_tokenizer() lowercase : Dict = self.get_rust_tokenizer() lowercase : str = "I was born in 92000, and this is falsé." lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) lowercase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : str = tokenizer.encode(_a , add_special_tokens=_a ) lowercase : Dict = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : Optional[int] = self.get_rust_tokenizer() lowercase : Tuple = tokenizer.encode(_a ) lowercase : List[str] = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : str = "This is a test" lowercase : Tuple = [13, 1, 4_398, 25, 21, 1_289] lowercase : Optional[int] = ["▁", "T", "his", "▁is", "▁a", "▁test"] lowercase : Optional[Any] = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] lowercase : Any = DebertaVaTokenizer(_a , keep_accents=_a ) lowercase : Dict = DebertaVaTokenizerFast(_a , keep_accents=_a ) lowercase : str = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : str = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : str = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a , _a ) lowercase : int = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : Any = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a , _a ) # fmt: off lowercase : int = "I was born in 92000, and this is falsé." lowercase : Any = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] lowercase : List[str] = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] lowercase : str = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on lowercase : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : List[Any] = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : str = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a , _a ) lowercase : Optional[int] = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : List[Any] = rust_tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : Optional[int] = DebertaVaTokenizer(_a ) lowercase : List[Any] = tokenizer.encode("sequence builders" ) lowercase : Dict = tokenizer.encode("multi-sequence build" ) lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(_a ) lowercase : Dict = tokenizer.build_inputs_with_special_tokens(_a , _a ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _a ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _a , ) @slow def __magic_name__ ( self ): # fmt: off lowercase : Dict = {"input_ids": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
202
0
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase ( __snake_case ): '''simple docstring''' def snake_case_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_snake_case , '''num_heads''' ) ) class lowercase : '''simple docstring''' def __init__( self , _snake_case , _snake_case=13 , _snake_case=64 , _snake_case=3 , _snake_case=[16, 48, 96] , _snake_case=[1, 3, 6] , _snake_case=[1, 2, 10] , _snake_case=[7, 3, 3] , _snake_case=[4, 2, 2] , _snake_case=[2, 1, 1] , _snake_case=[2, 2, 2] , _snake_case=[False, False, True] , _snake_case=[0.0, 0.0, 0.0] , _snake_case=0.02 , _snake_case=1e-12 , _snake_case=True , _snake_case=True , _snake_case=2 , ) -> Tuple: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_sizes UpperCAmelCase = patch_stride UpperCAmelCase = patch_padding UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = num_labels UpperCAmelCase = num_channels UpperCAmelCase = embed_dim UpperCAmelCase = num_heads UpperCAmelCase = stride_kv UpperCAmelCase = depth UpperCAmelCase = cls_token UpperCAmelCase = attention_drop_rate UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case ) -> Any: """simple docstring""" UpperCAmelCase = CvtModel(config=_snake_case ) model.to(_snake_case ) model.eval() UpperCAmelCase = model(_snake_case ) UpperCAmelCase = (self.image_size, self.image_size) UpperCAmelCase , UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case ) -> Tuple: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = CvtForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() UpperCAmelCase = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (CvtModel, CvtForImageClassification) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( {'feature-extraction': CvtModel, 'image-classification': CvtForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = CvtModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def snake_case_ ( self ) -> Any: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_ ( self ) -> Dict: """simple docstring""" return @unittest.skip(reason='''Cvt does not output attentions''' ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def snake_case_ ( self ) -> Dict: """simple docstring""" pass def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(_snake_case ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def snake_case_ ( self ) -> List[Any]: """simple docstring""" def check_hidden_states_output(_snake_case , _snake_case , _snake_case ): UpperCAmelCase = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(_snake_case , _snake_case ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case_ ( self ) -> List[str]: """simple docstring""" pass @slow def snake_case_ ( self ) -> List[str]: """simple docstring""" for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = CvtModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case_ ( self ) -> List[str]: """simple docstring""" return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_snake_case ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=_snake_case , return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**_snake_case ) # verify the logits UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _snake_case ) UpperCAmelCase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4 ) )
362
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __magic_name__ = logging.get_logger(__name__) def _lowerCAmelCase ( A__: nn.ModuleList , A__: nn.ModuleList , A__: List[int] ): '''simple docstring''' UpperCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(A__ ) == len(A__ ), F"""{len(A__ )} != {len(A__ )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) __magic_name__ = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __magic_name__ = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _lowerCAmelCase ( A__: List[str] , A__: Optional[int] ): '''simple docstring''' try: UpperCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(A__ ) ) def _lowerCAmelCase ( A__: Optional[int] , A__: Tuple ): '''simple docstring''' if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(A__ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _lowerCAmelCase ( A__: Union[str, PreTrainedModel] , A__: Union[str, Path] = "student" , A__: Union[int, None] = None , A__: Union[int, None] = None , A__: Optional[int]=False , A__: Tuple=None , A__: Any=None , **A__: List[str] , ): '''simple docstring''' UpperCAmelCase = '''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.''' assert (e is not None) or (d is not None), _msg if isinstance(A__ , A__ ): AutoTokenizer.from_pretrained(A__ ).save_pretrained(A__ ) # purely for convenience UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).eval() else: assert isinstance(A__ , A__ ), F"""teacher must be a model or string got type {type(A__ )}""" UpperCAmelCase = teacher.config.to_diff_dict() try: UpperCAmelCase , UpperCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCAmelCase = teacher_e if d is None: UpperCAmelCase = teacher_d init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} ) except AttributeError: # T5 if hasattr(teacher.config , '''num_encoder_layers''' ): UpperCAmelCase , UpperCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCAmelCase , UpperCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCAmelCase = teacher_e if d is None: UpperCAmelCase = teacher_d if hasattr(teacher.config , '''num_encoder_layers''' ): init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} ) else: init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(A__ ) # Copy weights UpperCAmelCase = teacher.config_class(**A__ ) UpperCAmelCase = AutoModelForSeqaSeqLM.from_config(A__ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCAmelCase = student.load_state_dict(teacher.state_dict() , strict=A__ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCAmelCase , UpperCAmelCase = list(range(A__ ) ), list(range(A__ ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(A__ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCAmelCase = pick_layers_to_copy(A__ , A__ ) if d_layers_to_copy is None: UpperCAmelCase = pick_layers_to_copy(A__ , A__ ) try: if hasattr( A__ , '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , A__ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , A__ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , A__ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , A__ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , A__ ) copy_layers(teacher.decoder.block , student.decoder.block , A__ ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) UpperCAmelCase = { '''teacher_type''': teacher.config.model_type, '''copied_encoder_layers''': e_layers_to_copy, '''copied_decoder_layers''': d_layers_to_copy, } student.save_pretrained(A__ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
152
0
UpperCAmelCase : Any = 8.3_1_4_4_5_9_8 def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example UpperCAmelCase : Tuple = 300 UpperCAmelCase : Optional[int] = 28 UpperCAmelCase : Tuple = rms_speed_of_molecule(temperature, molar_mass) print(F"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
95
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( _snake_case : List[Any] ) -> List[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ) -> Tuple: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Dict = "mock-s3-bucket" __magic_name__ : Any = F'''s3://{mock_bucket}''' __magic_name__ : str = extract_path_from_uri(_snake_case ) assert dataset_path.startswith("s3://" ) is False __magic_name__ : Tuple = "./local/path" __magic_name__ : Optional[Any] = extract_path_from_uri(_snake_case ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' __magic_name__ : str = is_remote_filesystem(_snake_case ) assert is_remote is True __magic_name__ : Optional[int] = fsspec.filesystem("file" ) __magic_name__ : int = is_remote_filesystem(_snake_case ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , _snake_case ) def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Tuple , _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Any ) -> int: '''simple docstring''' __magic_name__ : Any = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} __magic_name__ : str = input_paths[compression_fs_class.protocol] if input_path is None: __magic_name__ : Dict = F'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_snake_case ) __magic_name__ : str = fsspec.filesystem(compression_fs_class.protocol , fo=_snake_case ) assert isinstance(_snake_case , _snake_case ) __magic_name__ : int = os.path.basename(_snake_case ) __magic_name__ : Optional[int] = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(_snake_case , "r" , encoding="utf-8" ) as f, open(_snake_case , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : Optional[Any] ) -> str: '''simple docstring''' __magic_name__ : int = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} __magic_name__ : int = compressed_file_paths[protocol] __magic_name__ : Tuple = "dataset.jsonl" __magic_name__ : List[str] = F'''{protocol}://{member_file_path}::{compressed_file_path}''' __magic_name__ , *__magic_name__ : Optional[Any] = fsspec.get_fs_token_paths(_snake_case ) assert fs.isfile(_snake_case ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : Tuple ) -> str: '''simple docstring''' __magic_name__ : int = hf_api.dataset_info(_snake_case , token=_snake_case ) __magic_name__ : Optional[Any] = HfFileSystem(repo_info=_snake_case , token=_snake_case ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(_snake_case ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' __magic_name__ : Optional[Any] = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_snake_case , _snake_case , clobber=_snake_case ) with pytest.warns(_snake_case ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_snake_case ) == 1 assert ( str(warning_info[0].message ) == F'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
281
0
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" for i in range(0 , UpperCamelCase__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" for i in range(UpperCamelCase__ , 0 , -1 ): for _ in range(UpperCamelCase__ , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if n <= 0: print(' ... .... nothing printing :(' ) return floyd(UpperCamelCase__ ) # upper half reverse_floyd(UpperCamelCase__ ) # lower half if __name__ == "__main__": print(R"| /\ | |- | |- |--| |\ /| |-") print(R"|/ \| |- |_ |_ |__| | \/ | |_") __lowerCamelCase = 1 while K: __lowerCamelCase = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) __lowerCamelCase = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
352
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> Optional[int]: A__ = inspect.getfile(accelerate.test_utils ) A__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) A__ = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def snake_case__ ( self ) -> int: A__ = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() A__ = [sys.executable] + distributed_args execute_subprocess_async(__UpperCAmelCase ,env=os.environ.copy() )
154
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
288
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _UpperCAmelCase ( lowercase_ , unittest.TestCase ): UpperCamelCase = RoFormerTokenizer UpperCamelCase = RoFormerTokenizerFast UpperCamelCase = True UpperCamelCase = True def lowerCamelCase ( self :List[str] ): super().setUp() def lowerCamelCase ( self :int , **__UpperCamelCase :List[Any] ): return self.tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **__UpperCamelCase ) def lowerCamelCase ( self :Tuple , **__UpperCamelCase :Optional[int] ): return self.rust_tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **__UpperCamelCase ) def lowerCamelCase ( self :Any ): A = "永和服装饰品有限公司,今天天气非常好" A = "永和 服装 饰品 有限公司 , 今 天 天 气 非常 好" return input_text, output_text def lowerCamelCase ( self :int ): A = self.get_tokenizer() A, A = self.get_chinese_input_output_texts() A = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , output_text.split() ) A = tokens + [tokenizer.unk_token] A = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) def lowerCamelCase ( self :str ): A = self.get_rust_tokenizer() A, A = self.get_chinese_input_output_texts() A = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , output_text.split() ) A = tokens + [tokenizer.unk_token] A = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) def lowerCamelCase ( self :Any ): pass def lowerCamelCase ( self :Tuple ): pass def lowerCamelCase ( self :List[str] ): pass
292
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = CycleDiffusionPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } lowercase__ = PipelineTesterMixin.required_optional_params - {"""latents"""} lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self : Any ): torch.manual_seed(0 ) a : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) a : str = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , num_train_timesteps=10_00 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) a : List[str] = CLIPTextModel(__snake_case ) a : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a : Tuple = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase_ ( self : Optional[int] , __snake_case : Dict , __snake_case : Any=0 ): a : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) a : Optional[Any] = image / 2 + 0.5 if str(__snake_case ).startswith('mps' ): a : List[str] = torch.manual_seed(__snake_case ) else: a : Union[str, Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a : List[Any] = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def lowercase_ ( self : Optional[int] ): a : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator a : int = self.get_dummy_components() a : str = CycleDiffusionPipeline(**__snake_case ) a : List[str] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a : Dict = self.get_dummy_inputs(__snake_case ) a : Union[str, Any] = pipe(**__snake_case ) a : List[Any] = output.images a : Optional[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) a : Tuple = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowercase_ ( self : int ): a : List[Any] = self.get_dummy_components() for name, module in components.items(): if hasattr(__snake_case , 'half' ): a : Any = module.half() a : Tuple = CycleDiffusionPipeline(**__snake_case ) a : Any = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a : str = self.get_dummy_inputs(__snake_case ) a : int = pipe(**__snake_case ) a : Optional[int] = output.images a : Tuple = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) a : int = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowercase_ ( self : List[Any] ): return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def lowercase_ ( self : Dict ): return super().test_inference_batch_single_identical() @skip_mps def lowercase_ ( self : int ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowercase_ ( self : Dict ): return super().test_save_load_optional_components() @skip_mps def lowercase_ ( self : List[Any] ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class a__( unittest.TestCase ): def lowercase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[int] ): a : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) a : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) a : List[str] = init_image.resize((5_12, 5_12) ) a : Dict = 'CompVis/stable-diffusion-v1-4' a : List[str] = DDIMScheduler.from_pretrained(__snake_case , subfolder='scheduler' ) a : Any = CycleDiffusionPipeline.from_pretrained( __snake_case , scheduler=__snake_case , safety_checker=__snake_case , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() a : Union[str, Any] = 'A black colored car' a : Optional[Any] = 'A blue colored car' a : int = torch.manual_seed(0 ) a : Optional[Any] = pipe( prompt=__snake_case , source_prompt=__snake_case , image=__snake_case , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__snake_case , output_type='np' , ) a : Dict = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def lowercase_ ( self : int ): a : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) a : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) a : str = init_image.resize((5_12, 5_12) ) a : Optional[int] = 'CompVis/stable-diffusion-v1-4' a : Union[str, Any] = DDIMScheduler.from_pretrained(__snake_case , subfolder='scheduler' ) a : str = CycleDiffusionPipeline.from_pretrained(__snake_case , scheduler=__snake_case , safety_checker=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() a : Tuple = 'A black colored car' a : Tuple = 'A blue colored car' a : List[str] = torch.manual_seed(0 ) a : str = pipe( prompt=__snake_case , source_prompt=__snake_case , image=__snake_case , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__snake_case , output_type='np' , ) a : Tuple = output.images assert np.abs(image - expected_image ).max() < 2e-2
96
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = CycleDiffusionPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } lowercase__ = PipelineTesterMixin.required_optional_params - {"""latents"""} lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self : Any ): torch.manual_seed(0 ) a : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) a : str = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , num_train_timesteps=10_00 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) a : List[str] = CLIPTextModel(__snake_case ) a : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a : Tuple = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase_ ( self : Optional[int] , __snake_case : Dict , __snake_case : Any=0 ): a : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) a : Optional[Any] = image / 2 + 0.5 if str(__snake_case ).startswith('mps' ): a : List[str] = torch.manual_seed(__snake_case ) else: a : Union[str, Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a : List[Any] = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def lowercase_ ( self : Optional[int] ): a : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator a : int = self.get_dummy_components() a : str = CycleDiffusionPipeline(**__snake_case ) a : List[str] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a : Dict = self.get_dummy_inputs(__snake_case ) a : Union[str, Any] = pipe(**__snake_case ) a : List[Any] = output.images a : Optional[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) a : Tuple = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowercase_ ( self : int ): a : List[Any] = self.get_dummy_components() for name, module in components.items(): if hasattr(__snake_case , 'half' ): a : Any = module.half() a : Tuple = CycleDiffusionPipeline(**__snake_case ) a : Any = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a : str = self.get_dummy_inputs(__snake_case ) a : int = pipe(**__snake_case ) a : Optional[int] = output.images a : Tuple = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) a : int = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowercase_ ( self : List[Any] ): return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def lowercase_ ( self : Dict ): return super().test_inference_batch_single_identical() @skip_mps def lowercase_ ( self : int ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowercase_ ( self : Dict ): return super().test_save_load_optional_components() @skip_mps def lowercase_ ( self : List[Any] ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class a__( unittest.TestCase ): def lowercase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[int] ): a : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) a : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) a : List[str] = init_image.resize((5_12, 5_12) ) a : Dict = 'CompVis/stable-diffusion-v1-4' a : List[str] = DDIMScheduler.from_pretrained(__snake_case , subfolder='scheduler' ) a : Any = CycleDiffusionPipeline.from_pretrained( __snake_case , scheduler=__snake_case , safety_checker=__snake_case , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() a : Union[str, Any] = 'A black colored car' a : Optional[Any] = 'A blue colored car' a : int = torch.manual_seed(0 ) a : Optional[Any] = pipe( prompt=__snake_case , source_prompt=__snake_case , image=__snake_case , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__snake_case , output_type='np' , ) a : Dict = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def lowercase_ ( self : int ): a : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) a : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) a : str = init_image.resize((5_12, 5_12) ) a : Optional[int] = 'CompVis/stable-diffusion-v1-4' a : Union[str, Any] = DDIMScheduler.from_pretrained(__snake_case , subfolder='scheduler' ) a : str = CycleDiffusionPipeline.from_pretrained(__snake_case , scheduler=__snake_case , safety_checker=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() a : Tuple = 'A black colored car' a : Tuple = 'A blue colored car' a : List[str] = torch.manual_seed(0 ) a : str = pipe( prompt=__snake_case , source_prompt=__snake_case , image=__snake_case , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__snake_case , output_type='np' , ) a : Tuple = output.images assert np.abs(image - expected_image ).max() < 2e-2
96
1
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : int = len(a_ ) for _ in range(a_ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: UpperCAmelCase__ : Optional[Any] = arr[i + 1], arr[i] return arr if __name__ == "__main__": __A =list(range(10, 0, -1)) print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
163
"""simple docstring""" from __future__ import annotations def __A ( a_ :str , a_ :str) -> bool: __a : Optional[Any] = get_failure_array(a_) # 2) Step through text searching for pattern __a , __a : Union[str, Any] = 0, 0 # index into text, pattern while i < len(a_): if pattern[j] == text[i]: if j == (len(a_) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __a : List[Any] = failure[j - 1] continue i += 1 return False def __A ( a_ :str) -> list[int]: __a : List[Any] = [0] __a : List[Any] = 0 __a : Any = 1 while j < len(a_): if pattern[i] == pattern[j]: i += 1 elif i > 0: __a : Any = failure[i - 1] continue j += 1 failure.append(a_) return failure if __name__ == "__main__": # Test 1) A = '''abc1abc12''' A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' A = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) A = '''ABABX''' A = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) A = '''AAAB''' A = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) A = '''abcdabcy''' A = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) A = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
160
0
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class A__ : pass
101
'''simple docstring''' import sys __lowerCamelCase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase__ ( UpperCAmelCase__ = N ) -> int: A_ = -sys.maxsize - 1 for i in range(len(UpperCAmelCase__ ) - 12 ): A_ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: A_ = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
101
1
'''simple docstring''' __SCREAMING_SNAKE_CASE : int = """Alexander Joslin""" import operator as op from .stack import Stack def UpperCamelCase_ ( _UpperCAmelCase : str ) -> int: """simple docstring""" _UpperCAmelCase : Tuple = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} _UpperCAmelCase : Stack[int] = Stack() _UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_UpperCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(_UpperCAmelCase ) elif i == ")": # RULE 4 _UpperCAmelCase : str = operator_stack.peek() operator_stack.pop() _UpperCAmelCase : List[str] = operand_stack.peek() operand_stack.pop() _UpperCAmelCase : List[str] = operand_stack.peek() operand_stack.pop() _UpperCAmelCase : List[Any] = operators[opr](_UpperCAmelCase , _UpperCAmelCase ) operand_stack.push(_UpperCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[str] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'{equation} = {dijkstras_two_stack_algorithm(equation)}')
31
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """ibert""" def __init__( self : Optional[int] , __lowercase : List[str]=3_05_22 , __lowercase : Tuple=7_68 , __lowercase : str=12 , __lowercase : Optional[int]=12 , __lowercase : Optional[Any]=30_72 , __lowercase : str="gelu" , __lowercase : List[str]=0.1 , __lowercase : List[Any]=0.1 , __lowercase : List[str]=5_12 , __lowercase : str=2 , __lowercase : Tuple=0.02 , __lowercase : Union[str, Any]=1e-12 , __lowercase : List[Any]=1 , __lowercase : List[str]=0 , __lowercase : Optional[Any]=2 , __lowercase : int="absolute" , __lowercase : Tuple=False , __lowercase : int="none" , **__lowercase : Optional[Any] , ) -> List[Any]: super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE__ : Any =vocab_size SCREAMING_SNAKE_CASE__ : Dict =hidden_size SCREAMING_SNAKE_CASE__ : str =num_hidden_layers SCREAMING_SNAKE_CASE__ : Union[str, Any] =num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple =hidden_act SCREAMING_SNAKE_CASE__ : List[str] =intermediate_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =hidden_dropout_prob SCREAMING_SNAKE_CASE__ : int =attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] =max_position_embeddings SCREAMING_SNAKE_CASE__ : Dict =type_vocab_size SCREAMING_SNAKE_CASE__ : Tuple =initializer_range SCREAMING_SNAKE_CASE__ : str =layer_norm_eps SCREAMING_SNAKE_CASE__ : Tuple =position_embedding_type SCREAMING_SNAKE_CASE__ : Any =quant_mode SCREAMING_SNAKE_CASE__ : Optional[int] =force_dequant class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): @property def __magic_name__ ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ : str ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE__ : Any ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
152
0
_A = range(2, 20 + 1) _A = [10**k for k in range(ks[-1] + 1)] _A = {} def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> int: UpperCAmelCase__ : List[str] = sum(a_i[j] for j in range(lowerCAmelCase , len(lowerCAmelCase ) ) ) UpperCAmelCase__ : str = sum(a_i[j] * base[j] for j in range(min(len(lowerCAmelCase ) , lowerCAmelCase ) ) ) UpperCAmelCase__ : Optional[Any] = 0, 0 UpperCAmelCase__ : Optional[Any] = n - i UpperCAmelCase__ : Union[str, Any] = memo.get(lowerCAmelCase ) if sub_memo is not None: UpperCAmelCase__ : Any = sub_memo.get(lowerCAmelCase ) if jumps is not None and len(lowerCAmelCase ) > 0: # find and make the largest jump without going over UpperCAmelCase__ : Optional[int] = -1 for _k in range(len(lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCAmelCase__ : str = _k break if max_jump >= 0: UpperCAmelCase__ : Optional[int] = jumps[max_jump] # since the difference between jumps is cached, add c UpperCAmelCase__ : Any = diff + c for j in range(min(lowerCAmelCase , len(lowerCAmelCase ) ) ): UpperCAmelCase__ : Tuple = divmod(lowerCAmelCase , 10 ) if new_c > 0: add(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: UpperCAmelCase__ : int = [] else: UpperCAmelCase__ : Union[str, Any] = {c: []} UpperCAmelCase__ : Union[str, Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCAmelCase__ : Optional[Any] = next_term(lowerCAmelCase , k - 1 , i + dn , lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCAmelCase__ : Tuple = compute(lowerCAmelCase , lowerCAmelCase , i + dn , lowerCAmelCase ) diff += _diff dn += terms_jumped UpperCAmelCase__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCAmelCase__ : Any = 0 while j < len(lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> List[Any]: if i >= n: return 0, i if k > len(lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCAmelCase__ : Tuple = i UpperCAmelCase__ : Optional[Any] = 0, 0, 0 for j in range(len(lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCAmelCase__ : Dict = ds_c + ds_b diff += addend UpperCAmelCase__ : Tuple = 0 for j in range(lowerCAmelCase ): UpperCAmelCase__ : Tuple = a_i[j] + addend UpperCAmelCase__ : Optional[int] = divmod(lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return diff, i - start_i def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: for j in range(lowerCAmelCase , len(lowerCAmelCase ) ): UpperCAmelCase__ : Optional[Any] = digits[j] + addend if s >= 10: UpperCAmelCase__ : Dict = divmod(lowerCAmelCase , 10 ) UpperCAmelCase__ : Any = addend // 10 + quotient else: UpperCAmelCase__ : Optional[Any] = s UpperCAmelCase__ : Tuple = addend // 10 if addend == 0: break while addend > 0: UpperCAmelCase__ : Optional[int] = divmod(lowerCAmelCase , 10 ) digits.append(lowerCAmelCase ) def a__ ( lowerCAmelCase = 10**15 ) -> int: UpperCAmelCase__ : Optional[int] = [1] UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Dict = 0 while True: UpperCAmelCase__ : Union[str, Any] = next_term(lowerCAmelCase , 20 , i + dn , lowerCAmelCase ) dn += terms_jumped if dn == n - i: break UpperCAmelCase__ : Optional[int] = 0 for j in range(len(lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
369
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _A = { """configuration_layoutlmv3""": [ """LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv3Config""", """LayoutLMv3OnnxConfig""", ], """processing_layoutlmv3""": ["""LayoutLMv3Processor"""], """tokenization_layoutlmv3""": ["""LayoutLMv3Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""LayoutLMv3TokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv3ForQuestionAnswering""", """LayoutLMv3ForSequenceClassification""", """LayoutLMv3ForTokenClassification""", """LayoutLMv3Model""", """LayoutLMv3PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLayoutLMv3ForQuestionAnswering""", """TFLayoutLMv3ForSequenceClassification""", """TFLayoutLMv3ForTokenClassification""", """TFLayoutLMv3Model""", """TFLayoutLMv3PreTrainedModel""", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""LayoutLMv3FeatureExtractor"""] _A = ["""LayoutLMv3ImageProcessor"""] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
166
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : int = {'vocab_file': 'vocab.json'} UpperCamelCase__ : List[str] = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } UpperCamelCase__ : Tuple = {'mgp-str': 27} class _lowerCAmelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) -> Dict: super().__init__( unk_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as vocab_handle: A_ : int = json.load(_SCREAMING_SNAKE_CASE ) A_ : Dict = {v: k for k, v in self.vocab.items()} @property def UpperCAmelCase_ ( self ) -> Optional[Any]: return len(self.vocab ) def UpperCAmelCase_ ( self ) -> str: return dict(self.vocab , **self.added_tokens_encoder ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[Any]: A_ : Tuple = [] for s in text: char_tokens.extend(_SCREAMING_SNAKE_CASE ) return char_tokens def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[int]: return self.vocab.get(_SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[int]: return self.decoder.get(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error("""Vocabulary path ({}) should be a directory""".format(_SCREAMING_SNAKE_CASE ) ) return A_ : Dict = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE , ensure_ascii=_SCREAMING_SNAKE_CASE ) + """\n""" ) return (vocab_file,)
344
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : int = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
154
0
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): a__ : Any = None a__ : Dict = BloomTokenizerFast a__ : str = BloomTokenizerFast a__ : Dict = True a__ : Optional[Any] = False a__ : str = "tokenizer_file" a__ : str = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def a ( self : Optional[int] ): super().setUp() __UpperCAmelCase = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : int , **_lowercase : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def a ( self : Any ): __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] __UpperCAmelCase = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] __UpperCAmelCase = tokenizer.batch_encode_plus(_lowercase )['''input_ids'''] self.assertListEqual(_lowercase , _lowercase ) __UpperCAmelCase = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def a ( self : Union[str, Any] , _lowercase : List[Any]=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __UpperCAmelCase = '''This is a simple input''' __UpperCAmelCase = ['''This is a simple input 1''', '''This is a simple input 2'''] __UpperCAmelCase = ('''This is a simple input''', '''This is a pair''') __UpperCAmelCase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(_lowercase , max_length=_lowercase ) tokenizer_r.encode_plus(_lowercase , max_length=_lowercase ) tokenizer_r.batch_encode_plus(_lowercase , max_length=_lowercase ) tokenizer_r.encode(_lowercase , max_length=_lowercase ) tokenizer_r.batch_encode_plus(_lowercase , max_length=_lowercase ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) __UpperCAmelCase = None # Hotfixing padding = None self.assertRaises(_lowercase , tokenizer_r.encode , _lowercase , max_length=_lowercase , padding='''max_length''' ) # Simple input self.assertRaises(_lowercase , tokenizer_r.encode_plus , _lowercase , max_length=_lowercase , padding='''max_length''' ) # Simple input self.assertRaises( _lowercase , tokenizer_r.batch_encode_plus , _lowercase , max_length=_lowercase , padding='''max_length''' , ) # Pair input self.assertRaises(_lowercase , tokenizer_r.encode , _lowercase , max_length=_lowercase , padding='''max_length''' ) # Pair input self.assertRaises(_lowercase , tokenizer_r.encode_plus , _lowercase , max_length=_lowercase , padding='''max_length''' ) # Pair input self.assertRaises( _lowercase , tokenizer_r.batch_encode_plus , _lowercase , max_length=_lowercase , padding='''max_length''' , ) def a ( self : List[str] ): __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=_lowercase ) __UpperCAmelCase = next(iter(_lowercase ) )['''premise'''] # pick up one data __UpperCAmelCase = list(sample_data.values() ) __UpperCAmelCase = list(map(tokenizer.encode , _lowercase ) ) __UpperCAmelCase = [tokenizer.decode(_lowercase , clean_up_tokenization_spaces=_lowercase ) for x in output_tokens] self.assertListEqual(_lowercase , _lowercase ) def a ( self : Optional[Any] ): # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
358
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _UpperCAmelCase : def __init__( self : Optional[int] , _lowercase : Any , _lowercase : List[str]=14 , _lowercase : Dict=7 , _lowercase : Optional[int]=True , _lowercase : Optional[int]=True , _lowercase : Any=False , _lowercase : Any=True , _lowercase : List[str]=99 , _lowercase : int=32 , _lowercase : Union[str, Any]=4 , _lowercase : Dict=4 , _lowercase : List[Any]=4 , _lowercase : Dict=37 , _lowercase : Tuple="gelu" , _lowercase : Optional[int]=0.1 , _lowercase : Dict=0.1 , _lowercase : Union[str, Any]=5_12 , _lowercase : int=0.02 , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = rotary_dim __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = None __UpperCAmelCase = vocab_size - 1 __UpperCAmelCase = vocab_size - 1 __UpperCAmelCase = vocab_size - 1 def a ( self : int ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_lowercase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def a ( self : str ): __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def a ( self : List[Any] , _lowercase : Tuple , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : List[str] ): __UpperCAmelCase = 20 __UpperCAmelCase = model_class_name(_lowercase ) __UpperCAmelCase = model.init_cache(input_ids.shape[0] , _lowercase ) __UpperCAmelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __UpperCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCAmelCase = model( input_ids[:, :-1] , attention_mask=_lowercase , past_key_values=_lowercase , position_ids=_lowercase , ) __UpperCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) __UpperCAmelCase = model( input_ids[:, -1:] , attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , position_ids=_lowercase , ) __UpperCAmelCase = model(_lowercase ) __UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def a ( self : List[Any] , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Optional[int] , _lowercase : Union[str, Any] ): __UpperCAmelCase = 20 __UpperCAmelCase = model_class_name(_lowercase ) __UpperCAmelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCAmelCase = model.init_cache(input_ids.shape[0] , _lowercase ) __UpperCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCAmelCase = model( input_ids[:, :-1] , attention_mask=_lowercase , past_key_values=_lowercase , position_ids=_lowercase , ) __UpperCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) __UpperCAmelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_lowercase , position_ids=_lowercase , ) __UpperCAmelCase = model(_lowercase , attention_mask=_lowercase ) __UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Any = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () a__ : List[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def a ( self : List[Any] ): __UpperCAmelCase = FlaxGPTJModelTester(self ) def a ( self : Any ): for model_class_name in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase , _lowercase ) def a ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _lowercase , _lowercase , _lowercase , _lowercase ) @tooslow def a ( self : Tuple ): __UpperCAmelCase = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) __UpperCAmelCase = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=_lowercase , truncation=_lowercase ) __UpperCAmelCase = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) __UpperCAmelCase = False __UpperCAmelCase = model.config.eos_token_id __UpperCAmelCase = jax.jit(model.generate ) __UpperCAmelCase = jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCAmelCase = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) __UpperCAmelCase = [ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(_lowercase , _lowercase ) @is_pt_flax_cross_test def a ( self : Tuple ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCAmelCase = getattr(_lowercase , _lowercase ) __UpperCAmelCase , __UpperCAmelCase = pt_inputs['''input_ids'''].shape __UpperCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowercase ): __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = pt_model_class(_lowercase ).eval() __UpperCAmelCase = model_class(_lowercase , dtype=jnp.floataa ) __UpperCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowercase ) __UpperCAmelCase = fx_state with torch.no_grad(): __UpperCAmelCase = pt_model(**_lowercase ).to_tuple() __UpperCAmelCase = fx_model(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowercase ) __UpperCAmelCase = model_class.from_pretrained(_lowercase , from_pt=_lowercase ) __UpperCAmelCase = fx_model_loaded(**_lowercase ).to_tuple() self.assertEqual( len(_lowercase ) , len(_lowercase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def a ( self : Any ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCAmelCase = getattr(_lowercase , _lowercase ) __UpperCAmelCase = pt_model_class(_lowercase ).eval() __UpperCAmelCase = model_class(_lowercase , dtype=jnp.floataa ) __UpperCAmelCase = load_flax_weights_in_pytorch_model(_lowercase , fx_model.params ) __UpperCAmelCase , __UpperCAmelCase = pt_inputs['''input_ids'''].shape __UpperCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowercase ): __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 0 __UpperCAmelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCAmelCase = pt_model(**_lowercase ).to_tuple() __UpperCAmelCase = fx_model(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowercase ) __UpperCAmelCase = pt_model_class.from_pretrained(_lowercase , from_flax=_lowercase ) with torch.no_grad(): __UpperCAmelCase = pt_model_loaded(**_lowercase ).to_tuple() self.assertEqual( len(_lowercase ) , len(_lowercase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def a ( self : Tuple ): for model_class_name in self.all_model_classes: __UpperCAmelCase = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) __UpperCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase )
86
0