code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Dict = KandinskyVaaPipeline lowerCamelCase : Tuple = [ """image_embeds""", """negative_image_embeds""", ] lowerCamelCase : int = ["""image_embeds""", """negative_image_embeds"""] lowerCamelCase : int = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowerCamelCase : str = False @property def A__ ( self ) -> List[Any]: '''simple docstring''' return 32 @property def A__ ( self ) -> Union[str, Any]: '''simple docstring''' return 32 @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def A__ ( self ) -> int: '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self ) -> str: '''simple docstring''' return 100 @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase__ = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def A__ ( self ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase__ = VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__ = self.dummy_unet lowercase__ = self.dummy_movq lowercase__ = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=lowerCamelCase__ , ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> Dict: '''simple docstring''' lowercase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) lowercase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith("""mps""" ): lowercase__ = torch.manual_seed(lowerCamelCase__ ) else: lowercase__ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) lowercase__ = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**lowerCamelCase__ ) lowercase__ = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) lowercase__ = output.images lowercase__ = pipe( **self.get_dummy_inputs(lowerCamelCase__ ) , return_dict=lowerCamelCase__ , )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array( [0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class A ( unittest.TestCase ): def A__ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy""" ) lowercase__ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) lowercase__ = KandinskyVaaPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) lowercase__ = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = """red cat, 4k photo""" lowercase__ = torch.Generator(device="""cuda""" ).manual_seed(0 ) lowercase__ , lowercase__ = pipe_prior( lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase__ = torch.Generator(device="""cuda""" ).manual_seed(0 ) lowercase__ = pipeline( image_embeds=lowerCamelCase__ , negative_image_embeds=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=100 , output_type="""np""" , ) lowercase__ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
164
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
164
1
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
19
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = eval_examples SCREAMING_SNAKE_CASE : Optional[int] = post_process_function def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]: SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE : Dict = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE : Any = gen_kwargs SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Optional[Any] = time.time() SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Tuple = eval_loop( _lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Dict = compute_metrics SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : str = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Dict = self.compute_metrics SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[str] = time.time() SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Any = eval_loop( _lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' ) SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
19
1
import doctest from collections import deque import numpy as np class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> List[str]: __UpperCamelCase =[2, 1, 2, -1] __UpperCamelCase =[1, 2, 3, 4] def _a ( self ) -> Tuple: __UpperCamelCase =len(self.first_signal ) __UpperCamelCase =len(self.second_signal ) __UpperCamelCase =max(__A , __A ) # create a zero matrix of max_length x max_length __UpperCamelCase =[[0] * max_length for i in range(__A )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__A ): __UpperCamelCase =deque(self.second_signal ) rotated_signal.rotate(__A ) for j, item in enumerate(__A ): matrix[i][j] += item # multiply the matrix with the first signal __UpperCamelCase =np.matmul(np.transpose(__A ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__A , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
62
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a__ : str =logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str =["input_features", "attention_mask"] def __init__( self : Union[str, Any] , __A : Optional[int]=8_0 , __A : Tuple=1_6_0_0_0 , __A : Optional[Any]=8_0 , __A : Any=0.0 , __A : Any=True , __A : List[str]=True , __A : str=True , **__A : List[Any] , ): super().__init__(feature_size=__A , sampling_rate=__A , padding_value=__A , **__A ) __UpperCamelCase = num_mel_bins __UpperCamelCase = do_ceptral_normalize __UpperCamelCase = normalize_means __UpperCamelCase = normalize_vars __UpperCamelCase = True def _lowerCamelCase ( self : Union[str, Any] , __A : np.ndarray , ): __UpperCamelCase = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers __UpperCamelCase = torch.from_numpy(__A ).unsqueeze(0 ) __UpperCamelCase = ta_kaldi.fbank(__A , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _lowerCamelCase ( __A : np.ndarray , __A : int , __A : Optional[bool] = True , __A : Optional[bool] = True , __A : float = 0.0 , ): # make sure we normalize float32 arrays if normalize_means: __UpperCamelCase = x[:input_length].mean(axis=0 ) __UpperCamelCase = np.subtract(__A , __A ) if normalize_vars: __UpperCamelCase = x[:input_length].std(axis=0 ) __UpperCamelCase = np.divide(__A , __A ) if input_length < x.shape[0]: __UpperCamelCase = padding_value # make sure array is in float32 __UpperCamelCase = x.astype(np.floataa ) return x def _lowerCamelCase ( self : int , __A : List[np.ndarray] , __A : Optional[np.ndarray] = None ): __UpperCamelCase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__A , __A , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__A , __A ) ] def __call__( self : List[Any] , __A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __A : Union[bool, str, PaddingStrategy] = False , __A : Optional[int] = None , __A : bool = False , __A : Optional[int] = None , __A : Optional[Union[str, TensorType]] = None , __A : Optional[int] = None , __A : Optional[bool] = None , **__A : Dict , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __UpperCamelCase = isinstance(__A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __UpperCamelCase = is_batched_numpy or ( isinstance(__A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCamelCase = [np.asarray(__A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A , np.ndarray ): __UpperCamelCase = np.asarray(__A , dtype=np.floataa ) elif isinstance(__A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCamelCase = [raw_speech] # extract fbank features __UpperCamelCase = [self._extract_fbank_features(__A ) for waveform in raw_speech] # convert into correct format for padding __UpperCamelCase = BatchFeature({'input_features': features} ) __UpperCamelCase = self.pad( __A , padding=__A , max_length=__A , truncation=__A , pad_to_multiple_of=__A , return_attention_mask=__A , **__A , ) # make sure list is in array format __UpperCamelCase = padded_inputs.get('input_features' ) if isinstance(input_features[0] , __A ): __UpperCamelCase = [np.asarray(__A , dtype=np.floataa ) for feature in input_features] __UpperCamelCase = padded_inputs.get('attention_mask' ) if attention_mask is not None: __UpperCamelCase = [np.asarray(__A , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __UpperCamelCase = ( np.array(__A , dtype=np.intaa ) if self._get_padding_strategies(__A , max_length=__A ) is not PaddingStrategy.DO_NOT_PAD else None ) __UpperCamelCase = self.normalize( padded_inputs['input_features'] , attention_mask=__A ) if return_tensors is not None: __UpperCamelCase = padded_inputs.convert_to_tensors(__A ) return padded_inputs
53
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class UpperCAmelCase_ ( _lowerCAmelCase ): '''simple docstring''' _lowercase : Dict = '''audio-spectrogram-transformer''' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=16 , _lowercase=True , _lowercase=10 , _lowercase=10 , _lowercase=1_024 , _lowercase=128 , **_lowercase , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = patch_size _lowerCAmelCase = qkv_bias _lowerCAmelCase = frequency_stride _lowerCAmelCase = time_stride _lowerCAmelCase = max_length _lowerCAmelCase = num_mel_bins
366
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowercase = 10 def A (__lowerCamelCase :int , __lowerCamelCase :int , __lowerCamelCase :list[int] , __lowerCamelCase :int ): for i in range(__lowerCamelCase , __lowerCamelCase ): if array[i] == target: return i return -1 def A (__lowerCamelCase :list[int] , __lowerCamelCase :int ): _lowerCAmelCase = 0 _lowerCAmelCase = len(__lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = (left + right) // 3 + 1 _lowerCAmelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _lowerCAmelCase = one_third - 1 elif array[two_third] < target: _lowerCAmelCase = two_third + 1 else: _lowerCAmelCase = one_third + 1 _lowerCAmelCase = two_third - 1 else: return -1 def A (__lowerCamelCase :int , __lowerCamelCase :int , __lowerCamelCase :list[int] , __lowerCamelCase :int ): if left < right: if right - left < precision: return lin_search(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = (left + right) // 3 + 1 _lowerCAmelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__lowerCamelCase , one_third - 1 , __lowerCamelCase , __lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __lowerCamelCase , __lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowercase = input("""Enter numbers separated by comma:\n""").strip() _lowercase = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." _lowercase = int(input("""Enter the number to be found in the list:\n""").strip()) _lowercase = ite_ternary_search(collection, target) _lowercase = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print("""Not found""")
229
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) lowercase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowercase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: for attribute in key.split('.' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models a__: str = 'lm_head' a__: List[str] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: a__: Tuple = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: a__: Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": a__: Any = value elif weight_type == "weight_g": a__: Optional[int] = value elif weight_type == "weight_v": a__: str = value elif weight_type == "bias": a__: Optional[Any] = value else: a__: List[Any] = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: a__: str = [] a__: Dict = fairseq_model.state_dict() a__: Any = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): a__: Tuple = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) a__: List[str] = True else: for key, mapped_key in MAPPING.items(): a__: Tuple = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: a__: Optional[Any] = True if "*" in mapped_key: a__: List[Any] = name.split(_SCREAMING_SNAKE_CASE )[0].split('.' )[-2] a__: Dict = mapped_key.replace('*' , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: a__: Tuple = 'weight_g' elif "weight_v" in name: a__: str = 'weight_v' elif "bias" in name: a__: Optional[int] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj a__: List[Any] = 'weight' else: a__: List[Any] = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(F'Unused weights: {unused_weights}' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Tuple: a__: str = full_name.split('conv_layers.' )[-1] a__: List[Any] = name.split('.' ) a__: List[Any] = int(items[0] ) a__: Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) a__: int = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) a__: Dict = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) a__: Optional[int] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) a__: Union[str, Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True ) ->Union[str, Any]: if config_path is not None: a__: Optional[int] = UniSpeechConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: a__: List[str] = UniSpeechConfig() if is_finetuned: if dict_path: a__: Tuple = Dictionary.load_from_json(_SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__: List[str] = target_dict.pad_index a__: Dict = target_dict.bos_index a__: List[str] = target_dict.eos_index a__: Any = len(target_dict.symbols ) a__: Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE , 'vocab.json' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_SCREAMING_SNAKE_CASE ) ) return os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) a__: Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched a__: List[Any] = 42 a__: Optional[Any] = 43 with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Dict = WavaVecaPhonemeCTCTokenizer( _SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_SCREAMING_SNAKE_CASE , ) a__: Union[str, Any] = True if config.feat_extract_norm == 'layer' else False a__: str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) a__: List[Any] = WavaVecaProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) a__: Dict = UniSpeechForCTC(_SCREAMING_SNAKE_CASE ) else: a__: List[Any] = UniSpeechForPreTraining(_SCREAMING_SNAKE_CASE ) if is_finetuned: a__ , a__ , a__: List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path} ) else: a__ , a__ , a__: List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) a__: str = model[0].eval() recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) hf_unispeech.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowercase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
290
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union lowercase__ = TypeVar('T') lowercase__ = Union[List[T], Tuple[T, ...]] lowercase__ = Union[T, List[T], Dict[str, T]] lowercase__ = Union[str, bytes, os.PathLike]
290
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: UpperCamelCase__ : Union[str, Any] = None UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase__ : int = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""", }, } UpperCamelCase__ : List[str] = { """camembert-base""": 512, } UpperCamelCase__ : List[Any] = """▁""" class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE_ = CamembertTokenizer def __init__( self : Optional[Any] ,__lowerCamelCase : Optional[int]=None ,__lowerCamelCase : List[Any]=None ,__lowerCamelCase : List[Any]="<s>" ,__lowerCamelCase : Optional[Any]="</s>" ,__lowerCamelCase : Union[str, Any]="</s>" ,__lowerCamelCase : int="<s>" ,__lowerCamelCase : Any="<unk>" ,__lowerCamelCase : Optional[int]="<pad>" ,__lowerCamelCase : Optional[int]="<mask>" ,__lowerCamelCase : str=["<s>NOTUSED", "</s>NOTUSED"] ,**__lowerCamelCase : Union[str, Any] ,): '''simple docstring''' a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else mask_token super().__init__( __lowerCamelCase ,tokenizer_file=__lowerCamelCase ,bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,sep_token=__lowerCamelCase ,cls_token=__lowerCamelCase ,unk_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,mask_token=__lowerCamelCase ,additional_special_tokens=__lowerCamelCase ,**__lowerCamelCase ,) a = vocab_file a = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[int] ,__lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a = [self.cls_token_id] a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : List[int] ,__lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file ,__lowerCamelCase ) return (out_vocab_file,)
371
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : Union[str, Any] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'yolos' def __init__( self : Union[str, Any] ,__lowerCamelCase : int=7_68 ,__lowerCamelCase : Dict=12 ,__lowerCamelCase : Union[str, Any]=12 ,__lowerCamelCase : List[Any]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : int=0.0 ,__lowerCamelCase : str=0.0 ,__lowerCamelCase : Optional[Any]=0.02 ,__lowerCamelCase : int=1e-12 ,__lowerCamelCase : Any=[5_12, 8_64] ,__lowerCamelCase : Tuple=16 ,__lowerCamelCase : int=3 ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : Optional[int]=1_00 ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : int=1 ,__lowerCamelCase : List[Any]=5 ,__lowerCamelCase : Optional[int]=2 ,__lowerCamelCase : int=5 ,__lowerCamelCase : str=2 ,__lowerCamelCase : Tuple=0.1 ,**__lowerCamelCase : List[Any] ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = num_detection_tokens a = use_mid_position_embeddings a = auxiliary_loss # Hungarian matcher a = class_cost a = bbox_cost a = giou_cost # Loss coefficients a = bbox_loss_coefficient a = giou_loss_coefficient a = eos_coefficient class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return 1e-4 @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return 12
330
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __A ( unittest.TestCase ): a__ : Tuple = StableDiffusionLDMaDPipeline a__ : Dict = TEXT_TO_IMAGE_PARAMS a__ : Dict = TEXT_TO_IMAGE_BATCH_PARAMS a__ : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def _lowercase (self : Tuple ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ = CLIPTextModel(__UpperCAmelCase ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _lowercase (self : Union[str, Any] , __a : Optional[int] , __a : int=0 ): if str(__UpperCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(__UpperCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) UpperCAmelCase_ = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase (self : Optional[int] ): UpperCAmelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionLDMaDPipeline(**__UpperCAmelCase ) UpperCAmelCase_ = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(__UpperCAmelCase ) UpperCAmelCase_ = ldmad_pipe(**__UpperCAmelCase ) UpperCAmelCase_ = output.rgb, output.depth UpperCAmelCase_ = rgb[0, -3:, -3:, -1] UpperCAmelCase_ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCAmelCase_ = np.array( [0.37_33_81_76, 0.7_02_47, 0.74_20_31_93, 0.51_64_36_04, 0.58_25_67_93, 0.60_93_21_36, 0.4_18_10_95, 0.48_35_58_77, 0.46_53_52_62] ) UpperCAmelCase_ = np.array([1_03.4_67_27, 85.81_20_04, 87.84_92_36] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def _lowercase (self : Tuple ): UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionLDMaDPipeline(**__UpperCAmelCase ) UpperCAmelCase_ = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(__UpperCAmelCase ) UpperCAmelCase_ = 3 * [inputs["""prompt"""]] # forward UpperCAmelCase_ = ldmad_pipe(**__UpperCAmelCase ) UpperCAmelCase_ = output.rgb, output.depth UpperCAmelCase_ = rgb_slice_a[0, -3:, -3:, -1] UpperCAmelCase_ = depth_slice_a[0, -3:, -1] UpperCAmelCase_ = self.get_dummy_inputs(__UpperCAmelCase ) UpperCAmelCase_ = 3 * [inputs.pop("prompt" )] UpperCAmelCase_ = ldmad_pipe.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__UpperCAmelCase , return_tensors="pt" , ) UpperCAmelCase_ = text_inputs["""input_ids"""].to(__UpperCAmelCase ) UpperCAmelCase_ = ldmad_pipe.text_encoder(__UpperCAmelCase )[0] UpperCAmelCase_ = prompt_embeds # forward UpperCAmelCase_ = ldmad_pipe(**__UpperCAmelCase ) UpperCAmelCase_ = output.rgb, output.depth UpperCAmelCase_ = rgb_slice_a[0, -3:, -3:, -1] UpperCAmelCase_ = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) UpperCAmelCase_ = StableDiffusionLDMaDPipeline(**__UpperCAmelCase ) UpperCAmelCase_ = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(__UpperCAmelCase ) UpperCAmelCase_ = """french fries""" UpperCAmelCase_ = ldmad_pipe(**__UpperCAmelCase , negative_prompt=__UpperCAmelCase ) UpperCAmelCase_ = output.rgb, output.depth UpperCAmelCase_ = rgb[0, -3:, -3:, -1] UpperCAmelCase_ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCAmelCase_ = np.array( [0.3_70_44, 0.71_81_15_03, 0.7_22_32_51, 0.48_60_36_75, 0.5_63_83_91, 0.6_36_49_48, 0.42_83_37_04, 0.4_90_13_15, 0.47_92_62_17] ) UpperCAmelCase_ = np.array([1_07.8_47_38, 84.6_28_02, 89.96_21_35] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class __A ( unittest.TestCase ): def _lowercase (self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : str , __a : int , __a : List[str]="cpu" , __a : Dict=torch.floataa , __a : Tuple=0 ): UpperCAmelCase_ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) UpperCAmelCase_ = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 64, 64) ) UpperCAmelCase_ = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) UpperCAmelCase_ = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ) UpperCAmelCase_ = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_ = self.get_inputs(__UpperCAmelCase ) UpperCAmelCase_ = ldmad_pipe(**__UpperCAmelCase ) UpperCAmelCase_ = output.rgb, output.depth UpperCAmelCase_ = rgb[0, -3:, -3:, -1].flatten() UpperCAmelCase_ = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) UpperCAmelCase_ = np.array( [0.53_80_54_65, 0.56_70_73_05, 0.5_48_65_15, 0.57_01_22_36, 0.5_81_45_11, 0.56_25_34_87, 0.54_84_30_14, 0.55_09_22_63, 0.6_45_97_06] ) UpperCAmelCase_ = np.array( [0.9_26_37_81, 0.6_67_86_72, 0.5_48_65_15, 0.92_20_21_45, 0.67_83_11_35, 0.56_25_34_87, 0.9_24_16_94, 0.7_55_14_78, 0.6_45_97_06] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class __A ( unittest.TestCase ): def _lowercase (self : List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : int , __a : Dict , __a : int="cpu" , __a : List[Any]=torch.floataa , __a : Union[str, Any]=0 ): UpperCAmelCase_ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) UpperCAmelCase_ = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 64, 64) ) UpperCAmelCase_ = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) UpperCAmelCase_ = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_ = self.get_inputs(__UpperCAmelCase ) UpperCAmelCase_ = ldmad_pipe(**__UpperCAmelCase ) UpperCAmelCase_ = output.rgb, output.depth UpperCAmelCase_ = 0.49_55_86 UpperCAmelCase_ = 0.33_79_55_15 UpperCAmelCase_ = 1_12.4_85_18 UpperCAmelCase_ = 98.48_97_46 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def _lowercase (self : Tuple ): UpperCAmelCase_ = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_ = self.get_inputs(__UpperCAmelCase ) UpperCAmelCase_ = ldmad_pipe(**__UpperCAmelCase ) UpperCAmelCase_ = output.rgb, output.depth UpperCAmelCase_ = 0.4_19_41_27 UpperCAmelCase_ = 0.35_37_55_86 UpperCAmelCase_ = 0.5_63_85_02 UpperCAmelCase_ = 0.34_68_61_03 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
1
'''simple docstring''' import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline _UpperCamelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : tuple , lowerCAmelCase__ : Path , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]=False , ): """simple docstring""" output_path.parent.mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , use_external_data_format=lowerCAmelCase__ , enable_onnx_checker=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) else: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) @torch.no_grad() def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False ): """simple docstring""" __UpperCAmelCase : Tuple = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCAmelCase : Optional[int] = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: __UpperCAmelCase : Dict = """cpu""" __UpperCAmelCase : Optional[Any] = StableDiffusionPipeline.from_pretrained(lowerCAmelCase__ , torch_dtype=lowerCAmelCase__ ).to(lowerCAmelCase__ ) __UpperCAmelCase : List[str] = Path(lowerCAmelCase__ ) # TEXT ENCODER __UpperCAmelCase : Any = pipeline.text_encoder.config.max_position_embeddings __UpperCAmelCase : str = pipeline.text_encoder.config.hidden_size __UpperCAmelCase : Optional[Any] = pipeline.tokenizer( """A sample prompt""" , padding="""max_length""" , max_length=pipeline.tokenizer.model_max_length , truncation=lowerCAmelCase__ , return_tensors="""pt""" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=lowerCAmelCase__ , dtype=torch.intaa )) , output_path=output_path / """text_encoder""" / """model.onnx""" , ordered_input_names=["""input_ids"""] , output_names=["""last_hidden_state""", """pooler_output"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """sequence"""}, } , opset=lowerCAmelCase__ , ) del pipeline.text_encoder # UNET __UpperCAmelCase : Optional[int] = pipeline.unet.config.in_channels __UpperCAmelCase : Tuple = pipeline.unet.config.sample_size __UpperCAmelCase : Dict = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet , model_args=( torch.randn(2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), torch.randn(2 ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), torch.randn(2 , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), False, ) , output_path=lowerCAmelCase__ , ordered_input_names=["""sample""", """timestep""", """encoder_hidden_states""", """return_dict"""] , output_names=["""out_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """timestep""": {0: """batch"""}, """encoder_hidden_states""": {0: """batch""", 1: """sequence"""}, } , opset=lowerCAmelCase__ , use_external_data_format=lowerCAmelCase__ , ) __UpperCAmelCase : Any = str(unet_path.absolute().as_posix() ) __UpperCAmelCase : int = os.path.dirname(lowerCAmelCase__ ) __UpperCAmelCase : Tuple = onnx.load(lowerCAmelCase__ ) # clean up existing tensor files shutil.rmtree(lowerCAmelCase__ ) os.mkdir(lowerCAmelCase__ ) # collate external tensor files into one onnx.save_model( lowerCAmelCase__ , lowerCAmelCase__ , save_as_external_data=lowerCAmelCase__ , all_tensors_to_one_file=lowerCAmelCase__ , location="""weights.pb""" , convert_attribute=lowerCAmelCase__ , ) del pipeline.unet # VAE ENCODER __UpperCAmelCase : Union[str, Any] = pipeline.vae __UpperCAmelCase : str = vae_encoder.config.in_channels __UpperCAmelCase : Any = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder __UpperCAmelCase : str = lambda lowerCAmelCase__ , lowerCAmelCase__ : vae_encoder.encode(lowerCAmelCase__ , lowerCAmelCase__ )[0].sample() onnx_export( lowerCAmelCase__ , model_args=( torch.randn(1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), False, ) , output_path=output_path / """vae_encoder""" / """model.onnx""" , ordered_input_names=["""sample""", """return_dict"""] , output_names=["""latent_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=lowerCAmelCase__ , ) # VAE DECODER __UpperCAmelCase : Optional[Any] = pipeline.vae __UpperCAmelCase : Optional[int] = vae_decoder.config.latent_channels __UpperCAmelCase : Dict = vae_decoder.config.out_channels # forward only through the decoder part __UpperCAmelCase : List[Any] = vae_encoder.decode onnx_export( lowerCAmelCase__ , model_args=( torch.randn(1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=lowerCAmelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: __UpperCAmelCase : Tuple = pipeline.safety_checker __UpperCAmelCase : Union[str, Any] = safety_checker.config.vision_config.num_channels __UpperCAmelCase : Any = safety_checker.config.vision_config.image_size __UpperCAmelCase : Optional[int] = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), torch.randn(1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), ) , output_path=output_path / """safety_checker""" / """model.onnx""" , ordered_input_names=["""clip_input""", """images"""] , output_names=["""out_images""", """has_nsfw_concepts"""] , dynamic_axes={ """clip_input""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """images""": {0: """batch""", 1: """height""", 2: """width""", 3: """channels"""}, } , opset=lowerCAmelCase__ , ) del pipeline.safety_checker __UpperCAmelCase : Optional[Any] = OnnxRuntimeModel.from_pretrained(output_path / """safety_checker""" ) __UpperCAmelCase : Any = pipeline.feature_extractor else: __UpperCAmelCase : List[str] = None __UpperCAmelCase : Any = None __UpperCAmelCase : Tuple = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_encoder""" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_decoder""" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / """text_encoder""" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / """unet""" ) , scheduler=pipeline.scheduler , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(lowerCAmelCase__ ) print("""ONNX pipeline saved to""" , lowerCAmelCase__ ) del pipeline del onnx_pipeline __UpperCAmelCase : Tuple = OnnxStableDiffusionPipeline.from_pretrained(lowerCAmelCase__ , provider="""CPUExecutionProvider""" ) print("""ONNX pipeline is loadable""" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') _UpperCamelCase = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
254
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=lowercase__ ): snake_case__ : Dict = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> List[Any]: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[int] , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : str ) -> List[str]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE__ ( metaclass=lowercase__ ): snake_case__ : Tuple = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : str , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : int , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[int] , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE__ ( metaclass=lowercase__ ): snake_case__ : List[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[int]: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : str , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> str: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE__ ( metaclass=lowercase__ ): snake_case__ : Dict = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : int , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Any ) -> List[str]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE__ ( metaclass=lowercase__ ): snake_case__ : List[str] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Dict: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE__ ( metaclass=lowercase__ ): snake_case__ : Union[str, Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : str , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : int , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Any: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : str , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: requires_backends(cls , ['torch', 'transformers', 'onnx'] )
350
def SCREAMING_SNAKE_CASE_ ( __A : list ) -> bool: """simple docstring""" if not isinstance(__A , __A ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(__A ) == 0: raise ValueError('Input list must be a non empty list' ) if len(__A ) == 1: return True a_ : Tuple = series[1] - series[0] for index in range(len(__A ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def SCREAMING_SNAKE_CASE_ ( __A : list ) -> float: """simple docstring""" if not isinstance(__A , __A ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(__A ) == 0: raise ValueError('Input list must be a non empty list' ) a_ : str = 0 for val in series: answer += val return answer / len(__A ) if __name__ == "__main__": import doctest doctest.testmod()
120
0
import math def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ = 1 / 1_2_3_4_5 ): lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 3 while True: lowerCamelCase_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(lowerCamelCase__ ): lowerCamelCase_ = int(lowerCamelCase__ ) total_partitions += 1 if check_partition_perfect(lowerCamelCase__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(lowerCamelCase__ ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
19
from collections import deque def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = len(lowerCamelCase__ ) lowerCamelCase_ = deque() lowerCamelCase_ = [False for _ in range(lowerCamelCase__ )] lowerCamelCase_ = [-1 for _ in range(lowerCamelCase__ )] lowerCamelCase_ = index_of[:] def strong_connect(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = index # the number when this node is seen lowerCamelCase_ = index # lowest rank node reachable from here index += 1 stack.append(lowerCamelCase__ ) lowerCamelCase_ = True for w in g[v]: if index_of[w] == -1: lowerCamelCase_ = strong_connect(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: lowerCamelCase_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: lowerCamelCase_ = [] lowerCamelCase_ = stack.pop() lowerCamelCase_ = False component.append(lowerCamelCase__ ) while w != v: lowerCamelCase_ = stack.pop() lowerCamelCase_ = False component.append(lowerCamelCase__ ) components.append(lowerCamelCase__ ) return index lowerCamelCase_ = [] for v in range(lowerCamelCase__ ): if index_of[v] == -1: strong_connect(lowerCamelCase__ , 0 , lowerCamelCase__ ) return components def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [[] for _ in range(lowerCamelCase__ )] for u, v in edges: g[u].append(lowerCamelCase__ ) return g if __name__ == "__main__": # Test __A =7 __A =[0, 0, 1, 2, 3, 3, 4, 4, 6] __A =[1, 3, 2, 0, 1, 4, 5, 6, 5] __A =[(u, v) for u, v in zip(source, target)] __A =create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
19
1
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowerCamelCase_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : bool = field(default=A , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) SCREAMING_SNAKE_CASE_ : bool = field( default=A , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=A , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=A , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) SCREAMING_SNAKE_CASE_ : Optional[Union[str, Path, GenerationConfig]] = field( default=A , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :str = super().to_dict() for k, v in d.items(): if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Dict = v.to_dict() return d
239
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Optional[Any] = '''xlm-prophetnet''' SCREAMING_SNAKE_CASE_ : Any = ['''past_key_values'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = { '''num_attention_heads''': '''num_encoder_attention_heads''', } def __init__( self ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = "gelu" ,SCREAMING_SNAKE_CASE__ = 3_05_22 ,SCREAMING_SNAKE_CASE__ = 10_24 ,SCREAMING_SNAKE_CASE__ = 40_96 ,SCREAMING_SNAKE_CASE__ = 12 ,SCREAMING_SNAKE_CASE__ = 16 ,SCREAMING_SNAKE_CASE__ = 40_96 ,SCREAMING_SNAKE_CASE__ = 12 ,SCREAMING_SNAKE_CASE__ = 16 ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = 5_12 ,SCREAMING_SNAKE_CASE__ = 0.0_2 ,SCREAMING_SNAKE_CASE__ = True ,SCREAMING_SNAKE_CASE__ = True ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = 2 ,SCREAMING_SNAKE_CASE__ = 32 ,SCREAMING_SNAKE_CASE__ = 1_28 ,SCREAMING_SNAKE_CASE__ = False ,SCREAMING_SNAKE_CASE__ = 0.0 ,SCREAMING_SNAKE_CASE__ = True ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = 1 ,SCREAMING_SNAKE_CASE__ = 2 ,**SCREAMING_SNAKE_CASE__ ,) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :int = vocab_size __SCREAMING_SNAKE_CASE :Tuple = hidden_size __SCREAMING_SNAKE_CASE :Optional[int] = encoder_ffn_dim __SCREAMING_SNAKE_CASE :Optional[int] = num_encoder_layers __SCREAMING_SNAKE_CASE :Tuple = num_encoder_attention_heads __SCREAMING_SNAKE_CASE :List[Any] = decoder_ffn_dim __SCREAMING_SNAKE_CASE :Union[str, Any] = num_decoder_layers __SCREAMING_SNAKE_CASE :Optional[Any] = num_decoder_attention_heads __SCREAMING_SNAKE_CASE :List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE :Dict = init_std # Normal(0, this parameter) __SCREAMING_SNAKE_CASE :List[Any] = activation_function # parameters for xlmprophetnet __SCREAMING_SNAKE_CASE :Tuple = ngram __SCREAMING_SNAKE_CASE :int = num_buckets __SCREAMING_SNAKE_CASE :Optional[int] = relative_max_distance __SCREAMING_SNAKE_CASE :Union[str, Any] = disable_ngram_loss __SCREAMING_SNAKE_CASE :Dict = eps # 3 Types of Dropout __SCREAMING_SNAKE_CASE :List[str] = attention_dropout __SCREAMING_SNAKE_CASE :Dict = activation_dropout __SCREAMING_SNAKE_CASE :Union[str, Any] = dropout __SCREAMING_SNAKE_CASE :int = use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,is_encoder_decoder=SCREAMING_SNAKE_CASE__ ,add_cross_attention=SCREAMING_SNAKE_CASE__ ,decoder_start_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) @property def _UpperCamelCase ( self ) -> int: """simple docstring""" return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
239
1
"""simple docstring""" def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Optional[int] = [] lowercase__ : Optional[Any] = set({'(', '[', '{'} ) lowercase__ : List[str] = set({')', ']', '}'} ) lowercase__ : Optional[int] = {'{': '}', '[': ']', '(': ')'} for i in range(len(_lowerCAmelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_lowerCAmelCase ) == 0 or (len(_lowerCAmelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_lowerCAmelCase ) == 0 def a_ ( ): '''simple docstring''' lowercase__ : List[Any] = input('Enter sequence of brackets: ' ) if is_balanced(_lowerCAmelCase ): print(_lowerCAmelCase , 'is balanced' ) else: print(_lowerCAmelCase , 'is not balanced' ) if __name__ == "__main__": main()
77
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _A : str = logging.get_logger(__name__) _A : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def UpperCamelCase_ ( snake_case_ : Tuple ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __lowerCAmelCase = k.replace(snake_case_ , snake_case_ ) if k.startswith("""encoder""" ): __lowerCAmelCase = k.replace(""".attn""" , """.self_attn""" ) __lowerCAmelCase = k.replace("""norm1""" , """self_attn_layer_norm""" ) __lowerCAmelCase = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __lowerCAmelCase = k.replace("""norm1""" , """self_attn_layer_norm""" ) __lowerCAmelCase = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __lowerCAmelCase = k.replace("""norm3""" , """final_layer_norm""" ) return k def UpperCamelCase_ ( snake_case_ : List[str] ) -> Dict: '''simple docstring''' __lowerCAmelCase = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __lowerCAmelCase = sd.pop(snake_case_ ) __lowerCAmelCase = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __lowerCAmelCase = v _A : int = ['''START'''] @torch.no_grad() def UpperCamelCase_ ( snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase = torch.load(snake_case_ , map_location="""cpu""" ) __lowerCAmelCase = model["""model"""] __lowerCAmelCase = BlenderbotConfig.from_json_file(snake_case_ ) __lowerCAmelCase = BlenderbotForConditionalGeneration(snake_case_ ) __lowerCAmelCase = m.model.state_dict().keys() __lowerCAmelCase = [] __lowerCAmelCase = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __lowerCAmelCase = rename_state_dict_key(snake_case_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __lowerCAmelCase = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(snake_case_ ) m.model.load_state_dict(snake_case_ , strict=snake_case_ ) m.half() m.save_pretrained(snake_case_ ) if __name__ == "__main__": _A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) _A : Tuple = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
229
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[Any] = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class snake_case_( snake_case__ ): __UpperCamelCase = '''lxmert''' __UpperCamelCase = {} def __init__( self : Tuple , UpperCamelCase_ : Tuple=3_0_5_2_2 , UpperCamelCase_ : int=7_6_8 , UpperCamelCase_ : Optional[int]=1_2 , UpperCamelCase_ : Union[str, Any]=9_5_0_0 , UpperCamelCase_ : Optional[Any]=1_6_0_0 , UpperCamelCase_ : Tuple=4_0_0 , UpperCamelCase_ : List[str]=3_0_7_2 , UpperCamelCase_ : Optional[int]="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[Any]=5_1_2 , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[str]=1E-12 , UpperCamelCase_ : str=9 , UpperCamelCase_ : Union[str, Any]=5 , UpperCamelCase_ : Optional[int]=5 , UpperCamelCase_ : List[Any]=2_0_4_8 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : Optional[int]=6.67 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : int=True , UpperCamelCase_ : Dict=True , **UpperCamelCase_ : List[str] , ): lowerCAmelCase : Optional[int] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Tuple = hidden_act lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : int = max_position_embeddings lowerCAmelCase : Optional[Any] = type_vocab_size lowerCAmelCase : Optional[int] = initializer_range lowerCAmelCase : List[str] = layer_norm_eps lowerCAmelCase : Any = num_qa_labels lowerCAmelCase : str = num_object_labels lowerCAmelCase : Optional[int] = num_attr_labels lowerCAmelCase : Tuple = l_layers lowerCAmelCase : str = x_layers lowerCAmelCase : Dict = r_layers lowerCAmelCase : Optional[Any] = visual_feat_dim lowerCAmelCase : Tuple = visual_pos_dim lowerCAmelCase : Optional[Any] = visual_loss_normalizer lowerCAmelCase : Dict = task_matched lowerCAmelCase : Optional[int] = task_mask_lm lowerCAmelCase : str = task_obj_predict lowerCAmelCase : Any = task_qa lowerCAmelCase : int = visual_obj_loss lowerCAmelCase : List[str] = visual_attr_loss lowerCAmelCase : Any = visual_feat_loss lowerCAmelCase : List[Any] = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**UpperCAmelCase_ )
365
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowerCAmelCase : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase : Dict = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
'''simple docstring''' import os import sys import unittest __a: str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __a: Union[str, Any] = os.path.join(git_repo_path, """src""", """transformers""") __a: List[Any] = """ {0} = None """ __a: Optional[int] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ __a: List[str] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> int: lowercase__ : int = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(__UpperCAmelCase ) lowercase__ : List[str] = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(__UpperCAmelCase , '''tokenizers''' ) lowercase__ : List[str] = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(__UpperCAmelCase , '''tensorflow_text''' ) lowercase__ : Optional[int] = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(__UpperCAmelCase , '''sentencepiece_and_tokenizers''' ) lowercase__ : Dict = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(__UpperCAmelCase , '''sentencepiece_and_tensorflow_text''' ) lowercase__ : int = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(__UpperCAmelCase , '''sentencepiece_and_tokenizers_and_vision''' ) def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Optional[int] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , __UpperCAmelCase ) self.assertIn('''tensorflow_text''' , __UpperCAmelCase ) self.assertIn('''sentencepiece_and_tokenizers''' , __UpperCAmelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : List[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(__UpperCAmelCase , '''\nCONSTANT = None\n''' ) lowercase__ : Optional[int] = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( __UpperCAmelCase , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) lowercase__ : List[Any] = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' lowercase__ : int = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def _lowerCAmelCase( self ) -> str: lowercase__ : Optional[Any] = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' lowercase__ : Dict = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , __UpperCAmelCase )
198
import logging import os import threading import time try: import warnings except ImportError: a_ = None try: import msvcrt except ImportError: a_ = None try: import fcntl except ImportError: a_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: a_ = OSError # Data # ------------------------------------------------ a_ = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] a_ = """3.0.12""" a_ = None def a__ ( ): global _logger __lowerCamelCase = _logger or logging.getLogger(__name__ ) return _logger class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock_file return None def __str__( self ): '''simple docstring''' __lowerCamelCase = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock return None def __enter__( self ): '''simple docstring''' return self.lock def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.lock.release() return None class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowerCamelCase = self.hash_filename_if_too_long(__UpperCAmelCase , __UpperCAmelCase ) # The path to the lock file. __lowerCamelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowerCamelCase = None # The default timeout value. __lowerCamelCase = timeout # We use this lock primarily for the lock counter. __lowerCamelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowerCamelCase = 0 return None @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file @property def lowerCamelCase ( self ): '''simple docstring''' return self._timeout @timeout.setter def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = float(__UpperCAmelCase ) return None def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file_fd is not None def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=0.05 ): '''simple docstring''' # Use the default timeout, if no timeout is provided. if timeout is None: __lowerCamelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file __lowerCamelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(__UpperCAmelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowerCamelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCamelCase ( self , __UpperCAmelCase=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __lowerCamelCase = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self ): '''simple docstring''' self.acquire() return self def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.release() return None def __del__( self ): '''simple docstring''' self.release(force=__UpperCAmelCase ) return None def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = os.path.basename(__UpperCAmelCase ) if len(__UpperCAmelCase ) > max_length and max_length > 0: __lowerCamelCase = os.path.dirname(__UpperCAmelCase ) __lowerCamelCase = str(hash(__UpperCAmelCase ) ) __lowerCamelCase = filename[: max_length - len(__UpperCAmelCase ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(__UpperCAmelCase , __UpperCAmelCase ) else: return path class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) __lowerCamelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: try: msvcrt.locking(__UpperCAmelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None msvcrt.locking(__UpperCAmelCase , msvcrt.LK_UNLCK , 1 ) os.close(__UpperCAmelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = os.statvfs(os.path.dirname(__UpperCAmelCase ) ).f_namemax super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) try: fcntl.flock(__UpperCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None fcntl.flock(__UpperCAmelCase , fcntl.LOCK_UN ) os.close(__UpperCAmelCase ) return None class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' os.close(self._lock_file_fd ) __lowerCamelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None a_ = None if msvcrt: a_ = WindowsFileLock elif fcntl: a_ = UnixFileLock else: a_ = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
330
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): _SCREAMING_SNAKE_CASE : Any = RobertaTokenizer _SCREAMING_SNAKE_CASE : Any = RobertaTokenizerFast _SCREAMING_SNAKE_CASE : Optional[int] = True _SCREAMING_SNAKE_CASE : Tuple = {'''cls_token''': '''<s>'''} def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCAmelCase__ = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) lowerCAmelCase__ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCAmelCase__ = {'unk_token': '<unk>'} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCamelCase ) ) def UpperCamelCase__ ( self , **_UpperCamelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def UpperCamelCase__ ( self , **_UpperCamelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = 'lower newer' lowerCAmelCase__ = 'lower newer' return input_text, output_text def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase__ = 'lower newer' lowerCAmelCase__ = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] lowerCAmelCase__ = tokenizer.tokenize(_UpperCamelCase ) # , add_prefix_space=True) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_UpperCamelCase ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_UpperCamelCase ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class.from_pretrained('roberta-base' ) lowerCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCamelCase ) lowerCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCamelCase ) lowerCAmelCase__ = tokenizer.encode( 'sequence builders' , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) lowerCAmelCase__ = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = 'Encode this sequence.' lowerCAmelCase__ = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments lowerCAmelCase__ = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase__ = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) lowerCAmelCase__ = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) # Testing spaces after special tokens lowerCAmelCase__ = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase )} ) # mask token has a left space lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) lowerCAmelCase__ = 'Encode <mask> sequence' lowerCAmelCase__ = 'Encode <mask>sequence' lowerCAmelCase__ = tokenizer.encode(_UpperCamelCase ) lowerCAmelCase__ = encoded.index(_UpperCamelCase ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase__ = tokenizer.encode(_UpperCamelCase ) lowerCAmelCase__ = encoded.index(_UpperCamelCase ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase__ = 'A, <mask> AllenNLP sentence.' lowerCAmelCase__ = tokenizer_r.encode_plus(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase ) lowerCAmelCase__ = tokenizer_p.encode_plus(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) lowerCAmelCase__ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowerCAmelCase__ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( _UpperCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _UpperCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCamelCase__ ( self ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) lowerCAmelCase__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCAmelCase__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _UpperCamelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , _UpperCamelCase ) self.assertEqual(post_processor_state['trim_offsets'] , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase__ = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase__ = F"{text_of_1_token} {text_of_1_token}" lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) lowerCAmelCase__ = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) lowerCAmelCase__ = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) lowerCAmelCase__ = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ), len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) lowerCAmelCase__ = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ), len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) lowerCAmelCase__ = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) lowerCAmelCase__ = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ) + 1, 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) lowerCAmelCase__ = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ), 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) lowerCAmelCase__ = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ), 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , )
122
import colorsys from PIL import Image # type: ignore def _UpperCamelCase ( UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : int ) -> float: """simple docstring""" lowerCAmelCase__ = x lowerCAmelCase__ = y for step in range(UpperCamelCase_ ): # noqa: B007 lowerCAmelCase__ = a * a - b * b + x lowerCAmelCase__ = 2 * a * b + y lowerCAmelCase__ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _UpperCamelCase ( UpperCamelCase_ : float ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _UpperCamelCase ( UpperCamelCase_ : float ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCamelCase_ , 1 , 1 ) ) def _UpperCamelCase ( UpperCamelCase_ : int = 800 , UpperCamelCase_ : int = 600 , UpperCamelCase_ : float = -0.6 , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 3.2 , UpperCamelCase_ : int = 50 , UpperCamelCase_ : bool = True , ) -> Image.Image: """simple docstring""" lowerCAmelCase__ = Image.new('RGB' , (image_width, image_height) ) lowerCAmelCase__ = img.load() # loop through the image-coordinates for image_x in range(UpperCamelCase_ ): for image_y in range(UpperCamelCase_ ): # determine the figure-coordinates based on the image-coordinates lowerCAmelCase__ = figure_width / image_width * image_height lowerCAmelCase__ = figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCAmelCase__ = figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCAmelCase__ = get_distance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCAmelCase__ = get_color_coded_rgb(UpperCamelCase_ ) else: lowerCAmelCase__ = get_black_and_white_rgb(UpperCamelCase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __snake_case : str = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
122
1
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int = None , UpperCamelCase__ : int = None ): """simple docstring""" super().__init__() UpperCamelCase = pad_token_id UpperCamelCase = max_length UpperCamelCase = vocab UpperCamelCase = merges UpperCamelCase = BytePairTokenizer(UpperCamelCase__ , UpperCamelCase__ , sequence_length=UpperCamelCase__ ) @classmethod def A ( cls : List[str] , UpperCamelCase__ : GPTaTokenizer , *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Dict ): """simple docstring""" UpperCamelCase = [""" """.join(UpperCamelCase__ ) for m in tokenizer.bpe_ranks.keys()] UpperCamelCase = tokenizer.get_vocab() return cls(UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def A ( cls : int , UpperCamelCase__ : Union[str, os.PathLike] , *UpperCamelCase__ : int , **UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = GPTaTokenizer.from_pretrained(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) return cls.from_tokenizer(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def A ( cls : str , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" return cls(**UpperCamelCase__ ) def A ( self : str ): """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int = None ): """simple docstring""" UpperCamelCase = self.tf_tokenizer(UpperCamelCase__ ) UpperCamelCase = tf.ones_like(UpperCamelCase__ ) if self.pad_token_id is not None: # pad the tokens up to max length UpperCamelCase = max_length if max_length is not None else self.max_length if max_length is not None: UpperCamelCase = pad_model_inputs( UpperCamelCase__ , max_seq_length=UpperCamelCase__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
28
'''simple docstring''' def UpperCamelCase_ ( A__ : int = 10_00 ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = 3 lowerCAmelCase_ : Dict = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
120
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A_ ( A__ ) -> str: a__ : Any = 384 if "tiny" in model_name: a__ : List[Any] = [3, 3, 9, 3] a__ : Optional[Any] = [96, 192, 384, 768] if "small" in model_name: a__ : Union[str, Any] = [3, 3, 27, 3] a__ : List[Any] = [96, 192, 384, 768] if "base" in model_name: a__ : int = [3, 3, 27, 3] a__ : List[str] = [128, 256, 512, 1024] a__ : Optional[int] = 512 if "large" in model_name: a__ : Optional[int] = [3, 3, 27, 3] a__ : Any = [192, 384, 768, 1536] a__ : int = 768 if "xlarge" in model_name: a__ : str = [3, 3, 27, 3] a__ : int = [256, 512, 1024, 2048] a__ : List[str] = 1024 # set label information a__ : int = 150 a__ : List[Any] = 'huggingface/label-files' a__ : str = 'ade20k-id2label.json' a__ : Optional[int] = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) a__ : List[str] = {int(A__ ): v for k, v in idalabel.items()} a__ : Union[str, Any] = {v: k for k, v in idalabel.items()} a__ : List[Any] = ConvNextConfig( depths=A__ , hidden_sizes=A__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) a__ : Optional[int] = UperNetConfig( backbone_config=A__ , auxiliary_in_channels=A__ , num_labels=A__ , idalabel=A__ , labelaid=A__ , ) return config def A_ ( A__ ) -> Tuple: a__ : Optional[int] = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.stages.{i}.{j}.gamma', F'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.weight', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.bias', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.weight', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.bias', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((F'backbone.downsample_layers.{i}.0.weight', F'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.0.bias', F'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.weight', F'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.bias', F'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def A_ ( A__ , A__ , A__ ) -> str: a__ : List[str] = dct.pop(A__ ) a__ : int = val def A_ ( A__ , A__ , A__ ) -> str: a__ : Tuple = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } a__ : Dict = model_name_to_url[model_name] a__ : Optional[int] = torch.hub.load_state_dict_from_url(A__ , map_location='cpu' )['state_dict'] a__ : List[Any] = get_upernet_config(A__ ) a__ : Dict = UperNetForSemanticSegmentation(A__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): a__ : Dict = state_dict.pop(A__ ) if "bn" in key: a__ : Optional[int] = key.replace('bn' , 'batch_norm' ) a__ : List[Any] = val # rename keys a__ : Union[str, Any] = create_rename_keys(A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) model.load_state_dict(A__ ) # verify on image a__ : str = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' a__ : int = Image.open(requests.get(A__ , stream=A__ ).raw ).convert('RGB' ) a__ : Union[str, Any] = SegformerImageProcessor() a__ : Union[str, Any] = processor(A__ , return_tensors='pt' ).pixel_values with torch.no_grad(): a__ : Optional[Any] = model(A__ ) if model_name == "upernet-convnext-tiny": a__ : Union[str, Any] = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ) elif model_name == "upernet-convnext-small": a__ : int = torch.tensor( [[-8.82_36, -8.82_36, -8.67_71], [-8.82_36, -8.82_36, -8.67_71], [-8.76_38, -8.76_38, -8.62_40]] ) elif model_name == "upernet-convnext-base": a__ : int = torch.tensor( [[-8.85_58, -8.85_58, -8.69_05], [-8.85_58, -8.85_58, -8.69_05], [-8.76_69, -8.76_69, -8.60_21]] ) elif model_name == "upernet-convnext-large": a__ : Optional[Any] = torch.tensor( [[-8.66_60, -8.66_60, -8.62_10], [-8.66_60, -8.66_60, -8.62_10], [-8.63_10, -8.63_10, -8.59_64]] ) elif model_name == "upernet-convnext-xlarge": a__ : Optional[int] = torch.tensor( [[-8.49_80, -8.49_80, -8.39_77], [-8.49_80, -8.49_80, -8.39_77], [-8.43_79, -8.43_79, -8.34_12]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , A__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(A__ ) if push_to_hub: print(F'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(F'openmmlab/{model_name}' ) processor.push_to_hub(F'openmmlab/{model_name}' ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase : str = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
365
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowercase : List[Any] = logging.get_logger(__name__) lowercase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp lowercase : Optional[Any] = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } lowercase : List[str] = { """RUCAIBox/mvp""": 1_0_2_4, } class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Dict = VOCAB_FILES_NAMES __A : str = PRETRAINED_VOCAB_FILES_MAP __A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Any = ['''input_ids''', '''attention_mask'''] __A : Tuple = MvpTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , lowercase=True , **lowercase , ) -> str: '''simple docstring''' super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) a__ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , lowercase) != add_prefix_space: a__ : Dict = getattr(lowercase , pre_tok_state.pop('type')) a__ : str = add_prefix_space a__ : Union[str, Any] = pre_tok_class(**lowercase) a__ : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a__ : Optional[int] = 'post_processor' a__ : Optional[int] = getattr(self.backend_tokenizer , lowercase , lowercase) if tokenizer_component_instance: a__ : str = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : Any = tuple(state['sep']) if "cls" in state: a__ : str = tuple(state['cls']) a__ : List[str] = False if state.get('add_prefix_space' , lowercase) != add_prefix_space: a__ : List[str] = add_prefix_space a__ : List[str] = True if state.get('trim_offsets' , lowercase) != trim_offsets: a__ : Optional[int] = trim_offsets a__ : List[str] = True if changes_to_apply: a__ : Optional[int] = getattr(lowercase , state.pop('type')) a__ : Tuple = component_class(**lowercase) setattr(self.backend_tokenizer , lowercase , lowercase) @property def __lowercase ( self) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def __lowercase ( self , lowercase) -> Any: '''simple docstring''' a__ : Tuple = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else value a__ : str = value def __lowercase ( self , *lowercase , **lowercase) -> BatchEncoding: '''simple docstring''' a__ : Optional[Any] = kwargs.get('is_split_into_words' , lowercase) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowercase , **lowercase) def __lowercase ( self , *lowercase , **lowercase) -> BatchEncoding: '''simple docstring''' a__ : List[str] = kwargs.get('is_split_into_words' , lowercase) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowercase , **lowercase) def __lowercase ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' a__ : List[str] = self._tokenizer.model.save(lowercase , name=lowercase) return tuple(lowercase) def __lowercase ( self , lowercase , lowercase=None) -> Union[str, Any]: '''simple docstring''' a__ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowercase ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__ : int = [self.sep_token_id] a__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
225
0
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class __magic_name__ : def __init__( self : Any ): lowercase_ : list[Any] = [] lowercase_ : int = 0 lowercase_ : int = 0 def SCREAMING_SNAKE_CASE_ ( self : int ): return self.head == self.tail def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Any ): self.data.append(lowercase_ ) lowercase_ : Optional[Any] = self.tail + 1 def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : List[Any] = self.data[self.head] lowercase_ : Optional[int] = self.head + 1 return ret def SCREAMING_SNAKE_CASE_ ( self : List[str] ): return self.tail - self.head def SCREAMING_SNAKE_CASE_ ( self : Tuple ): print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class __magic_name__ : def __init__( self : Any , lowercase_ : Any ): lowercase_ : Optional[Any] = data lowercase_ : MyNode | None = None lowercase_ : MyNode | None = None lowercase_ : int = 1 def SCREAMING_SNAKE_CASE_ ( self : Tuple ): return self.data def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return self.left def SCREAMING_SNAKE_CASE_ ( self : Dict ): return self.right def SCREAMING_SNAKE_CASE_ ( self : str ): return self.height def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Any ): lowercase_ : Dict = data def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : MyNode | None ): lowercase_ : Optional[Any] = node def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : MyNode | None ): lowercase_ : str = node def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : int ): lowercase_ : Tuple = height def lowerCamelCase ( UpperCAmelCase__ : MyNode | None ) -> int: if node is None: return 0 return node.get_height() def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: if a > b: return a return b def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> MyNode: print("""left rotation node:""" , node.get_data() ) lowercase_ : Union[str, Any] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(UpperCAmelCase__ ) lowercase_ : Any = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(UpperCAmelCase__ ) lowercase_ : Optional[int] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(UpperCAmelCase__ ) return ret def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> MyNode: print("""right rotation node:""" , node.get_data() ) lowercase_ : Dict = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(UpperCAmelCase__ ) lowercase_ : Tuple = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(UpperCAmelCase__ ) lowercase_ : str = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(UpperCAmelCase__ ) return ret def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> MyNode: lowercase_ : Optional[Any] = node.get_left() assert left_child is not None node.set_left(left_rotation(UpperCAmelCase__ ) ) return right_rotation(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> MyNode: lowercase_ : Optional[Any] = node.get_right() assert right_child is not None node.set_right(right_rotation(UpperCAmelCase__ ) ) return left_rotation(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : MyNode | None , UpperCAmelCase__ : Any ) -> MyNode | None: if node is None: return MyNode(UpperCAmelCase__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , UpperCAmelCase__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected lowercase_ : List[Any] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child lowercase_ : List[Any] = right_rotation(UpperCAmelCase__ ) else: lowercase_ : Any = lr_rotation(UpperCAmelCase__ ) else: node.set_right(insert_node(node.get_right() , UpperCAmelCase__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: lowercase_ : Any = node.get_right() assert right_child is not None if data < right_child.get_data(): lowercase_ : Optional[int] = rl_rotation(UpperCAmelCase__ ) else: lowercase_ : Optional[int] = left_rotation(UpperCAmelCase__ ) lowercase_ : Optional[int] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(UpperCAmelCase__ ) return node def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> Any: while True: lowercase_ : Any = root.get_right() if right_child is None: break lowercase_ : List[str] = right_child return root.get_data() def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> Any: while True: lowercase_ : List[Any] = root.get_left() if left_child is None: break lowercase_ : str = left_child return root.get_data() def lowerCamelCase ( UpperCAmelCase__ : MyNode , UpperCAmelCase__ : Any ) -> MyNode | None: lowercase_ : Union[str, Any] = root.get_left() lowercase_ : int = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: lowercase_ : Any = get_left_most(UpperCAmelCase__ ) root.set_data(UpperCAmelCase__ ) root.set_right(del_node(UpperCAmelCase__ , UpperCAmelCase__ ) ) elif left_child is not None: lowercase_ : Dict = left_child elif right_child is not None: lowercase_ : Dict = right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(UpperCAmelCase__ , UpperCAmelCase__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(UpperCAmelCase__ , UpperCAmelCase__ ) ) if get_height(UpperCAmelCase__ ) - get_height(UpperCAmelCase__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): lowercase_ : str = left_rotation(UpperCAmelCase__ ) else: lowercase_ : List[str] = rl_rotation(UpperCAmelCase__ ) elif get_height(UpperCAmelCase__ ) - get_height(UpperCAmelCase__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): lowercase_ : Optional[Any] = right_rotation(UpperCAmelCase__ ) else: lowercase_ : List[str] = lr_rotation(UpperCAmelCase__ ) lowercase_ : int = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(UpperCAmelCase__ ) return root class __magic_name__ : def __init__( self : List[str] ): lowercase_ : MyNode | None = None def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return get_height(self.root ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Any ): print("""insert:""" + str(lowercase_ ) ) lowercase_ : Dict = insert_node(self.root , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Any ): print("""delete:""" + str(lowercase_ ) ) if self.root is None: print("""Tree is empty!""" ) return lowercase_ : int = del_node(self.root , lowercase_ ) def __str__( self : Optional[int] , ): # a level traversale, gives a more intuitive look on the tree lowercase_ : int = """""" lowercase_ : Optional[int] = MyQueue() q.push(self.root ) lowercase_ : Optional[Any] = self.get_height() if layer == 0: return output lowercase_ : Optional[int] = 0 while not q.is_empty(): lowercase_ : Any = q.pop() lowercase_ : List[Any] = """ """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(lowercase_ ) q.push(lowercase_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space lowercase_ : Union[str, Any] = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , lowercase_ ) - 1: lowercase_ : Optional[Any] = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowerCamelCase ( ) -> None: import doctest doctest.testmod() if __name__ == "__main__": _test() _lowercase : Optional[Any] = AVLtree() _lowercase : Optional[Any] = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
239
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class __magic_name__ : def __init__( self : str , lowercase_ : Dict ): if isinstance(lowercase_ , lowercase_ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowercase_ : List[Any] = deepcopy(lowercase_ ) elif os.path.exists(lowercase_ ): with io.open(lowercase_ , """r""" , encoding="""utf-8""" ) as f: lowercase_ : Union[str, Any] = json.load(lowercase_ ) else: try: lowercase_ : int = baseaa.urlsafe_baadecode(lowercase_ ).decode("""utf-8""" ) lowercase_ : str = json.loads(lowercase_ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) lowercase_ : Any = config self.set_stage_and_offload() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. lowercase_ : Tuple = self.get_value("""zero_optimization.stage""" , -1 ) # offload lowercase_ : str = False if self.is_zeroa() or self.is_zeroa(): lowercase_ : Dict = set(["""cpu""", """nvme"""] ) lowercase_ : List[Any] = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowercase_ : Tuple = True def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Any ): lowercase_ : Optional[Any] = self.config # find the config node of interest if it exists lowercase_ : Tuple = ds_key_long.split(""".""" ) lowercase_ : Union[str, Any] = nodes.pop() for node in nodes: lowercase_ : List[str] = config.get(lowercase_ ) if config is None: return None, ds_key return config, ds_key def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : List[str]=None ): lowercase_ , lowercase_ : List[Any] = self.find_config_node(lowercase_ ) if config is None: return default return config.get(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Optional[int] , lowercase_ : int=False ): lowercase_ : int = self.config # find the config node of interest if it exists lowercase_ : Dict = ds_key_long.split(""".""" ) for node in nodes: lowercase_ : List[Any] = config lowercase_ : Dict = config.get(lowercase_ ) if config is None: if must_exist: raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Tuple ): lowercase_ : str = self.get_value(lowercase_ ) return False if value is None else bool(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Union[str, Any] ): lowercase_ : Union[str, Any] = self.get_value(lowercase_ ) return False if value is None else not bool(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): return self._stage == 2 def SCREAMING_SNAKE_CASE_ ( self : Any ): return self._stage == 3 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return self._offload class __magic_name__ : def __init__( self : Any , lowercase_ : Union[str, Any] ): lowercase_ : Any = engine def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : int , **lowercase_ : str ): # runs backpropagation and handles mixed precision self.engine.backward(lowercase_ , **lowercase_ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class __magic_name__ ( _UpperCAmelCase): def __init__( self : Optional[Any] , lowercase_ : Tuple ): super().__init__(lowercase_ , device_placement=lowercase_ , scaler=lowercase_ ) lowercase_ : Any = hasattr(self.optimizer , """overflow""" ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Tuple=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def SCREAMING_SNAKE_CASE_ ( self : Tuple ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): if self.__has_overflow__: return self.optimizer.overflow return False class __magic_name__ ( _UpperCAmelCase): def __init__( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Tuple ): super().__init__(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class __magic_name__ : def __init__( self : Any , lowercase_ : Union[str, Any] , lowercase_ : List[str]=0.0_01 , lowercase_ : List[str]=0 , **lowercase_ : List[Any] ): lowercase_ : str = params lowercase_ : List[Any] = lr lowercase_ : int = weight_decay lowercase_ : Union[str, Any] = kwargs class __magic_name__ : def __init__( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : List[str]=None , lowercase_ : int=0 , **lowercase_ : int ): lowercase_ : Union[str, Any] = optimizer lowercase_ : List[str] = total_num_steps lowercase_ : Dict = warmup_num_steps lowercase_ : Dict = kwargs
239
1
"""simple docstring""" from __future__ import annotations from cmath import sqrt def lowercase__(A , A , A ) ->tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) lowercase__ : str= b * b - 4 * a * c lowercase__ : Any= (-b + sqrt(A )) / (2 * a) lowercase__ : int= (-b - sqrt(A )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def lowercase__() ->Optional[Any]: """simple docstring""" lowercase__, lowercase__ : Any= quadratic_roots(a=5 , b=6 , c=1 ) print(f'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
150
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def lowercase__(A ) ->Dict: """simple docstring""" lowercase__ : Dict= checkpoints.load_tax_checkpoint(A ) lowercase__ : List[Any]= flatten_dict(A ) return flax_params def lowercase__(A ) ->Tuple: """simple docstring""" lowercase__ : Union[str, Any]= {} lowercase__ : Any= { "token_embedder": "embeddings", "encoder_norm": "layernorm", "kernel": "weight", ".out": ".output", "scale": "weight", "embedders_0.pos_embedding": "row_embedder.weight", "embedders_1.pos_embedding": "column_embedder.weight", } lowercase__ : Tuple= { "query": "attention.query", "key": "attention.key", "value": "attention.value", "output.dense": "output", "encoder_decoder_attention.o": "encoder_decoder_attention.attention.o", "pre_self_attention_layer_norm": "self_attention.layer_norm", "pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm", "mlp.": "mlp.DenseReluDense.", "pre_mlp_layer_norm": "mlp.layer_norm", "self_attention.o": "self_attention.attention.o", "decoder.embeddings.embedding": "decoder.embed_tokens.weight", "decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight", "decoder.decoder_norm.weight": "decoder.final_layer_norm.weight", "decoder.logits_dense.weight": "decoder.lm_head.weight", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowercase__ : Any= ".".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowercase__ : List[Any]= new_key.replace(A , A ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowercase__ : List[str]= new_key.replace(A , A ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowercase__ : List[str]= re.sub(R"layers_(\d+)" , R"layer.\1" , A ) lowercase__ : Any= new_key.replace("encoder" , "encoder.encoder" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowercase__ : str= re.sub(R"layers_(\d+)" , R"layer.\1" , A ) lowercase__ : Dict= flax_dict[key] lowercase__ : str= {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowercase__ : Dict= torch.from_numpy(converted_dict[key].T ) else: lowercase__ : Any= torch.from_numpy(converted_dict[key] ) return converted_torch_dict def lowercase__(A , A , A=False , A=False ) ->Union[str, Any]: """simple docstring""" lowercase__ : Tuple= get_flax_param(A ) if not use_large: lowercase__ : int= PixaStructVisionConfig() lowercase__ : str= PixaStructTextConfig() else: lowercase__ : List[Any]= PixaStructVisionConfig( hidden_size=1_536 , d_ff=3_968 , num_attention_heads=24 , num_hidden_layers=18 ) lowercase__ : Optional[Any]= PixaStructTextConfig(hidden_size=1_536 , d_ff=3_968 , num_heads=24 , num_layers=18 ) lowercase__ : Any= PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=A ) lowercase__ : Optional[Any]= PixaStructForConditionalGeneration(A ) lowercase__ : Tuple= rename_and_convert_flax_params(A ) model.load_state_dict(A ) lowercase__ : List[str]= AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer" ) lowercase__ : List[str]= PixaStructImageProcessor() lowercase__ : Dict= PixaStructProcessor(image_processor=A , tokenizer=A ) if use_large: lowercase__ : Tuple= 4_096 lowercase__ : List[Any]= True # mkdir if needed os.makedirs(A , exist_ok=A ) model.save_pretrained(A ) processor.save_pretrained(A ) print("Model saved in {}".format(A ) ) if __name__ == "__main__": a : int = argparse.ArgumentParser() parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""") parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""") a : Optional[int] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
150
1
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = [False] * len(__snake_case ) UpperCAmelCase_ : Dict = [-1] * len(__snake_case ) def dfs(__snake_case : Dict , __snake_case : Tuple ): UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Dict = c for u in graph[v]: if not visited[u]: dfs(__snake_case , 1 - c ) for i in range(len(__snake_case ) ): if not visited[i]: dfs(__snake_case , 0 ) for i in range(len(__snake_case ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __UpperCAmelCase = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
29
from ....configuration_utils import PretrainedConfig from ....utils import logging _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "trajectory_transformer" a = ["past_key_values"] a = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , __lowerCamelCase : Any=100 , __lowerCamelCase : str=5 , __lowerCamelCase : int=1 , __lowerCamelCase : Tuple=1 , __lowerCamelCase : List[Any]=249 , __lowerCamelCase : List[str]=6 , __lowerCamelCase : Dict=17 , __lowerCamelCase : str=25 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Dict=128 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=0.0006 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : Tuple=1e-12 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Any=True , __lowerCamelCase : List[str]=1 , __lowerCamelCase : Tuple=5_0256 , __lowerCamelCase : Dict=5_0256 , **__lowerCamelCase : str , ) -> Dict: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = action_weight SCREAMING_SNAKE_CASE__ = reward_weight SCREAMING_SNAKE_CASE__ = value_weight SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = block_size SCREAMING_SNAKE_CASE__ = action_dim SCREAMING_SNAKE_CASE__ = observation_dim SCREAMING_SNAKE_CASE__ = transition_dim SCREAMING_SNAKE_CASE__ = learning_rate SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_embd SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kaiming_initializer_range SCREAMING_SNAKE_CASE__ = use_cache super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
314
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowerCAmelCase_ = False class _A ( unittest.TestCase ): pass @slow @require_torch_gpu class _A ( unittest.TestCase ): def __a ( self : Optional[int] ) -> str: """simple docstring""" lowercase : Dict = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowercase : Optional[int] = torch.manual_seed(0 ) lowercase : Tuple = pipe( image=__UpperCamelCase , generator=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images lowercase : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase : str = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
360
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' lowerCAmelCase_ = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' lowerCAmelCase_ = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def __a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def __a ( self : List[Any] ) -> int: """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def __a ( self : Any , _A : Dict , _A : Any , _A : Any=None , _A : Any="uniform_average" , _A : Optional[Any]=True ) -> Dict: """simple docstring""" lowercase : Any = mean_squared_error( _A , _A , sample_weight=_A , multioutput=_A , squared=_A ) return {"mse": mse}
116
0
from statistics import mean, stdev def lowerCamelCase__ ( a__ : list , a__ : int = 3 ) -> list: UpperCamelCase_ = min(a__ ) UpperCamelCase_ = max(a__ ) # normalize data return [round((x - x_min) / (x_max - x_min) , a__ ) for x in data] def lowerCamelCase__ ( a__ : list , a__ : int = 3 ) -> list: UpperCamelCase_ = mean(a__ ) UpperCamelCase_ = stdev(a__ ) # standardize data return [round((x - mu) / (sigma) , a__ ) for x in data]
122
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger() def lowerCamelCase__ ( a__ : int , a__ : str , a__ : LevitConfig , a__ : Path , a__ : bool = True ) -> Any: print(f'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": UpperCamelCase_ = timm.create_model("""levit_128s""" , pretrained=a__ ) else: UpperCamelCase_ = timm.create_model("""levit_128""" , pretrained=a__ ) if hidden_sizes == 192: UpperCamelCase_ = timm.create_model("""levit_192""" , pretrained=a__ ) if hidden_sizes == 256: UpperCamelCase_ = timm.create_model("""levit_256""" , pretrained=a__ ) if hidden_sizes == 384: UpperCamelCase_ = timm.create_model("""levit_384""" , pretrained=a__ ) from_model.eval() UpperCamelCase_ = LevitForImageClassificationWithTeacher(a__ ).eval() UpperCamelCase_ = OrderedDict() UpperCamelCase_ = from_model.state_dict() UpperCamelCase_ = list(from_model.state_dict().keys() ) UpperCamelCase_ = list(our_model.state_dict().keys() ) print(len(a__ ) , len(a__ ) ) for i in range(len(a__ ) ): UpperCamelCase_ = weights[og_keys[i]] our_model.load_state_dict(a__ ) UpperCamelCase_ = torch.randn((2, 3, 224, 224) ) UpperCamelCase_ = from_model(a__ ) UpperCamelCase_ = our_model(a__ ).logits assert torch.allclose(a__ , a__ ), "The model logits don't match the original one." UpperCamelCase_ = name print(a__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) UpperCamelCase_ = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f'''Pushed {checkpoint_name}''' ) def lowerCamelCase__ ( a__ : Path , a__ : str = None , a__ : bool = True ) -> str: UpperCamelCase_ = """imagenet-1k-id2label.json""" UpperCamelCase_ = 1000 UpperCamelCase_ = (1, num_labels) UpperCamelCase_ = """huggingface/label-files""" UpperCamelCase_ = num_labels UpperCamelCase_ = json.load(open(hf_hub_download(a__ , a__ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase_ = {int(a__ ): v for k, v in idalabel.items()} UpperCamelCase_ = idalabel UpperCamelCase_ = {v: k for k, v in idalabel.items()} UpperCamelCase_ = partial(a__ , num_labels=a__ , idalabel=a__ , labelaid=a__ ) UpperCamelCase_ = { """levit-128S""": 128, """levit-128""": 128, """levit-192""": 192, """levit-256""": 256, """levit-384""": 384, } UpperCamelCase_ = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , a__ , names_to_config[model_name] , a__ , a__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , a__ , a__ , a__ , a__ ) return config, expected_shape if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) _A = parser.parse_args() _A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
122
1
'''simple docstring''' def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__a , int(b / 2 ) ) * actual_power(__a , int(b / 2 ) ) else: return a * actual_power(__a , int(b / 2 ) ) * actual_power(__a , int(b / 2 ) ) def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" if b < 0: return 1 / actual_power(__a , __a ) return actual_power(__a , __a ) if __name__ == "__main__": print(power(-2, -3))
5
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" _a : int = FileLock(str(tmpdir / 'foo.lock' ) ) _a : List[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) _a : Any = 0.01 with locka.acquire(): with pytest.raises(__a ): _a : int = time.time() locka.acquire(__a ) assert time.time() - _start > timeout def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Dict = 'a' * 1_0_0_0 + '.lock' _a : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__a ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _a : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__a ): locka.acquire(0 )
5
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase = get_tests_dir('fixtures') class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = mock.Mock() lowercase__ = 500 lowercase__ = {} lowercase__ = HTTPError lowercase__ = {} # Download this model to make sure it's in the cache. lowercase__ = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_lowerCAmelCase ) as mock_head: lowercase__ = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" lowercase__ = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class _a ( unittest.TestCase ): @classmethod def lowerCamelCase_ ( cls: List[str] ) -> List[Any]: """simple docstring""" lowercase__ = TOKEN HfFolder.save_token(_lowerCAmelCase ) @classmethod def lowerCamelCase_ ( cls: Tuple ) -> Tuple: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def lowerCamelCase_ ( self: Optional[int] ) -> Any: """simple docstring""" lowercase__ = WavaVecaFeatureExtractor.from_pretrained(_lowerCAmelCase ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) lowercase__ = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCAmelCase , repo_id='''test-feature-extractor''' , push_to_hub=_lowerCAmelCase , use_auth_token=self._token ) lowercase__ = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" lowercase__ = WavaVecaFeatureExtractor.from_pretrained(_lowerCAmelCase ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) lowercase__ = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCAmelCase , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=_lowerCAmelCase , use_auth_token=self._token ) lowercase__ = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) def lowerCamelCase_ ( self: List[Any] ) -> Any: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() lowercase__ = CustomFeatureExtractor.from_pretrained(_lowerCAmelCase ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) lowercase__ = AutoFeatureExtractor.from_pretrained( f'{USER}/test-dynamic-feature-extractor' , trust_remote_code=_lowerCAmelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
110
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = 0 def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowerCAmelCase , 'w' ) ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowerCAmelCase , 'w' ) ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = CLIPConfig() # Create a dummy config file with image_proceesor_type SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowerCAmelCase , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ).to_dict() config_dict.pop('image_processor_type' ) SCREAMING_SNAKE_CASE_ = CLIPImageProcessor(**_lowerCAmelCase ) # save in new folder model_config.save_pretrained(_lowerCAmelCase ) config.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE_ = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): with self.assertRaisesRegex( _lowerCAmelCase , 'clip-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('clip-base' ) def lowerCAmelCase_ ( self : List[Any] ): with self.assertRaisesRegex( _lowerCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase , revision='aaaaaa' ) def lowerCAmelCase_ ( self : str ): with self.assertRaisesRegex( _lowerCAmelCase , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def lowerCAmelCase_ ( self : Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def lowerCAmelCase_ ( self : Optional[Any] ): try: AutoConfig.register('custom' , _lowerCAmelCase ) AutoImageProcessor.register(_lowerCAmelCase , _lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase ): AutoImageProcessor.register(_lowerCAmelCase , _lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowerCAmelCase , 'w' ) ) SCREAMING_SNAKE_CASE_ = CustomImageProcessor.from_pretrained(_lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase_ ( self : Union[str, Any] ): class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True try: AutoConfig.register('custom' , _lowerCAmelCase ) AutoImageProcessor.register(_lowerCAmelCase , _lowerCAmelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(_lowerCAmelCase , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
225
0
"""simple docstring""" def _snake_case ( lowercase__ ): if any(not isinstance(lowercase__ , lowercase__ ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(lowercase__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(lowercase__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
12
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
1
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase__ ( _UpperCamelCase : Tuple , _UpperCamelCase : Dict , _UpperCamelCase : Dict ) -> int: """simple docstring""" snake_case = BertConfig.from_json_file(_UpperCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) snake_case = BertForPreTraining(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
150
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase ): """simple docstring""" snake_case = data snake_case = None class lowerCAmelCase_ : """simple docstring""" def __init__( self ): """simple docstring""" snake_case = None snake_case = None def __iter__( self ): """simple docstring""" snake_case = self.head while self.head: yield node.data snake_case = node.next if node == self.head: break def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join(str(lowerCAmelCase ) for item in iter(self ) ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" self.insert_nth(len(self ) , lowerCAmelCase ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" self.insert_nth(0 , lowerCAmelCase ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) snake_case = Node(lowerCAmelCase ) if self.head is None: snake_case = new_node # first node points itself snake_case = snake_case = new_node elif index == 0: # insert at head snake_case = self.head snake_case = snake_case = new_node else: snake_case = self.head for _ in range(index - 1 ): snake_case = temp.next snake_case = temp.next snake_case = new_node if index == len(self ) - 1: # insert at tail snake_case = new_node def snake_case ( self ): """simple docstring""" return self.delete_nth(0 ) def snake_case ( self ): """simple docstring""" return self.delete_nth(len(self ) - 1 ) def snake_case ( self , lowerCAmelCase = 0 ): """simple docstring""" if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) snake_case = self.head if self.head == self.tail: # just one node snake_case = snake_case = None elif index == 0: # delete head node snake_case = self.tail.next.next snake_case = self.head.next else: snake_case = self.head for _ in range(index - 1 ): snake_case = temp.next snake_case = temp.next snake_case = temp.next.next if index == len(self ) - 1: # delete at tail snake_case = temp return delete_node.data def snake_case ( self ): """simple docstring""" return len(self ) == 0 def lowerCAmelCase__ ( ) -> None: """simple docstring""" snake_case = CircularLinkedList() assert len(_UpperCamelCase ) == 0 assert circular_linked_list.is_empty() is True assert str(_UpperCamelCase ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(_UpperCamelCase ) == i circular_linked_list.insert_nth(_UpperCamelCase , i + 1 ) assert str(_UpperCamelCase ) == "->".join(str(_UpperCamelCase ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(_UpperCamelCase ) == "->".join(str(_UpperCamelCase ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(_UpperCamelCase ) == "->".join(str(_UpperCamelCase ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(_UpperCamelCase ) == "->".join(str(_UpperCamelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(_UpperCamelCase ) == "->".join(str(_UpperCamelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
150
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , __UpperCAmelCase=["stage1", "stage2", "stage3"] , __UpperCAmelCase=[1, 2, 3] , ) -> List[Any]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =image_size _lowerCAmelCase =patch_size _lowerCAmelCase =num_channels _lowerCAmelCase =embed_dim _lowerCAmelCase =depths _lowerCAmelCase =num_heads _lowerCAmelCase =window_size _lowerCAmelCase =mlp_ratio _lowerCAmelCase =qkv_bias _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =drop_path_rate _lowerCAmelCase =hidden_act _lowerCAmelCase =use_absolute_embeddings _lowerCAmelCase =patch_norm _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =initializer_range _lowerCAmelCase =is_training _lowerCAmelCase =scope _lowerCAmelCase =use_labels _lowerCAmelCase =type_sequence_label_size _lowerCAmelCase =encoder_stride _lowerCAmelCase =out_features _lowerCAmelCase =out_indices def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase =self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self ) -> Tuple: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: _lowerCAmelCase =MaskFormerSwinModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowerCAmelCase =model(_UpperCamelCase ) _lowerCAmelCase =((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase =int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: _lowerCAmelCase =MaskFormerSwinBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowerCAmelCase =model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_UpperCamelCase ): _lowerCAmelCase =["""stem"""] _lowerCAmelCase =MaskFormerSwinBackbone(config=_UpperCamelCase ) def _lowerCAmelCase ( self ) -> Dict: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =MaskFormerSwinModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=_UpperCamelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def _lowerCAmelCase ( self ) -> List[str]: pass def _lowerCAmelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCAmelCase ( self ) -> List[str]: return def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCamelCase ) @unittest.skip("""Swin does not use inputs_embeds""" ) def _lowerCAmelCase ( self ) -> List[Any]: pass @unittest.skip("""Swin does not support feedforward chunking""" ) def _lowerCAmelCase ( self ) -> Dict: pass def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(_UpperCamelCase ) _lowerCAmelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase =[*signature.parameters.keys()] _lowerCAmelCase =["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def _lowerCAmelCase ( self ) -> Optional[Any]: pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def _lowerCAmelCase ( self ) -> Optional[int]: pass def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: _lowerCAmelCase =model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase =model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) _lowerCAmelCase =outputs.hidden_states _lowerCAmelCase =getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # Swin has a different seq_length _lowerCAmelCase =( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase =( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _lowerCAmelCase =True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase =True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def _lowerCAmelCase ( self ) -> Optional[int]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase =3 _lowerCAmelCase =( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase =( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase =image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase =image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _lowerCAmelCase =True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase =True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def _lowerCAmelCase ( self ) -> Tuple: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _lowerCAmelCase ( self ) -> Tuple: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _lowerCAmelCase ( self ) -> str: pass def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__UpperCAmelCase ): _lowerCAmelCase =0 return t def check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase={} ): with torch.no_grad(): _lowerCAmelCase =model(**_UpperCamelCase , return_dict=_UpperCamelCase , **_UpperCamelCase ) _lowerCAmelCase =model(**_UpperCamelCase , return_dict=_UpperCamelCase , **_UpperCamelCase ).to_tuple() def recursive_check(__UpperCAmelCase , __UpperCAmelCase ): if isinstance(_UpperCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_UpperCamelCase , _UpperCamelCase ): recursive_check(_UpperCamelCase , _UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_UpperCamelCase , _UpperCamelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_UpperCamelCase ) , set_nan_tensor_to_zero(_UpperCamelCase ) , atol=1e-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' f''' {torch.isnan(_UpperCamelCase ).any()} and `inf`: {torch.isinf(_UpperCamelCase )}. Dict has''' f''' `nan`: {torch.isnan(_UpperCamelCase ).any()} and `inf`: {torch.isinf(_UpperCamelCase )}.''' ) , ) recursive_check(_UpperCamelCase , _UpperCamelCase ) for model_class in self.all_model_classes: _lowerCAmelCase =model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowerCAmelCase =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) _lowerCAmelCase =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) check_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _lowerCAmelCase =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) _lowerCAmelCase =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) check_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _lowerCAmelCase =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) _lowerCAmelCase =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) check_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , {"""output_hidden_states""": True} ) _lowerCAmelCase =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) _lowerCAmelCase =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) check_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , {"""output_hidden_states""": True} ) @require_torch class lowerCamelCase__ ( unittest.TestCase , lowercase__ ): '''simple docstring''' lowerCamelCase = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase = MaskFormerSwinConfig def _lowerCAmelCase ( self ) -> Dict: _lowerCAmelCase =MaskFormerSwinModelTester(self ) def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase =inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: _lowerCAmelCase =backbone_class(_UpperCamelCase ) backbone.to(_UpperCamelCase ) backbone.eval() _lowerCAmelCase =backbone(**_UpperCamelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _UpperCamelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _lowerCAmelCase =backbone(**_UpperCamelCase , output_hidden_states=_UpperCamelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _lowerCAmelCase =hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _lowerCAmelCase =backbone(**_UpperCamelCase , output_attentions=_UpperCamelCase ) self.assertIsNotNone(outputs.attentions )
358
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def _lowerCamelCase() -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
341
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) snake_case_ : Optional[Any] = "\\n Text data.\n Second line of data." snake_case_ : Dict = "file" @pytest.fixture(scope='''session''' ) def A (__A : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase_ = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') UpperCAmelCase_ = bytes(__A , '''utf-8''' ) with zstd.open(__A , '''wb''' ) as f: f.write(__A ) return path @pytest.fixture def A (__A : List[str] ) -> Dict: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , __A ) , '''w''' ) as f: f.write(__A ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def A (__A : Tuple , __A : Any , __A : Optional[int] , __A : List[str] , __A : Optional[Any] , __A : str ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} UpperCAmelCase_ = input_paths[compression_format] UpperCAmelCase_ = tmp_path / '''cache''' UpperCAmelCase_ = DownloadConfig(cache_dir=__A , extract_compressed_file=__A ) UpperCAmelCase_ = cached_path(__A , download_config=__A ) with open(__A ) as f: UpperCAmelCase_ = f.read() with open(__A ) as f: UpperCAmelCase_ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def A (__A : str , __A : Any , __A : Dict , __A : Union[str, Any] , __A : Union[str, Any] ) -> Any: """simple docstring""" UpperCAmelCase_ = '''custom_cache''' UpperCAmelCase_ = '''custom_extracted_dir''' UpperCAmelCase_ = tmp_path / '''custom_extracted_path''' if default_extracted: UpperCAmelCase_ = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , __A ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(__A ) ) UpperCAmelCase_ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) UpperCAmelCase_ = xz_file UpperCAmelCase_ = ( DownloadConfig(extract_compressed_file=__A ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__A ) ) UpperCAmelCase_ = cached_path(__A , download_config=__A ) assert Path(__A ).parent.parts[-2:] == expected def A (__A : Tuple ) -> Dict: """simple docstring""" UpperCAmelCase_ = str(Path(__A ).resolve() ) assert cached_path(__A ) == text_file # relative path UpperCAmelCase_ = str(Path(__A ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__A ) == text_file def A (__A : List[Any] ) -> str: """simple docstring""" UpperCAmelCase_ = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(__A ): cached_path(__A ) # relative path UpperCAmelCase_ = '''./__missing_file__.txt''' with pytest.raises(__A ): cached_path(__A ) def A (__A : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase_ = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(__A ) as f: UpperCAmelCase_ = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __A ) def A () -> Any: """simple docstring""" with pytest.raises(__A ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __A ) def A (__A : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase_ = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__A ): http_get('''https://huggingface.co''' , temp_file=__A ) with pytest.raises(__A ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __A ) def A (__A : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase_ = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__A ): ftp_get('''ftp://huggingface.co''' , temp_file=__A ) with pytest.raises(__A ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __A ) def A (__A : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase_ = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__A ): fsspec_get('''s3://huggingface.co''' , temp_file=__A ) with pytest.raises(__A ): fsspec_head('''s3://huggingface.co''' )
51
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_:str = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Union[str, Any] = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Any = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_:Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
116
0
'''simple docstring''' lowerCAmelCase : Tuple = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def A_( A : bytes): # Make sure the supplied data is a bytes-like object if not isinstance(A , A): UpperCamelCase = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(A) UpperCamelCase = ''.join(bin(A)[2:].zfill(8) for byte in data) UpperCamelCase = len(A) % 6 != 0 if padding_needed: # The padding that will be added later UpperCamelCase = b'=' * ((6 - len(A) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(A) % 6) else: UpperCamelCase = b'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2)] for index in range(0 , len(A) , 6)).encode() + padding ) def A_( A : str): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(A , A) and not isinstance(A , A): UpperCamelCase = ( 'argument should be a bytes-like object or ASCII string, ' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(A) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(A , A): try: UpperCamelCase = encoded_data.decode('utf-8') except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters') UpperCamelCase = encoded_data.count('=') # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding]), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data), "Invalid base64 character(s) found." # Check the padding assert len(A) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCamelCase = encoded_data[:-padding] UpperCamelCase = ''.join( bin(B64_CHARSET.index(A))[2:].zfill(6) for char in encoded_data)[: -padding * 2] else: UpperCamelCase = ''.join( bin(B64_CHARSET.index(A))[2:].zfill(6) for char in encoded_data) UpperCamelCase = [ int(binary_stream[index : index + 8] , 2) for index in range(0 , len(A) , 8) ] return bytes(A) if __name__ == "__main__": import doctest doctest.testmod()
251
'''simple docstring''' from ... import PretrainedConfig lowerCAmelCase : List[str] = { 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowerCAmelCase_ = """nezha""" def __init__( self , A_=21128 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=64 , A_=2 , A_=0.02 , A_=1e-12 , A_=0.1 , A_=0 , A_=2 , A_=3 , A_=True , **A_ , )-> List[str]: '''simple docstring''' super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = max_relative_position UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = classifier_dropout UpperCamelCase = use_cache
251
1
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
5
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
1
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "x" , SCREAMING_SNAKE_CASE__ = 10**-10 , SCREAMING_SNAKE_CASE__ = 1 , ) -> complex: __snake_case: Any = symbols(SCREAMING_SNAKE_CASE__) __snake_case: List[Any] = lambdify(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) __snake_case: Dict = lambdify(SCREAMING_SNAKE_CASE__ , diff(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__)) __snake_case: Union[str, Any] = starting_point while True: if diff_function(SCREAMING_SNAKE_CASE__) != 0: __snake_case: str = prev_guess - multiplicity * func(SCREAMING_SNAKE_CASE__) / diff_function( SCREAMING_SNAKE_CASE__) else: raise ZeroDivisionError("""Could not find root""") from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess) < precision: return next_guess __snake_case: Union[str, Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(f'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}') # Find value of e print( "The root of log(y) - 1 = 0 is ", f'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f'{newton_raphson("exp(x) - 1", 10, precision=0.0_05)}', ) # Find root of cos(x) print(f'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
293
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase : List[str] = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[Any] = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Tuple = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[int] = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __UpperCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
293
1
def lowerCamelCase__ ( A__ : list ): '''simple docstring''' if any(not isinstance(A__ , A__ ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(A__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(A__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
12
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def lowerCamelCase__ ( A__ : Optional[int] , A__ : Dict , A__ : Optional[int]=8 ): '''simple docstring''' __lowerCamelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowerCamelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: VQModel , ): super().__init__() self.register_modules( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) __lowerCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: int ): if latents is None: __lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __lowerCamelCase = latents.to(UpperCamelCase_ ) __lowerCamelCase = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) __lowerCamelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int]=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowerCamelCase = None for cpu_offloaded_model in [self.unet, self.movq]: __lowerCamelCase, __lowerCamelCase = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. __lowerCamelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self: int ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ): __lowerCamelCase = self._execution_device __lowerCamelCase = guidance_scale > 1.0 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) __lowerCamelCase = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __lowerCamelCase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = hint.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) __lowerCamelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) __lowerCamelCase = self.scheduler.timesteps __lowerCamelCase = self.movq.config.latent_channels __lowerCamelCase, __lowerCamelCase = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) # create initial latent __lowerCamelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase = {"""image_embeds""": image_embeds, """hint""": hint} __lowerCamelCase = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) __lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 ) __lowerCamelCase, __lowerCamelCase = variance_pred.chunk(2 ) __lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowerCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0] # post-processing __lowerCamelCase = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __lowerCamelCase = image * 0.5 + 0.5 __lowerCamelCase = image.clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
12
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'sentencepiece.bpe.model'} _a = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } _a = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } _a = '▁' class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase_ , lowercase_="<s>" , lowercase_="</s>" , lowercase_="</s>" , lowercase_="<s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_="<mask>" , lowercase_ = None , **lowercase_ , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : Tuple = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token UpperCAmelCase_ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase_ : int = vocab_file UpperCAmelCase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase_ ) ) UpperCAmelCase_ : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} UpperCAmelCase_ : Union[str, Any] = len(self.sp_model ) - 1 UpperCAmelCase_ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : List[Any] = [self.cls_token_id] UpperCAmelCase_ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : List[str] = [self.sep_token_id] UpperCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.sp_model ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ : Any = self.sp_model.PieceToId(lowercase_ ) return spm_id if spm_id else self.unk_token_id def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Optional[Any] = "" UpperCAmelCase_ : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase_ ) + token UpperCAmelCase_ : Any = True UpperCAmelCase_ : List[str] = [] else: current_sub_tokens.append(lowercase_ ) UpperCAmelCase_ : List[Any] = False out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def __getstate__( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.__dict__.copy() UpperCAmelCase_ : Dict = None return state def __setstate__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ : Any = {} UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : int = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , "wb" ) as fi: UpperCAmelCase_ : int = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
23
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): UpperCAmelCase_ : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if latents is None: UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ : str = latents.to(lowercase_ ) UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase_ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : str = self._execution_device UpperCAmelCase_ : List[Any] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase_ : List[Any] = self.scheduler.timesteps UpperCAmelCase_ : List[str] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds} UpperCAmelCase_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 ) UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5 UpperCAmelCase_ : int = image.clamp(0 , 1 ) UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
23
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "biogpt" def __init__( self : Any , _UpperCamelCase : Dict=4_2_3_8_4 , _UpperCamelCase : Dict=1_0_2_4 , _UpperCamelCase : Optional[Any]=2_4 , _UpperCamelCase : Union[str, Any]=1_6 , _UpperCamelCase : Union[str, Any]=4_0_9_6 , _UpperCamelCase : Union[str, Any]="gelu" , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : int=0.1 , _UpperCamelCase : Union[str, Any]=1_0_2_4 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : str=1e-12 , _UpperCamelCase : List[str]=True , _UpperCamelCase : str=True , _UpperCamelCase : List[str]=0.0 , _UpperCamelCase : Optional[Any]=0.0 , _UpperCamelCase : int=1 , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Any=2 , **_UpperCamelCase : List[str] , ) ->List[Any]: snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = scale_embedding snake_case_ = use_cache snake_case_ = layerdrop snake_case_ = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
8
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "deberta-v2" def __init__(self , UpperCAmelCase=128100 , UpperCAmelCase=1536 , UpperCAmelCase=24 , UpperCAmelCase=24 , UpperCAmelCase=6144 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-7 , UpperCAmelCase=False , UpperCAmelCase=-1 , UpperCAmelCase=0 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=0 , UpperCAmelCase="gelu" , **UpperCAmelCase , ) -> List[str]: super().__init__(**UpperCAmelCase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = relative_attention _snake_case = max_relative_positions _snake_case = pad_token_id _snake_case = position_biased_input # Backwards compatibility if type(UpperCAmelCase ) == str: _snake_case = [x.strip() for x in pos_att_type.lower().split("""|""" )] _snake_case = pos_att_type _snake_case = vocab_size _snake_case = layer_norm_eps _snake_case = kwargs.get("""pooler_hidden_size""" , UpperCAmelCase ) _snake_case = pooler_dropout _snake_case = pooler_hidden_act class _lowerCAmelCase ( __snake_case ): '''simple docstring''' @property def lowercase (self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def lowercase (self ) -> int: return 12 def lowercase (self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 3 , UpperCAmelCase = 40 , UpperCAmelCase = 40 , UpperCAmelCase = None , ) -> Mapping[str, Any]: _snake_case = super().generate_dummy_inputs(preprocessor=UpperCAmelCase , framework=UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
341
0
def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float ): return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(1_00, 0.25) = }""") print(f"""{price_plus_tax(125.50, 0.05) = }""")
357
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :List[Any] ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCamelCase__( self :int ) -> Optional[Any]: a__ , a__ = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' ,from_pt=__snake_case ,dtype=jnp.bfloataa ) a__ , a__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,controlnet=__snake_case ,from_pt=__snake_case ,dtype=jnp.bfloataa ) a__ = controlnet_params a__ = 'bird' a__ = jax.device_count() a__ = pipe.prepare_text_inputs([prompts] * num_samples ) a__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) a__ = pipe.prepare_image_inputs([canny_image] * num_samples ) a__ = jax.random.PRNGKey(0 ) a__ = jax.random.split(__snake_case ,jax.device_count() ) a__ = replicate(__snake_case ) a__ = shard(__snake_case ) a__ = shard(__snake_case ) a__ = pipe( prompt_ids=__snake_case ,image=__snake_case ,params=__snake_case ,prng_seed=__snake_case ,num_inference_steps=50 ,jit=__snake_case ,).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) a__ = images[0, 2_53:2_56, 2_53:2_56, -1] a__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) a__ = jnp.array( [0.16_79_69, 0.11_66_99, 0.08_15_43, 0.15_42_97, 0.13_28_12, 0.10_88_87, 0.16_99_22, 0.16_99_22, 0.20_50_78] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ , a__ = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' ,from_pt=__snake_case ,dtype=jnp.bfloataa ) a__ , a__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,controlnet=__snake_case ,from_pt=__snake_case ,dtype=jnp.bfloataa ) a__ = controlnet_params a__ = 'Chef in the kitchen' a__ = jax.device_count() a__ = pipe.prepare_text_inputs([prompts] * num_samples ) a__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) a__ = pipe.prepare_image_inputs([pose_image] * num_samples ) a__ = jax.random.PRNGKey(0 ) a__ = jax.random.split(__snake_case ,jax.device_count() ) a__ = replicate(__snake_case ) a__ = shard(__snake_case ) a__ = shard(__snake_case ) a__ = pipe( prompt_ids=__snake_case ,image=__snake_case ,params=__snake_case ,prng_seed=__snake_case ,num_inference_steps=50 ,jit=__snake_case ,).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) a__ = images[0, 2_53:2_56, 2_53:2_56, -1] a__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) a__ = jnp.array( [[0.27_14_84, 0.26_17_19, 0.27_53_91, 0.27_73_44, 0.27_92_97, 0.29_10_16, 0.29_49_22, 0.30_27_34, 0.30_27_34]] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
109
0
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _a : '''simple docstring''' def __init__( self, A, A=2, A=8, A=True, A=True, A=True, A=True, A=99, A=16, A=5, A=2, A=36, A="gelu", A=0.0, A=0.0, A=512, A=16, A=2, A=0.02, A=3, A=4, A=None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : List[str] = seq_length SCREAMING_SNAKE_CASE : Tuple = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Dict = use_token_type_ids SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = num_labels SCREAMING_SNAKE_CASE : Optional[int] = num_choices SCREAMING_SNAKE_CASE : Union[str, Any] = scope def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Dict = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size], self.num_choices ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=A, initializer_range=self.initializer_range, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_config() SCREAMING_SNAKE_CASE : List[Any] = 300 return config def UpperCamelCase_ ( self ): '''simple docstring''' ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Tuple = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = MraModel(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(A, attention_mask=A, token_type_ids=A ) SCREAMING_SNAKE_CASE : int = model(A, token_type_ids=A ) SCREAMING_SNAKE_CASE : Dict = model(A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A, A, A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : str = MraModel(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model( A, attention_mask=A, token_type_ids=A, encoder_hidden_states=A, encoder_attention_mask=A, ) SCREAMING_SNAKE_CASE : int = model( A, attention_mask=A, token_type_ids=A, encoder_hidden_states=A, ) SCREAMING_SNAKE_CASE : Optional[Any] = model(A, attention_mask=A, token_type_ids=A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = MraForMaskedLM(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Any = model(A, attention_mask=A, token_type_ids=A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = MraForQuestionAnswering(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : int = model( A, attention_mask=A, token_type_ids=A, start_positions=A, end_positions=A, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE : Optional[int] = MraForSequenceClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(A, attention_mask=A, token_type_ids=A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = MraForTokenClassification(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(A, attention_mask=A, token_type_ids=A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_choices SCREAMING_SNAKE_CASE : List[str] = MraForMultipleChoice(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : str = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() SCREAMING_SNAKE_CASE : int = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() SCREAMING_SNAKE_CASE : List[str] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() SCREAMING_SNAKE_CASE : Union[str, Any] = model( A, attention_mask=A, token_type_ids=A, labels=A, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Optional[Any] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) A : Any = False A : str = False A : Any = False A : Any = False A : Any = () def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MraModelTester(self ) SCREAMING_SNAKE_CASE : str = ConfigTester(self, config_class=A, hidden_size=37 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE : List[str] = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Union[str, Any] = MraModel.from_pretrained(A ) self.assertIsNotNone(A ) @unittest.skip(reason='MRA does not output attentions' ) def UpperCamelCase_ ( self ): '''simple docstring''' return @require_torch class _a ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) SCREAMING_SNAKE_CASE : str = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(A )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape, A ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) SCREAMING_SNAKE_CASE : int = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(A )[0] SCREAMING_SNAKE_CASE : List[Any] = 50_265 SCREAMING_SNAKE_CASE : List[Any] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape, A ) SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) SCREAMING_SNAKE_CASE : List[str] = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(A )[0] SCREAMING_SNAKE_CASE : int = 50_265 SCREAMING_SNAKE_CASE : str = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], A, atol=1E-4 ) )
251
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : int = '''openai-gpt''' A : str = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self, A=40_478, A=512, A=768, A=12, A=12, A="gelu", A=0.1, A=0.1, A=0.1, A=1E-5, A=0.02, A="cls_index", A=True, A=None, A=True, A=0.1, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = n_positions SCREAMING_SNAKE_CASE : List[str] = n_embd SCREAMING_SNAKE_CASE : Optional[Any] = n_layer SCREAMING_SNAKE_CASE : Optional[Any] = n_head SCREAMING_SNAKE_CASE : str = afn SCREAMING_SNAKE_CASE : List[str] = resid_pdrop SCREAMING_SNAKE_CASE : int = embd_pdrop SCREAMING_SNAKE_CASE : Optional[Any] = attn_pdrop SCREAMING_SNAKE_CASE : List[str] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = summary_type SCREAMING_SNAKE_CASE : Tuple = summary_use_proj SCREAMING_SNAKE_CASE : Dict = summary_activation SCREAMING_SNAKE_CASE : Tuple = summary_first_dropout SCREAMING_SNAKE_CASE : List[str] = summary_proj_to_labels super().__init__(**A )
251
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class __snake_case (A_ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.26.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(">=", "0.0.12") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class __snake_case (A_ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
360
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase (UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase : List[Any] = None if token is not None: _lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} _lowerCAmelCase : Tuple = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" _lowerCAmelCase : str = requests.get(UpperCamelCase_ , headers=UpperCamelCase_ ).json() _lowerCAmelCase : Optional[Any] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _lowerCAmelCase : List[str] = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(UpperCamelCase_ ): _lowerCAmelCase : int = requests.get(url + F"&page={i + 2}" , headers=UpperCamelCase_ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def _UpperCAmelCase (UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any]=None ): '''simple docstring''' _lowerCAmelCase : Optional[int] = None if token is not None: _lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} _lowerCAmelCase : Optional[int] = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" _lowerCAmelCase : Optional[int] = requests.get(UpperCamelCase_ , headers=UpperCamelCase_ ).json() _lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) _lowerCAmelCase : List[str] = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(UpperCamelCase_ ): _lowerCAmelCase : List[str] = requests.get(url + F"&page={i + 2}" , headers=UpperCamelCase_ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def _UpperCAmelCase (UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any ): '''simple docstring''' _lowerCAmelCase : str = None if token is not None: _lowerCAmelCase : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} _lowerCAmelCase : List[str] = requests.get(UpperCamelCase_ , headers=UpperCamelCase_ , allow_redirects=UpperCamelCase_ ) _lowerCAmelCase : List[str] = result.headers["""Location"""] _lowerCAmelCase : List[Any] = requests.get(UpperCamelCase_ , allow_redirects=UpperCamelCase_ ) _lowerCAmelCase : int = os.path.join(UpperCamelCase_ , F"{artifact_name}.zip" ) with open(UpperCamelCase_ , """wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase (UpperCamelCase_ : int , UpperCamelCase_ : Optional[int]=None ): '''simple docstring''' _lowerCAmelCase : Dict = [] _lowerCAmelCase : Any = [] _lowerCAmelCase : Union[str, Any] = None with zipfile.ZipFile(UpperCamelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(UpperCamelCase_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(UpperCamelCase_ ) as f: for line in f: _lowerCAmelCase : List[str] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _lowerCAmelCase : Union[str, Any] = line[: line.index(""": """ )] _lowerCAmelCase : Union[str, Any] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed _lowerCAmelCase : Tuple = line[len("""FAILED """ ) :] failed_tests.append(UpperCamelCase_ ) elif filename == "job_name.txt": _lowerCAmelCase : str = line if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError( F"`errors` and `failed_tests` should have the same number of elements. Got {len(UpperCamelCase_ )} for `errors` " F"and {len(UpperCamelCase_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" """ problem.""" ) _lowerCAmelCase : int = None if job_name and job_links: _lowerCAmelCase : Optional[int] = job_links.get(UpperCamelCase_ , UpperCamelCase_ ) # A list with elements of the form (line of error, error, failed test) _lowerCAmelCase : Tuple = [x + [y] + [job_link] for x, y in zip(UpperCamelCase_ , UpperCamelCase_ )] return result def _UpperCAmelCase (UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any]=None ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : List[Any] = [os.path.join(UpperCamelCase_ , UpperCamelCase_ ) for p in os.listdir(UpperCamelCase_ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(UpperCamelCase_ , job_links=UpperCamelCase_ ) ) return errors def _UpperCAmelCase (UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict=None ): '''simple docstring''' _lowerCAmelCase : List[Any] = Counter() counter.update([x[1] for x in logs] ) _lowerCAmelCase : Dict = counter.most_common() _lowerCAmelCase : Dict = {} for error, count in counts: if error_filter is None or error not in error_filter: _lowerCAmelCase : Union[str, Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _lowerCAmelCase : int = dict(sorted(r.items() , key=lambda UpperCamelCase_ : item[1]["count"] , reverse=UpperCamelCase_ ) ) return r def _UpperCAmelCase (UpperCamelCase_ : Tuple ): '''simple docstring''' _lowerCAmelCase : List[str] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): _lowerCAmelCase : Optional[Any] = test.split("""/""" )[2] else: _lowerCAmelCase : Union[str, Any] = None return test def _UpperCAmelCase (UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict=None ): '''simple docstring''' _lowerCAmelCase : List[str] = [(x[0], x[1], get_model(x[2] )) for x in logs] _lowerCAmelCase : List[str] = [x for x in logs if x[2] is not None] _lowerCAmelCase : int = {x[2] for x in logs} _lowerCAmelCase : str = {} for test in tests: _lowerCAmelCase : Union[str, Any] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _lowerCAmelCase : List[Any] = counter.most_common() _lowerCAmelCase : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _lowerCAmelCase : List[str] = sum(error_counts.values() ) if n_errors > 0: _lowerCAmelCase : int = {"""count""": n_errors, """errors""": error_counts} _lowerCAmelCase : Dict = dict(sorted(r.items() , key=lambda UpperCamelCase_ : item[1]["count"] , reverse=UpperCamelCase_ ) ) return r def _UpperCAmelCase (UpperCamelCase_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase : Optional[int] = """| no. | error | status |""" _lowerCAmelCase : List[Any] = """|-:|:-|:-|""" _lowerCAmelCase : str = [header, sep] for error in reduced_by_error: _lowerCAmelCase : Optional[Any] = reduced_by_error[error]["""count"""] _lowerCAmelCase : int = F"| {count} | {error[:100]} | |" lines.append(UpperCamelCase_ ) return "\n".join(UpperCamelCase_ ) def _UpperCAmelCase (UpperCamelCase_ : List[str] ): '''simple docstring''' _lowerCAmelCase : str = """| model | no. of errors | major error | count |""" _lowerCAmelCase : Any = """|-:|-:|-:|-:|""" _lowerCAmelCase : str = [header, sep] for model in reduced_by_model: _lowerCAmelCase : Union[str, Any] = reduced_by_model[model]["""count"""] _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = list(reduced_by_model[model]["""errors"""].items() )[0] _lowerCAmelCase : str = F"| {model} | {count} | {error[:60]} | {_count} |" lines.append(UpperCamelCase_ ) return "\n".join(UpperCamelCase_ ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _lowerCamelCase : Tuple = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _lowerCamelCase : Optional[int] = get_job_links(args.workflow_run_id, token=args.token) _lowerCamelCase : int = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _lowerCamelCase : Optional[Any] = k.find(" / ") _lowerCamelCase : Tuple = k[index + len(" / ") :] _lowerCamelCase : List[Any] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _lowerCamelCase : Union[str, Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _lowerCamelCase : str = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _lowerCamelCase : Dict = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _lowerCamelCase : Union[str, Any] = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _lowerCamelCase : str = reduce_by_error(errors) _lowerCamelCase : Tuple = reduce_by_model(errors) _lowerCamelCase : List[str] = make_github_table(reduced_by_error) _lowerCamelCase : Optional[Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
159
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Union[str, Any] = """vit_msn""" def __init__( self , __UpperCAmelCase=7_6_8 , __UpperCAmelCase=1_2 , __UpperCAmelCase=1_2 , __UpperCAmelCase=3_0_7_2 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-06 , __UpperCAmelCase=2_2_4 , __UpperCAmelCase=1_6 , __UpperCAmelCase=3 , __UpperCAmelCase=True , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ :Any = hidden_size lowerCAmelCase__ :Tuple = num_hidden_layers lowerCAmelCase__ :str = num_attention_heads lowerCAmelCase__ :Optional[Any] = intermediate_size lowerCAmelCase__ :Dict = hidden_act lowerCAmelCase__ :str = hidden_dropout_prob lowerCAmelCase__ :str = attention_probs_dropout_prob lowerCAmelCase__ :Optional[int] = initializer_range lowerCAmelCase__ :Dict = layer_norm_eps lowerCAmelCase__ :List[Any] = image_size lowerCAmelCase__ :Tuple = patch_size lowerCAmelCase__ :Any = num_channels lowerCAmelCase__ :str = qkv_bias
293
"""simple docstring""" from __future__ import annotations __A = tuple[int, int, int] __A = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase __A = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" # -------------------------- default selection -------------------------- # rotors -------------------------- __A = """EGZWVONAHDCLFQMSIPJBYUKXTR""" __A = """FOBHMDKEXQNRAULPGSJVTYICZW""" __A = """ZJXESIUQLHAVRMDOYGTNFWPBKC""" # reflector -------------------------- __A = { """A""": """N""", """N""": """A""", """B""": """O""", """O""": """B""", """C""": """P""", """P""": """C""", """D""": """Q""", """Q""": """D""", """E""": """R""", """R""": """E""", """F""": """S""", """S""": """F""", """G""": """T""", """T""": """G""", """H""": """U""", """U""": """H""", """I""": """V""", """V""": """I""", """J""": """W""", """W""": """J""", """K""": """X""", """X""": """K""", """L""": """Y""", """Y""": """L""", """M""": """Z""", """Z""": """M""", } # -------------------------- extra rotors -------------------------- __A = """RMDJXFUWGISLHVTCQNKYPBEZOA""" __A = """SGLCPQWZHKXAREONTFBVIYJUDM""" __A = """HVSICLTYKQUBXDWAJZOMFGPREN""" __A = """RZWQHFMVDBKICJLNTUXAGYPSOE""" __A = """LFKIJODBEGAMQPXVUHYSTCZRWN""" __A = """KOAEGVDHXPQZMLFTYWJNBRCIUS""" def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: """simple docstring""" if (unique_rotsel := len(set(_SCREAMING_SNAKE_CASE ) )) < 3: lowerCAmelCase__ :Union[str, Any] = F"Please use 3 unique rotors (not {unique_rotsel})" raise Exception(_SCREAMING_SNAKE_CASE ) # Checks if rotor positions are valid lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :str = rotpos if not 0 < rotorposa <= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Tuple = F"First rotor position is not within range of 1..26 ({rotorposa}" raise ValueError(_SCREAMING_SNAKE_CASE ) if not 0 < rotorposa <= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Optional[Any] = F"Second rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(_SCREAMING_SNAKE_CASE ) if not 0 < rotorposa <= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Union[str, Any] = F"Third rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(_SCREAMING_SNAKE_CASE ) # Validates string and returns dict lowerCAmelCase__ :int = _plugboard(_SCREAMING_SNAKE_CASE ) return rotpos, rotsel, pbdict def __A (_SCREAMING_SNAKE_CASE ) ->dict[str, str]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :str = F"Plugboard setting isn't type string ({type(_SCREAMING_SNAKE_CASE )})" raise TypeError(_SCREAMING_SNAKE_CASE ) elif len(_SCREAMING_SNAKE_CASE ) % 2 != 0: lowerCAmelCase__ :str = F"Odd number of symbols ({len(_SCREAMING_SNAKE_CASE )})" raise Exception(_SCREAMING_SNAKE_CASE ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique lowerCAmelCase__ :Any = set() for i in pbstring: if i not in abc: lowerCAmelCase__ :Any = F"'{i}' not in list of symbols" raise Exception(_SCREAMING_SNAKE_CASE ) elif i in tmppbl: lowerCAmelCase__ :Dict = F"Duplicate symbol ({i})" raise Exception(_SCREAMING_SNAKE_CASE ) else: tmppbl.add(_SCREAMING_SNAKE_CASE ) del tmppbl # Created the dictionary lowerCAmelCase__ :List[Any] = {} for j in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 , 2 ): lowerCAmelCase__ :Optional[int] = pbstring[j + 1] lowerCAmelCase__ :Union[str, Any] = pbstring[j] return pb def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (rotora, rotora, rotora) , _SCREAMING_SNAKE_CASE = "" , ) ->str: """simple docstring""" lowerCAmelCase__ :Tuple = text.upper() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Tuple = _validator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , plugb.upper() ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Tuple = rotor_position lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowerCAmelCase__ :Dict = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowerCAmelCase__ :Dict = plugboard[symbol] # rotor ra -------------------------- lowerCAmelCase__ :Optional[int] = abc.index(_SCREAMING_SNAKE_CASE ) + rotorposa lowerCAmelCase__ :str = rotora[index % len(_SCREAMING_SNAKE_CASE )] # rotor rb -------------------------- lowerCAmelCase__ :Optional[int] = abc.index(_SCREAMING_SNAKE_CASE ) + rotorposa lowerCAmelCase__ :int = rotora[index % len(_SCREAMING_SNAKE_CASE )] # rotor rc -------------------------- lowerCAmelCase__ :str = abc.index(_SCREAMING_SNAKE_CASE ) + rotorposa lowerCAmelCase__ :Optional[Any] = rotora[index % len(_SCREAMING_SNAKE_CASE )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowerCAmelCase__ :str = reflector[symbol] # 2nd rotors lowerCAmelCase__ :Tuple = abc[rotora.index(_SCREAMING_SNAKE_CASE ) - rotorposa] lowerCAmelCase__ :Optional[int] = abc[rotora.index(_SCREAMING_SNAKE_CASE ) - rotorposa] lowerCAmelCase__ :Any = abc[rotora.index(_SCREAMING_SNAKE_CASE ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowerCAmelCase__ :Union[str, Any] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :str = 0 rotorposa += 1 if rotorposa >= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :List[Any] = 0 rotorposa += 1 if rotorposa >= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Optional[Any] = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_SCREAMING_SNAKE_CASE ) return "".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = """This is my Python script that emulates the Enigma machine from WWII.""" __A = (1, 1, 1) __A = """pictures""" __A = (rotora, rotora, rotora) __A = enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
293
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase : Dict = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
160
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
160
1
'''simple docstring''' from collections.abc import Callable import numpy as np def snake_case_ ( _lowerCAmelCase : Callable , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> np.ndarray: UpperCAmelCase : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : Tuple = np.zeros((n + 1,) ) UpperCAmelCase : Optional[int] = ya UpperCAmelCase : Optional[Any] = xa for k in range(_lowerCAmelCase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowerCAmelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
23
'''simple docstring''' from math import isclose, sqrt def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> tuple[float, float, float]: UpperCAmelCase : Optional[int] = point_y / 4 / point_x UpperCAmelCase : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) UpperCAmelCase : Any = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) UpperCAmelCase : Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 UpperCAmelCase : Union[str, Any] = outgoing_gradient**2 + 4 UpperCAmelCase : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) UpperCAmelCase : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 UpperCAmelCase : List[str] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) UpperCAmelCase : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point UpperCAmelCase : Optional[Any] = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus UpperCAmelCase : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def snake_case_ ( _lowerCAmelCase : float = 1.4 , _lowerCAmelCase : float = -9.6 ) -> int: UpperCAmelCase : int = 0 UpperCAmelCase : float = first_x_coord UpperCAmelCase : float = first_y_coord UpperCAmelCase : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"{solution() = }")
23
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _UpperCAmelCase : str = None _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : List[str] = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } _UpperCAmelCase : Any = { """albert-base-v1""": 5_12, """albert-large-v1""": 5_12, """albert-xlarge-v1""": 5_12, """albert-xxlarge-v1""": 5_12, """albert-base-v2""": 5_12, """albert-large-v2""": 5_12, """albert-xlarge-v2""": 5_12, """albert-xxlarge-v2""": 5_12, } _UpperCAmelCase : List[Any] = """▁""" class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = AlbertTokenizer def __init__( self : Optional[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Dict="[CLS]" , UpperCAmelCase : List[Any]="[SEP]" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : List[str]="<pad>" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : int="[MASK]" , **UpperCAmelCase : Tuple , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCamelCase__ : Optional[int] = ( AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase , normalized=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token ) super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , remove_space=UpperCAmelCase , keep_accents=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : Dict = do_lower_case lowerCamelCase__ : Any = remove_space lowerCamelCase__ : str = keep_accents lowerCamelCase__ : Any = vocab_file lowerCamelCase__ : str = False if not self.vocab_file else True def A_ ( self : List[str] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : Tuple = [self.sep_token_id] lowerCamelCase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A_ ( self : Tuple , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : Optional[int] = [self.sep_token_id] lowerCamelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase__ : Tuple = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
45
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCAmelCase : Tuple = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = ["""PerceiverFeatureExtractor"""] _UpperCAmelCase : Dict = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _UpperCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
1
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def UpperCamelCase_( lowerCamelCase_ ) -> Dict: if isinstance(lowerCamelCase_ , collections.abc.Iterable ): return x return (x, x) @require_tf class _lowerCamelCase: def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" pass def UpperCamelCase ( self) -> int: """simple docstring""" pass def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) _lowercase : int = TFVisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE) _lowercase : Tuple = model(input_ids=_SCREAMING_SNAKE_CASE, pixel_values=_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Optional[Any] = self.get_vision_text_model(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) _lowercase : List[Any] = TFVisionTextDualEncoderModel(vision_model=_SCREAMING_SNAKE_CASE, text_model=_SCREAMING_SNAKE_CASE) _lowercase : List[str] = model(input_ids=_SCREAMING_SNAKE_CASE, pixel_values=_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], model.config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> int: """simple docstring""" _lowercase : int = self.get_vision_text_model(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) _lowercase : List[str] = {"""vision_model""": vision_model, """text_model""": text_model} _lowercase : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_SCREAMING_SNAKE_CASE) _lowercase : List[str] = model(input_ids=_SCREAMING_SNAKE_CASE, pixel_values=_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], model.config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : List[Any] = self.get_vision_text_model(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) _lowercase : Any = TFVisionTextDualEncoderModel(vision_model=_SCREAMING_SNAKE_CASE, text_model=_SCREAMING_SNAKE_CASE) _lowercase : Union[str, Any] = model(input_ids=_SCREAMING_SNAKE_CASE, pixel_values=_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE) _lowercase : Optional[Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE) _lowercase : List[Any] = TFVisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE) _lowercase : Optional[int] = model(input_ids=_SCREAMING_SNAKE_CASE, pixel_values=_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE) _lowercase : Any = after_output[0].numpy() _lowercase : int = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(_SCREAMING_SNAKE_CASE, 1E-5) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : Optional[int] = self.get_vision_text_model(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) _lowercase : int = TFVisionTextDualEncoderModel(vision_model=_SCREAMING_SNAKE_CASE, text_model=_SCREAMING_SNAKE_CASE) _lowercase : Dict = model( input_ids=_SCREAMING_SNAKE_CASE, pixel_values=_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE, output_attentions=_SCREAMING_SNAKE_CASE) _lowercase : Any = output.vision_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE), vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase : Tuple = to_atuple(vision_model.config.image_size) _lowercase : Optional[int] = to_atuple(vision_model.config.patch_size) _lowercase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase : Optional[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) _lowercase : List[Any] = output.text_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : str = np.abs((a - b)).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, F'''Difference between torch and flax is {diff} (>= {tol}).''') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_SCREAMING_SNAKE_CASE) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_SCREAMING_SNAKE_CASE) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_SCREAMING_SNAKE_CASE) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**_SCREAMING_SNAKE_CASE) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_SCREAMING_SNAKE_CASE) @slow def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[int] = self.get_pretrained_model_and_inputs() _lowercase : List[Any] = model_a(**_SCREAMING_SNAKE_CASE) _lowercase : List[Any] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_SCREAMING_SNAKE_CASE) _lowercase : Tuple = TFVisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE) _lowercase : List[str] = model_a(**_SCREAMING_SNAKE_CASE) _lowercase : Optional[Any] = after_outputs[0].numpy() _lowercase : List[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(_SCREAMING_SNAKE_CASE, 1E-5) @require_tf class _lowerCamelCase( UpperCAmelCase__, unittest.TestCase ): def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit', 'hf-internal-testing/tiny-random-bert') _lowercase : int = 13 _lowercase : Optional[int] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _lowercase : Any = ids_tensor([batch_size, 4], model.text_model.config.vocab_size) _lowercase : int = random_attention_mask([batch_size, 4]) _lowercase : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : Optional[Any] = TFViTModel(_SCREAMING_SNAKE_CASE, name='vision_model') _lowercase : Optional[Any] = TFBertModel(_SCREAMING_SNAKE_CASE, name='text_model') return vision_model, text_model def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[Any] = TFViTModelTester(self) _lowercase : int = TFBertModelTester(self) _lowercase : str = vit_model_tester.prepare_config_and_inputs() _lowercase : int = bert_model_tester.prepare_config_and_inputs() _lowercase : str = vision_config_and_inputs ( _lowercase ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowerCamelCase( UpperCAmelCase__, unittest.TestCase ): def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf', 'hf-internal-testing/tiny-random-roberta') _lowercase : Union[str, Any] = 13 _lowercase : Optional[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _lowercase : List[Any] = ids_tensor([batch_size, 4], model.text_model.config.vocab_size) _lowercase : Optional[Any] = random_attention_mask([batch_size, 4]) _lowercase : Tuple = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : str = self.get_vision_text_model(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) _lowercase : Optional[int] = TFVisionTextDualEncoderModel(vision_model=_SCREAMING_SNAKE_CASE, text_model=_SCREAMING_SNAKE_CASE) _lowercase : List[Any] = model( input_ids=_SCREAMING_SNAKE_CASE, pixel_values=_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE, output_attentions=_SCREAMING_SNAKE_CASE) _lowercase : Tuple = output.vision_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE), vision_config.num_hidden_layers) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowercase : Dict = to_atuple(vision_model.config.image_size) _lowercase : Tuple = to_atuple(vision_model.config.patch_size) _lowercase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase : List[str] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) _lowercase : List[str] = output.text_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Optional[Any] = TFDeiTModel(_SCREAMING_SNAKE_CASE, name='vision_model') _lowercase : Union[str, Any] = TFRobertaModel(_SCREAMING_SNAKE_CASE, name='text_model') return vision_model, text_model def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = TFDeiTModelTester(self) _lowercase : List[Any] = TFRobertaModelTester(self) _lowercase : List[Any] = vit_model_tester.prepare_config_and_inputs() _lowercase : Optional[int] = bert_model_tester.prepare_config_and_inputs() _lowercase : Tuple = vision_config_and_inputs ( _lowercase ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowerCamelCase( UpperCAmelCase__, unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf', 'hf-internal-testing/tiny-random-bert') _lowercase : Optional[int] = 13 _lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _lowercase : Optional[Any] = ids_tensor([batch_size, 4], model.text_model.config.vocab_size) _lowercase : Union[str, Any] = random_attention_mask([batch_size, 4]) _lowercase : Optional[int] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : str = TFCLIPVisionModel(_SCREAMING_SNAKE_CASE, name='vision_model') _lowercase : List[str] = TFBertModel(_SCREAMING_SNAKE_CASE, name='text_model') return vision_model, text_model def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Dict = TFCLIPVisionModelTester(self) _lowercase : Dict = TFBertModelTester(self) _lowercase : str = clip_model_tester.prepare_config_and_inputs() _lowercase : List[str] = bert_model_tester.prepare_config_and_inputs() _lowercase : Optional[Any] = vision_config_and_inputs ( _lowercase ) : Dict = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian', logit_scale_init_value=1.0, from_pt=_SCREAMING_SNAKE_CASE) _lowercase : List[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian') _lowercase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _lowercase : Optional[int] = processor( text=['una foto di un gatto', 'una foto di un cane'], images=_SCREAMING_SNAKE_CASE, padding=_SCREAMING_SNAKE_CASE, return_tensors='np') _lowercase : Optional[int] = model(**_SCREAMING_SNAKE_CASE) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) _lowercase : str = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]]) self.assertTrue(np.allclose(outputs.logits_per_image.numpy(), _SCREAMING_SNAKE_CASE, atol=1E-3))
21
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *UpperCamelCase : str , UpperCamelCase : Optional[Union[Dict, Any]] = None , UpperCamelCase : Tuple=True , UpperCamelCase : Optional[int]=2 ): from .. import __version__ UpperCAmelCase : Tuple = take_from UpperCAmelCase : Optional[Any] = () if not isinstance(args[0] , UpperCamelCase ): UpperCAmelCase : List[str] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(UpperCamelCase ).base_version ) >= version.parse(UpperCamelCase ): raise ValueError( F"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" F" version {__version__} is >= {version_name}" ) UpperCAmelCase : Optional[int] = None if isinstance(UpperCamelCase , UpperCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(UpperCamelCase ),) UpperCAmelCase : List[str] = F"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(UpperCamelCase , UpperCamelCase ): values += (getattr(UpperCamelCase , UpperCamelCase ),) UpperCAmelCase : List[Any] = F"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: UpperCAmelCase : int = F"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: UpperCAmelCase : Optional[Any] = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , UpperCamelCase , stacklevel=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) > 0: UpperCAmelCase : Optional[int] = inspect.getouterframes(inspect.currentframe() )[1] UpperCAmelCase : Union[str, Any] = call_frame.filename UpperCAmelCase : List[Any] = call_frame.lineno UpperCAmelCase : List[str] = call_frame.function UpperCAmelCase , UpperCAmelCase : Optional[int] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(UpperCamelCase ) == 0: return elif len(UpperCamelCase ) == 1: return values[0] return values
109
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = """transfo-xl""" UpperCamelCase_ : List[str] = ["""mems"""] UpperCamelCase_ : str = { """n_token""": """vocab_size""", """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=26_77_35 , SCREAMING_SNAKE_CASE_ : List[Any]=[2_00_00, 4_00_00, 20_00_00] , SCREAMING_SNAKE_CASE_ : int=10_24 , SCREAMING_SNAKE_CASE_ : Optional[int]=10_24 , SCREAMING_SNAKE_CASE_ : Optional[Any]=16 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=64 , SCREAMING_SNAKE_CASE_ : Tuple=40_96 , SCREAMING_SNAKE_CASE_ : int=4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , SCREAMING_SNAKE_CASE_ : Tuple=18 , SCREAMING_SNAKE_CASE_ : Dict=16_00 , SCREAMING_SNAKE_CASE_ : str=10_00 , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=-1 , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : str=0.0 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : List[Any]="normal" , SCREAMING_SNAKE_CASE_ : Dict=0.01 , SCREAMING_SNAKE_CASE_ : Any=0.01 , SCREAMING_SNAKE_CASE_ : Dict=0.02 , SCREAMING_SNAKE_CASE_ : Any=1E-5 , SCREAMING_SNAKE_CASE_ : int=0 , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> Optional[Any]: '''simple docstring''' A: Optional[Any] = vocab_size A: Optional[Any] = [] self.cutoffs.extend(SCREAMING_SNAKE_CASE_ ) if proj_share_all_but_first: A: Union[str, Any] = [False] + [True] * len(self.cutoffs ) else: A: Any = [False] + [False] * len(self.cutoffs ) A: Tuple = d_model A: Union[str, Any] = d_embed A: Tuple = d_head A: Optional[int] = d_inner A: str = div_val A: Any = pre_lnorm A: Dict = n_layer A: Dict = n_head A: Union[str, Any] = mem_len A: str = same_length A: str = attn_type A: Optional[Any] = clamp_len A: Any = sample_softmax A: int = adaptive A: List[str] = dropout A: Tuple = dropatt A: List[str] = untie_r A: Optional[Any] = init A: Optional[int] = init_range A: Dict = proj_init_std A: Optional[int] = init_std A: Dict = layer_norm_epsilon super().__init__(eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def _snake_case ( self : Tuple ) -> Any: '''simple docstring''' logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : Dict ) -> int: '''simple docstring''' raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
369
'''simple docstring''' class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ) -> int: '''simple docstring''' A: Tuple = None A: Dict = None A: Optional[int] = graph self._normalize_graph(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: str = len(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = None def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> str: '''simple docstring''' if sources is int: A: Union[str, Any] = [sources] if sinks is int: A: Tuple = [sinks] if len(SCREAMING_SNAKE_CASE_ ) == 0 or len(SCREAMING_SNAKE_CASE_ ) == 0: return A: List[str] = sources[0] A: Optional[int] = sinks[0] # make fake vertex if there are more # than one source or sink if len(SCREAMING_SNAKE_CASE_ ) > 1 or len(SCREAMING_SNAKE_CASE_ ) > 1: A: Any = 0 for i in sources: max_input_flow += sum(self.graph[i] ) A: Dict = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: A: Optional[Any] = max_input_flow A: Optional[Any] = 0 A: str = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: A: Optional[Any] = max_input_flow A: str = size - 1 def _snake_case ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: '''simple docstring''' A: Optional[Any] = algorithm(self ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: '''simple docstring''' A: str = flow_network A: List[str] = flow_network.verticesCount A: Dict = flow_network.sourceIndex A: Any = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that A: str = flow_network.graph A: str = False def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' if not self.executed: self._algorithm() A: str = True def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) # use this to save your result A: Any = -1 def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = [[0] * self.verticies_count for i in range(self.verticies_count )] A: Any = [0] * self.verticies_count A: Optional[Any] = [0] * self.verticies_count def _snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' A: Any = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule A: str = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list A: Dict = 0 while i < len(SCREAMING_SNAKE_CASE_ ): A: Any = vertices_list[i] A: str = self.heights[vertex_index] self.process_vertex(SCREAMING_SNAKE_CASE_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE_ ) ) A: Tuple = 0 else: i += 1 A: Tuple = sum(self.preflow[self.source_index] ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.relabel(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: '''simple docstring''' A: Optional[int] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> int: '''simple docstring''' A: Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): A: List[Any] = self.heights[to_index] if min_height is not None: A: int = min_height + 1 if __name__ == "__main__": UpperCamelCase = [0] UpperCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCamelCase = flow_network.find_maximum_flow() print(f'maximum flow is {maximum_flow}')
334
0
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'M-CLIP' def __init__( self : Optional[int],lowercase_ : Union[str, Any]=1_0_2_4,lowercase_ : str=7_6_8,**lowercase_ : List[str] )-> Optional[int]: '''simple docstring''' A__ = transformerDimSize A__ = imageDimSize super().__init__(**lowercase_ ) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = MCLIPConfig def __init__( self : List[str],lowercase_ : Dict,*lowercase_ : Optional[int],**lowercase_ : str )-> int: '''simple docstring''' super().__init__(lowercase_,*lowercase_,**lowercase_ ) A__ = XLMRobertaModel(lowercase_ ) A__ = torch.nn.Linear( in_features=config.transformerDimensions,out_features=config.numDims ) def snake_case__ ( self : int,lowercase_ : int,lowercase_ : List[Any] )-> Tuple: '''simple docstring''' A__ = self.transformer(input_ids=lowercase_,attention_mask=lowercase_ )[0] A__ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(lowercase_ ), embs
7
def _lowerCAmelCase ( lowerCAmelCase_ :int = 1_000 )->int: '''simple docstring''' snake_case_ , snake_case_ = 1, 1 snake_case_ = 2 while True: snake_case_ = 0 snake_case_ = fa + fa snake_case_ , snake_case_ = fa, f index += 1 for _ in str(lowerCAmelCase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
159
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : int = SwinConfig(image_size=192 ) if "base" in model_name: lowercase__ : Optional[int] = 6 lowercase__ : Any = 128 lowercase__ : Optional[Any] = (2, 2, 18, 2) lowercase__ : List[Any] = (4, 8, 16, 32) elif "large" in model_name: lowercase__ : Optional[Any] = 12 lowercase__ : int = 192 lowercase__ : Tuple = (2, 2, 18, 2) lowercase__ : Union[str, Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowercase__ : List[str] = window_size lowercase__ : Any = embed_dim lowercase__ : int = depths lowercase__ : List[Any] = num_heads return config def __UpperCamelCase ( UpperCAmelCase ): if "encoder.mask_token" in name: lowercase__ : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowercase__ : List[str] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowercase__ : str = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowercase__ : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowercase__ : Optional[Any] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowercase__ : Optional[int] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase__ : List[Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase__ : List[Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase__ : Any = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowercase__ : Union[str, Any] = '''layernorm.weight''' if name == "encoder.norm.bias": lowercase__ : List[Any] = '''layernorm.bias''' if "decoder" in name: pass else: lowercase__ : List[Any] = '''swin.''' + name return name def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): for key in orig_state_dict.copy().keys(): lowercase__ : str = orig_state_dict.pop(UpperCAmelCase ) if "attn_mask" in key: pass elif "qkv" in key: lowercase__ : Dict = key.split('''.''' ) lowercase__ : Dict = int(key_split[2] ) lowercase__ : List[str] = int(key_split[4] ) lowercase__ : Optional[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ : Optional[int] = val[:dim, :] lowercase__ : Optional[int] = val[ dim : dim * 2, : ] lowercase__ : Optional[int] = val[-dim:, :] else: lowercase__ : Dict = val[ :dim ] lowercase__ : Optional[Any] = val[ dim : dim * 2 ] lowercase__ : List[str] = val[ -dim: ] else: lowercase__ : int = val return orig_state_dict def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : str = torch.load(UpperCAmelCase , map_location='''cpu''' )['''model'''] lowercase__ : Optional[int] = get_swin_config(UpperCAmelCase ) lowercase__ : str = SwinForMaskedImageModeling(UpperCAmelCase ) model.eval() lowercase__ : Any = convert_state_dict(UpperCAmelCase , UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) lowercase__ : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : Tuple = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) lowercase__ : List[str] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) lowercase__ : List[Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' ) with torch.no_grad(): lowercase__ : str = model(**UpperCAmelCase ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print(F"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(F"""microsoft/{model_name}""" ) image_processor.push_to_hub(F"""microsoft/{model_name}""" ) if __name__ == "__main__": __a: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __a: List[str] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
214
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Dict = len(UpperCAmelCase ) print('''The following activities are selected:''' ) # The first activity is always selected lowercase__ : str = 0 print(UpperCAmelCase , end=''',''' ) # Consider rest of the activities for j in range(UpperCAmelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(UpperCAmelCase , end=''',''' ) lowercase__ : str = j if __name__ == "__main__": import doctest doctest.testmod() __a: str = [1, 3, 0, 5, 8, 5] __a: Optional[Any] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
214
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , ): __a : Any = size if size is not None else {'''height''': 18, '''width''': 18} __a : Any = parent __a : Any = batch_size __a : str = num_channels __a : Tuple = image_size __a : Dict = min_resolution __a : Optional[int] = max_resolution __a : List[Any] = do_resize __a : Union[str, Any] = size __a : List[Any] = apply_ocr def _lowerCamelCase ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _lowerCamelCase ( self ): __a : Optional[Any] = LayoutLMvaImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''apply_ocr''' ) ) def _lowerCamelCase ( self ): __a : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) __a : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): # Initialize image_processing __a : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase ) self.assertIsInstance(encoding.boxes , _UpperCAmelCase ) # Test batched __a : List[Any] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _lowerCamelCase ( self ): # Initialize image_processing __a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : Optional[Any] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _lowerCamelCase ( self ): # Initialize image_processing __a : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _lowerCamelCase ( self ): # with apply_OCR = True __a : Tuple = LayoutLMvaImageProcessor() from datasets import load_dataset __a : List[Any] = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) __a : Optional[Any] = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) __a : Optional[Any] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __a : str = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 __a : Optional[Any] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase ) self.assertListEqual(encoding.boxes , _UpperCAmelCase ) # with apply_OCR = False __a : Union[str, Any] = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) __a : Dict = image_processing(_UpperCAmelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
160
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: A = None A = logging.get_logger(__name__) A = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} A = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 A = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = TaTokenizer __lowerCAmelCase = [] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="</s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase=100 , _UpperCAmelCase=None , **_UpperCAmelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __a : Dict = [f"""<extra_id_{i}>""" for i in range(_UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __a : Union[str, Any] = len(set(filter(lambda _UpperCAmelCase : bool('''extra_id_''' in str(_UpperCAmelCase ) ) , _UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , extra_ids=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __a : Union[str, Any] = vocab_file __a : int = False if not self.vocab_file else True __a : List[str] = extra_ids @staticmethod def _lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __a : Any = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCAmelCase , ) return max_model_length def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __a : Optional[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : str = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __a : List[str] = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Tuple = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self ): return list( set(filter(lambda _UpperCAmelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self ): return [self.convert_tokens_to_ids(_UpperCAmelCase ) for token in self.get_sentinel_tokens()]
160
1
"""simple docstring""" import requests from bsa import BeautifulSoup def lowercase ( a__ : str = "AAPL" ) -> str: _UpperCamelCase = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _UpperCamelCase = BeautifulSoup(requests.get(a__ ).text , '''html.parser''' ) _UpperCamelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
54
"""simple docstring""" import numpy as np def lowercase ( a__ : Optional[Any] , a__ : str , a__ : Union[str, Any] , a__ : Any , a__ : List[str] ) -> Dict: _UpperCamelCase = int(np.ceil((x_end - xa) / h ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(a__ ): _UpperCamelCase = f(a__ , y[k] ) _UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _UpperCamelCase = f(x + h , y[k] + h * ka ) _UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
54
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = 'focalnet' def __init__( self , _a=224 , _a=4 , _a=3 , _a=96 , _a=False , _a=[192, 384, 768, 768] , _a=[2, 2, 6, 2] , _a=[2, 2, 2, 2] , _a=[3, 3, 3, 3] , _a="gelu" , _a=4.0 , _a=0.0 , _a=0.1 , _a=False , _a=1E-4 , _a=False , _a=False , _a=False , _a=0.02 , _a=1E-5 , _a=32 , _a=None , _a=None , **_a , ): super().__init__(**_a ) __a = image_size __a = patch_size __a = num_channels __a = embed_dim __a = use_conv_embed __a = hidden_sizes __a = depths __a = focal_levels __a = focal_windows __a = hidden_act __a = mlp_ratio __a = hidden_dropout_prob __a = drop_path_rate __a = use_layerscale __a = layerscale_value __a = use_post_layernorm __a = use_post_layernorm_in_modulation __a = normalize_modulator __a = initializer_range __a = layer_norm_eps __a = encoder_stride __a = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] __a , __a = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names )
45
"""simple docstring""" def lowercase ( lowerCAmelCase__ : list ) -> bool: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(lowerCAmelCase__ ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(lowerCAmelCase__ ) == 1: return True __a = series[1] - series[0] for index in range(len(lowerCAmelCase__ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def lowercase ( lowerCAmelCase__ : list ) -> float: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(lowerCAmelCase__ ) == 0: raise ValueError('''Input list must be a non empty list''' ) __a = 0 for val in series: answer += val return answer / len(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
1
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a__ : str = logging.get_logger(__name__) # pylint: disable=invalid-name a__ : str = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def _lowercase ( __A ,__A ,__A=8 ): '''simple docstring''' __UpperCamelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCamelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCAmelCase__ ( lowercase__): def __init__( self , lowercase , lowercase , lowercase , ) -> Optional[Any]: super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) __UpperCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: if latents is None: __UpperCamelCase = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) __UpperCamelCase = latents.to(lowercase_ ) __UpperCamelCase = latents * scheduler.init_noise_sigma return latents def __lowerCamelCase ( self , lowercase=0 ) -> List[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __UpperCamelCase = torch.device(f"cuda:{gpu_id}" ) __UpperCamelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def __lowerCamelCase ( self , lowercase=0 ) -> Optional[Any]: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __UpperCamelCase = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCamelCase = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCamelCase = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. __UpperCamelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCamelCase ( self ) -> Optional[Any]: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase , lowercase , lowercase = 5_1_2 , lowercase = 5_1_2 , lowercase = 1_0_0 , lowercase = 4.0 , lowercase = 1 , lowercase = None , lowercase = None , lowercase = "pil" , lowercase = True , ) -> Dict: __UpperCamelCase = self._execution_device __UpperCamelCase = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): __UpperCamelCase = torch.cat(lowercase_ , dim=0 ) __UpperCamelCase = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): __UpperCamelCase = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: __UpperCamelCase = image_embeds.repeat_interleave(lowercase_ , dim=0 ) __UpperCamelCase = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) __UpperCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) __UpperCamelCase = self.scheduler.timesteps __UpperCamelCase = self.unet.config.in_channels __UpperCamelCase = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent __UpperCamelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance __UpperCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCamelCase = {"image_embeds": image_embeds} __UpperCamelCase = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: __UpperCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) __UpperCamelCase = noise_pred.chunk(2 ) __UpperCamelCase = variance_pred.chunk(2 ) __UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __UpperCamelCase = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing __UpperCamelCase = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: __UpperCamelCase = image * 0.5 + 0.5 __UpperCamelCase = image.clamp(0 , 1 ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
351
'''simple docstring''' import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _lowercase ( __A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = s.rsplit(__A ,__A ) return new.join(__A ) def _lowercase ( __A ): '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = {} __UpperCamelCase = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f"{group_key}." ,f"{group_key}.group." ) if "res_path" in key: __UpperCamelCase = key.replace("""res_path.""" ,"""res_path.path.""" ) if key.endswith(""".w""" ): __UpperCamelCase = rreplace(__A ,""".w""" ,""".weight""" ,1 ) if key.endswith(""".b""" ): __UpperCamelCase = rreplace(__A ,""".b""" ,""".bias""" ,1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def _lowercase ( __A ,__A ,__A=None ,__A=True ): '''simple docstring''' from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(__A ): __UpperCamelCase = torch.load(__A ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(__A ) if isinstance(__A ,__A ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(__A ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(__A ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(__A ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(__A ) hf_model.load_state_dict(__A ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(__A ) __UpperCamelCase = count_parameters(__A ) assert torch.allclose(__A ,__A ,atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(__A ) else: return hf_state_dict if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') a__ : Dict = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
243
0
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_( lowerCamelCase_ ): '''simple docstring''' def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Any: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> int: if len(__UpperCAmelCase ) == 0 or len(__UpperCAmelCase ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(__UpperCAmelCase ) ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : List[str] = [sequences] lowerCAmelCase__ : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__UpperCAmelCase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(lowerCamelCase_ ) class lowerCAmelCase_( lowerCamelCase_ ): '''simple docstring''' def __init__( self ,__UpperCAmelCase=ZeroShotClassificationArgumentHandler() ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : int = args_parser super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase ) if self.entailment_id == -1: logger.warning( """Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def UpperCAmelCase_ ( self ) -> Union[str, Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=TruncationStrategy.ONLY_FIRST ,**__UpperCAmelCase ) -> Any: lowerCAmelCase__ : List[Any] = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) lowerCAmelCase__ : Optional[Any] = self.tokenizer.eos_token try: lowerCAmelCase__ : Dict = self.tokenizer( __UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors=__UpperCAmelCase ,padding=__UpperCAmelCase ,truncation=__UpperCAmelCase ,) except Exception as e: if "too short" in str(__UpperCAmelCase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. lowerCAmelCase__ : str = self.tokenizer( __UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors=__UpperCAmelCase ,padding=__UpperCAmelCase ,truncation=TruncationStrategy.DO_NOT_TRUNCATE ,) else: raise e return inputs def UpperCAmelCase_ ( self ,**__UpperCAmelCase ) -> str: if kwargs.get("""multi_class""" ,__UpperCAmelCase ) is not None: lowerCAmelCase__ : Tuple = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) lowerCAmelCase__ : str = {} if "candidate_labels" in kwargs: lowerCAmelCase__ : Union[str, Any] = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: lowerCAmelCase__ : Union[str, Any] = kwargs["""hypothesis_template"""] lowerCAmelCase__ : Dict = {} if "multi_label" in kwargs: lowerCAmelCase__ : List[str] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self ,__UpperCAmelCase ,*__UpperCAmelCase ,**__UpperCAmelCase ,) -> List[Any]: if len(__UpperCAmelCase ) == 0: pass elif len(__UpperCAmelCase ) == 1 and "candidate_labels" not in kwargs: lowerCAmelCase__ : Union[str, Any] = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(__UpperCAmelCase ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase="This example is {}." ) -> Optional[Any]: lowerCAmelCase__ , lowerCAmelCase__ : Dict = self._args_parser(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) for i, (candidate_label, sequence_pair) in enumerate(zip(__UpperCAmelCase ,__UpperCAmelCase ) ): lowerCAmelCase__ : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__UpperCAmelCase ) - 1, **model_input, } def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : Optional[Any] = inputs["""candidate_label"""] lowerCAmelCase__ : Union[str, Any] = inputs["""sequence"""] lowerCAmelCase__ : List[str] = {k: inputs[k] for k in self.tokenizer.model_input_names} lowerCAmelCase__ : Dict = self.model(**__UpperCAmelCase ) lowerCAmelCase__ : int = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> int: lowerCAmelCase__ : List[str] = [outputs["""candidate_label"""] for outputs in model_outputs] lowerCAmelCase__ : str = [outputs["""sequence"""] for outputs in model_outputs] lowerCAmelCase__ : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) lowerCAmelCase__ : List[str] = logits.shape[0] lowerCAmelCase__ : List[Any] = len(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = N // n lowerCAmelCase__ : Any = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__UpperCAmelCase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently lowerCAmelCase__ : Tuple = self.entailment_id lowerCAmelCase__ : Union[str, Any] = -1 if entailment_id == 0 else 0 lowerCAmelCase__ : Dict = reshaped_outputs[..., [contradiction_id, entailment_id]] lowerCAmelCase__ : Union[str, Any] = np.exp(__UpperCAmelCase ) / np.exp(__UpperCAmelCase ).sum(-1 ,keepdims=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels lowerCAmelCase__ : Any = reshaped_outputs[..., self.entailment_id] lowerCAmelCase__ : Optional[Any] = np.exp(__UpperCAmelCase ) / np.exp(__UpperCAmelCase ).sum(-1 ,keepdims=__UpperCAmelCase ) lowerCAmelCase__ : str = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
37
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'nllb-moe' __UpperCAmelCase = ['past_key_values'] __UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =encoder_ffn_dim SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =encoder_attention_heads SCREAMING_SNAKE_CASE =decoder_ffn_dim SCREAMING_SNAKE_CASE =decoder_layers SCREAMING_SNAKE_CASE =decoder_attention_heads SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =activation_dropout SCREAMING_SNAKE_CASE =activation_function SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =encoder_layerdrop SCREAMING_SNAKE_CASE =decoder_layerdrop SCREAMING_SNAKE_CASE =use_cache SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE =router_z_loss_coef SCREAMING_SNAKE_CASE =router_aux_loss_coef SCREAMING_SNAKE_CASE =decoder_sparse_step SCREAMING_SNAKE_CASE =encoder_sparse_step SCREAMING_SNAKE_CASE =num_experts SCREAMING_SNAKE_CASE =expert_capacity SCREAMING_SNAKE_CASE =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) SCREAMING_SNAKE_CASE =router_dtype SCREAMING_SNAKE_CASE =router_ignore_padding_tokens SCREAMING_SNAKE_CASE =batch_prioritized_routing SCREAMING_SNAKE_CASE =second_expert_policy SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE =moe_token_dropout SCREAMING_SNAKE_CASE =output_router_logits super().__init__( pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
334
0
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
356
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
61
0
# Algorithm for the pigeonhole sorting def snake_case__ ( SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' lowercase__ : List[Any] = min(SCREAMING_SNAKE_CASE_ ) # min() finds the minimum value lowercase__ : Dict = max(SCREAMING_SNAKE_CASE_ ) # max() finds the maximum value lowercase__ : Any = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size lowercase__ : List[str] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. lowercase__ : Union[str, Any] = 0 for count in range(SCREAMING_SNAKE_CASE_ ): while holes[count] > 0: holes[count] -= 1 lowercase__ : Union[str, Any] = count + min_val i += 1 def snake_case__ ( ): '''simple docstring''' lowercase__ : Any = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(SCREAMING_SNAKE_CASE_ ) print('Sorted order is:' , ' '.join(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": main()
214
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case_ = TypeVar('''T''') snake_case_ = TypeVar('''U''') class SCREAMING_SNAKE_CASE__ (Generic[T, U] ): def __init__( self , a , a): lowercase__ : List[Any] = key lowercase__ : List[Any] = val lowercase__ : DoubleLinkedListNode[T, U] | None = None lowercase__ : DoubleLinkedListNode[T, U] | None = None def __repr__( self): return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next)}, has prev: {bool(self.prev)}""" ) class SCREAMING_SNAKE_CASE__ (Generic[T, U] ): def __init__( self): lowercase__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(a , a) lowercase__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(a , a) lowercase__ , lowercase__ : Union[str, Any] = self.rear, self.head def __repr__( self): lowercase__ : Any = ['DoubleLinkedList'] lowercase__ : List[str] = self.head while node.next is not None: rep.append(str(a)) lowercase__ : Tuple = node.next rep.append(str(self.rear)) return ",\n ".join(a) def snake_case_ ( self , a): lowercase__ : Optional[Any] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None lowercase__ : Dict = node lowercase__ : int = previous lowercase__ : Union[str, Any] = node lowercase__ : Optional[int] = self.rear def snake_case_ ( self , a): if node.prev is None or node.next is None: return None lowercase__ : Union[str, Any] = node.next lowercase__ : Tuple = node.prev lowercase__ : Union[str, Any] = None lowercase__ : List[Any] = None return node class SCREAMING_SNAKE_CASE__ (Generic[T, U] ): __lowerCamelCase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , a): lowercase__ : DoubleLinkedList[T, U] = DoubleLinkedList() lowercase__ : Optional[Any] = capacity lowercase__ : Union[str, Any] = 0 lowercase__ : Tuple = 0 lowercase__ : int = 0 lowercase__ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self): return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self , a): return key in self.cache def snake_case_ ( self , a): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 lowercase__ : DoubleLinkedListNode[T, U] = self.cache[key] lowercase__ : str = self.list.remove(self.cache[key]) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(a) return node.val self.miss += 1 return None def snake_case_ ( self , a , a): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity lowercase__ : Optional[int] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(a) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 lowercase__ : Optional[Any] = DoubleLinkedListNode(a , a) self.list.add(self.cache[key]) self.num_keys += 1 else: # bump node to the end of the list, update value lowercase__ : Any = self.list.remove(self.cache[key]) assert node is not None # node guaranteed to be in list lowercase__ : Union[str, Any] = value self.list.add(a) @classmethod def snake_case_ ( cls , a = 128): def cache_decorator_inner(a) -> Callable[..., U]: def cache_decorator_wrapper(*a) -> U: if func not in cls.decorator_function_to_instance_map: lowercase__ : Dict = LRUCache(a) lowercase__ : str = cls.decorator_function_to_instance_map[func].get(args[0]) if result is None: lowercase__ : str = func(*a) cls.decorator_function_to_instance_map[func].put(args[0] , a) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(a , 'cache_info' , a) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
214
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowerCAmelCase__ = get_tests_dir() + '/test_data/fsmt/fsmt_val_data.json' with io.open(filename, 'r', encoding='utf-8') as f: lowerCAmelCase__ = json.load(f) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Optional[int] , lowercase__ : List[Any]): '''simple docstring''' return FSMTTokenizer.from_pretrained(lowercase__) def __snake_case ( self : int , lowercase__ : Tuple): '''simple docstring''' lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(lowercase__).to(lowercase__) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ]) @slow def __snake_case ( self : str , lowercase__ : List[str] , lowercase__ : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ = F"""facebook/wmt19-{pair}""" lowerCAmelCase__ = self.get_tokenizer(lowercase__) lowerCAmelCase__ = self.get_model(lowercase__) lowerCAmelCase__ = bleu_data[pair]['src'] lowerCAmelCase__ = bleu_data[pair]['tgt'] lowerCAmelCase__ = tokenizer(lowercase__ , return_tensors='pt' , truncation=lowercase__ , padding='longest').to(lowercase__) lowerCAmelCase__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase__ = tokenizer.batch_decode( lowercase__ , skip_special_tokens=lowercase__ , clean_up_tokenization_spaces=lowercase__) lowerCAmelCase__ = calculate_bleu(lowercase__ , lowercase__) print(lowercase__) self.assertGreaterEqual(scores['bleu'] , lowercase__)
119
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ = 16 lowerCAmelCase__ = 32 def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ = 1_6 ): lowerCAmelCase__ = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCAmelCase__ = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ = 1_6 elif accelerator.mixed_precision != "no": lowerCAmelCase__ = 8 else: lowerCAmelCase__ = None return tokenizer.pad( lowerCAmelCase__ , padding='longest' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='pt' , ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader( tokenized_datasets['train'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) lowerCAmelCase__ = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase__ = mocked_dataloaders # noqa: F811 def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , lowerCAmelCase__ ) == "1": lowerCAmelCase__ = 2 # Initialize accelerator lowerCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ = config['lr'] lowerCAmelCase__ = int(config['num_epochs'] ) lowerCAmelCase__ = int(config['seed'] ) lowerCAmelCase__ = int(config['batch_size'] ) lowerCAmelCase__ = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation lowerCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase__ = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler lowerCAmelCase__ = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase__ = model(**lowerCAmelCase__ ) lowerCAmelCase__ = outputs.loss lowerCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() lowerCAmelCase__ = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**lowerCAmelCase__ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowerCAmelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples lowerCAmelCase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) lowerCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ ) def __lowerCamelCase ( ): lowerCAmelCase__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
119
1
"""simple docstring""" from math import ceil, sqrt def UpperCAmelCase__ (lowerCAmelCase_ = 100_0000 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __SCREAMING_SNAKE_CASE = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __SCREAMING_SNAKE_CASE = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F"{solution() = }")
54
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Any = CLIPTokenizer snake_case__ : Dict = CLIPTokenizerFast snake_case__ : List[Any] = True snake_case__ : Optional[Any] = {} snake_case__ : Dict = False def UpperCAmelCase_ ( self : Any ) -> Any: super().setUp() # fmt: off __SCREAMING_SNAKE_CASE = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on __SCREAMING_SNAKE_CASE = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] __SCREAMING_SNAKE_CASE = {"unk_token": "<unk>"} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase__ ) ) def UpperCAmelCase_ ( self : List[Any] , **UpperCAmelCase__ : Tuple ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Any , **UpperCAmelCase__ : Optional[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = "lower newer" __SCREAMING_SNAKE_CASE = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : int ) -> List[str]: __SCREAMING_SNAKE_CASE = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __SCREAMING_SNAKE_CASE = "lower newer" __SCREAMING_SNAKE_CASE = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] __SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE = [1_0, 2, 1_6, 9, 3, 2, 1_6, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) @require_ftfy def UpperCAmelCase_ ( self : Optional[Any] ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways __SCREAMING_SNAKE_CASE = "xa\u0303y" + " " + "x\xe3y" __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Test that the tokenization is identical on unicode of space type __SCREAMING_SNAKE_CASE = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Test that the tokenization is identical on unicode of line break type __SCREAMING_SNAKE_CASE = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = "hello" # `hello` is a token in the vocabulary of `pretrained_name` __SCREAMING_SNAKE_CASE = F"""{text_of_1_token} {text_of_1_token}""" __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase__ , use_fast=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase__ ) + 1, len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , ) __SCREAMING_SNAKE_CASE = F""" {text}""" __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase__ , use_fast=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase__ ) + 1, 1 + len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(UpperCAmelCase__ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def UpperCAmelCase_ ( self : Optional[int] ) -> int: super().test_tokenization_python_rust_equals() def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: # CLIP always lower cases letters pass
54
1
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE ): # noqa: E741 """simple docstring""" UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = 0 UpperCamelCase = [0] * n UpperCamelCase = [False] * n UpperCamelCase = [False] * n def dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if parent == root: out_edge_count += 1 UpperCamelCase = True UpperCamelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: UpperCamelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: UpperCamelCase = True # AP found via cycle if at == low[to]: UpperCamelCase = True else: UpperCamelCase = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: UpperCamelCase = 0 UpperCamelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) UpperCamelCase = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph lowerCAmelCase__ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
244
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = math.inf , _SCREAMING_SNAKE_CASE = -math.inf , _SCREAMING_SNAKE_CASE = math.inf , _SCREAMING_SNAKE_CASE = -math.inf , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 0.01 , _SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" UpperCamelCase = False UpperCamelCase = search_prob UpperCamelCase = start_temperate UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = None while not search_end: UpperCamelCase = current_state.score() if best_state is None or current_score > best_state.score(): UpperCamelCase = current_state scores.append(_SCREAMING_SNAKE_CASE ) iterations += 1 UpperCamelCase = None UpperCamelCase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCamelCase = random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) # picking a random neighbor UpperCamelCase = neighbors.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCamelCase = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCamelCase = picked_neighbor else: UpperCamelCase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCamelCase = picked_neighbor UpperCamelCase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCamelCase = True else: UpperCamelCase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return (3 * x**2) - (6 * y) lowerCAmelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'''{local_min.score()}''' ) lowerCAmelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'''{local_min.score()}''' )
244
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _a = logging.get_logger(__name__) class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Tuple = ["pixel_values"] def __init__( self : Optional[int], UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Dict[str, int]] = None, UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Union[int, float] = 1 / 2_5_5, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, **UpperCAmelCase__ : Any, ): super().__init__(**UpperCAmelCase__ ) __lowercase = size if size is not None else {"shortest_edge": 2_5_6} __lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ ) __lowercase = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} __lowercase = get_size_dict(UpperCAmelCase__, param_name="crop_size" ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Dict[str, int], UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC, UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Union[str, Any], ): __lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowercase = get_resize_output_image_size(UpperCAmelCase__, size=size["shortest_edge"], default_to_square=UpperCAmelCase__ ) return resize(UpperCAmelCase__, size=UpperCAmelCase__, resample=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Dict[str, int], UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Optional[int], ): __lowercase = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(UpperCAmelCase__, size=(size["height"], size["width"]), data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : str, UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : float, UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Union[str, Any] ): return rescale(UpperCAmelCase__, scale=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : List[str], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Union[float, List[float]], UpperCAmelCase__ : Union[float, List[float]], UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Tuple, ): return normalize(UpperCAmelCase__, mean=UpperCAmelCase__, std=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : ImageInput, UpperCAmelCase__ : Optional[bool] = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : PILImageResampling = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : Optional[bool] = None, UpperCAmelCase__ : Optional[float] = None, UpperCAmelCase__ : Optional[bool] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[str, TensorType]] = None, UpperCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST, **UpperCAmelCase__ : Optional[Any], ): __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = size if size is not None else self.size __lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ ) __lowercase = resample if resample is not None else self.resample __lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase = crop_size if crop_size is not None else self.crop_size __lowercase = get_size_dict(UpperCAmelCase__, param_name="crop_size" ) __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: __lowercase = [self.resize(image=UpperCAmelCase__, size=UpperCAmelCase__, resample=UpperCAmelCase__ ) for image in images] if do_center_crop: __lowercase = [self.center_crop(image=UpperCAmelCase__, size=UpperCAmelCase__ ) for image in images] if do_rescale: __lowercase = [self.rescale(image=UpperCAmelCase__, scale=UpperCAmelCase__ ) for image in images] if do_normalize: __lowercase = [self.normalize(image=UpperCAmelCase__, mean=UpperCAmelCase__, std=UpperCAmelCase__ ) for image in images] __lowercase = [to_channel_dimension_format(UpperCAmelCase__, UpperCAmelCase__ ) for image in images] __lowercase = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase__, tensor_type=UpperCAmelCase__ ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Tuple] = None ): __lowercase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(UpperCAmelCase__ ): __lowercase = target_sizes.numpy() __lowercase = [] for idx in range(len(UpperCAmelCase__ ) ): __lowercase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ), size=target_sizes[idx], mode="bilinear", align_corners=UpperCAmelCase__ ) __lowercase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase__ ) else: __lowercase = logits.argmax(dim=1 ) __lowercase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
17
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : str = ["""vqvae"""] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->List[str]: super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , mel=__UpperCAmelCase , vqvae=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: return 50 if isinstance(self.scheduler , __UpperCAmelCase) else 10_00 @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=True , ) ->Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: a_ = steps or self.get_default_steps() self.scheduler.set_timesteps(__UpperCAmelCase) a_ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: a_ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: a_ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__UpperCAmelCase , device=self.device , ) a_ = noise a_ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__UpperCAmelCase , __UpperCAmelCase) a_ = self.mel.audio_slice_to_image(__UpperCAmelCase) a_ = np.frombuffer(input_image.tobytes() , dtype="uint8").reshape( (input_image.height, input_image.width)) a_ = (input_image / 2_55) * 2 - 1 a_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: a_ = self.vqvae.encode(torch.unsqueeze(__UpperCAmelCase , 0)).latent_dist.sample( generator=__UpperCAmelCase)[0] a_ = self.vqvae.config.scaling_factor * input_images if start_step > 0: a_ = self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , self.scheduler.timesteps[start_step - 1]) a_ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) a_ = int(mask_start_secs * pixels_per_second) a_ = int(mask_end_secs * pixels_per_second) a_ = self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , __UpperCAmelCase): a_ = self.unet(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase)["sample"] else: a_ = self.unet(__UpperCAmelCase , __UpperCAmelCase)["sample"] if isinstance(self.scheduler , __UpperCAmelCase): a_ = self.scheduler.step( model_output=__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , )["prev_sample"] else: a_ = self.scheduler.step( model_output=__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , generator=__UpperCAmelCase , )["prev_sample"] if mask is not None: if mask_start > 0: a_ = mask[:, step, :, :mask_start] if mask_end > 0: a_ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance a_ = 1 / self.vqvae.config.scaling_factor * images a_ = self.vqvae.decode(__UpperCAmelCase)["sample"] a_ = (images / 2 + 0.5).clamp(0 , 1) a_ = images.cpu().permute(0 , 2 , 3 , 1).numpy() a_ = (images * 2_55).round().astype("uint8") a_ = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__UpperCAmelCase , mode="RGB").convert("L") for _ in images)) a_ = [self.mel.image_to_audio(__UpperCAmelCase) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__UpperCAmelCase)[:, np.newaxis, :]) , **ImagePipelineOutput(__UpperCAmelCase)) @torch.no_grad() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 50) ->np.ndarray: assert isinstance(self.scheduler , __UpperCAmelCase) self.scheduler.set_timesteps(__UpperCAmelCase) a_ = np.array( [np.frombuffer(image.tobytes() , dtype="uint8").reshape((1, image.height, image.width)) for image in images]) a_ = (sample / 2_55) * 2 - 1 a_ = torch.Tensor(__UpperCAmelCase).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): a_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps a_ = self.scheduler.alphas_cumprod[t] a_ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) a_ = 1 - alpha_prod_t a_ = self.unet(__UpperCAmelCase , __UpperCAmelCase)["sample"] a_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output a_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) a_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->torch.Tensor: a_ = acos(torch.dot(torch.flatten(__UpperCAmelCase) , torch.flatten(__UpperCAmelCase)) / torch.norm(__UpperCAmelCase) / torch.norm(__UpperCAmelCase)) return sin((1 - alpha) * theta) * xa / sin(__UpperCAmelCase) + sin(alpha * theta) * xa / sin(__UpperCAmelCase)
243
0
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __magic_name__ : def __init__( self : Union[str, Any] , snake_case__ : str , snake_case__ : Union[str, Any]=1_3 , snake_case__ : List[Any]=3_2 , snake_case__ : Optional[Any]=2 , snake_case__ : Optional[Any]=3 , snake_case__ : Optional[int]=1_6 , snake_case__ : int=[1, 2, 1] , snake_case__ : Dict=[2, 2, 4] , snake_case__ : Union[str, Any]=2 , snake_case__ : Tuple=2.0 , snake_case__ : Optional[int]=True , snake_case__ : Optional[int]=0.0 , snake_case__ : int=0.0 , snake_case__ : int=0.1 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Optional[int]=False , snake_case__ : Tuple=True , snake_case__ : Optional[Any]=0.02 , snake_case__ : Union[str, Any]=1e-5 , snake_case__ : Optional[int]=True , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=True , snake_case__ : str=1_0 , snake_case__ : List[Any]=8 , snake_case__ : int=["stage1", "stage2", "stage3"] , snake_case__ : List[Any]=[1, 2, 3] , ): '''simple docstring''' lowercase :Union[str, Any] = parent lowercase :Optional[Any] = batch_size lowercase :Optional[int] = image_size lowercase :int = patch_size lowercase :List[str] = num_channels lowercase :Union[str, Any] = embed_dim lowercase :int = depths lowercase :int = num_heads lowercase :str = window_size lowercase :int = mlp_ratio lowercase :List[Any] = qkv_bias lowercase :int = hidden_dropout_prob lowercase :int = attention_probs_dropout_prob lowercase :Any = drop_path_rate lowercase :Optional[Any] = hidden_act lowercase :List[str] = use_absolute_embeddings lowercase :List[Any] = patch_norm lowercase :Optional[Any] = layer_norm_eps lowercase :List[str] = initializer_range lowercase :str = is_training lowercase :Dict = scope lowercase :Tuple = use_labels lowercase :Optional[int] = type_sequence_label_size lowercase :str = encoder_stride lowercase :str = out_features lowercase :List[Any] = out_indices def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase :List[str] = None if self.use_labels: lowercase :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase :Tuple = self.get_config() return config, pixel_values, labels def __snake_case ( self : Dict ): '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __snake_case ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : Tuple ): '''simple docstring''' lowercase :List[str] = MaskFormerSwinModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowercase :str = model(_UpperCamelCase ) lowercase :Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase :Optional[int] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __snake_case ( self : int , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Tuple ): '''simple docstring''' lowercase :int = MaskFormerSwinBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowercase :Dict = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(_UpperCamelCase ): lowercase :Optional[Any] = ["""stem"""] lowercase :Optional[int] = MaskFormerSwinBackbone(config=_UpperCamelCase ) def __snake_case ( self : int ): '''simple docstring''' lowercase :Optional[Any] = self.prepare_config_and_inputs() lowercase :Optional[int] = config_and_inputs lowercase :Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowercase__ , lowercase__ , unittest.TestCase ): __A : Any = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __A : List[Any] = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} __A : Any = False __A : Union[str, Any] = False __A : Optional[Any] = False __A : Optional[int] = False __A : List[str] = False def __snake_case ( self : Optional[Any] ): '''simple docstring''' lowercase :str = MaskFormerSwinModelTester(self ) lowercase :List[str] = ConfigTester(self , config_class=_UpperCamelCase , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def __snake_case ( self : List[Any] ): '''simple docstring''' pass def __snake_case ( self : Any ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self : Optional[Any] ): '''simple docstring''' return def __snake_case ( self : Dict ): '''simple docstring''' lowercase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCamelCase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''Swin does not support feedforward chunking''' ) def __snake_case ( self : int ): '''simple docstring''' pass def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :Any = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase :Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def __snake_case ( self : Dict ): '''simple docstring''' lowercase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :Union[str, Any] = model_class(_UpperCamelCase ) lowercase :int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase :List[str] = [*signature.parameters.keys()] lowercase :int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def __snake_case ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' pass def __snake_case ( self : Any , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Optional[Any] ): '''simple docstring''' lowercase :Union[str, Any] = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): lowercase :Optional[Any] = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) lowercase :Dict = outputs.hidden_states lowercase :Union[str, Any] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # Swin has a different seq_length lowercase :str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase :Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase :Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase :Optional[int] = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase :List[str] = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __snake_case ( self : str ): '''simple docstring''' lowercase :Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase :int = 3 lowercase :Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase :List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase :Optional[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase :Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase :Any = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase :Optional[int] = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def __snake_case ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __snake_case ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __snake_case ( self : List[Any] ): '''simple docstring''' pass def __snake_case ( self : str ): '''simple docstring''' lowercase :Any = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(snake_case__ : Optional[Any] ): lowercase :Optional[int] = 0 return t def check_equivalence(snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Any={} ): with torch.no_grad(): lowercase :Any = model(**_UpperCamelCase , return_dict=_UpperCamelCase , **_UpperCamelCase ) lowercase :Any = model(**_UpperCamelCase , return_dict=_UpperCamelCase , **_UpperCamelCase ).to_tuple() def recursive_check(snake_case__ : List[str] , snake_case__ : Any ): if isinstance(_UpperCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_UpperCamelCase , _UpperCamelCase ): recursive_check(_UpperCamelCase , _UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_UpperCamelCase , _UpperCamelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_UpperCamelCase ) , set_nan_tensor_to_zero(_UpperCamelCase ) , atol=1e-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(_UpperCamelCase ).any()} and `inf`: {torch.isinf(_UpperCamelCase )}. Dict has""" f""" `nan`: {torch.isnan(_UpperCamelCase ).any()} and `inf`: {torch.isinf(_UpperCamelCase )}.""" ) , ) recursive_check(_UpperCamelCase , _UpperCamelCase ) for model_class in self.all_model_classes: lowercase :Tuple = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowercase :Dict = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) lowercase :List[str] = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) check_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase :str = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) lowercase :Optional[Any] = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) check_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase :Tuple = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) lowercase :int = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) check_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , {'''output_hidden_states''': True} ) lowercase :List[Any] = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) lowercase :Optional[Any] = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) check_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , {'''output_hidden_states''': True} ) @require_torch class __magic_name__ ( unittest.TestCase , lowercase__ ): __A : List[Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () __A : List[str] = MaskFormerSwinConfig def __snake_case ( self : Optional[Any] ): '''simple docstring''' lowercase :Optional[Any] = MaskFormerSwinModelTester(self ) def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase :List[str] = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: lowercase :Tuple = backbone_class(_UpperCamelCase ) backbone.to(_UpperCamelCase ) backbone.eval() lowercase :Union[str, Any] = backbone(**_UpperCamelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _UpperCamelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase :List[str] = backbone(**_UpperCamelCase , output_hidden_states=_UpperCamelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase :Optional[int] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase :List[str] = backbone(**_UpperCamelCase , output_attentions=_UpperCamelCase ) self.assertIsNotNone(outputs.attentions )
358
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class __magic_name__ ( __UpperCAmelCase ): __A : Tuple = "swin2sr" __A : Dict = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[str] , snake_case__ : List[str]=6_4 , snake_case__ : Union[str, Any]=1 , snake_case__ : Tuple=3 , snake_case__ : int=1_8_0 , snake_case__ : Union[str, Any]=[6, 6, 6, 6, 6, 6] , snake_case__ : List[str]=[6, 6, 6, 6, 6, 6] , snake_case__ : Tuple=8 , snake_case__ : List[Any]=2.0 , snake_case__ : Any=True , snake_case__ : Dict=0.0 , snake_case__ : Dict=0.0 , snake_case__ : Dict=0.1 , snake_case__ : Dict="gelu" , snake_case__ : Optional[int]=False , snake_case__ : Any=0.02 , snake_case__ : Any=1e-5 , snake_case__ : Optional[int]=2 , snake_case__ : Optional[int]=1.0 , snake_case__ : Optional[Any]="1conv" , snake_case__ : List[str]="pixelshuffle" , **snake_case__ : Tuple , ): '''simple docstring''' super().__init__(**snake_case__ ) lowercase :Dict = image_size lowercase :List[str] = patch_size lowercase :Tuple = num_channels lowercase :int = embed_dim lowercase :Any = depths lowercase :Union[str, Any] = len(snake_case__ ) lowercase :List[str] = num_heads lowercase :int = window_size lowercase :Tuple = mlp_ratio lowercase :List[Any] = qkv_bias lowercase :Optional[int] = hidden_dropout_prob lowercase :Tuple = attention_probs_dropout_prob lowercase :Tuple = drop_path_rate lowercase :Optional[Any] = hidden_act lowercase :Union[str, Any] = use_absolute_embeddings lowercase :Dict = layer_norm_eps lowercase :Optional[Any] = initializer_range lowercase :Optional[Any] = upscale lowercase :Any = img_range lowercase :Optional[int] = resi_connection lowercase :Union[str, Any] = upsampler
172
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __lowerCAmelCase : Union[str, Any] =False class _lowercase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Any ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__( self :Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) __SCREAMING_SNAKE_CASE : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) __SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = pipe.dual_guided( prompt='''first prompt''' , image=lowercase_ , text_to_image_strength=0.75 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase_ ) __SCREAMING_SNAKE_CASE : Tuple = VersatileDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) __SCREAMING_SNAKE_CASE : Optional[int] = generator.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = pipe.dual_guided( prompt='''first prompt''' , image=lowercase_ , text_to_image_strength=0.75 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def __magic_name__( self :Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE : List[str] = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = "cyberpunk 2077" __SCREAMING_SNAKE_CASE : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) __SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Tuple = pipe.dual_guided( prompt=lowercase_ , image=lowercase_ , text_to_image_strength=0.75 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Optional[Any] = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __SCREAMING_SNAKE_CASE : Any = "A painting of a squirrel eating a burger " __SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Tuple = pipe.text_to_image( prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : int = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __SCREAMING_SNAKE_CASE : Optional[Any] = pipe.image_variation(lowercase_ , generator=lowercase_ , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
9
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _a = None _a = logging.get_logger(__name__) _a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _a = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } _a = { 'google/fnet-base': 512, 'google/fnet-large': 512, } _a = '▁' class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""input_ids""", """token_type_ids"""] SCREAMING_SNAKE_CASE__ : Tuple = FNetTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_="<unk>" , lowercase_="[SEP]" , lowercase_="<pad>" , lowercase_="[CLS]" , lowercase_="[MASK]" , **lowercase_ , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase_ : int = ( AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ , normalized=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token ) super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) UpperCAmelCase_ : Any = do_lower_case UpperCAmelCase_ : Tuple = remove_space UpperCAmelCase_ : str = keep_accents UpperCAmelCase_ : Any = vocab_file UpperCAmelCase_ : List[Any] = False if not self.vocab_file else True def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Tuple = [self.sep_token_id] UpperCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Any = [self.sep_token_id] UpperCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : List[str] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
61
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCamelCase_ = 250004 UpperCamelCase_ = 250020 @require_sentencepiece @require_tokenizers class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Optional[Any] = MBartaaTokenizer A__ : str = MBartaaTokenizerFast A__ : Tuple = True A__ : List[str] = True def A__ ( self: Optional[int] ) -> Optional[int]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ : Union[str, Any] = MBartaaTokenizer(lowerCamelCase_ ,src_lang="""en_XX""" ,tgt_lang="""ro_RO""" ,keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self: List[Any] ) -> Tuple: UpperCAmelCase_ : Tuple = """<s>""" UpperCAmelCase_ : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) ,lowerCamelCase_ ) def A__ ( self: Dict ) -> Tuple: UpperCAmelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<s>""" ) self.assertEqual(vocab_keys[1] ,"""<pad>""" ) self.assertEqual(vocab_keys[-1] ,"""<mask>""" ) self.assertEqual(len(lowerCamelCase_ ) ,1054 ) def A__ ( self: Optional[Any] ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size ,1054 ) def A__ ( self: List[Any] ) -> Tuple: UpperCAmelCase_ : Any = MBartaaTokenizer(lowerCamelCase_ ,src_lang="""en_XX""" ,tgt_lang="""ro_RO""" ,keep_accents=lowerCamelCase_ ) UpperCAmelCase_ : Dict = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) UpperCAmelCase_ : Tuple = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase_ ,[SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] ,) UpperCAmelCase_ : Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) UpperCAmelCase_ : Tuple = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ ,[SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] ,) @slow def A__ ( self: Optional[int] ) -> Union[str, Any]: # fmt: off UpperCAmelCase_ : Dict = {"""input_ids""": [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ ,model_name="""facebook/mbart-large-50""" ,revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" ,) def A__ ( self: Dict ) -> Union[str, Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase_ : Optional[int] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase_ : List[Any] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Dict = self.tokenizer_class.from_pretrained(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : int = tempfile.mkdtemp() UpperCAmelCase_ : Any = tokenizer_r.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCAmelCase_ : Any = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(lowerCamelCase_ ,lowerCamelCase_ ) # Checks everything loads correctly in the same way UpperCAmelCase_ : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ ,lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase_ : int = tokenizer_r.save_pretrained(lowerCamelCase_ ,legacy_format=lowerCamelCase_ ) UpperCAmelCase_ : str = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ ,lowerCamelCase_ ) # Checks everything loads correctly in the same way UpperCAmelCase_ : List[str] = tokenizer_r.from_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ ,lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False UpperCAmelCase_ : Optional[Any] = tempfile.mkdtemp() UpperCAmelCase_ : Dict = tokenizer_r.save_pretrained(lowerCamelCase_ ,legacy_format=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase_ : int = tokenizer_r.from_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ ,lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): '''simple docstring''' A__ : List[Any] = "facebook/mbart-large-50-one-to-many-mmt" A__ : Tuple = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] A__ : int = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] A__ : Optional[int] = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2] @classmethod def A__ ( cls: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name ,src_lang="""en_XX""" ,tgt_lang="""ro_RO""" ) UpperCAmelCase_ : str = 1 return cls def A__ ( self: Optional[Any] ) -> int: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] ,250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] ,250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] ,250020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] ,250038 ) def A__ ( self: Any ) -> str: UpperCAmelCase_ : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> int: self.assertIn(lowerCamelCase_ ,self.tokenizer.all_special_ids ) UpperCAmelCase_ : List[str] = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] UpperCAmelCase_ : Tuple = self.tokenizer.decode(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ) UpperCAmelCase_ : int = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token ,lowerCamelCase_ ) def A__ ( self: str ) -> Optional[Any]: UpperCAmelCase_ : Optional[int] = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] ,lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = 10 UpperCAmelCase_ : Optional[int] = self.tokenizer(lowerCamelCase_ ,max_length=lowerCamelCase_ ,truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[0] ,lowerCamelCase_ ) self.assertEqual(ids[-1] ,2 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Union[str, Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) ,[250053, 250001] ) def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : List[str] = tempfile.mkdtemp() UpperCAmelCase_ : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Any = MBartaaTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,lowerCamelCase_ ) @require_torch def A__ ( self: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : Tuple = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=lowerCamelCase_ ,return_tensors="""pt""" ) UpperCAmelCase_ : Union[str, Any] = shift_tokens_right(batch["""labels"""] ,self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def A__ ( self: List[Any] ) -> str: UpperCAmelCase_ : int = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=lowerCamelCase_ ,truncation=lowerCamelCase_ ,max_length=len(self.expected_src_tokens ) ,return_tensors="""pt""" ,) UpperCAmelCase_ : Union[str, Any] = shift_tokens_right(batch["""labels"""] ,self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ ,lowerCamelCase_ ) self.assertEqual((2, 14) ,batch.input_ids.shape ) self.assertEqual((2, 14) ,batch.attention_mask.shape ) UpperCAmelCase_ : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,lowerCamelCase_ ) self.assertEqual(2 ,batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) def A__ ( self: int ) -> str: UpperCAmelCase_ : str = self.tokenizer(self.src_text ,padding=lowerCamelCase_ ,truncation=lowerCamelCase_ ,max_length=3 ,return_tensors="""pt""" ) UpperCAmelCase_ : List[str] = self.tokenizer( text_target=self.tgt_text ,padding=lowerCamelCase_ ,truncation=lowerCamelCase_ ,max_length=10 ,return_tensors="""pt""" ) UpperCAmelCase_ : Optional[int] = targets["""input_ids"""] UpperCAmelCase_ : str = shift_tokens_right(lowerCamelCase_ ,self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : Tuple = self.tokenizer._build_translation_inputs( """A test""" ,return_tensors="""pt""" ,src_lang="""en_XX""" ,tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(lowerCamelCase_ ) ,{ # en_XX, A, test, EOS """input_ids""": [[250004, 62, 3034, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250001, } ,)
59
import random from typing import Any def lowerCamelCase_ ( _a : list ): '''simple docstring''' for _ in range(len(_a ) ): UpperCAmelCase_ : List[str] = random.randint(0 , len(_a ) - 1 ) UpperCAmelCase_ : Any = random.randint(0 , len(_a ) - 1 ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = data[b], data[a] return data if __name__ == "__main__": UpperCamelCase_ = [0, 1, 2, 3, 4, 5, 6, 7] UpperCamelCase_ = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
59
1
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase ( snake_case__ : str , snake_case__ : str ) -> str | Literal[False]: UpperCamelCase : Tuple = list(snake_case__ ) UpperCamelCase : Optional[Any] = list(snake_case__ ) UpperCamelCase : Tuple = 0 for i in range(len(snake_case__ ) ): if lista[i] != lista[i]: count += 1 UpperCamelCase : Optional[int] = '_' if count > 1: return False else: return "".join(snake_case__ ) def UpperCamelCase ( snake_case__ : list[str] ) -> list[str]: UpperCamelCase : Tuple = [] while True: UpperCamelCase : Union[str, Any] = ['$'] * len(snake_case__ ) UpperCamelCase : Tuple = [] for i in range(len(snake_case__ ) ): for j in range(i + 1 , len(snake_case__ ) ): UpperCamelCase : Optional[int] = compare_string(binary[i] , binary[j] ) if k is False: UpperCamelCase : Dict = '*' UpperCamelCase : Dict = '*' temp.append('X' ) for i in range(len(snake_case__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case__ ) == 0: return pi UpperCamelCase : Any = list(set(snake_case__ ) ) def UpperCamelCase ( snake_case__ : int , snake_case__ : Sequence[float] ) -> list[str]: UpperCamelCase : Any = [] for minterm in minterms: UpperCamelCase : str = '' for _ in range(snake_case__ ): UpperCamelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case__ ) return temp def UpperCamelCase ( snake_case__ : str , snake_case__ : str , snake_case__ : int ) -> bool: UpperCamelCase : Optional[int] = list(snake_case__ ) UpperCamelCase : Dict = list(snake_case__ ) UpperCamelCase : Tuple = 0 for i in range(len(snake_case__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase ( snake_case__ : list[list[int]] , snake_case__ : list[str] ) -> list[str]: UpperCamelCase : Any = [] UpperCamelCase : str = [0] * len(snake_case__ ) for i in range(len(chart[0] ) ): UpperCamelCase : Dict = 0 UpperCamelCase : Tuple = -1 for j in range(len(snake_case__ ) ): if chart[j][i] == 1: count += 1 UpperCamelCase : str = j if count == 1: UpperCamelCase : str = 1 for i in range(len(snake_case__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case__ ) ): UpperCamelCase : str = 0 temp.append(prime_implicants[i] ) while True: UpperCamelCase : Dict = 0 UpperCamelCase : Any = -1 UpperCamelCase : Any = 0 for i in range(len(snake_case__ ) ): UpperCamelCase : Tuple = chart[i].count(1 ) if count_n > max_n: UpperCamelCase : str = count_n UpperCamelCase : str = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case__ ) ): UpperCamelCase : int = 0 def UpperCamelCase ( snake_case__ : list[str] , snake_case__ : list[str] ) -> list[list[int]]: UpperCamelCase : int = [[0 for x in range(len(snake_case__ ) )] for x in range(len(snake_case__ ) )] for i in range(len(snake_case__ ) ): UpperCamelCase : List[str] = prime_implicants[i].count('_' ) for j in range(len(snake_case__ ) ): if is_for_table(prime_implicants[i] , binary[j] , snake_case__ ): UpperCamelCase : Any = 1 return chart def UpperCamelCase ( ) -> None: UpperCamelCase : Optional[Any] = int(input('Enter the no. of variables\n' ) ) UpperCamelCase : List[Any] = [ float(snake_case__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] UpperCamelCase : List[str] = decimal_to_binary(snake_case__ , snake_case__ ) UpperCamelCase : Tuple = check(snake_case__ ) print('Prime Implicants are:' ) print(snake_case__ ) UpperCamelCase : List[Any] = prime_implicant_chart(snake_case__ , snake_case__ ) UpperCamelCase : int = selection(snake_case__ , snake_case__ ) print('Essential Prime Implicants are:' ) print(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
119
from __future__ import annotations __UpperCAmelCase = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : Union[str, Any] = graph # mapping node to its parent in resulting breadth first tree UpperCamelCase : dict[str, str | None] = {} UpperCamelCase : Union[str, Any] = source_vertex def snake_case_ ( self ) -> None: UpperCamelCase : str = {self.source_vertex} UpperCamelCase : str = None UpperCamelCase : int = [self.source_vertex] # first in first out queue while queue: UpperCamelCase : Dict = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = vertex queue.append(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: if target_vertex == self.source_vertex: return self.source_vertex UpperCamelCase : Optional[Any] = self.parent.get(SCREAMING_SNAKE_CASE_ ) if target_vertex_parent is None: UpperCamelCase : Union[str, Any] = ( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) return self.shortest_path(SCREAMING_SNAKE_CASE_ ) + F"""->{target_vertex}""" if __name__ == "__main__": __UpperCAmelCase = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
119
1
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __magic_name__ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if got_ver is None or want_ver is None: raise ValueError( f"Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider" f" reinstalling {pkg}." ) if not ops[op](version.parse(UpperCamelCase_ ) , version.parse(UpperCamelCase_ ) ): raise ImportError( f"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}" ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ = None ): __SCREAMING_SNAKE_CASE = f"\n{hint}" if hint is not None else """""" # non-versioned check if re.match(r"""^[\w_\-\d]+$""" , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = requirement, None, None else: __SCREAMING_SNAKE_CASE = re.findall(r"""^([^!=<>\s]+)([\s!=<>]{1,2}.+)""" , UpperCamelCase_ ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but""" f" got {requirement}" ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = match[0] __SCREAMING_SNAKE_CASE = want_full.split(""",""" ) # there could be multiple requirements __SCREAMING_SNAKE_CASE = {} for w in want_range: __SCREAMING_SNAKE_CASE = re.findall(r"""^([\s!=<>]{1,2})(.+)""" , UpperCamelCase_ ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,""" f" but got {requirement}" ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = match[0] __SCREAMING_SNAKE_CASE = want_ver if op not in ops: raise ValueError(f"{requirement}: need one of {list(ops.keys() )}, but got {op}" ) # special case if pkg == "python": __SCREAMING_SNAKE_CASE = """.""".join([str(UpperCamelCase_ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return # check if any version is installed try: __SCREAMING_SNAKE_CASE = importlib.metadata.version(UpperCamelCase_ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"The '{requirement}' distribution was not found and is required by this application. {hint}" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = """Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main""" return require_version(UpperCamelCase_ , UpperCamelCase_ )
255
"""simple docstring""" import fire from utils import calculate_rouge, save_json def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , **UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [x.strip() for x in open(UpperCamelCase_ ).readlines()] __SCREAMING_SNAKE_CASE = [x.strip() for x in open(UpperCamelCase_ ).readlines()][: len(UpperCamelCase_ )] __SCREAMING_SNAKE_CASE = calculate_rouge(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) if save_path is not None: save_json(UpperCamelCase_ , UpperCamelCase_ , indent=UpperCamelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
255
1
from __future__ import annotations def __magic_name__ ( __a : list[int] , __a : int ): '''simple docstring''' if len(__a ) == 0: return False UpperCamelCase__ = len(__a ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __a ) else: return binary_search(a_list[midpoint + 1 :] , __a ) if __name__ == "__main__": lowerCamelCase_ = input('''Enter numbers separated by comma:\n''').strip() lowerCamelCase_ = [int(item.strip()) for item in user_input.split(''',''')] lowerCamelCase_ = int(input('''Enter the number to be found in the list:\n''').strip()) lowerCamelCase_ = '''''' if binary_search(sequence, target) else '''not ''' print(f'{target} was {not_str}found in {sequence}')
244
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (CMStochasticIterativeScheduler,) SCREAMING_SNAKE_CASE__ = 10 def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = { """num_train_timesteps""": 2_01, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**SCREAMING_SNAKE_CASE_ ) return config def UpperCAmelCase_ (self ): UpperCamelCase__ = 10 UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = self.scheduler_classes[0](**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps[0] UpperCamelCase__ = scheduler.timesteps[1] UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ (self ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 1 scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(SCREAMING_SNAKE_CASE_ ): # 1. scale model input UpperCamelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict noise residual UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 3. predict previous sample x_t-1 UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.2510 ) < 1E-3 def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [1_06, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input UpperCamelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict noise residual UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 3. predict previous sample x_t-1 UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.4527 ) < 1E-3 def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [39, 30, 12, 15, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [39, 30, 12, 1, 0] UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ )
244
1
'''simple docstring''' import math import sys def __lowerCamelCase ( lowerCAmelCase_ ) -> int: if number != int(lowerCAmelCase_ ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 _a : Optional[int] = [-1] * (number + 1) _a : Optional[int] = 0 for i in range(1 , number + 1 ): _a : Optional[Any] = sys.maxsize _a : Optional[Any] = int(math.sqrt(lowerCAmelCase_ ) ) for j in range(1 , root + 1 ): _a : Tuple = 1 + answers[i - (j**2)] _a : List[Any] = min(lowerCAmelCase_ , lowerCAmelCase_ ) _a : str = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
107
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __lowerCAmelCase = 3 def __lowerCamelCase ( lowerCAmelCase_ ) -> int: print('Generating primitive root of p' ) while True: _a : List[Any] = random.randrange(3 , lowerCAmelCase_ ) if pow(lowerCAmelCase_ , 2 , lowerCAmelCase_ ) == 1: continue if pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) == 1: continue return g def __lowerCamelCase ( lowerCAmelCase_ ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...' ) _a : int = rabin_miller.generate_large_prime(lowerCAmelCase_ ) # select large prime number. _a : List[str] = primitive_root(lowerCAmelCase_ ) # one primitive root on modulo p. _a : Any = random.randrange(3 , lowerCAmelCase_ ) # private_key -> have to be greater than 2 for safety. _a : List[Any] = cryptomath.find_mod_inverse(pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) _a : Tuple = (key_size, e_a, e_a, p) _a : str = (key_size, d) return public_key, private_key def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() _a , _a : Dict = generate_key(lowerCAmelCase_ ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def __lowerCamelCase ( ) -> None: print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
107
1
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py UpperCAmelCase__ = '''src/transformers''' UpperCAmelCase__ = '''docs/source/en''' UpperCAmelCase__ = '''.''' def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> List[Any]: """simple docstring""" with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowercase =f.readlines() # Find the start prompt. _lowercase =0 while not lines[start_index].startswith(__snake_case ): start_index += 1 start_index += 1 _lowercase =start_index while not lines[end_index].startswith(__snake_case ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | UpperCAmelCase__ = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. UpperCAmelCase__ = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') UpperCAmelCase__ = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. UpperCAmelCase__ = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def UpperCAmelCase_ ( __snake_case ) -> Tuple: """simple docstring""" _lowercase =re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , __snake_case ) return [m.group(0 ) for m in matches] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> str: """simple docstring""" _lowercase =2 if text == '''✅''' or text == '''❌''' else len(__snake_case ) _lowercase =(width - text_length) // 2 _lowercase =width - text_length - left_indent return " " * left_indent + text + " " * right_indent def UpperCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" _lowercase =transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _lowercase ={ name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _lowercase ={name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _lowercase =collections.defaultdict(__snake_case ) _lowercase =collections.defaultdict(__snake_case ) _lowercase =collections.defaultdict(__snake_case ) _lowercase =collections.defaultdict(__snake_case ) _lowercase =collections.defaultdict(__snake_case ) # Let's lookup through all transformers object (once). for attr_name in dir(__snake_case ): _lowercase =None if attr_name.endswith('''Tokenizer''' ): _lowercase =slow_tokenizers _lowercase =attr_name[:-9] elif attr_name.endswith('''TokenizerFast''' ): _lowercase =fast_tokenizers _lowercase =attr_name[:-13] elif _re_tf_models.match(__snake_case ) is not None: _lowercase =tf_models _lowercase =_re_tf_models.match(__snake_case ).groups()[0] elif _re_flax_models.match(__snake_case ) is not None: _lowercase =flax_models _lowercase =_re_flax_models.match(__snake_case ).groups()[0] elif _re_pt_models.match(__snake_case ) is not None: _lowercase =pt_models _lowercase =_re_pt_models.match(__snake_case ).groups()[0] if lookup_dict is not None: while len(__snake_case ) > 0: if attr_name in model_name_to_prefix.values(): _lowercase =True break # Try again after removing the last word in the name _lowercase =''''''.join(camel_case_split(__snake_case )[:-1] ) # Let's build that table! _lowercase =list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _lowercase =['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _lowercase =[len(__snake_case ) + 2 for c in columns] _lowercase =max([len(__snake_case ) for name in model_names] ) + 2 # Build the table per se _lowercase ='''|''' + '''|'''.join([_center_text(__snake_case , __snake_case ) for c, w in zip(__snake_case , __snake_case )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n" _lowercase ={True: '''✅''', False: '''❌'''} for name in model_names: _lowercase =model_name_to_prefix[name] _lowercase =[ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(__snake_case , __snake_case ) for l, w in zip(__snake_case , __snake_case )] ) + "|\n" return table def UpperCAmelCase_ ( __snake_case=False ) -> List[str]: """simple docstring""" _lowercase , _lowercase , _lowercase , _lowercase =_find_text_in_file( filename=os.path.join(__snake_case , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , ) _lowercase =get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(__snake_case , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( '''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCAmelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
5
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase ( lowercase ): UpperCAmelCase : Any = """Wav2Vec2FeatureExtractor""" UpperCAmelCase : List[str] = """AutoTokenizer""" def __init__(self : int , _A : List[str] , _A : str) -> str: super().__init__(_A , _A) __snake_case : Tuple = self.feature_extractor __snake_case : str = False @classmethod def _lowercase (cls : Union[str, Any] , _A : Optional[Any] , **_A : str) -> List[Any]: try: return super().from_pretrained(_A , **_A) except OSError: warnings.warn( f"Loading a tokenizer inside {cls.__name__} from a config that does not" ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' , _A , ) __snake_case : List[str] = WavaVecaFeatureExtractor.from_pretrained(_A , **_A) __snake_case : Any = WavaVecaCTCTokenizer.from_pretrained(_A , **_A) return cls(feature_extractor=_A , tokenizer=_A) def __call__(self : int , *_A : List[Any] , **_A : str) -> str: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.') __snake_case : int = kwargs.pop('raw_speech') else: __snake_case : Optional[Any] = kwargs.pop('audio' , _A) __snake_case : Tuple = kwargs.pop('sampling_rate' , _A) __snake_case : Any = kwargs.pop('text' , _A) if len(_A) > 0: __snake_case : Any = args[0] __snake_case : Dict = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.') if audio is not None: __snake_case : str = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A) if text is not None: __snake_case : List[str] = self.tokenizer(_A , **_A) if text is None: return inputs elif audio is None: return encodings else: __snake_case : List[str] = encodings['input_ids'] return inputs def _lowercase (self : str , *_A : Optional[Any] , **_A : int) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A) __snake_case : Optional[int] = kwargs.pop('input_features' , _A) __snake_case : List[Any] = kwargs.pop('labels' , _A) if len(_A) > 0: __snake_case : Tuple = args[0] __snake_case : Union[str, Any] = args[1:] if input_features is not None: __snake_case : Optional[Any] = self.feature_extractor.pad(_A , *_A , **_A) if labels is not None: __snake_case : Tuple = self.tokenizer.pad(_A , **_A) if labels is None: return input_features elif input_features is None: return labels else: __snake_case : str = labels['input_ids'] return input_features def _lowercase (self : Union[str, Any] , *_A : Any , **_A : List[Any]) -> List[Any]: return self.tokenizer.batch_decode(*_A , **_A) def _lowercase (self : Union[str, Any] , *_A : Dict , **_A : Union[str, Any]) -> Any: return self.tokenizer.decode(*_A , **_A) @contextmanager def _lowercase (self : List[str]) -> int: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.') __snake_case : Dict = True __snake_case : Union[str, Any] = self.tokenizer yield __snake_case : Optional[Any] = self.feature_extractor __snake_case : int = False
172
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : bool = False ) ->str: '''simple docstring''' if not isinstance(_lowercase , _lowercase ): a : List[Any] = F"""Expected string as input, found {type(_lowercase )}""" raise ValueError(_lowercase ) if not isinstance(_lowercase , _lowercase ): a : int = F"""Expected boolean as use_pascal parameter, found {type(_lowercase )}""" raise ValueError(_lowercase ) a : Optional[Any] = input_str.split("_" ) a : List[str] = 0 if use_pascal else 1 a : List[str] = words[start_index:] a : Optional[Any] = [word[0].upper() + word[1:] for word in words_to_capitalize] a : Tuple = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
79
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
79
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( A_ ): A__ : Union[str, Any] = ["image_processor", "tokenizer"] A__ : Tuple = "ChineseCLIPImageProcessor" A__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__(self : int , snake_case__ : Optional[int]=None , snake_case__ : int=None , **snake_case__ : Optional[int] ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , snake_case__ , ) snake_case : Optional[Any] = kwargs.pop("feature_extractor" ) snake_case : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(snake_case__ , snake_case__ ) snake_case : List[Any] = self.image_processor def __call__(self : Tuple , snake_case__ : Any=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[str]=None , **snake_case__ : Tuple ) -> int: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: snake_case : List[str] = self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if images is not None: snake_case : List[str] = self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if text is not None and images is not None: snake_case : Dict = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case__ ) , tensor_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , *snake_case__ : Union[str, Any] , **snake_case__ : Any ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , *snake_case__ : Optional[Any] , **snake_case__ : Dict ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' snake_case : int = self.tokenizer.model_input_names snake_case : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Tuple: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , snake_case__ , ) return self.image_processor_class
59
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] ) -> List[str]: '''simple docstring''' return f"""gaussian_noise_s={seed}_shape={'_'.join([str(snake_case__ ) for s in shape] )}.npy""" def _SCREAMING_SNAKE_CASE (self : Tuple ) -> int: '''simple docstring''' super().tearDown() gc.collect() def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[Any]=0 , snake_case__ : Any=(4, 4, 64, 64) , snake_case__ : List[Any]=False ) -> int: '''simple docstring''' snake_case : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa snake_case : Optional[int] = jnp.array(load_hf_numpy(self.get_file_format(snake_case__ , snake_case__ ) ) , dtype=snake_case__ ) return image def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple=False , snake_case__ : List[Any]="CompVis/stable-diffusion-v1-4" ) -> List[Any]: '''simple docstring''' snake_case : List[str] = jnp.bfloataa if fpaa else jnp.floataa snake_case : str = "bf16" if fpaa else None snake_case , snake_case : Optional[int] = FlaxUNetaDConditionModel.from_pretrained( snake_case__ , subfolder="unet" , dtype=snake_case__ , revision=snake_case__ ) return model, params def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=(4, 77, 7_68) , snake_case__ : Dict=False ) -> List[str]: '''simple docstring''' snake_case : Any = jnp.bfloataa if fpaa else jnp.floataa snake_case : Any = jnp.array(load_hf_numpy(self.get_file_format(snake_case__ , snake_case__ ) ) , dtype=snake_case__ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 10_00, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Dict ) -> List[str]: '''simple docstring''' snake_case , snake_case : List[str] = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=snake_case__ ) snake_case : Union[str, Any] = self.get_latents(snake_case__ , fpaa=snake_case__ ) snake_case : List[str] = self.get_encoder_hidden_states(snake_case__ , fpaa=snake_case__ ) snake_case : Dict = model.apply( {"params": params} , snake_case__ , jnp.array(snake_case__ , dtype=jnp.intaa ) , encoder_hidden_states=snake_case__ , ).sample assert sample.shape == latents.shape snake_case : Optional[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case : Optional[int] = jnp.array(snake_case__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(snake_case__ , snake_case__ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 10_00, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : Tuple ) -> str: '''simple docstring''' snake_case , snake_case : List[Any] = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=snake_case__ ) snake_case : List[str] = self.get_latents(snake_case__ , shape=(4, 4, 96, 96) , fpaa=snake_case__ ) snake_case : Union[str, Any] = self.get_encoder_hidden_states(snake_case__ , shape=(4, 77, 10_24) , fpaa=snake_case__ ) snake_case : Optional[int] = model.apply( {"params": params} , snake_case__ , jnp.array(snake_case__ , dtype=jnp.intaa ) , encoder_hidden_states=snake_case__ , ).sample assert sample.shape == latents.shape snake_case : int = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case : Dict = jnp.array(snake_case__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(snake_case__ , snake_case__ , atol=1e-2 )
59
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ) -> Union[str, Any]: snake_case__ : Any = checkpoints.load_tax_checkpoint(_lowercase ) snake_case__ : Tuple = flatten_dict(_lowercase ) return flax_params def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ) -> int: snake_case__ : Optional[Any] = {} snake_case__ : List[str] = { "token_embedder": "embeddings", "encoder_norm": "layernorm", "kernel": "weight", ".out": ".output", "scale": "weight", "embedders_0.pos_embedding": "row_embedder.weight", "embedders_1.pos_embedding": "column_embedder.weight", } snake_case__ : List[str] = { "query": "attention.query", "key": "attention.key", "value": "attention.value", "output.dense": "output", "encoder_decoder_attention.o": "encoder_decoder_attention.attention.o", "pre_self_attention_layer_norm": "self_attention.layer_norm", "pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm", "mlp.": "mlp.DenseReluDense.", "pre_mlp_layer_norm": "mlp.layer_norm", "self_attention.o": "self_attention.attention.o", "decoder.embeddings.embedding": "decoder.embed_tokens.weight", "decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight", "decoder.decoder_norm.weight": "decoder.final_layer_norm.weight", "decoder.logits_dense.weight": "decoder.lm_head.weight", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key snake_case__ : Union[str, Any] = ".".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): snake_case__ : Union[str, Any] = new_key.replace(_lowercase , _lowercase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): snake_case__ : Tuple = new_key.replace(_lowercase , _lowercase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number snake_case__ : int = re.sub(R"layers_(\d+)" , R"layer.\1" , _lowercase ) snake_case__ : Union[str, Any] = new_key.replace("encoder" , "encoder.encoder" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number snake_case__ : Dict = re.sub(R"layers_(\d+)" , R"layer.\1" , _lowercase ) snake_case__ : int = flax_dict[key] snake_case__ : List[Any] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): snake_case__ : str = torch.from_numpy(converted_dict[key].T ) else: snake_case__ : List[Any] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any]=False , snake_case_ : Optional[int]=False ) -> Union[str, Any]: snake_case__ : int = get_flax_param(_lowercase ) if not use_large: snake_case__ : int = PixaStructVisionConfig() snake_case__ : Optional[int] = PixaStructTextConfig() else: snake_case__ : Optional[Any] = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) snake_case__ : int = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) snake_case__ : Tuple = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=_lowercase ) snake_case__ : str = PixaStructForConditionalGeneration(_lowercase ) snake_case__ : Union[str, Any] = rename_and_convert_flax_params(_lowercase ) model.load_state_dict(_lowercase ) snake_case__ : Any = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer" ) snake_case__ : str = PixaStructImageProcessor() snake_case__ : Optional[Any] = PixaStructProcessor(image_processor=_lowercase , tokenizer=_lowercase ) if use_large: snake_case__ : Union[str, Any] = 4096 snake_case__ : int = True # mkdir if needed os.makedirs(_lowercase , exist_ok=_lowercase ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) print("Model saved in {}".format(_lowercase ) ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""") parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""") __lowerCamelCase : str = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
359
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : List[str] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase : Any = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Optional[int] = { """allenai/led-base-16384""": 1_6384, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = LEDTokenizer a_ = ["input_ids", "attention_mask"] def __init__( self : int , __A : Optional[int]=None , __A : Any=None , __A : Any=None , __A : int="replace" , __A : Optional[Any]="<s>" , __A : List[Any]="</s>" , __A : Dict="</s>" , __A : Union[str, Any]="<s>" , __A : List[Any]="<unk>" , __A : Optional[Any]="<pad>" , __A : Optional[int]="<mask>" , __A : str=False , __A : Optional[Any]=True , **__A : List[Any] , ): super().__init__( __A , __A , tokenizer_file=__A , errors=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , trim_offsets=__A , **__A , ) snake_case__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __A ) != add_prefix_space: snake_case__ : List[str] = getattr(__A , pre_tok_state.pop("type" ) ) snake_case__ : Tuple = add_prefix_space snake_case__ : Any = pre_tok_class(**__A ) snake_case__ : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case__ : str = "post_processor" snake_case__ : Union[str, Any] = getattr(self.backend_tokenizer , __A , __A ) if tokenizer_component_instance: snake_case__ : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case__ : int = tuple(state["sep"] ) if "cls" in state: snake_case__ : Optional[int] = tuple(state["cls"] ) snake_case__ : Union[str, Any] = False if state.get("add_prefix_space" , __A ) != add_prefix_space: snake_case__ : Optional[Any] = add_prefix_space snake_case__ : List[str] = True if state.get("trim_offsets" , __A ) != trim_offsets: snake_case__ : str = trim_offsets snake_case__ : Tuple = True if changes_to_apply: snake_case__ : Any = getattr(__A , state.pop("type" ) ) snake_case__ : Optional[Any] = component_class(**__A ) setattr(self.backend_tokenizer , __A , __A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowercase ( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _lowercase ( self : str , __A : int ): snake_case__ : str = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else value snake_case__ : Optional[int] = value def _lowercase ( self : List[str] , *__A : Union[str, Any] , **__A : int ): snake_case__ : Dict = kwargs.get("is_split_into_words" , __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A , **__A ) def _lowercase ( self : Union[str, Any] , *__A : Tuple , **__A : Union[str, Any] ): snake_case__ : List[str] = kwargs.get("is_split_into_words" , __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A , **__A ) def _lowercase ( self : Union[str, Any] , __A : str , __A : Optional[str] = None ): snake_case__ : str = self._tokenizer.model.save(__A , name=__A ) return tuple(__A ) def _lowercase ( self : Union[str, Any] , __A : int , __A : str=None ): snake_case__ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase ( self : Any , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Optional[Any] = [self.sep_token_id] snake_case__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : str , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Dict = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Optional[Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : List[Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : Dict = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : Optional[Any] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Optional[Any] = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
286
0
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
255
"""simple docstring""" def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: '''simple docstring''' lowercase : Optional[int] = len(_UpperCAmelCase ) + 1 lowercase : Any = len(_UpperCAmelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowercase : Tuple = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )] # since string of zero length match pattern of zero length lowercase : List[Any] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _UpperCAmelCase ): lowercase : Tuple = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _UpperCAmelCase ): lowercase : Tuple = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _UpperCAmelCase ): for j in range(1 , _UpperCAmelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowercase : List[str] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowercase : Any = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowercase : List[Any] = dp[i - 1][j] else: lowercase : Optional[int] = 0 else: lowercase : Dict = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _UpperCamelCase: int = 'aab' _UpperCamelCase: Tuple = 'c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
255
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast A__ : List[Any] =datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): _lowercase: int = 10000 _lowercase: Optional[List[str]] = None _lowercase: Optional[datasets.Features] = None class UpperCAmelCase ( datasets.ArrowBasedBuilder ): _lowercase: Dict = ParquetConfig def lowercase__ ( self : List[str] ) -> List[Any]: return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : Optional[int] , __snake_case : Optional[int] ) -> Any: if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) _lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__snake_case , (str, list, tuple) ): _lowerCAmelCase = data_files if isinstance(__snake_case , __snake_case ): _lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase = [dl_manager.iter_files(__snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _lowerCAmelCase = [] for split_name, files in data_files.items(): if isinstance(__snake_case , __snake_case ): _lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase = [dl_manager.iter_files(__snake_case ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__snake_case ): with open(__snake_case , """rb""" ) as f: _lowerCAmelCase = datasets.Features.from_arrow_schema(pq.read_schema(__snake_case ) ) break splits.append(datasets.SplitGenerator(name=__snake_case , gen_kwargs={"""files""": files} ) ) return splits def lowercase__ ( self : int , __snake_case : pa.Table ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase = table_cast(__snake_case , self.info.features.arrow_schema ) return pa_table def lowercase__ ( self : Optional[Any] , __snake_case : Dict ) -> Optional[Any]: _lowerCAmelCase = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(__snake_case ) ): with open(__snake_case , """rb""" ) as f: _lowerCAmelCase = pq.ParquetFile(__snake_case ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): _lowerCAmelCase = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"{file_idx}_{batch_idx}", self._cast_table(__snake_case ) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(__snake_case )}: {e}" ) raise
220
'''simple docstring''' import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase : @staticmethod def lowercase__ ( *__snake_case : Optional[Any] , **__snake_case : Any ) -> Tuple: pass @is_pipeline_test @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): _lowercase: Union[str, Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowercase__ ( self : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] ) -> int: _lowerCAmelCase = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) _lowerCAmelCase = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def lowercase__ ( self : Any , __snake_case : List[Any] , __snake_case : List[Any] ) -> Union[str, Any]: _lowerCAmelCase = vqa_pipeline(__snake_case , top_k=1 ) self.assertEqual( __snake_case , [ [{"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case )}], [{"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case )}], ] , ) @require_torch def lowercase__ ( self : str ) -> int: _lowerCAmelCase = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) _lowerCAmelCase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" _lowerCAmelCase = """How many cats are there?""" _lowerCAmelCase = vqa_pipeline(image=__snake_case , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( __snake_case , [{"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case )}, {"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case )}] ) _lowerCAmelCase = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( __snake_case , [{"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case )}, {"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case )}] ) @slow @require_torch def lowercase__ ( self : List[Any] ) -> List[str]: _lowerCAmelCase = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) _lowerCAmelCase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" _lowerCAmelCase = """How many cats are there?""" _lowerCAmelCase = vqa_pipeline(image=__snake_case , question=__snake_case , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [{"""score""": 0.87_99, """answer""": """2"""}, {"""score""": 0.2_96, """answer""": """1"""}] ) _lowerCAmelCase = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [{"""score""": 0.87_99, """answer""": """2"""}, {"""score""": 0.2_96, """answer""": """1"""}] ) _lowerCAmelCase = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [[{"""score""": 0.87_99, """answer""": """2"""}, {"""score""": 0.2_96, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: pass
220
1
from __future__ import annotations __lowerCAmelCase : int = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __lowerCAmelCase : Any = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __magic_name__ ( A : list[float] ): '''simple docstring''' a = [] a = len(A ) for i in range(A ): a = -1 for j in range(i + 1, A ): if arr[i] < arr[j]: a = arr[j] break result.append(A ) return result def __magic_name__ ( A : list[float] ): '''simple docstring''' a = [] for i, outer in enumerate(A ): a = -1 for inner in arr[i + 1 :]: if outer < inner: a = inner break result.append(A ) return result def __magic_name__ ( A : list[float] ): '''simple docstring''' a = len(A ) a = [] a = [-1] * arr_size for index in reversed(range(A ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: a = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __lowerCAmelCase : str = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
107
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class snake_case__ (_UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = XLMRobertaTokenizer SCREAMING_SNAKE_CASE_ : int = XLMRobertaTokenizerFast SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True def __UpperCAmelCase ( self : int ) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing a = XLMRobertaTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self : List[str] ) -> Any: a = "<pad>" a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCamelCase ) , 10_02 ) def __UpperCAmelCase ( self : List[Any] ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def __UpperCAmelCase ( self : Dict ) -> List[str]: a = XLMRobertaTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) a = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) a = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return a = (self.rust_tokenizer_class, "hf-internal-testing/tiny-xlm-roberta", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) a = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(__lowerCamelCase ) a = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) a = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(__lowerCamelCase ) a = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=True a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) a = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(__lowerCamelCase ) a = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=False a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) a = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(__lowerCamelCase ) a = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) @cached_property def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: return XLMRobertaTokenizer.from_pretrained("xlm-roberta-base" ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__lowerCamelCase , f.name ) a = XLMRobertaTokenizer(f.name , keep_accents=__lowerCamelCase ) a = pickle.dumps(__lowerCamelCase ) pickle.loads(__lowerCamelCase ) def __UpperCAmelCase ( self : int ) -> str: if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = "I was born in 92000, and this is falsé." a = tokenizer.tokenize(__lowerCamelCase ) a = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) a = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) a = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) a = self.get_rust_tokenizer() a = tokenizer.encode(__lowerCamelCase ) a = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def __UpperCAmelCase ( self : Dict ) -> Any: a = "Hello World!" a = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def __UpperCAmelCase ( self : Tuple ) -> int: a = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) a = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: # fmt: off a = {"input_ids": [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="xlm-roberta-base" , revision="d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3" , )
107
1
"""simple docstring""" import requests UpperCAmelCase: Dict = """YOUR API KEY""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase = giphy_api_key ): _lowercase : Optional[Any] = """+""".join(query.split() ) _lowercase : str = F"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" _lowercase : Any = requests.get(__UpperCAmelCase ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("""\n""".join(get_gifs("""space ship""")))
370
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : int = [] for line in lines: _lowercase : Dict = re.sub(R"""#.*""" , """""" , __UpperCAmelCase ) # remove comments if line: filtered_lines.append(__UpperCAmelCase ) _lowercase : Tuple = """\n""".join(__UpperCAmelCase ) # Make a hash from all this code _lowercase : Tuple = full_str.encode("""utf-8""" ) return shaaaa(__UpperCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCAmelCase: Tuple = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase: List[str] = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase: Any = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name UpperCAmelCase: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
336
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['LayoutLMv2FeatureExtractor'] UpperCAmelCase_ = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
201
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) snake_case_ = logging.getLogger(__name__) def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = git.Repo(search_parent_directories=lowercase_ ) UpperCAmelCase = { 'repo_id': str(lowercase_ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(lowercase_ , 'git_log.json' ) , 'w' ) as f: json.dump(lowercase_ , lowercase_ , indent=4 ) def _lowerCAmelCase ( lowercase_ ): if params.n_gpu <= 0: UpperCAmelCase = 0 UpperCAmelCase = -1 UpperCAmelCase = True UpperCAmelCase = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 UpperCAmelCase = int(os.environ['WORLD_SIZE'] ) UpperCAmelCase = int(os.environ['N_GPU_NODE'] ) UpperCAmelCase = int(os.environ['RANK'] ) # number of nodes / node ID UpperCAmelCase = params.world_size // params.n_gpu_per_node UpperCAmelCase = params.global_rank // params.n_gpu_per_node UpperCAmelCase = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 UpperCAmelCase = 1 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 1 UpperCAmelCase = 1 UpperCAmelCase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode UpperCAmelCase = params.node_id == 0 and params.local_rank == 0 UpperCAmelCase = params.n_nodes > 1 # summary UpperCAmelCase = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _lowerCAmelCase ( lowercase_ ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
78
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( unittest.TestCase ): def __init__( self : List[str] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Tuple=7 ,lowerCamelCase__ : Tuple=3 ,lowerCamelCase__ : Any=18 ,lowerCamelCase__ : Tuple=30 ,lowerCamelCase__ : Tuple=400 ,lowerCamelCase__ : int=True ,lowerCamelCase__ : int=None ,lowerCamelCase__ : str=True ,lowerCamelCase__ : str=None ,lowerCamelCase__ : Any=True ,): '''simple docstring''' _UpperCamelCase : Any = size if size is not None else {'shortest_edge': 20} _UpperCamelCase : int = crop_size if crop_size is not None else {'height': 18, 'width': 18} _UpperCamelCase : List[str] = parent _UpperCamelCase : List[Any] = batch_size _UpperCamelCase : int = num_channels _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : List[Any] = min_resolution _UpperCamelCase : List[str] = max_resolution _UpperCamelCase : int = do_resize _UpperCamelCase : Optional[int] = size _UpperCamelCase : str = do_center_crop _UpperCamelCase : List[Any] = crop_size _UpperCamelCase : Optional[Any] = do_flip_channel_order def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = MobileViTImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Tuple = MobileViTImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'size' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_flip_channel_order' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size ,{'height': 18, 'width': 18} ) _UpperCamelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,Image.Image ) # Test not batched input _UpperCamelCase : Optional[Any] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _UpperCamelCase : int = image_processing(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,np.ndarray ) # Test not batched input _UpperCamelCase : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _UpperCamelCase : List[str] = image_processing(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,torch.Tensor ) # Test not batched input _UpperCamelCase : str = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _UpperCamelCase : Optional[int] = image_processing(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,)
362
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case_ : List[Any] = logging.get_logger(__name__) snake_case_ : str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart snake_case_ : Union[str, Any] = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } snake_case_ : Any = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } @lru_cache() def A__ ( ): _UpperCamelCase : str = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _UpperCamelCase : Any = bs[:] _UpperCamelCase : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCAmelCase_ ) cs.append(2**8 + n ) n += 1 _UpperCamelCase : Any = [chr(UpperCAmelCase_ ) for n in cs] return dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Tuple = set() _UpperCamelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCamelCase : Any = char return pairs class lowercase__ ( lowercase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any]="replace" ,lowerCamelCase__ : str="<s>" ,lowerCamelCase__ : str="</s>" ,lowerCamelCase__ : str="</s>" ,lowerCamelCase__ : Any="<s>" ,lowerCamelCase__ : Tuple="<unk>" ,lowerCamelCase__ : List[str]="<pad>" ,lowerCamelCase__ : Optional[Any]="<mask>" ,lowerCamelCase__ : Tuple=False ,**lowerCamelCase__ : List[str] ,): '''simple docstring''' _UpperCamelCase : Dict = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else bos_token _UpperCamelCase : Tuple = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else eos_token _UpperCamelCase : Optional[int] = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else sep_token _UpperCamelCase : Tuple = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else cls_token _UpperCamelCase : Union[str, Any] = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else unk_token _UpperCamelCase : List[str] = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : str = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else mask_token super().__init__( errors=lowerCamelCase__ ,bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,add_prefix_space=lowerCamelCase__ ,**lowerCamelCase__ ,) with open(lowerCamelCase__ ,encoding='utf-8' ) as vocab_handle: _UpperCamelCase : List[str] = json.load(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} _UpperCamelCase : Optional[Any] = errors # how to handle errors in decoding _UpperCamelCase : Tuple = bytes_to_unicode() _UpperCamelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase__ ,encoding='utf-8' ) as merges_handle: _UpperCamelCase : Dict = merges_handle.read().split('\n' )[1:-1] _UpperCamelCase : str = [tuple(merge.split() ) for merge in bpe_merges] _UpperCamelCase : Dict = dict(zip(lowerCamelCase__ ,range(len(lowerCamelCase__ ) ) ) ) _UpperCamelCase : Tuple = {} _UpperCamelCase : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCamelCase : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return len(self.encoder ) def UpperCamelCase_ ( self : str ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Any ): '''simple docstring''' if token in self.cache: return self.cache[token] _UpperCamelCase : Dict = tuple(lowerCamelCase__ ) _UpperCamelCase : List[str] = get_pairs(lowerCamelCase__ ) if not pairs: return token while True: _UpperCamelCase : List[str] = min(lowerCamelCase__ ,key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__ ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _UpperCamelCase , _UpperCamelCase : int = bigram _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Dict = 0 while i < len(lowerCamelCase__ ): try: _UpperCamelCase : int = word.index(lowerCamelCase__ ,lowerCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCamelCase : Dict = j if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCamelCase : int = tuple(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = new_word if len(lowerCamelCase__ ) == 1: break else: _UpperCamelCase : Any = get_pairs(lowerCamelCase__ ) _UpperCamelCase : int = ' '.join(lowerCamelCase__ ) _UpperCamelCase : List[Any] = word return word def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : Optional[Any] ): '''simple docstring''' _UpperCamelCase : int = [] for token in re.findall(self.pat ,lowerCamelCase__ ): _UpperCamelCase : int = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase__ ).split(' ' ) ) return bpe_tokens def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : List[Any] ): '''simple docstring''' return self.encoder.get(lowerCamelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : int ): '''simple docstring''' return self.decoder.get(lowerCamelCase__ ) def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : Any ): '''simple docstring''' _UpperCamelCase : Dict = ''.join(lowerCamelCase__ ) _UpperCamelCase : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' ,errors=self.errors ) return text def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCamelCase : List[Any] = os.path.join( lowerCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _UpperCamelCase : Union[str, Any] = os.path.join( lowerCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCamelCase__ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCamelCase__ ,ensure_ascii=lowerCamelCase__ ) + '\n' ) _UpperCamelCase : Optional[Any] = 0 with open(lowerCamelCase__ ,'w' ,encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) _UpperCamelCase : int = token_index writer.write(' '.join(lowerCamelCase__ ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] _UpperCamelCase : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ ,token_ids_a=lowerCamelCase__ ,already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : Tuple = [self.sep_token_id] _UpperCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Tuple=False ,**lowerCamelCase__ : Optional[int] ): '''simple docstring''' _UpperCamelCase : Tuple = kwargs.pop('add_prefix_space' ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase__ ) > 0 and not text[0].isspace()): _UpperCamelCase : List[str] = ' ' + text return (text, kwargs)
236
0
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class a__ ( snake_case ): """simple docstring""" def __init__( self , *lowercase , **lowercase ) -> None: '''simple docstring''' warnings.warn( "The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DeiTImageProcessor instead." , lowercase , ) super().__init__(*lowercase , **lowercase )
68
"""simple docstring""" from heapq import heappop, heappush import numpy as np def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): """simple docstring""" A_ , A_ : List[str] = grid.shape A_ : Optional[int] = [-1, 1, 0, 0] A_ : str = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] A_ , A_ : List[Any] = [(0, source)], set() A_ : Optional[Any] = np.full((rows, cols) , np.inf ) A_ : int = 0 A_ : Optional[int] = np.empty((rows, cols) , dtype=_UpperCAmelCase ) A_ : Optional[int] = None while queue: ((A_) , (A_)) : str = heappop(_UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: A_ : int = [] while (x, y) != source: path.append((x, y) ) A_ , A_ : List[Any] = predecessors[x, y] path.append(_UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_UpperCAmelCase ) ): A_ , A_ : Tuple = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: A_ : Union[str, Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_UpperCAmelCase , (dist + 1, (nx, ny)) ) A_ : Optional[Any] = dist + 1 A_ : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
286
0
from collections import namedtuple __a = namedtuple('from_to', 'from_ to') __a = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.001, 1_000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.00454, 264.172), 'cubicyard': from_to(0.76455, 1.30795), 'cubicfoot': from_to(0.028, 35.3147), 'cup': from_to(0.000236588, 4226.75), } def __magic_name__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ''', '''.join(SCREAMING_SNAKE_CASE__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ''', '''.join(SCREAMING_SNAKE_CASE__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
367
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = SwinConfig() UpperCAmelCase_ : Dict = swin_name.split('''_''' ) UpperCAmelCase_ : List[Any] = name_split[1] UpperCAmelCase_ : Optional[Any] = int(name_split[4] ) UpperCAmelCase_ : Union[str, Any] = int(name_split[3][-1] ) if model_size == "tiny": UpperCAmelCase_ : Tuple = 96 UpperCAmelCase_ : Optional[int] = (2, 2, 6, 2) UpperCAmelCase_ : str = (3, 6, 12, 24) elif model_size == "small": UpperCAmelCase_ : Dict = 96 UpperCAmelCase_ : str = (2, 2, 18, 2) UpperCAmelCase_ : List[str] = (3, 6, 12, 24) elif model_size == "base": UpperCAmelCase_ : Tuple = 128 UpperCAmelCase_ : Optional[int] = (2, 2, 18, 2) UpperCAmelCase_ : Optional[int] = (4, 8, 16, 32) else: UpperCAmelCase_ : List[str] = 192 UpperCAmelCase_ : str = (2, 2, 18, 2) UpperCAmelCase_ : Union[str, Any] = (6, 12, 24, 48) if "in22k" in swin_name: UpperCAmelCase_ : int = 21841 else: UpperCAmelCase_ : Tuple = 1000 UpperCAmelCase_ : Any = '''huggingface/label-files''' UpperCAmelCase_ : int = '''imagenet-1k-id2label.json''' UpperCAmelCase_ : str = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ : Optional[int] = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = idalabel UpperCAmelCase_ : int = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Tuple = img_size UpperCAmelCase_ : List[Any] = num_classes UpperCAmelCase_ : str = embed_dim UpperCAmelCase_ : Optional[int] = depths UpperCAmelCase_ : Dict = num_heads UpperCAmelCase_ : Optional[int] = window_size return config def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if "patch_embed.proj" in name: UpperCAmelCase_ : str = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCAmelCase_ : List[Any] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: UpperCAmelCase_ : Tuple = '''encoder.''' + name if "attn.proj" in name: UpperCAmelCase_ : Tuple = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase_ : int = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase_ : Union[str, Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase_ : List[Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase_ : Tuple = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase_ : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "norm.weight": UpperCAmelCase_ : Optional[Any] = '''layernorm.weight''' if name == "norm.bias": UpperCAmelCase_ : List[str] = '''layernorm.bias''' if "head" in name: UpperCAmelCase_ : Union[str, Any] = name.replace('''head''' , '''classifier''' ) else: UpperCAmelCase_ : Union[str, Any] = '''swin.''' + name return name def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ : str = orig_state_dict.pop(_lowercase ) if "mask" in key: continue elif "qkv" in key: UpperCAmelCase_ : str = key.split('''.''' ) UpperCAmelCase_ : str = int(key_split[1] ) UpperCAmelCase_ : Optional[Any] = int(key_split[3] ) UpperCAmelCase_ : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase_ : Any = val[:dim, :] UpperCAmelCase_ : Optional[int] = val[ dim : dim * 2, : ] UpperCAmelCase_ : List[str] = val[-dim:, :] else: UpperCAmelCase_ : Any = val[ :dim ] UpperCAmelCase_ : Optional[int] = val[ dim : dim * 2 ] UpperCAmelCase_ : Union[str, Any] = val[ -dim: ] else: UpperCAmelCase_ : Optional[Any] = val return orig_state_dict def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = timm.create_model(_lowercase , pretrained=_lowercase ) timm_model.eval() UpperCAmelCase_ : Any = get_swin_config(_lowercase ) UpperCAmelCase_ : Union[str, Any] = SwinForImageClassification(_lowercase ) model.eval() UpperCAmelCase_ : Tuple = convert_state_dict(timm_model.state_dict() , _lowercase ) model.load_state_dict(_lowercase ) UpperCAmelCase_ : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ : int = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) ) UpperCAmelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) UpperCAmelCase_ : Union[str, Any] = image_processor(images=_lowercase , return_tensors='''pt''' ) UpperCAmelCase_ : Optional[Any] = timm_model(inputs['''pixel_values'''] ) UpperCAmelCase_ : Dict = model(**_lowercase ).logits assert torch.allclose(_lowercase , _lowercase , atol=1E-3 ) print(f'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swin_name', default='swin_tiny_patch4_window7_224', type=str, help='Name of the Swin timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __a = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
235
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase : List[str] = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[Any] = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[Any] = ['LayoutLMv3FeatureExtractor'] _UpperCamelCase : str = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _UpperCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
220
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class a ( a_ ): def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase ): lowercase = parent lowercase = config_class lowercase = has_text_modality lowercase = kwargs lowercase = common_properties def UpperCamelCase_ ( self ): lowercase = self.config_class(**self.inputs_dict ) lowercase = ( ['hidden_size', 'num_attention_heads', 'num_hidden_layers'] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['vocab_size'] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) , msg=F'`{prop}` does not exist' ) # Test that config has the common properties as setter for idx, name in enumerate(_lowerCamelCase ): try: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F'`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowerCamelCase ): try: lowercase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F'`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCamelCase_ ( self ): lowercase = self.config_class(**self.inputs_dict ) lowercase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase = os.path.join(_lowerCamelCase , 'config.json' ) config_first.to_json_file(_lowerCamelCase ) lowercase = self.config_class.from_json_file(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCamelCase_ ( self ): lowercase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowerCamelCase ) lowercase = self.config_class.from_pretrained(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCamelCase_ ( self ): lowercase = self.config_class(**self.inputs_dict ) lowercase = 'test' with tempfile.TemporaryDirectory() as tmpdirname: lowercase = os.path.join(_lowerCamelCase , _lowerCamelCase ) config_first.save_pretrained(_lowerCamelCase ) lowercase = self.config_class.from_pretrained(_lowerCamelCase , subfolder=_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCamelCase_ ( self ): lowercase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) lowercase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCamelCase_ ( self ): if self.config_class.is_composition: return lowercase = self.config_class() self.parent.assertIsNotNone(_lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = copy.deepcopy(_lowerCamelCase ) lowercase = self.config_class(**_lowerCamelCase ) lowercase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('torch_dtype', config.torch_dtype, torch.floataa) ) elif getattr(_lowerCamelCase , _lowerCamelCase ) != value: wrong_values.append((key, getattr(_lowerCamelCase , _lowerCamelCase ), value) ) if len(_lowerCamelCase ) > 0: lowercase = '\n'.join([F'- {v[0]}: got {v[1]} instead of {v[2]}' for v in wrong_values] ) raise ValueError(F'The following keys were not properly set in the config:\n{errors}' ) def UpperCamelCase_ ( self ): self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
220
1
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() A: Optional[Any] = logging.get_logger(__name__) A: Any = "https://openaipublic.azureedge.net/jukebox/models/" A: List[Any] = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def _snake_case ( UpperCamelCase : Tuple ): if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: UpperCAmelCase : List[str] = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: UpperCAmelCase : List[str] = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: UpperCAmelCase : Dict = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: UpperCAmelCase : Optional[Any] = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: UpperCAmelCase : List[str] = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: UpperCAmelCase : Optional[int] = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: UpperCAmelCase : List[str] = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: UpperCAmelCase : Optional[Any] = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def _snake_case ( UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] ): UpperCAmelCase : int = {} import re UpperCAmelCase : str = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) UpperCAmelCase : str = re.compile( R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) UpperCAmelCase : Union[str, Any] = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) UpperCAmelCase : List[str] = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) UpperCAmelCase : Union[str, Any] = re.compile( R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) UpperCAmelCase : Optional[Any] = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) UpperCAmelCase : Optional[int] = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) UpperCAmelCase : Union[str, Any] = re.compile( R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) UpperCAmelCase : List[Any] = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(UpperCamelCase ): UpperCAmelCase : Dict = re_encoder_block_conv_in.match(UpperCamelCase ) UpperCAmelCase : int = regex_match.groups() UpperCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) UpperCAmelCase : List[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" UpperCAmelCase : str = re_encoder_block_conv_in.sub(UpperCamelCase , UpperCamelCase ) elif re_encoder_block_resnet.fullmatch(UpperCamelCase ): UpperCAmelCase : Any = re_encoder_block_resnet.match(UpperCamelCase ) UpperCAmelCase : Optional[int] = regex_match.groups() UpperCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) UpperCAmelCase : Tuple = {"""1""": 1, """3""": 2}[groups[-2]] UpperCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." UpperCAmelCase : Any = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" UpperCAmelCase : List[str] = prefix + resnet_block UpperCAmelCase : Optional[Any] = re_encoder_block_resnet.sub(UpperCamelCase , UpperCamelCase ) elif re_encoder_block_proj_out.fullmatch(UpperCamelCase ): UpperCAmelCase : Optional[Any] = re_encoder_block_proj_out.match(UpperCamelCase ) UpperCAmelCase : str = regex_match.groups() UpperCAmelCase : Optional[Any] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" UpperCAmelCase : List[str] = re_encoder_block_proj_out.sub(UpperCamelCase , UpperCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(UpperCamelCase ): UpperCAmelCase : str = re_decoder_block_conv_out.match(UpperCamelCase ) UpperCAmelCase : int = regex_match.groups() UpperCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCAmelCase : Tuple = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" UpperCAmelCase : Optional[Any] = re_decoder_block_conv_out.sub(UpperCamelCase , UpperCamelCase ) elif re_decoder_block_resnet.fullmatch(UpperCamelCase ): UpperCAmelCase : Dict = re_decoder_block_resnet.match(UpperCamelCase ) UpperCAmelCase : str = regex_match.groups() UpperCAmelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCAmelCase : int = {"""1""": 1, """3""": 2}[groups[-2]] UpperCAmelCase : List[str] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." UpperCAmelCase : List[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" UpperCAmelCase : str = prefix + resnet_block UpperCAmelCase : Any = re_decoder_block_resnet.sub(UpperCamelCase , UpperCamelCase ) elif re_decoder_block_proj_in.fullmatch(UpperCamelCase ): UpperCAmelCase : Optional[Any] = re_decoder_block_proj_in.match(UpperCamelCase ) UpperCAmelCase : List[Any] = regex_match.groups() UpperCAmelCase : int = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" UpperCAmelCase : List[Any] = re_decoder_block_proj_in.sub(UpperCamelCase , UpperCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(UpperCamelCase ): UpperCAmelCase : Any = re_prior_cond_conv_out.match(UpperCamelCase ) UpperCAmelCase : List[Any] = regex_match.groups() UpperCAmelCase : List[str] = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCAmelCase : Dict = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" UpperCAmelCase : List[Any] = re_prior_cond_conv_out.sub(UpperCamelCase , UpperCamelCase ) elif re_prior_cond_resnet.fullmatch(UpperCamelCase ): UpperCAmelCase : Union[str, Any] = re_prior_cond_resnet.match(UpperCamelCase ) UpperCAmelCase : Dict = regex_match.groups() UpperCAmelCase : Optional[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCAmelCase : Tuple = {"""1""": 1, """3""": 2}[groups[-2]] UpperCAmelCase : int = F"conditioner_blocks.upsampler.upsample_block.{block_index}." UpperCAmelCase : List[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" UpperCAmelCase : int = prefix + resnet_block UpperCAmelCase : Optional[int] = re_prior_cond_resnet.sub(UpperCamelCase , UpperCamelCase ) elif re_prior_cond_proj_in.fullmatch(UpperCamelCase ): UpperCAmelCase : Optional[int] = re_prior_cond_proj_in.match(UpperCamelCase ) UpperCAmelCase : Optional[Any] = regex_match.groups() UpperCAmelCase : Union[str, Any] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" UpperCAmelCase : Tuple = re_prior_cond_proj_in.sub(UpperCamelCase , UpperCamelCase ) # keep original key else: UpperCAmelCase : List[Any] = original_key UpperCAmelCase : Tuple = replace_key(UpperCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: UpperCAmelCase : Optional[Any] = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) UpperCAmelCase : Any = original_key UpperCAmelCase : Optional[int] = original_key UpperCAmelCase : int = value return new_dict @torch.no_grad() def _snake_case ( UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Optional[int]=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): UpperCAmelCase : Optional[int] = requests.get(F"{PREFIX}{file}" , allow_redirects=UpperCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=UpperCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , """wb""" ).write(r.content ) UpperCAmelCase : Any = MODEL_MAPPING[model_name.split("""/""" )[-1]] UpperCAmelCase : Union[str, Any] = JukeboxConfig.from_pretrained(UpperCamelCase ) UpperCAmelCase : Union[str, Any] = JukeboxModel(UpperCamelCase ) UpperCAmelCase : Any = [] UpperCAmelCase : Union[str, Any] = {} for i, dict_name in enumerate(UpperCamelCase ): UpperCAmelCase : Dict = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["""model"""] UpperCAmelCase : Optional[int] = {} for k in old_dic.keys(): if k.endswith(""".b""" ): UpperCAmelCase : Optional[Any] = old_dic[k] elif k.endswith(""".w""" ): UpperCAmelCase : Dict = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: UpperCAmelCase : List[str] = old_dic[k] else: UpperCAmelCase : List[Any] = old_dic[k] UpperCAmelCase : Dict = """vqvae""" if i == 0 else F"priors.{3 - i}" UpperCAmelCase : Tuple = fix_jukebox_keys(UpperCamelCase , model.state_dict() , UpperCamelCase , UpperCamelCase ) weight_dict.append(UpperCamelCase ) UpperCAmelCase : List[str] = weight_dict.pop(0 ) model.vqvae.load_state_dict(UpperCamelCase ) for i in range(len(UpperCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , """w""" ) as txtfile: json.dump(UpperCamelCase , UpperCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase ) return weight_dict if __name__ == "__main__": A: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) A: str = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
76
"""simple docstring""" import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : int , UpperCamelCase : List[str]=[] ): UpperCAmelCase : List[Any] = size[0] - overlap_pixels * 2 UpperCAmelCase : Dict = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels UpperCAmelCase : Union[str, Any] = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 UpperCAmelCase : Any = np.pad(UpperCamelCase , mode="""linear_ramp""" , pad_width=UpperCamelCase , end_values=0 ) if "l" in remove_borders: UpperCAmelCase : Dict = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: UpperCAmelCase : Optional[Any] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: UpperCAmelCase : Any = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: UpperCAmelCase : str = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _snake_case ( UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] ): return max(UpperCamelCase , min(UpperCamelCase , UpperCamelCase ) ) def _snake_case ( UpperCamelCase : [int] , UpperCamelCase : [int] , UpperCamelCase : [int] ): return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _snake_case ( UpperCamelCase : [int] , UpperCamelCase : int , UpperCamelCase : [int] ): UpperCAmelCase : Optional[Any] = list(UpperCamelCase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap UpperCAmelCase : List[str] = clamp_rect(UpperCamelCase , [0, 0] , [image_size[0], image_size[1]] ) return rect def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Dict ): UpperCAmelCase : Dict = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(UpperCamelCase , (original_slice, 0) ) return result def _snake_case ( UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] ): UpperCAmelCase : List[Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) UpperCAmelCase : List[Any] = tile.crop(UpperCamelCase ) return tile def _snake_case ( UpperCamelCase : Optional[int] , UpperCamelCase : Optional[Any] ): UpperCAmelCase : Union[str, Any] = n % d return n - divisor class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 350 , ) -> List[Any]: '''simple docstring''' super().__init__( vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , low_res_scheduler=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , max_noise_level=_SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : List[str] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) UpperCAmelCase : Any = add_overlap_rect(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , image.size ) UpperCAmelCase : int = image.crop(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] UpperCAmelCase : Dict = translated_slice_x - (original_image_slice / 2) UpperCAmelCase : Optional[int] = max(0 , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = squeeze_tile(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = to_input.size UpperCAmelCase : Dict = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) UpperCAmelCase : Optional[Any] = super(_SCREAMING_SNAKE_CASE , self ).__call__(image=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).images[0] UpperCAmelCase : int = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) UpperCAmelCase : Union[str, Any] = unsqueeze_tile(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) UpperCAmelCase : int = [] if x == 0: remove_borders.append("""l""" ) elif crop_rect[2] == image.size[0]: remove_borders.append("""r""" ) if y == 0: remove_borders.append("""t""" ) elif crop_rect[3] == image.size[1]: remove_borders.append("""b""" ) UpperCAmelCase : Any = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=_SCREAMING_SNAKE_CASE ) , mode="""L""" , ) final_image.paste( _SCREAMING_SNAKE_CASE , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , _SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 75 , _SCREAMING_SNAKE_CASE = 9.0 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 128 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 32 , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] = Image.new("""RGB""" , (image.size[0] * 4, image.size[1] * 4) ) UpperCAmelCase : List[str] = math.ceil(image.size[0] / tile_size ) UpperCAmelCase : Optional[Any] = math.ceil(image.size[1] / tile_size ) UpperCAmelCase : Tuple = tcx * tcy UpperCAmelCase : Any = 0 for y in range(_SCREAMING_SNAKE_CASE ): for x in range(_SCREAMING_SNAKE_CASE ): self._process_tile( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prompt=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , noise_level=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , ) current_count += 1 if callback is not None: callback({"""progress""": current_count / total_tile_count, """image""": final_image} ) return final_image def _snake_case ( ): # Run a demo UpperCAmelCase : Tuple = """stabilityai/stable-diffusion-x4-upscaler""" UpperCAmelCase : int = StableDiffusionTiledUpscalePipeline.from_pretrained(UpperCamelCase , revision="""fp16""" , torch_dtype=torch.floataa ) UpperCAmelCase : Any = pipe.to("""cuda""" ) UpperCAmelCase : Optional[int] = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" ) def callback(UpperCamelCase : List[str] ): print(F"progress: {obj['progress']:.4f}" ) obj["image"].save("""diffusers_library_progress.jpg""" ) UpperCAmelCase : Any = pipe(image=UpperCamelCase , prompt="""Black font, white background, vector""" , noise_level=40 , callback=UpperCamelCase ) final_image.save("""diffusers_library.jpg""" ) if __name__ == "__main__": main()
76
1
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
17
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
336
0
"""simple docstring""" from __future__ import annotations def _UpperCAmelCase ( __lowerCamelCase : list[int] , __lowerCamelCase : int ) -> list[list[int]]: _snake_case = [] _snake_case = [] _snake_case = 0 _snake_case = sum(__lowerCamelCase ) create_state_space_tree(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return result def _UpperCAmelCase ( __lowerCamelCase : list[int] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : int , ) -> None: if sum(__lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(__lowerCamelCase )) < max_sum: return if sum(__lowerCamelCase ) == max_sum: result.append(__lowerCamelCase ) return for index in range(__lowerCamelCase , len(__lowerCamelCase ) ): create_state_space_tree( __lowerCamelCase , __lowerCamelCase , index + 1 , [*path, nums[index]] , __lowerCamelCase , remaining_nums_sum - nums[index] , ) UpperCAmelCase__ = [3, 34, 4, 12, 5, 2] UpperCAmelCase__ = 9 UpperCAmelCase__ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
365
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( A_ ): def __init__( self : str , *_lowerCamelCase : Tuple , **_lowerCamelCase : Optional[int] ): warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
40
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : List[str] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : int = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Any = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
31
import torch def UpperCAmelCase__ ( ): if torch.cuda.is_available(): lowercase :Optional[int] = torch.cuda.device_count() else: lowercase :Dict = 0 print(F"Successfully ran on {num_gpus} GPUs" ) if __name__ == "__main__": main()
236
0
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def __lowerCamelCase ( __magic_name__ : List[str] , __magic_name__ : Any ): # ===== initialization ===== a__: Optional[Any] =Mock() a__: str =conn, Mock() a__: List[Any] =iter([1, None] ) a__: Any =lambda __magic_name__ : next(__magic_name__ ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=__magic_name__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
42
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
42
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss a_ : List[Any] = pytest.mark.integration @require_faiss class snake_case ( lowercase ): """simple docstring""" def snake_case ( self ): """simple docstring""" lowerCamelCase_ = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(UpperCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def snake_case ( self ): """simple docstring""" import faiss lowerCamelCase_ = self._create_dummy_dataset() lowerCamelCase_ = dset.map( lambda UpperCamelCase , UpperCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCamelCase , keep_in_memory=UpperCamelCase ) lowerCamelCase_ = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase_ ,lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def snake_case ( self ): """simple docstring""" import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase_ ,lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def snake_case ( self ): """simple docstring""" import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCamelCase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ ,lowerCamelCase_ = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(UpperCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def snake_case ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCamelCase_ = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} lowerCamelCase_ = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=UpperCamelCase ) lowerCamelCase_ ,lowerCamelCase_ = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class snake_case ( lowercase ): """simple docstring""" def snake_case ( self ): """simple docstring""" import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ ,lowerCamelCase_ = index.search(UpperCamelCase ) self.assertRaises(UpperCamelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase_ = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase_ ,lowerCamelCase_ = index.search_batch(UpperCamelCase ) self.assertRaises(UpperCamelCase , index.search_batch , queries[0] ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCamelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCamelCase ) def snake_case ( self ): """simple docstring""" import faiss lowerCamelCase_ = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase_ = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCamelCase ): lowerCamelCase_ = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def snake_case ( self ): """simple docstring""" import faiss lowerCamelCase_ = faiss.IndexFlat(5 ) lowerCamelCase_ = FaissIndex(custom_index=UpperCamelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def snake_case ( self ): """simple docstring""" import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCamelCase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase_ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ ,lowerCamelCase_ = index.search(UpperCamelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def __snake_case ( UpperCAmelCase_ : List[Any] ): import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase_ = "index.faiss" lowerCamelCase_ = F'''mock://{index_name}''' index.save(UpperCAmelCase_ , storage_options=mockfs.storage_options ) lowerCamelCase_ = FaissIndex.load(UpperCAmelCase_ , storage_options=mockfs.storage_options ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ ,lowerCamelCase_ = index.search(UpperCAmelCase_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class snake_case ( lowercase ): """simple docstring""" def snake_case ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = Elasticsearch() lowerCamelCase_ = {"acknowledged": True} lowerCamelCase_ = ElasticSearchIndex(es_client=UpperCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ ,lowerCamelCase_ = index.search(UpperCamelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ ,lowerCamelCase_ = index.search(UpperCamelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ ,lowerCamelCase_ = index.search_batch(UpperCamelCase ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCamelCase ) # batched queries with timeout lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ ,lowerCamelCase_ = index.search_batch(UpperCamelCase , request_timeout=30 ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCamelCase )
55
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures a__ = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) UpperCAmelCase__ : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) UpperCAmelCase__ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __lowercase ( self ) -> List[Any]: _a : List[Any] = self.task_name.lower() class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = "train" UpperCAmelCase__ : List[str] = "dev" UpperCAmelCase__ : Union[str, Any] = "test" class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : GlueDataTrainingArguments UpperCAmelCase__ : str UpperCAmelCase__ : List[InputFeatures] def __init__( self , _a , _a , _a = None , _a = Split.train , _a = None , ) -> str: warnings.warn( '''This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' , _a , ) _a : List[str] = args _a : List[str] = glue_processors[args.task_name]() _a : List[Any] = glue_output_modes[args.task_name] if isinstance(_a , _a ): try: _a : Any = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) # Load data features from cache or dataset file _a : Union[str, Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) _a : str = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _a , _a : Optional[int] = label_list[2], label_list[1] _a : Dict = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _a : Optional[int] = cached_features_file + '''.lock''' with FileLock(_a ): if os.path.exists(_a ) and not args.overwrite_cache: _a : List[Any] = time.time() _a : str = torch.load(_a ) logger.info( F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(F"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: _a : str = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: _a : Any = self.processor.get_test_examples(args.data_dir ) else: _a : List[str] = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: _a : Dict = examples[:limit_length] _a : Union[str, Any] = glue_convert_examples_to_features( _a , _a , max_length=args.max_seq_length , label_list=_a , output_mode=self.output_mode , ) _a : Optional[int] = time.time() torch.save(self.features , _a ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ) -> Optional[int]: return len(self.features ) def __getitem__( self , _a ) -> InputFeatures: return self.features[i] def __lowercase ( self ) -> Tuple: return self.label_list
235
0
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports _UpperCamelCase = """ import os """ _UpperCamelCase = """ def foo(): import os return False """ _UpperCamelCase = """ def foo(): def bar(): if True: import os return False return bar() """ _UpperCamelCase = """ import os try: import bar except ImportError: raise ValueError() """ _UpperCamelCase = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _UpperCamelCase = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _UpperCamelCase = """ import os try: import bar except ImportError as e: raise ValueError() """ _UpperCamelCase = """ import os try: import bar except: raise ValueError() """ _UpperCamelCase = """ import os try: import bar import baz except ImportError: raise ValueError() """ _UpperCamelCase = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _UpperCamelCase = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" , _snake_case ) def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = os.path.join(_snake_case , """test_file.py""" ) with open(_snake_case , """w""" ) as _tmp_file: _tmp_file.write(_snake_case ) UpperCAmelCase = get_imports(_snake_case ) assert parsed_imports == ["os"]
234
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = """▁""" _UpperCamelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} _UpperCamelCase = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } _UpperCamelCase = {"""vinai/bartpho-syllable""": 1024} class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] def __init__( self ,A ,A ,A="<s>" ,A="</s>" ,A="</s>" ,A="<s>" ,A="<unk>" ,A="<pad>" ,A="<mask>" ,A = None ,**A ,): # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) UpperCAmelCase = vocab_file UpperCAmelCase = monolingual_vocab_file UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility UpperCAmelCase = {} UpperCAmelCase = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(A ) not in self.fairseq_tokens_to_ids: UpperCAmelCase = cnt cnt += 1 with open(A ,"""r""" ,encoding="""utf-8""" ) as f: for line in f.readlines(): UpperCAmelCase = line.strip().split()[0] UpperCAmelCase = len(self.fairseq_tokens_to_ids ) if str(A ) not in self.fairseq_tokens_to_ids: UpperCAmelCase = len(self.fairseq_tokens_to_ids ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self ,A ): UpperCAmelCase = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self ,A ,A = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase ( self ,A ,A = None ,A = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def _UpperCamelCase ( self ,A ,A = None ): UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCamelCase ( self ): return len(self.fairseq_ids_to_tokens ) def _UpperCamelCase ( self ): UpperCAmelCase = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self ,A ): return self.sp_model.encode(A ,out_type=A ) def _UpperCamelCase ( self ,A ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _UpperCamelCase ( self ,A ): return self.fairseq_ids_to_tokens[index] def _UpperCamelCase ( self ,A ): UpperCAmelCase = """""".join(A ).replace(A ,""" """ ).strip() return out_string def _UpperCamelCase ( self ,A ,A = None ): if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ,) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"""wb""" ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(A ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( A ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file ,A ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(A ,"""w""" ,encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(A )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
234
1
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right a_ = 25_0004 a_ = 25_0020 @require_sentencepiece @require_tokenizers class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MBartaaTokenizer lowerCamelCase__ =MBartaaTokenizerFast lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : Any ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Tuple = MBartaaTokenizer(a , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=a ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "<s>" SCREAMING_SNAKE_CASE : Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(a ) , 1054 ) def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def __UpperCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = MBartaaTokenizer(a , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=a ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = {"input_ids": [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , ) def __UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE : Optional[int] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Dict = self.rust_tokenizer_class.from_pretrained(a , **a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer_class.from_pretrained(a , **a ) SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : str = tokenizer_r.save_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_p.save_pretrained(a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE : Optional[int] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(a , a ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : int = tokenizer_r.from_pretrained(a ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.from_pretrained(a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a , a ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(a ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.save_pretrained(a , legacy_format=a ) SCREAMING_SNAKE_CASE : Any = tokenizer_p.save_pretrained(a ) # Checks it save with the same files self.assertSequenceEqual(a , a ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.from_pretrained(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_p.from_pretrained(a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a , a ) ) shutil.rmtree(a ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE : List[str] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r.save_pretrained(a , legacy_format=a ) SCREAMING_SNAKE_CASE : str = tokenizer_p.save_pretrained(a ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = tokenizer_p.from_pretrained(a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a , a ) ) shutil.rmtree(a ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ ='facebook/mbart-large-50-one-to-many-mmt' lowerCamelCase__ =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowerCamelCase__ =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowerCamelCase__ =[EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def __UpperCamelCase ( cls : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) SCREAMING_SNAKE_CASE : Optional[Any] = 1 return cls def __UpperCamelCase ( self : str ) -> Optional[int]: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 25_0038 ) def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a ) def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" self.assertIn(a , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE : Dict = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(a , skip_special_tokens=a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a ) self.assertEqual(a , a ) self.assertNotIn(self.tokenizer.eos_token , a ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , a ) SCREAMING_SNAKE_CASE : Tuple = 10 SCREAMING_SNAKE_CASE : int = self.tokenizer(a , max_length=a , truncation=a ).input_ids[0] self.assertEqual(ids[0] , a ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(a ) , a ) def __UpperCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_0053, 25_0001] ) def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a ) SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer.from_pretrained(a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a ) @require_torch def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a , return_tensors="pt" ) SCREAMING_SNAKE_CASE : int = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a , truncation=a , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) SCREAMING_SNAKE_CASE : int = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(a , a ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.tokenizer(self.src_text , padding=a , truncation=a , max_length=3 , return_tensors="pt" ) SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( text_target=self.tgt_text , padding=a , truncation=a , max_length=10 , return_tensors="pt" ) SCREAMING_SNAKE_CASE : str = targets["input_ids"] SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __UpperCamelCase ( self : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(a ) , { # en_XX, A, test, EOS "input_ids": [[25_0004, 62, 3034, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_0001, } , )
76
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def lowerCamelCase__ ( _a): # initialize config if "resnet-50" in model_name: SCREAMING_SNAKE_CASE : int = ResNetConfig.from_pretrained("microsoft/resnet-50") elif "resnet-101" in model_name: SCREAMING_SNAKE_CASE : int = ResNetConfig.from_pretrained("microsoft/resnet-101") else: raise ValueError("Model name should include either resnet50 or resnet101") SCREAMING_SNAKE_CASE : str = DetrConfig(use_timm_backbone=_a , backbone_config=_a) # set label attributes SCREAMING_SNAKE_CASE : List[str] = "panoptic" in model_name if is_panoptic: SCREAMING_SNAKE_CASE : Union[str, Any] = 250 else: SCREAMING_SNAKE_CASE : Union[str, Any] = 91 SCREAMING_SNAKE_CASE : str = "huggingface/label-files" SCREAMING_SNAKE_CASE : Union[str, Any] = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE : Optional[Any] = json.load(open(hf_hub_download(_a , _a , repo_type="dataset") , "r")) SCREAMING_SNAKE_CASE : int = {int(_a): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : List[Any] = idalabel SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()} return config, is_panoptic def lowerCamelCase__ ( _a): # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE : Union[str, Any] = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight")) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight")) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias")) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean")) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var")) # stages for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): # shortcut if layer_idx == 0: rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", )) # 3 convs for i in range(3): rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", )) # fmt: on for i in range(config.encoder_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight", )) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight", )) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias")) rename_keys.append( ( f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", )) rename_keys.append( ( f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", )) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ]) return rename_keys def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : str = state_dict.pop(_a) SCREAMING_SNAKE_CASE : int = val def lowerCamelCase__ ( _a , _a=False): SCREAMING_SNAKE_CASE : Optional[Any] = "" if is_panoptic: SCREAMING_SNAKE_CASE : Optional[int] = "detr." # first: transformer encoder for i in range(6): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight") SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE : int = in_proj_bias[:256] SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE : List[Any] = in_proj_bias[256:512] SCREAMING_SNAKE_CASE : str = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight") SCREAMING_SNAKE_CASE : str = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE : Dict = in_proj_bias[:256] SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE : Any = in_proj_bias[256:512] SCREAMING_SNAKE_CASE : Optional[int] = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop( f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight") SCREAMING_SNAKE_CASE : int = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias") # next, add query, keys and values (in that order) of cross-attention to the state dict SCREAMING_SNAKE_CASE : Tuple = in_proj_weight_cross_attn[:256, :] SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias_cross_attn[:256] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight_cross_attn[256:512, :] SCREAMING_SNAKE_CASE : Dict = in_proj_bias_cross_attn[256:512] SCREAMING_SNAKE_CASE : Optional[int] = in_proj_weight_cross_attn[-256:, :] SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias_cross_attn[-256:] def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open(requests.get(_a , stream=_a).raw) return im @torch.no_grad() def lowerCamelCase__ ( _a , _a=None , _a=False): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = get_detr_config(_a) # load original model from torch hub SCREAMING_SNAKE_CASE : Union[str, Any] = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(f"Converting model {model_name}...") SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=_a).eval() SCREAMING_SNAKE_CASE : Tuple = detr.state_dict() # rename keys for src, dest in create_rename_keys(_a): if is_panoptic: SCREAMING_SNAKE_CASE : List[str] = "detr." + src rename_key(_a , _a , _a) # query, key and value matrices need special treatment read_in_q_k_v(_a , is_panoptic=_a) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE : List[Any] = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr") and not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor") ): SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(_a) SCREAMING_SNAKE_CASE : Union[str, Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(_a) SCREAMING_SNAKE_CASE : Optional[int] = val elif key.startswith("bbox_attention") or key.startswith("mask_head"): continue else: SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(_a) SCREAMING_SNAKE_CASE : List[Any] = val else: if not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor"): SCREAMING_SNAKE_CASE : Any = state_dict.pop(_a) SCREAMING_SNAKE_CASE : Any = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE : int = DetrForSegmentation(_a) if is_panoptic else DetrForObjectDetection(_a) model.load_state_dict(_a) model.eval() # verify our conversion on an image SCREAMING_SNAKE_CASE : int = "coco_panoptic" if is_panoptic else "coco_detection" SCREAMING_SNAKE_CASE : Optional[int] = DetrImageProcessor(format=_a) SCREAMING_SNAKE_CASE : List[str] = processor(images=prepare_img() , return_tensors="pt") SCREAMING_SNAKE_CASE : Any = encoding["pixel_values"] SCREAMING_SNAKE_CASE : Optional[Any] = detr(_a) SCREAMING_SNAKE_CASE : Any = model(_a) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4) print("Looks ok!") if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...") Path(_a).mkdir(exist_ok=_a) model.save_pretrained(_a) processor.save_pretrained(_a) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub...") model.push_to_hub(f"nielsr/{model_name}") processor.push_to_hub(f"nielsr/{model_name}") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') a_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
76
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __a = logging.get_logger(__name__) @dataclass class __SCREAMING_SNAKE_CASE ( A__ ): A : Union[str, Any] = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **SCREAMING_SNAKE_CASE__ ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase : Any = deprecated_arg[3:] lowercase : int = not kwargs.pop(SCREAMING_SNAKE_CASE__ ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase : str = kwargs.pop('''tpu_name''' , self.tpu_name ) lowercase : Tuple = kwargs.pop('''device_idx''' , self.device_idx ) lowercase : str = kwargs.pop('''eager_mode''' , self.eager_mode ) lowercase : Union[str, Any] = kwargs.pop('''use_xla''' , self.use_xla ) super().__init__(**SCREAMING_SNAKE_CASE__ ) A : str = field( default=A__ , metadata={'help': 'Name of TPU'} , ) A : int = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) A : bool = field(default=A__ , metadata={'help': 'Benchmark models in eager model.'} ) A : bool = field( default=A__ , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def __lowerCamelCase ( self ): requires_backends(self , ['''tf'''] ) lowercase : Union[str, Any] = None if self.tpu: try: if self.tpu_name: lowercase : Union[str, Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase : Tuple = None return tpu @cached_property def __lowerCamelCase ( self ): requires_backends(self , ['''tf'''] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase : Optional[Any] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , '''GPU''' ) lowercase : str = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , '''GPU''' ) # disable GPU lowercase : List[str] = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def __lowerCamelCase ( self ): requires_backends(self , ['''tf'''] ) return self._setup_tpu is not None @property def __lowerCamelCase ( self ): requires_backends(self , ['''tf'''] ) return self._setup_strategy @property def __lowerCamelCase ( self ): requires_backends(self , ['''tf'''] ) return tf.config.list_physical_devices('''GPU''' ) @property def __lowerCamelCase ( self ): requires_backends(self , ['''tf'''] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __lowerCamelCase ( self ): return self.n_gpu > 0
173
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __lowercase ( _UpperCamelCase, _UpperCamelCase=0.9_9_9, _UpperCamelCase="cosine", ) ->Tuple: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCamelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCamelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowercase : List[str] = [] for i in range(_UpperCamelCase ): lowercase : List[str] = i / num_diffusion_timesteps lowercase : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_UpperCamelCase ) / alpha_bar_fn(_UpperCamelCase ), _UpperCamelCase ) ) return torch.tensor(_UpperCamelCase, dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE ( A__ , A__ ): A : Any = [e.name for e in KarrasDiffusionSchedulers] A : Dict = 2 @register_to_config def __init__( self , SCREAMING_SNAKE_CASE__ = 1000 , SCREAMING_SNAKE_CASE__ = 0.00085 , SCREAMING_SNAKE_CASE__ = 0.012 , SCREAMING_SNAKE_CASE__ = "linear" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "epsilon" , SCREAMING_SNAKE_CASE__ = "linspace" , SCREAMING_SNAKE_CASE__ = 0 , ): if trained_betas is not None: lowercase : str = torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase : Union[str, Any] = torch.linspace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase : Union[str, Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase : str = betas_for_alpha_bar(SCREAMING_SNAKE_CASE__ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) lowercase : Optional[int] = 1.0 - self.betas lowercase : Union[str, Any] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): if schedule_timesteps is None: lowercase : Union[str, Any] = self.timesteps lowercase : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowercase : List[Any] = 1 if len(SCREAMING_SNAKE_CASE__ ) > 1 else 0 else: lowercase : int = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE__ ) else timestep lowercase : Optional[Any] = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCamelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): lowercase : Optional[Any] = self.index_for_timestep(SCREAMING_SNAKE_CASE__ ) if self.state_in_first_order: lowercase : Any = self.sigmas[step_index] else: lowercase : Optional[int] = self.sigmas_interpol[step_index] lowercase : Union[str, Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): lowercase : Any = num_inference_steps lowercase : Optional[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase : Dict = np.linspace(0 , num_train_timesteps - 1 , SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ )[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : Union[str, Any] = (np.arange(0 , SCREAMING_SNAKE_CASE__ ) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : Dict = (np.arange(SCREAMING_SNAKE_CASE__ , 0 , -step_ratio )).round().copy().astype(SCREAMING_SNAKE_CASE__ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) lowercase : int = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowercase : Optional[int] = torch.from_numpy(np.log(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = np.interp(SCREAMING_SNAKE_CASE__ , np.arange(0 , len(SCREAMING_SNAKE_CASE__ ) ) , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowercase : str = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(device=SCREAMING_SNAKE_CASE__ ) # interpolate sigmas lowercase : int = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() lowercase : Optional[Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) lowercase : Optional[int] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): # mps does not support float64 lowercase : Any = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) else: lowercase : List[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) # interpolate timesteps lowercase : Any = self.sigma_to_t(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ , dtype=timesteps.dtype ) lowercase : List[Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() lowercase : Dict = torch.cat([timesteps[:1], interleaved_timesteps] ) lowercase : int = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase : Dict = defaultdict(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): # get log sigma lowercase : Any = sigma.log() # get distribution lowercase : Optional[Any] = log_sigma - self.log_sigmas[:, None] # get sigmas range lowercase : List[Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) lowercase : str = low_idx + 1 lowercase : Union[str, Any] = self.log_sigmas[low_idx] lowercase : Union[str, Any] = self.log_sigmas[high_idx] # interpolate sigmas lowercase : Dict = (low - log_sigma) / (low - high) lowercase : Union[str, Any] = w.clamp(0 , 1 ) # transform interpolation to time range lowercase : List[str] = (1 - w) * low_idx + w * high_idx lowercase : Tuple = t.view(sigma.shape ) return t @property def __lowerCamelCase ( self ): return self.sample is None def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = True , ): lowercase : Optional[Any] = self.index_for_timestep(SCREAMING_SNAKE_CASE__ ) # advance index counter by 1 lowercase : Dict = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase : Union[str, Any] = self.sigmas[step_index] lowercase : List[Any] = self.sigmas_interpol[step_index + 1] lowercase : Any = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method lowercase : Any = self.sigmas[step_index - 1] lowercase : List[Any] = self.sigmas_interpol[step_index] lowercase : Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase : Union[str, Any] = 0 lowercase : List[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase : List[Any] = sigma_hat if self.state_in_first_order else sigma_interpol lowercase : Any = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase : List[str] = sigma_hat if self.state_in_first_order else sigma_interpol lowercase : Any = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase : Union[str, Any] = sigma_interpol - sigma_hat # store for 2nd order step lowercase : Optional[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order lowercase : str = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep lowercase : str = sigma_next - sigma_hat lowercase : List[str] = self.sample lowercase : Optional[int] = None lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase : int = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE__ ): # mps does not support float64 lowercase : Tuple = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowercase : List[Any] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowercase : List[str] = self.timesteps.to(original_samples.device ) lowercase : Any = timesteps.to(original_samples.device ) lowercase : Tuple = [self.index_for_timestep(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for t in timesteps] lowercase : Union[str, Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowercase : Any = sigma.unsqueeze(-1 ) lowercase : Optional[Any] = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
173
1
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" ,set() ) @pytest.fixture def __snake_case ( __UpperCamelCase : Tuple ): """simple docstring""" class _a : """simple docstring""" def __init__( self : str , UpperCAmelCase : int ): A_ = metric_id class _a : """simple docstring""" _lowerCamelCase : Union[str, Any] = [MetricMock(_a ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]] def __A ( self : List[str] ): return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" ,HfhMock() ) @pytest.mark.parametrize( "func, args" ,[(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : int ,__UpperCamelCase : str ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[int] ): """simple docstring""" if "tmp_path" in args: A_ = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(A_ ,match="https://huggingface.co/docs/evaluate" ): func(*A_ )
312
"""simple docstring""" __lowercase = { """Pillow""": """Pillow<10.0.0""", """accelerate""": """accelerate>=0.20.3""", """av""": """av==9.2.0""", """beautifulsoup4""": """beautifulsoup4""", """black""": """black~=23.1""", """codecarbon""": """codecarbon==1.2.0""", """cookiecutter""": """cookiecutter==1.7.3""", """dataclasses""": """dataclasses""", """datasets""": """datasets!=2.5.0""", """decord""": """decord==0.6.0""", """deepspeed""": """deepspeed>=0.9.3""", """diffusers""": """diffusers""", """dill""": """dill<0.3.5""", """evaluate""": """evaluate>=0.2.0""", """fairscale""": """fairscale>0.3""", """faiss-cpu""": """faiss-cpu""", """fastapi""": """fastapi""", """filelock""": """filelock""", """flax""": """flax>=0.4.1,<=0.7.0""", """ftfy""": """ftfy""", """fugashi""": """fugashi>=1.0""", """GitPython""": """GitPython<3.1.19""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.14.1,<1.0""", """importlib_metadata""": """importlib_metadata""", """ipadic""": """ipadic>=1.0.0,<2.0""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2,<=0.4.13""", """jaxlib""": """jaxlib>=0.1.65,<=0.4.13""", """jieba""": """jieba""", """kenlm""": """kenlm""", """keras-nlp""": """keras-nlp>=0.3.1""", """librosa""": """librosa""", """nltk""": """nltk""", """natten""": """natten>=0.14.6""", """numpy""": """numpy>=1.17""", """onnxconverter-common""": """onnxconverter-common""", """onnxruntime-tools""": """onnxruntime-tools>=1.4.2""", """onnxruntime""": """onnxruntime>=1.4.0""", """opencv-python""": """opencv-python""", """optuna""": """optuna""", """optax""": """optax>=0.0.8,<=0.1.4""", """packaging""": """packaging>=20.0""", """parameterized""": """parameterized""", """phonemizer""": """phonemizer""", """protobuf""": """protobuf""", """psutil""": """psutil""", """pyyaml""": """pyyaml>=5.1""", """pydantic""": """pydantic<2""", """pytest""": """pytest>=7.2.0""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """python""": """python>=3.8.0""", """ray[tune]""": """ray[tune]""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """rhoknp""": """rhoknp>=1.1.0,<1.3.1""", """rjieba""": """rjieba""", """rouge-score""": """rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1""", """ruff""": """ruff>=0.0.241,<=0.0.259""", """sacrebleu""": """sacrebleu>=1.4.12,<2.0.0""", """sacremoses""": """sacremoses""", """safetensors""": """safetensors>=0.3.1""", """sagemaker""": """sagemaker>=2.31.0""", """scikit-learn""": """scikit-learn""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """sigopt""": """sigopt""", """starlette""": """starlette""", """sudachipy""": """sudachipy>=0.6.6""", """sudachidict_core""": """sudachidict_core>=20220729""", """tensorflow-cpu""": """tensorflow-cpu>=2.6,<2.14""", """tensorflow""": """tensorflow>=2.6,<2.14""", """tensorflow-text""": """tensorflow-text<2.14""", """tf2onnx""": """tf2onnx""", """timeout-decorator""": """timeout-decorator""", """timm""": """timm""", """tokenizers""": """tokenizers>=0.11.1,!=0.11.3,<0.14""", """torch""": """torch>=1.9,!=1.12.0""", """torchaudio""": """torchaudio""", """torchvision""": """torchvision""", """pyctcdecode""": """pyctcdecode>=0.4.0""", """tqdm""": """tqdm>=4.27""", """unidic""": """unidic>=1.0.2""", """unidic_lite""": """unidic_lite>=1.0.7""", """urllib3""": """urllib3<2.0.0""", """uvicorn""": """uvicorn""", }
40
0
from cva import destroyAllWindows, imread, imshow, waitKey def __lowercase ( __lowerCAmelCase : Optional[Any] ): # getting number of pixels in the image a__ , a__ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): a__ = [2_5_5, 2_5_5, 2_5_5] - img[i][j] return img if __name__ == "__main__": # read original image snake_case : List[str] = imread('''image_data/lena.jpg''', 1) # convert to its negative snake_case : str = convert_to_negative(img) # show result image imshow('''negative of original image''', img) waitKey(0) destroyAllWindows()
351
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() snake_case : str = logging.get_logger(__name__) snake_case : Optional[Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } snake_case : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): for attribute in key.split('.' ): a__ = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: a__ = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: a__ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": a__ = value elif weight_type == "weight_g": a__ = value elif weight_type == "weight_v": a__ = value elif weight_type == "bias": a__ = value else: a__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] ): a__ = [] a__ = fairseq_model.state_dict() a__ = hf_model.feature_extractor for name, value in fairseq_dict.items(): a__ = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) a__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: a__ = True if "*" in mapped_key: a__ = name.split(__lowerCAmelCase )[0].split('.' )[-2] a__ = mapped_key.replace('*' , __lowerCAmelCase ) if "weight_g" in name: a__ = 'weight_g' elif "weight_v" in name: a__ = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: a__ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ = 'weight' else: a__ = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] ): a__ = full_name.split('conv_layers.' )[-1] a__ = name.split('.' ) a__ = int(items[0] ) a__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) a__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) a__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) a__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) a__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any]=None ): # load the pre-trained checkpoints a__ = torch.load(__lowerCAmelCase ) a__ = WavLMConfigOrig(checkpoint['cfg'] ) a__ = WavLMOrig(__lowerCAmelCase ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: a__ = WavLMConfig.from_pretrained(__lowerCAmelCase ) else: a__ = WavLMConfig() a__ = WavLMModel(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase ) hf_wavlm.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') snake_case : Union[str, Any] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
109
0
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowercase : int = logging.get_logger(__name__) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ): """simple docstring""" super().__init__() _snake_case = nn.ModuleList(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(lowerCAmelCase_ , lowerCAmelCase_ , self.nets ) ): _snake_case , _snake_case = controlnet( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # merge samples if i == 0: _snake_case , _snake_case = down_samples, mid_sample else: _snake_case = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ): """simple docstring""" _snake_case = 0 _snake_case = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowerCAmelCase_ , is_main_process=lowerCAmelCase_ , save_function=lowerCAmelCase_ , safe_serialization=lowerCAmelCase_ , variant=lowerCAmelCase_ , ) idx += 1 _snake_case = model_path_to_save + F'_{idx}' @classmethod def lowerCamelCase ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" _snake_case = 0 _snake_case = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _snake_case = pretrained_model_path while os.path.isdir(lowerCAmelCase_ ): _snake_case = ControlNetModel.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) controlnets.append(lowerCAmelCase_ ) idx += 1 _snake_case = pretrained_model_path + F'_{idx}' logger.info(F'{len(lowerCAmelCase_ )} controlnets loaded from {pretrained_model_path}.' ) if len(lowerCAmelCase_ ) == 0: raise ValueError( F'No ControlNets found under {os.path.dirname(lowerCAmelCase_ )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(lowerCAmelCase_ )
42
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = 42 class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_=3 , lowerCAmelCase_=3 , lowerCAmelCase_=("DownEncoderBlock2D",) , lowerCAmelCase_=(64,) , lowerCAmelCase_=2 , lowerCAmelCase_=32 , lowerCAmelCase_="silu" , lowerCAmelCase_=True , ): """simple docstring""" super().__init__() _snake_case = layers_per_block _snake_case = torch.nn.Convad( lowerCAmelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _snake_case = None _snake_case = nn.ModuleList([] ) # down _snake_case = block_out_channels[0] for i, down_block_type in enumerate(lowerCAmelCase_ ): _snake_case = output_channel _snake_case = block_out_channels[i] _snake_case = i == len(lowerCAmelCase_ ) - 1 _snake_case = get_down_block( lowerCAmelCase_ , num_layers=self.layers_per_block , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=lowerCAmelCase_ , resnet_groups=lowerCAmelCase_ , attention_head_dim=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , ) self.down_blocks.append(lowerCAmelCase_ ) # mid _snake_case = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , ) # out _snake_case = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCAmelCase_ , eps=1E-6 ) _snake_case = nn.SiLU() _snake_case = 2 * out_channels if double_z else out_channels _snake_case = nn.Convad(block_out_channels[-1] , lowerCAmelCase_ , 3 , padding=1 ) _snake_case = False def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = x _snake_case = self.conv_in(lowerCAmelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCAmelCase_ ): def custom_forward(*lowerCAmelCase_ ): return module(*lowerCAmelCase_ ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) # middle _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) else: for down_block in self.down_blocks: _snake_case = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ ) # middle _snake_case = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCAmelCase_ ) else: # down for down_block in self.down_blocks: _snake_case = down_block(lowerCAmelCase_ ) # middle _snake_case = self.mid_block(lowerCAmelCase_ ) # post-process _snake_case = self.conv_norm_out(lowerCAmelCase_ ) _snake_case = self.conv_act(lowerCAmelCase_ ) _snake_case = self.conv_out(lowerCAmelCase_ ) return sample class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_=3 , lowerCAmelCase_=3 , lowerCAmelCase_=("UpDecoderBlock2D",) , lowerCAmelCase_=(64,) , lowerCAmelCase_=2 , lowerCAmelCase_=32 , lowerCAmelCase_="silu" , lowerCAmelCase_="group" , ): """simple docstring""" super().__init__() _snake_case = layers_per_block _snake_case = nn.Convad( lowerCAmelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _snake_case = None _snake_case = nn.ModuleList([] ) _snake_case = in_channels if norm_type == 'spatial' else None # mid _snake_case = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , ) # up _snake_case = list(reversed(lowerCAmelCase_ ) ) _snake_case = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCAmelCase_ ): _snake_case = output_channel _snake_case = reversed_block_out_channels[i] _snake_case = i == len(lowerCAmelCase_ ) - 1 _snake_case = get_up_block( lowerCAmelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , prev_output_channel=lowerCAmelCase_ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase_ , resnet_groups=lowerCAmelCase_ , attention_head_dim=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , resnet_time_scale_shift=lowerCAmelCase_ , ) self.up_blocks.append(lowerCAmelCase_ ) _snake_case = output_channel # out if norm_type == "spatial": _snake_case = SpatialNorm(block_out_channels[0] , lowerCAmelCase_ ) else: _snake_case = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCAmelCase_ , eps=1E-6 ) _snake_case = nn.SiLU() _snake_case = nn.Convad(block_out_channels[0] , lowerCAmelCase_ , 3 , padding=1 ) _snake_case = False def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ): """simple docstring""" _snake_case = z _snake_case = self.conv_in(lowerCAmelCase_ ) _snake_case = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCAmelCase_ ): def custom_forward(*lowerCAmelCase_ ): return module(*lowerCAmelCase_ ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase_ , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) _snake_case = sample.to(lowerCAmelCase_ ) # up for up_block in self.up_blocks: _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) else: # middle _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = sample.to(lowerCAmelCase_ ) # up for up_block in self.up_blocks: _snake_case = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ , lowerCAmelCase_ ) else: # middle _snake_case = self.mid_block(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = sample.to(lowerCAmelCase_ ) # up for up_block in self.up_blocks: _snake_case = up_block(lowerCAmelCase_ , lowerCAmelCase_ ) # post-process if latent_embeds is None: _snake_case = self.conv_norm_out(lowerCAmelCase_ ) else: _snake_case = self.conv_norm_out(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.conv_act(lowerCAmelCase_ ) _snake_case = self.conv_out(lowerCAmelCase_ ) return sample class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_="random" , lowerCAmelCase_=False , lowerCAmelCase_=True ): """simple docstring""" super().__init__() _snake_case = n_e _snake_case = vq_embed_dim _snake_case = beta _snake_case = legacy _snake_case = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _snake_case = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) _snake_case = self.used.shape[0] _snake_case = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _snake_case = self.re_embed _snake_case = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: _snake_case = n_e _snake_case = sane_index_shape def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = inds.shape assert len(lowerCAmelCase_ ) > 1 _snake_case = inds.reshape(ishape[0] , -1 ) _snake_case = self.used.to(lowerCAmelCase_ ) _snake_case = (inds[:, :, None] == used[None, None, ...]).long() _snake_case = match.argmax(-1 ) _snake_case = match.sum(2 ) < 1 if self.unknown_index == "random": _snake_case = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _snake_case = self.unknown_index return new.reshape(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = inds.shape assert len(lowerCAmelCase_ ) > 1 _snake_case = inds.reshape(ishape[0] , -1 ) _snake_case = self.used.to(lowerCAmelCase_ ) if self.re_embed > self.used.shape[0]: # extra token _snake_case = 0 # simply set to zero _snake_case = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCAmelCase_ ) return back.reshape(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = z.permute(0 , 2 , 3 , 1 ).contiguous() _snake_case = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _snake_case = torch.argmin(torch.cdist(lowerCAmelCase_ , self.embedding.weight ) , dim=1 ) _snake_case = self.embedding(lowerCAmelCase_ ).view(z.shape ) _snake_case = None _snake_case = None # compute loss for embedding if not self.legacy: _snake_case = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _snake_case = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _snake_case = z + (z_q - z).detach() # reshape back to match original input shape _snake_case = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _snake_case = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _snake_case = self.remap_to_used(lowerCAmelCase_ ) _snake_case = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _snake_case = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if self.remap is not None: _snake_case = indices.reshape(shape[0] , -1 ) # add batch axis _snake_case = self.unmap_to_all(lowerCAmelCase_ ) _snake_case = indices.reshape(-1 ) # flatten again # get quantized latent vectors _snake_case = self.embedding(lowerCAmelCase_ ) if shape is not None: _snake_case = z_q.view(lowerCAmelCase_ ) # reshape back to match original input shape _snake_case = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case = parameters _snake_case , _snake_case = torch.chunk(lowerCAmelCase_ , 2 , dim=1 ) _snake_case = torch.clamp(self.logvar , -30.0 , 20.0 ) _snake_case = deterministic _snake_case = torch.exp(0.5 * self.logvar ) _snake_case = torch.exp(self.logvar ) if self.deterministic: _snake_case = _snake_case = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCamelCase ( self , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = randn_tensor( self.mean.shape , generator=lowerCAmelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) _snake_case = self.mean + self.std * sample return x def lowerCamelCase ( self , lowerCAmelCase_=None ): """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=[1, 2, 3] ): """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) _snake_case = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" return self.mean
42
1
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class lowercase__ ( lowercase ): lowercase__ = 42 lowercase__ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
350
'''simple docstring''' from datetime import datetime import requests def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[Any] = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' _UpperCamelCase : Optional[int] = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase_ ).content if __name__ == "__main__": snake_case_ : List[str] = input('Enter Video/IGTV url: ').strip() snake_case_ : str = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
236
0
"""simple docstring""" import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel _lowerCamelCase : Dict = False _lowerCamelCase : List[str] = True _lowerCamelCase : Tuple = False if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') _lowerCamelCase : Optional[Any] = parser.parse_args() _lowerCamelCase : Dict = { '''image_size''': '''sample_size''', '''num_res_blocks''': '''layers_per_block''', '''block_channels''': '''block_out_channels''', '''down_blocks''': '''down_block_types''', '''up_blocks''': '''up_block_types''', '''downscale_freq_shift''': '''freq_shift''', '''resnet_num_groups''': '''norm_num_groups''', '''resnet_act_fn''': '''act_fn''', '''resnet_eps''': '''norm_eps''', '''num_head_channels''': '''attention_head_dim''', } _lowerCamelCase : List[str] = { '''time_steps''': '''time_proj''', '''mid''': '''mid_block''', '''downsample_blocks''': '''down_blocks''', '''upsample_blocks''': '''up_blocks''', } _lowerCamelCase : Optional[int] = '''''' if has_file(args.repo_path, 'config.json') else '''unet''' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: _lowerCamelCase : Union[str, Any] = reader.read() _lowerCamelCase : List[str] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): _lowerCamelCase : List[str] = UNetaDModel(**config) else: _lowerCamelCase : str = UNetaDConditionModel if '''ldm-text2im-large-256''' in args.repo_path else UNetaDModel _lowerCamelCase : Optional[Any] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) _lowerCamelCase : Any = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: _lowerCamelCase : List[str] = config[key] del config[key] _lowerCamelCase : Optional[Any] = [k.replace('UNetRes', '') for k in config['''down_block_types''']] _lowerCamelCase : Optional[int] = [k.replace('UNetRes', '') for k in config['''up_block_types''']] if do_only_weights: _lowerCamelCase : List[Any] = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) _lowerCamelCase : int = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue _lowerCamelCase : Tuple = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: _lowerCamelCase : int = param_value _lowerCamelCase : int = True if not has_changed: _lowerCamelCase : str = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
167
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : Any = get_tests_dir('''fixtures/test_sentencepiece.model''') lowerCamelCase : Any = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') lowerCamelCase : Optional[int] = '''pt''' if is_torch_available() else '''tf''' @require_sentencepiece @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Dict = CamembertTokenizer _A : Union[str, Any] = CamembertTokenizerFast _A : Union[str, Any] = True _A : Tuple = True def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowercase : Union[str, Any] = CamembertTokenizer(__a ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = """<pad>""" __lowercase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__a ) , 1004 ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = CamembertTokenizer(__a ) tokenizer.save_pretrained(self.tmpdirname ) __lowercase : Tuple = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __lowercase : List[str] = """I was born in 92000, and this is falsé.""" __lowercase : Optional[Any] = tokenizer.encode(__a ) __lowercase : List[Any] = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) __lowercase : Tuple = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Union[str, Any] = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __lowercase : Dict = tokenizer.convert_ids_to_tokens(__a ) __lowercase : Any = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" if not self.test_rust_tokenizer: return __lowercase : List[str] = self.get_tokenizer() __lowercase : Any = self.get_rust_tokenizer() __lowercase : Any = """I was born in 92000, and this is falsé.""" __lowercase : Tuple = tokenizer.tokenize(__a ) __lowercase : Optional[Any] = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) __lowercase : Any = self.get_rust_tokenizer() __lowercase : str = tokenizer.encode(__a ) __lowercase : Union[str, Any] = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : str = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __lowercase : List[str] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__a , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__a , )
233
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ :List[str] = { "configuration_longformer": [ "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerOnnxConfig", ], "tokenization_longformer": ["LongformerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Tuple = ["LongformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Any = [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :List[Any] = [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys lowerCAmelCase__ :Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
352
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=9 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.002 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = encoder_seq_length _UpperCAmelCase = decoder_seq_length # For common tests _UpperCAmelCase = self.decoder_seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_attention_mask _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = d_ff _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = dropout_rate _UpperCAmelCase = initializer_factor _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = decoder_start_token_id _UpperCAmelCase = None _UpperCAmelCase = decoder_layers def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return TaConfig.from_pretrained('google/umt5-base' ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> List[str]: """simple docstring""" if attention_mask is None: _UpperCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_SCREAMING_SNAKE_CASE ) if decoder_head_mask is None: _UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_SCREAMING_SNAKE_CASE ) if cross_attn_head_mask is None: _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_SCREAMING_SNAKE_CASE ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = self.get_config() _UpperCAmelCase = config.num_attention_heads _UpperCAmelCase = self.prepare_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return config, input_dict def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" _UpperCAmelCase = UMTaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model( input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = result.last_hidden_state _UpperCAmelCase = result.past_key_values _UpperCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_SCREAMING_SNAKE_CASE ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = UMTaModel(config=_SCREAMING_SNAKE_CASE ).get_decoder().to(_SCREAMING_SNAKE_CASE ).eval() # first forward pass _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) + 1 ) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )['last_hidden_state'] _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )['last_hidden_state'] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" _UpperCAmelCase = UMTaModel(config=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ).half().eval() _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )['last_hidden_state'] self.parent.assertFalse(torch.isnan(_SCREAMING_SNAKE_CASE ).any().item() ) @require_torch class __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : Union[str, Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _a : List[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () _a : Tuple = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) _a : List[str] = True _a : List[Any] = False _a : Tuple = False _a : List[Any] = True _a : str = True # The small UMT5 model needs higher percentages for CPU/MP tests _a : Tuple = [0.8, 0.9] def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _SCREAMING_SNAKE_CASE , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=_SCREAMING_SNAKE_CASE , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = config_and_inputs[0] _UpperCAmelCase = UMTaForConditionalGeneration(_SCREAMING_SNAKE_CASE ).eval() model.to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ), } for attn_name, (name, mask) in zip(_SCREAMING_SNAKE_CASE , head_masking.items() ): _UpperCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=_SCREAMING_SNAKE_CASE , return_dict_in_generate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # We check the state of decoder_attentions and cross_attentions just from the last step _UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class __a ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=_SCREAMING_SNAKE_CASE , legacy=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors='pt' , padding=_SCREAMING_SNAKE_CASE ).input_ids # fmt: off _UpperCAmelCase = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model.generate(input_ids.to(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] _UpperCAmelCase = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
185
0
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __magic_name__ ( lowercase , lowercase , lowercase , lowercase , ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any =coefficient_matrix.shape SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =constant_matrix.shape if rowsa != colsa: SCREAMING_SNAKE_CASE_: Dict =f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(lowercase ) if colsa != 1: SCREAMING_SNAKE_CASE_: Optional[int] =f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(lowercase ) if rowsa != rowsa: SCREAMING_SNAKE_CASE_: Tuple =( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(lowercase ) if len(lowercase ) != rowsa: SCREAMING_SNAKE_CASE_: Optional[Any] =( """Number of initial values must be equal to number of rows in coefficient """ f'''matrix but received {len(lowercase )} and {rowsa}''' ) raise ValueError(lowercase ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) SCREAMING_SNAKE_CASE_: NDArray[floataa] =np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =table.shape strictly_diagonally_dominant(lowercase ) # Iterates the whole matrix for given number of times for _ in range(lowercase ): SCREAMING_SNAKE_CASE_: Union[str, Any] =[] for row in range(lowercase ): SCREAMING_SNAKE_CASE_: Union[str, Any] =0 for col in range(lowercase ): if col == row: SCREAMING_SNAKE_CASE_: int =table[row][col] elif col == cols - 1: SCREAMING_SNAKE_CASE_: Tuple =table[row][col] else: temp += (-1) * table[row][col] * init_val[col] SCREAMING_SNAKE_CASE_: int =(temp + val) / denom new_val.append(lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =new_val return [float(lowercase ) for i in new_val] def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] =table.shape SCREAMING_SNAKE_CASE_: List[Any] =True for i in range(0 , lowercase ): SCREAMING_SNAKE_CASE_: int =0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
173
"""simple docstring""" from sklearn.metrics import recall_score import datasets _UpperCAmelCase = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ _UpperCAmelCase = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ _UpperCAmelCase = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCamelCase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[Any]="binary" , lowerCAmelCase : int=None , lowerCAmelCase : str="warn" , ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =recall_score( lowerCAmelCase , lowerCAmelCase , labels=lowerCAmelCase , pos_label=lowerCAmelCase , average=lowerCAmelCase , sample_weight=lowerCAmelCase , zero_division=lowerCAmelCase , ) return {"recall": float(lowerCAmelCase ) if score.size == 1 else score}
173
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ =logging.get_logger(__name__) lowercase__ ={ 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class UpperCamelCase__ ( _UpperCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = 'vit_mae' def __init__(self : Union[str, Any] , snake_case_ : List[Any]=7_6_8 , snake_case_ : Optional[int]=1_2 , snake_case_ : Any=1_2 , snake_case_ : Any=3_0_7_2 , snake_case_ : List[str]="gelu" , snake_case_ : Any=0.0 , snake_case_ : Dict=0.0 , snake_case_ : Union[str, Any]=0.02 , snake_case_ : List[str]=1E-12 , snake_case_ : Dict=2_2_4 , snake_case_ : Dict=1_6 , snake_case_ : List[Any]=3 , snake_case_ : Dict=True , snake_case_ : List[Any]=1_6 , snake_case_ : int=5_1_2 , snake_case_ : Dict=8 , snake_case_ : List[Any]=2_0_4_8 , snake_case_ : Union[str, Any]=0.75 , snake_case_ : List[str]=False , **snake_case_ : Tuple , ): super().__init__(**_UpperCAmelCase ) __a : Any = hidden_size __a : str = num_hidden_layers __a : Dict = num_attention_heads __a : str = intermediate_size __a : Tuple = hidden_act __a : List[Any] = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : List[Any] = initializer_range __a : int = layer_norm_eps __a : Any = image_size __a : List[str] = patch_size __a : str = num_channels __a : Tuple = qkv_bias __a : Tuple = decoder_num_attention_heads __a : Union[str, Any] = decoder_hidden_size __a : List[str] = decoder_num_hidden_layers __a : Union[str, Any] = decoder_intermediate_size __a : Optional[int] = mask_ratio __a : Optional[int] = norm_pix_loss
368
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase__ ='bert-base-cased' lowercase__ ='google/pegasus-xsum' lowercase__ =[' Sam ate lunch today.', 'Sams lunch ingredients.'] lowercase__ =['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] lowercase__ ='patrickvonplaten/t5-tiny-random' lowercase__ ='sshleifer/bart-tiny-random' lowercase__ ='sshleifer/tiny-mbart' lowercase__ ='sshleifer/tiny-marian-en-de' def __UpperCamelCase ( lowerCAmelCase__ : Path , lowerCAmelCase__ : list ): __a : List[Any] = '''\n'''.join(lowerCAmelCase__ ) Path(lowerCAmelCase__ ).open('''w''' ).writelines(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : int ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(lowerCAmelCase__ , f"{split}.source" ) , lowerCAmelCase__ ) _dump_articles(os.path.join(lowerCAmelCase__ , f"{split}.target" ) , lowerCAmelCase__ ) return tmp_dir class UpperCamelCase__ ( __lowercase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def lowerCAmelCase (self : int , snake_case_ : int ): __a : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ ) __a : Optional[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __a : Union[str, Any] = max(len(tokenizer.encode(snake_case_ ) ) for a in ARTICLES ) __a : str = max(len(tokenizer.encode(snake_case_ ) ) for a in SUMMARIES ) __a : str = 4 __a : Dict = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __a , __a : Any = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. __a : List[Any] = SeqaSeqDataset( snake_case_ , data_dir=snake_case_ , type_path='''train''' , max_source_length=snake_case_ , max_target_length=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ , ) __a : Dict = DataLoader(snake_case_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(snake_case_ , snake_case_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __a : Dict = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def lowerCAmelCase (self : Optional[Any] , snake_case_ : str ): __a : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case_ ) __a : str = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __a : Any = max(len(tokenizer.encode(snake_case_ ) ) for a in ARTICLES ) __a : Any = max(len(tokenizer.encode(snake_case_ ) ) for a in SUMMARIES ) __a : Dict = 4 __a : Optional[int] = LegacySeqaSeqDataset( snake_case_ , data_dir=snake_case_ , type_path='''train''' , max_source_length=2_0 , max_target_length=snake_case_ , ) __a : Optional[Any] = DataLoader(snake_case_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def lowerCAmelCase (self : List[str] ): __a : int = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) __a : Any = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __a : Optional[int] = tmp_dir.joinpath('''train.source''' ).open().readlines() __a : List[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(snake_case_ , snake_case_ , 1_2_8 , snake_case_ ) __a : Optional[Any] = {x.name for x in tmp_dir.iterdir()} __a : Union[str, Any] = {x.name for x in save_dir.iterdir()} __a : str = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(snake_case_ ) < len(snake_case_ ) assert len(snake_case_ ) == 1 assert len(packed_examples[0] ) == sum(len(snake_case_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def lowerCAmelCase (self : Any ): if not FAIRSEQ_AVAILABLE: return __a , __a , __a : Any = self._get_dataset(max_len=6_4 ) __a : int = 6_4 __a : List[str] = ds.make_dynamic_sampler(snake_case_ , required_batch_size_multiple=snake_case_ ) __a : List[str] = [len(snake_case_ ) for x in batch_sampler] assert len(set(snake_case_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(snake_case_ ) == len(snake_case_ ) # no dropped or added examples __a : Union[str, Any] = DataLoader(snake_case_ , batch_sampler=snake_case_ , collate_fn=ds.collate_fn , num_workers=2 ) __a : Tuple = [] __a : Union[str, Any] = [] for batch in data_loader: __a : Any = batch['''input_ids'''].shape __a : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __a : Optional[Any] = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(snake_case_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(snake_case_ ) assert num_src_per_batch[0] == max(snake_case_ ) if failures: raise AssertionError(f"too many tokens in {len(snake_case_ )} batches" ) def lowerCAmelCase (self : int ): __a , __a , __a : Optional[int] = self._get_dataset(max_len=5_1_2 ) __a : Union[str, Any] = 2 __a : str = ds.make_sortish_sampler(snake_case_ , shuffle=snake_case_ ) __a : Tuple = DataLoader(snake_case_ , batch_size=snake_case_ , collate_fn=ds.collate_fn , num_workers=2 ) __a : Tuple = DataLoader(snake_case_ , batch_size=snake_case_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=snake_case_ ) __a : Optional[int] = tokenizer.pad_token_id def count_pad_tokens(snake_case_ : Union[str, Any] , snake_case_ : List[str]="input_ids" ): return [batch[k].eq(snake_case_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(snake_case_ , k='''labels''' ) ) < sum(count_pad_tokens(snake_case_ , k='''labels''' ) ) assert sum(count_pad_tokens(snake_case_ ) ) < sum(count_pad_tokens(snake_case_ ) ) assert len(snake_case_ ) == len(snake_case_ ) def lowerCAmelCase (self : int , snake_case_ : int=1_0_0_0 , snake_case_ : Optional[Any]=1_2_8 ): if os.getenv('''USE_REAL_DATA''' , snake_case_ ): __a : Optional[int] = '''examples/seq2seq/wmt_en_ro''' __a : List[Any] = max_len * 2 * 6_4 if not Path(snake_case_ ).joinpath('''train.len''' ).exists(): save_len_file(snake_case_ , snake_case_ ) else: __a : int = '''examples/seq2seq/test_data/wmt_en_ro''' __a : List[str] = max_len * 4 save_len_file(snake_case_ , snake_case_ ) __a : str = AutoTokenizer.from_pretrained(snake_case_ ) __a : Optional[int] = SeqaSeqDataset( snake_case_ , data_dir=snake_case_ , type_path='''train''' , max_source_length=snake_case_ , max_target_length=snake_case_ , n_obs=snake_case_ , ) return ds, max_tokens, tokenizer def lowerCAmelCase (self : List[str] ): __a , __a , __a : str = self._get_dataset() __a : Optional[Any] = set(DistributedSortishSampler(snake_case_ , 2_5_6 , num_replicas=2 , rank=0 , add_extra_examples=snake_case_ ) ) __a : Tuple = set(DistributedSortishSampler(snake_case_ , 2_5_6 , num_replicas=2 , rank=1 , add_extra_examples=snake_case_ ) ) assert idsa.intersection(snake_case_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def lowerCAmelCase (self : str , snake_case_ : Union[str, Any] ): __a : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case_ , use_fast=snake_case_ ) if tok_name == MBART_TINY: __a : Any = SeqaSeqDataset( snake_case_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) __a : Tuple = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __a : Optional[Any] = SeqaSeqDataset( snake_case_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) __a : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(snake_case_ ) == 1 if tok_name == BART_TINY else len(snake_case_ ) == 0
90
0
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] = 13 , UpperCAmelCase__ : Tuple = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : Any = 3 , UpperCAmelCase__ : str = 3 , UpperCAmelCase__ : Tuple = True , UpperCAmelCase__ : int = True , UpperCAmelCase__ : List[str] = 128 , UpperCAmelCase__ : Union[str, Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : Optional[Any] = 4 , UpperCAmelCase__ : List[Any] = 37 , UpperCAmelCase__ : Optional[Any] = "gelu" , UpperCAmelCase__ : Optional[Any] = 0.1 , UpperCAmelCase__ : str = 0.1 , UpperCAmelCase__ : Optional[int] = 10 , UpperCAmelCase__ : Any = 0.02 , UpperCAmelCase__ : str = 2 , UpperCAmelCase__ : Optional[Any] = 1 , UpperCAmelCase__ : Optional[int] = 128 , UpperCAmelCase__ : List[Any] = [2, 2, 2, 2] , UpperCAmelCase__ : Any = 2 , UpperCAmelCase__ : Tuple = 2 , ) ->Union[str, Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = encoder_stride A__ = num_attention_outputs A__ = embed_dim A__ = embed_dim + 1 A__ = resolution A__ = depths A__ = hidden_sizes A__ = dim A__ = mlp_expansion_ratio def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any]) ->Union[str, Any]: '''simple docstring''' A__ = TFEfficientFormerModel(config=_SCREAMING_SNAKE_CASE) A__ = model(_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFEfficientFormerForImageClassification(_SCREAMING_SNAKE_CASE) A__ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images A__ = 1 A__ = TFEfficientFormerForImageClassification(_SCREAMING_SNAKE_CASE) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) A__ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE ( self : str) ->Dict: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ = config_and_inputs A__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: '''simple docstring''' A__ = TFEfficientFormerModelTester(self) A__ = ConfigTester( self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : str) ->Dict: '''simple docstring''' pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''') def SCREAMING_SNAKE_CASE ( self : str) ->int: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_SCREAMING_SNAKE_CASE) A__ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str): A__ = model_class(_SCREAMING_SNAKE_CASE) A__ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) , training=_SCREAMING_SNAKE_CASE) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) if hasattr(self.model_tester , '''encoder_seq_length'''): A__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1: A__ = seq_length * self.model_tester.chunk_length else: A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: A__ = outputs.decoder_hidden_states self.asseretIsInstance(_SCREAMING_SNAKE_CASE , (list, tuple)) self.assertEqual(len(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) A__ = getattr(self.model_tester , '''seq_length''' , _SCREAMING_SNAKE_CASE) A__ = getattr(self.model_tester , '''decoder_seq_length''' , _SCREAMING_SNAKE_CASE) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : int=False) ->Dict: '''simple docstring''' A__ = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : List[str]) ->int: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''') def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE ( self : List[str]) ->int: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE) @slow def SCREAMING_SNAKE_CASE ( self : Any) ->int: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFEfficientFormerModel.from_pretrained(_SCREAMING_SNAKE_CASE) self.assertIsNotNone(_SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = getattr(self.model_tester , '''seq_length''' , _SCREAMING_SNAKE_CASE) A__ = getattr(self.model_tester , '''encoder_seq_length''' , _SCREAMING_SNAKE_CASE) A__ = getattr(self.model_tester , '''key_length''' , _SCREAMING_SNAKE_CASE) A__ = getattr(self.model_tester , '''chunk_length''' , _SCREAMING_SNAKE_CASE) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''): A__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(_SCREAMING_SNAKE_CASE) A__ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) , training=_SCREAMING_SNAKE_CASE) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(_SCREAMING_SNAKE_CASE) A__ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) , training=_SCREAMING_SNAKE_CASE) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE ( self : Any) ->int: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model A__ = model_class(_SCREAMING_SNAKE_CASE) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes A__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_SCREAMING_SNAKE_CASE) for key, val in model.input_signature.items() if key in model.dummy_inputs } A__ = model(_SCREAMING_SNAKE_CASE) self.assertTrue(outputs_dict is not None) def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: '''simple docstring''' A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''tf''') # forward pass A__ = model(**_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE) A__ = tf.constant([-0.0555, 0.4825, -0.0852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->str: '''simple docstring''' A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''tf''') # forward pass A__ = model(**_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE) A__ = tf.constant([-0.1312, 0.4353, -1.0499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4))
14
"""simple docstring""" A: int = range(2, 2_0 + 1) A: Any = [1_0**k for k in range(ks[-1] + 1)] A: dict[int, dict[int, list[list[int]]]] = {} def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : int ): UpperCAmelCase : List[str] = sum(a_i[j] for j in range(UpperCamelCase , len(UpperCamelCase ) ) ) UpperCAmelCase : str = sum(a_i[j] * base[j] for j in range(min(len(UpperCamelCase ) , UpperCamelCase ) ) ) UpperCAmelCase , UpperCAmelCase : str = 0, 0 UpperCAmelCase : Optional[Any] = n - i UpperCAmelCase : Optional[int] = memo.get(UpperCamelCase ) if sub_memo is not None: UpperCAmelCase : str = sub_memo.get(UpperCamelCase ) if jumps is not None and len(UpperCamelCase ) > 0: # find and make the largest jump without going over UpperCAmelCase : Tuple = -1 for _k in range(len(UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCAmelCase : int = _k break if max_jump >= 0: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c UpperCAmelCase : List[str] = diff + c for j in range(min(UpperCamelCase , len(UpperCamelCase ) ) ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = divmod(UpperCamelCase , 10 ) if new_c > 0: add(UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: UpperCAmelCase : int = [] else: UpperCAmelCase : List[str] = {c: []} UpperCAmelCase : str = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCAmelCase , UpperCAmelCase : List[str] = next_term(UpperCamelCase , k - 1 , i + dn , UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCAmelCase , UpperCAmelCase : int = compute(UpperCamelCase , UpperCamelCase , i + dn , UpperCamelCase ) diff += _diff dn += terms_jumped UpperCAmelCase : Dict = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCAmelCase : str = 0 while j < len(UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCamelCase , (diff, dn, k) ) return (diff, dn) def _snake_case ( UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any ): if i >= n: return 0, i if k > len(UpperCamelCase ): a_i.extend([0 for _ in range(k - len(UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCAmelCase : List[str] = i UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = 0, 0, 0 for j in range(len(UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCAmelCase : Optional[int] = ds_c + ds_b diff += addend UpperCAmelCase : str = 0 for j in range(UpperCamelCase ): UpperCAmelCase : Any = a_i[j] + addend UpperCAmelCase , UpperCAmelCase : Any = divmod(UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return diff, i - start_i def _snake_case ( UpperCamelCase : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[int] ): for j in range(UpperCamelCase , len(UpperCamelCase ) ): UpperCAmelCase : Optional[int] = digits[j] + addend if s >= 10: UpperCAmelCase , UpperCAmelCase : int = divmod(UpperCamelCase , 10 ) UpperCAmelCase : str = addend // 10 + quotient else: UpperCAmelCase : Any = s UpperCAmelCase : Union[str, Any] = addend // 10 if addend == 0: break while addend > 0: UpperCAmelCase , UpperCAmelCase : Any = divmod(UpperCamelCase , 10 ) digits.append(UpperCamelCase ) def _snake_case ( UpperCamelCase : int = 10**15 ): UpperCAmelCase : Dict = [1] UpperCAmelCase : int = 1 UpperCAmelCase : Tuple = 0 while True: UpperCAmelCase , UpperCAmelCase : Tuple = next_term(UpperCamelCase , 20 , i + dn , UpperCamelCase ) dn += terms_jumped if dn == n - i: break UpperCAmelCase : Any = 0 for j in range(len(UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
109
0
"""simple docstring""" import math import random def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value UpperCAmelCase: Tuple = 0.02 def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Union[str, Any] = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(__UpperCAmelCase ): # Forward propagation _lowercase : Union[str, Any] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? _lowercase : Union[str, Any] = (expected / 100) - layer_a # Error delta _lowercase : Union[str, Any] = layer_1_error * sigmoid_function(__UpperCAmelCase , __UpperCAmelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase: Optional[Any] = int(input("""Expected value: """)) UpperCAmelCase: Any = int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
361
"""simple docstring""" import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Any = f.readlines() _lowercase : Optional[int] = F"""class {class_name}(""" _lowercase : List[str] = F"""{4 * " "}def {test_name}(""" _lowercase : List[Any] = F"""{8 * " "}{correct_line.split()[0]}""" _lowercase : int = F"""{16 * " "}{correct_line.split()[0]}""" _lowercase : str = False _lowercase : Optional[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : int = 0 _lowercase : Tuple = 0 _lowercase : Union[str, Any] = [] for line in lines: if line.startswith(__UpperCAmelCase ): _lowercase : List[str] = True elif in_class and line.startswith(__UpperCAmelCase ): _lowercase : str = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): _lowercase : Union[str, Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : Optional[int] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowercase : Union[str, Any] = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None ): if fail is not None: with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Dict = {l.strip() for l in f.readlines()} else: _lowercase : int = None with open(__UpperCAmelCase , """r""" ) as f: _lowercase : int = f.readlines() _lowercase : int = defaultdict(__UpperCAmelCase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : int = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase: List[Any] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) UpperCAmelCase: Any = parser.parse_args() main(args.correct_filename, args.fail_filename)
336
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ["CLIPFeatureExtractor"] _lowercase : Dict = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
93
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCamelCase ): lowercase :int = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: lowercase :Tuple = 1024 lowercase :Tuple = 4096 lowercase :Union[str, Any] = 24 lowercase :Tuple = 16 lowercase :Optional[Any] = [5, 11, 17, 23] lowercase :Optional[Any] = [256, 512, 1024, 1024] lowercase :Tuple = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowercase :Any = 768 lowercase :Optional[int] = [1, 1, 1, 0.5] lowercase :int = [256, 512, 768, 768] lowercase :str = 150 lowercase :Tuple = 16 lowercase :List[str] = (1, 384, 384) lowercase :Any = False lowercase :Optional[int] = "project" if "ade" in checkpoint_url: lowercase :Dict = True lowercase :str = 768 lowercase :Tuple = [1, 1, 1, 0.5] lowercase :Dict = 150 lowercase :Any = 16 lowercase :List[Any] = "huggingface/label-files" lowercase :Union[str, Any] = "ade20k-id2label.json" lowercase :List[str] = json.load(open(cached_download(hf_hub_url(lowerCamelCase, lowerCamelCase, repo_type="dataset" ) ), "r" ) ) lowercase :Optional[Any] = {int(lowerCamelCase ): v for k, v in idalabel.items()} lowercase :Union[str, Any] = idalabel lowercase :Optional[Any] = {v: k for k, v in idalabel.items()} lowercase :List[str] = [1, 150, 480, 480] return config, expected_shape def UpperCAmelCase__ ( lowerCamelCase ): lowercase :List[str] = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(lowerCamelCase, lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase :Any = name.replace("pretrained.model", "dpt.encoder" ) if "pretrained.model" in name: lowercase :int = name.replace("pretrained.model", "dpt.embeddings" ) if "patch_embed" in name: lowercase :Any = name.replace("patch_embed", "" ) if "pos_embed" in name: lowercase :Optional[Any] = name.replace("pos_embed", "position_embeddings" ) if "attn.proj" in name: lowercase :List[str] = name.replace("attn.proj", "attention.output.dense" ) if "proj" in name and "project" not in name: lowercase :str = name.replace("proj", "projection" ) if "blocks" in name: lowercase :List[Any] = name.replace("blocks", "layer" ) if "mlp.fc1" in name: lowercase :str = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: lowercase :Any = name.replace("mlp.fc2", "output.dense" ) if "norm1" in name and "backbone" not in name: lowercase :Any = name.replace("norm1", "layernorm_before" ) if "norm2" in name and "backbone" not in name: lowercase :Any = name.replace("norm2", "layernorm_after" ) if "scratch.output_conv" in name: lowercase :Optional[Any] = name.replace("scratch.output_conv", "head" ) if "scratch" in name: lowercase :Union[str, Any] = name.replace("scratch", "neck" ) if "layer1_rn" in name: lowercase :str = name.replace("layer1_rn", "convs.0" ) if "layer2_rn" in name: lowercase :Dict = name.replace("layer2_rn", "convs.1" ) if "layer3_rn" in name: lowercase :Tuple = name.replace("layer3_rn", "convs.2" ) if "layer4_rn" in name: lowercase :Optional[int] = name.replace("layer4_rn", "convs.3" ) if "refinenet" in name: lowercase :Any = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase :Any = name.replace(F"refinenet{layer_idx}", F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: lowercase :str = name.replace("out_conv", "projection" ) if "resConfUnit1" in name: lowercase :Optional[Any] = name.replace("resConfUnit1", "residual_layer1" ) if "resConfUnit2" in name: lowercase :int = name.replace("resConfUnit2", "residual_layer2" ) if "conv1" in name: lowercase :Optional[int] = name.replace("conv1", "convolution1" ) if "conv2" in name: lowercase :List[str] = name.replace("conv2", "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase :Tuple = name.replace("pretrained.act_postprocess1.0.project.0", "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: lowercase :Dict = name.replace("pretrained.act_postprocess2.0.project.0", "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: lowercase :Any = name.replace("pretrained.act_postprocess3.0.project.0", "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: lowercase :Optional[Any] = name.replace("pretrained.act_postprocess4.0.project.0", "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase :Dict = name.replace("pretrained.act_postprocess1.3", "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: lowercase :Any = name.replace("pretrained.act_postprocess1.4", "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: lowercase :List[Any] = name.replace("pretrained.act_postprocess2.3", "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: lowercase :str = name.replace("pretrained.act_postprocess2.4", "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: lowercase :str = name.replace("pretrained.act_postprocess3.3", "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: lowercase :List[Any] = name.replace("pretrained.act_postprocess4.3", "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: lowercase :Any = name.replace("pretrained.act_postprocess4.4", "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: lowercase :Any = name.replace("pretrained", "dpt" ) if "bn" in name: lowercase :Optional[int] = name.replace("bn", "batch_norm" ) if "head" in name: lowercase :Union[str, Any] = name.replace("head", "head.head" ) if "encoder.norm" in name: lowercase :Optional[Any] = name.replace("encoder.norm", "layernorm" ) if "auxlayer" in name: lowercase :str = name.replace("auxlayer", "auxiliary_head.head" ) if "backbone" in name: lowercase :List[str] = name.replace("backbone", "backbone.bit.encoder" ) if ".." in name: lowercase :Optional[int] = name.replace("..", "." ) if "stem.conv" in name: lowercase :Union[str, Any] = name.replace("stem.conv", "bit.embedder.convolution" ) if "blocks" in name: lowercase :List[str] = name.replace("blocks", "layers" ) if "convolution" in name and "backbone" in name: lowercase :int = name.replace("convolution", "conv" ) if "layer" in name and "backbone" in name: lowercase :List[str] = name.replace("layer", "layers" ) if "backbone.bit.encoder.bit" in name: lowercase :Dict = name.replace("backbone.bit.encoder.bit", "backbone.bit" ) if "embedder.conv" in name: lowercase :Dict = name.replace("embedder.conv", "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: lowercase :str = name.replace("backbone.bit.encoder.stem.norm", "backbone.bit.embedder.norm" ) return name def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase :str = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) lowercase :str = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase :List[str] = in_proj_weight[: config.hidden_size, :] lowercase :int = in_proj_bias[: config.hidden_size] lowercase :Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase :Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase :Dict = in_proj_weight[ -config.hidden_size :, : ] lowercase :List[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ ( ): lowercase :List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase :Any = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowercase , lowercase :Optional[int] = get_dpt_config(lowerCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowercase :List[str] = torch.load(lowerCamelCase, map_location="cpu" ) # remove certain keys remove_ignore_keys_(lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): lowercase :int = state_dict.pop(lowerCamelCase ) lowercase :Dict = val # read in qkv matrices read_in_q_k_v(lowerCamelCase, lowerCamelCase ) # load HuggingFace model lowercase :int = DPTForSemanticSegmentation(lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # Check outputs on an image lowercase :Union[str, Any] = 480 if "ade" in checkpoint_url else 384 lowercase :Optional[int] = DPTImageProcessor(size=lowerCamelCase ) lowercase :Dict = prepare_img() lowercase :Optional[Any] = image_processor(lowerCamelCase, return_tensors="pt" ) # forward pass lowercase :Any = model(**lowerCamelCase ).logits if "ade" in checkpoint_url else model(**lowerCamelCase ).predicted_depth if show_prediction: lowercase :List[Any] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ), size=(image.size[1], image.size[0]), mode="bicubic", align_corners=lowerCamelCase, ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) _UpperCAmelCase : List[Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
236
0
'''simple docstring''' import datasets __a = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" __a = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" __a = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n" def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def lowerCamelCase ( self : Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def lowerCamelCase ( self : int , snake_case_ : Any , snake_case_ : int ): return {"accuracy": simple_accuracy(snake_case_ , snake_case_ )}
43
'''simple docstring''' import re from filelock import FileLock try: import nltk __a = True except (ImportError, ModuleNotFoundError): __a = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def __snake_case( _lowerCAmelCase ) -> str: re.sub("""<n>""" , """""" , _lowerCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowerCAmelCase ) )
43
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Dict: __lowerCamelCase : Dict = 0 def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Any = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase : str = Path(SCREAMING_SNAKE_CASE_ ) / 'preprocessor_config.json' __lowerCamelCase : Optional[Any] = Path(SCREAMING_SNAKE_CASE_ ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(SCREAMING_SNAKE_CASE_ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(SCREAMING_SNAKE_CASE_ , 'w' ) ) __lowerCamelCase : int = AutoImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase : Optional[int] = Path(SCREAMING_SNAKE_CASE_ ) / 'preprocessor_config.json' __lowerCamelCase : str = Path(SCREAMING_SNAKE_CASE_ ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(SCREAMING_SNAKE_CASE_ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(SCREAMING_SNAKE_CASE_ , 'w' ) ) __lowerCamelCase : List[Any] = AutoImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase : List[Any] = CLIPConfig() # Create a dummy config file with image_proceesor_type __lowerCamelCase : Tuple = Path(SCREAMING_SNAKE_CASE_ ) / 'preprocessor_config.json' __lowerCamelCase : Tuple = Path(SCREAMING_SNAKE_CASE_ ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(SCREAMING_SNAKE_CASE_ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(SCREAMING_SNAKE_CASE_ , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __lowerCamelCase : Dict = AutoImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ).to_dict() config_dict.pop('image_processor_type' ) __lowerCamelCase : Optional[int] = CLIPImageProcessor(**SCREAMING_SNAKE_CASE_ ) # save in new folder model_config.save_pretrained(SCREAMING_SNAKE_CASE_ ) config.save_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = AutoImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) # make sure private variable is not incorrectly saved __lowerCamelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase : List[Any] = Path(SCREAMING_SNAKE_CASE_ ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(SCREAMING_SNAKE_CASE_ , 'w' ) , ) __lowerCamelCase : str = AutoImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Tuple: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , 'clip-base is not a local folder and is not a valid model identifier' ): __lowerCamelCase : Any = AutoImageProcessor.from_pretrained('clip-base' ) def lowercase_ ( self ) -> Optional[Any]: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __lowerCamelCase : Tuple = AutoImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ , revision='aaaaaa' ) def lowercase_ ( self ) -> Union[str, Any]: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): __lowerCamelCase : str = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def lowercase_ ( self ) -> str: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Union[str, Any] = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : str = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = AutoImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def lowercase_ ( self ) -> Dict: try: AutoConfig.register('custom' , SCREAMING_SNAKE_CASE_ ) AutoImageProcessor.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE_ ): AutoImageProcessor.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase : int = Path(SCREAMING_SNAKE_CASE_ ) / 'preprocessor_config.json' __lowerCamelCase : List[str] = Path(SCREAMING_SNAKE_CASE_ ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(SCREAMING_SNAKE_CASE_ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(SCREAMING_SNAKE_CASE_ , 'w' ) ) __lowerCamelCase : List[str] = CustomImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase_ ( self ) -> Any: class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Optional[Any] = True try: AutoConfig.register('custom' , SCREAMING_SNAKE_CASE_ ) AutoImageProcessor.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # If remote code is not set, the default is to use local __lowerCamelCase : List[str] = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __lowerCamelCase : List[Any] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __lowerCamelCase : List[str] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(SCREAMING_SNAKE_CASE_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
185
'''simple docstring''' A__ : Optional[int] = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/""" def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __lowerCamelCase : Dict = F'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(UpperCAmelCase_ ) __lowerCamelCase : Optional[int] = ''.join(bin(UpperCAmelCase_ )[2:].zfill(8 ) for byte in data ) __lowerCamelCase : Any = len(UpperCAmelCase_ ) % 6 != 0 if padding_needed: # The padding that will be added later __lowerCamelCase : int = B'=' * ((6 - len(UpperCAmelCase_ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(UpperCAmelCase_ ) % 6) else: __lowerCamelCase : str = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(UpperCAmelCase_ ) , 6 ) ).encode() + padding ) def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __lowerCamelCase : Dict = ( 'argument should be a bytes-like object or ASCII string, ' F'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(UpperCAmelCase_ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): try: __lowerCamelCase : int = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) __lowerCamelCase : Union[str, Any] = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(UpperCAmelCase_ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __lowerCamelCase : Any = encoded_data[:-padding] __lowerCamelCase : Optional[Any] = ''.join( bin(B64_CHARSET.index(UpperCAmelCase_ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __lowerCamelCase : Any = ''.join( bin(B64_CHARSET.index(UpperCAmelCase_ ) )[2:].zfill(6 ) for char in encoded_data ) __lowerCamelCase : str = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(UpperCAmelCase_ ) , 8 ) ] return bytes(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
185
1
'''simple docstring''' _SCREAMING_SNAKE_CASE : List[str] = 9.8_0_6_6_5 def UpperCamelCase_( snake_case : float , snake_case : float , snake_case : float = g ): '''simple docstring''' if fluid_density <= 0: raise ValueError("Impossible fluid density" ) if volume < 0: raise ValueError("Impossible Object volume" ) if gravity <= 0: raise ValueError("Impossible Gravity" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
92
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _snake_case ( unittest.TestCase , lowercase_ ): def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = load_tool("text-classification" ) self.tool.setup() snake_case_ = load_tool("text-classification" , remote=a__ ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(a__ , "positive" ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(a__ , "positive" ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(a__ , "positive" ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(a__ , "positive" )
92
1
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Dict =DebertaTokenizer lowerCamelCase : Optional[Any] =True lowerCamelCase : List[Any] =DebertaTokenizerFast def __a ( self ) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] a : str = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) a : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] a : Dict = {"unk_token": "[UNK]"} a : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def __a ( self , **lowerCAmelCase__ ) -> str: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ ) -> List[Any]: a : Dict = "lower newer" a : Dict = "lower newer" return input_text, output_text def __a ( self ) -> List[Any]: a : str = self.get_tokenizer() a : str = "lower newer" a : Union[str, Any] = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] a : Optional[int] = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a : Tuple = tokens + [tokenizer.unk_token] a : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __a ( self ) -> List[Any]: a : List[Any] = self.get_tokenizer() a : Optional[Any] = tokenizer("Hello" , "World" ) a : List[Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , lowerCAmelCase__ ) @slow def __a ( self ) -> Tuple: a : Tuple = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) a : Dict = tokenizer.encode("sequence builders" , add_special_tokens=lowerCAmelCase__ ) a : str = tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCAmelCase__ ) a : Dict = tokenizer.encode( "sequence builders" , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) a : Optional[int] = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) a : str = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) a : List[str] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __a ( self ) -> str: a : str = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: a : int = tokenizer_class.from_pretrained("microsoft/deberta-base" ) a : Optional[int] = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] a : Dict = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ ) a : Optional[Any] = [tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) for seq in encoding["input_ids"]] # fmt: off a : Optional[int] = { "input_ids": [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on a : Union[str, Any] = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , lowerCAmelCase__ ) for expected, decoded in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
105
from math import pi, sqrt, tan def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) __lowerCamelCase = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(UpperCamelCase__ , 2 ) * torus_radius * tube_radius def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) __lowerCamelCase = (sidea + sidea + sidea) / 2 __lowerCamelCase = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : float ) -> float: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f'''Rectangle: {area_rectangle(10, 20) = }''') print(f'''Square: {area_square(10) = }''') print(f'''Triangle: {area_triangle(10, 10) = }''') print(f'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(f'''Parallelogram: {area_parallelogram(10, 20) = }''') print(f'''Rhombus: {area_rhombus(10, 20) = }''') print(f'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(f'''Circle: {area_circle(20) = }''') print(f'''Ellipse: {area_ellipse(10, 20) = }''') print("\nSurface Areas of various geometric shapes: \n") print(f'''Cube: {surface_area_cube(20) = }''') print(f'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(f'''Sphere: {surface_area_sphere(20) = }''') print(f'''Hemisphere: {surface_area_hemisphere(20) = }''') print(f'''Cone: {surface_area_cone(10, 20) = }''') print(f'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(f'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(f'''Torus: {surface_area_torus(20, 10) = }''') print(f'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(f'''Square: {area_reg_polygon(4, 10) = }''') print(f'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
90
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A_ : '''simple docstring''' @staticmethod def UpperCAmelCase_ ( *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Union[str, Any]: pass @is_pipeline_test @require_vision @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCAmelCase_ ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple ) -> List[Any]: UpperCAmelCase : Optional[int] = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) UpperCAmelCase : Union[str, Any] = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def UpperCAmelCase_ ( self : int , lowercase_ : List[Any] , lowercase_ : List[Any] ) -> int: UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 ) UpperCAmelCase : str = len(lowerCAmelCase__ ) self.assertGreater(lowerCAmelCase__ , 0 ) self.assertEqual( lowerCAmelCase__ , [ { 'score': ANY(lowerCAmelCase__ ), 'label': ANY(lowerCAmelCase__ ), 'box': {'xmin': ANY(lowerCAmelCase__ ), 'ymin': ANY(lowerCAmelCase__ ), 'xmax': ANY(lowerCAmelCase__ ), 'ymax': ANY(lowerCAmelCase__ )}, } for i in range(lowerCAmelCase__ ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: pass @require_torch def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: UpperCAmelCase : Tuple = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) UpperCAmelCase : List[Any] = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] , ) UpperCAmelCase : Union[str, Any] = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] ] , ) @require_torch @slow def UpperCAmelCase_ ( self : str ) -> Tuple: UpperCAmelCase : str = pipeline('zero-shot-object-detection' ) UpperCAmelCase : Any = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ] , ) UpperCAmelCase : Tuple = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: pass @require_torch @slow def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: UpperCAmelCase : List[Any] = 0.2 UpperCAmelCase : Tuple = pipeline('zero-shot-object-detection' ) UpperCAmelCase : Tuple = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, ] , ) @require_torch @slow def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : List[Any] = 2 UpperCAmelCase : Any = pipeline('zero-shot-object-detection' ) UpperCAmelCase : Dict = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, ] , )
367
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase__ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def UpperCamelCase( UpperCAmelCase_ ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model UpperCAmelCase : List[Any] = list(s_dict.keys() ) for key in keys: UpperCAmelCase : Union[str, Any] = R'.*/layers_(\d+)' UpperCAmelCase : List[str] = key if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = re.sub(R'layers_(\d+)' , R'block/\1/layer' , UpperCAmelCase_ ) UpperCAmelCase : str = R'(encoder|decoder)\/' if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = re.match(UpperCAmelCase_ , UpperCAmelCase_ ).groups() if groups[0] == "encoder": UpperCAmelCase : Union[str, Any] = re.sub(R'/mlp/' , R'/1/mlp/' , UpperCAmelCase_ ) UpperCAmelCase : List[Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , UpperCAmelCase_ ) elif groups[0] == "decoder": UpperCAmelCase : Tuple = re.sub(R'/mlp/' , R'/2/mlp/' , UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , UpperCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: UpperCAmelCase : List[str] = new_key.replace(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""{key} -> {new_key}""" ) UpperCAmelCase : List[Any] = s_dict.pop(UpperCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase : Optional[int] = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase : Optional[int] = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: UpperCAmelCase : List[str] = s_dict[key].shape[0] UpperCAmelCase : List[Any] = s_dict[key] for idx in range(UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = expert_weihts[idx] print(F"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(UpperCAmelCase_ ) return s_dict lowercase__ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase_ , 'r' ) as f: UpperCAmelCase : Union[str, Any] = f.read() UpperCAmelCase : Union[str, Any] = re.findall(R'(.*) = ([0-9.]*)' , UpperCAmelCase_ ) UpperCAmelCase : str = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": UpperCAmelCase : Dict = float(UpperCAmelCase_ ) if '.' in value else int(UpperCAmelCase_ ) UpperCAmelCase : str = re.findall(R'(.*activations) = \(\'(.*)\',\)' , UpperCAmelCase_ )[0] UpperCAmelCase : Union[str, Any] = str(activation[1] ) UpperCAmelCase : Optional[int] = num_experts UpperCAmelCase : List[str] = SwitchTransformersConfig(**UpperCAmelCase_ ) return config def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_="./" , UpperCAmelCase_=8 ): # Initialise PyTorch model print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) UpperCAmelCase : List[Any] = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) if gin_file is not None: UpperCAmelCase : List[Any] = convert_gin_to_config(UpperCAmelCase_ , UpperCAmelCase_ ) else: UpperCAmelCase : str = SwitchTransformersConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : str = SwitchTransformersForConditionalGeneration(UpperCAmelCase_ ) UpperCAmelCase : str = flax_params['target'] UpperCAmelCase : Union[str, Any] = flatten_dict(UpperCAmelCase_ , sep='/' ) UpperCAmelCase : Tuple = rename_keys(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = unflatten_dict(UpperCAmelCase_ , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase__ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
280
0