partition
stringclasses
3 values
func_name
stringlengths
1
134
docstring
stringlengths
1
46.9k
path
stringlengths
4
223
original_string
stringlengths
75
104k
code
stringlengths
75
104k
docstring_tokens
listlengths
1
1.97k
repo
stringlengths
7
55
language
stringclasses
1 value
url
stringlengths
87
315
code_tokens
listlengths
19
28.4k
sha
stringlengths
40
40
test
_create_input_order
Returns a degree vectors for the input.
tensorflow_probability/python/bijectors/masked_autoregressive.py
def _create_input_order(input_size, input_order="left-to-right"): """Returns a degree vectors for the input.""" if isinstance(input_order, six.string_types): if input_order == "left-to-right": return np.arange(start=1, stop=input_size + 1) elif input_order == "right-to-left": return np.arange(start=input_size, stop=0, step=-1) elif input_order == "random": ret = np.arange(start=1, stop=input_size + 1) np.random.shuffle(ret) return ret elif np.all(np.sort(input_order) == np.arange(1, input_size + 1)): return np.array(input_order) raise ValueError("Invalid input order: '{}'.".format(input_order))
def _create_input_order(input_size, input_order="left-to-right"): """Returns a degree vectors for the input.""" if isinstance(input_order, six.string_types): if input_order == "left-to-right": return np.arange(start=1, stop=input_size + 1) elif input_order == "right-to-left": return np.arange(start=input_size, stop=0, step=-1) elif input_order == "random": ret = np.arange(start=1, stop=input_size + 1) np.random.shuffle(ret) return ret elif np.all(np.sort(input_order) == np.arange(1, input_size + 1)): return np.array(input_order) raise ValueError("Invalid input order: '{}'.".format(input_order))
[ "Returns", "a", "degree", "vectors", "for", "the", "input", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/bijectors/masked_autoregressive.py#L886-L900
[ "def", "_create_input_order", "(", "input_size", ",", "input_order", "=", "\"left-to-right\"", ")", ":", "if", "isinstance", "(", "input_order", ",", "six", ".", "string_types", ")", ":", "if", "input_order", "==", "\"left-to-right\"", ":", "return", "np", ".", "arange", "(", "start", "=", "1", ",", "stop", "=", "input_size", "+", "1", ")", "elif", "input_order", "==", "\"right-to-left\"", ":", "return", "np", ".", "arange", "(", "start", "=", "input_size", ",", "stop", "=", "0", ",", "step", "=", "-", "1", ")", "elif", "input_order", "==", "\"random\"", ":", "ret", "=", "np", ".", "arange", "(", "start", "=", "1", ",", "stop", "=", "input_size", "+", "1", ")", "np", ".", "random", ".", "shuffle", "(", "ret", ")", "return", "ret", "elif", "np", ".", "all", "(", "np", ".", "sort", "(", "input_order", ")", "==", "np", ".", "arange", "(", "1", ",", "input_size", "+", "1", ")", ")", ":", "return", "np", ".", "array", "(", "input_order", ")", "raise", "ValueError", "(", "\"Invalid input order: '{}'.\"", ".", "format", "(", "input_order", ")", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_create_degrees
Returns a list of degree vectors, one for each input and hidden layer. A unit with degree d can only receive input from units with degree < d. Output units always have the same degree as their associated input unit. Args: input_size: Number of inputs. hidden_units: list with the number of hidden units per layer. It does not include the output layer. Each hidden unit size must be at least the size of length (otherwise autoregressivity is not possible). input_order: Order of degrees to the input units: 'random', 'left-to-right', 'right-to-left', or an array of an explicit order. For example, 'left-to-right' builds an autoregressive model p(x) = p(x1) p(x2 | x1) ... p(xD | x<D). hidden_degrees: Method for assigning degrees to the hidden units: 'equal', 'random'. If 'equal', hidden units in each layer are allocated equally (up to a remainder term) to each degree. Default: 'equal'. Raises: ValueError: invalid input order. ValueError: invalid hidden degrees.
tensorflow_probability/python/bijectors/masked_autoregressive.py
def _create_degrees(input_size, hidden_units=None, input_order="left-to-right", hidden_degrees="equal"): """Returns a list of degree vectors, one for each input and hidden layer. A unit with degree d can only receive input from units with degree < d. Output units always have the same degree as their associated input unit. Args: input_size: Number of inputs. hidden_units: list with the number of hidden units per layer. It does not include the output layer. Each hidden unit size must be at least the size of length (otherwise autoregressivity is not possible). input_order: Order of degrees to the input units: 'random', 'left-to-right', 'right-to-left', or an array of an explicit order. For example, 'left-to-right' builds an autoregressive model p(x) = p(x1) p(x2 | x1) ... p(xD | x<D). hidden_degrees: Method for assigning degrees to the hidden units: 'equal', 'random'. If 'equal', hidden units in each layer are allocated equally (up to a remainder term) to each degree. Default: 'equal'. Raises: ValueError: invalid input order. ValueError: invalid hidden degrees. """ input_order = _create_input_order(input_size, input_order) degrees = [input_order] if hidden_units is None: hidden_units = [] for units in hidden_units: if isinstance(hidden_degrees, six.string_types): if hidden_degrees == "random": # samples from: [low, high) degrees.append( np.random.randint(low=min(np.min(degrees[-1]), input_size - 1), high=input_size, size=units)) elif hidden_degrees == "equal": min_degree = min(np.min(degrees[-1]), input_size - 1) degrees.append(np.maximum( min_degree, # Evenly divide the range `[1, input_size - 1]` in to `units + 1` # segments, and pick the boundaries between the segments as degrees. np.ceil(np.arange(1, units + 1) * (input_size - 1) / float(units + 1)).astype(np.int32))) else: raise ValueError('Invalid hidden order: "{}".'.format(hidden_degrees)) return degrees
def _create_degrees(input_size, hidden_units=None, input_order="left-to-right", hidden_degrees="equal"): """Returns a list of degree vectors, one for each input and hidden layer. A unit with degree d can only receive input from units with degree < d. Output units always have the same degree as their associated input unit. Args: input_size: Number of inputs. hidden_units: list with the number of hidden units per layer. It does not include the output layer. Each hidden unit size must be at least the size of length (otherwise autoregressivity is not possible). input_order: Order of degrees to the input units: 'random', 'left-to-right', 'right-to-left', or an array of an explicit order. For example, 'left-to-right' builds an autoregressive model p(x) = p(x1) p(x2 | x1) ... p(xD | x<D). hidden_degrees: Method for assigning degrees to the hidden units: 'equal', 'random'. If 'equal', hidden units in each layer are allocated equally (up to a remainder term) to each degree. Default: 'equal'. Raises: ValueError: invalid input order. ValueError: invalid hidden degrees. """ input_order = _create_input_order(input_size, input_order) degrees = [input_order] if hidden_units is None: hidden_units = [] for units in hidden_units: if isinstance(hidden_degrees, six.string_types): if hidden_degrees == "random": # samples from: [low, high) degrees.append( np.random.randint(low=min(np.min(degrees[-1]), input_size - 1), high=input_size, size=units)) elif hidden_degrees == "equal": min_degree = min(np.min(degrees[-1]), input_size - 1) degrees.append(np.maximum( min_degree, # Evenly divide the range `[1, input_size - 1]` in to `units + 1` # segments, and pick the boundaries between the segments as degrees. np.ceil(np.arange(1, units + 1) * (input_size - 1) / float(units + 1)).astype(np.int32))) else: raise ValueError('Invalid hidden order: "{}".'.format(hidden_degrees)) return degrees
[ "Returns", "a", "list", "of", "degree", "vectors", "one", "for", "each", "input", "and", "hidden", "layer", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/bijectors/masked_autoregressive.py#L903-L954
[ "def", "_create_degrees", "(", "input_size", ",", "hidden_units", "=", "None", ",", "input_order", "=", "\"left-to-right\"", ",", "hidden_degrees", "=", "\"equal\"", ")", ":", "input_order", "=", "_create_input_order", "(", "input_size", ",", "input_order", ")", "degrees", "=", "[", "input_order", "]", "if", "hidden_units", "is", "None", ":", "hidden_units", "=", "[", "]", "for", "units", "in", "hidden_units", ":", "if", "isinstance", "(", "hidden_degrees", ",", "six", ".", "string_types", ")", ":", "if", "hidden_degrees", "==", "\"random\"", ":", "# samples from: [low, high)", "degrees", ".", "append", "(", "np", ".", "random", ".", "randint", "(", "low", "=", "min", "(", "np", ".", "min", "(", "degrees", "[", "-", "1", "]", ")", ",", "input_size", "-", "1", ")", ",", "high", "=", "input_size", ",", "size", "=", "units", ")", ")", "elif", "hidden_degrees", "==", "\"equal\"", ":", "min_degree", "=", "min", "(", "np", ".", "min", "(", "degrees", "[", "-", "1", "]", ")", ",", "input_size", "-", "1", ")", "degrees", ".", "append", "(", "np", ".", "maximum", "(", "min_degree", ",", "# Evenly divide the range `[1, input_size - 1]` in to `units + 1`", "# segments, and pick the boundaries between the segments as degrees.", "np", ".", "ceil", "(", "np", ".", "arange", "(", "1", ",", "units", "+", "1", ")", "*", "(", "input_size", "-", "1", ")", "/", "float", "(", "units", "+", "1", ")", ")", ".", "astype", "(", "np", ".", "int32", ")", ")", ")", "else", ":", "raise", "ValueError", "(", "'Invalid hidden order: \"{}\".'", ".", "format", "(", "hidden_degrees", ")", ")", "return", "degrees" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_create_masks
Returns a list of binary mask matrices enforcing autoregressivity.
tensorflow_probability/python/bijectors/masked_autoregressive.py
def _create_masks(degrees): """Returns a list of binary mask matrices enforcing autoregressivity.""" return [ # Create input->hidden and hidden->hidden masks. inp[:, np.newaxis] <= out for inp, out in zip(degrees[:-1], degrees[1:]) ] + [ # Create hidden->output mask. degrees[-1][:, np.newaxis] < degrees[0] ]
def _create_masks(degrees): """Returns a list of binary mask matrices enforcing autoregressivity.""" return [ # Create input->hidden and hidden->hidden masks. inp[:, np.newaxis] <= out for inp, out in zip(degrees[:-1], degrees[1:]) ] + [ # Create hidden->output mask. degrees[-1][:, np.newaxis] < degrees[0] ]
[ "Returns", "a", "list", "of", "binary", "mask", "matrices", "enforcing", "autoregressivity", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/bijectors/masked_autoregressive.py#L957-L966
[ "def", "_create_masks", "(", "degrees", ")", ":", "return", "[", "# Create input->hidden and hidden->hidden masks.", "inp", "[", ":", ",", "np", ".", "newaxis", "]", "<=", "out", "for", "inp", ",", "out", "in", "zip", "(", "degrees", "[", ":", "-", "1", "]", ",", "degrees", "[", "1", ":", "]", ")", "]", "+", "[", "# Create hidden->output mask.", "degrees", "[", "-", "1", "]", "[", ":", ",", "np", ".", "newaxis", "]", "<", "degrees", "[", "0", "]", "]" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_make_masked_initializer
Returns a masked version of the given initializer.
tensorflow_probability/python/bijectors/masked_autoregressive.py
def _make_masked_initializer(mask, initializer): """Returns a masked version of the given initializer.""" initializer = tf.keras.initializers.get(initializer) def masked_initializer(shape, dtype=None, partition_info=None): # If no `partition_info` is given, then don't pass it to `initializer`, as # `initializer` may be a `tf.compat.v2.initializers.Initializer` (which # don't accept a `partition_info` argument). if partition_info is None: x = initializer(shape, dtype) else: x = initializer(shape, dtype, partition_info) return tf.cast(mask, x.dtype) * x return masked_initializer
def _make_masked_initializer(mask, initializer): """Returns a masked version of the given initializer.""" initializer = tf.keras.initializers.get(initializer) def masked_initializer(shape, dtype=None, partition_info=None): # If no `partition_info` is given, then don't pass it to `initializer`, as # `initializer` may be a `tf.compat.v2.initializers.Initializer` (which # don't accept a `partition_info` argument). if partition_info is None: x = initializer(shape, dtype) else: x = initializer(shape, dtype, partition_info) return tf.cast(mask, x.dtype) * x return masked_initializer
[ "Returns", "a", "masked", "version", "of", "the", "given", "initializer", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/bijectors/masked_autoregressive.py#L969-L981
[ "def", "_make_masked_initializer", "(", "mask", ",", "initializer", ")", ":", "initializer", "=", "tf", ".", "keras", ".", "initializers", ".", "get", "(", "initializer", ")", "def", "masked_initializer", "(", "shape", ",", "dtype", "=", "None", ",", "partition_info", "=", "None", ")", ":", "# If no `partition_info` is given, then don't pass it to `initializer`, as", "# `initializer` may be a `tf.compat.v2.initializers.Initializer` (which", "# don't accept a `partition_info` argument).", "if", "partition_info", "is", "None", ":", "x", "=", "initializer", "(", "shape", ",", "dtype", ")", "else", ":", "x", "=", "initializer", "(", "shape", ",", "dtype", ",", "partition_info", ")", "return", "tf", ".", "cast", "(", "mask", ",", "x", ".", "dtype", ")", "*", "x", "return", "masked_initializer" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
AutoregressiveLayer.build
See tfkl.Layer.build.
tensorflow_probability/python/bijectors/masked_autoregressive.py
def build(self, input_shape): """See tfkl.Layer.build.""" if self._event_shape is None: # `event_shape` wasn't specied at __init__, so infer from `input_shape`. self._event_shape = [tf.compat.dimension_value(input_shape[-1])] self._event_size = self._event_shape[-1] self._event_ndims = len(self._event_shape) # Should we throw if input_shape has rank > 2? if input_shape[-1] != self._event_shape[-1]: raise ValueError("Invalid final dimension of `input_shape`. " "Expected `{!r}`, but got `{!r}`".format( self._event_shape[-1], input_shape[-1])) # Construct the masks. self._input_order = _create_input_order( self._event_size, self._input_order_param) self._masks = _create_masks(_create_degrees( input_size=self._event_size, hidden_units=self._hidden_units, input_order=self._input_order, hidden_degrees=self._hidden_degrees)) # In the final layer, we will produce `self._params` outputs for each of the # `self._event_size` inputs to `AutoregressiveLayer`. But `masks[-1]` has # shape `[self._hidden_units[-1], self._event_size]`. Thus, we need to # expand the mask to `[hidden_units[-1], event_size * self._params]` such # that all units for the same input are masked identically. In particular, # we tile the mask so the j-th element of `tf.unstack(output, axis=-1)` is a # tensor of the j-th parameter/unit for each input. # # NOTE: Other orderings of the output could be faster -- should benchmark. self._masks[-1] = np.reshape( np.tile(self._masks[-1][..., tf.newaxis], [1, 1, self._params]), [self._masks[-1].shape[0], self._event_size * self._params]) self._network = tf.keras.Sequential([ # Starting this model with an `InputLayer` ensures that Keras will build # and propagate our `dtype` to each layer we add. tf.keras.layers.InputLayer((self._event_size,), dtype=self.dtype) ]) # Input-to-hidden, hidden-to-hidden, and hidden-to-output layers: # [..., self._event_size] -> [..., self._hidden_units[0]]. # [..., self._hidden_units[k-1]] -> [..., self._hidden_units[k]]. # [..., self._hidden_units[-1]] -> [..., event_size * self._params]. layer_output_sizes = self._hidden_units + [self._event_size * self._params] for k in range(len(self._masks)): self._network.add(tf.keras.layers.Dense( layer_output_sizes[k], kernel_initializer=_make_masked_initializer( self._masks[k], self._kernel_initializer), kernel_constraint=_make_masked_constraint(self._masks[k]), activation=self._activation if k + 1 < len(self._masks) else None, use_bias=self._use_bias, **self._kwargs)) # Record that the layer has been built. super(AutoregressiveLayer, self).build(input_shape)
def build(self, input_shape): """See tfkl.Layer.build.""" if self._event_shape is None: # `event_shape` wasn't specied at __init__, so infer from `input_shape`. self._event_shape = [tf.compat.dimension_value(input_shape[-1])] self._event_size = self._event_shape[-1] self._event_ndims = len(self._event_shape) # Should we throw if input_shape has rank > 2? if input_shape[-1] != self._event_shape[-1]: raise ValueError("Invalid final dimension of `input_shape`. " "Expected `{!r}`, but got `{!r}`".format( self._event_shape[-1], input_shape[-1])) # Construct the masks. self._input_order = _create_input_order( self._event_size, self._input_order_param) self._masks = _create_masks(_create_degrees( input_size=self._event_size, hidden_units=self._hidden_units, input_order=self._input_order, hidden_degrees=self._hidden_degrees)) # In the final layer, we will produce `self._params` outputs for each of the # `self._event_size` inputs to `AutoregressiveLayer`. But `masks[-1]` has # shape `[self._hidden_units[-1], self._event_size]`. Thus, we need to # expand the mask to `[hidden_units[-1], event_size * self._params]` such # that all units for the same input are masked identically. In particular, # we tile the mask so the j-th element of `tf.unstack(output, axis=-1)` is a # tensor of the j-th parameter/unit for each input. # # NOTE: Other orderings of the output could be faster -- should benchmark. self._masks[-1] = np.reshape( np.tile(self._masks[-1][..., tf.newaxis], [1, 1, self._params]), [self._masks[-1].shape[0], self._event_size * self._params]) self._network = tf.keras.Sequential([ # Starting this model with an `InputLayer` ensures that Keras will build # and propagate our `dtype` to each layer we add. tf.keras.layers.InputLayer((self._event_size,), dtype=self.dtype) ]) # Input-to-hidden, hidden-to-hidden, and hidden-to-output layers: # [..., self._event_size] -> [..., self._hidden_units[0]]. # [..., self._hidden_units[k-1]] -> [..., self._hidden_units[k]]. # [..., self._hidden_units[-1]] -> [..., event_size * self._params]. layer_output_sizes = self._hidden_units + [self._event_size * self._params] for k in range(len(self._masks)): self._network.add(tf.keras.layers.Dense( layer_output_sizes[k], kernel_initializer=_make_masked_initializer( self._masks[k], self._kernel_initializer), kernel_constraint=_make_masked_constraint(self._masks[k]), activation=self._activation if k + 1 < len(self._masks) else None, use_bias=self._use_bias, **self._kwargs)) # Record that the layer has been built. super(AutoregressiveLayer, self).build(input_shape)
[ "See", "tfkl", ".", "Layer", ".", "build", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/bijectors/masked_autoregressive.py#L794-L852
[ "def", "build", "(", "self", ",", "input_shape", ")", ":", "if", "self", ".", "_event_shape", "is", "None", ":", "# `event_shape` wasn't specied at __init__, so infer from `input_shape`.", "self", ".", "_event_shape", "=", "[", "tf", ".", "compat", ".", "dimension_value", "(", "input_shape", "[", "-", "1", "]", ")", "]", "self", ".", "_event_size", "=", "self", ".", "_event_shape", "[", "-", "1", "]", "self", ".", "_event_ndims", "=", "len", "(", "self", ".", "_event_shape", ")", "# Should we throw if input_shape has rank > 2?", "if", "input_shape", "[", "-", "1", "]", "!=", "self", ".", "_event_shape", "[", "-", "1", "]", ":", "raise", "ValueError", "(", "\"Invalid final dimension of `input_shape`. \"", "\"Expected `{!r}`, but got `{!r}`\"", ".", "format", "(", "self", ".", "_event_shape", "[", "-", "1", "]", ",", "input_shape", "[", "-", "1", "]", ")", ")", "# Construct the masks.", "self", ".", "_input_order", "=", "_create_input_order", "(", "self", ".", "_event_size", ",", "self", ".", "_input_order_param", ")", "self", ".", "_masks", "=", "_create_masks", "(", "_create_degrees", "(", "input_size", "=", "self", ".", "_event_size", ",", "hidden_units", "=", "self", ".", "_hidden_units", ",", "input_order", "=", "self", ".", "_input_order", ",", "hidden_degrees", "=", "self", ".", "_hidden_degrees", ")", ")", "# In the final layer, we will produce `self._params` outputs for each of the", "# `self._event_size` inputs to `AutoregressiveLayer`. But `masks[-1]` has", "# shape `[self._hidden_units[-1], self._event_size]`. Thus, we need to", "# expand the mask to `[hidden_units[-1], event_size * self._params]` such", "# that all units for the same input are masked identically. In particular,", "# we tile the mask so the j-th element of `tf.unstack(output, axis=-1)` is a", "# tensor of the j-th parameter/unit for each input.", "#", "# NOTE: Other orderings of the output could be faster -- should benchmark.", "self", ".", "_masks", "[", "-", "1", "]", "=", "np", ".", "reshape", "(", "np", ".", "tile", "(", "self", ".", "_masks", "[", "-", "1", "]", "[", "...", ",", "tf", ".", "newaxis", "]", ",", "[", "1", ",", "1", ",", "self", ".", "_params", "]", ")", ",", "[", "self", ".", "_masks", "[", "-", "1", "]", ".", "shape", "[", "0", "]", ",", "self", ".", "_event_size", "*", "self", ".", "_params", "]", ")", "self", ".", "_network", "=", "tf", ".", "keras", ".", "Sequential", "(", "[", "# Starting this model with an `InputLayer` ensures that Keras will build", "# and propagate our `dtype` to each layer we add.", "tf", ".", "keras", ".", "layers", ".", "InputLayer", "(", "(", "self", ".", "_event_size", ",", ")", ",", "dtype", "=", "self", ".", "dtype", ")", "]", ")", "# Input-to-hidden, hidden-to-hidden, and hidden-to-output layers:", "# [..., self._event_size] -> [..., self._hidden_units[0]].", "# [..., self._hidden_units[k-1]] -> [..., self._hidden_units[k]].", "# [..., self._hidden_units[-1]] -> [..., event_size * self._params].", "layer_output_sizes", "=", "self", ".", "_hidden_units", "+", "[", "self", ".", "_event_size", "*", "self", ".", "_params", "]", "for", "k", "in", "range", "(", "len", "(", "self", ".", "_masks", ")", ")", ":", "self", ".", "_network", ".", "add", "(", "tf", ".", "keras", ".", "layers", ".", "Dense", "(", "layer_output_sizes", "[", "k", "]", ",", "kernel_initializer", "=", "_make_masked_initializer", "(", "self", ".", "_masks", "[", "k", "]", ",", "self", ".", "_kernel_initializer", ")", ",", "kernel_constraint", "=", "_make_masked_constraint", "(", "self", ".", "_masks", "[", "k", "]", ")", ",", "activation", "=", "self", ".", "_activation", "if", "k", "+", "1", "<", "len", "(", "self", ".", "_masks", ")", "else", "None", ",", "use_bias", "=", "self", ".", "_use_bias", ",", "*", "*", "self", ".", "_kwargs", ")", ")", "# Record that the layer has been built.", "super", "(", "AutoregressiveLayer", ",", "self", ")", ".", "build", "(", "input_shape", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
AutoregressiveLayer.call
See tfkl.Layer.call.
tensorflow_probability/python/bijectors/masked_autoregressive.py
def call(self, x): """See tfkl.Layer.call.""" with tf.compat.v2.name_scope(self.name or "AutoregressiveLayer_call"): x = tf.convert_to_tensor(value=x, dtype=self.dtype, name="x") input_shape = tf.shape(input=x) # TODO(b/67594795): Better support for dynamic shapes. if tensorshape_util.rank(x.shape) == 1: x = x[tf.newaxis, ...] return tf.reshape(self._network(x), tf.concat([input_shape, [self._params]], axis=0))
def call(self, x): """See tfkl.Layer.call.""" with tf.compat.v2.name_scope(self.name or "AutoregressiveLayer_call"): x = tf.convert_to_tensor(value=x, dtype=self.dtype, name="x") input_shape = tf.shape(input=x) # TODO(b/67594795): Better support for dynamic shapes. if tensorshape_util.rank(x.shape) == 1: x = x[tf.newaxis, ...] return tf.reshape(self._network(x), tf.concat([input_shape, [self._params]], axis=0))
[ "See", "tfkl", ".", "Layer", ".", "call", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/bijectors/masked_autoregressive.py#L854-L863
[ "def", "call", "(", "self", ",", "x", ")", ":", "with", "tf", ".", "compat", ".", "v2", ".", "name_scope", "(", "self", ".", "name", "or", "\"AutoregressiveLayer_call\"", ")", ":", "x", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "x", ",", "dtype", "=", "self", ".", "dtype", ",", "name", "=", "\"x\"", ")", "input_shape", "=", "tf", ".", "shape", "(", "input", "=", "x", ")", "# TODO(b/67594795): Better support for dynamic shapes.", "if", "tensorshape_util", ".", "rank", "(", "x", ".", "shape", ")", "==", "1", ":", "x", "=", "x", "[", "tf", ".", "newaxis", ",", "...", "]", "return", "tf", ".", "reshape", "(", "self", ".", "_network", "(", "x", ")", ",", "tf", ".", "concat", "(", "[", "input_shape", ",", "[", "self", ".", "_params", "]", "]", ",", "axis", "=", "0", ")", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
draw_sample
Sample a multinomial. The batch shape is given by broadcasting num_trials with remove_last_dimension(logits). Args: num_samples: Python int or singleton integer Tensor: number of multinomial samples to draw. num_classes: Python int or singleton integer Tensor: number of classes. logits: Floating Tensor with last dimension k, of (unnormalized) logit probabilities per class. num_trials: Tensor of number of categorical trials each multinomial consists of. num_trials[..., tf.newaxis] must broadcast with logits. dtype: dtype at which to emit samples. seed: Random seed. Returns: samples: Tensor of given dtype and shape [n] + batch_shape + [k].
tensorflow_probability/python/distributions/multinomial.py
def draw_sample(num_samples, num_classes, logits, num_trials, dtype, seed): """Sample a multinomial. The batch shape is given by broadcasting num_trials with remove_last_dimension(logits). Args: num_samples: Python int or singleton integer Tensor: number of multinomial samples to draw. num_classes: Python int or singleton integer Tensor: number of classes. logits: Floating Tensor with last dimension k, of (unnormalized) logit probabilities per class. num_trials: Tensor of number of categorical trials each multinomial consists of. num_trials[..., tf.newaxis] must broadcast with logits. dtype: dtype at which to emit samples. seed: Random seed. Returns: samples: Tensor of given dtype and shape [n] + batch_shape + [k]. """ with tf.name_scope("multinomial.draw_sample"): # broadcast the num_trials and logits to same shape num_trials = tf.ones_like( logits[..., 0], dtype=num_trials.dtype) * num_trials logits = tf.ones_like( num_trials[..., tf.newaxis], dtype=logits.dtype) * logits # flatten the total_count and logits # flat_logits has shape [B1B2...Bm, num_classes] flat_logits = tf.reshape(logits, [-1, num_classes]) flat_num_trials = num_samples * tf.reshape(num_trials, [-1]) # [B1B2...Bm] # Computes each logits and num_trials situation by map_fn. # Using just one batch tf.random.categorical call doesn't work because that # requires num_trials to be the same across all members of the batch of # logits. This restriction makes sense for tf.random.categorical because # for it, num_trials is part of the returned shape. However, the # multinomial sampler does not need that restriction, because it sums out # exactly that dimension. # One possibility would be to draw a batch categorical whose sample count is # max(num_trials) and mask out the excess ones. However, if the elements of # num_trials vary widely, this can be wasteful of memory. # TODO(b/123763054, b/112152209): Revisit the possibility of writing this # with a batch categorical followed by batch unsorted_segment_sum, once both # of those work and are memory-efficient enough. def _sample_one_batch_member(args): logits, num_cat_samples = args[0], args[1] # [K], [] # x has shape [1, num_cat_samples = num_samples * num_trials] x = tf.random.categorical( logits[tf.newaxis, ...], num_cat_samples, seed=seed) x = tf.reshape(x, shape=[num_samples, -1]) # [num_samples, num_trials] x = tf.one_hot( x, depth=num_classes) # [num_samples, num_trials, num_classes] x = tf.reduce_sum(input_tensor=x, axis=-2) # [num_samples, num_classes] return tf.cast(x, dtype=dtype) x = tf.map_fn( _sample_one_batch_member, [flat_logits, flat_num_trials], dtype=dtype) # [B1B2...Bm, num_samples, num_classes] # reshape the results to proper shape x = tf.transpose(a=x, perm=[1, 0, 2]) final_shape = tf.concat([[num_samples], tf.shape(input=num_trials), [num_classes]], axis=0) x = tf.reshape(x, final_shape) return x
def draw_sample(num_samples, num_classes, logits, num_trials, dtype, seed): """Sample a multinomial. The batch shape is given by broadcasting num_trials with remove_last_dimension(logits). Args: num_samples: Python int or singleton integer Tensor: number of multinomial samples to draw. num_classes: Python int or singleton integer Tensor: number of classes. logits: Floating Tensor with last dimension k, of (unnormalized) logit probabilities per class. num_trials: Tensor of number of categorical trials each multinomial consists of. num_trials[..., tf.newaxis] must broadcast with logits. dtype: dtype at which to emit samples. seed: Random seed. Returns: samples: Tensor of given dtype and shape [n] + batch_shape + [k]. """ with tf.name_scope("multinomial.draw_sample"): # broadcast the num_trials and logits to same shape num_trials = tf.ones_like( logits[..., 0], dtype=num_trials.dtype) * num_trials logits = tf.ones_like( num_trials[..., tf.newaxis], dtype=logits.dtype) * logits # flatten the total_count and logits # flat_logits has shape [B1B2...Bm, num_classes] flat_logits = tf.reshape(logits, [-1, num_classes]) flat_num_trials = num_samples * tf.reshape(num_trials, [-1]) # [B1B2...Bm] # Computes each logits and num_trials situation by map_fn. # Using just one batch tf.random.categorical call doesn't work because that # requires num_trials to be the same across all members of the batch of # logits. This restriction makes sense for tf.random.categorical because # for it, num_trials is part of the returned shape. However, the # multinomial sampler does not need that restriction, because it sums out # exactly that dimension. # One possibility would be to draw a batch categorical whose sample count is # max(num_trials) and mask out the excess ones. However, if the elements of # num_trials vary widely, this can be wasteful of memory. # TODO(b/123763054, b/112152209): Revisit the possibility of writing this # with a batch categorical followed by batch unsorted_segment_sum, once both # of those work and are memory-efficient enough. def _sample_one_batch_member(args): logits, num_cat_samples = args[0], args[1] # [K], [] # x has shape [1, num_cat_samples = num_samples * num_trials] x = tf.random.categorical( logits[tf.newaxis, ...], num_cat_samples, seed=seed) x = tf.reshape(x, shape=[num_samples, -1]) # [num_samples, num_trials] x = tf.one_hot( x, depth=num_classes) # [num_samples, num_trials, num_classes] x = tf.reduce_sum(input_tensor=x, axis=-2) # [num_samples, num_classes] return tf.cast(x, dtype=dtype) x = tf.map_fn( _sample_one_batch_member, [flat_logits, flat_num_trials], dtype=dtype) # [B1B2...Bm, num_samples, num_classes] # reshape the results to proper shape x = tf.transpose(a=x, perm=[1, 0, 2]) final_shape = tf.concat([[num_samples], tf.shape(input=num_trials), [num_classes]], axis=0) x = tf.reshape(x, final_shape) return x
[ "Sample", "a", "multinomial", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/multinomial.py#L285-L355
[ "def", "draw_sample", "(", "num_samples", ",", "num_classes", ",", "logits", ",", "num_trials", ",", "dtype", ",", "seed", ")", ":", "with", "tf", ".", "name_scope", "(", "\"multinomial.draw_sample\"", ")", ":", "# broadcast the num_trials and logits to same shape", "num_trials", "=", "tf", ".", "ones_like", "(", "logits", "[", "...", ",", "0", "]", ",", "dtype", "=", "num_trials", ".", "dtype", ")", "*", "num_trials", "logits", "=", "tf", ".", "ones_like", "(", "num_trials", "[", "...", ",", "tf", ".", "newaxis", "]", ",", "dtype", "=", "logits", ".", "dtype", ")", "*", "logits", "# flatten the total_count and logits", "# flat_logits has shape [B1B2...Bm, num_classes]", "flat_logits", "=", "tf", ".", "reshape", "(", "logits", ",", "[", "-", "1", ",", "num_classes", "]", ")", "flat_num_trials", "=", "num_samples", "*", "tf", ".", "reshape", "(", "num_trials", ",", "[", "-", "1", "]", ")", "# [B1B2...Bm]", "# Computes each logits and num_trials situation by map_fn.", "# Using just one batch tf.random.categorical call doesn't work because that", "# requires num_trials to be the same across all members of the batch of", "# logits. This restriction makes sense for tf.random.categorical because", "# for it, num_trials is part of the returned shape. However, the", "# multinomial sampler does not need that restriction, because it sums out", "# exactly that dimension.", "# One possibility would be to draw a batch categorical whose sample count is", "# max(num_trials) and mask out the excess ones. However, if the elements of", "# num_trials vary widely, this can be wasteful of memory.", "# TODO(b/123763054, b/112152209): Revisit the possibility of writing this", "# with a batch categorical followed by batch unsorted_segment_sum, once both", "# of those work and are memory-efficient enough.", "def", "_sample_one_batch_member", "(", "args", ")", ":", "logits", ",", "num_cat_samples", "=", "args", "[", "0", "]", ",", "args", "[", "1", "]", "# [K], []", "# x has shape [1, num_cat_samples = num_samples * num_trials]", "x", "=", "tf", ".", "random", ".", "categorical", "(", "logits", "[", "tf", ".", "newaxis", ",", "...", "]", ",", "num_cat_samples", ",", "seed", "=", "seed", ")", "x", "=", "tf", ".", "reshape", "(", "x", ",", "shape", "=", "[", "num_samples", ",", "-", "1", "]", ")", "# [num_samples, num_trials]", "x", "=", "tf", ".", "one_hot", "(", "x", ",", "depth", "=", "num_classes", ")", "# [num_samples, num_trials, num_classes]", "x", "=", "tf", ".", "reduce_sum", "(", "input_tensor", "=", "x", ",", "axis", "=", "-", "2", ")", "# [num_samples, num_classes]", "return", "tf", ".", "cast", "(", "x", ",", "dtype", "=", "dtype", ")", "x", "=", "tf", ".", "map_fn", "(", "_sample_one_batch_member", ",", "[", "flat_logits", ",", "flat_num_trials", "]", ",", "dtype", "=", "dtype", ")", "# [B1B2...Bm, num_samples, num_classes]", "# reshape the results to proper shape", "x", "=", "tf", ".", "transpose", "(", "a", "=", "x", ",", "perm", "=", "[", "1", ",", "0", ",", "2", "]", ")", "final_shape", "=", "tf", ".", "concat", "(", "[", "[", "num_samples", "]", ",", "tf", ".", "shape", "(", "input", "=", "num_trials", ")", ",", "[", "num_classes", "]", "]", ",", "axis", "=", "0", ")", "x", "=", "tf", ".", "reshape", "(", "x", ",", "final_shape", ")", "return", "x" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_zero_dimensional_mvndiag
Build a zero-dimensional MVNDiag object.
tensorflow_probability/python/sts/regression.py
def _zero_dimensional_mvndiag(dtype): """Build a zero-dimensional MVNDiag object.""" dummy_mvndiag = tfd.MultivariateNormalDiag( scale_diag=tf.ones([0], dtype=dtype)) dummy_mvndiag.covariance = lambda: dummy_mvndiag.variance()[..., tf.newaxis] return dummy_mvndiag
def _zero_dimensional_mvndiag(dtype): """Build a zero-dimensional MVNDiag object.""" dummy_mvndiag = tfd.MultivariateNormalDiag( scale_diag=tf.ones([0], dtype=dtype)) dummy_mvndiag.covariance = lambda: dummy_mvndiag.variance()[..., tf.newaxis] return dummy_mvndiag
[ "Build", "a", "zero", "-", "dimensional", "MVNDiag", "object", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/sts/regression.py#L32-L37
[ "def", "_zero_dimensional_mvndiag", "(", "dtype", ")", ":", "dummy_mvndiag", "=", "tfd", ".", "MultivariateNormalDiag", "(", "scale_diag", "=", "tf", ".", "ones", "(", "[", "0", "]", ",", "dtype", "=", "dtype", ")", ")", "dummy_mvndiag", ".", "covariance", "=", "lambda", ":", "dummy_mvndiag", ".", "variance", "(", ")", "[", "...", ",", "tf", ".", "newaxis", "]", "return", "dummy_mvndiag" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_observe_timeseries_fn
Build an observation_noise_fn that observes a Tensor timeseries.
tensorflow_probability/python/sts/regression.py
def _observe_timeseries_fn(timeseries): """Build an observation_noise_fn that observes a Tensor timeseries.""" def observation_noise_fn(t): current_slice = timeseries[..., t, :] return tfd.MultivariateNormalDiag( loc=current_slice, scale_diag=tf.zeros_like(current_slice)) return observation_noise_fn
def _observe_timeseries_fn(timeseries): """Build an observation_noise_fn that observes a Tensor timeseries.""" def observation_noise_fn(t): current_slice = timeseries[..., t, :] return tfd.MultivariateNormalDiag( loc=current_slice, scale_diag=tf.zeros_like(current_slice)) return observation_noise_fn
[ "Build", "an", "observation_noise_fn", "that", "observes", "a", "Tensor", "timeseries", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/sts/regression.py#L40-L47
[ "def", "_observe_timeseries_fn", "(", "timeseries", ")", ":", "def", "observation_noise_fn", "(", "t", ")", ":", "current_slice", "=", "timeseries", "[", "...", ",", "t", ",", ":", "]", "return", "tfd", ".", "MultivariateNormalDiag", "(", "loc", "=", "current_slice", ",", "scale_diag", "=", "tf", ".", "zeros_like", "(", "current_slice", ")", ")", "return", "observation_noise_fn" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
SparseLinearRegression.params_to_weights
Build regression weights from model parameters.
tensorflow_probability/python/sts/regression.py
def params_to_weights(self, global_scale_variance, global_scale_noncentered, local_scale_variances, local_scales_noncentered, weights_noncentered): """Build regression weights from model parameters.""" global_scale = (global_scale_noncentered * tf.sqrt(global_scale_variance) * self.weights_prior_scale) local_scales = local_scales_noncentered * tf.sqrt(local_scale_variances) return weights_noncentered * local_scales * global_scale[..., tf.newaxis]
def params_to_weights(self, global_scale_variance, global_scale_noncentered, local_scale_variances, local_scales_noncentered, weights_noncentered): """Build regression weights from model parameters.""" global_scale = (global_scale_noncentered * tf.sqrt(global_scale_variance) * self.weights_prior_scale) local_scales = local_scales_noncentered * tf.sqrt(local_scale_variances) return weights_noncentered * local_scales * global_scale[..., tf.newaxis]
[ "Build", "regression", "weights", "from", "model", "parameters", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/sts/regression.py#L474-L486
[ "def", "params_to_weights", "(", "self", ",", "global_scale_variance", ",", "global_scale_noncentered", ",", "local_scale_variances", ",", "local_scales_noncentered", ",", "weights_noncentered", ")", ":", "global_scale", "=", "(", "global_scale_noncentered", "*", "tf", ".", "sqrt", "(", "global_scale_variance", ")", "*", "self", ".", "weights_prior_scale", ")", "local_scales", "=", "local_scales_noncentered", "*", "tf", ".", "sqrt", "(", "local_scale_variances", ")", "return", "weights_noncentered", "*", "local_scales", "*", "global_scale", "[", "...", ",", "tf", ".", "newaxis", "]" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_depth
Computes the number of edges on longest path from node to root.
tensorflow_probability/python/distributions/joint_distribution_named.py
def _depth(g): """Computes the number of edges on longest path from node to root.""" def _explore(v): if v.depth < 0: v.depth = ((1 + max([-1] + [_explore(annotated_graph[u]) for u in v.parents])) if v.parents else 0) return v.depth annotated_graph = {k: _Node(k, v) for k, v in g.items()} for v in annotated_graph.values(): _explore(v) return annotated_graph
def _depth(g): """Computes the number of edges on longest path from node to root.""" def _explore(v): if v.depth < 0: v.depth = ((1 + max([-1] + [_explore(annotated_graph[u]) for u in v.parents])) if v.parents else 0) return v.depth annotated_graph = {k: _Node(k, v) for k, v in g.items()} for v in annotated_graph.values(): _explore(v) return annotated_graph
[ "Computes", "the", "number", "of", "edges", "on", "longest", "path", "from", "node", "to", "root", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/joint_distribution_named.py#L204-L215
[ "def", "_depth", "(", "g", ")", ":", "def", "_explore", "(", "v", ")", ":", "if", "v", ".", "depth", "<", "0", ":", "v", ".", "depth", "=", "(", "(", "1", "+", "max", "(", "[", "-", "1", "]", "+", "[", "_explore", "(", "annotated_graph", "[", "u", "]", ")", "for", "u", "in", "v", ".", "parents", "]", ")", ")", "if", "v", ".", "parents", "else", "0", ")", "return", "v", ".", "depth", "annotated_graph", "=", "{", "k", ":", "_Node", "(", "k", ",", "v", ")", "for", "k", ",", "v", "in", "g", ".", "items", "(", ")", "}", "for", "v", "in", "annotated_graph", ".", "values", "(", ")", ":", "_explore", "(", "v", ")", "return", "annotated_graph" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_best_order
Creates tuple of str tuple-str pairs representing resolved & sorted DAG.
tensorflow_probability/python/distributions/joint_distribution_named.py
def _best_order(g): """Creates tuple of str tuple-str pairs representing resolved & sorted DAG.""" def _explore(u): """Recursive function to ascend up through unvisited dependencies.""" if u.depth < 0: return # Already visited. if not u.parents: result.append((u.name, u.parents)) u.depth = -1 # Mark visited. return b = (u.name, []) result.append(b) u.depth = -1 # Mark visited. d = 0 for v in sorted((g.get(p) for p in u.parents), key=lambda v: v.depth): n0 = len(result) _explore(v) n1 = len(result) b[1].extend(['_']*d + [v.name]) d = n1 - n0 - 1 g = _depth(g) result = [] for u in sorted(g.values(), key=lambda v: v.depth, reverse=True): _explore(u) return tuple(reversed(result))
def _best_order(g): """Creates tuple of str tuple-str pairs representing resolved & sorted DAG.""" def _explore(u): """Recursive function to ascend up through unvisited dependencies.""" if u.depth < 0: return # Already visited. if not u.parents: result.append((u.name, u.parents)) u.depth = -1 # Mark visited. return b = (u.name, []) result.append(b) u.depth = -1 # Mark visited. d = 0 for v in sorted((g.get(p) for p in u.parents), key=lambda v: v.depth): n0 = len(result) _explore(v) n1 = len(result) b[1].extend(['_']*d + [v.name]) d = n1 - n0 - 1 g = _depth(g) result = [] for u in sorted(g.values(), key=lambda v: v.depth, reverse=True): _explore(u) return tuple(reversed(result))
[ "Creates", "tuple", "of", "str", "tuple", "-", "str", "pairs", "representing", "resolved", "&", "sorted", "DAG", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/joint_distribution_named.py#L218-L242
[ "def", "_best_order", "(", "g", ")", ":", "def", "_explore", "(", "u", ")", ":", "\"\"\"Recursive function to ascend up through unvisited dependencies.\"\"\"", "if", "u", ".", "depth", "<", "0", ":", "return", "# Already visited.", "if", "not", "u", ".", "parents", ":", "result", ".", "append", "(", "(", "u", ".", "name", ",", "u", ".", "parents", ")", ")", "u", ".", "depth", "=", "-", "1", "# Mark visited.", "return", "b", "=", "(", "u", ".", "name", ",", "[", "]", ")", "result", ".", "append", "(", "b", ")", "u", ".", "depth", "=", "-", "1", "# Mark visited.", "d", "=", "0", "for", "v", "in", "sorted", "(", "(", "g", ".", "get", "(", "p", ")", "for", "p", "in", "u", ".", "parents", ")", ",", "key", "=", "lambda", "v", ":", "v", ".", "depth", ")", ":", "n0", "=", "len", "(", "result", ")", "_explore", "(", "v", ")", "n1", "=", "len", "(", "result", ")", "b", "[", "1", "]", ".", "extend", "(", "[", "'_'", "]", "*", "d", "+", "[", "v", ".", "name", "]", ")", "d", "=", "n1", "-", "n0", "-", "1", "g", "=", "_depth", "(", "g", ")", "result", "=", "[", "]", "for", "u", "in", "sorted", "(", "g", ".", "values", "(", ")", ",", "key", "=", "lambda", "v", ":", "v", ".", "depth", ",", "reverse", "=", "True", ")", ":", "_explore", "(", "u", ")", "return", "tuple", "(", "reversed", "(", "result", ")", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_prob_chain_rule_flatten
Creates lists of callables suitable for JDSeq.
tensorflow_probability/python/distributions/joint_distribution_named.py
def _prob_chain_rule_flatten(named_makers): """Creates lists of callables suitable for JDSeq.""" def _make(dist_fn, args): if args is None: return lambda *_: dist_fn if not args: return lambda *_: dist_fn() def _fn(*xs): kwargs = dict(zip(args, reversed(xs[-len(args):]))) kwargs.pop('_', None) return dist_fn(**kwargs) return _fn named_makers = _convert_to_dict(named_makers) g = {k: (None if distribution_util.is_distribution_instance(v) else joint_distribution_sequential._get_required_args(v)) # pylint: disable=protected-access for k, v in named_makers.items()} g = _best_order(g) dist_fn_name, dist_fn_args = zip(*g) dist_fn_args = tuple(None if a is None else tuple(a) for a in dist_fn_args) dist_fn_wrapped = tuple(_make(named_makers[name], parents) for (name, parents) in g) dist_fn = tuple(named_makers.get(n) for n in dist_fn_name) return dist_fn, dist_fn_wrapped, dist_fn_args, dist_fn_name
def _prob_chain_rule_flatten(named_makers): """Creates lists of callables suitable for JDSeq.""" def _make(dist_fn, args): if args is None: return lambda *_: dist_fn if not args: return lambda *_: dist_fn() def _fn(*xs): kwargs = dict(zip(args, reversed(xs[-len(args):]))) kwargs.pop('_', None) return dist_fn(**kwargs) return _fn named_makers = _convert_to_dict(named_makers) g = {k: (None if distribution_util.is_distribution_instance(v) else joint_distribution_sequential._get_required_args(v)) # pylint: disable=protected-access for k, v in named_makers.items()} g = _best_order(g) dist_fn_name, dist_fn_args = zip(*g) dist_fn_args = tuple(None if a is None else tuple(a) for a in dist_fn_args) dist_fn_wrapped = tuple(_make(named_makers[name], parents) for (name, parents) in g) dist_fn = tuple(named_makers.get(n) for n in dist_fn_name) return dist_fn, dist_fn_wrapped, dist_fn_args, dist_fn_name
[ "Creates", "lists", "of", "callables", "suitable", "for", "JDSeq", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/joint_distribution_named.py#L245-L267
[ "def", "_prob_chain_rule_flatten", "(", "named_makers", ")", ":", "def", "_make", "(", "dist_fn", ",", "args", ")", ":", "if", "args", "is", "None", ":", "return", "lambda", "*", "_", ":", "dist_fn", "if", "not", "args", ":", "return", "lambda", "*", "_", ":", "dist_fn", "(", ")", "def", "_fn", "(", "*", "xs", ")", ":", "kwargs", "=", "dict", "(", "zip", "(", "args", ",", "reversed", "(", "xs", "[", "-", "len", "(", "args", ")", ":", "]", ")", ")", ")", "kwargs", ".", "pop", "(", "'_'", ",", "None", ")", "return", "dist_fn", "(", "*", "*", "kwargs", ")", "return", "_fn", "named_makers", "=", "_convert_to_dict", "(", "named_makers", ")", "g", "=", "{", "k", ":", "(", "None", "if", "distribution_util", ".", "is_distribution_instance", "(", "v", ")", "else", "joint_distribution_sequential", ".", "_get_required_args", "(", "v", ")", ")", "# pylint: disable=protected-access", "for", "k", ",", "v", "in", "named_makers", ".", "items", "(", ")", "}", "g", "=", "_best_order", "(", "g", ")", "dist_fn_name", ",", "dist_fn_args", "=", "zip", "(", "*", "g", ")", "dist_fn_args", "=", "tuple", "(", "None", "if", "a", "is", "None", "else", "tuple", "(", "a", ")", "for", "a", "in", "dist_fn_args", ")", "dist_fn_wrapped", "=", "tuple", "(", "_make", "(", "named_makers", "[", "name", "]", ",", "parents", ")", "for", "(", "name", ",", "parents", ")", "in", "g", ")", "dist_fn", "=", "tuple", "(", "named_makers", ".", "get", "(", "n", ")", "for", "n", "in", "dist_fn_name", ")", "return", "dist_fn", ",", "dist_fn_wrapped", ",", "dist_fn_args", ",", "dist_fn_name" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
JointDistributionNamed._build
Creates `dist_fn`, `dist_fn_wrapped`, `dist_fn_args`, `dist_fn_name`.
tensorflow_probability/python/distributions/joint_distribution_named.py
def _build(self, model): """Creates `dist_fn`, `dist_fn_wrapped`, `dist_fn_args`, `dist_fn_name`.""" if not _is_dict_like(model): raise TypeError('`model` must be convertible to `dict` (saw: {}).'.format( type(model).__name__)) [ self._dist_fn, self._dist_fn_wrapped, self._dist_fn_args, self._dist_fn_name, # JointDistributionSequential doesn't have this. ] = _prob_chain_rule_flatten(model)
def _build(self, model): """Creates `dist_fn`, `dist_fn_wrapped`, `dist_fn_args`, `dist_fn_name`.""" if not _is_dict_like(model): raise TypeError('`model` must be convertible to `dict` (saw: {}).'.format( type(model).__name__)) [ self._dist_fn, self._dist_fn_wrapped, self._dist_fn_args, self._dist_fn_name, # JointDistributionSequential doesn't have this. ] = _prob_chain_rule_flatten(model)
[ "Creates", "dist_fn", "dist_fn_wrapped", "dist_fn_args", "dist_fn_name", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/joint_distribution_named.py#L172-L182
[ "def", "_build", "(", "self", ",", "model", ")", ":", "if", "not", "_is_dict_like", "(", "model", ")", ":", "raise", "TypeError", "(", "'`model` must be convertible to `dict` (saw: {}).'", ".", "format", "(", "type", "(", "model", ")", ".", "__name__", ")", ")", "[", "self", ".", "_dist_fn", ",", "self", ".", "_dist_fn_wrapped", ",", "self", ".", "_dist_fn_args", ",", "self", ".", "_dist_fn_name", ",", "# JointDistributionSequential doesn't have this.", "]", "=", "_prob_chain_rule_flatten", "(", "model", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
VariationalGaussianProcess.variational_loss
Variational loss for the VGP. Given `observations` and `observation_index_points`, compute the negative variational lower bound as specified in [Hensman, 2013][1]. Args: observations: `float` `Tensor` representing collection, or batch of collections, of observations corresponding to `observation_index_points`. Shape has the form `[b1, ..., bB, e]`, which must be brodcastable with the batch and example shapes of `observation_index_points`. The batch shape `[b1, ..., bB]` must be broadcastable with the shapes of all other batched parameters (`kernel.batch_shape`, `observation_index_points`, etc.). observation_index_points: `float` `Tensor` representing finite (batch of) vector(s) of points where observations are defined. Shape has the form `[b1, ..., bB, e1, f1, ..., fF]` where `F` is the number of feature dimensions and must equal `kernel.feature_ndims` and `e1` is the number (size) of index points in each batch (we denote it `e1` to distinguish it from the numer of inducing index points, denoted `e2` below). If set to `None` uses `index_points` as the origin for observations. Default value: None. kl_weight: Amount by which to scale the KL divergence loss between prior and posterior. Default value: 1. name: Python `str` name prefixed to Ops created by this class. Default value: "GaussianProcess". Returns: loss: Scalar tensor representing the negative variational lower bound. Can be directly used in a `tf.Optimizer`. Raises: ValueError: if `mean_fn` is not `None` and is not callable. #### References [1]: Hensman, J., Lawrence, N. "Gaussian Processes for Big Data", 2013 https://arxiv.org/abs/1309.6835
tensorflow_probability/python/distributions/variational_gaussian_process.py
def variational_loss(self, observations, observation_index_points=None, kl_weight=1., name='variational_loss'): """Variational loss for the VGP. Given `observations` and `observation_index_points`, compute the negative variational lower bound as specified in [Hensman, 2013][1]. Args: observations: `float` `Tensor` representing collection, or batch of collections, of observations corresponding to `observation_index_points`. Shape has the form `[b1, ..., bB, e]`, which must be brodcastable with the batch and example shapes of `observation_index_points`. The batch shape `[b1, ..., bB]` must be broadcastable with the shapes of all other batched parameters (`kernel.batch_shape`, `observation_index_points`, etc.). observation_index_points: `float` `Tensor` representing finite (batch of) vector(s) of points where observations are defined. Shape has the form `[b1, ..., bB, e1, f1, ..., fF]` where `F` is the number of feature dimensions and must equal `kernel.feature_ndims` and `e1` is the number (size) of index points in each batch (we denote it `e1` to distinguish it from the numer of inducing index points, denoted `e2` below). If set to `None` uses `index_points` as the origin for observations. Default value: None. kl_weight: Amount by which to scale the KL divergence loss between prior and posterior. Default value: 1. name: Python `str` name prefixed to Ops created by this class. Default value: "GaussianProcess". Returns: loss: Scalar tensor representing the negative variational lower bound. Can be directly used in a `tf.Optimizer`. Raises: ValueError: if `mean_fn` is not `None` and is not callable. #### References [1]: Hensman, J., Lawrence, N. "Gaussian Processes for Big Data", 2013 https://arxiv.org/abs/1309.6835 """ with tf.name_scope(name or 'variational_gp_loss'): if observation_index_points is None: observation_index_points = self._index_points observation_index_points = tf.convert_to_tensor( value=observation_index_points, dtype=self._dtype, name='observation_index_points') observations = tf.convert_to_tensor( value=observations, dtype=self._dtype, name='observations') kl_weight = tf.convert_to_tensor( value=kl_weight, dtype=self._dtype, name='kl_weight') # The variational loss is a negative ELBO. The ELBO can be broken down # into three terms: # 1. a likelihood term # 2. a trace term arising from the covariance of the posterior predictive kzx = self.kernel.matrix(self._inducing_index_points, observation_index_points) kzx_linop = tf.linalg.LinearOperatorFullMatrix(kzx) loc = (self._mean_fn(observation_index_points) + kzx_linop.matvec(self._kzz_inv_varloc, adjoint=True)) likelihood = independent.Independent( normal.Normal( loc=loc, scale=tf.sqrt(self._observation_noise_variance + self._jitter), name='NormalLikelihood'), reinterpreted_batch_ndims=1) obs_ll = likelihood.log_prob(observations) chol_kzz_linop = tf.linalg.LinearOperatorLowerTriangular(self._chol_kzz) chol_kzz_inv_kzx = chol_kzz_linop.solve(kzx) kzz_inv_kzx = chol_kzz_linop.solve(chol_kzz_inv_kzx, adjoint=True) kxx_diag = tf.linalg.diag_part( self.kernel.matrix( observation_index_points, observation_index_points)) ktilde_trace_term = ( tf.reduce_sum(input_tensor=kxx_diag, axis=-1) - tf.reduce_sum(input_tensor=chol_kzz_inv_kzx ** 2, axis=[-2, -1])) # Tr(SB) # where S = A A.T, A = variational_inducing_observations_scale # and B = Kzz^-1 Kzx Kzx.T Kzz^-1 # # Now Tr(SB) = Tr(A A.T Kzz^-1 Kzx Kzx.T Kzz^-1) # = Tr(A.T Kzz^-1 Kzx Kzx.T Kzz^-1 A) # = sum_ij (A.T Kzz^-1 Kzx)_{ij}^2 other_trace_term = tf.reduce_sum( input_tensor=( self._variational_inducing_observations_posterior.scale.matmul( kzz_inv_kzx) ** 2), axis=[-2, -1]) trace_term = (.5 * (ktilde_trace_term + other_trace_term) / self._observation_noise_variance) inducing_prior = gaussian_process.GaussianProcess( kernel=self._kernel, mean_fn=self._mean_fn, index_points=self._inducing_index_points, observation_noise_variance=self._observation_noise_variance) kl_term = kl_weight * kullback_leibler.kl_divergence( self._variational_inducing_observations_posterior, inducing_prior) lower_bound = (obs_ll - trace_term - kl_term) return -tf.reduce_mean(input_tensor=lower_bound)
def variational_loss(self, observations, observation_index_points=None, kl_weight=1., name='variational_loss'): """Variational loss for the VGP. Given `observations` and `observation_index_points`, compute the negative variational lower bound as specified in [Hensman, 2013][1]. Args: observations: `float` `Tensor` representing collection, or batch of collections, of observations corresponding to `observation_index_points`. Shape has the form `[b1, ..., bB, e]`, which must be brodcastable with the batch and example shapes of `observation_index_points`. The batch shape `[b1, ..., bB]` must be broadcastable with the shapes of all other batched parameters (`kernel.batch_shape`, `observation_index_points`, etc.). observation_index_points: `float` `Tensor` representing finite (batch of) vector(s) of points where observations are defined. Shape has the form `[b1, ..., bB, e1, f1, ..., fF]` where `F` is the number of feature dimensions and must equal `kernel.feature_ndims` and `e1` is the number (size) of index points in each batch (we denote it `e1` to distinguish it from the numer of inducing index points, denoted `e2` below). If set to `None` uses `index_points` as the origin for observations. Default value: None. kl_weight: Amount by which to scale the KL divergence loss between prior and posterior. Default value: 1. name: Python `str` name prefixed to Ops created by this class. Default value: "GaussianProcess". Returns: loss: Scalar tensor representing the negative variational lower bound. Can be directly used in a `tf.Optimizer`. Raises: ValueError: if `mean_fn` is not `None` and is not callable. #### References [1]: Hensman, J., Lawrence, N. "Gaussian Processes for Big Data", 2013 https://arxiv.org/abs/1309.6835 """ with tf.name_scope(name or 'variational_gp_loss'): if observation_index_points is None: observation_index_points = self._index_points observation_index_points = tf.convert_to_tensor( value=observation_index_points, dtype=self._dtype, name='observation_index_points') observations = tf.convert_to_tensor( value=observations, dtype=self._dtype, name='observations') kl_weight = tf.convert_to_tensor( value=kl_weight, dtype=self._dtype, name='kl_weight') # The variational loss is a negative ELBO. The ELBO can be broken down # into three terms: # 1. a likelihood term # 2. a trace term arising from the covariance of the posterior predictive kzx = self.kernel.matrix(self._inducing_index_points, observation_index_points) kzx_linop = tf.linalg.LinearOperatorFullMatrix(kzx) loc = (self._mean_fn(observation_index_points) + kzx_linop.matvec(self._kzz_inv_varloc, adjoint=True)) likelihood = independent.Independent( normal.Normal( loc=loc, scale=tf.sqrt(self._observation_noise_variance + self._jitter), name='NormalLikelihood'), reinterpreted_batch_ndims=1) obs_ll = likelihood.log_prob(observations) chol_kzz_linop = tf.linalg.LinearOperatorLowerTriangular(self._chol_kzz) chol_kzz_inv_kzx = chol_kzz_linop.solve(kzx) kzz_inv_kzx = chol_kzz_linop.solve(chol_kzz_inv_kzx, adjoint=True) kxx_diag = tf.linalg.diag_part( self.kernel.matrix( observation_index_points, observation_index_points)) ktilde_trace_term = ( tf.reduce_sum(input_tensor=kxx_diag, axis=-1) - tf.reduce_sum(input_tensor=chol_kzz_inv_kzx ** 2, axis=[-2, -1])) # Tr(SB) # where S = A A.T, A = variational_inducing_observations_scale # and B = Kzz^-1 Kzx Kzx.T Kzz^-1 # # Now Tr(SB) = Tr(A A.T Kzz^-1 Kzx Kzx.T Kzz^-1) # = Tr(A.T Kzz^-1 Kzx Kzx.T Kzz^-1 A) # = sum_ij (A.T Kzz^-1 Kzx)_{ij}^2 other_trace_term = tf.reduce_sum( input_tensor=( self._variational_inducing_observations_posterior.scale.matmul( kzz_inv_kzx) ** 2), axis=[-2, -1]) trace_term = (.5 * (ktilde_trace_term + other_trace_term) / self._observation_noise_variance) inducing_prior = gaussian_process.GaussianProcess( kernel=self._kernel, mean_fn=self._mean_fn, index_points=self._inducing_index_points, observation_noise_variance=self._observation_noise_variance) kl_term = kl_weight * kullback_leibler.kl_divergence( self._variational_inducing_observations_posterior, inducing_prior) lower_bound = (obs_ll - trace_term - kl_term) return -tf.reduce_mean(input_tensor=lower_bound)
[ "Variational", "loss", "for", "the", "VGP", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/variational_gaussian_process.py#L728-L842
[ "def", "variational_loss", "(", "self", ",", "observations", ",", "observation_index_points", "=", "None", ",", "kl_weight", "=", "1.", ",", "name", "=", "'variational_loss'", ")", ":", "with", "tf", ".", "name_scope", "(", "name", "or", "'variational_gp_loss'", ")", ":", "if", "observation_index_points", "is", "None", ":", "observation_index_points", "=", "self", ".", "_index_points", "observation_index_points", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "observation_index_points", ",", "dtype", "=", "self", ".", "_dtype", ",", "name", "=", "'observation_index_points'", ")", "observations", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "observations", ",", "dtype", "=", "self", ".", "_dtype", ",", "name", "=", "'observations'", ")", "kl_weight", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "kl_weight", ",", "dtype", "=", "self", ".", "_dtype", ",", "name", "=", "'kl_weight'", ")", "# The variational loss is a negative ELBO. The ELBO can be broken down", "# into three terms:", "# 1. a likelihood term", "# 2. a trace term arising from the covariance of the posterior predictive", "kzx", "=", "self", ".", "kernel", ".", "matrix", "(", "self", ".", "_inducing_index_points", ",", "observation_index_points", ")", "kzx_linop", "=", "tf", ".", "linalg", ".", "LinearOperatorFullMatrix", "(", "kzx", ")", "loc", "=", "(", "self", ".", "_mean_fn", "(", "observation_index_points", ")", "+", "kzx_linop", ".", "matvec", "(", "self", ".", "_kzz_inv_varloc", ",", "adjoint", "=", "True", ")", ")", "likelihood", "=", "independent", ".", "Independent", "(", "normal", ".", "Normal", "(", "loc", "=", "loc", ",", "scale", "=", "tf", ".", "sqrt", "(", "self", ".", "_observation_noise_variance", "+", "self", ".", "_jitter", ")", ",", "name", "=", "'NormalLikelihood'", ")", ",", "reinterpreted_batch_ndims", "=", "1", ")", "obs_ll", "=", "likelihood", ".", "log_prob", "(", "observations", ")", "chol_kzz_linop", "=", "tf", ".", "linalg", ".", "LinearOperatorLowerTriangular", "(", "self", ".", "_chol_kzz", ")", "chol_kzz_inv_kzx", "=", "chol_kzz_linop", ".", "solve", "(", "kzx", ")", "kzz_inv_kzx", "=", "chol_kzz_linop", ".", "solve", "(", "chol_kzz_inv_kzx", ",", "adjoint", "=", "True", ")", "kxx_diag", "=", "tf", ".", "linalg", ".", "diag_part", "(", "self", ".", "kernel", ".", "matrix", "(", "observation_index_points", ",", "observation_index_points", ")", ")", "ktilde_trace_term", "=", "(", "tf", ".", "reduce_sum", "(", "input_tensor", "=", "kxx_diag", ",", "axis", "=", "-", "1", ")", "-", "tf", ".", "reduce_sum", "(", "input_tensor", "=", "chol_kzz_inv_kzx", "**", "2", ",", "axis", "=", "[", "-", "2", ",", "-", "1", "]", ")", ")", "# Tr(SB)", "# where S = A A.T, A = variational_inducing_observations_scale", "# and B = Kzz^-1 Kzx Kzx.T Kzz^-1", "#", "# Now Tr(SB) = Tr(A A.T Kzz^-1 Kzx Kzx.T Kzz^-1)", "# = Tr(A.T Kzz^-1 Kzx Kzx.T Kzz^-1 A)", "# = sum_ij (A.T Kzz^-1 Kzx)_{ij}^2", "other_trace_term", "=", "tf", ".", "reduce_sum", "(", "input_tensor", "=", "(", "self", ".", "_variational_inducing_observations_posterior", ".", "scale", ".", "matmul", "(", "kzz_inv_kzx", ")", "**", "2", ")", ",", "axis", "=", "[", "-", "2", ",", "-", "1", "]", ")", "trace_term", "=", "(", ".5", "*", "(", "ktilde_trace_term", "+", "other_trace_term", ")", "/", "self", ".", "_observation_noise_variance", ")", "inducing_prior", "=", "gaussian_process", ".", "GaussianProcess", "(", "kernel", "=", "self", ".", "_kernel", ",", "mean_fn", "=", "self", ".", "_mean_fn", ",", "index_points", "=", "self", ".", "_inducing_index_points", ",", "observation_noise_variance", "=", "self", ".", "_observation_noise_variance", ")", "kl_term", "=", "kl_weight", "*", "kullback_leibler", ".", "kl_divergence", "(", "self", ".", "_variational_inducing_observations_posterior", ",", "inducing_prior", ")", "lower_bound", "=", "(", "obs_ll", "-", "trace_term", "-", "kl_term", ")", "return", "-", "tf", ".", "reduce_mean", "(", "input_tensor", "=", "lower_bound", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
VariationalGaussianProcess.optimal_variational_posterior
Model selection for optimal variational hyperparameters. Given the full training set (parameterized by `observations` and `observation_index_points`), compute the optimal variational location and scale for the VGP. This is based of the method suggested in [Titsias, 2009][1]. Args: kernel: `PositiveSemidefiniteKernel`-like instance representing the GP's covariance function. inducing_index_points: `float` `Tensor` of locations of inducing points in the index set. Shape has the form `[b1, ..., bB, e2, f1, ..., fF]`, just like `observation_index_points`. The batch shape components needn't be identical to those of `observation_index_points`, but must be broadcast compatible with them. observation_index_points: `float` `Tensor` representing finite (batch of) vector(s) of points where observations are defined. Shape has the form `[b1, ..., bB, e1, f1, ..., fF]` where `F` is the number of feature dimensions and must equal `kernel.feature_ndims` and `e1` is the number (size) of index points in each batch (we denote it `e1` to distinguish it from the numer of inducing index points, denoted `e2` below). observations: `float` `Tensor` representing collection, or batch of collections, of observations corresponding to `observation_index_points`. Shape has the form `[b1, ..., bB, e]`, which must be brodcastable with the batch and example shapes of `observation_index_points`. The batch shape `[b1, ..., bB]` must be broadcastable with the shapes of all other batched parameters (`kernel.batch_shape`, `observation_index_points`, etc.). observation_noise_variance: `float` `Tensor` representing the variance of the noise in the Normal likelihood distribution of the model. May be batched, in which case the batch shape must be broadcastable with the shapes of all other batched parameters (`kernel.batch_shape`, `index_points`, etc.). Default value: `0.` mean_fn: Python `callable` that acts on index points to produce a (batch of) vector(s) of mean values at those index points. Takes a `Tensor` of shape `[b1, ..., bB, f1, ..., fF]` and returns a `Tensor` whose shape is (broadcastable with) `[b1, ..., bB]`. Default value: `None` implies constant zero function. jitter: `float` scalar `Tensor` added to the diagonal of the covariance matrix to ensure positive definiteness of the covariance matrix. Default value: `1e-6`. name: Python `str` name prefixed to Ops created by this class. Default value: "optimal_variational_posterior". Returns: loc, scale: Tuple representing the variational location and scale. Raises: ValueError: if `mean_fn` is not `None` and is not callable. #### References [1]: Titsias, M. "Variational Model Selection for Sparse Gaussian Process Regression", 2009. http://proceedings.mlr.press/v5/titsias09a/titsias09a.pdf
tensorflow_probability/python/distributions/variational_gaussian_process.py
def optimal_variational_posterior( kernel, inducing_index_points, observation_index_points, observations, observation_noise_variance, mean_fn=None, jitter=1e-6, name=None): """Model selection for optimal variational hyperparameters. Given the full training set (parameterized by `observations` and `observation_index_points`), compute the optimal variational location and scale for the VGP. This is based of the method suggested in [Titsias, 2009][1]. Args: kernel: `PositiveSemidefiniteKernel`-like instance representing the GP's covariance function. inducing_index_points: `float` `Tensor` of locations of inducing points in the index set. Shape has the form `[b1, ..., bB, e2, f1, ..., fF]`, just like `observation_index_points`. The batch shape components needn't be identical to those of `observation_index_points`, but must be broadcast compatible with them. observation_index_points: `float` `Tensor` representing finite (batch of) vector(s) of points where observations are defined. Shape has the form `[b1, ..., bB, e1, f1, ..., fF]` where `F` is the number of feature dimensions and must equal `kernel.feature_ndims` and `e1` is the number (size) of index points in each batch (we denote it `e1` to distinguish it from the numer of inducing index points, denoted `e2` below). observations: `float` `Tensor` representing collection, or batch of collections, of observations corresponding to `observation_index_points`. Shape has the form `[b1, ..., bB, e]`, which must be brodcastable with the batch and example shapes of `observation_index_points`. The batch shape `[b1, ..., bB]` must be broadcastable with the shapes of all other batched parameters (`kernel.batch_shape`, `observation_index_points`, etc.). observation_noise_variance: `float` `Tensor` representing the variance of the noise in the Normal likelihood distribution of the model. May be batched, in which case the batch shape must be broadcastable with the shapes of all other batched parameters (`kernel.batch_shape`, `index_points`, etc.). Default value: `0.` mean_fn: Python `callable` that acts on index points to produce a (batch of) vector(s) of mean values at those index points. Takes a `Tensor` of shape `[b1, ..., bB, f1, ..., fF]` and returns a `Tensor` whose shape is (broadcastable with) `[b1, ..., bB]`. Default value: `None` implies constant zero function. jitter: `float` scalar `Tensor` added to the diagonal of the covariance matrix to ensure positive definiteness of the covariance matrix. Default value: `1e-6`. name: Python `str` name prefixed to Ops created by this class. Default value: "optimal_variational_posterior". Returns: loc, scale: Tuple representing the variational location and scale. Raises: ValueError: if `mean_fn` is not `None` and is not callable. #### References [1]: Titsias, M. "Variational Model Selection for Sparse Gaussian Process Regression", 2009. http://proceedings.mlr.press/v5/titsias09a/titsias09a.pdf """ with tf.name_scope(name or 'optimal_variational_posterior'): dtype = dtype_util.common_dtype( [inducing_index_points, observation_index_points, observations, observation_noise_variance, jitter], tf.float32) inducing_index_points = tf.convert_to_tensor( value=inducing_index_points, dtype=dtype, name='inducing_index_points') observation_index_points = tf.convert_to_tensor( value=observation_index_points, dtype=dtype, name='observation_index_points') observations = tf.convert_to_tensor( value=observations, dtype=dtype, name='observations') observation_noise_variance = tf.convert_to_tensor( value=observation_noise_variance, dtype=dtype, name='observation_noise_variance') jitter = tf.convert_to_tensor( value=jitter, dtype=dtype, name='jitter') # Default to a constant zero function. if mean_fn is None: mean_fn = lambda x: tf.zeros([1], dtype=dtype) else: if not callable(mean_fn): raise ValueError('`mean_fn` must be a Python callable') # z are the inducing points and x are the observation index points. kzz = kernel.matrix(inducing_index_points, inducing_index_points) kzx = kernel.matrix(inducing_index_points, observation_index_points) noise_var_inv = tf.math.reciprocal(observation_noise_variance) sigma_inv = _add_diagonal_shift( kzz + noise_var_inv * tf.matmul(kzx, kzx, adjoint_b=True), jitter) chol_sigma_inv = tf.linalg.cholesky(sigma_inv) kzx_lin_op = tf.linalg.LinearOperatorFullMatrix(kzx) kzx_obs = kzx_lin_op.matvec( observations - mean_fn(observation_index_points)) kzz_lin_op = tf.linalg.LinearOperatorFullMatrix(kzz) loc = (mean_fn(inducing_index_points) + noise_var_inv * kzz_lin_op.matvec( _solve_cholesky_factored_system_vec(chol_sigma_inv, kzx_obs))) chol_sigma_inv_lin_op = tf.linalg.LinearOperatorLowerTriangular( chol_sigma_inv) scale = chol_sigma_inv_lin_op.solve(kzz) return loc, scale
def optimal_variational_posterior( kernel, inducing_index_points, observation_index_points, observations, observation_noise_variance, mean_fn=None, jitter=1e-6, name=None): """Model selection for optimal variational hyperparameters. Given the full training set (parameterized by `observations` and `observation_index_points`), compute the optimal variational location and scale for the VGP. This is based of the method suggested in [Titsias, 2009][1]. Args: kernel: `PositiveSemidefiniteKernel`-like instance representing the GP's covariance function. inducing_index_points: `float` `Tensor` of locations of inducing points in the index set. Shape has the form `[b1, ..., bB, e2, f1, ..., fF]`, just like `observation_index_points`. The batch shape components needn't be identical to those of `observation_index_points`, but must be broadcast compatible with them. observation_index_points: `float` `Tensor` representing finite (batch of) vector(s) of points where observations are defined. Shape has the form `[b1, ..., bB, e1, f1, ..., fF]` where `F` is the number of feature dimensions and must equal `kernel.feature_ndims` and `e1` is the number (size) of index points in each batch (we denote it `e1` to distinguish it from the numer of inducing index points, denoted `e2` below). observations: `float` `Tensor` representing collection, or batch of collections, of observations corresponding to `observation_index_points`. Shape has the form `[b1, ..., bB, e]`, which must be brodcastable with the batch and example shapes of `observation_index_points`. The batch shape `[b1, ..., bB]` must be broadcastable with the shapes of all other batched parameters (`kernel.batch_shape`, `observation_index_points`, etc.). observation_noise_variance: `float` `Tensor` representing the variance of the noise in the Normal likelihood distribution of the model. May be batched, in which case the batch shape must be broadcastable with the shapes of all other batched parameters (`kernel.batch_shape`, `index_points`, etc.). Default value: `0.` mean_fn: Python `callable` that acts on index points to produce a (batch of) vector(s) of mean values at those index points. Takes a `Tensor` of shape `[b1, ..., bB, f1, ..., fF]` and returns a `Tensor` whose shape is (broadcastable with) `[b1, ..., bB]`. Default value: `None` implies constant zero function. jitter: `float` scalar `Tensor` added to the diagonal of the covariance matrix to ensure positive definiteness of the covariance matrix. Default value: `1e-6`. name: Python `str` name prefixed to Ops created by this class. Default value: "optimal_variational_posterior". Returns: loc, scale: Tuple representing the variational location and scale. Raises: ValueError: if `mean_fn` is not `None` and is not callable. #### References [1]: Titsias, M. "Variational Model Selection for Sparse Gaussian Process Regression", 2009. http://proceedings.mlr.press/v5/titsias09a/titsias09a.pdf """ with tf.name_scope(name or 'optimal_variational_posterior'): dtype = dtype_util.common_dtype( [inducing_index_points, observation_index_points, observations, observation_noise_variance, jitter], tf.float32) inducing_index_points = tf.convert_to_tensor( value=inducing_index_points, dtype=dtype, name='inducing_index_points') observation_index_points = tf.convert_to_tensor( value=observation_index_points, dtype=dtype, name='observation_index_points') observations = tf.convert_to_tensor( value=observations, dtype=dtype, name='observations') observation_noise_variance = tf.convert_to_tensor( value=observation_noise_variance, dtype=dtype, name='observation_noise_variance') jitter = tf.convert_to_tensor( value=jitter, dtype=dtype, name='jitter') # Default to a constant zero function. if mean_fn is None: mean_fn = lambda x: tf.zeros([1], dtype=dtype) else: if not callable(mean_fn): raise ValueError('`mean_fn` must be a Python callable') # z are the inducing points and x are the observation index points. kzz = kernel.matrix(inducing_index_points, inducing_index_points) kzx = kernel.matrix(inducing_index_points, observation_index_points) noise_var_inv = tf.math.reciprocal(observation_noise_variance) sigma_inv = _add_diagonal_shift( kzz + noise_var_inv * tf.matmul(kzx, kzx, adjoint_b=True), jitter) chol_sigma_inv = tf.linalg.cholesky(sigma_inv) kzx_lin_op = tf.linalg.LinearOperatorFullMatrix(kzx) kzx_obs = kzx_lin_op.matvec( observations - mean_fn(observation_index_points)) kzz_lin_op = tf.linalg.LinearOperatorFullMatrix(kzz) loc = (mean_fn(inducing_index_points) + noise_var_inv * kzz_lin_op.matvec( _solve_cholesky_factored_system_vec(chol_sigma_inv, kzx_obs))) chol_sigma_inv_lin_op = tf.linalg.LinearOperatorLowerTriangular( chol_sigma_inv) scale = chol_sigma_inv_lin_op.solve(kzz) return loc, scale
[ "Model", "selection", "for", "optimal", "variational", "hyperparameters", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/variational_gaussian_process.py#L845-L964
[ "def", "optimal_variational_posterior", "(", "kernel", ",", "inducing_index_points", ",", "observation_index_points", ",", "observations", ",", "observation_noise_variance", ",", "mean_fn", "=", "None", ",", "jitter", "=", "1e-6", ",", "name", "=", "None", ")", ":", "with", "tf", ".", "name_scope", "(", "name", "or", "'optimal_variational_posterior'", ")", ":", "dtype", "=", "dtype_util", ".", "common_dtype", "(", "[", "inducing_index_points", ",", "observation_index_points", ",", "observations", ",", "observation_noise_variance", ",", "jitter", "]", ",", "tf", ".", "float32", ")", "inducing_index_points", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "inducing_index_points", ",", "dtype", "=", "dtype", ",", "name", "=", "'inducing_index_points'", ")", "observation_index_points", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "observation_index_points", ",", "dtype", "=", "dtype", ",", "name", "=", "'observation_index_points'", ")", "observations", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "observations", ",", "dtype", "=", "dtype", ",", "name", "=", "'observations'", ")", "observation_noise_variance", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "observation_noise_variance", ",", "dtype", "=", "dtype", ",", "name", "=", "'observation_noise_variance'", ")", "jitter", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "jitter", ",", "dtype", "=", "dtype", ",", "name", "=", "'jitter'", ")", "# Default to a constant zero function.", "if", "mean_fn", "is", "None", ":", "mean_fn", "=", "lambda", "x", ":", "tf", ".", "zeros", "(", "[", "1", "]", ",", "dtype", "=", "dtype", ")", "else", ":", "if", "not", "callable", "(", "mean_fn", ")", ":", "raise", "ValueError", "(", "'`mean_fn` must be a Python callable'", ")", "# z are the inducing points and x are the observation index points.", "kzz", "=", "kernel", ".", "matrix", "(", "inducing_index_points", ",", "inducing_index_points", ")", "kzx", "=", "kernel", ".", "matrix", "(", "inducing_index_points", ",", "observation_index_points", ")", "noise_var_inv", "=", "tf", ".", "math", ".", "reciprocal", "(", "observation_noise_variance", ")", "sigma_inv", "=", "_add_diagonal_shift", "(", "kzz", "+", "noise_var_inv", "*", "tf", ".", "matmul", "(", "kzx", ",", "kzx", ",", "adjoint_b", "=", "True", ")", ",", "jitter", ")", "chol_sigma_inv", "=", "tf", ".", "linalg", ".", "cholesky", "(", "sigma_inv", ")", "kzx_lin_op", "=", "tf", ".", "linalg", ".", "LinearOperatorFullMatrix", "(", "kzx", ")", "kzx_obs", "=", "kzx_lin_op", ".", "matvec", "(", "observations", "-", "mean_fn", "(", "observation_index_points", ")", ")", "kzz_lin_op", "=", "tf", ".", "linalg", ".", "LinearOperatorFullMatrix", "(", "kzz", ")", "loc", "=", "(", "mean_fn", "(", "inducing_index_points", ")", "+", "noise_var_inv", "*", "kzz_lin_op", ".", "matvec", "(", "_solve_cholesky_factored_system_vec", "(", "chol_sigma_inv", ",", "kzx_obs", ")", ")", ")", "chol_sigma_inv_lin_op", "=", "tf", ".", "linalg", ".", "LinearOperatorLowerTriangular", "(", "chol_sigma_inv", ")", "scale", "=", "chol_sigma_inv_lin_op", ".", "solve", "(", "kzz", ")", "return", "loc", ",", "scale" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
build_is_last_day_of_season
Build utility method to compute whether the season is changing.
tensorflow_probability/python/sts/seasonal.py
def build_is_last_day_of_season(num_steps_per_season): """Build utility method to compute whether the season is changing.""" num_steps_per_cycle = np.sum(num_steps_per_season) changepoints = np.cumsum(np.ravel(num_steps_per_season)) - 1 def is_last_day_of_season(t): t_ = dist_util.maybe_get_static_value(t) if t_ is not None: # static case step_in_cycle = t_ % num_steps_per_cycle return any(step_in_cycle == changepoints) else: step_in_cycle = tf.math.floormod(t, num_steps_per_cycle) return tf.reduce_any( input_tensor=tf.equal(step_in_cycle, changepoints)) return is_last_day_of_season
def build_is_last_day_of_season(num_steps_per_season): """Build utility method to compute whether the season is changing.""" num_steps_per_cycle = np.sum(num_steps_per_season) changepoints = np.cumsum(np.ravel(num_steps_per_season)) - 1 def is_last_day_of_season(t): t_ = dist_util.maybe_get_static_value(t) if t_ is not None: # static case step_in_cycle = t_ % num_steps_per_cycle return any(step_in_cycle == changepoints) else: step_in_cycle = tf.math.floormod(t, num_steps_per_cycle) return tf.reduce_any( input_tensor=tf.equal(step_in_cycle, changepoints)) return is_last_day_of_season
[ "Build", "utility", "method", "to", "compute", "whether", "the", "season", "is", "changing", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/sts/seasonal.py#L513-L526
[ "def", "build_is_last_day_of_season", "(", "num_steps_per_season", ")", ":", "num_steps_per_cycle", "=", "np", ".", "sum", "(", "num_steps_per_season", ")", "changepoints", "=", "np", ".", "cumsum", "(", "np", ".", "ravel", "(", "num_steps_per_season", ")", ")", "-", "1", "def", "is_last_day_of_season", "(", "t", ")", ":", "t_", "=", "dist_util", ".", "maybe_get_static_value", "(", "t", ")", "if", "t_", "is", "not", "None", ":", "# static case", "step_in_cycle", "=", "t_", "%", "num_steps_per_cycle", "return", "any", "(", "step_in_cycle", "==", "changepoints", ")", "else", ":", "step_in_cycle", "=", "tf", ".", "math", ".", "floormod", "(", "t", ",", "num_steps_per_cycle", ")", "return", "tf", ".", "reduce_any", "(", "input_tensor", "=", "tf", ".", "equal", "(", "step_in_cycle", ",", "changepoints", ")", ")", "return", "is_last_day_of_season" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
build_effects_to_residuals_matrix
Build change-of-basis matrices for constrained seasonal effects. This method builds the matrix that transforms seasonal effects into effect residuals (differences from the mean effect), and additionally projects these residuals onto the subspace where the mean effect is zero. See `ConstrainedSeasonalStateSpaceModel` for mathematical details. Args: num_seasons: scalar `int` number of seasons. dtype: TensorFlow `dtype` for the returned values. Returns: effects_to_residuals: `Tensor` of shape `[num_seasons-1, num_seasons]`, such that `differences_from_mean_effect = matmul(effects_to_residuals, seasonal_effects)`. In the notation of `ConstrainedSeasonalStateSpaceModel`, this is `effects_to_residuals = P * R`. residuals_to_effects: the (pseudo)-inverse of the above; a `Tensor` of shape `[num_seasons, num_seasons-1]`. In the notation of `ConstrainedSeasonalStateSpaceModel`, this is `residuals_to_effects = R^{-1} * P'`.
tensorflow_probability/python/sts/seasonal.py
def build_effects_to_residuals_matrix(num_seasons, dtype): """Build change-of-basis matrices for constrained seasonal effects. This method builds the matrix that transforms seasonal effects into effect residuals (differences from the mean effect), and additionally projects these residuals onto the subspace where the mean effect is zero. See `ConstrainedSeasonalStateSpaceModel` for mathematical details. Args: num_seasons: scalar `int` number of seasons. dtype: TensorFlow `dtype` for the returned values. Returns: effects_to_residuals: `Tensor` of shape `[num_seasons-1, num_seasons]`, such that `differences_from_mean_effect = matmul(effects_to_residuals, seasonal_effects)`. In the notation of `ConstrainedSeasonalStateSpaceModel`, this is `effects_to_residuals = P * R`. residuals_to_effects: the (pseudo)-inverse of the above; a `Tensor` of shape `[num_seasons, num_seasons-1]`. In the notation of `ConstrainedSeasonalStateSpaceModel`, this is `residuals_to_effects = R^{-1} * P'`. """ # Build the matrix that converts effects `e_i` into differences from the mean # effect `(e_i - sum(e_i)) / num_seasons`, with the mean effect in the last # row so that the transformation is invertible. effects_to_residuals_fullrank = np.eye(num_seasons) - 1./num_seasons effects_to_residuals_fullrank[-1, :] = 1./num_seasons # compute mean effect residuals_to_effects_fullrank = np.linalg.inv(effects_to_residuals_fullrank) # Drop the final dimension, effectively setting the mean effect to zero. effects_to_residuals = effects_to_residuals_fullrank[:-1, :] residuals_to_effects = residuals_to_effects_fullrank[:, :-1] # Return Tensor values of the specified dtype. effects_to_residuals = tf.cast( effects_to_residuals, dtype=dtype, name='effects_to_residuals') residuals_to_effects = tf.cast( residuals_to_effects, dtype=dtype, name='residuals_to_effects') return effects_to_residuals, residuals_to_effects
def build_effects_to_residuals_matrix(num_seasons, dtype): """Build change-of-basis matrices for constrained seasonal effects. This method builds the matrix that transforms seasonal effects into effect residuals (differences from the mean effect), and additionally projects these residuals onto the subspace where the mean effect is zero. See `ConstrainedSeasonalStateSpaceModel` for mathematical details. Args: num_seasons: scalar `int` number of seasons. dtype: TensorFlow `dtype` for the returned values. Returns: effects_to_residuals: `Tensor` of shape `[num_seasons-1, num_seasons]`, such that `differences_from_mean_effect = matmul(effects_to_residuals, seasonal_effects)`. In the notation of `ConstrainedSeasonalStateSpaceModel`, this is `effects_to_residuals = P * R`. residuals_to_effects: the (pseudo)-inverse of the above; a `Tensor` of shape `[num_seasons, num_seasons-1]`. In the notation of `ConstrainedSeasonalStateSpaceModel`, this is `residuals_to_effects = R^{-1} * P'`. """ # Build the matrix that converts effects `e_i` into differences from the mean # effect `(e_i - sum(e_i)) / num_seasons`, with the mean effect in the last # row so that the transformation is invertible. effects_to_residuals_fullrank = np.eye(num_seasons) - 1./num_seasons effects_to_residuals_fullrank[-1, :] = 1./num_seasons # compute mean effect residuals_to_effects_fullrank = np.linalg.inv(effects_to_residuals_fullrank) # Drop the final dimension, effectively setting the mean effect to zero. effects_to_residuals = effects_to_residuals_fullrank[:-1, :] residuals_to_effects = residuals_to_effects_fullrank[:, :-1] # Return Tensor values of the specified dtype. effects_to_residuals = tf.cast( effects_to_residuals, dtype=dtype, name='effects_to_residuals') residuals_to_effects = tf.cast( residuals_to_effects, dtype=dtype, name='residuals_to_effects') return effects_to_residuals, residuals_to_effects
[ "Build", "change", "-", "of", "-", "basis", "matrices", "for", "constrained", "seasonal", "effects", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/sts/seasonal.py#L529-L570
[ "def", "build_effects_to_residuals_matrix", "(", "num_seasons", ",", "dtype", ")", ":", "# Build the matrix that converts effects `e_i` into differences from the mean", "# effect `(e_i - sum(e_i)) / num_seasons`, with the mean effect in the last", "# row so that the transformation is invertible.", "effects_to_residuals_fullrank", "=", "np", ".", "eye", "(", "num_seasons", ")", "-", "1.", "/", "num_seasons", "effects_to_residuals_fullrank", "[", "-", "1", ",", ":", "]", "=", "1.", "/", "num_seasons", "# compute mean effect", "residuals_to_effects_fullrank", "=", "np", ".", "linalg", ".", "inv", "(", "effects_to_residuals_fullrank", ")", "# Drop the final dimension, effectively setting the mean effect to zero.", "effects_to_residuals", "=", "effects_to_residuals_fullrank", "[", ":", "-", "1", ",", ":", "]", "residuals_to_effects", "=", "residuals_to_effects_fullrank", "[", ":", ",", ":", "-", "1", "]", "# Return Tensor values of the specified dtype.", "effects_to_residuals", "=", "tf", ".", "cast", "(", "effects_to_residuals", ",", "dtype", "=", "dtype", ",", "name", "=", "'effects_to_residuals'", ")", "residuals_to_effects", "=", "tf", ".", "cast", "(", "residuals_to_effects", ",", "dtype", "=", "dtype", ",", "name", "=", "'residuals_to_effects'", ")", "return", "effects_to_residuals", ",", "residuals_to_effects" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
build_seasonal_transition_matrix
Build a function computing transitions for a seasonal effect model.
tensorflow_probability/python/sts/seasonal.py
def build_seasonal_transition_matrix( num_seasons, is_last_day_of_season, dtype, basis_change_matrix=None, basis_change_matrix_inv=None): """Build a function computing transitions for a seasonal effect model.""" with tf.compat.v1.name_scope('build_seasonal_transition_matrix'): # If the season is changing, the transition matrix permutes the latent # state to shift all seasons up by a dimension, and sends the current # season's effect to the bottom. seasonal_permutation = np.concatenate( [np.arange(1, num_seasons), [0]], axis=0) seasonal_permutation_matrix = tf.constant( np.eye(num_seasons)[seasonal_permutation], dtype=dtype) # Optionally transform the transition matrix into a reparameterized space, # enforcing the zero-sum constraint for ConstrainedSeasonalStateSpaceModel. if basis_change_matrix is not None: seasonal_permutation_matrix = tf.matmul( basis_change_matrix, tf.matmul(seasonal_permutation_matrix, basis_change_matrix_inv)) identity_matrix = tf.eye( tf.shape(input=seasonal_permutation_matrix)[-1], dtype=dtype) def seasonal_transition_matrix(t): return tf.linalg.LinearOperatorFullMatrix( matrix=dist_util.pick_scalar_condition( is_last_day_of_season(t), seasonal_permutation_matrix, identity_matrix)) return seasonal_transition_matrix
def build_seasonal_transition_matrix( num_seasons, is_last_day_of_season, dtype, basis_change_matrix=None, basis_change_matrix_inv=None): """Build a function computing transitions for a seasonal effect model.""" with tf.compat.v1.name_scope('build_seasonal_transition_matrix'): # If the season is changing, the transition matrix permutes the latent # state to shift all seasons up by a dimension, and sends the current # season's effect to the bottom. seasonal_permutation = np.concatenate( [np.arange(1, num_seasons), [0]], axis=0) seasonal_permutation_matrix = tf.constant( np.eye(num_seasons)[seasonal_permutation], dtype=dtype) # Optionally transform the transition matrix into a reparameterized space, # enforcing the zero-sum constraint for ConstrainedSeasonalStateSpaceModel. if basis_change_matrix is not None: seasonal_permutation_matrix = tf.matmul( basis_change_matrix, tf.matmul(seasonal_permutation_matrix, basis_change_matrix_inv)) identity_matrix = tf.eye( tf.shape(input=seasonal_permutation_matrix)[-1], dtype=dtype) def seasonal_transition_matrix(t): return tf.linalg.LinearOperatorFullMatrix( matrix=dist_util.pick_scalar_condition( is_last_day_of_season(t), seasonal_permutation_matrix, identity_matrix)) return seasonal_transition_matrix
[ "Build", "a", "function", "computing", "transitions", "for", "a", "seasonal", "effect", "model", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/sts/seasonal.py#L573-L604
[ "def", "build_seasonal_transition_matrix", "(", "num_seasons", ",", "is_last_day_of_season", ",", "dtype", ",", "basis_change_matrix", "=", "None", ",", "basis_change_matrix_inv", "=", "None", ")", ":", "with", "tf", ".", "compat", ".", "v1", ".", "name_scope", "(", "'build_seasonal_transition_matrix'", ")", ":", "# If the season is changing, the transition matrix permutes the latent", "# state to shift all seasons up by a dimension, and sends the current", "# season's effect to the bottom.", "seasonal_permutation", "=", "np", ".", "concatenate", "(", "[", "np", ".", "arange", "(", "1", ",", "num_seasons", ")", ",", "[", "0", "]", "]", ",", "axis", "=", "0", ")", "seasonal_permutation_matrix", "=", "tf", ".", "constant", "(", "np", ".", "eye", "(", "num_seasons", ")", "[", "seasonal_permutation", "]", ",", "dtype", "=", "dtype", ")", "# Optionally transform the transition matrix into a reparameterized space,", "# enforcing the zero-sum constraint for ConstrainedSeasonalStateSpaceModel.", "if", "basis_change_matrix", "is", "not", "None", ":", "seasonal_permutation_matrix", "=", "tf", ".", "matmul", "(", "basis_change_matrix", ",", "tf", ".", "matmul", "(", "seasonal_permutation_matrix", ",", "basis_change_matrix_inv", ")", ")", "identity_matrix", "=", "tf", ".", "eye", "(", "tf", ".", "shape", "(", "input", "=", "seasonal_permutation_matrix", ")", "[", "-", "1", "]", ",", "dtype", "=", "dtype", ")", "def", "seasonal_transition_matrix", "(", "t", ")", ":", "return", "tf", ".", "linalg", ".", "LinearOperatorFullMatrix", "(", "matrix", "=", "dist_util", ".", "pick_scalar_condition", "(", "is_last_day_of_season", "(", "t", ")", ",", "seasonal_permutation_matrix", ",", "identity_matrix", ")", ")", "return", "seasonal_transition_matrix" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
build_seasonal_transition_noise
Build the transition noise model for a SeasonalStateSpaceModel.
tensorflow_probability/python/sts/seasonal.py
def build_seasonal_transition_noise( drift_scale, num_seasons, is_last_day_of_season): """Build the transition noise model for a SeasonalStateSpaceModel.""" # If the current season has just ended, increase the variance of its effect # following drift_scale. (the just-ended seasonal effect will always be the # bottom element of the vector). Otherwise, do nothing. drift_scale_diag = tf.stack( [tf.zeros_like(drift_scale)] * (num_seasons - 1) + [drift_scale], axis=-1) def seasonal_transition_noise(t): noise_scale_diag = dist_util.pick_scalar_condition( is_last_day_of_season(t), drift_scale_diag, tf.zeros_like(drift_scale_diag)) return tfd.MultivariateNormalDiag( loc=tf.zeros(num_seasons, dtype=drift_scale.dtype), scale_diag=noise_scale_diag) return seasonal_transition_noise
def build_seasonal_transition_noise( drift_scale, num_seasons, is_last_day_of_season): """Build the transition noise model for a SeasonalStateSpaceModel.""" # If the current season has just ended, increase the variance of its effect # following drift_scale. (the just-ended seasonal effect will always be the # bottom element of the vector). Otherwise, do nothing. drift_scale_diag = tf.stack( [tf.zeros_like(drift_scale)] * (num_seasons - 1) + [drift_scale], axis=-1) def seasonal_transition_noise(t): noise_scale_diag = dist_util.pick_scalar_condition( is_last_day_of_season(t), drift_scale_diag, tf.zeros_like(drift_scale_diag)) return tfd.MultivariateNormalDiag( loc=tf.zeros(num_seasons, dtype=drift_scale.dtype), scale_diag=noise_scale_diag) return seasonal_transition_noise
[ "Build", "the", "transition", "noise", "model", "for", "a", "SeasonalStateSpaceModel", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/sts/seasonal.py#L607-L625
[ "def", "build_seasonal_transition_noise", "(", "drift_scale", ",", "num_seasons", ",", "is_last_day_of_season", ")", ":", "# If the current season has just ended, increase the variance of its effect", "# following drift_scale. (the just-ended seasonal effect will always be the", "# bottom element of the vector). Otherwise, do nothing.", "drift_scale_diag", "=", "tf", ".", "stack", "(", "[", "tf", ".", "zeros_like", "(", "drift_scale", ")", "]", "*", "(", "num_seasons", "-", "1", ")", "+", "[", "drift_scale", "]", ",", "axis", "=", "-", "1", ")", "def", "seasonal_transition_noise", "(", "t", ")", ":", "noise_scale_diag", "=", "dist_util", ".", "pick_scalar_condition", "(", "is_last_day_of_season", "(", "t", ")", ",", "drift_scale_diag", ",", "tf", ".", "zeros_like", "(", "drift_scale_diag", ")", ")", "return", "tfd", ".", "MultivariateNormalDiag", "(", "loc", "=", "tf", ".", "zeros", "(", "num_seasons", ",", "dtype", "=", "drift_scale", ".", "dtype", ")", ",", "scale_diag", "=", "noise_scale_diag", ")", "return", "seasonal_transition_noise" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
build_constrained_seasonal_transition_noise
Build transition noise distribution for a ConstrainedSeasonalSSM.
tensorflow_probability/python/sts/seasonal.py
def build_constrained_seasonal_transition_noise( drift_scale, num_seasons, is_last_day_of_season): """Build transition noise distribution for a ConstrainedSeasonalSSM.""" # Conceptually, this method takes the noise covariance on effects L @ L' # computed by `build_seasonal_transition_noise`, with scale factor # L = [ 0, 0, ..., 0 # ... # 0, 0, ..., drift_scale], # and transforms it to act on the constrained-residual representation. # # The resulting noise covariance M @ M' is equivalent to # M @ M' = effects_to_residuals @ LL' @ residuals_to_effects # where `@` is matrix multiplication. However because this matrix is # rank-deficient, we can't take its Cholesky decomposition directly, so we'll # construct its lower-triangular scale factor `M` by hand instead. # # Concretely, let `M = P @ R @ L` be the scale factor in the # transformed space, with matrices `R`, `P` applying the reparameterization # and zero-mean constraint respectively as defined in the # "Mathematical Details" section of `ConstrainedSeasonalStateSpaceModel`. It's # easy to see (*) that the implied covariance # `M @ M' = P @ R @ L @ L' @ R' @ P'` is just the constant matrix # `M @ M' = [ 1, 1, ..., 1, 0 # 1, 1, ..., 1, 0 # ... # 1, 1, ..., 1, 0 # 0, 0, ..., 0, 0] * (drift_scale / num_seasons)**2` # with zeros in the final row and column. So we can directly construct # the lower-triangular factor # `Q = [ 1, 0, ... 0 # 1, 0, ..., 0 # ... # 1, 0, ..., 0 # 0, 0, ..., 0 ] * drift_scale/num_seasons` # such that Q @ Q' = M @ M'. In practice, we don't reify the final row and # column full of zeroes, i.e., we construct # `Q[:num_seasons-1, :num_seasons-1]` as the scale-TriL covariance factor. # # (*) Argument: `L` is zero everywhere but the last column, so `R @ L` will be # too. Since the last column of `R` is the constant `-1/num_seasons`, `R @ L` # is simply the matrix with constant `-drift_scale/num_seasons` in the final # column (except the final row, which is negated) and zero in all other # columns, and `M = P @ R @ L` additionally zeroes out the final row. Then # M @ M' is just the outer product of that final column with itself (since all # other columns are zero), which gives the matrix shown above. drift_scale_tril_nonzeros = tf.concat([ tf.ones([num_seasons - 1, 1], dtype=drift_scale.dtype), tf.zeros([num_seasons - 1, num_seasons - 2], dtype=drift_scale.dtype)], axis=-1) drift_scale_tril = (drift_scale_tril_nonzeros * drift_scale[..., tf.newaxis, tf.newaxis] / num_seasons) # Inject transition noise iff it is the last day of the season. def seasonal_transition_noise(t): noise_scale_tril = dist_util.pick_scalar_condition( is_last_day_of_season(t), drift_scale_tril, tf.zeros_like(drift_scale_tril)) return tfd.MultivariateNormalTriL( loc=tf.zeros(num_seasons-1, dtype=drift_scale.dtype), scale_tril=noise_scale_tril) return seasonal_transition_noise
def build_constrained_seasonal_transition_noise( drift_scale, num_seasons, is_last_day_of_season): """Build transition noise distribution for a ConstrainedSeasonalSSM.""" # Conceptually, this method takes the noise covariance on effects L @ L' # computed by `build_seasonal_transition_noise`, with scale factor # L = [ 0, 0, ..., 0 # ... # 0, 0, ..., drift_scale], # and transforms it to act on the constrained-residual representation. # # The resulting noise covariance M @ M' is equivalent to # M @ M' = effects_to_residuals @ LL' @ residuals_to_effects # where `@` is matrix multiplication. However because this matrix is # rank-deficient, we can't take its Cholesky decomposition directly, so we'll # construct its lower-triangular scale factor `M` by hand instead. # # Concretely, let `M = P @ R @ L` be the scale factor in the # transformed space, with matrices `R`, `P` applying the reparameterization # and zero-mean constraint respectively as defined in the # "Mathematical Details" section of `ConstrainedSeasonalStateSpaceModel`. It's # easy to see (*) that the implied covariance # `M @ M' = P @ R @ L @ L' @ R' @ P'` is just the constant matrix # `M @ M' = [ 1, 1, ..., 1, 0 # 1, 1, ..., 1, 0 # ... # 1, 1, ..., 1, 0 # 0, 0, ..., 0, 0] * (drift_scale / num_seasons)**2` # with zeros in the final row and column. So we can directly construct # the lower-triangular factor # `Q = [ 1, 0, ... 0 # 1, 0, ..., 0 # ... # 1, 0, ..., 0 # 0, 0, ..., 0 ] * drift_scale/num_seasons` # such that Q @ Q' = M @ M'. In practice, we don't reify the final row and # column full of zeroes, i.e., we construct # `Q[:num_seasons-1, :num_seasons-1]` as the scale-TriL covariance factor. # # (*) Argument: `L` is zero everywhere but the last column, so `R @ L` will be # too. Since the last column of `R` is the constant `-1/num_seasons`, `R @ L` # is simply the matrix with constant `-drift_scale/num_seasons` in the final # column (except the final row, which is negated) and zero in all other # columns, and `M = P @ R @ L` additionally zeroes out the final row. Then # M @ M' is just the outer product of that final column with itself (since all # other columns are zero), which gives the matrix shown above. drift_scale_tril_nonzeros = tf.concat([ tf.ones([num_seasons - 1, 1], dtype=drift_scale.dtype), tf.zeros([num_seasons - 1, num_seasons - 2], dtype=drift_scale.dtype)], axis=-1) drift_scale_tril = (drift_scale_tril_nonzeros * drift_scale[..., tf.newaxis, tf.newaxis] / num_seasons) # Inject transition noise iff it is the last day of the season. def seasonal_transition_noise(t): noise_scale_tril = dist_util.pick_scalar_condition( is_last_day_of_season(t), drift_scale_tril, tf.zeros_like(drift_scale_tril)) return tfd.MultivariateNormalTriL( loc=tf.zeros(num_seasons-1, dtype=drift_scale.dtype), scale_tril=noise_scale_tril) return seasonal_transition_noise
[ "Build", "transition", "noise", "distribution", "for", "a", "ConstrainedSeasonalSSM", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/sts/seasonal.py#L628-L691
[ "def", "build_constrained_seasonal_transition_noise", "(", "drift_scale", ",", "num_seasons", ",", "is_last_day_of_season", ")", ":", "# Conceptually, this method takes the noise covariance on effects L @ L'", "# computed by `build_seasonal_transition_noise`, with scale factor", "# L = [ 0, 0, ..., 0", "# ...", "# 0, 0, ..., drift_scale],", "# and transforms it to act on the constrained-residual representation.", "#", "# The resulting noise covariance M @ M' is equivalent to", "# M @ M' = effects_to_residuals @ LL' @ residuals_to_effects", "# where `@` is matrix multiplication. However because this matrix is", "# rank-deficient, we can't take its Cholesky decomposition directly, so we'll", "# construct its lower-triangular scale factor `M` by hand instead.", "#", "# Concretely, let `M = P @ R @ L` be the scale factor in the", "# transformed space, with matrices `R`, `P` applying the reparameterization", "# and zero-mean constraint respectively as defined in the", "# \"Mathematical Details\" section of `ConstrainedSeasonalStateSpaceModel`. It's", "# easy to see (*) that the implied covariance", "# `M @ M' = P @ R @ L @ L' @ R' @ P'` is just the constant matrix", "# `M @ M' = [ 1, 1, ..., 1, 0", "# 1, 1, ..., 1, 0", "# ...", "# 1, 1, ..., 1, 0", "# 0, 0, ..., 0, 0] * (drift_scale / num_seasons)**2`", "# with zeros in the final row and column. So we can directly construct", "# the lower-triangular factor", "# `Q = [ 1, 0, ... 0", "# 1, 0, ..., 0", "# ...", "# 1, 0, ..., 0", "# 0, 0, ..., 0 ] * drift_scale/num_seasons`", "# such that Q @ Q' = M @ M'. In practice, we don't reify the final row and", "# column full of zeroes, i.e., we construct", "# `Q[:num_seasons-1, :num_seasons-1]` as the scale-TriL covariance factor.", "#", "# (*) Argument: `L` is zero everywhere but the last column, so `R @ L` will be", "# too. Since the last column of `R` is the constant `-1/num_seasons`, `R @ L`", "# is simply the matrix with constant `-drift_scale/num_seasons` in the final", "# column (except the final row, which is negated) and zero in all other", "# columns, and `M = P @ R @ L` additionally zeroes out the final row. Then", "# M @ M' is just the outer product of that final column with itself (since all", "# other columns are zero), which gives the matrix shown above.", "drift_scale_tril_nonzeros", "=", "tf", ".", "concat", "(", "[", "tf", ".", "ones", "(", "[", "num_seasons", "-", "1", ",", "1", "]", ",", "dtype", "=", "drift_scale", ".", "dtype", ")", ",", "tf", ".", "zeros", "(", "[", "num_seasons", "-", "1", ",", "num_seasons", "-", "2", "]", ",", "dtype", "=", "drift_scale", ".", "dtype", ")", "]", ",", "axis", "=", "-", "1", ")", "drift_scale_tril", "=", "(", "drift_scale_tril_nonzeros", "*", "drift_scale", "[", "...", ",", "tf", ".", "newaxis", ",", "tf", ".", "newaxis", "]", "/", "num_seasons", ")", "# Inject transition noise iff it is the last day of the season.", "def", "seasonal_transition_noise", "(", "t", ")", ":", "noise_scale_tril", "=", "dist_util", ".", "pick_scalar_condition", "(", "is_last_day_of_season", "(", "t", ")", ",", "drift_scale_tril", ",", "tf", ".", "zeros_like", "(", "drift_scale_tril", ")", ")", "return", "tfd", ".", "MultivariateNormalTriL", "(", "loc", "=", "tf", ".", "zeros", "(", "num_seasons", "-", "1", ",", "dtype", "=", "drift_scale", ".", "dtype", ")", ",", "scale_tril", "=", "noise_scale_tril", ")", "return", "seasonal_transition_noise" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_is_empty_observation_data
Returns `True` if given observation data is empty. Emptiness means either 1. Both `observation_index_points` and `observations` are `None`, or 2. the "number of observations" shape is 0. The shape of `observation_index_points` is `[..., N, f1, ..., fF]`, where `N` is the number of observations and the `f`s are feature dims. Thus, we look at the shape element just to the left of the leftmost feature dim. If that shape is zero, we consider the data empty. We don't check the shape of observations; validations are checked elsewhere in the calling code, to ensure these shapes are consistent. Args: feature_ndims: the number of feature dims, as reported by the GP kernel. observation_index_points: the observation data locations in the index set. observations: the observation data. Returns: is_empty: True if the data were deemed to be empty.
tensorflow_probability/python/distributions/gaussian_process_regression_model.py
def _is_empty_observation_data( feature_ndims, observation_index_points, observations): """Returns `True` if given observation data is empty. Emptiness means either 1. Both `observation_index_points` and `observations` are `None`, or 2. the "number of observations" shape is 0. The shape of `observation_index_points` is `[..., N, f1, ..., fF]`, where `N` is the number of observations and the `f`s are feature dims. Thus, we look at the shape element just to the left of the leftmost feature dim. If that shape is zero, we consider the data empty. We don't check the shape of observations; validations are checked elsewhere in the calling code, to ensure these shapes are consistent. Args: feature_ndims: the number of feature dims, as reported by the GP kernel. observation_index_points: the observation data locations in the index set. observations: the observation data. Returns: is_empty: True if the data were deemed to be empty. """ # If both input locations and observations are `None`, we consider this # "empty" observation data. if observation_index_points is None and observations is None: return True num_obs = tf.compat.dimension_value( observation_index_points.shape[-(feature_ndims + 1)]) if num_obs is not None and num_obs == 0: return True return False
def _is_empty_observation_data( feature_ndims, observation_index_points, observations): """Returns `True` if given observation data is empty. Emptiness means either 1. Both `observation_index_points` and `observations` are `None`, or 2. the "number of observations" shape is 0. The shape of `observation_index_points` is `[..., N, f1, ..., fF]`, where `N` is the number of observations and the `f`s are feature dims. Thus, we look at the shape element just to the left of the leftmost feature dim. If that shape is zero, we consider the data empty. We don't check the shape of observations; validations are checked elsewhere in the calling code, to ensure these shapes are consistent. Args: feature_ndims: the number of feature dims, as reported by the GP kernel. observation_index_points: the observation data locations in the index set. observations: the observation data. Returns: is_empty: True if the data were deemed to be empty. """ # If both input locations and observations are `None`, we consider this # "empty" observation data. if observation_index_points is None and observations is None: return True num_obs = tf.compat.dimension_value( observation_index_points.shape[-(feature_ndims + 1)]) if num_obs is not None and num_obs == 0: return True return False
[ "Returns", "True", "if", "given", "observation", "data", "is", "empty", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/gaussian_process_regression_model.py#L39-L70
[ "def", "_is_empty_observation_data", "(", "feature_ndims", ",", "observation_index_points", ",", "observations", ")", ":", "# If both input locations and observations are `None`, we consider this", "# \"empty\" observation data.", "if", "observation_index_points", "is", "None", "and", "observations", "is", "None", ":", "return", "True", "num_obs", "=", "tf", ".", "compat", ".", "dimension_value", "(", "observation_index_points", ".", "shape", "[", "-", "(", "feature_ndims", "+", "1", ")", "]", ")", "if", "num_obs", "is", "not", "None", "and", "num_obs", "==", "0", ":", "return", "True", "return", "False" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_validate_observation_data
Ensure that observation data and locations have consistent shapes. This basically means that the batch shapes are broadcastable. We can only ensure this when those shapes are fully statically defined. Args: kernel: The GP kernel. observation_index_points: the observation data locations in the index set. observations: the observation data. Raises: ValueError: if the observations' batch shapes are not broadcastable.
tensorflow_probability/python/distributions/gaussian_process_regression_model.py
def _validate_observation_data( kernel, observation_index_points, observations): """Ensure that observation data and locations have consistent shapes. This basically means that the batch shapes are broadcastable. We can only ensure this when those shapes are fully statically defined. Args: kernel: The GP kernel. observation_index_points: the observation data locations in the index set. observations: the observation data. Raises: ValueError: if the observations' batch shapes are not broadcastable. """ # Check that observation index points and observation counts broadcast. ndims = kernel.feature_ndims if (tensorshape_util.is_fully_defined( observation_index_points.shape[:-ndims]) and tensorshape_util.is_fully_defined(observations.shape)): index_point_count = observation_index_points.shape[:-ndims] observation_count = observations.shape try: tf.broadcast_static_shape(index_point_count, observation_count) except ValueError: # Re-raise with our own more contextual error message. raise ValueError( 'Observation index point and observation counts are not ' 'broadcastable: {} and {}, respectively.'.format( index_point_count, observation_count))
def _validate_observation_data( kernel, observation_index_points, observations): """Ensure that observation data and locations have consistent shapes. This basically means that the batch shapes are broadcastable. We can only ensure this when those shapes are fully statically defined. Args: kernel: The GP kernel. observation_index_points: the observation data locations in the index set. observations: the observation data. Raises: ValueError: if the observations' batch shapes are not broadcastable. """ # Check that observation index points and observation counts broadcast. ndims = kernel.feature_ndims if (tensorshape_util.is_fully_defined( observation_index_points.shape[:-ndims]) and tensorshape_util.is_fully_defined(observations.shape)): index_point_count = observation_index_points.shape[:-ndims] observation_count = observations.shape try: tf.broadcast_static_shape(index_point_count, observation_count) except ValueError: # Re-raise with our own more contextual error message. raise ValueError( 'Observation index point and observation counts are not ' 'broadcastable: {} and {}, respectively.'.format( index_point_count, observation_count))
[ "Ensure", "that", "observation", "data", "and", "locations", "have", "consistent", "shapes", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/gaussian_process_regression_model.py#L73-L103
[ "def", "_validate_observation_data", "(", "kernel", ",", "observation_index_points", ",", "observations", ")", ":", "# Check that observation index points and observation counts broadcast.", "ndims", "=", "kernel", ".", "feature_ndims", "if", "(", "tensorshape_util", ".", "is_fully_defined", "(", "observation_index_points", ".", "shape", "[", ":", "-", "ndims", "]", ")", "and", "tensorshape_util", ".", "is_fully_defined", "(", "observations", ".", "shape", ")", ")", ":", "index_point_count", "=", "observation_index_points", ".", "shape", "[", ":", "-", "ndims", "]", "observation_count", "=", "observations", ".", "shape", "try", ":", "tf", ".", "broadcast_static_shape", "(", "index_point_count", ",", "observation_count", ")", "except", "ValueError", ":", "# Re-raise with our own more contextual error message.", "raise", "ValueError", "(", "'Observation index point and observation counts are not '", "'broadcastable: {} and {}, respectively.'", ".", "format", "(", "index_point_count", ",", "observation_count", ")", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_kl_gamma_gamma
Calculate the batched KL divergence KL(g0 || g1) with g0 and g1 Gamma. Args: g0: instance of a Gamma distribution object. g1: instance of a Gamma distribution object. name: (optional) Name to use for created operations. Default is "kl_gamma_gamma". Returns: kl_gamma_gamma: `Tensor`. The batchwise KL(g0 || g1).
tensorflow_probability/python/distributions/gamma.py
def _kl_gamma_gamma(g0, g1, name=None): """Calculate the batched KL divergence KL(g0 || g1) with g0 and g1 Gamma. Args: g0: instance of a Gamma distribution object. g1: instance of a Gamma distribution object. name: (optional) Name to use for created operations. Default is "kl_gamma_gamma". Returns: kl_gamma_gamma: `Tensor`. The batchwise KL(g0 || g1). """ with tf.name_scope(name or "kl_gamma_gamma"): # Result from: # http://www.fil.ion.ucl.ac.uk/~wpenny/publications/densities.ps # For derivation see: # http://stats.stackexchange.com/questions/11646/kullback-leibler-divergence-between-two-gamma-distributions pylint: disable=line-too-long return (((g0.concentration - g1.concentration) * tf.math.digamma(g0.concentration)) + tf.math.lgamma(g1.concentration) - tf.math.lgamma(g0.concentration) + g1.concentration * tf.math.log(g0.rate) - g1.concentration * tf.math.log(g1.rate) + g0.concentration * (g1.rate / g0.rate - 1.))
def _kl_gamma_gamma(g0, g1, name=None): """Calculate the batched KL divergence KL(g0 || g1) with g0 and g1 Gamma. Args: g0: instance of a Gamma distribution object. g1: instance of a Gamma distribution object. name: (optional) Name to use for created operations. Default is "kl_gamma_gamma". Returns: kl_gamma_gamma: `Tensor`. The batchwise KL(g0 || g1). """ with tf.name_scope(name or "kl_gamma_gamma"): # Result from: # http://www.fil.ion.ucl.ac.uk/~wpenny/publications/densities.ps # For derivation see: # http://stats.stackexchange.com/questions/11646/kullback-leibler-divergence-between-two-gamma-distributions pylint: disable=line-too-long return (((g0.concentration - g1.concentration) * tf.math.digamma(g0.concentration)) + tf.math.lgamma(g1.concentration) - tf.math.lgamma(g0.concentration) + g1.concentration * tf.math.log(g0.rate) - g1.concentration * tf.math.log(g1.rate) + g0.concentration * (g1.rate / g0.rate - 1.))
[ "Calculate", "the", "batched", "KL", "divergence", "KL", "(", "g0", "||", "g1", ")", "with", "g0", "and", "g1", "Gamma", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/gamma.py#L273-L296
[ "def", "_kl_gamma_gamma", "(", "g0", ",", "g1", ",", "name", "=", "None", ")", ":", "with", "tf", ".", "name_scope", "(", "name", "or", "\"kl_gamma_gamma\"", ")", ":", "# Result from:", "# http://www.fil.ion.ucl.ac.uk/~wpenny/publications/densities.ps", "# For derivation see:", "# http://stats.stackexchange.com/questions/11646/kullback-leibler-divergence-between-two-gamma-distributions pylint: disable=line-too-long", "return", "(", "(", "(", "g0", ".", "concentration", "-", "g1", ".", "concentration", ")", "*", "tf", ".", "math", ".", "digamma", "(", "g0", ".", "concentration", ")", ")", "+", "tf", ".", "math", ".", "lgamma", "(", "g1", ".", "concentration", ")", "-", "tf", ".", "math", ".", "lgamma", "(", "g0", ".", "concentration", ")", "+", "g1", ".", "concentration", "*", "tf", ".", "math", ".", "log", "(", "g0", ".", "rate", ")", "-", "g1", ".", "concentration", "*", "tf", ".", "math", ".", "log", "(", "g1", ".", "rate", ")", "+", "g0", ".", "concentration", "*", "(", "g1", ".", "rate", "/", "g0", ".", "rate", "-", "1.", ")", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
SequentialSchedule.add
Add a learning rate scheduler to the contained `schedules` :param scheduler: learning rate scheduler to be add :param max_iteration: iteration numbers this scheduler will run
pyspark/bigdl/optim/optimizer.py
def add(self, scheduler, max_iteration, bigdl_type="float"): """ Add a learning rate scheduler to the contained `schedules` :param scheduler: learning rate scheduler to be add :param max_iteration: iteration numbers this scheduler will run """ return callBigDlFunc(bigdl_type, "addScheduler", self.value, scheduler, max_iteration)
def add(self, scheduler, max_iteration, bigdl_type="float"): """ Add a learning rate scheduler to the contained `schedules` :param scheduler: learning rate scheduler to be add :param max_iteration: iteration numbers this scheduler will run """ return callBigDlFunc(bigdl_type, "addScheduler", self.value, scheduler, max_iteration)
[ "Add", "a", "learning", "rate", "scheduler", "to", "the", "contained", "schedules" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/optim/optimizer.py#L425-L432
[ "def", "add", "(", "self", ",", "scheduler", ",", "max_iteration", ",", "bigdl_type", "=", "\"float\"", ")", ":", "return", "callBigDlFunc", "(", "bigdl_type", ",", "\"addScheduler\"", ",", "self", ".", "value", ",", "scheduler", ",", "max_iteration", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
OptimMethod.save
save OptimMethod :param path path :param overWrite whether to overwrite
pyspark/bigdl/optim/optimizer.py
def save(self, path, overWrite): """ save OptimMethod :param path path :param overWrite whether to overwrite """ method=self.value return callBigDlFunc(self.bigdl_type, "saveOptimMethod", method, path, overWrite)
def save(self, path, overWrite): """ save OptimMethod :param path path :param overWrite whether to overwrite """ method=self.value return callBigDlFunc(self.bigdl_type, "saveOptimMethod", method, path, overWrite)
[ "save", "OptimMethod", ":", "param", "path", "path", ":", "param", "overWrite", "whether", "to", "overwrite" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/optim/optimizer.py#L453-L460
[ "def", "save", "(", "self", ",", "path", ",", "overWrite", ")", ":", "method", "=", "self", ".", "value", "return", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"saveOptimMethod\"", ",", "method", ",", "path", ",", "overWrite", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
BaseOptimizer.set_checkpoint
Configure checkpoint settings. :param checkpoint_trigger: the interval to write snapshots :param checkpoint_path: the path to write snapshots into :param isOverWrite: whether to overwrite existing snapshots in path.default is True
pyspark/bigdl/optim/optimizer.py
def set_checkpoint(self, checkpoint_trigger, checkpoint_path, isOverWrite=True): """ Configure checkpoint settings. :param checkpoint_trigger: the interval to write snapshots :param checkpoint_path: the path to write snapshots into :param isOverWrite: whether to overwrite existing snapshots in path.default is True """ if not os.path.exists(checkpoint_path): mkpath(checkpoint_path) callBigDlFunc(self.bigdl_type, "setCheckPoint", self.value, checkpoint_trigger, checkpoint_path, isOverWrite)
def set_checkpoint(self, checkpoint_trigger, checkpoint_path, isOverWrite=True): """ Configure checkpoint settings. :param checkpoint_trigger: the interval to write snapshots :param checkpoint_path: the path to write snapshots into :param isOverWrite: whether to overwrite existing snapshots in path.default is True """ if not os.path.exists(checkpoint_path): mkpath(checkpoint_path) callBigDlFunc(self.bigdl_type, "setCheckPoint", self.value, checkpoint_trigger, checkpoint_path, isOverWrite)
[ "Configure", "checkpoint", "settings", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/optim/optimizer.py#L719-L732
[ "def", "set_checkpoint", "(", "self", ",", "checkpoint_trigger", ",", "checkpoint_path", ",", "isOverWrite", "=", "True", ")", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "checkpoint_path", ")", ":", "mkpath", "(", "checkpoint_path", ")", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"setCheckPoint\"", ",", "self", ".", "value", ",", "checkpoint_trigger", ",", "checkpoint_path", ",", "isOverWrite", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
BaseOptimizer.set_gradclip_const
Configure constant clipping settings. :param min_value: the minimum value to clip by :param max_value: the maxmimum value to clip by
pyspark/bigdl/optim/optimizer.py
def set_gradclip_const(self, min_value, max_value): """ Configure constant clipping settings. :param min_value: the minimum value to clip by :param max_value: the maxmimum value to clip by """ callBigDlFunc(self.bigdl_type, "setConstantClip", self.value, min_value, max_value)
def set_gradclip_const(self, min_value, max_value): """ Configure constant clipping settings. :param min_value: the minimum value to clip by :param max_value: the maxmimum value to clip by """ callBigDlFunc(self.bigdl_type, "setConstantClip", self.value, min_value, max_value)
[ "Configure", "constant", "clipping", "settings", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/optim/optimizer.py#L734-L742
[ "def", "set_gradclip_const", "(", "self", ",", "min_value", ",", "max_value", ")", ":", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"setConstantClip\"", ",", "self", ".", "value", ",", "min_value", ",", "max_value", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
BaseOptimizer.optimize
Do an optimization.
pyspark/bigdl/optim/optimizer.py
def optimize(self): """ Do an optimization. """ jmodel = callJavaFunc(self.value.optimize) from bigdl.nn.layer import Layer return Layer.of(jmodel)
def optimize(self): """ Do an optimization. """ jmodel = callJavaFunc(self.value.optimize) from bigdl.nn.layer import Layer return Layer.of(jmodel)
[ "Do", "an", "optimization", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/optim/optimizer.py#L760-L766
[ "def", "optimize", "(", "self", ")", ":", "jmodel", "=", "callJavaFunc", "(", "self", ".", "value", ".", "optimize", ")", "from", "bigdl", ".", "nn", ".", "layer", "import", "Layer", "return", "Layer", ".", "of", "(", "jmodel", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
BaseOptimizer.set_train_summary
Set train summary. A TrainSummary object contains information necessary for the optimizer to know how often the logs are recorded, where to store the logs and how to retrieve them, etc. For details, refer to the docs of TrainSummary. :param summary: a TrainSummary object
pyspark/bigdl/optim/optimizer.py
def set_train_summary(self, summary): """ Set train summary. A TrainSummary object contains information necessary for the optimizer to know how often the logs are recorded, where to store the logs and how to retrieve them, etc. For details, refer to the docs of TrainSummary. :param summary: a TrainSummary object """ callBigDlFunc(self.bigdl_type, "setTrainSummary", self.value, summary) return self
def set_train_summary(self, summary): """ Set train summary. A TrainSummary object contains information necessary for the optimizer to know how often the logs are recorded, where to store the logs and how to retrieve them, etc. For details, refer to the docs of TrainSummary. :param summary: a TrainSummary object """ callBigDlFunc(self.bigdl_type, "setTrainSummary", self.value, summary) return self
[ "Set", "train", "summary", ".", "A", "TrainSummary", "object", "contains", "information", "necessary", "for", "the", "optimizer", "to", "know", "how", "often", "the", "logs", "are", "recorded", "where", "to", "store", "the", "logs", "and", "how", "to", "retrieve", "them", "etc", ".", "For", "details", "refer", "to", "the", "docs", "of", "TrainSummary", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/optim/optimizer.py#L768-L780
[ "def", "set_train_summary", "(", "self", ",", "summary", ")", ":", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"setTrainSummary\"", ",", "self", ".", "value", ",", "summary", ")", "return", "self" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
BaseOptimizer.set_val_summary
Set validation summary. A ValidationSummary object contains information necessary for the optimizer to know how often the logs are recorded, where to store the logs and how to retrieve them, etc. For details, refer to the docs of ValidationSummary. :param summary: a ValidationSummary object
pyspark/bigdl/optim/optimizer.py
def set_val_summary(self, summary): """ Set validation summary. A ValidationSummary object contains information necessary for the optimizer to know how often the logs are recorded, where to store the logs and how to retrieve them, etc. For details, refer to the docs of ValidationSummary. :param summary: a ValidationSummary object """ callBigDlFunc(self.bigdl_type, "setValSummary", self.value, summary) return self
def set_val_summary(self, summary): """ Set validation summary. A ValidationSummary object contains information necessary for the optimizer to know how often the logs are recorded, where to store the logs and how to retrieve them, etc. For details, refer to the docs of ValidationSummary. :param summary: a ValidationSummary object """ callBigDlFunc(self.bigdl_type, "setValSummary", self.value, summary) return self
[ "Set", "validation", "summary", ".", "A", "ValidationSummary", "object", "contains", "information", "necessary", "for", "the", "optimizer", "to", "know", "how", "often", "the", "logs", "are", "recorded", "where", "to", "store", "the", "logs", "and", "how", "to", "retrieve", "them", "etc", ".", "For", "details", "refer", "to", "the", "docs", "of", "ValidationSummary", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/optim/optimizer.py#L782-L796
[ "def", "set_val_summary", "(", "self", ",", "summary", ")", ":", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"setValSummary\"", ",", "self", ".", "value", ",", "summary", ")", "return", "self" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Optimizer.create
Create an optimizer. Depend on the input type, the returning optimizer can be a local optimizer \ or a distributed optimizer. :param model: the neural net model :param training_set: (features, label) for local mode. RDD[Sample] for distributed mode. :param criterion: the loss function :param optim_method: the algorithm to use for optimization, e.g. SGD, Adagrad, etc. If optim_method is None, the default algorithm is SGD. :param end_trigger: when to end the optimization. default value is MapEpoch(1) :param batch_size: training batch size :param cores: This is for local optimizer only and use total physical cores as the default value
pyspark/bigdl/optim/optimizer.py
def create(model, training_set, criterion, end_trigger=None, batch_size=32, optim_method=None, cores=None, bigdl_type="float"): """ Create an optimizer. Depend on the input type, the returning optimizer can be a local optimizer \ or a distributed optimizer. :param model: the neural net model :param training_set: (features, label) for local mode. RDD[Sample] for distributed mode. :param criterion: the loss function :param optim_method: the algorithm to use for optimization, e.g. SGD, Adagrad, etc. If optim_method is None, the default algorithm is SGD. :param end_trigger: when to end the optimization. default value is MapEpoch(1) :param batch_size: training batch size :param cores: This is for local optimizer only and use total physical cores as the default value """ if not end_trigger: end_trigger = MaxEpoch(1) if not optim_method: optim_method = SGD() if isinstance(training_set, RDD) or isinstance(training_set, DataSet): return DistriOptimizer(model=model, training_rdd=training_set, criterion=criterion, end_trigger=end_trigger, batch_size=batch_size, optim_method=optim_method, bigdl_type=bigdl_type) elif isinstance(training_set, tuple) and len(training_set) == 2: x, y = training_set return LocalOptimizer(X=x, Y=y, model=model, criterion=criterion, end_trigger=end_trigger, batch_size=batch_size, optim_method=optim_method, cores=cores, bigdl_type="float") else: raise Exception("Not supported training set: %s" % type(training_set))
def create(model, training_set, criterion, end_trigger=None, batch_size=32, optim_method=None, cores=None, bigdl_type="float"): """ Create an optimizer. Depend on the input type, the returning optimizer can be a local optimizer \ or a distributed optimizer. :param model: the neural net model :param training_set: (features, label) for local mode. RDD[Sample] for distributed mode. :param criterion: the loss function :param optim_method: the algorithm to use for optimization, e.g. SGD, Adagrad, etc. If optim_method is None, the default algorithm is SGD. :param end_trigger: when to end the optimization. default value is MapEpoch(1) :param batch_size: training batch size :param cores: This is for local optimizer only and use total physical cores as the default value """ if not end_trigger: end_trigger = MaxEpoch(1) if not optim_method: optim_method = SGD() if isinstance(training_set, RDD) or isinstance(training_set, DataSet): return DistriOptimizer(model=model, training_rdd=training_set, criterion=criterion, end_trigger=end_trigger, batch_size=batch_size, optim_method=optim_method, bigdl_type=bigdl_type) elif isinstance(training_set, tuple) and len(training_set) == 2: x, y = training_set return LocalOptimizer(X=x, Y=y, model=model, criterion=criterion, end_trigger=end_trigger, batch_size=batch_size, optim_method=optim_method, cores=cores, bigdl_type="float") else: raise Exception("Not supported training set: %s" % type(training_set))
[ "Create", "an", "optimizer", ".", "Depend", "on", "the", "input", "type", "the", "returning", "optimizer", "can", "be", "a", "local", "optimizer", "\\", "or", "a", "distributed", "optimizer", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/optim/optimizer.py#L848-L894
[ "def", "create", "(", "model", ",", "training_set", ",", "criterion", ",", "end_trigger", "=", "None", ",", "batch_size", "=", "32", ",", "optim_method", "=", "None", ",", "cores", "=", "None", ",", "bigdl_type", "=", "\"float\"", ")", ":", "if", "not", "end_trigger", ":", "end_trigger", "=", "MaxEpoch", "(", "1", ")", "if", "not", "optim_method", ":", "optim_method", "=", "SGD", "(", ")", "if", "isinstance", "(", "training_set", ",", "RDD", ")", "or", "isinstance", "(", "training_set", ",", "DataSet", ")", ":", "return", "DistriOptimizer", "(", "model", "=", "model", ",", "training_rdd", "=", "training_set", ",", "criterion", "=", "criterion", ",", "end_trigger", "=", "end_trigger", ",", "batch_size", "=", "batch_size", ",", "optim_method", "=", "optim_method", ",", "bigdl_type", "=", "bigdl_type", ")", "elif", "isinstance", "(", "training_set", ",", "tuple", ")", "and", "len", "(", "training_set", ")", "==", "2", ":", "x", ",", "y", "=", "training_set", "return", "LocalOptimizer", "(", "X", "=", "x", ",", "Y", "=", "y", ",", "model", "=", "model", ",", "criterion", "=", "criterion", ",", "end_trigger", "=", "end_trigger", ",", "batch_size", "=", "batch_size", ",", "optim_method", "=", "optim_method", ",", "cores", "=", "cores", ",", "bigdl_type", "=", "\"float\"", ")", "else", ":", "raise", "Exception", "(", "\"Not supported training set: %s\"", "%", "type", "(", "training_set", ")", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Optimizer.set_validation
Configure validation settings. :param batch_size: validation batch size :param val_rdd: validation dataset :param trigger: validation interval :param val_method: the ValidationMethod to use,e.g. "Top1Accuracy", "Top5Accuracy", "Loss"
pyspark/bigdl/optim/optimizer.py
def set_validation(self, batch_size, val_rdd, trigger, val_method=None): """ Configure validation settings. :param batch_size: validation batch size :param val_rdd: validation dataset :param trigger: validation interval :param val_method: the ValidationMethod to use,e.g. "Top1Accuracy", "Top5Accuracy", "Loss" """ if val_method is None: val_method = [Top1Accuracy()] func_name = "setValidation" if isinstance(val_rdd, DataSet): func_name = "setValidationFromDataSet" callBigDlFunc(self.bigdl_type, func_name, self.value, batch_size, trigger, val_rdd, to_list(val_method))
def set_validation(self, batch_size, val_rdd, trigger, val_method=None): """ Configure validation settings. :param batch_size: validation batch size :param val_rdd: validation dataset :param trigger: validation interval :param val_method: the ValidationMethod to use,e.g. "Top1Accuracy", "Top5Accuracy", "Loss" """ if val_method is None: val_method = [Top1Accuracy()] func_name = "setValidation" if isinstance(val_rdd, DataSet): func_name = "setValidationFromDataSet" callBigDlFunc(self.bigdl_type, func_name, self.value, batch_size, trigger, val_rdd, to_list(val_method))
[ "Configure", "validation", "settings", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/optim/optimizer.py#L896-L912
[ "def", "set_validation", "(", "self", ",", "batch_size", ",", "val_rdd", ",", "trigger", ",", "val_method", "=", "None", ")", ":", "if", "val_method", "is", "None", ":", "val_method", "=", "[", "Top1Accuracy", "(", ")", "]", "func_name", "=", "\"setValidation\"", "if", "isinstance", "(", "val_rdd", ",", "DataSet", ")", ":", "func_name", "=", "\"setValidationFromDataSet\"", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "func_name", ",", "self", ".", "value", ",", "batch_size", ",", "trigger", ",", "val_rdd", ",", "to_list", "(", "val_method", ")", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Optimizer.set_traindata
Set new training dataset, for optimizer reuse :param training_rdd: the training dataset :param batch_size: training batch size :return:
pyspark/bigdl/optim/optimizer.py
def set_traindata(self, training_rdd, batch_size): """ Set new training dataset, for optimizer reuse :param training_rdd: the training dataset :param batch_size: training batch size :return: """ callBigDlFunc(self.bigdl_type, "setTrainData", self.value, training_rdd, batch_size)
def set_traindata(self, training_rdd, batch_size): """ Set new training dataset, for optimizer reuse :param training_rdd: the training dataset :param batch_size: training batch size :return: """ callBigDlFunc(self.bigdl_type, "setTrainData", self.value, training_rdd, batch_size)
[ "Set", "new", "training", "dataset", "for", "optimizer", "reuse" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/optim/optimizer.py#L914-L923
[ "def", "set_traindata", "(", "self", ",", "training_rdd", ",", "batch_size", ")", ":", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"setTrainData\"", ",", "self", ".", "value", ",", "training_rdd", ",", "batch_size", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
LocalOptimizer.set_validation
Configure validation settings. :param batch_size: validation batch size :param X_val: features of validation dataset :param Y_val: label of validation dataset :param trigger: validation interval :param val_method: the ValidationMethod to use,e.g. "Top1Accuracy", "Top5Accuracy", "Loss"
pyspark/bigdl/optim/optimizer.py
def set_validation(self, batch_size, X_val, Y_val, trigger, val_method=None): """ Configure validation settings. :param batch_size: validation batch size :param X_val: features of validation dataset :param Y_val: label of validation dataset :param trigger: validation interval :param val_method: the ValidationMethod to use,e.g. "Top1Accuracy", "Top5Accuracy", "Loss" """ if val_method is None: val_method = [Top1Accuracy()] callBigDlFunc(self.bigdl_type, "setValidation", self.value, batch_size, trigger, [JTensor.from_ndarray(X) for X in to_list(X_val)], JTensor.from_ndarray(Y_val), to_list(val_method))
def set_validation(self, batch_size, X_val, Y_val, trigger, val_method=None): """ Configure validation settings. :param batch_size: validation batch size :param X_val: features of validation dataset :param Y_val: label of validation dataset :param trigger: validation interval :param val_method: the ValidationMethod to use,e.g. "Top1Accuracy", "Top5Accuracy", "Loss" """ if val_method is None: val_method = [Top1Accuracy()] callBigDlFunc(self.bigdl_type, "setValidation", self.value, batch_size, trigger, [JTensor.from_ndarray(X) for X in to_list(X_val)], JTensor.from_ndarray(Y_val), to_list(val_method))
[ "Configure", "validation", "settings", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/optim/optimizer.py#L1009-L1023
[ "def", "set_validation", "(", "self", ",", "batch_size", ",", "X_val", ",", "Y_val", ",", "trigger", ",", "val_method", "=", "None", ")", ":", "if", "val_method", "is", "None", ":", "val_method", "=", "[", "Top1Accuracy", "(", ")", "]", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"setValidation\"", ",", "self", ".", "value", ",", "batch_size", ",", "trigger", ",", "[", "JTensor", ".", "from_ndarray", "(", "X", ")", "for", "X", "in", "to_list", "(", "X_val", ")", "]", ",", "JTensor", ".", "from_ndarray", "(", "Y_val", ")", ",", "to_list", "(", "val_method", ")", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
TrainSummary.set_summary_trigger
Set the interval of recording for each indicator. :param tag: tag name. Supported tag names are "LearningRate", "Loss","Throughput", "Parameters". "Parameters" is an umbrella tag thatincludes weight, bias, gradWeight, gradBias, and some running status(eg. runningMean and runningVar in BatchNormalization). If youdidn't set any triggers, we will by default record Loss and Throughputin each iteration, while *NOT* recording LearningRate and Parameters,as recording parameters may introduce substantial overhead when themodel is very big, LearningRate is not a public attribute for allOptimMethod. :param trigger: trigger
pyspark/bigdl/optim/optimizer.py
def set_summary_trigger(self, name, trigger): """ Set the interval of recording for each indicator. :param tag: tag name. Supported tag names are "LearningRate", "Loss","Throughput", "Parameters". "Parameters" is an umbrella tag thatincludes weight, bias, gradWeight, gradBias, and some running status(eg. runningMean and runningVar in BatchNormalization). If youdidn't set any triggers, we will by default record Loss and Throughputin each iteration, while *NOT* recording LearningRate and Parameters,as recording parameters may introduce substantial overhead when themodel is very big, LearningRate is not a public attribute for allOptimMethod. :param trigger: trigger """ return callBigDlFunc(self.bigdl_type, "summarySetTrigger", self.value, name, trigger)
def set_summary_trigger(self, name, trigger): """ Set the interval of recording for each indicator. :param tag: tag name. Supported tag names are "LearningRate", "Loss","Throughput", "Parameters". "Parameters" is an umbrella tag thatincludes weight, bias, gradWeight, gradBias, and some running status(eg. runningMean and runningVar in BatchNormalization). If youdidn't set any triggers, we will by default record Loss and Throughputin each iteration, while *NOT* recording LearningRate and Parameters,as recording parameters may introduce substantial overhead when themodel is very big, LearningRate is not a public attribute for allOptimMethod. :param trigger: trigger """ return callBigDlFunc(self.bigdl_type, "summarySetTrigger", self.value, name, trigger)
[ "Set", "the", "interval", "of", "recording", "for", "each", "indicator", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/optim/optimizer.py#L1062-L1071
[ "def", "set_summary_trigger", "(", "self", ",", "name", ",", "trigger", ")", ":", "return", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"summarySetTrigger\"", ",", "self", ".", "value", ",", "name", ",", "trigger", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
read_data_sets
Parse or download mnist data if train_dir is empty. :param: train_dir: The directory storing the mnist data :param: data_type: Reading training set or testing set.It can be either "train" or "test" :return: ``` (ndarray, ndarray) representing (features, labels) features is a 4D unit8 numpy array [index, y, x, depth] representing each pixel valued from 0 to 255. labels is 1D unit8 nunpy array representing the label valued from 0 to 9. ```
pyspark/bigdl/dataset/mnist.py
def read_data_sets(train_dir, data_type="train"): """ Parse or download mnist data if train_dir is empty. :param: train_dir: The directory storing the mnist data :param: data_type: Reading training set or testing set.It can be either "train" or "test" :return: ``` (ndarray, ndarray) representing (features, labels) features is a 4D unit8 numpy array [index, y, x, depth] representing each pixel valued from 0 to 255. labels is 1D unit8 nunpy array representing the label valued from 0 to 9. ``` """ TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' TEST_IMAGES = 't10k-images-idx3-ubyte.gz' TEST_LABELS = 't10k-labels-idx1-ubyte.gz' if data_type == "train": local_file = base.maybe_download(TRAIN_IMAGES, train_dir, SOURCE_URL + TRAIN_IMAGES) with open(local_file, 'rb') as f: train_images = extract_images(f) local_file = base.maybe_download(TRAIN_LABELS, train_dir, SOURCE_URL + TRAIN_LABELS) with open(local_file, 'rb') as f: train_labels = extract_labels(f) return train_images, train_labels else: local_file = base.maybe_download(TEST_IMAGES, train_dir, SOURCE_URL + TEST_IMAGES) with open(local_file, 'rb') as f: test_images = extract_images(f) local_file = base.maybe_download(TEST_LABELS, train_dir, SOURCE_URL + TEST_LABELS) with open(local_file, 'rb') as f: test_labels = extract_labels(f) return test_images, test_labels
def read_data_sets(train_dir, data_type="train"): """ Parse or download mnist data if train_dir is empty. :param: train_dir: The directory storing the mnist data :param: data_type: Reading training set or testing set.It can be either "train" or "test" :return: ``` (ndarray, ndarray) representing (features, labels) features is a 4D unit8 numpy array [index, y, x, depth] representing each pixel valued from 0 to 255. labels is 1D unit8 nunpy array representing the label valued from 0 to 9. ``` """ TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' TEST_IMAGES = 't10k-images-idx3-ubyte.gz' TEST_LABELS = 't10k-labels-idx1-ubyte.gz' if data_type == "train": local_file = base.maybe_download(TRAIN_IMAGES, train_dir, SOURCE_URL + TRAIN_IMAGES) with open(local_file, 'rb') as f: train_images = extract_images(f) local_file = base.maybe_download(TRAIN_LABELS, train_dir, SOURCE_URL + TRAIN_LABELS) with open(local_file, 'rb') as f: train_labels = extract_labels(f) return train_images, train_labels else: local_file = base.maybe_download(TEST_IMAGES, train_dir, SOURCE_URL + TEST_IMAGES) with open(local_file, 'rb') as f: test_images = extract_images(f) local_file = base.maybe_download(TEST_LABELS, train_dir, SOURCE_URL + TEST_LABELS) with open(local_file, 'rb') as f: test_labels = extract_labels(f) return test_images, test_labels
[ "Parse", "or", "download", "mnist", "data", "if", "train_dir", "is", "empty", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/dataset/mnist.py#L77-L121
[ "def", "read_data_sets", "(", "train_dir", ",", "data_type", "=", "\"train\"", ")", ":", "TRAIN_IMAGES", "=", "'train-images-idx3-ubyte.gz'", "TRAIN_LABELS", "=", "'train-labels-idx1-ubyte.gz'", "TEST_IMAGES", "=", "'t10k-images-idx3-ubyte.gz'", "TEST_LABELS", "=", "'t10k-labels-idx1-ubyte.gz'", "if", "data_type", "==", "\"train\"", ":", "local_file", "=", "base", ".", "maybe_download", "(", "TRAIN_IMAGES", ",", "train_dir", ",", "SOURCE_URL", "+", "TRAIN_IMAGES", ")", "with", "open", "(", "local_file", ",", "'rb'", ")", "as", "f", ":", "train_images", "=", "extract_images", "(", "f", ")", "local_file", "=", "base", ".", "maybe_download", "(", "TRAIN_LABELS", ",", "train_dir", ",", "SOURCE_URL", "+", "TRAIN_LABELS", ")", "with", "open", "(", "local_file", ",", "'rb'", ")", "as", "f", ":", "train_labels", "=", "extract_labels", "(", "f", ")", "return", "train_images", ",", "train_labels", "else", ":", "local_file", "=", "base", ".", "maybe_download", "(", "TEST_IMAGES", ",", "train_dir", ",", "SOURCE_URL", "+", "TEST_IMAGES", ")", "with", "open", "(", "local_file", ",", "'rb'", ")", "as", "f", ":", "test_images", "=", "extract_images", "(", "f", ")", "local_file", "=", "base", ".", "maybe_download", "(", "TEST_LABELS", ",", "train_dir", ",", "SOURCE_URL", "+", "TEST_LABELS", ")", "with", "open", "(", "local_file", ",", "'rb'", ")", "as", "f", ":", "test_labels", "=", "extract_labels", "(", "f", ")", "return", "test_images", ",", "test_labels" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
get_news20
Parse or download news20 if source_dir is empty. :param source_dir: The directory storing news data. :return: A list of (tokens, label)
pyspark/bigdl/dataset/news20.py
def get_news20(source_dir="./data/news20/"): """ Parse or download news20 if source_dir is empty. :param source_dir: The directory storing news data. :return: A list of (tokens, label) """ news_dir = download_news20(source_dir) texts = [] # list of text samples label_id = 0 for name in sorted(os.listdir(news_dir)): path = os.path.join(news_dir, name) label_id += 1 if os.path.isdir(path): for fname in sorted(os.listdir(path)): if fname.isdigit(): fpath = os.path.join(path, fname) if sys.version_info < (3,): f = open(fpath) else: f = open(fpath, encoding='latin-1') content = f.read() texts.append((content, label_id)) f.close() print('Found %s texts.' % len(texts)) return texts
def get_news20(source_dir="./data/news20/"): """ Parse or download news20 if source_dir is empty. :param source_dir: The directory storing news data. :return: A list of (tokens, label) """ news_dir = download_news20(source_dir) texts = [] # list of text samples label_id = 0 for name in sorted(os.listdir(news_dir)): path = os.path.join(news_dir, name) label_id += 1 if os.path.isdir(path): for fname in sorted(os.listdir(path)): if fname.isdigit(): fpath = os.path.join(path, fname) if sys.version_info < (3,): f = open(fpath) else: f = open(fpath, encoding='latin-1') content = f.read() texts.append((content, label_id)) f.close() print('Found %s texts.' % len(texts)) return texts
[ "Parse", "or", "download", "news20", "if", "source_dir", "is", "empty", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/dataset/news20.py#L53-L79
[ "def", "get_news20", "(", "source_dir", "=", "\"./data/news20/\"", ")", ":", "news_dir", "=", "download_news20", "(", "source_dir", ")", "texts", "=", "[", "]", "# list of text samples", "label_id", "=", "0", "for", "name", "in", "sorted", "(", "os", ".", "listdir", "(", "news_dir", ")", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "news_dir", ",", "name", ")", "label_id", "+=", "1", "if", "os", ".", "path", ".", "isdir", "(", "path", ")", ":", "for", "fname", "in", "sorted", "(", "os", ".", "listdir", "(", "path", ")", ")", ":", "if", "fname", ".", "isdigit", "(", ")", ":", "fpath", "=", "os", ".", "path", ".", "join", "(", "path", ",", "fname", ")", "if", "sys", ".", "version_info", "<", "(", "3", ",", ")", ":", "f", "=", "open", "(", "fpath", ")", "else", ":", "f", "=", "open", "(", "fpath", ",", "encoding", "=", "'latin-1'", ")", "content", "=", "f", ".", "read", "(", ")", "texts", ".", "append", "(", "(", "content", ",", "label_id", ")", ")", "f", ".", "close", "(", ")", "print", "(", "'Found %s texts.'", "%", "len", "(", "texts", ")", ")", "return", "texts" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
get_glove_w2v
Parse or download the pre-trained glove word2vec if source_dir is empty. :param source_dir: The directory storing the pre-trained word2vec :param dim: The dimension of a vector :return: A dict mapping from word to vector
pyspark/bigdl/dataset/news20.py
def get_glove_w2v(source_dir="./data/news20/", dim=100): """ Parse or download the pre-trained glove word2vec if source_dir is empty. :param source_dir: The directory storing the pre-trained word2vec :param dim: The dimension of a vector :return: A dict mapping from word to vector """ w2v_dir = download_glove_w2v(source_dir) w2v_path = os.path.join(w2v_dir, "glove.6B.%sd.txt" % dim) if sys.version_info < (3,): w2v_f = open(w2v_path) else: w2v_f = open(w2v_path, encoding='latin-1') pre_w2v = {} for line in w2v_f.readlines(): items = line.split(" ") pre_w2v[items[0]] = [float(i) for i in items[1:]] w2v_f.close() return pre_w2v
def get_glove_w2v(source_dir="./data/news20/", dim=100): """ Parse or download the pre-trained glove word2vec if source_dir is empty. :param source_dir: The directory storing the pre-trained word2vec :param dim: The dimension of a vector :return: A dict mapping from word to vector """ w2v_dir = download_glove_w2v(source_dir) w2v_path = os.path.join(w2v_dir, "glove.6B.%sd.txt" % dim) if sys.version_info < (3,): w2v_f = open(w2v_path) else: w2v_f = open(w2v_path, encoding='latin-1') pre_w2v = {} for line in w2v_f.readlines(): items = line.split(" ") pre_w2v[items[0]] = [float(i) for i in items[1:]] w2v_f.close() return pre_w2v
[ "Parse", "or", "download", "the", "pre", "-", "trained", "glove", "word2vec", "if", "source_dir", "is", "empty", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/dataset/news20.py#L82-L101
[ "def", "get_glove_w2v", "(", "source_dir", "=", "\"./data/news20/\"", ",", "dim", "=", "100", ")", ":", "w2v_dir", "=", "download_glove_w2v", "(", "source_dir", ")", "w2v_path", "=", "os", ".", "path", ".", "join", "(", "w2v_dir", ",", "\"glove.6B.%sd.txt\"", "%", "dim", ")", "if", "sys", ".", "version_info", "<", "(", "3", ",", ")", ":", "w2v_f", "=", "open", "(", "w2v_path", ")", "else", ":", "w2v_f", "=", "open", "(", "w2v_path", ",", "encoding", "=", "'latin-1'", ")", "pre_w2v", "=", "{", "}", "for", "line", "in", "w2v_f", ".", "readlines", "(", ")", ":", "items", "=", "line", ".", "split", "(", "\" \"", ")", "pre_w2v", "[", "items", "[", "0", "]", "]", "=", "[", "float", "(", "i", ")", "for", "i", "in", "items", "[", "1", ":", "]", "]", "w2v_f", ".", "close", "(", ")", "return", "pre_w2v" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
KerasModel.compile
Configures the learning process. Must be called before fit or evaluate. # Arguments optimizer: Optimization method to be used. One can alternatively pass in the corresponding string representation, such as 'sgd'. loss: Criterion to be used. One can alternatively pass in the corresponding string representation, such as 'mse'. metrics: List of validation methods to be used. Default is None. One can alternatively use ['accuracy'].
pyspark/bigdl/nn/keras/topology.py
def compile(self, optimizer, loss, metrics=None): """ Configures the learning process. Must be called before fit or evaluate. # Arguments optimizer: Optimization method to be used. One can alternatively pass in the corresponding string representation, such as 'sgd'. loss: Criterion to be used. One can alternatively pass in the corresponding string representation, such as 'mse'. metrics: List of validation methods to be used. Default is None. One can alternatively use ['accuracy']. """ if isinstance(optimizer, six.string_types): optimizer = self.__convert_optim_method(optimizer) if isinstance(loss, six.string_types): loss = self.__convert_criterion(loss) if all(isinstance(metric, six.string_types) for metric in metrics): metrics = self.__convert_metrics(metrics) callBigDlFunc(self.bigdl_type, "compile", self.value, optimizer, loss, metrics)
def compile(self, optimizer, loss, metrics=None): """ Configures the learning process. Must be called before fit or evaluate. # Arguments optimizer: Optimization method to be used. One can alternatively pass in the corresponding string representation, such as 'sgd'. loss: Criterion to be used. One can alternatively pass in the corresponding string representation, such as 'mse'. metrics: List of validation methods to be used. Default is None. One can alternatively use ['accuracy']. """ if isinstance(optimizer, six.string_types): optimizer = self.__convert_optim_method(optimizer) if isinstance(loss, six.string_types): loss = self.__convert_criterion(loss) if all(isinstance(metric, six.string_types) for metric in metrics): metrics = self.__convert_metrics(metrics) callBigDlFunc(self.bigdl_type, "compile", self.value, optimizer, loss, metrics)
[ "Configures", "the", "learning", "process", ".", "Must", "be", "called", "before", "fit", "or", "evaluate", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/keras/topology.py#L82-L103
[ "def", "compile", "(", "self", ",", "optimizer", ",", "loss", ",", "metrics", "=", "None", ")", ":", "if", "isinstance", "(", "optimizer", ",", "six", ".", "string_types", ")", ":", "optimizer", "=", "self", ".", "__convert_optim_method", "(", "optimizer", ")", "if", "isinstance", "(", "loss", ",", "six", ".", "string_types", ")", ":", "loss", "=", "self", ".", "__convert_criterion", "(", "loss", ")", "if", "all", "(", "isinstance", "(", "metric", ",", "six", ".", "string_types", ")", "for", "metric", "in", "metrics", ")", ":", "metrics", "=", "self", ".", "__convert_metrics", "(", "metrics", ")", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"compile\"", ",", "self", ".", "value", ",", "optimizer", ",", "loss", ",", "metrics", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
KerasModel.fit
Train a model for a fixed number of epochs on a dataset. # Arguments x: Input data. A Numpy array or RDD of Sample or Image DataSet. y: Labels. A Numpy array. Default is None if x is already RDD of Sample or Image DataSet. batch_size: Number of samples per gradient update. nb_epoch: Number of iterations to train. validation_data: Tuple (x_val, y_val) where x_val and y_val are both Numpy arrays. Or RDD of Sample. Default is None if no validation is involved. distributed: Boolean. Whether to train the model in distributed mode or local mode. Default is True. In local mode, x and y must both be Numpy arrays.
pyspark/bigdl/nn/keras/topology.py
def fit(self, x, y=None, batch_size=32, nb_epoch=10, validation_data=None, distributed=True): """ Train a model for a fixed number of epochs on a dataset. # Arguments x: Input data. A Numpy array or RDD of Sample or Image DataSet. y: Labels. A Numpy array. Default is None if x is already RDD of Sample or Image DataSet. batch_size: Number of samples per gradient update. nb_epoch: Number of iterations to train. validation_data: Tuple (x_val, y_val) where x_val and y_val are both Numpy arrays. Or RDD of Sample. Default is None if no validation is involved. distributed: Boolean. Whether to train the model in distributed mode or local mode. Default is True. In local mode, x and y must both be Numpy arrays. """ if distributed: if isinstance(x, np.ndarray) and isinstance(y, np.ndarray): training_data = to_sample_rdd(x, y) if validation_data: validation_data = to_sample_rdd(*validation_data) elif (isinstance(x, RDD) or isinstance(x, DataSet)) and not y: training_data = x else: raise TypeError("Unsupported training data type: %s" % type(x)) callBigDlFunc(self.bigdl_type, "fit", self.value, training_data, batch_size, nb_epoch, validation_data) else: if validation_data: val_x = [JTensor.from_ndarray(x) for x in to_list(validation_data[0])] val_y = JTensor.from_ndarray(validation_data[1]) else: val_x, val_y = None, None callBigDlFunc(self.bigdl_type, "fit", self.value, [JTensor.from_ndarray(x) for x in to_list(x)], JTensor.from_ndarray(y), batch_size, nb_epoch, val_x, val_y, multiprocessing.cpu_count())
def fit(self, x, y=None, batch_size=32, nb_epoch=10, validation_data=None, distributed=True): """ Train a model for a fixed number of epochs on a dataset. # Arguments x: Input data. A Numpy array or RDD of Sample or Image DataSet. y: Labels. A Numpy array. Default is None if x is already RDD of Sample or Image DataSet. batch_size: Number of samples per gradient update. nb_epoch: Number of iterations to train. validation_data: Tuple (x_val, y_val) where x_val and y_val are both Numpy arrays. Or RDD of Sample. Default is None if no validation is involved. distributed: Boolean. Whether to train the model in distributed mode or local mode. Default is True. In local mode, x and y must both be Numpy arrays. """ if distributed: if isinstance(x, np.ndarray) and isinstance(y, np.ndarray): training_data = to_sample_rdd(x, y) if validation_data: validation_data = to_sample_rdd(*validation_data) elif (isinstance(x, RDD) or isinstance(x, DataSet)) and not y: training_data = x else: raise TypeError("Unsupported training data type: %s" % type(x)) callBigDlFunc(self.bigdl_type, "fit", self.value, training_data, batch_size, nb_epoch, validation_data) else: if validation_data: val_x = [JTensor.from_ndarray(x) for x in to_list(validation_data[0])] val_y = JTensor.from_ndarray(validation_data[1]) else: val_x, val_y = None, None callBigDlFunc(self.bigdl_type, "fit", self.value, [JTensor.from_ndarray(x) for x in to_list(x)], JTensor.from_ndarray(y), batch_size, nb_epoch, val_x, val_y, multiprocessing.cpu_count())
[ "Train", "a", "model", "for", "a", "fixed", "number", "of", "epochs", "on", "a", "dataset", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/keras/topology.py#L105-L148
[ "def", "fit", "(", "self", ",", "x", ",", "y", "=", "None", ",", "batch_size", "=", "32", ",", "nb_epoch", "=", "10", ",", "validation_data", "=", "None", ",", "distributed", "=", "True", ")", ":", "if", "distributed", ":", "if", "isinstance", "(", "x", ",", "np", ".", "ndarray", ")", "and", "isinstance", "(", "y", ",", "np", ".", "ndarray", ")", ":", "training_data", "=", "to_sample_rdd", "(", "x", ",", "y", ")", "if", "validation_data", ":", "validation_data", "=", "to_sample_rdd", "(", "*", "validation_data", ")", "elif", "(", "isinstance", "(", "x", ",", "RDD", ")", "or", "isinstance", "(", "x", ",", "DataSet", ")", ")", "and", "not", "y", ":", "training_data", "=", "x", "else", ":", "raise", "TypeError", "(", "\"Unsupported training data type: %s\"", "%", "type", "(", "x", ")", ")", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"fit\"", ",", "self", ".", "value", ",", "training_data", ",", "batch_size", ",", "nb_epoch", ",", "validation_data", ")", "else", ":", "if", "validation_data", ":", "val_x", "=", "[", "JTensor", ".", "from_ndarray", "(", "x", ")", "for", "x", "in", "to_list", "(", "validation_data", "[", "0", "]", ")", "]", "val_y", "=", "JTensor", ".", "from_ndarray", "(", "validation_data", "[", "1", "]", ")", "else", ":", "val_x", ",", "val_y", "=", "None", ",", "None", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"fit\"", ",", "self", ".", "value", ",", "[", "JTensor", ".", "from_ndarray", "(", "x", ")", "for", "x", "in", "to_list", "(", "x", ")", "]", ",", "JTensor", ".", "from_ndarray", "(", "y", ")", ",", "batch_size", ",", "nb_epoch", ",", "val_x", ",", "val_y", ",", "multiprocessing", ".", "cpu_count", "(", ")", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
KerasModel.evaluate
Evaluate a model on a given dataset in distributed mode. # Arguments x: Input data. A Numpy array or RDD of Sample. y: Labels. A Numpy array. Default is None if x is already RDD of Sample. batch_size: Number of samples per gradient update.
pyspark/bigdl/nn/keras/topology.py
def evaluate(self, x, y=None, batch_size=32): """ Evaluate a model on a given dataset in distributed mode. # Arguments x: Input data. A Numpy array or RDD of Sample. y: Labels. A Numpy array. Default is None if x is already RDD of Sample. batch_size: Number of samples per gradient update. """ if isinstance(x, np.ndarray) and isinstance(y, np.ndarray): evaluation_data = to_sample_rdd(x, y) elif isinstance(x, RDD) and not y: evaluation_data = x else: raise TypeError("Unsupported evaluation data type: %s" % type(x)) return callBigDlFunc(self.bigdl_type, "evaluate", self.value, evaluation_data, batch_size)
def evaluate(self, x, y=None, batch_size=32): """ Evaluate a model on a given dataset in distributed mode. # Arguments x: Input data. A Numpy array or RDD of Sample. y: Labels. A Numpy array. Default is None if x is already RDD of Sample. batch_size: Number of samples per gradient update. """ if isinstance(x, np.ndarray) and isinstance(y, np.ndarray): evaluation_data = to_sample_rdd(x, y) elif isinstance(x, RDD) and not y: evaluation_data = x else: raise TypeError("Unsupported evaluation data type: %s" % type(x)) return callBigDlFunc(self.bigdl_type, "evaluate", self.value, evaluation_data, batch_size)
[ "Evaluate", "a", "model", "on", "a", "given", "dataset", "in", "distributed", "mode", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/keras/topology.py#L150-L168
[ "def", "evaluate", "(", "self", ",", "x", ",", "y", "=", "None", ",", "batch_size", "=", "32", ")", ":", "if", "isinstance", "(", "x", ",", "np", ".", "ndarray", ")", "and", "isinstance", "(", "y", ",", "np", ".", "ndarray", ")", ":", "evaluation_data", "=", "to_sample_rdd", "(", "x", ",", "y", ")", "elif", "isinstance", "(", "x", ",", "RDD", ")", "and", "not", "y", ":", "evaluation_data", "=", "x", "else", ":", "raise", "TypeError", "(", "\"Unsupported evaluation data type: %s\"", "%", "type", "(", "x", ")", ")", "return", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"evaluate\"", ",", "self", ".", "value", ",", "evaluation_data", ",", "batch_size", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
KerasModel.predict
Use a model to do prediction. # Arguments x: Input data. A Numpy array or RDD of Sample. distributed: Boolean. Whether to do prediction in distributed mode or local mode. Default is True. In local mode, x must be a Numpy array.
pyspark/bigdl/nn/keras/topology.py
def predict(self, x, distributed=True): """ Use a model to do prediction. # Arguments x: Input data. A Numpy array or RDD of Sample. distributed: Boolean. Whether to do prediction in distributed mode or local mode. Default is True. In local mode, x must be a Numpy array. """ if is_distributed: if isinstance(x, np.ndarray): features = to_sample_rdd(x, np.zeros([x.shape[0]])) elif isinstance(x, RDD): features = x else: raise TypeError("Unsupported prediction data type: %s" % type(x)) return self.predict_distributed(features) else: if isinstance(x, np.ndarray): return self.predict_local(x) else: raise TypeError("Unsupported prediction data type: %s" % type(x))
def predict(self, x, distributed=True): """ Use a model to do prediction. # Arguments x: Input data. A Numpy array or RDD of Sample. distributed: Boolean. Whether to do prediction in distributed mode or local mode. Default is True. In local mode, x must be a Numpy array. """ if is_distributed: if isinstance(x, np.ndarray): features = to_sample_rdd(x, np.zeros([x.shape[0]])) elif isinstance(x, RDD): features = x else: raise TypeError("Unsupported prediction data type: %s" % type(x)) return self.predict_distributed(features) else: if isinstance(x, np.ndarray): return self.predict_local(x) else: raise TypeError("Unsupported prediction data type: %s" % type(x))
[ "Use", "a", "model", "to", "do", "prediction", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/keras/topology.py#L170-L191
[ "def", "predict", "(", "self", ",", "x", ",", "distributed", "=", "True", ")", ":", "if", "is_distributed", ":", "if", "isinstance", "(", "x", ",", "np", ".", "ndarray", ")", ":", "features", "=", "to_sample_rdd", "(", "x", ",", "np", ".", "zeros", "(", "[", "x", ".", "shape", "[", "0", "]", "]", ")", ")", "elif", "isinstance", "(", "x", ",", "RDD", ")", ":", "features", "=", "x", "else", ":", "raise", "TypeError", "(", "\"Unsupported prediction data type: %s\"", "%", "type", "(", "x", ")", ")", "return", "self", ".", "predict_distributed", "(", "features", ")", "else", ":", "if", "isinstance", "(", "x", ",", "np", ".", "ndarray", ")", ":", "return", "self", ".", "predict_local", "(", "x", ")", "else", ":", "raise", "TypeError", "(", "\"Unsupported prediction data type: %s\"", "%", "type", "(", "x", ")", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Sequential.from_jvalue
Create a Python Model base on the given java value :param jvalue: Java object create by Py4j :return: A Python Model
pyspark/bigdl/nn/keras/topology.py
def from_jvalue(jvalue, bigdl_type="float"): """ Create a Python Model base on the given java value :param jvalue: Java object create by Py4j :return: A Python Model """ model = Sequential(jvalue=jvalue) model.value = jvalue return model
def from_jvalue(jvalue, bigdl_type="float"): """ Create a Python Model base on the given java value :param jvalue: Java object create by Py4j :return: A Python Model """ model = Sequential(jvalue=jvalue) model.value = jvalue return model
[ "Create", "a", "Python", "Model", "base", "on", "the", "given", "java", "value", ":", "param", "jvalue", ":", "Java", "object", "create", "by", "Py4j", ":", "return", ":", "A", "Python", "Model" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/keras/topology.py#L208-L216
[ "def", "from_jvalue", "(", "jvalue", ",", "bigdl_type", "=", "\"float\"", ")", ":", "model", "=", "Sequential", "(", "jvalue", "=", "jvalue", ")", "model", ".", "value", "=", "jvalue", "return", "model" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Model.from_jvalue
Create a Python Model base on the given java value :param jvalue: Java object create by Py4j :return: A Python Model
pyspark/bigdl/nn/keras/topology.py
def from_jvalue(jvalue, bigdl_type="float"): """ Create a Python Model base on the given java value :param jvalue: Java object create by Py4j :return: A Python Model """ model = Model([], [], jvalue=jvalue) model.value = jvalue return model
def from_jvalue(jvalue, bigdl_type="float"): """ Create a Python Model base on the given java value :param jvalue: Java object create by Py4j :return: A Python Model """ model = Model([], [], jvalue=jvalue) model.value = jvalue return model
[ "Create", "a", "Python", "Model", "base", "on", "the", "given", "java", "value", ":", "param", "jvalue", ":", "Java", "object", "create", "by", "Py4j", ":", "return", ":", "A", "Python", "Model" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/keras/topology.py#L238-L246
[ "def", "from_jvalue", "(", "jvalue", ",", "bigdl_type", "=", "\"float\"", ")", ":", "model", "=", "Model", "(", "[", "]", ",", "[", "]", ",", "jvalue", "=", "jvalue", ")", "model", ".", "value", "=", "jvalue", "return", "model" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
get_mnist
Get mnist dataset and parallelize into RDDs. Data would be downloaded automatically if it doesn't present at the specific location. :param sc: SparkContext. :param data_type: "train" for training data and "test" for testing data. :param location: Location to store mnist dataset. :return: RDD of (features: ndarray, label: ndarray).
pyspark/bigdl/models/lenet/utils.py
def get_mnist(sc, data_type="train", location="/tmp/mnist"): """ Get mnist dataset and parallelize into RDDs. Data would be downloaded automatically if it doesn't present at the specific location. :param sc: SparkContext. :param data_type: "train" for training data and "test" for testing data. :param location: Location to store mnist dataset. :return: RDD of (features: ndarray, label: ndarray). """ (images, labels) = mnist.read_data_sets(location, data_type) images = sc.parallelize(images) labels = sc.parallelize(labels + 1) # Target start from 1 in BigDL record = images.zip(labels) return record
def get_mnist(sc, data_type="train", location="/tmp/mnist"): """ Get mnist dataset and parallelize into RDDs. Data would be downloaded automatically if it doesn't present at the specific location. :param sc: SparkContext. :param data_type: "train" for training data and "test" for testing data. :param location: Location to store mnist dataset. :return: RDD of (features: ndarray, label: ndarray). """ (images, labels) = mnist.read_data_sets(location, data_type) images = sc.parallelize(images) labels = sc.parallelize(labels + 1) # Target start from 1 in BigDL record = images.zip(labels) return record
[ "Get", "mnist", "dataset", "and", "parallelize", "into", "RDDs", ".", "Data", "would", "be", "downloaded", "automatically", "if", "it", "doesn", "t", "present", "at", "the", "specific", "location", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/models/lenet/utils.py#L22-L36
[ "def", "get_mnist", "(", "sc", ",", "data_type", "=", "\"train\"", ",", "location", "=", "\"/tmp/mnist\"", ")", ":", "(", "images", ",", "labels", ")", "=", "mnist", ".", "read_data_sets", "(", "location", ",", "data_type", ")", "images", "=", "sc", ".", "parallelize", "(", "images", ")", "labels", "=", "sc", ".", "parallelize", "(", "labels", "+", "1", ")", "# Target start from 1 in BigDL", "record", "=", "images", ".", "zip", "(", "labels", ")", "return", "record" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
preprocess_mnist
Preprocess mnist dataset. Normalize and transform into Sample of RDDs.
pyspark/bigdl/models/lenet/utils.py
def preprocess_mnist(sc, options): """ Preprocess mnist dataset. Normalize and transform into Sample of RDDs. """ train_data = get_mnist(sc, "train", options.dataPath)\ .map(lambda rec_tuple: (normalizer(rec_tuple[0], mnist.TRAIN_MEAN, mnist.TRAIN_STD), rec_tuple[1]))\ .map(lambda t: Sample.from_ndarray(t[0], t[1])) test_data = get_mnist(sc, "test", options.dataPath)\ .map(lambda rec_tuple: (normalizer(rec_tuple[0], mnist.TEST_MEAN, mnist.TEST_STD), rec_tuple[1]))\ .map(lambda t: Sample.from_ndarray(t[0], t[1])) return train_data, test_data
def preprocess_mnist(sc, options): """ Preprocess mnist dataset. Normalize and transform into Sample of RDDs. """ train_data = get_mnist(sc, "train", options.dataPath)\ .map(lambda rec_tuple: (normalizer(rec_tuple[0], mnist.TRAIN_MEAN, mnist.TRAIN_STD), rec_tuple[1]))\ .map(lambda t: Sample.from_ndarray(t[0], t[1])) test_data = get_mnist(sc, "test", options.dataPath)\ .map(lambda rec_tuple: (normalizer(rec_tuple[0], mnist.TEST_MEAN, mnist.TEST_STD), rec_tuple[1]))\ .map(lambda t: Sample.from_ndarray(t[0], t[1])) return train_data, test_data
[ "Preprocess", "mnist", "dataset", ".", "Normalize", "and", "transform", "into", "Sample", "of", "RDDs", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/models/lenet/utils.py#L39-L52
[ "def", "preprocess_mnist", "(", "sc", ",", "options", ")", ":", "train_data", "=", "get_mnist", "(", "sc", ",", "\"train\"", ",", "options", ".", "dataPath", ")", ".", "map", "(", "lambda", "rec_tuple", ":", "(", "normalizer", "(", "rec_tuple", "[", "0", "]", ",", "mnist", ".", "TRAIN_MEAN", ",", "mnist", ".", "TRAIN_STD", ")", ",", "rec_tuple", "[", "1", "]", ")", ")", ".", "map", "(", "lambda", "t", ":", "Sample", ".", "from_ndarray", "(", "t", "[", "0", "]", ",", "t", "[", "1", "]", ")", ")", "test_data", "=", "get_mnist", "(", "sc", ",", "\"test\"", ",", "options", ".", "dataPath", ")", ".", "map", "(", "lambda", "rec_tuple", ":", "(", "normalizer", "(", "rec_tuple", "[", "0", "]", ",", "mnist", ".", "TEST_MEAN", ",", "mnist", ".", "TEST_STD", ")", ",", "rec_tuple", "[", "1", "]", ")", ")", ".", "map", "(", "lambda", "t", ":", "Sample", ".", "from_ndarray", "(", "t", "[", "0", "]", ",", "t", "[", "1", "]", ")", ")", "return", "train_data", ",", "test_data" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
get_end_trigger
When to end the optimization based on input option.
pyspark/bigdl/models/lenet/utils.py
def get_end_trigger(options): """ When to end the optimization based on input option. """ if options.endTriggerType.lower() == "epoch": return MaxEpoch(options.endTriggerNum) else: return MaxIteration(options.endTriggerNum)
def get_end_trigger(options): """ When to end the optimization based on input option. """ if options.endTriggerType.lower() == "epoch": return MaxEpoch(options.endTriggerNum) else: return MaxIteration(options.endTriggerNum)
[ "When", "to", "end", "the", "optimization", "based", "on", "input", "option", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/models/lenet/utils.py#L55-L62
[ "def", "get_end_trigger", "(", "options", ")", ":", "if", "options", ".", "endTriggerType", ".", "lower", "(", ")", "==", "\"epoch\"", ":", "return", "MaxEpoch", "(", "options", ".", "endTriggerNum", ")", "else", ":", "return", "MaxIteration", "(", "options", ".", "endTriggerNum", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
validate_optimizer
Set validation and checkpoint for distributed optimizer.
pyspark/bigdl/models/lenet/utils.py
def validate_optimizer(optimizer, test_data, options): """ Set validation and checkpoint for distributed optimizer. """ optimizer.set_validation( batch_size=options.batchSize, val_rdd=test_data, trigger=EveryEpoch(), val_method=[Top1Accuracy()] ) optimizer.set_checkpoint(EveryEpoch(), options.checkpointPath)
def validate_optimizer(optimizer, test_data, options): """ Set validation and checkpoint for distributed optimizer. """ optimizer.set_validation( batch_size=options.batchSize, val_rdd=test_data, trigger=EveryEpoch(), val_method=[Top1Accuracy()] ) optimizer.set_checkpoint(EveryEpoch(), options.checkpointPath)
[ "Set", "validation", "and", "checkpoint", "for", "distributed", "optimizer", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/models/lenet/utils.py#L65-L75
[ "def", "validate_optimizer", "(", "optimizer", ",", "test_data", ",", "options", ")", ":", "optimizer", ".", "set_validation", "(", "batch_size", "=", "options", ".", "batchSize", ",", "val_rdd", "=", "test_data", ",", "trigger", "=", "EveryEpoch", "(", ")", ",", "val_method", "=", "[", "Top1Accuracy", "(", ")", "]", ")", "optimizer", ".", "set_checkpoint", "(", "EveryEpoch", "(", ")", ",", "options", ".", "checkpointPath", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
HasBatchSize.setBatchSize
Sets the value of :py:attr:`batchSize`.
pyspark/bigdl/models/ml_pipeline/dl_classifier.py
def setBatchSize(self, val): """ Sets the value of :py:attr:`batchSize`. """ self._paramMap[self.batchSize] = val pythonBigDL_method_name = "setBatchSize" + self.__class__.__name__ callBigDlFunc(self.bigdl_type, pythonBigDL_method_name, self.value, val) return self
def setBatchSize(self, val): """ Sets the value of :py:attr:`batchSize`. """ self._paramMap[self.batchSize] = val pythonBigDL_method_name = "setBatchSize" + self.__class__.__name__ callBigDlFunc(self.bigdl_type, pythonBigDL_method_name, self.value, val) return self
[ "Sets", "the", "value", "of", ":", "py", ":", "attr", ":", "batchSize", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/models/ml_pipeline/dl_classifier.py#L25-L32
[ "def", "setBatchSize", "(", "self", ",", "val", ")", ":", "self", ".", "_paramMap", "[", "self", ".", "batchSize", "]", "=", "val", "pythonBigDL_method_name", "=", "\"setBatchSize\"", "+", "self", ".", "__class__", ".", "__name__", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "pythonBigDL_method_name", ",", "self", ".", "value", ",", "val", ")", "return", "self" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
ModelBroadcast.value
Return the broadcasted value
pyspark/bigdl/models/utils/model_broadcast.py
def value(self): """ Return the broadcasted value """ if not hasattr(self, "_value") and self._path is not None: self._value = self._load(self._path) return self._value
def value(self): """ Return the broadcasted value """ if not hasattr(self, "_value") and self._path is not None: self._value = self._load(self._path) return self._value
[ "Return", "the", "broadcasted", "value" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/models/utils/model_broadcast.py#L61-L66
[ "def", "value", "(", "self", ")", ":", "if", "not", "hasattr", "(", "self", ",", "\"_value\"", ")", "and", "self", ".", "_path", "is", "not", "None", ":", "self", ".", "_value", "=", "self", ".", "_load", "(", "self", ".", "_path", ")", "return", "self", ".", "_value" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
to_sample_rdd
Conver x and y into RDD[Sample] :param x: ndarray and the first dimension should be batch :param y: ndarray and the first dimension should be batch :param numSlices: :return:
pyspark/bigdl/util/common.py
def to_sample_rdd(x, y, numSlices=None): """ Conver x and y into RDD[Sample] :param x: ndarray and the first dimension should be batch :param y: ndarray and the first dimension should be batch :param numSlices: :return: """ sc = get_spark_context() from bigdl.util.common import Sample x_rdd = sc.parallelize(x, numSlices) y_rdd = sc.parallelize(y, numSlices) return x_rdd.zip(y_rdd).map(lambda item: Sample.from_ndarray(item[0], item[1]))
def to_sample_rdd(x, y, numSlices=None): """ Conver x and y into RDD[Sample] :param x: ndarray and the first dimension should be batch :param y: ndarray and the first dimension should be batch :param numSlices: :return: """ sc = get_spark_context() from bigdl.util.common import Sample x_rdd = sc.parallelize(x, numSlices) y_rdd = sc.parallelize(y, numSlices) return x_rdd.zip(y_rdd).map(lambda item: Sample.from_ndarray(item[0], item[1]))
[ "Conver", "x", "and", "y", "into", "RDD", "[", "Sample", "]", ":", "param", "x", ":", "ndarray", "and", "the", "first", "dimension", "should", "be", "batch", ":", "param", "y", ":", "ndarray", "and", "the", "first", "dimension", "should", "be", "batch", ":", "param", "numSlices", ":", ":", "return", ":" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/util/common.py#L478-L490
[ "def", "to_sample_rdd", "(", "x", ",", "y", ",", "numSlices", "=", "None", ")", ":", "sc", "=", "get_spark_context", "(", ")", "from", "bigdl", ".", "util", ".", "common", "import", "Sample", "x_rdd", "=", "sc", ".", "parallelize", "(", "x", ",", "numSlices", ")", "y_rdd", "=", "sc", ".", "parallelize", "(", "y", ",", "numSlices", ")", "return", "x_rdd", ".", "zip", "(", "y_rdd", ")", ".", "map", "(", "lambda", "item", ":", "Sample", ".", "from_ndarray", "(", "item", "[", "0", "]", ",", "item", "[", "1", "]", ")", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
get_spark_context
Get the current active spark context and create one if no active instance :param conf: combining bigdl configs into spark conf :return: SparkContext
pyspark/bigdl/util/common.py
def get_spark_context(conf=None): """ Get the current active spark context and create one if no active instance :param conf: combining bigdl configs into spark conf :return: SparkContext """ if hasattr(SparkContext, "getOrCreate"): with SparkContext._lock: if SparkContext._active_spark_context is None: spark_conf = create_spark_conf() if conf is None else conf return SparkContext.getOrCreate(spark_conf) else: return SparkContext.getOrCreate() else: # Might have threading issue but we cann't add _lock here # as it's not RLock in spark1.5; if SparkContext._active_spark_context is None: spark_conf = create_spark_conf() if conf is None else conf return SparkContext(conf=spark_conf) else: return SparkContext._active_spark_context
def get_spark_context(conf=None): """ Get the current active spark context and create one if no active instance :param conf: combining bigdl configs into spark conf :return: SparkContext """ if hasattr(SparkContext, "getOrCreate"): with SparkContext._lock: if SparkContext._active_spark_context is None: spark_conf = create_spark_conf() if conf is None else conf return SparkContext.getOrCreate(spark_conf) else: return SparkContext.getOrCreate() else: # Might have threading issue but we cann't add _lock here # as it's not RLock in spark1.5; if SparkContext._active_spark_context is None: spark_conf = create_spark_conf() if conf is None else conf return SparkContext(conf=spark_conf) else: return SparkContext._active_spark_context
[ "Get", "the", "current", "active", "spark", "context", "and", "create", "one", "if", "no", "active", "instance", ":", "param", "conf", ":", "combining", "bigdl", "configs", "into", "spark", "conf", ":", "return", ":", "SparkContext" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/util/common.py#L520-L541
[ "def", "get_spark_context", "(", "conf", "=", "None", ")", ":", "if", "hasattr", "(", "SparkContext", ",", "\"getOrCreate\"", ")", ":", "with", "SparkContext", ".", "_lock", ":", "if", "SparkContext", ".", "_active_spark_context", "is", "None", ":", "spark_conf", "=", "create_spark_conf", "(", ")", "if", "conf", "is", "None", "else", "conf", "return", "SparkContext", ".", "getOrCreate", "(", "spark_conf", ")", "else", ":", "return", "SparkContext", ".", "getOrCreate", "(", ")", "else", ":", "# Might have threading issue but we cann't add _lock here", "# as it's not RLock in spark1.5;", "if", "SparkContext", ".", "_active_spark_context", "is", "None", ":", "spark_conf", "=", "create_spark_conf", "(", ")", "if", "conf", "is", "None", "else", "conf", "return", "SparkContext", "(", "conf", "=", "spark_conf", ")", "else", ":", "return", "SparkContext", ".", "_active_spark_context" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
callBigDlFunc
Call API in PythonBigDL
pyspark/bigdl/util/common.py
def callBigDlFunc(bigdl_type, name, *args): """ Call API in PythonBigDL """ gateway = _get_gateway() error = Exception("Cannot find function: %s" % name) for jinvoker in JavaCreator.instance(bigdl_type, gateway).value: # hasattr(jinvoker, name) always return true here, # so you need to invoke the method to check if it exist or not try: api = getattr(jinvoker, name) result = callJavaFunc(api, *args) except Exception as e: error = e if "does not exist" not in str(e): raise e else: return result raise error
def callBigDlFunc(bigdl_type, name, *args): """ Call API in PythonBigDL """ gateway = _get_gateway() error = Exception("Cannot find function: %s" % name) for jinvoker in JavaCreator.instance(bigdl_type, gateway).value: # hasattr(jinvoker, name) always return true here, # so you need to invoke the method to check if it exist or not try: api = getattr(jinvoker, name) result = callJavaFunc(api, *args) except Exception as e: error = e if "does not exist" not in str(e): raise e else: return result raise error
[ "Call", "API", "in", "PythonBigDL" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/util/common.py#L576-L592
[ "def", "callBigDlFunc", "(", "bigdl_type", ",", "name", ",", "*", "args", ")", ":", "gateway", "=", "_get_gateway", "(", ")", "error", "=", "Exception", "(", "\"Cannot find function: %s\"", "%", "name", ")", "for", "jinvoker", "in", "JavaCreator", ".", "instance", "(", "bigdl_type", ",", "gateway", ")", ".", "value", ":", "# hasattr(jinvoker, name) always return true here,", "# so you need to invoke the method to check if it exist or not", "try", ":", "api", "=", "getattr", "(", "jinvoker", ",", "name", ")", "result", "=", "callJavaFunc", "(", "api", ",", "*", "args", ")", "except", "Exception", "as", "e", ":", "error", "=", "e", "if", "\"does not exist\"", "not", "in", "str", "(", "e", ")", ":", "raise", "e", "else", ":", "return", "result", "raise", "error" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
callJavaFunc
Call Java Function
pyspark/bigdl/util/common.py
def callJavaFunc(func, *args): """ Call Java Function """ gateway = _get_gateway() args = [_py2java(gateway, a) for a in args] result = func(*args) return _java2py(gateway, result)
def callJavaFunc(func, *args): """ Call Java Function """ gateway = _get_gateway() args = [_py2java(gateway, a) for a in args] result = func(*args) return _java2py(gateway, result)
[ "Call", "Java", "Function" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/util/common.py#L630-L635
[ "def", "callJavaFunc", "(", "func", ",", "*", "args", ")", ":", "gateway", "=", "_get_gateway", "(", ")", "args", "=", "[", "_py2java", "(", "gateway", ",", "a", ")", "for", "a", "in", "args", "]", "result", "=", "func", "(", "*", "args", ")", "return", "_java2py", "(", "gateway", ",", "result", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
_to_java_object_rdd
Return a JavaRDD of Object by unpickling It will convert each Python object into Java object by Pyrolite, whenever the RDD is serialized in batch or not.
pyspark/bigdl/util/common.py
def _to_java_object_rdd(rdd): """ Return a JavaRDD of Object by unpickling It will convert each Python object into Java object by Pyrolite, whenever the RDD is serialized in batch or not. """ rdd = rdd._reserialize(AutoBatchedSerializer(PickleSerializer())) return \ rdd.ctx._jvm.org.apache.spark.bigdl.api.python.BigDLSerDe.pythonToJava( rdd._jrdd, True)
def _to_java_object_rdd(rdd): """ Return a JavaRDD of Object by unpickling It will convert each Python object into Java object by Pyrolite, whenever the RDD is serialized in batch or not. """ rdd = rdd._reserialize(AutoBatchedSerializer(PickleSerializer())) return \ rdd.ctx._jvm.org.apache.spark.bigdl.api.python.BigDLSerDe.pythonToJava( rdd._jrdd, True)
[ "Return", "a", "JavaRDD", "of", "Object", "by", "unpickling" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/util/common.py#L638-L648
[ "def", "_to_java_object_rdd", "(", "rdd", ")", ":", "rdd", "=", "rdd", ".", "_reserialize", "(", "AutoBatchedSerializer", "(", "PickleSerializer", "(", ")", ")", ")", "return", "rdd", ".", "ctx", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "bigdl", ".", "api", ".", "python", ".", "BigDLSerDe", ".", "pythonToJava", "(", "rdd", ".", "_jrdd", ",", "True", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
_py2java
Convert Python object into Java
pyspark/bigdl/util/common.py
def _py2java(gateway, obj): """ Convert Python object into Java """ if isinstance(obj, RDD): obj = _to_java_object_rdd(obj) elif isinstance(obj, DataFrame): obj = obj._jdf elif isinstance(obj, SparkContext): obj = obj._jsc elif isinstance(obj, (list, tuple)): obj = ListConverter().convert([_py2java(gateway, x) for x in obj], gateway._gateway_client) elif isinstance(obj, dict): result = {} for (key, value) in obj.items(): result[key] = _py2java(gateway, value) obj = MapConverter().convert(result, gateway._gateway_client) elif isinstance(obj, JavaValue): obj = obj.value elif isinstance(obj, JavaObject): pass elif isinstance(obj, (int, long, float, bool, bytes, unicode)): pass else: data = bytearray(PickleSerializer().dumps(obj)) obj = gateway.jvm.org.apache.spark.bigdl.api.python.BigDLSerDe.loads(data) return obj
def _py2java(gateway, obj): """ Convert Python object into Java """ if isinstance(obj, RDD): obj = _to_java_object_rdd(obj) elif isinstance(obj, DataFrame): obj = obj._jdf elif isinstance(obj, SparkContext): obj = obj._jsc elif isinstance(obj, (list, tuple)): obj = ListConverter().convert([_py2java(gateway, x) for x in obj], gateway._gateway_client) elif isinstance(obj, dict): result = {} for (key, value) in obj.items(): result[key] = _py2java(gateway, value) obj = MapConverter().convert(result, gateway._gateway_client) elif isinstance(obj, JavaValue): obj = obj.value elif isinstance(obj, JavaObject): pass elif isinstance(obj, (int, long, float, bool, bytes, unicode)): pass else: data = bytearray(PickleSerializer().dumps(obj)) obj = gateway.jvm.org.apache.spark.bigdl.api.python.BigDLSerDe.loads(data) return obj
[ "Convert", "Python", "object", "into", "Java" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/util/common.py#L651-L676
[ "def", "_py2java", "(", "gateway", ",", "obj", ")", ":", "if", "isinstance", "(", "obj", ",", "RDD", ")", ":", "obj", "=", "_to_java_object_rdd", "(", "obj", ")", "elif", "isinstance", "(", "obj", ",", "DataFrame", ")", ":", "obj", "=", "obj", ".", "_jdf", "elif", "isinstance", "(", "obj", ",", "SparkContext", ")", ":", "obj", "=", "obj", ".", "_jsc", "elif", "isinstance", "(", "obj", ",", "(", "list", ",", "tuple", ")", ")", ":", "obj", "=", "ListConverter", "(", ")", ".", "convert", "(", "[", "_py2java", "(", "gateway", ",", "x", ")", "for", "x", "in", "obj", "]", ",", "gateway", ".", "_gateway_client", ")", "elif", "isinstance", "(", "obj", ",", "dict", ")", ":", "result", "=", "{", "}", "for", "(", "key", ",", "value", ")", "in", "obj", ".", "items", "(", ")", ":", "result", "[", "key", "]", "=", "_py2java", "(", "gateway", ",", "value", ")", "obj", "=", "MapConverter", "(", ")", ".", "convert", "(", "result", ",", "gateway", ".", "_gateway_client", ")", "elif", "isinstance", "(", "obj", ",", "JavaValue", ")", ":", "obj", "=", "obj", ".", "value", "elif", "isinstance", "(", "obj", ",", "JavaObject", ")", ":", "pass", "elif", "isinstance", "(", "obj", ",", "(", "int", ",", "long", ",", "float", ",", "bool", ",", "bytes", ",", "unicode", ")", ")", ":", "pass", "else", ":", "data", "=", "bytearray", "(", "PickleSerializer", "(", ")", ".", "dumps", "(", "obj", ")", ")", "obj", "=", "gateway", ".", "jvm", ".", "org", ".", "apache", ".", "spark", ".", "bigdl", ".", "api", ".", "python", ".", "BigDLSerDe", ".", "loads", "(", "data", ")", "return", "obj" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
get_activation_by_name
Convert to a bigdl activation layer given the name of the activation as a string
pyspark/bigdl/util/common.py
def get_activation_by_name(activation_name, activation_id=None): """ Convert to a bigdl activation layer given the name of the activation as a string """ import bigdl.nn.layer as BLayer activation = None activation_name = activation_name.lower() if activation_name == "tanh": activation = BLayer.Tanh() elif activation_name == "sigmoid": activation = BLayer.Sigmoid() elif activation_name == "hard_sigmoid": activation = BLayer.HardSigmoid() elif activation_name == "relu": activation = BLayer.ReLU() elif activation_name == "softmax": activation = BLayer.SoftMax() elif activation_name == "softplus": activation = BLayer.SoftPlus(beta=1.0) elif activation_name == "softsign": activation = BLayer.SoftSign() elif activation_name == "linear": activation = BLayer.Identity() else: raise Exception("Unsupported activation type: %s" % activation_name) if not activation_id: activation.set_name(activation_id) return activation
def get_activation_by_name(activation_name, activation_id=None): """ Convert to a bigdl activation layer given the name of the activation as a string """ import bigdl.nn.layer as BLayer activation = None activation_name = activation_name.lower() if activation_name == "tanh": activation = BLayer.Tanh() elif activation_name == "sigmoid": activation = BLayer.Sigmoid() elif activation_name == "hard_sigmoid": activation = BLayer.HardSigmoid() elif activation_name == "relu": activation = BLayer.ReLU() elif activation_name == "softmax": activation = BLayer.SoftMax() elif activation_name == "softplus": activation = BLayer.SoftPlus(beta=1.0) elif activation_name == "softsign": activation = BLayer.SoftSign() elif activation_name == "linear": activation = BLayer.Identity() else: raise Exception("Unsupported activation type: %s" % activation_name) if not activation_id: activation.set_name(activation_id) return activation
[ "Convert", "to", "a", "bigdl", "activation", "layer", "given", "the", "name", "of", "the", "activation", "as", "a", "string" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/util/common.py#L704-L730
[ "def", "get_activation_by_name", "(", "activation_name", ",", "activation_id", "=", "None", ")", ":", "import", "bigdl", ".", "nn", ".", "layer", "as", "BLayer", "activation", "=", "None", "activation_name", "=", "activation_name", ".", "lower", "(", ")", "if", "activation_name", "==", "\"tanh\"", ":", "activation", "=", "BLayer", ".", "Tanh", "(", ")", "elif", "activation_name", "==", "\"sigmoid\"", ":", "activation", "=", "BLayer", ".", "Sigmoid", "(", ")", "elif", "activation_name", "==", "\"hard_sigmoid\"", ":", "activation", "=", "BLayer", ".", "HardSigmoid", "(", ")", "elif", "activation_name", "==", "\"relu\"", ":", "activation", "=", "BLayer", ".", "ReLU", "(", ")", "elif", "activation_name", "==", "\"softmax\"", ":", "activation", "=", "BLayer", ".", "SoftMax", "(", ")", "elif", "activation_name", "==", "\"softplus\"", ":", "activation", "=", "BLayer", ".", "SoftPlus", "(", "beta", "=", "1.0", ")", "elif", "activation_name", "==", "\"softsign\"", ":", "activation", "=", "BLayer", ".", "SoftSign", "(", ")", "elif", "activation_name", "==", "\"linear\"", ":", "activation", "=", "BLayer", ".", "Identity", "(", ")", "else", ":", "raise", "Exception", "(", "\"Unsupported activation type: %s\"", "%", "activation_name", ")", "if", "not", "activation_id", ":", "activation", ".", "set_name", "(", "activation_id", ")", "return", "activation" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
JTensor.from_ndarray
Convert a ndarray to a DenseTensor which would be used in Java side. >>> import numpy as np >>> from bigdl.util.common import JTensor >>> from bigdl.util.common import callBigDlFunc >>> np.random.seed(123) >>> data = np.random.uniform(0, 1, (2, 3)).astype("float32") >>> result = JTensor.from_ndarray(data) >>> expected_storage = np.array([[0.69646919, 0.28613934, 0.22685145], [0.55131477, 0.71946895, 0.42310646]]) >>> expected_shape = np.array([2, 3]) >>> np.testing.assert_allclose(result.storage, expected_storage, rtol=1e-6, atol=1e-6) >>> np.testing.assert_allclose(result.shape, expected_shape) >>> data_back = result.to_ndarray() >>> (data == data_back).all() True >>> tensor1 = callBigDlFunc("float", "testTensor", JTensor.from_ndarray(data)) # noqa >>> array_from_tensor = tensor1.to_ndarray() >>> (array_from_tensor == data).all() True
pyspark/bigdl/util/common.py
def from_ndarray(cls, a_ndarray, bigdl_type="float"): """ Convert a ndarray to a DenseTensor which would be used in Java side. >>> import numpy as np >>> from bigdl.util.common import JTensor >>> from bigdl.util.common import callBigDlFunc >>> np.random.seed(123) >>> data = np.random.uniform(0, 1, (2, 3)).astype("float32") >>> result = JTensor.from_ndarray(data) >>> expected_storage = np.array([[0.69646919, 0.28613934, 0.22685145], [0.55131477, 0.71946895, 0.42310646]]) >>> expected_shape = np.array([2, 3]) >>> np.testing.assert_allclose(result.storage, expected_storage, rtol=1e-6, atol=1e-6) >>> np.testing.assert_allclose(result.shape, expected_shape) >>> data_back = result.to_ndarray() >>> (data == data_back).all() True >>> tensor1 = callBigDlFunc("float", "testTensor", JTensor.from_ndarray(data)) # noqa >>> array_from_tensor = tensor1.to_ndarray() >>> (array_from_tensor == data).all() True """ if a_ndarray is None: return None assert isinstance(a_ndarray, np.ndarray), \ "input should be a np.ndarray, not %s" % type(a_ndarray) return cls(a_ndarray, a_ndarray.shape if a_ndarray.shape else (a_ndarray.size), bigdl_type)
def from_ndarray(cls, a_ndarray, bigdl_type="float"): """ Convert a ndarray to a DenseTensor which would be used in Java side. >>> import numpy as np >>> from bigdl.util.common import JTensor >>> from bigdl.util.common import callBigDlFunc >>> np.random.seed(123) >>> data = np.random.uniform(0, 1, (2, 3)).astype("float32") >>> result = JTensor.from_ndarray(data) >>> expected_storage = np.array([[0.69646919, 0.28613934, 0.22685145], [0.55131477, 0.71946895, 0.42310646]]) >>> expected_shape = np.array([2, 3]) >>> np.testing.assert_allclose(result.storage, expected_storage, rtol=1e-6, atol=1e-6) >>> np.testing.assert_allclose(result.shape, expected_shape) >>> data_back = result.to_ndarray() >>> (data == data_back).all() True >>> tensor1 = callBigDlFunc("float", "testTensor", JTensor.from_ndarray(data)) # noqa >>> array_from_tensor = tensor1.to_ndarray() >>> (array_from_tensor == data).all() True """ if a_ndarray is None: return None assert isinstance(a_ndarray, np.ndarray), \ "input should be a np.ndarray, not %s" % type(a_ndarray) return cls(a_ndarray, a_ndarray.shape if a_ndarray.shape else (a_ndarray.size), bigdl_type)
[ "Convert", "a", "ndarray", "to", "a", "DenseTensor", "which", "would", "be", "used", "in", "Java", "side", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/util/common.py#L184-L212
[ "def", "from_ndarray", "(", "cls", ",", "a_ndarray", ",", "bigdl_type", "=", "\"float\"", ")", ":", "if", "a_ndarray", "is", "None", ":", "return", "None", "assert", "isinstance", "(", "a_ndarray", ",", "np", ".", "ndarray", ")", ",", "\"input should be a np.ndarray, not %s\"", "%", "type", "(", "a_ndarray", ")", "return", "cls", "(", "a_ndarray", ",", "a_ndarray", ".", "shape", "if", "a_ndarray", ".", "shape", "else", "(", "a_ndarray", ".", "size", ")", ",", "bigdl_type", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
JTensor.sparse
Convert a three ndarray to SparseTensor which would be used in Java side. For example: a_ndarray = [1, 3, 2, 4] i_ndarray = [[0, 0, 1, 2], [0, 3, 2, 1]] shape = [3, 4] Present a dense tensor [[ 1, 0, 0, 3], [ 0, 0, 2, 0], [ 0, 4, 0, 0]] :param a_ndarray non-zero elements in this SparseTensor :param i_ndarray zero-based indices for non-zero element i_ndarray's shape should be (shape.size, a_ndarray.size) And the i-th non-zero elements indices is i_ndarray[:, 1], should be zero-based and ascending; :param shape shape as a DenseTensor. >>> import numpy as np >>> from bigdl.util.common import JTensor >>> from bigdl.util.common import callBigDlFunc >>> np.random.seed(123) >>> data = np.arange(1, 7).astype("float32") >>> indices = np.arange(1, 7) >>> shape = np.array([10]) >>> result = JTensor.sparse(data, indices, shape) >>> expected_storage = np.array([1., 2., 3., 4., 5., 6.]) >>> expected_shape = np.array([10]) >>> expected_indices = np.array([1, 2, 3, 4, 5, 6]) >>> np.testing.assert_allclose(result.storage, expected_storage) >>> np.testing.assert_allclose(result.shape, expected_shape) >>> np.testing.assert_allclose(result.indices, expected_indices) >>> tensor1 = callBigDlFunc("float", "testTensor", result) # noqa >>> array_from_tensor = tensor1.to_ndarray() >>> expected_ndarray = np.array([0, 1, 2, 3, 4, 5, 6, 0, 0, 0]) >>> (array_from_tensor == expected_ndarray).all() True
pyspark/bigdl/util/common.py
def sparse(cls, a_ndarray, i_ndarray, shape, bigdl_type="float"): """ Convert a three ndarray to SparseTensor which would be used in Java side. For example: a_ndarray = [1, 3, 2, 4] i_ndarray = [[0, 0, 1, 2], [0, 3, 2, 1]] shape = [3, 4] Present a dense tensor [[ 1, 0, 0, 3], [ 0, 0, 2, 0], [ 0, 4, 0, 0]] :param a_ndarray non-zero elements in this SparseTensor :param i_ndarray zero-based indices for non-zero element i_ndarray's shape should be (shape.size, a_ndarray.size) And the i-th non-zero elements indices is i_ndarray[:, 1], should be zero-based and ascending; :param shape shape as a DenseTensor. >>> import numpy as np >>> from bigdl.util.common import JTensor >>> from bigdl.util.common import callBigDlFunc >>> np.random.seed(123) >>> data = np.arange(1, 7).astype("float32") >>> indices = np.arange(1, 7) >>> shape = np.array([10]) >>> result = JTensor.sparse(data, indices, shape) >>> expected_storage = np.array([1., 2., 3., 4., 5., 6.]) >>> expected_shape = np.array([10]) >>> expected_indices = np.array([1, 2, 3, 4, 5, 6]) >>> np.testing.assert_allclose(result.storage, expected_storage) >>> np.testing.assert_allclose(result.shape, expected_shape) >>> np.testing.assert_allclose(result.indices, expected_indices) >>> tensor1 = callBigDlFunc("float", "testTensor", result) # noqa >>> array_from_tensor = tensor1.to_ndarray() >>> expected_ndarray = np.array([0, 1, 2, 3, 4, 5, 6, 0, 0, 0]) >>> (array_from_tensor == expected_ndarray).all() True """ if a_ndarray is None: return None assert isinstance(a_ndarray, np.ndarray), \ "values array should be a np.ndarray, not %s" % type(a_ndarray) assert isinstance(i_ndarray, np.ndarray), \ "indices array should be a np.ndarray, not %s" % type(a_ndarray) assert i_ndarray.size == a_ndarray.size * shape.size, \ "size of values and indices should match." return cls(a_ndarray, shape, bigdl_type, i_ndarray)
def sparse(cls, a_ndarray, i_ndarray, shape, bigdl_type="float"): """ Convert a three ndarray to SparseTensor which would be used in Java side. For example: a_ndarray = [1, 3, 2, 4] i_ndarray = [[0, 0, 1, 2], [0, 3, 2, 1]] shape = [3, 4] Present a dense tensor [[ 1, 0, 0, 3], [ 0, 0, 2, 0], [ 0, 4, 0, 0]] :param a_ndarray non-zero elements in this SparseTensor :param i_ndarray zero-based indices for non-zero element i_ndarray's shape should be (shape.size, a_ndarray.size) And the i-th non-zero elements indices is i_ndarray[:, 1], should be zero-based and ascending; :param shape shape as a DenseTensor. >>> import numpy as np >>> from bigdl.util.common import JTensor >>> from bigdl.util.common import callBigDlFunc >>> np.random.seed(123) >>> data = np.arange(1, 7).astype("float32") >>> indices = np.arange(1, 7) >>> shape = np.array([10]) >>> result = JTensor.sparse(data, indices, shape) >>> expected_storage = np.array([1., 2., 3., 4., 5., 6.]) >>> expected_shape = np.array([10]) >>> expected_indices = np.array([1, 2, 3, 4, 5, 6]) >>> np.testing.assert_allclose(result.storage, expected_storage) >>> np.testing.assert_allclose(result.shape, expected_shape) >>> np.testing.assert_allclose(result.indices, expected_indices) >>> tensor1 = callBigDlFunc("float", "testTensor", result) # noqa >>> array_from_tensor = tensor1.to_ndarray() >>> expected_ndarray = np.array([0, 1, 2, 3, 4, 5, 6, 0, 0, 0]) >>> (array_from_tensor == expected_ndarray).all() True """ if a_ndarray is None: return None assert isinstance(a_ndarray, np.ndarray), \ "values array should be a np.ndarray, not %s" % type(a_ndarray) assert isinstance(i_ndarray, np.ndarray), \ "indices array should be a np.ndarray, not %s" % type(a_ndarray) assert i_ndarray.size == a_ndarray.size * shape.size, \ "size of values and indices should match." return cls(a_ndarray, shape, bigdl_type, i_ndarray)
[ "Convert", "a", "three", "ndarray", "to", "SparseTensor", "which", "would", "be", "used", "in", "Java", "side", ".", "For", "example", ":", "a_ndarray", "=", "[", "1", "3", "2", "4", "]", "i_ndarray", "=", "[[", "0", "0", "1", "2", "]", "[", "0", "3", "2", "1", "]]", "shape", "=", "[", "3", "4", "]", "Present", "a", "dense", "tensor", "[[", "1", "0", "0", "3", "]", "[", "0", "0", "2", "0", "]", "[", "0", "4", "0", "0", "]]" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/util/common.py#L215-L266
[ "def", "sparse", "(", "cls", ",", "a_ndarray", ",", "i_ndarray", ",", "shape", ",", "bigdl_type", "=", "\"float\"", ")", ":", "if", "a_ndarray", "is", "None", ":", "return", "None", "assert", "isinstance", "(", "a_ndarray", ",", "np", ".", "ndarray", ")", ",", "\"values array should be a np.ndarray, not %s\"", "%", "type", "(", "a_ndarray", ")", "assert", "isinstance", "(", "i_ndarray", ",", "np", ".", "ndarray", ")", ",", "\"indices array should be a np.ndarray, not %s\"", "%", "type", "(", "a_ndarray", ")", "assert", "i_ndarray", ".", "size", "==", "a_ndarray", ".", "size", "*", "shape", ".", "size", ",", "\"size of values and indices should match.\"", "return", "cls", "(", "a_ndarray", ",", "shape", ",", "bigdl_type", ",", "i_ndarray", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
JTensor.to_ndarray
Transfer JTensor to ndarray. As SparseTensor may generate an very big ndarray, so we don't support this function for SparseTensor. :return: a ndarray
pyspark/bigdl/util/common.py
def to_ndarray(self): """ Transfer JTensor to ndarray. As SparseTensor may generate an very big ndarray, so we don't support this function for SparseTensor. :return: a ndarray """ assert self.indices is None, "sparseTensor to ndarray is not supported" return np.array(self.storage, dtype=get_dtype(self.bigdl_type)).reshape(self.shape)
def to_ndarray(self): """ Transfer JTensor to ndarray. As SparseTensor may generate an very big ndarray, so we don't support this function for SparseTensor. :return: a ndarray """ assert self.indices is None, "sparseTensor to ndarray is not supported" return np.array(self.storage, dtype=get_dtype(self.bigdl_type)).reshape(self.shape)
[ "Transfer", "JTensor", "to", "ndarray", ".", "As", "SparseTensor", "may", "generate", "an", "very", "big", "ndarray", "so", "we", "don", "t", "support", "this", "function", "for", "SparseTensor", ".", ":", "return", ":", "a", "ndarray" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/util/common.py#L268-L275
[ "def", "to_ndarray", "(", "self", ")", ":", "assert", "self", ".", "indices", "is", "None", ",", "\"sparseTensor to ndarray is not supported\"", "return", "np", ".", "array", "(", "self", ".", "storage", ",", "dtype", "=", "get_dtype", "(", "self", ".", "bigdl_type", ")", ")", ".", "reshape", "(", "self", ".", "shape", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Sample.from_ndarray
Convert a ndarray of features and labels to Sample, which would be used in Java side. :param features: an ndarray or a list of ndarrays :param labels: an ndarray or a list of ndarrays or a scalar :param bigdl_type: "double" or "float" >>> import numpy as np >>> from bigdl.util.common import callBigDlFunc >>> from numpy.testing import assert_allclose >>> np.random.seed(123) >>> sample = Sample.from_ndarray(np.random.random((2,3)), np.random.random((2,3))) >>> sample_back = callBigDlFunc("float", "testSample", sample) >>> assert_allclose(sample.features[0].to_ndarray(), sample_back.features[0].to_ndarray()) >>> assert_allclose(sample.label.to_ndarray(), sample_back.label.to_ndarray()) >>> expected_feature_storage = np.array(([[0.69646919, 0.28613934, 0.22685145], [0.55131477, 0.71946895, 0.42310646]])) >>> expected_feature_shape = np.array([2, 3]) >>> expected_label_storage = np.array(([[0.98076421, 0.68482971, 0.48093191], [0.39211753, 0.343178, 0.72904968]])) >>> expected_label_shape = np.array([2, 3]) >>> assert_allclose(sample.features[0].storage, expected_feature_storage, rtol=1e-6, atol=1e-6) >>> assert_allclose(sample.features[0].shape, expected_feature_shape) >>> assert_allclose(sample.labels[0].storage, expected_label_storage, rtol=1e-6, atol=1e-6) >>> assert_allclose(sample.labels[0].shape, expected_label_shape)
pyspark/bigdl/util/common.py
def from_ndarray(cls, features, labels, bigdl_type="float"): """ Convert a ndarray of features and labels to Sample, which would be used in Java side. :param features: an ndarray or a list of ndarrays :param labels: an ndarray or a list of ndarrays or a scalar :param bigdl_type: "double" or "float" >>> import numpy as np >>> from bigdl.util.common import callBigDlFunc >>> from numpy.testing import assert_allclose >>> np.random.seed(123) >>> sample = Sample.from_ndarray(np.random.random((2,3)), np.random.random((2,3))) >>> sample_back = callBigDlFunc("float", "testSample", sample) >>> assert_allclose(sample.features[0].to_ndarray(), sample_back.features[0].to_ndarray()) >>> assert_allclose(sample.label.to_ndarray(), sample_back.label.to_ndarray()) >>> expected_feature_storage = np.array(([[0.69646919, 0.28613934, 0.22685145], [0.55131477, 0.71946895, 0.42310646]])) >>> expected_feature_shape = np.array([2, 3]) >>> expected_label_storage = np.array(([[0.98076421, 0.68482971, 0.48093191], [0.39211753, 0.343178, 0.72904968]])) >>> expected_label_shape = np.array([2, 3]) >>> assert_allclose(sample.features[0].storage, expected_feature_storage, rtol=1e-6, atol=1e-6) >>> assert_allclose(sample.features[0].shape, expected_feature_shape) >>> assert_allclose(sample.labels[0].storage, expected_label_storage, rtol=1e-6, atol=1e-6) >>> assert_allclose(sample.labels[0].shape, expected_label_shape) """ if isinstance(features, np.ndarray): features = [features] else: assert all(isinstance(feature, np.ndarray) for feature in features), \ "features should be a list of np.ndarray, not %s" % type(features) if np.isscalar(labels): # in case labels is a scalar. labels = [np.array(labels)] elif isinstance(labels, np.ndarray): labels = [labels] else: assert all(isinstance(label, np.ndarray) for label in labels), \ "labels should be a list of np.ndarray, not %s" % type(labels) return cls( features=[JTensor.from_ndarray(feature) for feature in features], labels=[JTensor.from_ndarray(label) for label in labels], bigdl_type=bigdl_type)
def from_ndarray(cls, features, labels, bigdl_type="float"): """ Convert a ndarray of features and labels to Sample, which would be used in Java side. :param features: an ndarray or a list of ndarrays :param labels: an ndarray or a list of ndarrays or a scalar :param bigdl_type: "double" or "float" >>> import numpy as np >>> from bigdl.util.common import callBigDlFunc >>> from numpy.testing import assert_allclose >>> np.random.seed(123) >>> sample = Sample.from_ndarray(np.random.random((2,3)), np.random.random((2,3))) >>> sample_back = callBigDlFunc("float", "testSample", sample) >>> assert_allclose(sample.features[0].to_ndarray(), sample_back.features[0].to_ndarray()) >>> assert_allclose(sample.label.to_ndarray(), sample_back.label.to_ndarray()) >>> expected_feature_storage = np.array(([[0.69646919, 0.28613934, 0.22685145], [0.55131477, 0.71946895, 0.42310646]])) >>> expected_feature_shape = np.array([2, 3]) >>> expected_label_storage = np.array(([[0.98076421, 0.68482971, 0.48093191], [0.39211753, 0.343178, 0.72904968]])) >>> expected_label_shape = np.array([2, 3]) >>> assert_allclose(sample.features[0].storage, expected_feature_storage, rtol=1e-6, atol=1e-6) >>> assert_allclose(sample.features[0].shape, expected_feature_shape) >>> assert_allclose(sample.labels[0].storage, expected_label_storage, rtol=1e-6, atol=1e-6) >>> assert_allclose(sample.labels[0].shape, expected_label_shape) """ if isinstance(features, np.ndarray): features = [features] else: assert all(isinstance(feature, np.ndarray) for feature in features), \ "features should be a list of np.ndarray, not %s" % type(features) if np.isscalar(labels): # in case labels is a scalar. labels = [np.array(labels)] elif isinstance(labels, np.ndarray): labels = [labels] else: assert all(isinstance(label, np.ndarray) for label in labels), \ "labels should be a list of np.ndarray, not %s" % type(labels) return cls( features=[JTensor.from_ndarray(feature) for feature in features], labels=[JTensor.from_ndarray(label) for label in labels], bigdl_type=bigdl_type)
[ "Convert", "a", "ndarray", "of", "features", "and", "labels", "to", "Sample", "which", "would", "be", "used", "in", "Java", "side", ".", ":", "param", "features", ":", "an", "ndarray", "or", "a", "list", "of", "ndarrays", ":", "param", "labels", ":", "an", "ndarray", "or", "a", "list", "of", "ndarrays", "or", "a", "scalar", ":", "param", "bigdl_type", ":", "double", "or", "float" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/util/common.py#L306-L345
[ "def", "from_ndarray", "(", "cls", ",", "features", ",", "labels", ",", "bigdl_type", "=", "\"float\"", ")", ":", "if", "isinstance", "(", "features", ",", "np", ".", "ndarray", ")", ":", "features", "=", "[", "features", "]", "else", ":", "assert", "all", "(", "isinstance", "(", "feature", ",", "np", ".", "ndarray", ")", "for", "feature", "in", "features", ")", ",", "\"features should be a list of np.ndarray, not %s\"", "%", "type", "(", "features", ")", "if", "np", ".", "isscalar", "(", "labels", ")", ":", "# in case labels is a scalar.", "labels", "=", "[", "np", ".", "array", "(", "labels", ")", "]", "elif", "isinstance", "(", "labels", ",", "np", ".", "ndarray", ")", ":", "labels", "=", "[", "labels", "]", "else", ":", "assert", "all", "(", "isinstance", "(", "label", ",", "np", ".", "ndarray", ")", "for", "label", "in", "labels", ")", ",", "\"labels should be a list of np.ndarray, not %s\"", "%", "type", "(", "labels", ")", "return", "cls", "(", "features", "=", "[", "JTensor", ".", "from_ndarray", "(", "feature", ")", "for", "feature", "in", "features", "]", ",", "labels", "=", "[", "JTensor", ".", "from_ndarray", "(", "label", ")", "for", "label", "in", "labels", "]", ",", "bigdl_type", "=", "bigdl_type", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
FeatureTransformer.transform
transform ImageFeature
pyspark/bigdl/transform/vision/image.py
def transform(self, image_feature, bigdl_type="float"): """ transform ImageFeature """ callBigDlFunc(bigdl_type, "transformImageFeature", self.value, image_feature) return image_feature
def transform(self, image_feature, bigdl_type="float"): """ transform ImageFeature """ callBigDlFunc(bigdl_type, "transformImageFeature", self.value, image_feature) return image_feature
[ "transform", "ImageFeature" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/transform/vision/image.py#L36-L41
[ "def", "transform", "(", "self", ",", "image_feature", ",", "bigdl_type", "=", "\"float\"", ")", ":", "callBigDlFunc", "(", "bigdl_type", ",", "\"transformImageFeature\"", ",", "self", ".", "value", ",", "image_feature", ")", "return", "image_feature" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
ImageFeature.get_label
get label as ndarray from ImageFeature
pyspark/bigdl/transform/vision/image.py
def get_label(self): """ get label as ndarray from ImageFeature """ label = callBigDlFunc(self.bigdl_type, "imageFeatureToLabelTensor", self.value) return label.to_ndarray()
def get_label(self): """ get label as ndarray from ImageFeature """ label = callBigDlFunc(self.bigdl_type, "imageFeatureToLabelTensor", self.value) return label.to_ndarray()
[ "get", "label", "as", "ndarray", "from", "ImageFeature" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/transform/vision/image.py#L87-L92
[ "def", "get_label", "(", "self", ")", ":", "label", "=", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"imageFeatureToLabelTensor\"", ",", "self", ".", "value", ")", "return", "label", ".", "to_ndarray", "(", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
ImageFrame.read
Read images as Image Frame if sc is defined, Read image as DistributedImageFrame from local file system or HDFS if sc is null, Read image as LocalImageFrame from local file system :param path path to read images if sc is defined, path can be local or HDFS. Wildcard character are supported. if sc is null, path is local directory/image file/image file with wildcard character :param sc SparkContext :param min_partitions A suggestion value of the minimal splitting number for input data. :return ImageFrame
pyspark/bigdl/transform/vision/image.py
def read(cls, path, sc=None, min_partitions=1, bigdl_type="float"): """ Read images as Image Frame if sc is defined, Read image as DistributedImageFrame from local file system or HDFS if sc is null, Read image as LocalImageFrame from local file system :param path path to read images if sc is defined, path can be local or HDFS. Wildcard character are supported. if sc is null, path is local directory/image file/image file with wildcard character :param sc SparkContext :param min_partitions A suggestion value of the minimal splitting number for input data. :return ImageFrame """ return ImageFrame(jvalue=callBigDlFunc(bigdl_type, "read", path, sc, min_partitions))
def read(cls, path, sc=None, min_partitions=1, bigdl_type="float"): """ Read images as Image Frame if sc is defined, Read image as DistributedImageFrame from local file system or HDFS if sc is null, Read image as LocalImageFrame from local file system :param path path to read images if sc is defined, path can be local or HDFS. Wildcard character are supported. if sc is null, path is local directory/image file/image file with wildcard character :param sc SparkContext :param min_partitions A suggestion value of the minimal splitting number for input data. :return ImageFrame """ return ImageFrame(jvalue=callBigDlFunc(bigdl_type, "read", path, sc, min_partitions))
[ "Read", "images", "as", "Image", "Frame", "if", "sc", "is", "defined", "Read", "image", "as", "DistributedImageFrame", "from", "local", "file", "system", "or", "HDFS", "if", "sc", "is", "null", "Read", "image", "as", "LocalImageFrame", "from", "local", "file", "system", ":", "param", "path", "path", "to", "read", "images", "if", "sc", "is", "defined", "path", "can", "be", "local", "or", "HDFS", ".", "Wildcard", "character", "are", "supported", ".", "if", "sc", "is", "null", "path", "is", "local", "directory", "/", "image", "file", "/", "image", "file", "with", "wildcard", "character", ":", "param", "sc", "SparkContext", ":", "param", "min_partitions", "A", "suggestion", "value", "of", "the", "minimal", "splitting", "number", "for", "input", "data", ".", ":", "return", "ImageFrame" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/transform/vision/image.py#L115-L127
[ "def", "read", "(", "cls", ",", "path", ",", "sc", "=", "None", ",", "min_partitions", "=", "1", ",", "bigdl_type", "=", "\"float\"", ")", ":", "return", "ImageFrame", "(", "jvalue", "=", "callBigDlFunc", "(", "bigdl_type", ",", "\"read\"", ",", "path", ",", "sc", ",", "min_partitions", ")", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
ImageFrame.read_parquet
Read parquet file as DistributedImageFrame
pyspark/bigdl/transform/vision/image.py
def read_parquet(cls, path, sc, bigdl_type="float"): """ Read parquet file as DistributedImageFrame """ return DistributedImageFrame(jvalue=callBigDlFunc(bigdl_type, "readParquet", path, sc))
def read_parquet(cls, path, sc, bigdl_type="float"): """ Read parquet file as DistributedImageFrame """ return DistributedImageFrame(jvalue=callBigDlFunc(bigdl_type, "readParquet", path, sc))
[ "Read", "parquet", "file", "as", "DistributedImageFrame" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/transform/vision/image.py#L130-L134
[ "def", "read_parquet", "(", "cls", ",", "path", ",", "sc", ",", "bigdl_type", "=", "\"float\"", ")", ":", "return", "DistributedImageFrame", "(", "jvalue", "=", "callBigDlFunc", "(", "bigdl_type", ",", "\"readParquet\"", ",", "path", ",", "sc", ")", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
ImageFrame.write_parquet
write ImageFrame as parquet file
pyspark/bigdl/transform/vision/image.py
def write_parquet(cls, path, output, sc, partition_num = 1, bigdl_type="float"): """ write ImageFrame as parquet file """ return callBigDlFunc(bigdl_type, "writeParquet", path, output, sc, partition_num)
def write_parquet(cls, path, output, sc, partition_num = 1, bigdl_type="float"): """ write ImageFrame as parquet file """ return callBigDlFunc(bigdl_type, "writeParquet", path, output, sc, partition_num)
[ "write", "ImageFrame", "as", "parquet", "file" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/transform/vision/image.py#L137-L141
[ "def", "write_parquet", "(", "cls", ",", "path", ",", "output", ",", "sc", ",", "partition_num", "=", "1", ",", "bigdl_type", "=", "\"float\"", ")", ":", "return", "callBigDlFunc", "(", "bigdl_type", ",", "\"writeParquet\"", ",", "path", ",", "output", ",", "sc", ",", "partition_num", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
ImageFrame.transform
transformImageFrame
pyspark/bigdl/transform/vision/image.py
def transform(self, transformer, bigdl_type="float"): """ transformImageFrame """ self.value = callBigDlFunc(bigdl_type, "transformImageFrame", transformer, self.value) return self
def transform(self, transformer, bigdl_type="float"): """ transformImageFrame """ self.value = callBigDlFunc(bigdl_type, "transformImageFrame", transformer, self.value) return self
[ "transformImageFrame" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/transform/vision/image.py#L155-L161
[ "def", "transform", "(", "self", ",", "transformer", ",", "bigdl_type", "=", "\"float\"", ")", ":", "self", ".", "value", "=", "callBigDlFunc", "(", "bigdl_type", ",", "\"transformImageFrame\"", ",", "transformer", ",", "self", ".", "value", ")", "return", "self" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
ImageFrame.get_image
get image from ImageFrame
pyspark/bigdl/transform/vision/image.py
def get_image(self, float_key="floats", to_chw=True): """ get image from ImageFrame """ return self.image_frame.get_image(float_key, to_chw)
def get_image(self, float_key="floats", to_chw=True): """ get image from ImageFrame """ return self.image_frame.get_image(float_key, to_chw)
[ "get", "image", "from", "ImageFrame" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/transform/vision/image.py#L163-L167
[ "def", "get_image", "(", "self", ",", "float_key", "=", "\"floats\"", ",", "to_chw", "=", "True", ")", ":", "return", "self", ".", "image_frame", ".", "get_image", "(", "float_key", ",", "to_chw", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
ImageFrame.random_split
Random split imageframes according to weights :param weights: weights for each ImageFrame :return:
pyspark/bigdl/transform/vision/image.py
def random_split(self, weights): """ Random split imageframes according to weights :param weights: weights for each ImageFrame :return: """ jvalues = self.image_frame.random_split(weights) return [ImageFrame(jvalue) for jvalue in jvalues]
def random_split(self, weights): """ Random split imageframes according to weights :param weights: weights for each ImageFrame :return: """ jvalues = self.image_frame.random_split(weights) return [ImageFrame(jvalue) for jvalue in jvalues]
[ "Random", "split", "imageframes", "according", "to", "weights", ":", "param", "weights", ":", "weights", "for", "each", "ImageFrame", ":", "return", ":" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/transform/vision/image.py#L200-L207
[ "def", "random_split", "(", "self", ",", "weights", ")", ":", "jvalues", "=", "self", ".", "image_frame", ".", "random_split", "(", "weights", ")", "return", "[", "ImageFrame", "(", "jvalue", ")", "for", "jvalue", "in", "jvalues", "]" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
LocalImageFrame.get_image
get image list from ImageFrame
pyspark/bigdl/transform/vision/image.py
def get_image(self, float_key="floats", to_chw=True): """ get image list from ImageFrame """ tensors = callBigDlFunc(self.bigdl_type, "localImageFrameToImageTensor", self.value, float_key, to_chw) return map(lambda tensor: tensor.to_ndarray(), tensors)
def get_image(self, float_key="floats", to_chw=True): """ get image list from ImageFrame """ tensors = callBigDlFunc(self.bigdl_type, "localImageFrameToImageTensor", self.value, float_key, to_chw) return map(lambda tensor: tensor.to_ndarray(), tensors)
[ "get", "image", "list", "from", "ImageFrame" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/transform/vision/image.py#L226-L232
[ "def", "get_image", "(", "self", ",", "float_key", "=", "\"floats\"", ",", "to_chw", "=", "True", ")", ":", "tensors", "=", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"localImageFrameToImageTensor\"", ",", "self", ".", "value", ",", "float_key", ",", "to_chw", ")", "return", "map", "(", "lambda", "tensor", ":", "tensor", ".", "to_ndarray", "(", ")", ",", "tensors", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
DistributedImageFrame.get_label
get label rdd from ImageFrame
pyspark/bigdl/transform/vision/image.py
def get_label(self): """ get label rdd from ImageFrame """ tensor_rdd = callBigDlFunc(self.bigdl_type, "distributedImageFrameToLabelTensorRdd", self.value) return tensor_rdd.map(lambda tensor: tensor.to_ndarray())
def get_label(self): """ get label rdd from ImageFrame """ tensor_rdd = callBigDlFunc(self.bigdl_type, "distributedImageFrameToLabelTensorRdd", self.value) return tensor_rdd.map(lambda tensor: tensor.to_ndarray())
[ "get", "label", "rdd", "from", "ImageFrame" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/transform/vision/image.py#L283-L288
[ "def", "get_label", "(", "self", ")", ":", "tensor_rdd", "=", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"distributedImageFrameToLabelTensorRdd\"", ",", "self", ".", "value", ")", "return", "tensor_rdd", ".", "map", "(", "lambda", "tensor", ":", "tensor", ".", "to_ndarray", "(", ")", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
DistributedImageFrame.get_predict
get prediction rdd from ImageFrame
pyspark/bigdl/transform/vision/image.py
def get_predict(self, key="predict"): """ get prediction rdd from ImageFrame """ predicts = callBigDlFunc(self.bigdl_type, "distributedImageFrameToPredict", self.value, key) return predicts.map(lambda predict: (predict[0], predict[1].to_ndarray()) if predict[1] else (predict[0], None))
def get_predict(self, key="predict"): """ get prediction rdd from ImageFrame """ predicts = callBigDlFunc(self.bigdl_type, "distributedImageFrameToPredict", self.value, key) return predicts.map(lambda predict: (predict[0], predict[1].to_ndarray()) if predict[1] else (predict[0], None))
[ "get", "prediction", "rdd", "from", "ImageFrame" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/transform/vision/image.py#L290-L295
[ "def", "get_predict", "(", "self", ",", "key", "=", "\"predict\"", ")", ":", "predicts", "=", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"distributedImageFrameToPredict\"", ",", "self", ".", "value", ",", "key", ")", "return", "predicts", ".", "map", "(", "lambda", "predict", ":", "(", "predict", "[", "0", "]", ",", "predict", "[", "1", "]", ".", "to_ndarray", "(", ")", ")", "if", "predict", "[", "1", "]", "else", "(", "predict", "[", "0", "]", ",", "None", ")", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
SeqFileFolder.files_to_image_frame
Extract hadoop sequence files from an HDFS path as ImageFrame :param url: sequence files folder path :param sc: spark context :param class_num: class number of data :param partition_num: partition number, default: Engine.nodeNumber() * Engine.coreNumber()
pyspark/bigdl/transform/vision/image.py
def files_to_image_frame(cls, url, sc, class_num, partition_num=-1, bigdl_type="float"): """ Extract hadoop sequence files from an HDFS path as ImageFrame :param url: sequence files folder path :param sc: spark context :param class_num: class number of data :param partition_num: partition number, default: Engine.nodeNumber() * Engine.coreNumber() """ jvalue = callBigDlFunc(bigdl_type, "seqFilesToImageFrame", url, sc, class_num, partition_num) return ImageFrame(jvalue=jvalue)
def files_to_image_frame(cls, url, sc, class_num, partition_num=-1, bigdl_type="float"): """ Extract hadoop sequence files from an HDFS path as ImageFrame :param url: sequence files folder path :param sc: spark context :param class_num: class number of data :param partition_num: partition number, default: Engine.nodeNumber() * Engine.coreNumber() """ jvalue = callBigDlFunc(bigdl_type, "seqFilesToImageFrame", url, sc, class_num, partition_num) return ImageFrame(jvalue=jvalue)
[ "Extract", "hadoop", "sequence", "files", "from", "an", "HDFS", "path", "as", "ImageFrame", ":", "param", "url", ":", "sequence", "files", "folder", "path", ":", "param", "sc", ":", "spark", "context", ":", "param", "class_num", ":", "class", "number", "of", "data", ":", "param", "partition_num", ":", "partition", "number", "default", ":", "Engine", ".", "nodeNumber", "()", "*", "Engine", ".", "coreNumber", "()" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/transform/vision/image.py#L729-L748
[ "def", "files_to_image_frame", "(", "cls", ",", "url", ",", "sc", ",", "class_num", ",", "partition_num", "=", "-", "1", ",", "bigdl_type", "=", "\"float\"", ")", ":", "jvalue", "=", "callBigDlFunc", "(", "bigdl_type", ",", "\"seqFilesToImageFrame\"", ",", "url", ",", "sc", ",", "class_num", ",", "partition_num", ")", "return", "ImageFrame", "(", "jvalue", "=", "jvalue", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
KerasModelWrapper.evaluate
Evaluate a model by the given metrics. :param x: ndarray or list of ndarray for local mode. RDD[Sample] for distributed mode :param y: ndarray or list of ndarray for local mode and would be None for cluster mode. :param batch_size :param is_distributed: run in local mode or distributed mode. NB: if is_distributed=true, x should be RDD[Sample] and y should be None :return:
pyspark/bigdl/keras/backend.py
def evaluate(self, x, y, batch_size=32, sample_weight=None, is_distributed=False): """ Evaluate a model by the given metrics. :param x: ndarray or list of ndarray for local mode. RDD[Sample] for distributed mode :param y: ndarray or list of ndarray for local mode and would be None for cluster mode. :param batch_size :param is_distributed: run in local mode or distributed mode. NB: if is_distributed=true, x should be RDD[Sample] and y should be None :return: """ if sample_weight: unsupport_exp("sample_weight") if is_distributed: if isinstance(x, np.ndarray): input = to_sample_rdd(x, y) elif isinstance(x, RDD): input = x if self.metrics: sc = get_spark_context() return [r.result for r in self.bmodel.evaluate(input, batch_size, self.metrics)] else: raise Exception("No Metrics found.") else: raise Exception("We only support evaluation in distributed mode")
def evaluate(self, x, y, batch_size=32, sample_weight=None, is_distributed=False): """ Evaluate a model by the given metrics. :param x: ndarray or list of ndarray for local mode. RDD[Sample] for distributed mode :param y: ndarray or list of ndarray for local mode and would be None for cluster mode. :param batch_size :param is_distributed: run in local mode or distributed mode. NB: if is_distributed=true, x should be RDD[Sample] and y should be None :return: """ if sample_weight: unsupport_exp("sample_weight") if is_distributed: if isinstance(x, np.ndarray): input = to_sample_rdd(x, y) elif isinstance(x, RDD): input = x if self.metrics: sc = get_spark_context() return [r.result for r in self.bmodel.evaluate(input, batch_size, self.metrics)] else: raise Exception("No Metrics found.") else: raise Exception("We only support evaluation in distributed mode")
[ "Evaluate", "a", "model", "by", "the", "given", "metrics", ".", ":", "param", "x", ":", "ndarray", "or", "list", "of", "ndarray", "for", "local", "mode", ".", "RDD", "[", "Sample", "]", "for", "distributed", "mode", ":", "param", "y", ":", "ndarray", "or", "list", "of", "ndarray", "for", "local", "mode", "and", "would", "be", "None", "for", "cluster", "mode", ".", ":", "param", "batch_size", ":", "param", "is_distributed", ":", "run", "in", "local", "mode", "or", "distributed", "mode", ".", "NB", ":", "if", "is_distributed", "=", "true", "x", "should", "be", "RDD", "[", "Sample", "]", "and", "y", "should", "be", "None", ":", "return", ":" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/keras/backend.py#L33-L58
[ "def", "evaluate", "(", "self", ",", "x", ",", "y", ",", "batch_size", "=", "32", ",", "sample_weight", "=", "None", ",", "is_distributed", "=", "False", ")", ":", "if", "sample_weight", ":", "unsupport_exp", "(", "\"sample_weight\"", ")", "if", "is_distributed", ":", "if", "isinstance", "(", "x", ",", "np", ".", "ndarray", ")", ":", "input", "=", "to_sample_rdd", "(", "x", ",", "y", ")", "elif", "isinstance", "(", "x", ",", "RDD", ")", ":", "input", "=", "x", "if", "self", ".", "metrics", ":", "sc", "=", "get_spark_context", "(", ")", "return", "[", "r", ".", "result", "for", "r", "in", "self", ".", "bmodel", ".", "evaluate", "(", "input", ",", "batch_size", ",", "self", ".", "metrics", ")", "]", "else", ":", "raise", "Exception", "(", "\"No Metrics found.\"", ")", "else", ":", "raise", "Exception", "(", "\"We only support evaluation in distributed mode\"", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
KerasModelWrapper.predict
Generates output predictions for the input samples, processing the samples in a batched way. # Arguments x: the input data, as a Numpy array or list of Numpy array for local mode. as RDD[Sample] for distributed mode is_distributed: used to control run in local or cluster. the default value is False # Returns A Numpy array or RDD[Sample] of predictions.
pyspark/bigdl/keras/backend.py
def predict(self, x, batch_size=None, verbose=None, is_distributed=False): """Generates output predictions for the input samples, processing the samples in a batched way. # Arguments x: the input data, as a Numpy array or list of Numpy array for local mode. as RDD[Sample] for distributed mode is_distributed: used to control run in local or cluster. the default value is False # Returns A Numpy array or RDD[Sample] of predictions. """ if batch_size or verbose: raise Exception("we don't support batch_size or verbose for now") if is_distributed: if isinstance(x, np.ndarray): input = to_sample_rdd(x, np.zeros([x.shape[0]])) # np.asarray(self.bmodel.predict(x_rdd).collect()) elif isinstance(x, RDD): input = x return self.bmodel.predict(input) else: if isinstance(x, np.ndarray): return self.bmodel.predict_local(x) raise Exception("not supported type: %s" % x)
def predict(self, x, batch_size=None, verbose=None, is_distributed=False): """Generates output predictions for the input samples, processing the samples in a batched way. # Arguments x: the input data, as a Numpy array or list of Numpy array for local mode. as RDD[Sample] for distributed mode is_distributed: used to control run in local or cluster. the default value is False # Returns A Numpy array or RDD[Sample] of predictions. """ if batch_size or verbose: raise Exception("we don't support batch_size or verbose for now") if is_distributed: if isinstance(x, np.ndarray): input = to_sample_rdd(x, np.zeros([x.shape[0]])) # np.asarray(self.bmodel.predict(x_rdd).collect()) elif isinstance(x, RDD): input = x return self.bmodel.predict(input) else: if isinstance(x, np.ndarray): return self.bmodel.predict_local(x) raise Exception("not supported type: %s" % x)
[ "Generates", "output", "predictions", "for", "the", "input", "samples", "processing", "the", "samples", "in", "a", "batched", "way", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/keras/backend.py#L60-L83
[ "def", "predict", "(", "self", ",", "x", ",", "batch_size", "=", "None", ",", "verbose", "=", "None", ",", "is_distributed", "=", "False", ")", ":", "if", "batch_size", "or", "verbose", ":", "raise", "Exception", "(", "\"we don't support batch_size or verbose for now\"", ")", "if", "is_distributed", ":", "if", "isinstance", "(", "x", ",", "np", ".", "ndarray", ")", ":", "input", "=", "to_sample_rdd", "(", "x", ",", "np", ".", "zeros", "(", "[", "x", ".", "shape", "[", "0", "]", "]", ")", ")", "# np.asarray(self.bmodel.predict(x_rdd).collect())", "elif", "isinstance", "(", "x", ",", "RDD", ")", ":", "input", "=", "x", "return", "self", ".", "bmodel", ".", "predict", "(", "input", ")", "else", ":", "if", "isinstance", "(", "x", ",", "np", ".", "ndarray", ")", ":", "return", "self", ".", "bmodel", ".", "predict_local", "(", "x", ")", "raise", "Exception", "(", "\"not supported type: %s\"", "%", "x", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
KerasModelWrapper.fit
Optimize the model by the given options :param x: ndarray or list of ndarray for local mode. RDD[Sample] for distributed mode :param y: ndarray or list of ndarray for local mode and would be None for cluster mode. is_distributed: used to control run in local or cluster. the default value is False. NB: if is_distributed=true, x should be RDD[Sample] and y should be None :param is_distributed: Whether to train in local mode or distributed mode :return: A Numpy array or RDD[Sample] of predictions.
pyspark/bigdl/keras/backend.py
def fit(self, x, y=None, batch_size=32, nb_epoch=10, verbose=1, callbacks=None, validation_split=0., validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, is_distributed=False): """Optimize the model by the given options :param x: ndarray or list of ndarray for local mode. RDD[Sample] for distributed mode :param y: ndarray or list of ndarray for local mode and would be None for cluster mode. is_distributed: used to control run in local or cluster. the default value is False. NB: if is_distributed=true, x should be RDD[Sample] and y should be None :param is_distributed: Whether to train in local mode or distributed mode :return: A Numpy array or RDD[Sample] of predictions. """ if callbacks: raise Exception("We don't support callbacks in fit for now") if class_weight: unsupport_exp("class_weight") if sample_weight: unsupport_exp("sample_weight") if initial_epoch != 0: unsupport_exp("initial_epoch") if shuffle != True: unsupport_exp("shuffle") if validation_split != 0.: unsupport_exp("validation_split") bopt = self.__create_optimizer(x=x, y=y, batch_size=batch_size, nb_epoch=nb_epoch, validation_data=validation_data, is_distributed=is_distributed) bopt.optimize()
def fit(self, x, y=None, batch_size=32, nb_epoch=10, verbose=1, callbacks=None, validation_split=0., validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, is_distributed=False): """Optimize the model by the given options :param x: ndarray or list of ndarray for local mode. RDD[Sample] for distributed mode :param y: ndarray or list of ndarray for local mode and would be None for cluster mode. is_distributed: used to control run in local or cluster. the default value is False. NB: if is_distributed=true, x should be RDD[Sample] and y should be None :param is_distributed: Whether to train in local mode or distributed mode :return: A Numpy array or RDD[Sample] of predictions. """ if callbacks: raise Exception("We don't support callbacks in fit for now") if class_weight: unsupport_exp("class_weight") if sample_weight: unsupport_exp("sample_weight") if initial_epoch != 0: unsupport_exp("initial_epoch") if shuffle != True: unsupport_exp("shuffle") if validation_split != 0.: unsupport_exp("validation_split") bopt = self.__create_optimizer(x=x, y=y, batch_size=batch_size, nb_epoch=nb_epoch, validation_data=validation_data, is_distributed=is_distributed) bopt.optimize()
[ "Optimize", "the", "model", "by", "the", "given", "options" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/keras/backend.py#L85-L117
[ "def", "fit", "(", "self", ",", "x", ",", "y", "=", "None", ",", "batch_size", "=", "32", ",", "nb_epoch", "=", "10", ",", "verbose", "=", "1", ",", "callbacks", "=", "None", ",", "validation_split", "=", "0.", ",", "validation_data", "=", "None", ",", "shuffle", "=", "True", ",", "class_weight", "=", "None", ",", "sample_weight", "=", "None", ",", "initial_epoch", "=", "0", ",", "is_distributed", "=", "False", ")", ":", "if", "callbacks", ":", "raise", "Exception", "(", "\"We don't support callbacks in fit for now\"", ")", "if", "class_weight", ":", "unsupport_exp", "(", "\"class_weight\"", ")", "if", "sample_weight", ":", "unsupport_exp", "(", "\"sample_weight\"", ")", "if", "initial_epoch", "!=", "0", ":", "unsupport_exp", "(", "\"initial_epoch\"", ")", "if", "shuffle", "!=", "True", ":", "unsupport_exp", "(", "\"shuffle\"", ")", "if", "validation_split", "!=", "0.", ":", "unsupport_exp", "(", "\"validation_split\"", ")", "bopt", "=", "self", ".", "__create_optimizer", "(", "x", "=", "x", ",", "y", "=", "y", ",", "batch_size", "=", "batch_size", ",", "nb_epoch", "=", "nb_epoch", ",", "validation_data", "=", "validation_data", ",", "is_distributed", "=", "is_distributed", ")", "bopt", ".", "optimize", "(", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
DLImageTransformer.transform
Apply the transformer to the images in "inputCol" and store the transformed result into "outputCols"
pyspark/bigdl/dlframes/dl_image_transformer.py
def transform(self, dataset): """ Apply the transformer to the images in "inputCol" and store the transformed result into "outputCols" """ self._transfer_params_to_java() return callBigDlFunc(self.bigdl_type, "dlImageTransform", self.value, dataset)
def transform(self, dataset): """ Apply the transformer to the images in "inputCol" and store the transformed result into "outputCols" """ self._transfer_params_to_java() return callBigDlFunc(self.bigdl_type, "dlImageTransform", self.value, dataset)
[ "Apply", "the", "transformer", "to", "the", "images", "in", "inputCol", "and", "store", "the", "transformed", "result", "into", "outputCols" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/dlframes/dl_image_transformer.py#L44-L50
[ "def", "transform", "(", "self", ",", "dataset", ")", ":", "self", ".", "_transfer_params_to_java", "(", ")", "return", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"dlImageTransform\"", ",", "self", ".", "value", ",", "dataset", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
save_keras_definition
Save a Keras model definition to JSON with given path
pyspark/bigdl/examples/keras/keras_utils.py
def save_keras_definition(keras_model, path): """ Save a Keras model definition to JSON with given path """ model_json = keras_model.to_json() with open(path, "w") as json_file: json_file.write(model_json)
def save_keras_definition(keras_model, path): """ Save a Keras model definition to JSON with given path """ model_json = keras_model.to_json() with open(path, "w") as json_file: json_file.write(model_json)
[ "Save", "a", "Keras", "model", "definition", "to", "JSON", "with", "given", "path" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/examples/keras/keras_utils.py#L20-L26
[ "def", "save_keras_definition", "(", "keras_model", ",", "path", ")", ":", "model_json", "=", "keras_model", ".", "to_json", "(", ")", "with", "open", "(", "path", ",", "\"w\"", ")", "as", "json_file", ":", "json_file", ".", "write", "(", "model_json", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
get_mnist
Download or load MNIST dataset to/from the specified path. Normalize and transform input data into an RDD of Sample
pyspark/bigdl/examples/keras/mnist_cnn.py
def get_mnist(sc, data_type="train", location="/tmp/mnist"): """ Download or load MNIST dataset to/from the specified path. Normalize and transform input data into an RDD of Sample """ from bigdl.dataset import mnist from bigdl.dataset.transformer import normalizer (images, labels) = mnist.read_data_sets(location, data_type) images = images.reshape((images.shape[0], ) + input_shape) images = sc.parallelize(images) labels = sc.parallelize(labels + 1) # Target start from 1 in BigDL record = images.zip(labels).map(lambda rec_tuple: (normalizer(rec_tuple[0], mnist.TRAIN_MEAN, mnist.TRAIN_STD), rec_tuple[1])) \ .map(lambda t: Sample.from_ndarray(t[0], t[1])) return record
def get_mnist(sc, data_type="train", location="/tmp/mnist"): """ Download or load MNIST dataset to/from the specified path. Normalize and transform input data into an RDD of Sample """ from bigdl.dataset import mnist from bigdl.dataset.transformer import normalizer (images, labels) = mnist.read_data_sets(location, data_type) images = images.reshape((images.shape[0], ) + input_shape) images = sc.parallelize(images) labels = sc.parallelize(labels + 1) # Target start from 1 in BigDL record = images.zip(labels).map(lambda rec_tuple: (normalizer(rec_tuple[0], mnist.TRAIN_MEAN, mnist.TRAIN_STD), rec_tuple[1])) \ .map(lambda t: Sample.from_ndarray(t[0], t[1])) return record
[ "Download", "or", "load", "MNIST", "dataset", "to", "/", "from", "the", "specified", "path", ".", "Normalize", "and", "transform", "input", "data", "into", "an", "RDD", "of", "Sample" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/examples/keras/mnist_cnn.py#L34-L48
[ "def", "get_mnist", "(", "sc", ",", "data_type", "=", "\"train\"", ",", "location", "=", "\"/tmp/mnist\"", ")", ":", "from", "bigdl", ".", "dataset", "import", "mnist", "from", "bigdl", ".", "dataset", ".", "transformer", "import", "normalizer", "(", "images", ",", "labels", ")", "=", "mnist", ".", "read_data_sets", "(", "location", ",", "data_type", ")", "images", "=", "images", ".", "reshape", "(", "(", "images", ".", "shape", "[", "0", "]", ",", ")", "+", "input_shape", ")", "images", "=", "sc", ".", "parallelize", "(", "images", ")", "labels", "=", "sc", ".", "parallelize", "(", "labels", "+", "1", ")", "# Target start from 1 in BigDL", "record", "=", "images", ".", "zip", "(", "labels", ")", ".", "map", "(", "lambda", "rec_tuple", ":", "(", "normalizer", "(", "rec_tuple", "[", "0", "]", ",", "mnist", ".", "TRAIN_MEAN", ",", "mnist", ".", "TRAIN_STD", ")", ",", "rec_tuple", "[", "1", "]", ")", ")", ".", "map", "(", "lambda", "t", ":", "Sample", ".", "from_ndarray", "(", "t", "[", "0", "]", ",", "t", "[", "1", "]", ")", ")", "return", "record" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
build_keras_model
Define a convnet model in Keras 1.2.2
pyspark/bigdl/examples/keras/mnist_cnn.py
def build_keras_model(): """ Define a convnet model in Keras 1.2.2 """ from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D keras_model = Sequential() keras_model.add(Convolution2D(32, 3, 3, border_mode='valid', input_shape=input_shape)) keras_model.add(Activation('relu')) keras_model.add(Convolution2D(32, 3, 3)) keras_model.add(Activation('relu')) keras_model.add(MaxPooling2D(pool_size=(2, 2))) keras_model.add(Dropout(0.25)) keras_model.add(Flatten()) keras_model.add(Dense(128)) keras_model.add(Activation('relu')) keras_model.add(Dropout(0.5)) keras_model.add(Dense(10)) keras_model.add(Activation('softmax')) return keras_model
def build_keras_model(): """ Define a convnet model in Keras 1.2.2 """ from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D keras_model = Sequential() keras_model.add(Convolution2D(32, 3, 3, border_mode='valid', input_shape=input_shape)) keras_model.add(Activation('relu')) keras_model.add(Convolution2D(32, 3, 3)) keras_model.add(Activation('relu')) keras_model.add(MaxPooling2D(pool_size=(2, 2))) keras_model.add(Dropout(0.25)) keras_model.add(Flatten()) keras_model.add(Dense(128)) keras_model.add(Activation('relu')) keras_model.add(Dropout(0.5)) keras_model.add(Dense(10)) keras_model.add(Activation('softmax')) return keras_model
[ "Define", "a", "convnet", "model", "in", "Keras", "1", ".", "2", ".", "2" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/examples/keras/mnist_cnn.py#L51-L73
[ "def", "build_keras_model", "(", ")", ":", "from", "keras", ".", "models", "import", "Sequential", "from", "keras", ".", "layers", "import", "Dense", ",", "Dropout", ",", "Activation", ",", "Flatten", "from", "keras", ".", "layers", "import", "Convolution2D", ",", "MaxPooling2D", "keras_model", "=", "Sequential", "(", ")", "keras_model", ".", "add", "(", "Convolution2D", "(", "32", ",", "3", ",", "3", ",", "border_mode", "=", "'valid'", ",", "input_shape", "=", "input_shape", ")", ")", "keras_model", ".", "add", "(", "Activation", "(", "'relu'", ")", ")", "keras_model", ".", "add", "(", "Convolution2D", "(", "32", ",", "3", ",", "3", ")", ")", "keras_model", ".", "add", "(", "Activation", "(", "'relu'", ")", ")", "keras_model", ".", "add", "(", "MaxPooling2D", "(", "pool_size", "=", "(", "2", ",", "2", ")", ")", ")", "keras_model", ".", "add", "(", "Dropout", "(", "0.25", ")", ")", "keras_model", ".", "add", "(", "Flatten", "(", ")", ")", "keras_model", ".", "add", "(", "Dense", "(", "128", ")", ")", "keras_model", ".", "add", "(", "Activation", "(", "'relu'", ")", ")", "keras_model", ".", "add", "(", "Dropout", "(", "0.5", ")", ")", "keras_model", ".", "add", "(", "Dense", "(", "10", ")", ")", "keras_model", ".", "add", "(", "Activation", "(", "'softmax'", ")", ")", "return", "keras_model" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
SharedStaticUtils.load
Load a pre-trained Bigdl model. :param path: The path containing the pre-trained model. :return: A pre-trained model.
pyspark/bigdl/nn/layer.py
def load(path, bigdl_type="float"): """ Load a pre-trained Bigdl model. :param path: The path containing the pre-trained model. :return: A pre-trained model. """ jmodel = callBigDlFunc(bigdl_type, "loadBigDL", path) return Layer.of(jmodel)
def load(path, bigdl_type="float"): """ Load a pre-trained Bigdl model. :param path: The path containing the pre-trained model. :return: A pre-trained model. """ jmodel = callBigDlFunc(bigdl_type, "loadBigDL", path) return Layer.of(jmodel)
[ "Load", "a", "pre", "-", "trained", "Bigdl", "model", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L68-L76
[ "def", "load", "(", "path", ",", "bigdl_type", "=", "\"float\"", ")", ":", "jmodel", "=", "callBigDlFunc", "(", "bigdl_type", ",", "\"loadBigDL\"", ",", "path", ")", "return", "Layer", ".", "of", "(", "jmodel", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
SharedStaticUtils.of
Create a Python Layer base on the given java value and the real type. :param jvalue: Java object create by Py4j :return: A Python Layer
pyspark/bigdl/nn/layer.py
def of(jvalue, bigdl_type="float"): """ Create a Python Layer base on the given java value and the real type. :param jvalue: Java object create by Py4j :return: A Python Layer """ def get_py_name(jclass_name): if jclass_name == "StaticGraph" or jclass_name == "DynamicGraph": return "Model" elif jclass_name == "Input": return "Layer" else: return jclass_name jname = callBigDlFunc(bigdl_type, "getRealClassNameOfJValue", jvalue) jpackage_name = ".".join(jname.split(".")[:-1]) pclass_name = get_py_name(jname.split(".")[-1]) if "com.intel.analytics.bigdl.nn.keras.Model" == jname or \ "com.intel.analytics.bigdl.nn.keras.Sequential" == jname: base_module = importlib.import_module('bigdl.nn.keras.topology') elif "com.intel.analytics.bigdl.nn.keras" == jpackage_name: base_module = importlib.import_module('bigdl.nn.keras.layer') else: base_module = importlib.import_module('bigdl.nn.layer') realClassName = "Layer" # The top base class if pclass_name in dir(base_module): realClassName = pclass_name module = getattr(base_module, realClassName) jvalue_creator = getattr(module, "from_jvalue") model = jvalue_creator(jvalue, bigdl_type) return model
def of(jvalue, bigdl_type="float"): """ Create a Python Layer base on the given java value and the real type. :param jvalue: Java object create by Py4j :return: A Python Layer """ def get_py_name(jclass_name): if jclass_name == "StaticGraph" or jclass_name == "DynamicGraph": return "Model" elif jclass_name == "Input": return "Layer" else: return jclass_name jname = callBigDlFunc(bigdl_type, "getRealClassNameOfJValue", jvalue) jpackage_name = ".".join(jname.split(".")[:-1]) pclass_name = get_py_name(jname.split(".")[-1]) if "com.intel.analytics.bigdl.nn.keras.Model" == jname or \ "com.intel.analytics.bigdl.nn.keras.Sequential" == jname: base_module = importlib.import_module('bigdl.nn.keras.topology') elif "com.intel.analytics.bigdl.nn.keras" == jpackage_name: base_module = importlib.import_module('bigdl.nn.keras.layer') else: base_module = importlib.import_module('bigdl.nn.layer') realClassName = "Layer" # The top base class if pclass_name in dir(base_module): realClassName = pclass_name module = getattr(base_module, realClassName) jvalue_creator = getattr(module, "from_jvalue") model = jvalue_creator(jvalue, bigdl_type) return model
[ "Create", "a", "Python", "Layer", "base", "on", "the", "given", "java", "value", "and", "the", "real", "type", ".", ":", "param", "jvalue", ":", "Java", "object", "create", "by", "Py4j", ":", "return", ":", "A", "Python", "Layer" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L80-L115
[ "def", "of", "(", "jvalue", ",", "bigdl_type", "=", "\"float\"", ")", ":", "def", "get_py_name", "(", "jclass_name", ")", ":", "if", "jclass_name", "==", "\"StaticGraph\"", "or", "jclass_name", "==", "\"DynamicGraph\"", ":", "return", "\"Model\"", "elif", "jclass_name", "==", "\"Input\"", ":", "return", "\"Layer\"", "else", ":", "return", "jclass_name", "jname", "=", "callBigDlFunc", "(", "bigdl_type", ",", "\"getRealClassNameOfJValue\"", ",", "jvalue", ")", "jpackage_name", "=", "\".\"", ".", "join", "(", "jname", ".", "split", "(", "\".\"", ")", "[", ":", "-", "1", "]", ")", "pclass_name", "=", "get_py_name", "(", "jname", ".", "split", "(", "\".\"", ")", "[", "-", "1", "]", ")", "if", "\"com.intel.analytics.bigdl.nn.keras.Model\"", "==", "jname", "or", "\"com.intel.analytics.bigdl.nn.keras.Sequential\"", "==", "jname", ":", "base_module", "=", "importlib", ".", "import_module", "(", "'bigdl.nn.keras.topology'", ")", "elif", "\"com.intel.analytics.bigdl.nn.keras\"", "==", "jpackage_name", ":", "base_module", "=", "importlib", ".", "import_module", "(", "'bigdl.nn.keras.layer'", ")", "else", ":", "base_module", "=", "importlib", ".", "import_module", "(", "'bigdl.nn.layer'", ")", "realClassName", "=", "\"Layer\"", "# The top base class", "if", "pclass_name", "in", "dir", "(", "base_module", ")", ":", "realClassName", "=", "pclass_name", "module", "=", "getattr", "(", "base_module", ",", "realClassName", ")", "jvalue_creator", "=", "getattr", "(", "module", ",", "\"from_jvalue\"", ")", "model", "=", "jvalue_creator", "(", "jvalue", ",", "bigdl_type", ")", "return", "model" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Layer.set_running_mean
Set the running mean of the layer. Only use this method for a BatchNormalization layer. :param running_mean: a Numpy array.
pyspark/bigdl/nn/layer.py
def set_running_mean(self, running_mean): """ Set the running mean of the layer. Only use this method for a BatchNormalization layer. :param running_mean: a Numpy array. """ callBigDlFunc(self.bigdl_type, "setRunningMean", self.value, JTensor.from_ndarray(running_mean)) return self
def set_running_mean(self, running_mean): """ Set the running mean of the layer. Only use this method for a BatchNormalization layer. :param running_mean: a Numpy array. """ callBigDlFunc(self.bigdl_type, "setRunningMean", self.value, JTensor.from_ndarray(running_mean)) return self
[ "Set", "the", "running", "mean", "of", "the", "layer", ".", "Only", "use", "this", "method", "for", "a", "BatchNormalization", "layer", ".", ":", "param", "running_mean", ":", "a", "Numpy", "array", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L134-L142
[ "def", "set_running_mean", "(", "self", ",", "running_mean", ")", ":", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"setRunningMean\"", ",", "self", ".", "value", ",", "JTensor", ".", "from_ndarray", "(", "running_mean", ")", ")", "return", "self" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Layer.set_running_std
Set the running variance of the layer. Only use this method for a BatchNormalization layer. :param running_std: a Numpy array.
pyspark/bigdl/nn/layer.py
def set_running_std(self, running_std): """ Set the running variance of the layer. Only use this method for a BatchNormalization layer. :param running_std: a Numpy array. """ callBigDlFunc(self.bigdl_type, "setRunningStd", self.value, JTensor.from_ndarray(running_std)) return self
def set_running_std(self, running_std): """ Set the running variance of the layer. Only use this method for a BatchNormalization layer. :param running_std: a Numpy array. """ callBigDlFunc(self.bigdl_type, "setRunningStd", self.value, JTensor.from_ndarray(running_std)) return self
[ "Set", "the", "running", "variance", "of", "the", "layer", ".", "Only", "use", "this", "method", "for", "a", "BatchNormalization", "layer", ".", ":", "param", "running_std", ":", "a", "Numpy", "array", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L144-L152
[ "def", "set_running_std", "(", "self", ",", "running_std", ")", ":", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"setRunningStd\"", ",", "self", ".", "value", ",", "JTensor", ".", "from_ndarray", "(", "running_std", ")", ")", "return", "self" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Layer.from_jvalue
Create a Python Model base on the given java value :param jvalue: Java object create by Py4j :return: A Python Model
pyspark/bigdl/nn/layer.py
def from_jvalue(jvalue, bigdl_type="float"): """ Create a Python Model base on the given java value :param jvalue: Java object create by Py4j :return: A Python Model """ model = Layer(jvalue=jvalue, bigdl_type=bigdl_type) model.value = jvalue return model
def from_jvalue(jvalue, bigdl_type="float"): """ Create a Python Model base on the given java value :param jvalue: Java object create by Py4j :return: A Python Model """ model = Layer(jvalue=jvalue, bigdl_type=bigdl_type) model.value = jvalue return model
[ "Create", "a", "Python", "Model", "base", "on", "the", "given", "java", "value", ":", "param", "jvalue", ":", "Java", "object", "create", "by", "Py4j", ":", "return", ":", "A", "Python", "Model" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L177-L185
[ "def", "from_jvalue", "(", "jvalue", ",", "bigdl_type", "=", "\"float\"", ")", ":", "model", "=", "Layer", "(", "jvalue", "=", "jvalue", ",", "bigdl_type", "=", "bigdl_type", ")", "model", ".", "value", "=", "jvalue", "return", "model" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Layer.check_input
:param input: ndarray or list of ndarray or JTensor or list of JTensor. :return: (list of JTensor, isTable)
pyspark/bigdl/nn/layer.py
def check_input(input): """ :param input: ndarray or list of ndarray or JTensor or list of JTensor. :return: (list of JTensor, isTable) """ def to_jtensor(i): if isinstance(i, np.ndarray): return JTensor.from_ndarray(i) elif isinstance(i, JTensor): return i else: raise Exception("Error unknown input type %s" % type(i)) if type(input) is list: if len(input) == 0: raise Exception('Error when checking: empty input') return list(map(lambda i: to_jtensor(i), input)), True else: return [to_jtensor(input)], False
def check_input(input): """ :param input: ndarray or list of ndarray or JTensor or list of JTensor. :return: (list of JTensor, isTable) """ def to_jtensor(i): if isinstance(i, np.ndarray): return JTensor.from_ndarray(i) elif isinstance(i, JTensor): return i else: raise Exception("Error unknown input type %s" % type(i)) if type(input) is list: if len(input) == 0: raise Exception('Error when checking: empty input') return list(map(lambda i: to_jtensor(i), input)), True else: return [to_jtensor(input)], False
[ ":", "param", "input", ":", "ndarray", "or", "list", "of", "ndarray", "or", "JTensor", "or", "list", "of", "JTensor", ".", ":", "return", ":", "(", "list", "of", "JTensor", "isTable", ")" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L218-L235
[ "def", "check_input", "(", "input", ")", ":", "def", "to_jtensor", "(", "i", ")", ":", "if", "isinstance", "(", "i", ",", "np", ".", "ndarray", ")", ":", "return", "JTensor", ".", "from_ndarray", "(", "i", ")", "elif", "isinstance", "(", "i", ",", "JTensor", ")", ":", "return", "i", "else", ":", "raise", "Exception", "(", "\"Error unknown input type %s\"", "%", "type", "(", "i", ")", ")", "if", "type", "(", "input", ")", "is", "list", ":", "if", "len", "(", "input", ")", "==", "0", ":", "raise", "Exception", "(", "'Error when checking: empty input'", ")", "return", "list", "(", "map", "(", "lambda", "i", ":", "to_jtensor", "(", "i", ")", ",", "input", ")", ")", ",", "True", "else", ":", "return", "[", "to_jtensor", "(", "input", ")", "]", ",", "False" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Layer.forward
NB: It's for debug only, please use optimizer.optimize() in production. Takes an input object, and computes the corresponding output of the module :param input: ndarray or list of ndarray :param input: ndarray or list of ndarray or JTensor or list of JTensor. :return: ndarray or list of ndarray
pyspark/bigdl/nn/layer.py
def forward(self, input): """ NB: It's for debug only, please use optimizer.optimize() in production. Takes an input object, and computes the corresponding output of the module :param input: ndarray or list of ndarray :param input: ndarray or list of ndarray or JTensor or list of JTensor. :return: ndarray or list of ndarray """ jinput, input_is_table = self.check_input(input) output = callBigDlFunc(self.bigdl_type, "modelForward", self.value, jinput, input_is_table) return self.convert_output(output)
def forward(self, input): """ NB: It's for debug only, please use optimizer.optimize() in production. Takes an input object, and computes the corresponding output of the module :param input: ndarray or list of ndarray :param input: ndarray or list of ndarray or JTensor or list of JTensor. :return: ndarray or list of ndarray """ jinput, input_is_table = self.check_input(input) output = callBigDlFunc(self.bigdl_type, "modelForward", self.value, jinput, input_is_table) return self.convert_output(output)
[ "NB", ":", "It", "s", "for", "debug", "only", "please", "use", "optimizer", ".", "optimize", "()", "in", "production", ".", "Takes", "an", "input", "object", "and", "computes", "the", "corresponding", "output", "of", "the", "module" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L246-L261
[ "def", "forward", "(", "self", ",", "input", ")", ":", "jinput", ",", "input_is_table", "=", "self", ".", "check_input", "(", "input", ")", "output", "=", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"modelForward\"", ",", "self", ".", "value", ",", "jinput", ",", "input_is_table", ")", "return", "self", ".", "convert_output", "(", "output", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Layer.backward
NB: It's for debug only, please use optimizer.optimize() in production. Performs a back-propagation step through the module, with respect to the given input. In general this method makes the assumption forward(input) has been called before, with the same input. This is necessary for optimization reasons. If you do not respect this rule, backward() will compute incorrect gradients. :param input: ndarray or list of ndarray or JTensor or list of JTensor. :param grad_output: ndarray or list of ndarray or JTensor or list of JTensor. :return: ndarray or list of ndarray
pyspark/bigdl/nn/layer.py
def backward(self, input, grad_output): """ NB: It's for debug only, please use optimizer.optimize() in production. Performs a back-propagation step through the module, with respect to the given input. In general this method makes the assumption forward(input) has been called before, with the same input. This is necessary for optimization reasons. If you do not respect this rule, backward() will compute incorrect gradients. :param input: ndarray or list of ndarray or JTensor or list of JTensor. :param grad_output: ndarray or list of ndarray or JTensor or list of JTensor. :return: ndarray or list of ndarray """ jinput, input_is_table = self.check_input(input) jgrad_output, grad_output_is_table = self.check_input(grad_output) output = callBigDlFunc(self.bigdl_type, "modelBackward", self.value, jinput, input_is_table, jgrad_output, grad_output_is_table) return self.convert_output(output)
def backward(self, input, grad_output): """ NB: It's for debug only, please use optimizer.optimize() in production. Performs a back-propagation step through the module, with respect to the given input. In general this method makes the assumption forward(input) has been called before, with the same input. This is necessary for optimization reasons. If you do not respect this rule, backward() will compute incorrect gradients. :param input: ndarray or list of ndarray or JTensor or list of JTensor. :param grad_output: ndarray or list of ndarray or JTensor or list of JTensor. :return: ndarray or list of ndarray """ jinput, input_is_table = self.check_input(input) jgrad_output, grad_output_is_table = self.check_input(grad_output) output = callBigDlFunc(self.bigdl_type, "modelBackward", self.value, jinput, input_is_table, jgrad_output, grad_output_is_table) return self.convert_output(output)
[ "NB", ":", "It", "s", "for", "debug", "only", "please", "use", "optimizer", ".", "optimize", "()", "in", "production", ".", "Performs", "a", "back", "-", "propagation", "step", "through", "the", "module", "with", "respect", "to", "the", "given", "input", ".", "In", "general", "this", "method", "makes", "the", "assumption", "forward", "(", "input", ")", "has", "been", "called", "before", "with", "the", "same", "input", ".", "This", "is", "necessary", "for", "optimization", "reasons", ".", "If", "you", "do", "not", "respect", "this", "rule", "backward", "()", "will", "compute", "incorrect", "gradients", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L263-L284
[ "def", "backward", "(", "self", ",", "input", ",", "grad_output", ")", ":", "jinput", ",", "input_is_table", "=", "self", ".", "check_input", "(", "input", ")", "jgrad_output", ",", "grad_output_is_table", "=", "self", ".", "check_input", "(", "grad_output", ")", "output", "=", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"modelBackward\"", ",", "self", ".", "value", ",", "jinput", ",", "input_is_table", ",", "jgrad_output", ",", "grad_output_is_table", ")", "return", "self", ".", "convert_output", "(", "output", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Layer.parameters
Get the model parameters which containing: weight, bias, gradBias, gradWeight :return: dict(layername -> dict(parametername -> ndarray))
pyspark/bigdl/nn/layer.py
def parameters(self): """ Get the model parameters which containing: weight, bias, gradBias, gradWeight :return: dict(layername -> dict(parametername -> ndarray)) """ name_to_params = callBigDlFunc(self.bigdl_type, "modelGetParameters", self.value) def to_ndarray(params): return dict((param_name, np.array(values[0], dtype=self.get_dtype()).reshape( values[1])) for param_name, values in params.items()) return dict((layer_name, to_ndarray(params)) for layer_name, params in name_to_params.items())
def parameters(self): """ Get the model parameters which containing: weight, bias, gradBias, gradWeight :return: dict(layername -> dict(parametername -> ndarray)) """ name_to_params = callBigDlFunc(self.bigdl_type, "modelGetParameters", self.value) def to_ndarray(params): return dict((param_name, np.array(values[0], dtype=self.get_dtype()).reshape( values[1])) for param_name, values in params.items()) return dict((layer_name, to_ndarray(params)) for layer_name, params in name_to_params.items())
[ "Get", "the", "model", "parameters", "which", "containing", ":", "weight", "bias", "gradBias", "gradWeight" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L310-L327
[ "def", "parameters", "(", "self", ")", ":", "name_to_params", "=", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"modelGetParameters\"", ",", "self", ".", "value", ")", "def", "to_ndarray", "(", "params", ")", ":", "return", "dict", "(", "(", "param_name", ",", "np", ".", "array", "(", "values", "[", "0", "]", ",", "dtype", "=", "self", ".", "get_dtype", "(", ")", ")", ".", "reshape", "(", "values", "[", "1", "]", ")", ")", "for", "param_name", ",", "values", "in", "params", ".", "items", "(", ")", ")", "return", "dict", "(", "(", "layer_name", ",", "to_ndarray", "(", "params", ")", ")", "for", "layer_name", ",", "params", "in", "name_to_params", ".", "items", "(", ")", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Layer.evaluate
No argument passed in: Evaluate the model to set train = false, useful when doing test/forward :return: layer itself Three arguments passed in: A method to benchmark the model quality. :param dataset: the input data :param batch_size: batch size :param val_methods: a list of validation methods. i.e: Top1Accuracy,Top5Accuracy and Loss. :return: a list of the metrics result
pyspark/bigdl/nn/layer.py
def evaluate(self, *args): """ No argument passed in: Evaluate the model to set train = false, useful when doing test/forward :return: layer itself Three arguments passed in: A method to benchmark the model quality. :param dataset: the input data :param batch_size: batch size :param val_methods: a list of validation methods. i.e: Top1Accuracy,Top5Accuracy and Loss. :return: a list of the metrics result """ if len(args) == 0: callBigDlFunc(self.bigdl_type, "evaluate", self.value) return self elif len(args) == 3: dataset, batch_size, val_methods = args if (isinstance(dataset, ImageFrame)): return callBigDlFunc(self.bigdl_type, "modelEvaluateImageFrame", self.value, dataset, batch_size, val_methods) else: return callBigDlFunc(self.bigdl_type, "modelEvaluate", self.value, dataset, batch_size, val_methods) else: raise Exception("Error when calling evaluate(): it takes no argument or exactly three arguments only")
def evaluate(self, *args): """ No argument passed in: Evaluate the model to set train = false, useful when doing test/forward :return: layer itself Three arguments passed in: A method to benchmark the model quality. :param dataset: the input data :param batch_size: batch size :param val_methods: a list of validation methods. i.e: Top1Accuracy,Top5Accuracy and Loss. :return: a list of the metrics result """ if len(args) == 0: callBigDlFunc(self.bigdl_type, "evaluate", self.value) return self elif len(args) == 3: dataset, batch_size, val_methods = args if (isinstance(dataset, ImageFrame)): return callBigDlFunc(self.bigdl_type, "modelEvaluateImageFrame", self.value, dataset, batch_size, val_methods) else: return callBigDlFunc(self.bigdl_type, "modelEvaluate", self.value, dataset, batch_size, val_methods) else: raise Exception("Error when calling evaluate(): it takes no argument or exactly three arguments only")
[ "No", "argument", "passed", "in", ":", "Evaluate", "the", "model", "to", "set", "train", "=", "false", "useful", "when", "doing", "test", "/", "forward", ":", "return", ":", "layer", "itself" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L329-L360
[ "def", "evaluate", "(", "self", ",", "*", "args", ")", ":", "if", "len", "(", "args", ")", "==", "0", ":", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"evaluate\"", ",", "self", ".", "value", ")", "return", "self", "elif", "len", "(", "args", ")", "==", "3", ":", "dataset", ",", "batch_size", ",", "val_methods", "=", "args", "if", "(", "isinstance", "(", "dataset", ",", "ImageFrame", ")", ")", ":", "return", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"modelEvaluateImageFrame\"", ",", "self", ".", "value", ",", "dataset", ",", "batch_size", ",", "val_methods", ")", "else", ":", "return", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"modelEvaluate\"", ",", "self", ".", "value", ",", "dataset", ",", "batch_size", ",", "val_methods", ")", "else", ":", "raise", "Exception", "(", "\"Error when calling evaluate(): it takes no argument or exactly three arguments only\"", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Layer.predict_local
:param X: X can be a ndarray or list of ndarray if the model has multiple inputs. The first dimension of X should be batch. :param batch_size: total batch size of prediction. :return: a ndarray as the prediction result.
pyspark/bigdl/nn/layer.py
def predict_local(self, X, batch_size = -1): """ :param X: X can be a ndarray or list of ndarray if the model has multiple inputs. The first dimension of X should be batch. :param batch_size: total batch size of prediction. :return: a ndarray as the prediction result. """ jresults = callBigDlFunc(self.bigdl_type, "predictLocal", self.value, self._to_jtensors(X), batch_size) return np.stack([j.to_ndarray()for j in jresults])
def predict_local(self, X, batch_size = -1): """ :param X: X can be a ndarray or list of ndarray if the model has multiple inputs. The first dimension of X should be batch. :param batch_size: total batch size of prediction. :return: a ndarray as the prediction result. """ jresults = callBigDlFunc(self.bigdl_type, "predictLocal", self.value, self._to_jtensors(X), batch_size) return np.stack([j.to_ndarray()for j in jresults])
[ ":", "param", "X", ":", "X", "can", "be", "a", "ndarray", "or", "list", "of", "ndarray", "if", "the", "model", "has", "multiple", "inputs", ".", "The", "first", "dimension", "of", "X", "should", "be", "batch", ".", ":", "param", "batch_size", ":", "total", "batch", "size", "of", "prediction", ".", ":", "return", ":", "a", "ndarray", "as", "the", "prediction", "result", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L372-L386
[ "def", "predict_local", "(", "self", ",", "X", ",", "batch_size", "=", "-", "1", ")", ":", "jresults", "=", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"predictLocal\"", ",", "self", ".", "value", ",", "self", ".", "_to_jtensors", "(", "X", ")", ",", "batch_size", ")", "return", "np", ".", "stack", "(", "[", "j", ".", "to_ndarray", "(", ")", "for", "j", "in", "jresults", "]", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Layer.predict
Model inference base on the given data. :param features: it can be a ndarray or list of ndarray for locally inference or RDD[Sample] for running in distributed fashion :param batch_size: total batch size of prediction. :return: ndarray or RDD[Sample] depend on the the type of features.
pyspark/bigdl/nn/layer.py
def predict(self, features, batch_size = -1): """ Model inference base on the given data. :param features: it can be a ndarray or list of ndarray for locally inference or RDD[Sample] for running in distributed fashion :param batch_size: total batch size of prediction. :return: ndarray or RDD[Sample] depend on the the type of features. """ if isinstance(features, RDD): return self.predict_distributed(features, batch_size) else: return self.predict_local(features, batch_size)
def predict(self, features, batch_size = -1): """ Model inference base on the given data. :param features: it can be a ndarray or list of ndarray for locally inference or RDD[Sample] for running in distributed fashion :param batch_size: total batch size of prediction. :return: ndarray or RDD[Sample] depend on the the type of features. """ if isinstance(features, RDD): return self.predict_distributed(features, batch_size) else: return self.predict_local(features, batch_size)
[ "Model", "inference", "base", "on", "the", "given", "data", ".", ":", "param", "features", ":", "it", "can", "be", "a", "ndarray", "or", "list", "of", "ndarray", "for", "locally", "inference", "or", "RDD", "[", "Sample", "]", "for", "running", "in", "distributed", "fashion", ":", "param", "batch_size", ":", "total", "batch", "size", "of", "prediction", ".", ":", "return", ":", "ndarray", "or", "RDD", "[", "Sample", "]", "depend", "on", "the", "the", "type", "of", "features", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L401-L412
[ "def", "predict", "(", "self", ",", "features", ",", "batch_size", "=", "-", "1", ")", ":", "if", "isinstance", "(", "features", ",", "RDD", ")", ":", "return", "self", ".", "predict_distributed", "(", "features", ",", "batch_size", ")", "else", ":", "return", "self", ".", "predict_local", "(", "features", ",", "batch_size", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Layer.predict_class
Model inference base on the given data which returning label :param features: it can be a ndarray or list of ndarray for locally inference or RDD[Sample] for running in distributed fashion :return: ndarray or RDD[Sample] depend on the the type of features.
pyspark/bigdl/nn/layer.py
def predict_class(self, features): """ Model inference base on the given data which returning label :param features: it can be a ndarray or list of ndarray for locally inference or RDD[Sample] for running in distributed fashion :return: ndarray or RDD[Sample] depend on the the type of features. """ if isinstance(features, RDD): return self.predict_class_distributed(features) else: return self.predict_class_local(features)
def predict_class(self, features): """ Model inference base on the given data which returning label :param features: it can be a ndarray or list of ndarray for locally inference or RDD[Sample] for running in distributed fashion :return: ndarray or RDD[Sample] depend on the the type of features. """ if isinstance(features, RDD): return self.predict_class_distributed(features) else: return self.predict_class_local(features)
[ "Model", "inference", "base", "on", "the", "given", "data", "which", "returning", "label", ":", "param", "features", ":", "it", "can", "be", "a", "ndarray", "or", "list", "of", "ndarray", "for", "locally", "inference", "or", "RDD", "[", "Sample", "]", "for", "running", "in", "distributed", "fashion", ":", "return", ":", "ndarray", "or", "RDD", "[", "Sample", "]", "depend", "on", "the", "the", "type", "of", "features", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L414-L424
[ "def", "predict_class", "(", "self", ",", "features", ")", ":", "if", "isinstance", "(", "features", ",", "RDD", ")", ":", "return", "self", ".", "predict_class_distributed", "(", "features", ")", "else", ":", "return", "self", ".", "predict_class_local", "(", "features", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Layer.predict_distributed
Model inference base on the given data. You need to invoke collect() to trigger those action \ as the returning result is an RDD. :param data_rdd: the data to be predict. :param batch_size: total batch size of prediction. :return: An RDD represent the predict result.
pyspark/bigdl/nn/layer.py
def predict_distributed(self, data_rdd, batch_size = -1): """ Model inference base on the given data. You need to invoke collect() to trigger those action \ as the returning result is an RDD. :param data_rdd: the data to be predict. :param batch_size: total batch size of prediction. :return: An RDD represent the predict result. """ result = callBigDlFunc(self.bigdl_type, "modelPredictRDD", self.value, data_rdd, batch_size) return result.map(lambda data: data.to_ndarray())
def predict_distributed(self, data_rdd, batch_size = -1): """ Model inference base on the given data. You need to invoke collect() to trigger those action \ as the returning result is an RDD. :param data_rdd: the data to be predict. :param batch_size: total batch size of prediction. :return: An RDD represent the predict result. """ result = callBigDlFunc(self.bigdl_type, "modelPredictRDD", self.value, data_rdd, batch_size) return result.map(lambda data: data.to_ndarray())
[ "Model", "inference", "base", "on", "the", "given", "data", ".", "You", "need", "to", "invoke", "collect", "()", "to", "trigger", "those", "action", "\\", "as", "the", "returning", "result", "is", "an", "RDD", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L426-L438
[ "def", "predict_distributed", "(", "self", ",", "data_rdd", ",", "batch_size", "=", "-", "1", ")", ":", "result", "=", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"modelPredictRDD\"", ",", "self", ".", "value", ",", "data_rdd", ",", "batch_size", ")", "return", "result", ".", "map", "(", "lambda", "data", ":", "data", ".", "to_ndarray", "(", ")", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Layer.predict_class_distributed
module predict, return the predict label :param data_rdd: the data to be predict. :return: An RDD represent the predict label.
pyspark/bigdl/nn/layer.py
def predict_class_distributed(self, data_rdd): """ module predict, return the predict label :param data_rdd: the data to be predict. :return: An RDD represent the predict label. """ result = callBigDlFunc(self.bigdl_type, "modelPredictClass", self.value, data_rdd) return result
def predict_class_distributed(self, data_rdd): """ module predict, return the predict label :param data_rdd: the data to be predict. :return: An RDD represent the predict label. """ result = callBigDlFunc(self.bigdl_type, "modelPredictClass", self.value, data_rdd) return result
[ "module", "predict", "return", "the", "predict", "label" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L440-L449
[ "def", "predict_class_distributed", "(", "self", ",", "data_rdd", ")", ":", "result", "=", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"modelPredictClass\"", ",", "self", ".", "value", ",", "data_rdd", ")", "return", "result" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Layer.predict_image
model predict images, return imageFrame with predicted tensor :param image_frame imageFrame that contains images :param output_layer if output_layer is not null, the output of layer that matches output_layer will be used as predicted output :param share_buffer whether to share same memory for each batch predict results :param batch_per_partition batch size per partition, default is 4 :param predict_key key to store predicted results
pyspark/bigdl/nn/layer.py
def predict_image(self, image_frame, output_layer=None, share_buffer=False, batch_per_partition=4, predict_key="predict"): """ model predict images, return imageFrame with predicted tensor :param image_frame imageFrame that contains images :param output_layer if output_layer is not null, the output of layer that matches output_layer will be used as predicted output :param share_buffer whether to share same memory for each batch predict results :param batch_per_partition batch size per partition, default is 4 :param predict_key key to store predicted results """ image_frame = callBigDlFunc(self.bigdl_type, "modelPredictImage", self.value, image_frame, output_layer, share_buffer, batch_per_partition, predict_key) return ImageFrame(image_frame)
def predict_image(self, image_frame, output_layer=None, share_buffer=False, batch_per_partition=4, predict_key="predict"): """ model predict images, return imageFrame with predicted tensor :param image_frame imageFrame that contains images :param output_layer if output_layer is not null, the output of layer that matches output_layer will be used as predicted output :param share_buffer whether to share same memory for each batch predict results :param batch_per_partition batch size per partition, default is 4 :param predict_key key to store predicted results """ image_frame = callBigDlFunc(self.bigdl_type, "modelPredictImage", self.value, image_frame, output_layer, share_buffer, batch_per_partition, predict_key) return ImageFrame(image_frame)
[ "model", "predict", "images", "return", "imageFrame", "with", "predicted", "tensor", ":", "param", "image_frame", "imageFrame", "that", "contains", "images", ":", "param", "output_layer", "if", "output_layer", "is", "not", "null", "the", "output", "of", "layer", "that", "matches", "output_layer", "will", "be", "used", "as", "predicted", "output", ":", "param", "share_buffer", "whether", "to", "share", "same", "memory", "for", "each", "batch", "predict", "results", ":", "param", "batch_per_partition", "batch", "size", "per", "partition", "default", "is", "4", ":", "param", "predict_key", "key", "to", "store", "predicted", "results" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L451-L469
[ "def", "predict_image", "(", "self", ",", "image_frame", ",", "output_layer", "=", "None", ",", "share_buffer", "=", "False", ",", "batch_per_partition", "=", "4", ",", "predict_key", "=", "\"predict\"", ")", ":", "image_frame", "=", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"modelPredictImage\"", ",", "self", ".", "value", ",", "image_frame", ",", "output_layer", ",", "share_buffer", ",", "batch_per_partition", ",", "predict_key", ")", "return", "ImageFrame", "(", "image_frame", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Layer.set_weights
Set weights for this layer :param weights: a list of numpy arrays which represent weight and bias :return: >>> linear = Linear(3,2) creating: createLinear >>> linear.set_weights([np.array([[1,2,3],[4,5,6]]), np.array([7,8])]) >>> weights = linear.get_weights() >>> weights[0].shape == (2,3) True >>> np.testing.assert_allclose(weights[0][0], np.array([1., 2., 3.])) >>> np.testing.assert_allclose(weights[1], np.array([7., 8.])) >>> relu = ReLU() creating: createReLU >>> from py4j.protocol import Py4JJavaError >>> try: ... relu.set_weights([np.array([[1,2,3],[4,5,6]]), np.array([7,8])]) ... except Py4JJavaError as err: ... print(err.java_exception) ... java.lang.IllegalArgumentException: requirement failed: this layer does not have weight/bias >>> relu.get_weights() The layer does not have weight/bias >>> add = Add(2) creating: createAdd >>> try: ... add.set_weights([np.array([7,8]), np.array([1,2])]) ... except Py4JJavaError as err: ... print(err.java_exception) ... java.lang.IllegalArgumentException: requirement failed: the number of input weight/bias is not consistant with number of weight/bias of this layer, number of input 1, number of output 2 >>> cAdd = CAdd([4, 1]) creating: createCAdd >>> cAdd.set_weights(np.ones([4, 1])) >>> (cAdd.get_weights()[0] == np.ones([4, 1])).all() True
pyspark/bigdl/nn/layer.py
def set_weights(self, weights): """ Set weights for this layer :param weights: a list of numpy arrays which represent weight and bias :return: >>> linear = Linear(3,2) creating: createLinear >>> linear.set_weights([np.array([[1,2,3],[4,5,6]]), np.array([7,8])]) >>> weights = linear.get_weights() >>> weights[0].shape == (2,3) True >>> np.testing.assert_allclose(weights[0][0], np.array([1., 2., 3.])) >>> np.testing.assert_allclose(weights[1], np.array([7., 8.])) >>> relu = ReLU() creating: createReLU >>> from py4j.protocol import Py4JJavaError >>> try: ... relu.set_weights([np.array([[1,2,3],[4,5,6]]), np.array([7,8])]) ... except Py4JJavaError as err: ... print(err.java_exception) ... java.lang.IllegalArgumentException: requirement failed: this layer does not have weight/bias >>> relu.get_weights() The layer does not have weight/bias >>> add = Add(2) creating: createAdd >>> try: ... add.set_weights([np.array([7,8]), np.array([1,2])]) ... except Py4JJavaError as err: ... print(err.java_exception) ... java.lang.IllegalArgumentException: requirement failed: the number of input weight/bias is not consistant with number of weight/bias of this layer, number of input 1, number of output 2 >>> cAdd = CAdd([4, 1]) creating: createCAdd >>> cAdd.set_weights(np.ones([4, 1])) >>> (cAdd.get_weights()[0] == np.ones([4, 1])).all() True """ tensors = [JTensor.from_ndarray(param, self.bigdl_type) for param in to_list(weights)] callBigDlFunc(self.bigdl_type, "setWeights", self.value, tensors)
def set_weights(self, weights): """ Set weights for this layer :param weights: a list of numpy arrays which represent weight and bias :return: >>> linear = Linear(3,2) creating: createLinear >>> linear.set_weights([np.array([[1,2,3],[4,5,6]]), np.array([7,8])]) >>> weights = linear.get_weights() >>> weights[0].shape == (2,3) True >>> np.testing.assert_allclose(weights[0][0], np.array([1., 2., 3.])) >>> np.testing.assert_allclose(weights[1], np.array([7., 8.])) >>> relu = ReLU() creating: createReLU >>> from py4j.protocol import Py4JJavaError >>> try: ... relu.set_weights([np.array([[1,2,3],[4,5,6]]), np.array([7,8])]) ... except Py4JJavaError as err: ... print(err.java_exception) ... java.lang.IllegalArgumentException: requirement failed: this layer does not have weight/bias >>> relu.get_weights() The layer does not have weight/bias >>> add = Add(2) creating: createAdd >>> try: ... add.set_weights([np.array([7,8]), np.array([1,2])]) ... except Py4JJavaError as err: ... print(err.java_exception) ... java.lang.IllegalArgumentException: requirement failed: the number of input weight/bias is not consistant with number of weight/bias of this layer, number of input 1, number of output 2 >>> cAdd = CAdd([4, 1]) creating: createCAdd >>> cAdd.set_weights(np.ones([4, 1])) >>> (cAdd.get_weights()[0] == np.ones([4, 1])).all() True """ tensors = [JTensor.from_ndarray(param, self.bigdl_type) for param in to_list(weights)] callBigDlFunc(self.bigdl_type, "setWeights", self.value, tensors)
[ "Set", "weights", "for", "this", "layer" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L471-L512
[ "def", "set_weights", "(", "self", ",", "weights", ")", ":", "tensors", "=", "[", "JTensor", ".", "from_ndarray", "(", "param", ",", "self", ".", "bigdl_type", ")", "for", "param", "in", "to_list", "(", "weights", ")", "]", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"setWeights\"", ",", "self", ".", "value", ",", "tensors", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Layer.get_weights
Get weights for this layer :return: list of numpy arrays which represent weight and bias
pyspark/bigdl/nn/layer.py
def get_weights(self): """ Get weights for this layer :return: list of numpy arrays which represent weight and bias """ tensorWeights = callBigDlFunc(self.bigdl_type, "getWeights", self.value) if tensorWeights is not None: return [tensor.to_ndarray() for tensor in tensorWeights] else: print("The layer does not have weight/bias") return None
def get_weights(self): """ Get weights for this layer :return: list of numpy arrays which represent weight and bias """ tensorWeights = callBigDlFunc(self.bigdl_type, "getWeights", self.value) if tensorWeights is not None: return [tensor.to_ndarray() for tensor in tensorWeights] else: print("The layer does not have weight/bias") return None
[ "Get", "weights", "for", "this", "layer" ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L514-L526
[ "def", "get_weights", "(", "self", ")", ":", "tensorWeights", "=", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"getWeights\"", ",", "self", ".", "value", ")", "if", "tensorWeights", "is", "not", "None", ":", "return", "[", "tensor", ".", "to_ndarray", "(", ")", "for", "tensor", "in", "tensorWeights", "]", "else", ":", "print", "(", "\"The layer does not have weight/bias\"", ")", "return", "None" ]
e9c19788285986ab789a2e2998f9a85d7524779f
test
Layer.save_tensorflow
Save a model to protobuf files so that it can be used in tensorflow inference. When saving the model, placeholders will be added to the tf model as input nodes. So you need to pass in the names and shapes of the placeholders. BigDL model doesn't have such information. The order of the placeholder information should be same as the inputs of the graph model. :param inputs: placeholder information, should be an array of tuples (input_name, shape) where 'input_name' is a string and shape is an array of integer :param path: the path to be saved to :param byte_order: model byte order :param data_format: model data format, should be "nhwc" or "nchw"
pyspark/bigdl/nn/layer.py
def save_tensorflow(self, inputs, path, byte_order="little_endian", data_format="nhwc"): """ Save a model to protobuf files so that it can be used in tensorflow inference. When saving the model, placeholders will be added to the tf model as input nodes. So you need to pass in the names and shapes of the placeholders. BigDL model doesn't have such information. The order of the placeholder information should be same as the inputs of the graph model. :param inputs: placeholder information, should be an array of tuples (input_name, shape) where 'input_name' is a string and shape is an array of integer :param path: the path to be saved to :param byte_order: model byte order :param data_format: model data format, should be "nhwc" or "nchw" """ callBigDlFunc(self.bigdl_type, "saveTF", self.value, inputs, path, byte_order, data_format)
def save_tensorflow(self, inputs, path, byte_order="little_endian", data_format="nhwc"): """ Save a model to protobuf files so that it can be used in tensorflow inference. When saving the model, placeholders will be added to the tf model as input nodes. So you need to pass in the names and shapes of the placeholders. BigDL model doesn't have such information. The order of the placeholder information should be same as the inputs of the graph model. :param inputs: placeholder information, should be an array of tuples (input_name, shape) where 'input_name' is a string and shape is an array of integer :param path: the path to be saved to :param byte_order: model byte order :param data_format: model data format, should be "nhwc" or "nchw" """ callBigDlFunc(self.bigdl_type, "saveTF", self.value, inputs, path, byte_order, data_format)
[ "Save", "a", "model", "to", "protobuf", "files", "so", "that", "it", "can", "be", "used", "in", "tensorflow", "inference", "." ]
intel-analytics/BigDL
python
https://github.com/intel-analytics/BigDL/blob/e9c19788285986ab789a2e2998f9a85d7524779f/pyspark/bigdl/nn/layer.py#L543-L557
[ "def", "save_tensorflow", "(", "self", ",", "inputs", ",", "path", ",", "byte_order", "=", "\"little_endian\"", ",", "data_format", "=", "\"nhwc\"", ")", ":", "callBigDlFunc", "(", "self", ".", "bigdl_type", ",", "\"saveTF\"", ",", "self", ".", "value", ",", "inputs", ",", "path", ",", "byte_order", ",", "data_format", ")" ]
e9c19788285986ab789a2e2998f9a85d7524779f