partition
stringclasses
3 values
func_name
stringlengths
1
134
docstring
stringlengths
1
46.9k
path
stringlengths
4
223
original_string
stringlengths
75
104k
code
stringlengths
75
104k
docstring_tokens
listlengths
1
1.97k
repo
stringlengths
7
55
language
stringclasses
1 value
url
stringlengths
87
315
code_tokens
listlengths
19
28.4k
sha
stringlengths
40
40
test
variational_dropout
Dropout with the same drop mask for all fixed_mask_dims Args: units: a tensor, usually with shapes [B x T x F], where B - batch size T - tokens dimension F - feature dimension keep_prob: keep probability fixed_mask_dims: in these dimensions the mask will be the same Returns: dropped units tensor
deeppavlov/core/layers/tf_layers.py
def variational_dropout(units, keep_prob, fixed_mask_dims=(1,)): """ Dropout with the same drop mask for all fixed_mask_dims Args: units: a tensor, usually with shapes [B x T x F], where B - batch size T - tokens dimension F - feature dimension keep_prob: keep probability fixed_mask_dims: in these dimensions the mask will be the same Returns: dropped units tensor """ units_shape = tf.shape(units) noise_shape = [units_shape[n] for n in range(len(units.shape))] for dim in fixed_mask_dims: noise_shape[dim] = 1 return tf.nn.dropout(units, keep_prob, noise_shape)
def variational_dropout(units, keep_prob, fixed_mask_dims=(1,)): """ Dropout with the same drop mask for all fixed_mask_dims Args: units: a tensor, usually with shapes [B x T x F], where B - batch size T - tokens dimension F - feature dimension keep_prob: keep probability fixed_mask_dims: in these dimensions the mask will be the same Returns: dropped units tensor """ units_shape = tf.shape(units) noise_shape = [units_shape[n] for n in range(len(units.shape))] for dim in fixed_mask_dims: noise_shape[dim] = 1 return tf.nn.dropout(units, keep_prob, noise_shape)
[ "Dropout", "with", "the", "same", "drop", "mask", "for", "all", "fixed_mask_dims" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/layers/tf_layers.py#L930-L948
[ "def", "variational_dropout", "(", "units", ",", "keep_prob", ",", "fixed_mask_dims", "=", "(", "1", ",", ")", ")", ":", "units_shape", "=", "tf", ".", "shape", "(", "units", ")", "noise_shape", "=", "[", "units_shape", "[", "n", "]", "for", "n", "in", "range", "(", "len", "(", "units", ".", "shape", ")", ")", "]", "for", "dim", "in", "fixed_mask_dims", ":", "noise_shape", "[", "dim", "]", "=", "1", "return", "tf", ".", "nn", ".", "dropout", "(", "units", ",", "keep_prob", ",", "noise_shape", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
CharacterTagger.build
Builds the network using Keras.
deeppavlov/models/morpho_tagger/network.py
def build(self): """Builds the network using Keras. """ word_inputs = kl.Input(shape=(None, MAX_WORD_LENGTH+2), dtype="int32") inputs = [word_inputs] word_outputs = self._build_word_cnn(word_inputs) if len(self.word_vectorizers) > 0: additional_word_inputs = [kl.Input(shape=(None, input_dim), dtype="float32") for input_dim, dense_dim in self.word_vectorizers] inputs.extend(additional_word_inputs) additional_word_embeddings = [kl.Dense(dense_dim)(additional_word_inputs[i]) for i, (_, dense_dim) in enumerate(self.word_vectorizers)] word_outputs = kl.Concatenate()([word_outputs] + additional_word_embeddings) outputs, lstm_outputs = self._build_basic_network(word_outputs) compile_args = {"optimizer": ko.nadam(lr=0.002, clipnorm=5.0), "loss": "categorical_crossentropy", "metrics": ["accuracy"]} self.model_ = Model(inputs, outputs) self.model_.compile(**compile_args) if self.verbose > 0: self.model_.summary(print_fn=log.info) return self
def build(self): """Builds the network using Keras. """ word_inputs = kl.Input(shape=(None, MAX_WORD_LENGTH+2), dtype="int32") inputs = [word_inputs] word_outputs = self._build_word_cnn(word_inputs) if len(self.word_vectorizers) > 0: additional_word_inputs = [kl.Input(shape=(None, input_dim), dtype="float32") for input_dim, dense_dim in self.word_vectorizers] inputs.extend(additional_word_inputs) additional_word_embeddings = [kl.Dense(dense_dim)(additional_word_inputs[i]) for i, (_, dense_dim) in enumerate(self.word_vectorizers)] word_outputs = kl.Concatenate()([word_outputs] + additional_word_embeddings) outputs, lstm_outputs = self._build_basic_network(word_outputs) compile_args = {"optimizer": ko.nadam(lr=0.002, clipnorm=5.0), "loss": "categorical_crossentropy", "metrics": ["accuracy"]} self.model_ = Model(inputs, outputs) self.model_.compile(**compile_args) if self.verbose > 0: self.model_.summary(print_fn=log.info) return self
[ "Builds", "the", "network", "using", "Keras", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/morpho_tagger/network.py#L140-L160
[ "def", "build", "(", "self", ")", ":", "word_inputs", "=", "kl", ".", "Input", "(", "shape", "=", "(", "None", ",", "MAX_WORD_LENGTH", "+", "2", ")", ",", "dtype", "=", "\"int32\"", ")", "inputs", "=", "[", "word_inputs", "]", "word_outputs", "=", "self", ".", "_build_word_cnn", "(", "word_inputs", ")", "if", "len", "(", "self", ".", "word_vectorizers", ")", ">", "0", ":", "additional_word_inputs", "=", "[", "kl", ".", "Input", "(", "shape", "=", "(", "None", ",", "input_dim", ")", ",", "dtype", "=", "\"float32\"", ")", "for", "input_dim", ",", "dense_dim", "in", "self", ".", "word_vectorizers", "]", "inputs", ".", "extend", "(", "additional_word_inputs", ")", "additional_word_embeddings", "=", "[", "kl", ".", "Dense", "(", "dense_dim", ")", "(", "additional_word_inputs", "[", "i", "]", ")", "for", "i", ",", "(", "_", ",", "dense_dim", ")", "in", "enumerate", "(", "self", ".", "word_vectorizers", ")", "]", "word_outputs", "=", "kl", ".", "Concatenate", "(", ")", "(", "[", "word_outputs", "]", "+", "additional_word_embeddings", ")", "outputs", ",", "lstm_outputs", "=", "self", ".", "_build_basic_network", "(", "word_outputs", ")", "compile_args", "=", "{", "\"optimizer\"", ":", "ko", ".", "nadam", "(", "lr", "=", "0.002", ",", "clipnorm", "=", "5.0", ")", ",", "\"loss\"", ":", "\"categorical_crossentropy\"", ",", "\"metrics\"", ":", "[", "\"accuracy\"", "]", "}", "self", ".", "model_", "=", "Model", "(", "inputs", ",", "outputs", ")", "self", ".", "model_", ".", "compile", "(", "*", "*", "compile_args", ")", "if", "self", ".", "verbose", ">", "0", ":", "self", ".", "model_", ".", "summary", "(", "print_fn", "=", "log", ".", "info", ")", "return", "self" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
CharacterTagger._build_word_cnn
Builds word-level network
deeppavlov/models/morpho_tagger/network.py
def _build_word_cnn(self, inputs): """Builds word-level network """ inputs = kl.Lambda(kb.one_hot, arguments={"num_classes": self.symbols_number_}, output_shape=lambda x: tuple(x) + (self.symbols_number_,))(inputs) char_embeddings = kl.Dense(self.char_embeddings_size, use_bias=False)(inputs) conv_outputs = [] self.char_output_dim_ = 0 for window_size, filters_number in zip(self.char_window_size, self.char_filters): curr_output = char_embeddings curr_filters_number = (min(self.char_filter_multiple * window_size, 200) if filters_number is None else filters_number) for _ in range(self.char_conv_layers - 1): curr_output = kl.Conv2D(curr_filters_number, (1, window_size), padding="same", activation="relu", data_format="channels_last")(curr_output) if self.conv_dropout > 0.0: curr_output = kl.Dropout(self.conv_dropout)(curr_output) curr_output = kl.Conv2D(curr_filters_number, (1, window_size), padding="same", activation="relu", data_format="channels_last")(curr_output) conv_outputs.append(curr_output) self.char_output_dim_ += curr_filters_number if len(conv_outputs) > 1: conv_output = kl.Concatenate(axis=-1)(conv_outputs) else: conv_output = conv_outputs[0] highway_input = kl.Lambda(kb.max, arguments={"axis": -2})(conv_output) if self.intermediate_dropout > 0.0: highway_input = kl.Dropout(self.intermediate_dropout)(highway_input) for i in range(self.char_highway_layers - 1): highway_input = Highway(activation="relu")(highway_input) if self.highway_dropout > 0.0: highway_input = kl.Dropout(self.highway_dropout)(highway_input) highway_output = Highway(activation="relu")(highway_input) return highway_output
def _build_word_cnn(self, inputs): """Builds word-level network """ inputs = kl.Lambda(kb.one_hot, arguments={"num_classes": self.symbols_number_}, output_shape=lambda x: tuple(x) + (self.symbols_number_,))(inputs) char_embeddings = kl.Dense(self.char_embeddings_size, use_bias=False)(inputs) conv_outputs = [] self.char_output_dim_ = 0 for window_size, filters_number in zip(self.char_window_size, self.char_filters): curr_output = char_embeddings curr_filters_number = (min(self.char_filter_multiple * window_size, 200) if filters_number is None else filters_number) for _ in range(self.char_conv_layers - 1): curr_output = kl.Conv2D(curr_filters_number, (1, window_size), padding="same", activation="relu", data_format="channels_last")(curr_output) if self.conv_dropout > 0.0: curr_output = kl.Dropout(self.conv_dropout)(curr_output) curr_output = kl.Conv2D(curr_filters_number, (1, window_size), padding="same", activation="relu", data_format="channels_last")(curr_output) conv_outputs.append(curr_output) self.char_output_dim_ += curr_filters_number if len(conv_outputs) > 1: conv_output = kl.Concatenate(axis=-1)(conv_outputs) else: conv_output = conv_outputs[0] highway_input = kl.Lambda(kb.max, arguments={"axis": -2})(conv_output) if self.intermediate_dropout > 0.0: highway_input = kl.Dropout(self.intermediate_dropout)(highway_input) for i in range(self.char_highway_layers - 1): highway_input = Highway(activation="relu")(highway_input) if self.highway_dropout > 0.0: highway_input = kl.Dropout(self.highway_dropout)(highway_input) highway_output = Highway(activation="relu")(highway_input) return highway_output
[ "Builds", "word", "-", "level", "network" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/morpho_tagger/network.py#L162-L197
[ "def", "_build_word_cnn", "(", "self", ",", "inputs", ")", ":", "inputs", "=", "kl", ".", "Lambda", "(", "kb", ".", "one_hot", ",", "arguments", "=", "{", "\"num_classes\"", ":", "self", ".", "symbols_number_", "}", ",", "output_shape", "=", "lambda", "x", ":", "tuple", "(", "x", ")", "+", "(", "self", ".", "symbols_number_", ",", ")", ")", "(", "inputs", ")", "char_embeddings", "=", "kl", ".", "Dense", "(", "self", ".", "char_embeddings_size", ",", "use_bias", "=", "False", ")", "(", "inputs", ")", "conv_outputs", "=", "[", "]", "self", ".", "char_output_dim_", "=", "0", "for", "window_size", ",", "filters_number", "in", "zip", "(", "self", ".", "char_window_size", ",", "self", ".", "char_filters", ")", ":", "curr_output", "=", "char_embeddings", "curr_filters_number", "=", "(", "min", "(", "self", ".", "char_filter_multiple", "*", "window_size", ",", "200", ")", "if", "filters_number", "is", "None", "else", "filters_number", ")", "for", "_", "in", "range", "(", "self", ".", "char_conv_layers", "-", "1", ")", ":", "curr_output", "=", "kl", ".", "Conv2D", "(", "curr_filters_number", ",", "(", "1", ",", "window_size", ")", ",", "padding", "=", "\"same\"", ",", "activation", "=", "\"relu\"", ",", "data_format", "=", "\"channels_last\"", ")", "(", "curr_output", ")", "if", "self", ".", "conv_dropout", ">", "0.0", ":", "curr_output", "=", "kl", ".", "Dropout", "(", "self", ".", "conv_dropout", ")", "(", "curr_output", ")", "curr_output", "=", "kl", ".", "Conv2D", "(", "curr_filters_number", ",", "(", "1", ",", "window_size", ")", ",", "padding", "=", "\"same\"", ",", "activation", "=", "\"relu\"", ",", "data_format", "=", "\"channels_last\"", ")", "(", "curr_output", ")", "conv_outputs", ".", "append", "(", "curr_output", ")", "self", ".", "char_output_dim_", "+=", "curr_filters_number", "if", "len", "(", "conv_outputs", ")", ">", "1", ":", "conv_output", "=", "kl", ".", "Concatenate", "(", "axis", "=", "-", "1", ")", "(", "conv_outputs", ")", "else", ":", "conv_output", "=", "conv_outputs", "[", "0", "]", "highway_input", "=", "kl", ".", "Lambda", "(", "kb", ".", "max", ",", "arguments", "=", "{", "\"axis\"", ":", "-", "2", "}", ")", "(", "conv_output", ")", "if", "self", ".", "intermediate_dropout", ">", "0.0", ":", "highway_input", "=", "kl", ".", "Dropout", "(", "self", ".", "intermediate_dropout", ")", "(", "highway_input", ")", "for", "i", "in", "range", "(", "self", ".", "char_highway_layers", "-", "1", ")", ":", "highway_input", "=", "Highway", "(", "activation", "=", "\"relu\"", ")", "(", "highway_input", ")", "if", "self", ".", "highway_dropout", ">", "0.0", ":", "highway_input", "=", "kl", ".", "Dropout", "(", "self", ".", "highway_dropout", ")", "(", "highway_input", ")", "highway_output", "=", "Highway", "(", "activation", "=", "\"relu\"", ")", "(", "highway_input", ")", "return", "highway_output" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
CharacterTagger._build_basic_network
Creates the basic network architecture, transforming word embeddings to intermediate outputs
deeppavlov/models/morpho_tagger/network.py
def _build_basic_network(self, word_outputs): """ Creates the basic network architecture, transforming word embeddings to intermediate outputs """ if self.word_dropout > 0.0: lstm_outputs = kl.Dropout(self.word_dropout)(word_outputs) else: lstm_outputs = word_outputs for j in range(self.word_lstm_layers-1): lstm_outputs = kl.Bidirectional( kl.LSTM(self.word_lstm_units[j], return_sequences=True, dropout=self.lstm_dropout))(lstm_outputs) lstm_outputs = kl.Bidirectional( kl.LSTM(self.word_lstm_units[-1], return_sequences=True, dropout=self.lstm_dropout))(lstm_outputs) pre_outputs = kl.TimeDistributed( kl.Dense(self.tags_number_, activation="softmax", activity_regularizer=self.regularizer), name="p")(lstm_outputs) return pre_outputs, lstm_outputs
def _build_basic_network(self, word_outputs): """ Creates the basic network architecture, transforming word embeddings to intermediate outputs """ if self.word_dropout > 0.0: lstm_outputs = kl.Dropout(self.word_dropout)(word_outputs) else: lstm_outputs = word_outputs for j in range(self.word_lstm_layers-1): lstm_outputs = kl.Bidirectional( kl.LSTM(self.word_lstm_units[j], return_sequences=True, dropout=self.lstm_dropout))(lstm_outputs) lstm_outputs = kl.Bidirectional( kl.LSTM(self.word_lstm_units[-1], return_sequences=True, dropout=self.lstm_dropout))(lstm_outputs) pre_outputs = kl.TimeDistributed( kl.Dense(self.tags_number_, activation="softmax", activity_regularizer=self.regularizer), name="p")(lstm_outputs) return pre_outputs, lstm_outputs
[ "Creates", "the", "basic", "network", "architecture", "transforming", "word", "embeddings", "to", "intermediate", "outputs" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/morpho_tagger/network.py#L199-L219
[ "def", "_build_basic_network", "(", "self", ",", "word_outputs", ")", ":", "if", "self", ".", "word_dropout", ">", "0.0", ":", "lstm_outputs", "=", "kl", ".", "Dropout", "(", "self", ".", "word_dropout", ")", "(", "word_outputs", ")", "else", ":", "lstm_outputs", "=", "word_outputs", "for", "j", "in", "range", "(", "self", ".", "word_lstm_layers", "-", "1", ")", ":", "lstm_outputs", "=", "kl", ".", "Bidirectional", "(", "kl", ".", "LSTM", "(", "self", ".", "word_lstm_units", "[", "j", "]", ",", "return_sequences", "=", "True", ",", "dropout", "=", "self", ".", "lstm_dropout", ")", ")", "(", "lstm_outputs", ")", "lstm_outputs", "=", "kl", ".", "Bidirectional", "(", "kl", ".", "LSTM", "(", "self", ".", "word_lstm_units", "[", "-", "1", "]", ",", "return_sequences", "=", "True", ",", "dropout", "=", "self", ".", "lstm_dropout", ")", ")", "(", "lstm_outputs", ")", "pre_outputs", "=", "kl", ".", "TimeDistributed", "(", "kl", ".", "Dense", "(", "self", ".", "tags_number_", ",", "activation", "=", "\"softmax\"", ",", "activity_regularizer", "=", "self", ".", "regularizer", ")", ",", "name", "=", "\"p\"", ")", "(", "lstm_outputs", ")", "return", "pre_outputs", ",", "lstm_outputs" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
CharacterTagger.train_on_batch
Trains model on a single batch Args: data: a batch of word sequences labels: a batch of correct tag sequences Returns: the trained model
deeppavlov/models/morpho_tagger/network.py
def train_on_batch(self, data: List[Iterable], labels: Iterable[list]) -> None: """Trains model on a single batch Args: data: a batch of word sequences labels: a batch of correct tag sequences Returns: the trained model """ X, Y = self._transform_batch(data, labels) self.model_.train_on_batch(X, Y)
def train_on_batch(self, data: List[Iterable], labels: Iterable[list]) -> None: """Trains model on a single batch Args: data: a batch of word sequences labels: a batch of correct tag sequences Returns: the trained model """ X, Y = self._transform_batch(data, labels) self.model_.train_on_batch(X, Y)
[ "Trains", "model", "on", "a", "single", "batch" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/morpho_tagger/network.py#L234-L244
[ "def", "train_on_batch", "(", "self", ",", "data", ":", "List", "[", "Iterable", "]", ",", "labels", ":", "Iterable", "[", "list", "]", ")", "->", "None", ":", "X", ",", "Y", "=", "self", ".", "_transform_batch", "(", "data", ",", "labels", ")", "self", ".", "model_", ".", "train_on_batch", "(", "X", ",", "Y", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
CharacterTagger.predict_on_batch
Makes predictions on a single batch Args: data: a batch of word sequences together with additional inputs return_indexes: whether to return tag indexes in vocabulary or tags themselves Returns: a batch of label sequences
deeppavlov/models/morpho_tagger/network.py
def predict_on_batch(self, data: Union[list, tuple], return_indexes: bool = False) -> List[List[str]]: """ Makes predictions on a single batch Args: data: a batch of word sequences together with additional inputs return_indexes: whether to return tag indexes in vocabulary or tags themselves Returns: a batch of label sequences """ X = self._transform_batch(data) objects_number, lengths = len(X[0]), [len(elem) for elem in data[0]] Y = self.model_.predict_on_batch(X) labels = np.argmax(Y, axis=-1) answer: List[List[str]] = [None] * objects_number for i, (elem, length) in enumerate(zip(labels, lengths)): elem = elem[:length] answer[i] = elem if return_indexes else self.tags.idxs2toks(elem) return answer
def predict_on_batch(self, data: Union[list, tuple], return_indexes: bool = False) -> List[List[str]]: """ Makes predictions on a single batch Args: data: a batch of word sequences together with additional inputs return_indexes: whether to return tag indexes in vocabulary or tags themselves Returns: a batch of label sequences """ X = self._transform_batch(data) objects_number, lengths = len(X[0]), [len(elem) for elem in data[0]] Y = self.model_.predict_on_batch(X) labels = np.argmax(Y, axis=-1) answer: List[List[str]] = [None] * objects_number for i, (elem, length) in enumerate(zip(labels, lengths)): elem = elem[:length] answer[i] = elem if return_indexes else self.tags.idxs2toks(elem) return answer
[ "Makes", "predictions", "on", "a", "single", "batch" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/morpho_tagger/network.py#L246-L266
[ "def", "predict_on_batch", "(", "self", ",", "data", ":", "Union", "[", "list", ",", "tuple", "]", ",", "return_indexes", ":", "bool", "=", "False", ")", "->", "List", "[", "List", "[", "str", "]", "]", ":", "X", "=", "self", ".", "_transform_batch", "(", "data", ")", "objects_number", ",", "lengths", "=", "len", "(", "X", "[", "0", "]", ")", ",", "[", "len", "(", "elem", ")", "for", "elem", "in", "data", "[", "0", "]", "]", "Y", "=", "self", ".", "model_", ".", "predict_on_batch", "(", "X", ")", "labels", "=", "np", ".", "argmax", "(", "Y", ",", "axis", "=", "-", "1", ")", "answer", ":", "List", "[", "List", "[", "str", "]", "]", "=", "[", "None", "]", "*", "objects_number", "for", "i", ",", "(", "elem", ",", "length", ")", "in", "enumerate", "(", "zip", "(", "labels", ",", "lengths", ")", ")", ":", "elem", "=", "elem", "[", ":", "length", "]", "answer", "[", "i", "]", "=", "elem", "if", "return_indexes", "else", "self", ".", "tags", ".", "idxs2toks", "(", "elem", ")", "return", "answer" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
CharacterTagger._make_sent_vector
Transforms a sentence to Numpy array, which will be the network input. Args: sent: input sentence bucket_length: the width of the bucket Returns: A 3d array, answer[i][j][k] contains the index of k-th letter in j-th word of i-th input sentence.
deeppavlov/models/morpho_tagger/network.py
def _make_sent_vector(self, sent: List, bucket_length: int =None) -> np.ndarray: """Transforms a sentence to Numpy array, which will be the network input. Args: sent: input sentence bucket_length: the width of the bucket Returns: A 3d array, answer[i][j][k] contains the index of k-th letter in j-th word of i-th input sentence. """ bucket_length = bucket_length or len(sent) answer = np.zeros(shape=(bucket_length, MAX_WORD_LENGTH+2), dtype=np.int32) for i, word in enumerate(sent): answer[i, 0] = self.tags.tok2idx("BEGIN") m = min(len(word), MAX_WORD_LENGTH) for j, x in enumerate(word[-m:]): answer[i, j+1] = self.symbols.tok2idx(x) answer[i, m+1] = self.tags.tok2idx("END") answer[i, m+2:] = self.tags.tok2idx("PAD") return answer
def _make_sent_vector(self, sent: List, bucket_length: int =None) -> np.ndarray: """Transforms a sentence to Numpy array, which will be the network input. Args: sent: input sentence bucket_length: the width of the bucket Returns: A 3d array, answer[i][j][k] contains the index of k-th letter in j-th word of i-th input sentence. """ bucket_length = bucket_length or len(sent) answer = np.zeros(shape=(bucket_length, MAX_WORD_LENGTH+2), dtype=np.int32) for i, word in enumerate(sent): answer[i, 0] = self.tags.tok2idx("BEGIN") m = min(len(word), MAX_WORD_LENGTH) for j, x in enumerate(word[-m:]): answer[i, j+1] = self.symbols.tok2idx(x) answer[i, m+1] = self.tags.tok2idx("END") answer[i, m+2:] = self.tags.tok2idx("PAD") return answer
[ "Transforms", "a", "sentence", "to", "Numpy", "array", "which", "will", "be", "the", "network", "input", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/morpho_tagger/network.py#L268-L288
[ "def", "_make_sent_vector", "(", "self", ",", "sent", ":", "List", ",", "bucket_length", ":", "int", "=", "None", ")", "->", "np", ".", "ndarray", ":", "bucket_length", "=", "bucket_length", "or", "len", "(", "sent", ")", "answer", "=", "np", ".", "zeros", "(", "shape", "=", "(", "bucket_length", ",", "MAX_WORD_LENGTH", "+", "2", ")", ",", "dtype", "=", "np", ".", "int32", ")", "for", "i", ",", "word", "in", "enumerate", "(", "sent", ")", ":", "answer", "[", "i", ",", "0", "]", "=", "self", ".", "tags", ".", "tok2idx", "(", "\"BEGIN\"", ")", "m", "=", "min", "(", "len", "(", "word", ")", ",", "MAX_WORD_LENGTH", ")", "for", "j", ",", "x", "in", "enumerate", "(", "word", "[", "-", "m", ":", "]", ")", ":", "answer", "[", "i", ",", "j", "+", "1", "]", "=", "self", ".", "symbols", ".", "tok2idx", "(", "x", ")", "answer", "[", "i", ",", "m", "+", "1", "]", "=", "self", ".", "tags", ".", "tok2idx", "(", "\"END\"", ")", "answer", "[", "i", ",", "m", "+", "2", ":", "]", "=", "self", ".", "tags", ".", "tok2idx", "(", "\"PAD\"", ")", "return", "answer" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
CharacterTagger._make_tags_vector
Transforms a sentence of tags to Numpy array, which will be the network target. Args: tags: input sentence of tags bucket_length: the width of the bucket Returns: A 2d array, answer[i][j] contains the index of j-th tag in i-th input sentence.
deeppavlov/models/morpho_tagger/network.py
def _make_tags_vector(self, tags, bucket_length=None) -> np.ndarray: """Transforms a sentence of tags to Numpy array, which will be the network target. Args: tags: input sentence of tags bucket_length: the width of the bucket Returns: A 2d array, answer[i][j] contains the index of j-th tag in i-th input sentence. """ bucket_length = bucket_length or len(tags) answer = np.zeros(shape=(bucket_length,), dtype=np.int32) for i, tag in enumerate(tags): answer[i] = self.tags.tok2idx(tag) return answer
def _make_tags_vector(self, tags, bucket_length=None) -> np.ndarray: """Transforms a sentence of tags to Numpy array, which will be the network target. Args: tags: input sentence of tags bucket_length: the width of the bucket Returns: A 2d array, answer[i][j] contains the index of j-th tag in i-th input sentence. """ bucket_length = bucket_length or len(tags) answer = np.zeros(shape=(bucket_length,), dtype=np.int32) for i, tag in enumerate(tags): answer[i] = self.tags.tok2idx(tag) return answer
[ "Transforms", "a", "sentence", "of", "tags", "to", "Numpy", "array", "which", "will", "be", "the", "network", "target", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/morpho_tagger/network.py#L290-L304
[ "def", "_make_tags_vector", "(", "self", ",", "tags", ",", "bucket_length", "=", "None", ")", "->", "np", ".", "ndarray", ":", "bucket_length", "=", "bucket_length", "or", "len", "(", "tags", ")", "answer", "=", "np", ".", "zeros", "(", "shape", "=", "(", "bucket_length", ",", ")", ",", "dtype", "=", "np", ".", "int32", ")", "for", "i", ",", "tag", "in", "enumerate", "(", "tags", ")", ":", "answer", "[", "i", "]", "=", "self", ".", "tags", ".", "tok2idx", "(", "tag", ")", "return", "answer" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
bleu_advanced
Calculate BLEU score Parameters: y_true: list of reference tokens y_predicted: list of query tokens weights: n-gram weights smoothing_function: SmoothingFunction auto_reweigh: Option to re-normalize the weights uniformly penalty: either enable brevity penalty or not Return: BLEU score
deeppavlov/metrics/bleu.py
def bleu_advanced(y_true: List[Any], y_predicted: List[Any], weights: Tuple=(1,), smoothing_function=SMOOTH.method1, auto_reweigh=False, penalty=True) -> float: """Calculate BLEU score Parameters: y_true: list of reference tokens y_predicted: list of query tokens weights: n-gram weights smoothing_function: SmoothingFunction auto_reweigh: Option to re-normalize the weights uniformly penalty: either enable brevity penalty or not Return: BLEU score """ bleu_measure = sentence_bleu([y_true], y_predicted, weights, smoothing_function, auto_reweigh) hyp_len = len(y_predicted) hyp_lengths = hyp_len ref_lengths = closest_ref_length([y_true], hyp_len) bpenalty = brevity_penalty(ref_lengths, hyp_lengths) if penalty is True or bpenalty == 0: return bleu_measure return bleu_measure/bpenalty
def bleu_advanced(y_true: List[Any], y_predicted: List[Any], weights: Tuple=(1,), smoothing_function=SMOOTH.method1, auto_reweigh=False, penalty=True) -> float: """Calculate BLEU score Parameters: y_true: list of reference tokens y_predicted: list of query tokens weights: n-gram weights smoothing_function: SmoothingFunction auto_reweigh: Option to re-normalize the weights uniformly penalty: either enable brevity penalty or not Return: BLEU score """ bleu_measure = sentence_bleu([y_true], y_predicted, weights, smoothing_function, auto_reweigh) hyp_len = len(y_predicted) hyp_lengths = hyp_len ref_lengths = closest_ref_length([y_true], hyp_len) bpenalty = brevity_penalty(ref_lengths, hyp_lengths) if penalty is True or bpenalty == 0: return bleu_measure return bleu_measure/bpenalty
[ "Calculate", "BLEU", "score" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/metrics/bleu.py#L27-L55
[ "def", "bleu_advanced", "(", "y_true", ":", "List", "[", "Any", "]", ",", "y_predicted", ":", "List", "[", "Any", "]", ",", "weights", ":", "Tuple", "=", "(", "1", ",", ")", ",", "smoothing_function", "=", "SMOOTH", ".", "method1", ",", "auto_reweigh", "=", "False", ",", "penalty", "=", "True", ")", "->", "float", ":", "bleu_measure", "=", "sentence_bleu", "(", "[", "y_true", "]", ",", "y_predicted", ",", "weights", ",", "smoothing_function", ",", "auto_reweigh", ")", "hyp_len", "=", "len", "(", "y_predicted", ")", "hyp_lengths", "=", "hyp_len", "ref_lengths", "=", "closest_ref_length", "(", "[", "y_true", "]", ",", "hyp_len", ")", "bpenalty", "=", "brevity_penalty", "(", "ref_lengths", ",", "hyp_lengths", ")", "if", "penalty", "is", "True", "or", "bpenalty", "==", "0", ":", "return", "bleu_measure", "return", "bleu_measure", "/", "bpenalty" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
verify_sc_url
Verify signature certificate URL against Amazon Alexa requirements. Each call of Agent passes incoming utterances batch through skills filter, agent skills, skills processor. Batch of dialog IDs can be provided, in other case utterances indexes in incoming batch are used as dialog IDs. Args: url: Signature certificate URL from SignatureCertChainUrl HTTP header. Returns: result: True if verification was successful, False if not.
deeppavlov/utils/alexa/ssl_tools.py
def verify_sc_url(url: str) -> bool: """Verify signature certificate URL against Amazon Alexa requirements. Each call of Agent passes incoming utterances batch through skills filter, agent skills, skills processor. Batch of dialog IDs can be provided, in other case utterances indexes in incoming batch are used as dialog IDs. Args: url: Signature certificate URL from SignatureCertChainUrl HTTP header. Returns: result: True if verification was successful, False if not. """ parsed = urlsplit(url) scheme: str = parsed.scheme netloc: str = parsed.netloc path: str = parsed.path try: port = parsed.port except ValueError: port = None result = (scheme.lower() == 'https' and netloc.lower().split(':')[0] == 's3.amazonaws.com' and path.startswith('/echo.api/') and (port == 443 or port is None)) return result
def verify_sc_url(url: str) -> bool: """Verify signature certificate URL against Amazon Alexa requirements. Each call of Agent passes incoming utterances batch through skills filter, agent skills, skills processor. Batch of dialog IDs can be provided, in other case utterances indexes in incoming batch are used as dialog IDs. Args: url: Signature certificate URL from SignatureCertChainUrl HTTP header. Returns: result: True if verification was successful, False if not. """ parsed = urlsplit(url) scheme: str = parsed.scheme netloc: str = parsed.netloc path: str = parsed.path try: port = parsed.port except ValueError: port = None result = (scheme.lower() == 'https' and netloc.lower().split(':')[0] == 's3.amazonaws.com' and path.startswith('/echo.api/') and (port == 443 or port is None)) return result
[ "Verify", "signature", "certificate", "URL", "against", "Amazon", "Alexa", "requirements", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/utils/alexa/ssl_tools.py#L29-L58
[ "def", "verify_sc_url", "(", "url", ":", "str", ")", "->", "bool", ":", "parsed", "=", "urlsplit", "(", "url", ")", "scheme", ":", "str", "=", "parsed", ".", "scheme", "netloc", ":", "str", "=", "parsed", ".", "netloc", "path", ":", "str", "=", "parsed", ".", "path", "try", ":", "port", "=", "parsed", ".", "port", "except", "ValueError", ":", "port", "=", "None", "result", "=", "(", "scheme", ".", "lower", "(", ")", "==", "'https'", "and", "netloc", ".", "lower", "(", ")", ".", "split", "(", "':'", ")", "[", "0", "]", "==", "'s3.amazonaws.com'", "and", "path", ".", "startswith", "(", "'/echo.api/'", ")", "and", "(", "port", "==", "443", "or", "port", "is", "None", ")", ")", "return", "result" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
extract_certs
Extracts pycrypto X509 objects from SSL certificates chain string. Args: certs_txt: SSL certificates chain string. Returns: result: List of pycrypto X509 objects.
deeppavlov/utils/alexa/ssl_tools.py
def extract_certs(certs_txt: str) -> List[crypto.X509]: """Extracts pycrypto X509 objects from SSL certificates chain string. Args: certs_txt: SSL certificates chain string. Returns: result: List of pycrypto X509 objects. """ pattern = r'-----BEGIN CERTIFICATE-----.+?-----END CERTIFICATE-----' certs_txt = re.findall(pattern, certs_txt, flags=re.DOTALL) certs = [crypto.load_certificate(crypto.FILETYPE_PEM, cert_txt) for cert_txt in certs_txt] return certs
def extract_certs(certs_txt: str) -> List[crypto.X509]: """Extracts pycrypto X509 objects from SSL certificates chain string. Args: certs_txt: SSL certificates chain string. Returns: result: List of pycrypto X509 objects. """ pattern = r'-----BEGIN CERTIFICATE-----.+?-----END CERTIFICATE-----' certs_txt = re.findall(pattern, certs_txt, flags=re.DOTALL) certs = [crypto.load_certificate(crypto.FILETYPE_PEM, cert_txt) for cert_txt in certs_txt] return certs
[ "Extracts", "pycrypto", "X509", "objects", "from", "SSL", "certificates", "chain", "string", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/utils/alexa/ssl_tools.py#L61-L73
[ "def", "extract_certs", "(", "certs_txt", ":", "str", ")", "->", "List", "[", "crypto", ".", "X509", "]", ":", "pattern", "=", "r'-----BEGIN CERTIFICATE-----.+?-----END CERTIFICATE-----'", "certs_txt", "=", "re", ".", "findall", "(", "pattern", ",", "certs_txt", ",", "flags", "=", "re", ".", "DOTALL", ")", "certs", "=", "[", "crypto", ".", "load_certificate", "(", "crypto", ".", "FILETYPE_PEM", ",", "cert_txt", ")", "for", "cert_txt", "in", "certs_txt", "]", "return", "certs" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
verify_sans
Verifies Subject Alternative Names (SANs) for Amazon certificate. Args: amazon_cert: Pycrypto X509 Amazon certificate. Returns: result: True if verification was successful, False if not.
deeppavlov/utils/alexa/ssl_tools.py
def verify_sans(amazon_cert: crypto.X509) -> bool: """Verifies Subject Alternative Names (SANs) for Amazon certificate. Args: amazon_cert: Pycrypto X509 Amazon certificate. Returns: result: True if verification was successful, False if not. """ cert_extentions = [amazon_cert.get_extension(i) for i in range(amazon_cert.get_extension_count())] subject_alt_names = '' for extention in cert_extentions: if 'subjectAltName' in str(extention.get_short_name()): subject_alt_names = extention.__str__() break result = 'echo-api.amazon.com' in subject_alt_names return result
def verify_sans(amazon_cert: crypto.X509) -> bool: """Verifies Subject Alternative Names (SANs) for Amazon certificate. Args: amazon_cert: Pycrypto X509 Amazon certificate. Returns: result: True if verification was successful, False if not. """ cert_extentions = [amazon_cert.get_extension(i) for i in range(amazon_cert.get_extension_count())] subject_alt_names = '' for extention in cert_extentions: if 'subjectAltName' in str(extention.get_short_name()): subject_alt_names = extention.__str__() break result = 'echo-api.amazon.com' in subject_alt_names return result
[ "Verifies", "Subject", "Alternative", "Names", "(", "SANs", ")", "for", "Amazon", "certificate", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/utils/alexa/ssl_tools.py#L76-L95
[ "def", "verify_sans", "(", "amazon_cert", ":", "crypto", ".", "X509", ")", "->", "bool", ":", "cert_extentions", "=", "[", "amazon_cert", ".", "get_extension", "(", "i", ")", "for", "i", "in", "range", "(", "amazon_cert", ".", "get_extension_count", "(", ")", ")", "]", "subject_alt_names", "=", "''", "for", "extention", "in", "cert_extentions", ":", "if", "'subjectAltName'", "in", "str", "(", "extention", ".", "get_short_name", "(", ")", ")", ":", "subject_alt_names", "=", "extention", ".", "__str__", "(", ")", "break", "result", "=", "'echo-api.amazon.com'", "in", "subject_alt_names", "return", "result" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
verify_certs_chain
Verifies if Amazon and additional certificates creates chain of trust to a root CA. Args: certs_chain: List of pycrypto X509 intermediate certificates from signature chain URL. amazon_cert: Pycrypto X509 Amazon certificate. Returns: result: True if verification was successful, False if not.
deeppavlov/utils/alexa/ssl_tools.py
def verify_certs_chain(certs_chain: List[crypto.X509], amazon_cert: crypto.X509) -> bool: """Verifies if Amazon and additional certificates creates chain of trust to a root CA. Args: certs_chain: List of pycrypto X509 intermediate certificates from signature chain URL. amazon_cert: Pycrypto X509 Amazon certificate. Returns: result: True if verification was successful, False if not. """ store = crypto.X509Store() # add certificates from Amazon provided certs chain for cert in certs_chain: store.add_cert(cert) # add CA certificates default_verify_paths = ssl.get_default_verify_paths() default_verify_file = default_verify_paths.cafile default_verify_file = Path(default_verify_file).resolve() if default_verify_file else None default_verify_path = default_verify_paths.capath default_verify_path = Path(default_verify_path).resolve() if default_verify_path else None ca_files = [ca_file for ca_file in default_verify_path.iterdir()] if default_verify_path else [] if default_verify_file: ca_files.append(default_verify_file) for ca_file in ca_files: ca_file: Path if ca_file.is_file(): with ca_file.open('r', encoding='ascii') as crt_f: ca_certs_txt = crt_f.read() ca_certs = extract_certs(ca_certs_txt) for cert in ca_certs: store.add_cert(cert) # add CA certificates (Windows) ssl_context = ssl.create_default_context() der_certs = ssl_context.get_ca_certs(binary_form=True) pem_certs = '\n'.join([ssl.DER_cert_to_PEM_cert(der_cert) for der_cert in der_certs]) ca_certs = extract_certs(pem_certs) for ca_cert in ca_certs: store.add_cert(ca_cert) store_context = crypto.X509StoreContext(store, amazon_cert) try: store_context.verify_certificate() result = True except crypto.X509StoreContextError: result = False return result
def verify_certs_chain(certs_chain: List[crypto.X509], amazon_cert: crypto.X509) -> bool: """Verifies if Amazon and additional certificates creates chain of trust to a root CA. Args: certs_chain: List of pycrypto X509 intermediate certificates from signature chain URL. amazon_cert: Pycrypto X509 Amazon certificate. Returns: result: True if verification was successful, False if not. """ store = crypto.X509Store() # add certificates from Amazon provided certs chain for cert in certs_chain: store.add_cert(cert) # add CA certificates default_verify_paths = ssl.get_default_verify_paths() default_verify_file = default_verify_paths.cafile default_verify_file = Path(default_verify_file).resolve() if default_verify_file else None default_verify_path = default_verify_paths.capath default_verify_path = Path(default_verify_path).resolve() if default_verify_path else None ca_files = [ca_file for ca_file in default_verify_path.iterdir()] if default_verify_path else [] if default_verify_file: ca_files.append(default_verify_file) for ca_file in ca_files: ca_file: Path if ca_file.is_file(): with ca_file.open('r', encoding='ascii') as crt_f: ca_certs_txt = crt_f.read() ca_certs = extract_certs(ca_certs_txt) for cert in ca_certs: store.add_cert(cert) # add CA certificates (Windows) ssl_context = ssl.create_default_context() der_certs = ssl_context.get_ca_certs(binary_form=True) pem_certs = '\n'.join([ssl.DER_cert_to_PEM_cert(der_cert) for der_cert in der_certs]) ca_certs = extract_certs(pem_certs) for ca_cert in ca_certs: store.add_cert(ca_cert) store_context = crypto.X509StoreContext(store, amazon_cert) try: store_context.verify_certificate() result = True except crypto.X509StoreContextError: result = False return result
[ "Verifies", "if", "Amazon", "and", "additional", "certificates", "creates", "chain", "of", "trust", "to", "a", "root", "CA", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/utils/alexa/ssl_tools.py#L98-L152
[ "def", "verify_certs_chain", "(", "certs_chain", ":", "List", "[", "crypto", ".", "X509", "]", ",", "amazon_cert", ":", "crypto", ".", "X509", ")", "->", "bool", ":", "store", "=", "crypto", ".", "X509Store", "(", ")", "# add certificates from Amazon provided certs chain", "for", "cert", "in", "certs_chain", ":", "store", ".", "add_cert", "(", "cert", ")", "# add CA certificates", "default_verify_paths", "=", "ssl", ".", "get_default_verify_paths", "(", ")", "default_verify_file", "=", "default_verify_paths", ".", "cafile", "default_verify_file", "=", "Path", "(", "default_verify_file", ")", ".", "resolve", "(", ")", "if", "default_verify_file", "else", "None", "default_verify_path", "=", "default_verify_paths", ".", "capath", "default_verify_path", "=", "Path", "(", "default_verify_path", ")", ".", "resolve", "(", ")", "if", "default_verify_path", "else", "None", "ca_files", "=", "[", "ca_file", "for", "ca_file", "in", "default_verify_path", ".", "iterdir", "(", ")", "]", "if", "default_verify_path", "else", "[", "]", "if", "default_verify_file", ":", "ca_files", ".", "append", "(", "default_verify_file", ")", "for", "ca_file", "in", "ca_files", ":", "ca_file", ":", "Path", "if", "ca_file", ".", "is_file", "(", ")", ":", "with", "ca_file", ".", "open", "(", "'r'", ",", "encoding", "=", "'ascii'", ")", "as", "crt_f", ":", "ca_certs_txt", "=", "crt_f", ".", "read", "(", ")", "ca_certs", "=", "extract_certs", "(", "ca_certs_txt", ")", "for", "cert", "in", "ca_certs", ":", "store", ".", "add_cert", "(", "cert", ")", "# add CA certificates (Windows)", "ssl_context", "=", "ssl", ".", "create_default_context", "(", ")", "der_certs", "=", "ssl_context", ".", "get_ca_certs", "(", "binary_form", "=", "True", ")", "pem_certs", "=", "'\\n'", ".", "join", "(", "[", "ssl", ".", "DER_cert_to_PEM_cert", "(", "der_cert", ")", "for", "der_cert", "in", "der_certs", "]", ")", "ca_certs", "=", "extract_certs", "(", "pem_certs", ")", "for", "ca_cert", "in", "ca_certs", ":", "store", ".", "add_cert", "(", "ca_cert", ")", "store_context", "=", "crypto", ".", "X509StoreContext", "(", "store", ",", "amazon_cert", ")", "try", ":", "store_context", ".", "verify_certificate", "(", ")", "result", "=", "True", "except", "crypto", ".", "X509StoreContextError", ":", "result", "=", "False", "return", "result" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
verify_signature
Verifies Alexa request signature. Args: amazon_cert: Pycrypto X509 Amazon certificate. signature: Base64 decoded Alexa request signature from Signature HTTP header. request_body: full HTTPS request body Returns: result: True if verification was successful, False if not.
deeppavlov/utils/alexa/ssl_tools.py
def verify_signature(amazon_cert: crypto.X509, signature: str, request_body: bytes) -> bool: """Verifies Alexa request signature. Args: amazon_cert: Pycrypto X509 Amazon certificate. signature: Base64 decoded Alexa request signature from Signature HTTP header. request_body: full HTTPS request body Returns: result: True if verification was successful, False if not. """ signature = base64.b64decode(signature) try: crypto.verify(amazon_cert, signature, request_body, 'sha1') result = True except crypto.Error: result = False return result
def verify_signature(amazon_cert: crypto.X509, signature: str, request_body: bytes) -> bool: """Verifies Alexa request signature. Args: amazon_cert: Pycrypto X509 Amazon certificate. signature: Base64 decoded Alexa request signature from Signature HTTP header. request_body: full HTTPS request body Returns: result: True if verification was successful, False if not. """ signature = base64.b64decode(signature) try: crypto.verify(amazon_cert, signature, request_body, 'sha1') result = True except crypto.Error: result = False return result
[ "Verifies", "Alexa", "request", "signature", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/utils/alexa/ssl_tools.py#L155-L173
[ "def", "verify_signature", "(", "amazon_cert", ":", "crypto", ".", "X509", ",", "signature", ":", "str", ",", "request_body", ":", "bytes", ")", "->", "bool", ":", "signature", "=", "base64", ".", "b64decode", "(", "signature", ")", "try", ":", "crypto", ".", "verify", "(", "amazon_cert", ",", "signature", ",", "request_body", ",", "'sha1'", ")", "result", "=", "True", "except", "crypto", ".", "Error", ":", "result", "=", "False", "return", "result" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
verify_cert
Conducts series of Alexa SSL certificate verifications against Amazon Alexa requirements. Args: signature_chain_url: Signature certificate URL from SignatureCertChainUrl HTTP header. Returns: result: Amazon certificate if verification was successful, None if not.
deeppavlov/utils/alexa/ssl_tools.py
def verify_cert(signature_chain_url: str) -> Optional[crypto.X509]: """Conducts series of Alexa SSL certificate verifications against Amazon Alexa requirements. Args: signature_chain_url: Signature certificate URL from SignatureCertChainUrl HTTP header. Returns: result: Amazon certificate if verification was successful, None if not. """ try: certs_chain_get = requests.get(signature_chain_url) except requests.exceptions.ConnectionError as e: log.error(f'Amazon signature chain get error: {e}') return None certs_chain_txt = certs_chain_get.text certs_chain = extract_certs(certs_chain_txt) amazon_cert: crypto.X509 = certs_chain.pop(0) # verify signature chain url sc_url_verification = verify_sc_url(signature_chain_url) if not sc_url_verification: log.error(f'Amazon signature url {signature_chain_url} was not verified') # verify not expired expired_verification = not amazon_cert.has_expired() if not expired_verification: log.error(f'Amazon certificate ({signature_chain_url}) expired') # verify subject alternative names sans_verification = verify_sans(amazon_cert) if not sans_verification: log.error(f'Subject alternative names verification for ({signature_chain_url}) certificate failed') # verify certs chain chain_verification = verify_certs_chain(certs_chain, amazon_cert) if not chain_verification: log.error(f'Certificates chain verification for ({signature_chain_url}) certificate failed') result = (sc_url_verification and expired_verification and sans_verification and chain_verification) return amazon_cert if result else None
def verify_cert(signature_chain_url: str) -> Optional[crypto.X509]: """Conducts series of Alexa SSL certificate verifications against Amazon Alexa requirements. Args: signature_chain_url: Signature certificate URL from SignatureCertChainUrl HTTP header. Returns: result: Amazon certificate if verification was successful, None if not. """ try: certs_chain_get = requests.get(signature_chain_url) except requests.exceptions.ConnectionError as e: log.error(f'Amazon signature chain get error: {e}') return None certs_chain_txt = certs_chain_get.text certs_chain = extract_certs(certs_chain_txt) amazon_cert: crypto.X509 = certs_chain.pop(0) # verify signature chain url sc_url_verification = verify_sc_url(signature_chain_url) if not sc_url_verification: log.error(f'Amazon signature url {signature_chain_url} was not verified') # verify not expired expired_verification = not amazon_cert.has_expired() if not expired_verification: log.error(f'Amazon certificate ({signature_chain_url}) expired') # verify subject alternative names sans_verification = verify_sans(amazon_cert) if not sans_verification: log.error(f'Subject alternative names verification for ({signature_chain_url}) certificate failed') # verify certs chain chain_verification = verify_certs_chain(certs_chain, amazon_cert) if not chain_verification: log.error(f'Certificates chain verification for ({signature_chain_url}) certificate failed') result = (sc_url_verification and expired_verification and sans_verification and chain_verification) return amazon_cert if result else None
[ "Conducts", "series", "of", "Alexa", "SSL", "certificate", "verifications", "against", "Amazon", "Alexa", "requirements", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/utils/alexa/ssl_tools.py#L176-L217
[ "def", "verify_cert", "(", "signature_chain_url", ":", "str", ")", "->", "Optional", "[", "crypto", ".", "X509", "]", ":", "try", ":", "certs_chain_get", "=", "requests", ".", "get", "(", "signature_chain_url", ")", "except", "requests", ".", "exceptions", ".", "ConnectionError", "as", "e", ":", "log", ".", "error", "(", "f'Amazon signature chain get error: {e}'", ")", "return", "None", "certs_chain_txt", "=", "certs_chain_get", ".", "text", "certs_chain", "=", "extract_certs", "(", "certs_chain_txt", ")", "amazon_cert", ":", "crypto", ".", "X509", "=", "certs_chain", ".", "pop", "(", "0", ")", "# verify signature chain url", "sc_url_verification", "=", "verify_sc_url", "(", "signature_chain_url", ")", "if", "not", "sc_url_verification", ":", "log", ".", "error", "(", "f'Amazon signature url {signature_chain_url} was not verified'", ")", "# verify not expired", "expired_verification", "=", "not", "amazon_cert", ".", "has_expired", "(", ")", "if", "not", "expired_verification", ":", "log", ".", "error", "(", "f'Amazon certificate ({signature_chain_url}) expired'", ")", "# verify subject alternative names", "sans_verification", "=", "verify_sans", "(", "amazon_cert", ")", "if", "not", "sans_verification", ":", "log", ".", "error", "(", "f'Subject alternative names verification for ({signature_chain_url}) certificate failed'", ")", "# verify certs chain", "chain_verification", "=", "verify_certs_chain", "(", "certs_chain", ",", "amazon_cert", ")", "if", "not", "chain_verification", ":", "log", ".", "error", "(", "f'Certificates chain verification for ({signature_chain_url}) certificate failed'", ")", "result", "=", "(", "sc_url_verification", "and", "expired_verification", "and", "sans_verification", "and", "chain_verification", ")", "return", "amazon_cert", "if", "result", "else", "None" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
RichMessage.json
Returns list of json compatible states of the RichMessage instance nested controls. Returns: json_controls: Json representation of RichMessage instance nested controls.
deeppavlov/core/agent/rich_content.py
def json(self) -> list: """Returns list of json compatible states of the RichMessage instance nested controls. Returns: json_controls: Json representation of RichMessage instance nested controls. """ json_controls = [control.json() for control in self.controls] return json_controls
def json(self) -> list: """Returns list of json compatible states of the RichMessage instance nested controls. Returns: json_controls: Json representation of RichMessage instance nested controls. """ json_controls = [control.json() for control in self.controls] return json_controls
[ "Returns", "list", "of", "json", "compatible", "states", "of", "the", "RichMessage", "instance", "nested", "controls", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/agent/rich_content.py#L115-L124
[ "def", "json", "(", "self", ")", "->", "list", ":", "json_controls", "=", "[", "control", ".", "json", "(", ")", "for", "control", "in", "self", ".", "controls", "]", "return", "json_controls" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
RichMessage.ms_bot_framework
Returns list of MS Bot Framework compatible states of the RichMessage instance nested controls. Returns: ms_bf_controls: MS Bot Framework representation of RichMessage instance nested controls.
deeppavlov/core/agent/rich_content.py
def ms_bot_framework(self) -> list: """Returns list of MS Bot Framework compatible states of the RichMessage instance nested controls. Returns: ms_bf_controls: MS Bot Framework representation of RichMessage instance nested controls. """ ms_bf_controls = [control.ms_bot_framework() for control in self.controls] return ms_bf_controls
def ms_bot_framework(self) -> list: """Returns list of MS Bot Framework compatible states of the RichMessage instance nested controls. Returns: ms_bf_controls: MS Bot Framework representation of RichMessage instance nested controls. """ ms_bf_controls = [control.ms_bot_framework() for control in self.controls] return ms_bf_controls
[ "Returns", "list", "of", "MS", "Bot", "Framework", "compatible", "states", "of", "the", "RichMessage", "instance", "nested", "controls", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/agent/rich_content.py#L126-L135
[ "def", "ms_bot_framework", "(", "self", ")", "->", "list", ":", "ms_bf_controls", "=", "[", "control", ".", "ms_bot_framework", "(", ")", "for", "control", "in", "self", ".", "controls", "]", "return", "ms_bf_controls" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
RichMessage.telegram
Returns list of Telegram compatible states of the RichMessage instance nested controls. Returns: telegram_controls: Telegram representation of RichMessage instance nested controls.
deeppavlov/core/agent/rich_content.py
def telegram(self) -> list: """Returns list of Telegram compatible states of the RichMessage instance nested controls. Returns: telegram_controls: Telegram representation of RichMessage instance nested controls. """ telegram_controls = [control.telegram() for control in self.controls] return telegram_controls
def telegram(self) -> list: """Returns list of Telegram compatible states of the RichMessage instance nested controls. Returns: telegram_controls: Telegram representation of RichMessage instance nested controls. """ telegram_controls = [control.telegram() for control in self.controls] return telegram_controls
[ "Returns", "list", "of", "Telegram", "compatible", "states", "of", "the", "RichMessage", "instance", "nested", "controls", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/agent/rich_content.py#L137-L146
[ "def", "telegram", "(", "self", ")", "->", "list", ":", "telegram_controls", "=", "[", "control", ".", "telegram", "(", ")", "for", "control", "in", "self", ".", "controls", "]", "return", "telegram_controls" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
RichMessage.alexa
Returns list of Amazon Alexa compatible states of the RichMessage instance nested controls. Returns: alexa_controls: Amazon Alexa representation of RichMessage instance nested controls.
deeppavlov/core/agent/rich_content.py
def alexa(self) -> list: """Returns list of Amazon Alexa compatible states of the RichMessage instance nested controls. Returns: alexa_controls: Amazon Alexa representation of RichMessage instance nested controls. """ alexa_controls = [control.alexa() for control in self.controls] return alexa_controls
def alexa(self) -> list: """Returns list of Amazon Alexa compatible states of the RichMessage instance nested controls. Returns: alexa_controls: Amazon Alexa representation of RichMessage instance nested controls. """ alexa_controls = [control.alexa() for control in self.controls] return alexa_controls
[ "Returns", "list", "of", "Amazon", "Alexa", "compatible", "states", "of", "the", "RichMessage", "instance", "nested", "controls", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/agent/rich_content.py#L148-L157
[ "def", "alexa", "(", "self", ")", "->", "list", ":", "alexa_controls", "=", "[", "control", ".", "alexa", "(", ")", "for", "control", "in", "self", ".", "controls", "]", "return", "alexa_controls" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
main
DeepPavlov console configuration utility.
deeppavlov/settings.py
def main(): """DeepPavlov console configuration utility.""" args = parser.parse_args() path = get_settings_path() if args.default: if populate_settings_dir(force=True): print(f'Populated {path} with default settings files') else: print(f'{path} is already a default settings directory') else: print(f'Current DeepPavlov settings path: {path}')
def main(): """DeepPavlov console configuration utility.""" args = parser.parse_args() path = get_settings_path() if args.default: if populate_settings_dir(force=True): print(f'Populated {path} with default settings files') else: print(f'{path} is already a default settings directory') else: print(f'Current DeepPavlov settings path: {path}')
[ "DeepPavlov", "console", "configuration", "utility", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/settings.py#L24-L35
[ "def", "main", "(", ")", ":", "args", "=", "parser", ".", "parse_args", "(", ")", "path", "=", "get_settings_path", "(", ")", "if", "args", ".", "default", ":", "if", "populate_settings_dir", "(", "force", "=", "True", ")", ":", "print", "(", "f'Populated {path} with default settings files'", ")", "else", ":", "print", "(", "f'{path} is already a default settings directory'", ")", "else", ":", "print", "(", "f'Current DeepPavlov settings path: {path}'", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
_graph_wrap
Constructs function encapsulated in the graph.
deeppavlov/core/models/tf_backend.py
def _graph_wrap(func, graph): """Constructs function encapsulated in the graph.""" @wraps(func) def _wrapped(*args, **kwargs): with graph.as_default(): return func(*args, **kwargs) return _wrapped
def _graph_wrap(func, graph): """Constructs function encapsulated in the graph.""" @wraps(func) def _wrapped(*args, **kwargs): with graph.as_default(): return func(*args, **kwargs) return _wrapped
[ "Constructs", "function", "encapsulated", "in", "the", "graph", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/models/tf_backend.py#L22-L28
[ "def", "_graph_wrap", "(", "func", ",", "graph", ")", ":", "@", "wraps", "(", "func", ")", "def", "_wrapped", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "with", "graph", ".", "as_default", "(", ")", ":", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "_wrapped" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
_keras_wrap
Constructs function encapsulated in the graph and the session.
deeppavlov/core/models/tf_backend.py
def _keras_wrap(func, graph, session): """Constructs function encapsulated in the graph and the session.""" import keras.backend as K @wraps(func) def _wrapped(*args, **kwargs): with graph.as_default(): K.set_session(session) return func(*args, **kwargs) return _wrapped
def _keras_wrap(func, graph, session): """Constructs function encapsulated in the graph and the session.""" import keras.backend as K @wraps(func) def _wrapped(*args, **kwargs): with graph.as_default(): K.set_session(session) return func(*args, **kwargs) return _wrapped
[ "Constructs", "function", "encapsulated", "in", "the", "graph", "and", "the", "session", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/models/tf_backend.py#L31-L40
[ "def", "_keras_wrap", "(", "func", ",", "graph", ",", "session", ")", ":", "import", "keras", ".", "backend", "as", "K", "@", "wraps", "(", "func", ")", "def", "_wrapped", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "with", "graph", ".", "as_default", "(", ")", ":", "K", ".", "set_session", "(", "session", ")", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "_wrapped" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
roc_auc_score
Compute Area Under the Curve (AUC) from prediction scores. Args: y_true: true binary labels y_pred: target scores, can either be probability estimates of the positive class Returns: Area Under the Curve (AUC) from prediction scores
deeppavlov/metrics/roc_auc_score.py
def roc_auc_score(y_true: Union[List[List[float]], List[List[int]], np.ndarray], y_pred: Union[List[List[float]], List[List[int]], np.ndarray]) -> float: """ Compute Area Under the Curve (AUC) from prediction scores. Args: y_true: true binary labels y_pred: target scores, can either be probability estimates of the positive class Returns: Area Under the Curve (AUC) from prediction scores """ try: return sklearn.metrics.roc_auc_score(np.squeeze(np.array(y_true)), np.squeeze(np.array(y_pred)), average="macro") except ValueError: return 0.
def roc_auc_score(y_true: Union[List[List[float]], List[List[int]], np.ndarray], y_pred: Union[List[List[float]], List[List[int]], np.ndarray]) -> float: """ Compute Area Under the Curve (AUC) from prediction scores. Args: y_true: true binary labels y_pred: target scores, can either be probability estimates of the positive class Returns: Area Under the Curve (AUC) from prediction scores """ try: return sklearn.metrics.roc_auc_score(np.squeeze(np.array(y_true)), np.squeeze(np.array(y_pred)), average="macro") except ValueError: return 0.
[ "Compute", "Area", "Under", "the", "Curve", "(", "AUC", ")", "from", "prediction", "scores", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/metrics/roc_auc_score.py#L25-L41
[ "def", "roc_auc_score", "(", "y_true", ":", "Union", "[", "List", "[", "List", "[", "float", "]", "]", ",", "List", "[", "List", "[", "int", "]", "]", ",", "np", ".", "ndarray", "]", ",", "y_pred", ":", "Union", "[", "List", "[", "List", "[", "float", "]", "]", ",", "List", "[", "List", "[", "int", "]", "]", ",", "np", ".", "ndarray", "]", ")", "->", "float", ":", "try", ":", "return", "sklearn", ".", "metrics", ".", "roc_auc_score", "(", "np", ".", "squeeze", "(", "np", ".", "array", "(", "y_true", ")", ")", ",", "np", ".", "squeeze", "(", "np", ".", "array", "(", "y_pred", ")", ")", ",", "average", "=", "\"macro\"", ")", "except", "ValueError", ":", "return", "0." ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
hash_
Convert a token to a hash of given size. Args: token: a word hash_size: hash size Returns: int, hashed token
deeppavlov/models/vectorizers/hashing_tfidf_vectorizer.py
def hash_(token: str, hash_size: int) -> int: """Convert a token to a hash of given size. Args: token: a word hash_size: hash size Returns: int, hashed token """ return murmurhash3_32(token, positive=True) % hash_size
def hash_(token: str, hash_size: int) -> int: """Convert a token to a hash of given size. Args: token: a word hash_size: hash size Returns: int, hashed token """ return murmurhash3_32(token, positive=True) % hash_size
[ "Convert", "a", "token", "to", "a", "hash", "of", "given", "size", ".", "Args", ":", "token", ":", "a", "word", "hash_size", ":", "hash", "size" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/vectorizers/hashing_tfidf_vectorizer.py#L33-L43
[ "def", "hash_", "(", "token", ":", "str", ",", "hash_size", ":", "int", ")", "->", "int", ":", "return", "murmurhash3_32", "(", "token", ",", "positive", "=", "True", ")", "%", "hash_size" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
accuracy
Calculate accuracy in terms of absolute coincidence Args: y_true: array of true values y_predicted: array of predicted values Returns: portion of absolutely coincidental samples
deeppavlov/metrics/accuracy.py
def accuracy(y_true: [list, np.ndarray], y_predicted: [list, np.ndarray]) -> float: """ Calculate accuracy in terms of absolute coincidence Args: y_true: array of true values y_predicted: array of predicted values Returns: portion of absolutely coincidental samples """ examples_len = len(y_true) correct = sum([y1 == y2 for y1, y2 in zip(y_true, y_predicted)]) return correct / examples_len if examples_len else 0
def accuracy(y_true: [list, np.ndarray], y_predicted: [list, np.ndarray]) -> float: """ Calculate accuracy in terms of absolute coincidence Args: y_true: array of true values y_predicted: array of predicted values Returns: portion of absolutely coincidental samples """ examples_len = len(y_true) correct = sum([y1 == y2 for y1, y2 in zip(y_true, y_predicted)]) return correct / examples_len if examples_len else 0
[ "Calculate", "accuracy", "in", "terms", "of", "absolute", "coincidence" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/metrics/accuracy.py#L24-L37
[ "def", "accuracy", "(", "y_true", ":", "[", "list", ",", "np", ".", "ndarray", "]", ",", "y_predicted", ":", "[", "list", ",", "np", ".", "ndarray", "]", ")", "->", "float", ":", "examples_len", "=", "len", "(", "y_true", ")", "correct", "=", "sum", "(", "[", "y1", "==", "y2", "for", "y1", ",", "y2", "in", "zip", "(", "y_true", ",", "y_predicted", ")", "]", ")", "return", "correct", "/", "examples_len", "if", "examples_len", "else", "0" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
round_accuracy
Rounds predictions and calculates accuracy in terms of absolute coincidence. Args: y_true: list of true values y_predicted: list of predicted values Returns: portion of absolutely coincidental samples
deeppavlov/metrics/accuracy.py
def round_accuracy(y_true, y_predicted): """ Rounds predictions and calculates accuracy in terms of absolute coincidence. Args: y_true: list of true values y_predicted: list of predicted values Returns: portion of absolutely coincidental samples """ predictions = [round(x) for x in y_predicted] examples_len = len(y_true) correct = sum([y1 == y2 for y1, y2 in zip(y_true, predictions)]) return correct / examples_len if examples_len else 0
def round_accuracy(y_true, y_predicted): """ Rounds predictions and calculates accuracy in terms of absolute coincidence. Args: y_true: list of true values y_predicted: list of predicted values Returns: portion of absolutely coincidental samples """ predictions = [round(x) for x in y_predicted] examples_len = len(y_true) correct = sum([y1 == y2 for y1, y2 in zip(y_true, predictions)]) return correct / examples_len if examples_len else 0
[ "Rounds", "predictions", "and", "calculates", "accuracy", "in", "terms", "of", "absolute", "coincidence", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/metrics/accuracy.py#L94-L108
[ "def", "round_accuracy", "(", "y_true", ",", "y_predicted", ")", ":", "predictions", "=", "[", "round", "(", "x", ")", "for", "x", "in", "y_predicted", "]", "examples_len", "=", "len", "(", "y_true", ")", "correct", "=", "sum", "(", "[", "y1", "==", "y2", "for", "y1", ",", "y2", "in", "zip", "(", "y_true", ",", "predictions", ")", "]", ")", "return", "correct", "/", "examples_len", "if", "examples_len", "else", "0" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
_pretrained_initializer
We'll stub out all the initializers in the pretrained LM with a function that loads the weights from the file
deeppavlov/models/elmo/elmo_model.py
def _pretrained_initializer(varname, weight_file, embedding_weight_file=None): """ We'll stub out all the initializers in the pretrained LM with a function that loads the weights from the file """ weight_name_map = {} for i in range(2): for j in range(8): # if we decide to add more layers root = 'RNN_{}/RNN/MultiRNNCell/Cell{}'.format(i, j) weight_name_map[root + '/rnn/lstm_cell/kernel'] = \ root + '/LSTMCell/W_0' weight_name_map[root + '/rnn/lstm_cell/bias'] = \ root + '/LSTMCell/B' weight_name_map[root + '/rnn/lstm_cell/projection/kernel'] = \ root + '/LSTMCell/W_P_0' # convert the graph name to that in the checkpoint varname_in_file = varname[5:] if varname_in_file.startswith('RNN'): varname_in_file = weight_name_map[varname_in_file] if varname_in_file == 'embedding': with h5py.File(embedding_weight_file, 'r') as fin: # Have added a special 0 index for padding not present # in the original model. embed_weights = fin[varname_in_file][...] weights = np.zeros( (embed_weights.shape[0] + 1, embed_weights.shape[1]), dtype=DTYPE ) weights[1:, :] = embed_weights else: with h5py.File(weight_file, 'r') as fin: if varname_in_file == 'char_embed': # Have added a special 0 index for padding not present # in the original model. char_embed_weights = fin[varname_in_file][...] weights = np.zeros( (char_embed_weights.shape[0] + 1, char_embed_weights.shape[1]), dtype=DTYPE ) weights[1:, :] = char_embed_weights else: weights = fin[varname_in_file][...] # Tensorflow initializers are callables that accept a shape parameter # and some optional kwargs def ret(shape, **kwargs): if list(shape) != list(weights.shape): raise ValueError( "Invalid shape initializing {0}, got {1}, expected {2}".format( varname_in_file, shape, weights.shape) ) return weights return ret
def _pretrained_initializer(varname, weight_file, embedding_weight_file=None): """ We'll stub out all the initializers in the pretrained LM with a function that loads the weights from the file """ weight_name_map = {} for i in range(2): for j in range(8): # if we decide to add more layers root = 'RNN_{}/RNN/MultiRNNCell/Cell{}'.format(i, j) weight_name_map[root + '/rnn/lstm_cell/kernel'] = \ root + '/LSTMCell/W_0' weight_name_map[root + '/rnn/lstm_cell/bias'] = \ root + '/LSTMCell/B' weight_name_map[root + '/rnn/lstm_cell/projection/kernel'] = \ root + '/LSTMCell/W_P_0' # convert the graph name to that in the checkpoint varname_in_file = varname[5:] if varname_in_file.startswith('RNN'): varname_in_file = weight_name_map[varname_in_file] if varname_in_file == 'embedding': with h5py.File(embedding_weight_file, 'r') as fin: # Have added a special 0 index for padding not present # in the original model. embed_weights = fin[varname_in_file][...] weights = np.zeros( (embed_weights.shape[0] + 1, embed_weights.shape[1]), dtype=DTYPE ) weights[1:, :] = embed_weights else: with h5py.File(weight_file, 'r') as fin: if varname_in_file == 'char_embed': # Have added a special 0 index for padding not present # in the original model. char_embed_weights = fin[varname_in_file][...] weights = np.zeros( (char_embed_weights.shape[0] + 1, char_embed_weights.shape[1]), dtype=DTYPE ) weights[1:, :] = char_embed_weights else: weights = fin[varname_in_file][...] # Tensorflow initializers are callables that accept a shape parameter # and some optional kwargs def ret(shape, **kwargs): if list(shape) != list(weights.shape): raise ValueError( "Invalid shape initializing {0}, got {1}, expected {2}".format( varname_in_file, shape, weights.shape) ) return weights return ret
[ "We", "ll", "stub", "out", "all", "the", "initializers", "in", "the", "pretrained", "LM", "with", "a", "function", "that", "loads", "the", "weights", "from", "the", "file" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/elmo/elmo_model.py#L192-L248
[ "def", "_pretrained_initializer", "(", "varname", ",", "weight_file", ",", "embedding_weight_file", "=", "None", ")", ":", "weight_name_map", "=", "{", "}", "for", "i", "in", "range", "(", "2", ")", ":", "for", "j", "in", "range", "(", "8", ")", ":", "# if we decide to add more layers", "root", "=", "'RNN_{}/RNN/MultiRNNCell/Cell{}'", ".", "format", "(", "i", ",", "j", ")", "weight_name_map", "[", "root", "+", "'/rnn/lstm_cell/kernel'", "]", "=", "root", "+", "'/LSTMCell/W_0'", "weight_name_map", "[", "root", "+", "'/rnn/lstm_cell/bias'", "]", "=", "root", "+", "'/LSTMCell/B'", "weight_name_map", "[", "root", "+", "'/rnn/lstm_cell/projection/kernel'", "]", "=", "root", "+", "'/LSTMCell/W_P_0'", "# convert the graph name to that in the checkpoint", "varname_in_file", "=", "varname", "[", "5", ":", "]", "if", "varname_in_file", ".", "startswith", "(", "'RNN'", ")", ":", "varname_in_file", "=", "weight_name_map", "[", "varname_in_file", "]", "if", "varname_in_file", "==", "'embedding'", ":", "with", "h5py", ".", "File", "(", "embedding_weight_file", ",", "'r'", ")", "as", "fin", ":", "# Have added a special 0 index for padding not present", "# in the original model.", "embed_weights", "=", "fin", "[", "varname_in_file", "]", "[", "...", "]", "weights", "=", "np", ".", "zeros", "(", "(", "embed_weights", ".", "shape", "[", "0", "]", "+", "1", ",", "embed_weights", ".", "shape", "[", "1", "]", ")", ",", "dtype", "=", "DTYPE", ")", "weights", "[", "1", ":", ",", ":", "]", "=", "embed_weights", "else", ":", "with", "h5py", ".", "File", "(", "weight_file", ",", "'r'", ")", "as", "fin", ":", "if", "varname_in_file", "==", "'char_embed'", ":", "# Have added a special 0 index for padding not present", "# in the original model.", "char_embed_weights", "=", "fin", "[", "varname_in_file", "]", "[", "...", "]", "weights", "=", "np", ".", "zeros", "(", "(", "char_embed_weights", ".", "shape", "[", "0", "]", "+", "1", ",", "char_embed_weights", ".", "shape", "[", "1", "]", ")", ",", "dtype", "=", "DTYPE", ")", "weights", "[", "1", ":", ",", ":", "]", "=", "char_embed_weights", "else", ":", "weights", "=", "fin", "[", "varname_in_file", "]", "[", "...", "]", "# Tensorflow initializers are callables that accept a shape parameter", "# and some optional kwargs", "def", "ret", "(", "shape", ",", "*", "*", "kwargs", ")", ":", "if", "list", "(", "shape", ")", "!=", "list", "(", "weights", ".", "shape", ")", ":", "raise", "ValueError", "(", "\"Invalid shape initializing {0}, got {1}, expected {2}\"", ".", "format", "(", "varname_in_file", ",", "shape", ",", "weights", ".", "shape", ")", ")", "return", "weights", "return", "ret" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
weight_layers
Weight the layers of a biLM with trainable scalar weights to compute ELMo representations. For each output layer, this returns two ops. The first computes a layer specific weighted average of the biLM layers, and the second the l2 regularizer loss term. The regularization terms are also add to tf.GraphKeys.REGULARIZATION_LOSSES Input: name = a string prefix used for the trainable variable names bilm_ops = the tensorflow ops returned to compute internal representations from a biLM. This is the return value from BidirectionalLanguageModel(...)(ids_placeholder) l2_coef: the l2 regularization coefficient $\lambda$. Pass None or 0.0 for no regularization. use_top_only: if True, then only use the top layer. do_layer_norm: if True, then apply layer normalization to each biLM layer before normalizing reuse: reuse an aggregation variable scope. Output: { 'weighted_op': op to compute weighted average for output, 'regularization_op': op to compute regularization term }
deeppavlov/models/elmo/elmo_model.py
def weight_layers(name, bilm_ops, l2_coef=None, use_top_only=False, do_layer_norm=False, reuse=False): """ Weight the layers of a biLM with trainable scalar weights to compute ELMo representations. For each output layer, this returns two ops. The first computes a layer specific weighted average of the biLM layers, and the second the l2 regularizer loss term. The regularization terms are also add to tf.GraphKeys.REGULARIZATION_LOSSES Input: name = a string prefix used for the trainable variable names bilm_ops = the tensorflow ops returned to compute internal representations from a biLM. This is the return value from BidirectionalLanguageModel(...)(ids_placeholder) l2_coef: the l2 regularization coefficient $\lambda$. Pass None or 0.0 for no regularization. use_top_only: if True, then only use the top layer. do_layer_norm: if True, then apply layer normalization to each biLM layer before normalizing reuse: reuse an aggregation variable scope. Output: { 'weighted_op': op to compute weighted average for output, 'regularization_op': op to compute regularization term } """ def _l2_regularizer(weights): if l2_coef is not None: return l2_coef * tf.reduce_sum(tf.square(weights)) else: return 0.0 # Get ops for computing LM embeddings and mask lm_embeddings = bilm_ops['lm_embeddings'] mask = bilm_ops['mask'] n_lm_layers = int(lm_embeddings.get_shape()[1]) lm_dim = int(lm_embeddings.get_shape()[3]) # import pdb; pdb.set_trace() with tf.control_dependencies([lm_embeddings, mask]): # Cast the mask and broadcast for layer use. mask_float = tf.cast(mask, 'float32') broadcast_mask = tf.expand_dims(mask_float, axis=-1) def _do_ln(x): # do layer normalization excluding the mask x_masked = x * broadcast_mask N = tf.reduce_sum(mask_float) * lm_dim mean = tf.reduce_sum(x_masked) / N variance = tf.reduce_sum(((x_masked - mean) * broadcast_mask)**2) / N return tf.nn.batch_normalization( x, mean, variance, None, None, 1E-12 ) if use_top_only: layers = tf.split(lm_embeddings, n_lm_layers, axis=1) # just the top layer sum_pieces = tf.squeeze(layers[-1], squeeze_dims=1) # no regularization reg = 0.0 else: with tf.variable_scope("aggregation", reuse=reuse): W = tf.get_variable( '{}_ELMo_W'.format(name), shape=(n_lm_layers, ), initializer=tf.zeros_initializer, regularizer=_l2_regularizer, trainable=True, ) # normalize the weights normed_weights = tf.split( tf.nn.softmax(W + 1.0 / n_lm_layers), n_lm_layers ) # split LM layers layers = tf.split(lm_embeddings, n_lm_layers, axis=1) # compute the weighted, normalized LM activations pieces = [] for w, t in zip(normed_weights, layers): if do_layer_norm: pieces.append(w * _do_ln(tf.squeeze(t, squeeze_dims=1))) else: pieces.append(w * tf.squeeze(t, squeeze_dims=1)) sum_pieces = tf.add_n(pieces) # get the regularizer reg = [ r for r in tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) if r.name.find('{}_ELMo_W/'.format(name)) >= 0 ] if len(reg) != 1: raise ValueError # scale the weighted sum by gamma with tf.variable_scope("aggregation", reuse=reuse): gamma = tf.get_variable( '{}_ELMo_gamma'.format(name), shape=(1, ), initializer=tf.ones_initializer, regularizer=None, trainable=True, ) weighted_lm_layers = sum_pieces * gamma weighted_lm_layers_masked = sum_pieces * broadcast_mask weighted_lm_layers_sum = tf.reduce_sum(weighted_lm_layers_masked, 1) mask_sum = tf.reduce_sum(mask_float, 1) mask_sum = tf.maximum(mask_sum, [1]) weighted_lm_layers_mean = weighted_lm_layers_sum / tf.expand_dims(mask_sum, - 1) word_emb_2n = tf.squeeze(layers[0], [1]) word_emb_1n = tf.slice(word_emb_2n, [0, 0, 0], [-1, -1, lm_dim // 2]) # to 512 lstm_outputs1 = tf.squeeze(layers[1], [1]) lstm_outputs2 = tf.squeeze(layers[2], [1]) ret = {'weighted_op': weighted_lm_layers, 'mean_op': weighted_lm_layers_mean, 'regularization_op': reg, 'word_emb': word_emb_1n, 'lstm_outputs1': lstm_outputs1, 'lstm_outputs2': lstm_outputs2, } return ret
def weight_layers(name, bilm_ops, l2_coef=None, use_top_only=False, do_layer_norm=False, reuse=False): """ Weight the layers of a biLM with trainable scalar weights to compute ELMo representations. For each output layer, this returns two ops. The first computes a layer specific weighted average of the biLM layers, and the second the l2 regularizer loss term. The regularization terms are also add to tf.GraphKeys.REGULARIZATION_LOSSES Input: name = a string prefix used for the trainable variable names bilm_ops = the tensorflow ops returned to compute internal representations from a biLM. This is the return value from BidirectionalLanguageModel(...)(ids_placeholder) l2_coef: the l2 regularization coefficient $\lambda$. Pass None or 0.0 for no regularization. use_top_only: if True, then only use the top layer. do_layer_norm: if True, then apply layer normalization to each biLM layer before normalizing reuse: reuse an aggregation variable scope. Output: { 'weighted_op': op to compute weighted average for output, 'regularization_op': op to compute regularization term } """ def _l2_regularizer(weights): if l2_coef is not None: return l2_coef * tf.reduce_sum(tf.square(weights)) else: return 0.0 # Get ops for computing LM embeddings and mask lm_embeddings = bilm_ops['lm_embeddings'] mask = bilm_ops['mask'] n_lm_layers = int(lm_embeddings.get_shape()[1]) lm_dim = int(lm_embeddings.get_shape()[3]) # import pdb; pdb.set_trace() with tf.control_dependencies([lm_embeddings, mask]): # Cast the mask and broadcast for layer use. mask_float = tf.cast(mask, 'float32') broadcast_mask = tf.expand_dims(mask_float, axis=-1) def _do_ln(x): # do layer normalization excluding the mask x_masked = x * broadcast_mask N = tf.reduce_sum(mask_float) * lm_dim mean = tf.reduce_sum(x_masked) / N variance = tf.reduce_sum(((x_masked - mean) * broadcast_mask)**2) / N return tf.nn.batch_normalization( x, mean, variance, None, None, 1E-12 ) if use_top_only: layers = tf.split(lm_embeddings, n_lm_layers, axis=1) # just the top layer sum_pieces = tf.squeeze(layers[-1], squeeze_dims=1) # no regularization reg = 0.0 else: with tf.variable_scope("aggregation", reuse=reuse): W = tf.get_variable( '{}_ELMo_W'.format(name), shape=(n_lm_layers, ), initializer=tf.zeros_initializer, regularizer=_l2_regularizer, trainable=True, ) # normalize the weights normed_weights = tf.split( tf.nn.softmax(W + 1.0 / n_lm_layers), n_lm_layers ) # split LM layers layers = tf.split(lm_embeddings, n_lm_layers, axis=1) # compute the weighted, normalized LM activations pieces = [] for w, t in zip(normed_weights, layers): if do_layer_norm: pieces.append(w * _do_ln(tf.squeeze(t, squeeze_dims=1))) else: pieces.append(w * tf.squeeze(t, squeeze_dims=1)) sum_pieces = tf.add_n(pieces) # get the regularizer reg = [ r for r in tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) if r.name.find('{}_ELMo_W/'.format(name)) >= 0 ] if len(reg) != 1: raise ValueError # scale the weighted sum by gamma with tf.variable_scope("aggregation", reuse=reuse): gamma = tf.get_variable( '{}_ELMo_gamma'.format(name), shape=(1, ), initializer=tf.ones_initializer, regularizer=None, trainable=True, ) weighted_lm_layers = sum_pieces * gamma weighted_lm_layers_masked = sum_pieces * broadcast_mask weighted_lm_layers_sum = tf.reduce_sum(weighted_lm_layers_masked, 1) mask_sum = tf.reduce_sum(mask_float, 1) mask_sum = tf.maximum(mask_sum, [1]) weighted_lm_layers_mean = weighted_lm_layers_sum / tf.expand_dims(mask_sum, - 1) word_emb_2n = tf.squeeze(layers[0], [1]) word_emb_1n = tf.slice(word_emb_2n, [0, 0, 0], [-1, -1, lm_dim // 2]) # to 512 lstm_outputs1 = tf.squeeze(layers[1], [1]) lstm_outputs2 = tf.squeeze(layers[2], [1]) ret = {'weighted_op': weighted_lm_layers, 'mean_op': weighted_lm_layers_mean, 'regularization_op': reg, 'word_emb': word_emb_1n, 'lstm_outputs1': lstm_outputs1, 'lstm_outputs2': lstm_outputs2, } return ret
[ "Weight", "the", "layers", "of", "a", "biLM", "with", "trainable", "scalar", "weights", "to", "compute", "ELMo", "representations", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/elmo/elmo_model.py#L597-L728
[ "def", "weight_layers", "(", "name", ",", "bilm_ops", ",", "l2_coef", "=", "None", ",", "use_top_only", "=", "False", ",", "do_layer_norm", "=", "False", ",", "reuse", "=", "False", ")", ":", "def", "_l2_regularizer", "(", "weights", ")", ":", "if", "l2_coef", "is", "not", "None", ":", "return", "l2_coef", "*", "tf", ".", "reduce_sum", "(", "tf", ".", "square", "(", "weights", ")", ")", "else", ":", "return", "0.0", "# Get ops for computing LM embeddings and mask", "lm_embeddings", "=", "bilm_ops", "[", "'lm_embeddings'", "]", "mask", "=", "bilm_ops", "[", "'mask'", "]", "n_lm_layers", "=", "int", "(", "lm_embeddings", ".", "get_shape", "(", ")", "[", "1", "]", ")", "lm_dim", "=", "int", "(", "lm_embeddings", ".", "get_shape", "(", ")", "[", "3", "]", ")", "# import pdb; pdb.set_trace()", "with", "tf", ".", "control_dependencies", "(", "[", "lm_embeddings", ",", "mask", "]", ")", ":", "# Cast the mask and broadcast for layer use.", "mask_float", "=", "tf", ".", "cast", "(", "mask", ",", "'float32'", ")", "broadcast_mask", "=", "tf", ".", "expand_dims", "(", "mask_float", ",", "axis", "=", "-", "1", ")", "def", "_do_ln", "(", "x", ")", ":", "# do layer normalization excluding the mask", "x_masked", "=", "x", "*", "broadcast_mask", "N", "=", "tf", ".", "reduce_sum", "(", "mask_float", ")", "*", "lm_dim", "mean", "=", "tf", ".", "reduce_sum", "(", "x_masked", ")", "/", "N", "variance", "=", "tf", ".", "reduce_sum", "(", "(", "(", "x_masked", "-", "mean", ")", "*", "broadcast_mask", ")", "**", "2", ")", "/", "N", "return", "tf", ".", "nn", ".", "batch_normalization", "(", "x", ",", "mean", ",", "variance", ",", "None", ",", "None", ",", "1E-12", ")", "if", "use_top_only", ":", "layers", "=", "tf", ".", "split", "(", "lm_embeddings", ",", "n_lm_layers", ",", "axis", "=", "1", ")", "# just the top layer", "sum_pieces", "=", "tf", ".", "squeeze", "(", "layers", "[", "-", "1", "]", ",", "squeeze_dims", "=", "1", ")", "# no regularization", "reg", "=", "0.0", "else", ":", "with", "tf", ".", "variable_scope", "(", "\"aggregation\"", ",", "reuse", "=", "reuse", ")", ":", "W", "=", "tf", ".", "get_variable", "(", "'{}_ELMo_W'", ".", "format", "(", "name", ")", ",", "shape", "=", "(", "n_lm_layers", ",", ")", ",", "initializer", "=", "tf", ".", "zeros_initializer", ",", "regularizer", "=", "_l2_regularizer", ",", "trainable", "=", "True", ",", ")", "# normalize the weights", "normed_weights", "=", "tf", ".", "split", "(", "tf", ".", "nn", ".", "softmax", "(", "W", "+", "1.0", "/", "n_lm_layers", ")", ",", "n_lm_layers", ")", "# split LM layers", "layers", "=", "tf", ".", "split", "(", "lm_embeddings", ",", "n_lm_layers", ",", "axis", "=", "1", ")", "# compute the weighted, normalized LM activations", "pieces", "=", "[", "]", "for", "w", ",", "t", "in", "zip", "(", "normed_weights", ",", "layers", ")", ":", "if", "do_layer_norm", ":", "pieces", ".", "append", "(", "w", "*", "_do_ln", "(", "tf", ".", "squeeze", "(", "t", ",", "squeeze_dims", "=", "1", ")", ")", ")", "else", ":", "pieces", ".", "append", "(", "w", "*", "tf", ".", "squeeze", "(", "t", ",", "squeeze_dims", "=", "1", ")", ")", "sum_pieces", "=", "tf", ".", "add_n", "(", "pieces", ")", "# get the regularizer", "reg", "=", "[", "r", "for", "r", "in", "tf", ".", "get_collection", "(", "tf", ".", "GraphKeys", ".", "REGULARIZATION_LOSSES", ")", "if", "r", ".", "name", ".", "find", "(", "'{}_ELMo_W/'", ".", "format", "(", "name", ")", ")", ">=", "0", "]", "if", "len", "(", "reg", ")", "!=", "1", ":", "raise", "ValueError", "# scale the weighted sum by gamma", "with", "tf", ".", "variable_scope", "(", "\"aggregation\"", ",", "reuse", "=", "reuse", ")", ":", "gamma", "=", "tf", ".", "get_variable", "(", "'{}_ELMo_gamma'", ".", "format", "(", "name", ")", ",", "shape", "=", "(", "1", ",", ")", ",", "initializer", "=", "tf", ".", "ones_initializer", ",", "regularizer", "=", "None", ",", "trainable", "=", "True", ",", ")", "weighted_lm_layers", "=", "sum_pieces", "*", "gamma", "weighted_lm_layers_masked", "=", "sum_pieces", "*", "broadcast_mask", "weighted_lm_layers_sum", "=", "tf", ".", "reduce_sum", "(", "weighted_lm_layers_masked", ",", "1", ")", "mask_sum", "=", "tf", ".", "reduce_sum", "(", "mask_float", ",", "1", ")", "mask_sum", "=", "tf", ".", "maximum", "(", "mask_sum", ",", "[", "1", "]", ")", "weighted_lm_layers_mean", "=", "weighted_lm_layers_sum", "/", "tf", ".", "expand_dims", "(", "mask_sum", ",", "-", "1", ")", "word_emb_2n", "=", "tf", ".", "squeeze", "(", "layers", "[", "0", "]", ",", "[", "1", "]", ")", "word_emb_1n", "=", "tf", ".", "slice", "(", "word_emb_2n", ",", "[", "0", ",", "0", ",", "0", "]", ",", "[", "-", "1", ",", "-", "1", ",", "lm_dim", "//", "2", "]", ")", "# to 512", "lstm_outputs1", "=", "tf", ".", "squeeze", "(", "layers", "[", "1", "]", ",", "[", "1", "]", ")", "lstm_outputs2", "=", "tf", ".", "squeeze", "(", "layers", "[", "2", "]", ",", "[", "1", "]", ")", "ret", "=", "{", "'weighted_op'", ":", "weighted_lm_layers", ",", "'mean_op'", ":", "weighted_lm_layers_mean", ",", "'regularization_op'", ":", "reg", ",", "'word_emb'", ":", "word_emb_1n", ",", "'lstm_outputs1'", ":", "lstm_outputs1", ",", "'lstm_outputs2'", ":", "lstm_outputs2", ",", "}", "return", "ret" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
BidirectionalLanguageModelGraph._build_word_char_embeddings
options contains key 'char_cnn': { 'n_characters': 262, # includes the start / end characters 'max_characters_per_token': 50, 'filters': [ [1, 32], [2, 32], [3, 64], [4, 128], [5, 256], [6, 512], [7, 512] ], 'activation': 'tanh', # for the character embedding 'embedding': {'dim': 16} # for highway layers # if omitted, then no highway layers 'n_highway': 2, }
deeppavlov/models/elmo/elmo_model.py
def _build_word_char_embeddings(self): """ options contains key 'char_cnn': { 'n_characters': 262, # includes the start / end characters 'max_characters_per_token': 50, 'filters': [ [1, 32], [2, 32], [3, 64], [4, 128], [5, 256], [6, 512], [7, 512] ], 'activation': 'tanh', # for the character embedding 'embedding': {'dim': 16} # for highway layers # if omitted, then no highway layers 'n_highway': 2, } """ projection_dim = self.options['lstm']['projection_dim'] cnn_options = self.options['char_cnn'] filters = cnn_options['filters'] n_filters = sum(f[1] for f in filters) max_chars = cnn_options['max_characters_per_token'] char_embed_dim = cnn_options['embedding']['dim'] n_chars = cnn_options['n_characters'] if n_chars != 262: raise Exception("Set n_characters=262 after training see a \ https://github.com/allenai/bilm-tf/blob/master/README.md") if cnn_options['activation'] == 'tanh': activation = tf.nn.tanh elif cnn_options['activation'] == 'relu': activation = tf.nn.relu # the character embeddings with tf.device("/cpu:0"): self.embedding_weights = tf.get_variable("char_embed", [n_chars, char_embed_dim], dtype=DTYPE, initializer=tf.random_uniform_initializer(-1.0, 1.0)) # shape (batch_size, unroll_steps, max_chars, embed_dim) self.char_embedding = tf.nn.embedding_lookup(self.embedding_weights, self.ids_placeholder) # the convolutions def make_convolutions(inp): with tf.variable_scope('CNN'): convolutions = [] for i, (width, num) in enumerate(filters): if cnn_options['activation'] == 'relu': # He initialization for ReLU activation # with char embeddings init between -1 and 1 # w_init = tf.random_normal_initializer( # mean=0.0, # stddev=np.sqrt(2.0 / (width * char_embed_dim)) # ) # Kim et al 2015, +/- 0.05 w_init = tf.random_uniform_initializer( minval=-0.05, maxval=0.05) elif cnn_options['activation'] == 'tanh': # glorot init w_init = tf.random_normal_initializer( mean=0.0, stddev=np.sqrt(1.0 / (width * char_embed_dim)) ) w = tf.get_variable( "W_cnn_%s" % i, [1, width, char_embed_dim, num], initializer=w_init, dtype=DTYPE) b = tf.get_variable( "b_cnn_%s" % i, [num], dtype=DTYPE, initializer=tf.constant_initializer(0.0)) conv = tf.nn.conv2d(inp, w, strides=[1, 1, 1, 1], padding="VALID") + b # now max pool conv = tf.nn.max_pool(conv, [1, 1, max_chars - width + 1, 1], [1, 1, 1, 1], 'VALID') # activation conv = activation(conv) conv = tf.squeeze(conv, squeeze_dims=[2]) convolutions.append(conv) return tf.concat(convolutions, 2) embedding = make_convolutions(self.char_embedding) # for highway and projection layers n_highway = cnn_options.get('n_highway') use_highway = n_highway is not None and n_highway > 0 use_proj = n_filters != projection_dim if use_highway or use_proj: # reshape from (batch_size, n_tokens, dim) to (-1, dim) batch_size_n_tokens = tf.shape(embedding)[0:2] embedding = tf.reshape(embedding, [-1, n_filters]) # set up weights for projection if use_proj: assert n_filters > projection_dim with tf.variable_scope('CNN_proj'): W_proj_cnn = tf.get_variable( "W_proj", [n_filters, projection_dim], initializer=tf.random_normal_initializer( mean=0.0, stddev=np.sqrt(1.0 / n_filters)), dtype=DTYPE) b_proj_cnn = tf.get_variable( "b_proj", [projection_dim], initializer=tf.constant_initializer(0.0), dtype=DTYPE) # apply highways layers def high(x, ww_carry, bb_carry, ww_tr, bb_tr): carry_gate = tf.nn.sigmoid(tf.matmul(x, ww_carry) + bb_carry) transform_gate = tf.nn.relu(tf.matmul(x, ww_tr) + bb_tr) return carry_gate * transform_gate + (1.0 - carry_gate) * x if use_highway: highway_dim = n_filters for i in range(n_highway): with tf.variable_scope('CNN_high_%s' % i): W_carry = tf.get_variable( 'W_carry', [highway_dim, highway_dim], # glorit init initializer=tf.random_normal_initializer( mean=0.0, stddev=np.sqrt(1.0 / highway_dim)), dtype=DTYPE) b_carry = tf.get_variable( 'b_carry', [highway_dim], initializer=tf.constant_initializer(-2.0), dtype=DTYPE) W_transform = tf.get_variable( 'W_transform', [highway_dim, highway_dim], initializer=tf.random_normal_initializer( mean=0.0, stddev=np.sqrt(1.0 / highway_dim)), dtype=DTYPE) b_transform = tf.get_variable( 'b_transform', [highway_dim], initializer=tf.constant_initializer(0.0), dtype=DTYPE) embedding = high(embedding, W_carry, b_carry, W_transform, b_transform) # finally project down if needed if use_proj: embedding = tf.matmul(embedding, W_proj_cnn) + b_proj_cnn # reshape back to (batch_size, tokens, dim) if use_highway or use_proj: shp = tf.concat([batch_size_n_tokens, [projection_dim]], axis=0) embedding = tf.reshape(embedding, shp) # at last assign attributes for remainder of the model self.embedding = embedding
def _build_word_char_embeddings(self): """ options contains key 'char_cnn': { 'n_characters': 262, # includes the start / end characters 'max_characters_per_token': 50, 'filters': [ [1, 32], [2, 32], [3, 64], [4, 128], [5, 256], [6, 512], [7, 512] ], 'activation': 'tanh', # for the character embedding 'embedding': {'dim': 16} # for highway layers # if omitted, then no highway layers 'n_highway': 2, } """ projection_dim = self.options['lstm']['projection_dim'] cnn_options = self.options['char_cnn'] filters = cnn_options['filters'] n_filters = sum(f[1] for f in filters) max_chars = cnn_options['max_characters_per_token'] char_embed_dim = cnn_options['embedding']['dim'] n_chars = cnn_options['n_characters'] if n_chars != 262: raise Exception("Set n_characters=262 after training see a \ https://github.com/allenai/bilm-tf/blob/master/README.md") if cnn_options['activation'] == 'tanh': activation = tf.nn.tanh elif cnn_options['activation'] == 'relu': activation = tf.nn.relu # the character embeddings with tf.device("/cpu:0"): self.embedding_weights = tf.get_variable("char_embed", [n_chars, char_embed_dim], dtype=DTYPE, initializer=tf.random_uniform_initializer(-1.0, 1.0)) # shape (batch_size, unroll_steps, max_chars, embed_dim) self.char_embedding = tf.nn.embedding_lookup(self.embedding_weights, self.ids_placeholder) # the convolutions def make_convolutions(inp): with tf.variable_scope('CNN'): convolutions = [] for i, (width, num) in enumerate(filters): if cnn_options['activation'] == 'relu': # He initialization for ReLU activation # with char embeddings init between -1 and 1 # w_init = tf.random_normal_initializer( # mean=0.0, # stddev=np.sqrt(2.0 / (width * char_embed_dim)) # ) # Kim et al 2015, +/- 0.05 w_init = tf.random_uniform_initializer( minval=-0.05, maxval=0.05) elif cnn_options['activation'] == 'tanh': # glorot init w_init = tf.random_normal_initializer( mean=0.0, stddev=np.sqrt(1.0 / (width * char_embed_dim)) ) w = tf.get_variable( "W_cnn_%s" % i, [1, width, char_embed_dim, num], initializer=w_init, dtype=DTYPE) b = tf.get_variable( "b_cnn_%s" % i, [num], dtype=DTYPE, initializer=tf.constant_initializer(0.0)) conv = tf.nn.conv2d(inp, w, strides=[1, 1, 1, 1], padding="VALID") + b # now max pool conv = tf.nn.max_pool(conv, [1, 1, max_chars - width + 1, 1], [1, 1, 1, 1], 'VALID') # activation conv = activation(conv) conv = tf.squeeze(conv, squeeze_dims=[2]) convolutions.append(conv) return tf.concat(convolutions, 2) embedding = make_convolutions(self.char_embedding) # for highway and projection layers n_highway = cnn_options.get('n_highway') use_highway = n_highway is not None and n_highway > 0 use_proj = n_filters != projection_dim if use_highway or use_proj: # reshape from (batch_size, n_tokens, dim) to (-1, dim) batch_size_n_tokens = tf.shape(embedding)[0:2] embedding = tf.reshape(embedding, [-1, n_filters]) # set up weights for projection if use_proj: assert n_filters > projection_dim with tf.variable_scope('CNN_proj'): W_proj_cnn = tf.get_variable( "W_proj", [n_filters, projection_dim], initializer=tf.random_normal_initializer( mean=0.0, stddev=np.sqrt(1.0 / n_filters)), dtype=DTYPE) b_proj_cnn = tf.get_variable( "b_proj", [projection_dim], initializer=tf.constant_initializer(0.0), dtype=DTYPE) # apply highways layers def high(x, ww_carry, bb_carry, ww_tr, bb_tr): carry_gate = tf.nn.sigmoid(tf.matmul(x, ww_carry) + bb_carry) transform_gate = tf.nn.relu(tf.matmul(x, ww_tr) + bb_tr) return carry_gate * transform_gate + (1.0 - carry_gate) * x if use_highway: highway_dim = n_filters for i in range(n_highway): with tf.variable_scope('CNN_high_%s' % i): W_carry = tf.get_variable( 'W_carry', [highway_dim, highway_dim], # glorit init initializer=tf.random_normal_initializer( mean=0.0, stddev=np.sqrt(1.0 / highway_dim)), dtype=DTYPE) b_carry = tf.get_variable( 'b_carry', [highway_dim], initializer=tf.constant_initializer(-2.0), dtype=DTYPE) W_transform = tf.get_variable( 'W_transform', [highway_dim, highway_dim], initializer=tf.random_normal_initializer( mean=0.0, stddev=np.sqrt(1.0 / highway_dim)), dtype=DTYPE) b_transform = tf.get_variable( 'b_transform', [highway_dim], initializer=tf.constant_initializer(0.0), dtype=DTYPE) embedding = high(embedding, W_carry, b_carry, W_transform, b_transform) # finally project down if needed if use_proj: embedding = tf.matmul(embedding, W_proj_cnn) + b_proj_cnn # reshape back to (batch_size, tokens, dim) if use_highway or use_proj: shp = tf.concat([batch_size_n_tokens, [projection_dim]], axis=0) embedding = tf.reshape(embedding, shp) # at last assign attributes for remainder of the model self.embedding = embedding
[ "options", "contains", "key", "char_cnn", ":", "{" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/elmo/elmo_model.py#L292-L462
[ "def", "_build_word_char_embeddings", "(", "self", ")", ":", "projection_dim", "=", "self", ".", "options", "[", "'lstm'", "]", "[", "'projection_dim'", "]", "cnn_options", "=", "self", ".", "options", "[", "'char_cnn'", "]", "filters", "=", "cnn_options", "[", "'filters'", "]", "n_filters", "=", "sum", "(", "f", "[", "1", "]", "for", "f", "in", "filters", ")", "max_chars", "=", "cnn_options", "[", "'max_characters_per_token'", "]", "char_embed_dim", "=", "cnn_options", "[", "'embedding'", "]", "[", "'dim'", "]", "n_chars", "=", "cnn_options", "[", "'n_characters'", "]", "if", "n_chars", "!=", "262", ":", "raise", "Exception", "(", "\"Set n_characters=262 after training see a \\\n https://github.com/allenai/bilm-tf/blob/master/README.md\"", ")", "if", "cnn_options", "[", "'activation'", "]", "==", "'tanh'", ":", "activation", "=", "tf", ".", "nn", ".", "tanh", "elif", "cnn_options", "[", "'activation'", "]", "==", "'relu'", ":", "activation", "=", "tf", ".", "nn", ".", "relu", "# the character embeddings", "with", "tf", ".", "device", "(", "\"/cpu:0\"", ")", ":", "self", ".", "embedding_weights", "=", "tf", ".", "get_variable", "(", "\"char_embed\"", ",", "[", "n_chars", ",", "char_embed_dim", "]", ",", "dtype", "=", "DTYPE", ",", "initializer", "=", "tf", ".", "random_uniform_initializer", "(", "-", "1.0", ",", "1.0", ")", ")", "# shape (batch_size, unroll_steps, max_chars, embed_dim)", "self", ".", "char_embedding", "=", "tf", ".", "nn", ".", "embedding_lookup", "(", "self", ".", "embedding_weights", ",", "self", ".", "ids_placeholder", ")", "# the convolutions", "def", "make_convolutions", "(", "inp", ")", ":", "with", "tf", ".", "variable_scope", "(", "'CNN'", ")", ":", "convolutions", "=", "[", "]", "for", "i", ",", "(", "width", ",", "num", ")", "in", "enumerate", "(", "filters", ")", ":", "if", "cnn_options", "[", "'activation'", "]", "==", "'relu'", ":", "# He initialization for ReLU activation", "# with char embeddings init between -1 and 1", "# w_init = tf.random_normal_initializer(", "# mean=0.0,", "# stddev=np.sqrt(2.0 / (width * char_embed_dim))", "# )", "# Kim et al 2015, +/- 0.05", "w_init", "=", "tf", ".", "random_uniform_initializer", "(", "minval", "=", "-", "0.05", ",", "maxval", "=", "0.05", ")", "elif", "cnn_options", "[", "'activation'", "]", "==", "'tanh'", ":", "# glorot init", "w_init", "=", "tf", ".", "random_normal_initializer", "(", "mean", "=", "0.0", ",", "stddev", "=", "np", ".", "sqrt", "(", "1.0", "/", "(", "width", "*", "char_embed_dim", ")", ")", ")", "w", "=", "tf", ".", "get_variable", "(", "\"W_cnn_%s\"", "%", "i", ",", "[", "1", ",", "width", ",", "char_embed_dim", ",", "num", "]", ",", "initializer", "=", "w_init", ",", "dtype", "=", "DTYPE", ")", "b", "=", "tf", ".", "get_variable", "(", "\"b_cnn_%s\"", "%", "i", ",", "[", "num", "]", ",", "dtype", "=", "DTYPE", ",", "initializer", "=", "tf", ".", "constant_initializer", "(", "0.0", ")", ")", "conv", "=", "tf", ".", "nn", ".", "conv2d", "(", "inp", ",", "w", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "\"VALID\"", ")", "+", "b", "# now max pool", "conv", "=", "tf", ".", "nn", ".", "max_pool", "(", "conv", ",", "[", "1", ",", "1", ",", "max_chars", "-", "width", "+", "1", ",", "1", "]", ",", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "'VALID'", ")", "# activation", "conv", "=", "activation", "(", "conv", ")", "conv", "=", "tf", ".", "squeeze", "(", "conv", ",", "squeeze_dims", "=", "[", "2", "]", ")", "convolutions", ".", "append", "(", "conv", ")", "return", "tf", ".", "concat", "(", "convolutions", ",", "2", ")", "embedding", "=", "make_convolutions", "(", "self", ".", "char_embedding", ")", "# for highway and projection layers", "n_highway", "=", "cnn_options", ".", "get", "(", "'n_highway'", ")", "use_highway", "=", "n_highway", "is", "not", "None", "and", "n_highway", ">", "0", "use_proj", "=", "n_filters", "!=", "projection_dim", "if", "use_highway", "or", "use_proj", ":", "# reshape from (batch_size, n_tokens, dim) to (-1, dim)", "batch_size_n_tokens", "=", "tf", ".", "shape", "(", "embedding", ")", "[", "0", ":", "2", "]", "embedding", "=", "tf", ".", "reshape", "(", "embedding", ",", "[", "-", "1", ",", "n_filters", "]", ")", "# set up weights for projection", "if", "use_proj", ":", "assert", "n_filters", ">", "projection_dim", "with", "tf", ".", "variable_scope", "(", "'CNN_proj'", ")", ":", "W_proj_cnn", "=", "tf", ".", "get_variable", "(", "\"W_proj\"", ",", "[", "n_filters", ",", "projection_dim", "]", ",", "initializer", "=", "tf", ".", "random_normal_initializer", "(", "mean", "=", "0.0", ",", "stddev", "=", "np", ".", "sqrt", "(", "1.0", "/", "n_filters", ")", ")", ",", "dtype", "=", "DTYPE", ")", "b_proj_cnn", "=", "tf", ".", "get_variable", "(", "\"b_proj\"", ",", "[", "projection_dim", "]", ",", "initializer", "=", "tf", ".", "constant_initializer", "(", "0.0", ")", ",", "dtype", "=", "DTYPE", ")", "# apply highways layers", "def", "high", "(", "x", ",", "ww_carry", ",", "bb_carry", ",", "ww_tr", ",", "bb_tr", ")", ":", "carry_gate", "=", "tf", ".", "nn", ".", "sigmoid", "(", "tf", ".", "matmul", "(", "x", ",", "ww_carry", ")", "+", "bb_carry", ")", "transform_gate", "=", "tf", ".", "nn", ".", "relu", "(", "tf", ".", "matmul", "(", "x", ",", "ww_tr", ")", "+", "bb_tr", ")", "return", "carry_gate", "*", "transform_gate", "+", "(", "1.0", "-", "carry_gate", ")", "*", "x", "if", "use_highway", ":", "highway_dim", "=", "n_filters", "for", "i", "in", "range", "(", "n_highway", ")", ":", "with", "tf", ".", "variable_scope", "(", "'CNN_high_%s'", "%", "i", ")", ":", "W_carry", "=", "tf", ".", "get_variable", "(", "'W_carry'", ",", "[", "highway_dim", ",", "highway_dim", "]", ",", "# glorit init", "initializer", "=", "tf", ".", "random_normal_initializer", "(", "mean", "=", "0.0", ",", "stddev", "=", "np", ".", "sqrt", "(", "1.0", "/", "highway_dim", ")", ")", ",", "dtype", "=", "DTYPE", ")", "b_carry", "=", "tf", ".", "get_variable", "(", "'b_carry'", ",", "[", "highway_dim", "]", ",", "initializer", "=", "tf", ".", "constant_initializer", "(", "-", "2.0", ")", ",", "dtype", "=", "DTYPE", ")", "W_transform", "=", "tf", ".", "get_variable", "(", "'W_transform'", ",", "[", "highway_dim", ",", "highway_dim", "]", ",", "initializer", "=", "tf", ".", "random_normal_initializer", "(", "mean", "=", "0.0", ",", "stddev", "=", "np", ".", "sqrt", "(", "1.0", "/", "highway_dim", ")", ")", ",", "dtype", "=", "DTYPE", ")", "b_transform", "=", "tf", ".", "get_variable", "(", "'b_transform'", ",", "[", "highway_dim", "]", ",", "initializer", "=", "tf", ".", "constant_initializer", "(", "0.0", ")", ",", "dtype", "=", "DTYPE", ")", "embedding", "=", "high", "(", "embedding", ",", "W_carry", ",", "b_carry", ",", "W_transform", ",", "b_transform", ")", "# finally project down if needed", "if", "use_proj", ":", "embedding", "=", "tf", ".", "matmul", "(", "embedding", ",", "W_proj_cnn", ")", "+", "b_proj_cnn", "# reshape back to (batch_size, tokens, dim)", "if", "use_highway", "or", "use_proj", ":", "shp", "=", "tf", ".", "concat", "(", "[", "batch_size_n_tokens", ",", "[", "projection_dim", "]", "]", ",", "axis", "=", "0", ")", "embedding", "=", "tf", ".", "reshape", "(", "embedding", ",", "shp", ")", "# at last assign attributes for remainder of the model", "self", ".", "embedding", "=", "embedding" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
DatasetReader.read
Reads a file from a path and returns data as a list of tuples of inputs and correct outputs for every data type in ``train``, ``valid`` and ``test``.
deeppavlov/core/data/dataset_reader.py
def read(self, data_path: str, *args, **kwargs) -> Dict[str, List[Tuple[Any, Any]]]: """Reads a file from a path and returns data as a list of tuples of inputs and correct outputs for every data type in ``train``, ``valid`` and ``test``. """ raise NotImplementedError
def read(self, data_path: str, *args, **kwargs) -> Dict[str, List[Tuple[Any, Any]]]: """Reads a file from a path and returns data as a list of tuples of inputs and correct outputs for every data type in ``train``, ``valid`` and ``test``. """ raise NotImplementedError
[ "Reads", "a", "file", "from", "a", "path", "and", "returns", "data", "as", "a", "list", "of", "tuples", "of", "inputs", "and", "correct", "outputs", "for", "every", "data", "type", "in", "train", "valid", "and", "test", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/data/dataset_reader.py#L21-L25
[ "def", "read", "(", "self", ",", "data_path", ":", "str", ",", "*", "args", ",", "*", "*", "kwargs", ")", "->", "Dict", "[", "str", ",", "List", "[", "Tuple", "[", "Any", ",", "Any", "]", "]", "]", ":", "raise", "NotImplementedError" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
make_hello_bot_agent
Builds agent based on PatternMatchingSkill and HighestConfidenceSelector. This is agent building tutorial. You can use this .py file to check how hello-bot agent works. Returns: agent: Agent capable of handling several simple greetings.
deeppavlov/agents/hello_bot_agent/hello_bot_agent.py
def make_hello_bot_agent() -> DefaultAgent: """Builds agent based on PatternMatchingSkill and HighestConfidenceSelector. This is agent building tutorial. You can use this .py file to check how hello-bot agent works. Returns: agent: Agent capable of handling several simple greetings. """ skill_hello = PatternMatchingSkill(['Hello world'], patterns=['hi', 'hello', 'good day']) skill_bye = PatternMatchingSkill(['Goodbye world', 'See you around'], patterns=['bye', 'chao', 'see you']) skill_fallback = PatternMatchingSkill(['I don\'t understand, sorry', 'I can say "Hello world"']) agent = DefaultAgent([skill_hello, skill_bye, skill_fallback], skills_processor=HighestConfidenceSelector()) return agent
def make_hello_bot_agent() -> DefaultAgent: """Builds agent based on PatternMatchingSkill and HighestConfidenceSelector. This is agent building tutorial. You can use this .py file to check how hello-bot agent works. Returns: agent: Agent capable of handling several simple greetings. """ skill_hello = PatternMatchingSkill(['Hello world'], patterns=['hi', 'hello', 'good day']) skill_bye = PatternMatchingSkill(['Goodbye world', 'See you around'], patterns=['bye', 'chao', 'see you']) skill_fallback = PatternMatchingSkill(['I don\'t understand, sorry', 'I can say "Hello world"']) agent = DefaultAgent([skill_hello, skill_bye, skill_fallback], skills_processor=HighestConfidenceSelector()) return agent
[ "Builds", "agent", "based", "on", "PatternMatchingSkill", "and", "HighestConfidenceSelector", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/agents/hello_bot_agent/hello_bot_agent.py#L20-L34
[ "def", "make_hello_bot_agent", "(", ")", "->", "DefaultAgent", ":", "skill_hello", "=", "PatternMatchingSkill", "(", "[", "'Hello world'", "]", ",", "patterns", "=", "[", "'hi'", ",", "'hello'", ",", "'good day'", "]", ")", "skill_bye", "=", "PatternMatchingSkill", "(", "[", "'Goodbye world'", ",", "'See you around'", "]", ",", "patterns", "=", "[", "'bye'", ",", "'chao'", ",", "'see you'", "]", ")", "skill_fallback", "=", "PatternMatchingSkill", "(", "[", "'I don\\'t understand, sorry'", ",", "'I can say \"Hello world\"'", "]", ")", "agent", "=", "DefaultAgent", "(", "[", "skill_hello", ",", "skill_bye", ",", "skill_fallback", "]", ",", "skills_processor", "=", "HighestConfidenceSelector", "(", ")", ")", "return", "agent" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
to_one_hot
Takes an array of integers and transforms it to an array of one-hot encoded vectors
deeppavlov/models/morpho_tagger/common_tagger.py
def to_one_hot(x, k): """ Takes an array of integers and transforms it to an array of one-hot encoded vectors """ unit = np.eye(k, dtype=int) return unit[x]
def to_one_hot(x, k): """ Takes an array of integers and transforms it to an array of one-hot encoded vectors """ unit = np.eye(k, dtype=int) return unit[x]
[ "Takes", "an", "array", "of", "integers", "and", "transforms", "it", "to", "an", "array", "of", "one", "-", "hot", "encoded", "vectors" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/morpho_tagger/common_tagger.py#L14-L20
[ "def", "to_one_hot", "(", "x", ",", "k", ")", ":", "unit", "=", "np", ".", "eye", "(", "k", ",", "dtype", "=", "int", ")", "return", "unit", "[", "x", "]" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
prettify_metrics
Prettifies the dictionary of metrics.
deeppavlov/core/trainers/utils.py
def prettify_metrics(metrics: List[Tuple[str, float]], precision: int = 4) -> OrderedDict: """Prettifies the dictionary of metrics.""" prettified_metrics = OrderedDict() for key, value in metrics: value = round(value, precision) prettified_metrics[key] = value return prettified_metrics
def prettify_metrics(metrics: List[Tuple[str, float]], precision: int = 4) -> OrderedDict: """Prettifies the dictionary of metrics.""" prettified_metrics = OrderedDict() for key, value in metrics: value = round(value, precision) prettified_metrics[key] = value return prettified_metrics
[ "Prettifies", "the", "dictionary", "of", "metrics", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/trainers/utils.py#L41-L47
[ "def", "prettify_metrics", "(", "metrics", ":", "List", "[", "Tuple", "[", "str", ",", "float", "]", "]", ",", "precision", ":", "int", "=", "4", ")", "->", "OrderedDict", ":", "prettified_metrics", "=", "OrderedDict", "(", ")", "for", "key", ",", "value", "in", "metrics", ":", "value", "=", "round", "(", "value", ",", "precision", ")", "prettified_metrics", "[", "key", "]", "=", "value", "return", "prettified_metrics" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
populate_settings_dir
Populate settings directory with default settings files Args: force: if ``True``, replace existing settings files with default ones Returns: ``True`` if any files were copied and ``False`` otherwise
deeppavlov/core/common/paths.py
def populate_settings_dir(force: bool = False) -> bool: """ Populate settings directory with default settings files Args: force: if ``True``, replace existing settings files with default ones Returns: ``True`` if any files were copied and ``False`` otherwise """ res = False if _default_settings_path == _settings_path: return res for src in list(_default_settings_path.glob('**/*.json')): dest = _settings_path / src.relative_to(_default_settings_path) if not force and dest.exists(): continue res = True dest.parent.mkdir(parents=True, exist_ok=True) shutil.copy(src, dest) return res
def populate_settings_dir(force: bool = False) -> bool: """ Populate settings directory with default settings files Args: force: if ``True``, replace existing settings files with default ones Returns: ``True`` if any files were copied and ``False`` otherwise """ res = False if _default_settings_path == _settings_path: return res for src in list(_default_settings_path.glob('**/*.json')): dest = _settings_path / src.relative_to(_default_settings_path) if not force and dest.exists(): continue res = True dest.parent.mkdir(parents=True, exist_ok=True) shutil.copy(src, dest) return res
[ "Populate", "settings", "directory", "with", "default", "settings", "files" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/common/paths.py#L36-L57
[ "def", "populate_settings_dir", "(", "force", ":", "bool", "=", "False", ")", "->", "bool", ":", "res", "=", "False", "if", "_default_settings_path", "==", "_settings_path", ":", "return", "res", "for", "src", "in", "list", "(", "_default_settings_path", ".", "glob", "(", "'**/*.json'", ")", ")", ":", "dest", "=", "_settings_path", "/", "src", ".", "relative_to", "(", "_default_settings_path", ")", "if", "not", "force", "and", "dest", ".", "exists", "(", ")", ":", "continue", "res", "=", "True", "dest", ".", "parent", ".", "mkdir", "(", "parents", "=", "True", ",", "exist_ok", "=", "True", ")", "shutil", ".", "copy", "(", "src", ",", "dest", ")", "return", "res" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
Tracker.update_state
Updates dialogue state with new ``slots``, calculates features. Returns: Tracker: .
deeppavlov/models/go_bot/tracker.py
def update_state(self, slots: Union[List[Tuple[str, Any]], Dict[str, Any]]) -> 'Tracker': """ Updates dialogue state with new ``slots``, calculates features. Returns: Tracker: .""" pass
def update_state(self, slots: Union[List[Tuple[str, Any]], Dict[str, Any]]) -> 'Tracker': """ Updates dialogue state with new ``slots``, calculates features. Returns: Tracker: .""" pass
[ "Updates", "dialogue", "state", "with", "new", "slots", "calculates", "features", ".", "Returns", ":", "Tracker", ":", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/go_bot/tracker.py#L35-L42
[ "def", "update_state", "(", "self", ",", "slots", ":", "Union", "[", "List", "[", "Tuple", "[", "str", ",", "Any", "]", "]", ",", "Dict", "[", "str", ",", "Any", "]", "]", ")", "->", "'Tracker'", ":", "pass" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
predict_with_model
Returns predictions of morphotagging model given in config :config_path:. Args: config_path: a path to config Returns: a list of morphological analyses for each sentence. Each analysis is either a list of tags or a list of full CONLL-U descriptions.
deeppavlov/models/morpho_tagger/common.py
def predict_with_model(config_path: [Path, str]) -> List[Optional[List[str]]]: """Returns predictions of morphotagging model given in config :config_path:. Args: config_path: a path to config Returns: a list of morphological analyses for each sentence. Each analysis is either a list of tags or a list of full CONLL-U descriptions. """ config = parse_config(config_path) reader_config = config['dataset_reader'] reader = get_model(reader_config['class_name'])() data_path = expand_path(reader_config.get('data_path', '')) read_params = {k: v for k, v in reader_config.items() if k not in ['class_name', 'data_path']} data: Dict = reader.read(data_path, **read_params) iterator_config = config['dataset_iterator'] iterator: MorphoTaggerDatasetIterator = from_params(iterator_config, data=data) model = build_model(config, load_trained=True) answers = [None] * len(iterator.test) batch_size = config['predict'].get("batch_size", -1) for indexes, (x, _) in iterator.gen_batches( batch_size=batch_size, data_type="test", shuffle=False, return_indexes=True): y = model(x) for i, elem in zip(indexes, y): answers[i] = elem outfile = config['predict'].get("outfile") if outfile is not None: outfile = Path(outfile) if not outfile.exists(): outfile.parent.mkdir(parents=True, exist_ok=True) with open(outfile, "w", encoding="utf8") as fout: for elem in answers: fout.write(elem + "\n") return answers
def predict_with_model(config_path: [Path, str]) -> List[Optional[List[str]]]: """Returns predictions of morphotagging model given in config :config_path:. Args: config_path: a path to config Returns: a list of morphological analyses for each sentence. Each analysis is either a list of tags or a list of full CONLL-U descriptions. """ config = parse_config(config_path) reader_config = config['dataset_reader'] reader = get_model(reader_config['class_name'])() data_path = expand_path(reader_config.get('data_path', '')) read_params = {k: v for k, v in reader_config.items() if k not in ['class_name', 'data_path']} data: Dict = reader.read(data_path, **read_params) iterator_config = config['dataset_iterator'] iterator: MorphoTaggerDatasetIterator = from_params(iterator_config, data=data) model = build_model(config, load_trained=True) answers = [None] * len(iterator.test) batch_size = config['predict'].get("batch_size", -1) for indexes, (x, _) in iterator.gen_batches( batch_size=batch_size, data_type="test", shuffle=False, return_indexes=True): y = model(x) for i, elem in zip(indexes, y): answers[i] = elem outfile = config['predict'].get("outfile") if outfile is not None: outfile = Path(outfile) if not outfile.exists(): outfile.parent.mkdir(parents=True, exist_ok=True) with open(outfile, "w", encoding="utf8") as fout: for elem in answers: fout.write(elem + "\n") return answers
[ "Returns", "predictions", "of", "morphotagging", "model", "given", "in", "config", ":", "config_path", ":", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/morpho_tagger/common.py#L14-L52
[ "def", "predict_with_model", "(", "config_path", ":", "[", "Path", ",", "str", "]", ")", "->", "List", "[", "Optional", "[", "List", "[", "str", "]", "]", "]", ":", "config", "=", "parse_config", "(", "config_path", ")", "reader_config", "=", "config", "[", "'dataset_reader'", "]", "reader", "=", "get_model", "(", "reader_config", "[", "'class_name'", "]", ")", "(", ")", "data_path", "=", "expand_path", "(", "reader_config", ".", "get", "(", "'data_path'", ",", "''", ")", ")", "read_params", "=", "{", "k", ":", "v", "for", "k", ",", "v", "in", "reader_config", ".", "items", "(", ")", "if", "k", "not", "in", "[", "'class_name'", ",", "'data_path'", "]", "}", "data", ":", "Dict", "=", "reader", ".", "read", "(", "data_path", ",", "*", "*", "read_params", ")", "iterator_config", "=", "config", "[", "'dataset_iterator'", "]", "iterator", ":", "MorphoTaggerDatasetIterator", "=", "from_params", "(", "iterator_config", ",", "data", "=", "data", ")", "model", "=", "build_model", "(", "config", ",", "load_trained", "=", "True", ")", "answers", "=", "[", "None", "]", "*", "len", "(", "iterator", ".", "test", ")", "batch_size", "=", "config", "[", "'predict'", "]", ".", "get", "(", "\"batch_size\"", ",", "-", "1", ")", "for", "indexes", ",", "(", "x", ",", "_", ")", "in", "iterator", ".", "gen_batches", "(", "batch_size", "=", "batch_size", ",", "data_type", "=", "\"test\"", ",", "shuffle", "=", "False", ",", "return_indexes", "=", "True", ")", ":", "y", "=", "model", "(", "x", ")", "for", "i", ",", "elem", "in", "zip", "(", "indexes", ",", "y", ")", ":", "answers", "[", "i", "]", "=", "elem", "outfile", "=", "config", "[", "'predict'", "]", ".", "get", "(", "\"outfile\"", ")", "if", "outfile", "is", "not", "None", ":", "outfile", "=", "Path", "(", "outfile", ")", "if", "not", "outfile", ".", "exists", "(", ")", ":", "outfile", ".", "parent", ".", "mkdir", "(", "parents", "=", "True", ",", "exist_ok", "=", "True", ")", "with", "open", "(", "outfile", ",", "\"w\"", ",", "encoding", "=", "\"utf8\"", ")", "as", "fout", ":", "for", "elem", "in", "answers", ":", "fout", ".", "write", "(", "elem", "+", "\"\\n\"", ")", "return", "answers" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
run_alexa_server
Initiates Flask web service with Alexa skill. Args: agent_generator: Callback Alexa agents factory. multi_instance: Multi instance mode flag. stateful: Stateful mode flag. port: Flask web service port. https: Flag for running Alexa skill service in https mode. ssl_key: SSL key file path. ssl_cert: SSL certificate file path.
deeppavlov/utils/alexa/server.py
def run_alexa_server(agent_generator: callable, multi_instance: bool = False, stateful: bool = False, port: Optional[int] = None, https: bool = False, ssl_key: str = None, ssl_cert: str = None) -> None: """Initiates Flask web service with Alexa skill. Args: agent_generator: Callback Alexa agents factory. multi_instance: Multi instance mode flag. stateful: Stateful mode flag. port: Flask web service port. https: Flag for running Alexa skill service in https mode. ssl_key: SSL key file path. ssl_cert: SSL certificate file path. """ server_config_path = Path(get_settings_path(), SERVER_CONFIG_FILENAME).resolve() server_params = read_json(server_config_path) host = server_params['common_defaults']['host'] port = port or server_params['common_defaults']['port'] alexa_server_params = server_params['alexa_defaults'] alexa_server_params['multi_instance'] = multi_instance or server_params['common_defaults']['multi_instance'] alexa_server_params['stateful'] = stateful or server_params['common_defaults']['stateful'] alexa_server_params['amazon_cert_lifetime'] = AMAZON_CERTIFICATE_LIFETIME if https: ssh_key_path = Path(ssl_key or server_params['https_key_path']).resolve() if not ssh_key_path.is_file(): e = FileNotFoundError('Ssh key file not found: please provide correct path in --key param or ' 'https_key_path param in server configuration file') log.error(e) raise e ssh_cert_path = Path(ssl_cert or server_params['https_cert_path']).resolve() if not ssh_cert_path.is_file(): e = FileNotFoundError('Ssh certificate file not found: please provide correct path in --cert param or ' 'https_cert_path param in server configuration file') log.error(e) raise e ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2) ssl_context.load_cert_chain(ssh_cert_path, ssh_key_path) else: ssl_context = None input_q = Queue() output_q = Queue() bot = Bot(agent_generator, alexa_server_params, input_q, output_q) bot.start() endpoint_description = { 'description': 'Amazon Alexa custom service endpoint', 'parameters': [ { 'name': 'Signature', 'in': 'header', 'required': 'true', 'type': 'string', 'example': 'Z5H5wqd06ExFVPNfJiqhKvAFjkf+cTVodOUirucHGcEVAMO1LfvgqWUkZ/X1ITDZbI0w+SMwVkEQZlkeThbVS/54M22StNDUtfz4Ua20xNDpIPwcWIACAmZ38XxbbTEFJI5WwqrbilNcfzqiGrIPfdO5rl+/xUjHFUdcJdUY/QzBxXsceytVYfEiR9MzOCN2m4C0XnpThUavAu159KrLj8AkuzN0JF87iXv+zOEeZRgEuwmsAnJrRUwkJ4yWokEPnSVdjF0D6f6CscfyvRe9nsWShq7/zRTa41meweh+n006zvf58MbzRdXPB22RI4AN0ksWW7hSC8/QLAKQE+lvaw==', }, { 'name': 'Signaturecertchainurl', 'in': 'header', 'required': 'true', 'type': 'string', 'example': 'https://s3.amazonaws.com/echo.api/echo-api-cert-6-ats.pem', }, { 'name': 'data', 'in': 'body', 'required': 'true', 'example': { 'version': '1.0', 'session': { 'new': False, 'sessionId': 'amzn1.echo-api.session.3c6ebffd-55b9-4e1a-bf3c-c921c1801b63', 'application': { 'applicationId': 'amzn1.ask.skill.8b17a5de-3749-4919-aa1f-e0bbaf8a46a6' }, 'attributes': { 'sessionId': 'amzn1.echo-api.session.3c6ebffd-55b9-4e1a-bf3c-c921c1801b63' }, 'user': { 'userId': 'amzn1.ask.account.AGR4R2LOVHMNMNOGROBVNLU7CL4C57X465XJF2T2F55OUXNTLCXDQP3I55UXZIALEKKZJ6Q2MA5MEFSMZVPEL5NVZS6FZLEU444BVOLPB5WVH5CHYTQAKGD7VFLGPRFZVHHH2NIB4HKNHHGX6HM6S6QDWCKXWOIZL7ONNQSBUCVPMZQKMCYXRG5BA2POYEXFDXRXCGEVDWVSMPQ' } }, 'context': { 'System': { 'application': { 'applicationId': 'amzn1.ask.skill.8b17a5de-3749-4919-aa1f-e0bbaf8a46a6' }, 'user': { 'userId': 'amzn1.ask.account.AGR4R2LOVHMNMNOGROBVNLU7CL4C57X465XJF2T2F55OUXNTLCXDQP3I55UXZIALEKKZJ6Q2MA5MEFSMZVPEL5NVZS6FZLEU444BVOLPB5WVH5CHYTQAKGD7VFLGPRFZVHHH2NIB4HKNHHGX6HM6S6QDWCKXWOIZL7ONNQSBUCVPMZQKMCYXRG5BA2POYEXFDXRXCGEVDWVSMPQ' }, 'device': { 'deviceId': 'amzn1.ask.device.AFQAMLYOYQUUACSE7HFVYS4ZI2KUB35JPHQRUPKTDCAU3A47WESP5L57KSWT5L6RT3FVXWH4OA2DNPJRMZ2VGEIACF3PJEIDCOUWUBC4W5RPJNUB3ZVT22J4UJN5UL3T2UBP36RVHFJ5P4IPT2HUY3P2YOY33IOU4O33HUAG7R2BUNROEH4T2', 'supportedInterfaces': {} }, 'apiEndpoint': 'https://api.amazonalexa.com', 'apiAccessToken': 'eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6IjEifQ.eyJhdWQiOiJodHRwczovL2FwaS5hbWF6b25hbGV4YS5jb20iLCJpc3MiOiJBbGV4YVNraWxsS2l0Iiwic3ViIjoiYW16bjEuYXNrLnNraWxsLjhiMTdhNWRlLTM3NDktNDkxOS1hYTFmLWUwYmJhZjhhNDZhNiIsImV4cCI6MTU0NTIyMzY1OCwiaWF0IjoxNTQ1MjIwMDU4LCJuYmYiOjE1NDUyMjAwNTgsInByaXZhdGVDbGFpbXMiOnsiY29uc2VudFRva2VuIjpudWxsLCJkZXZpY2VJZCI6ImFtem4xLmFzay5kZXZpY2UuQUZRQU1MWU9ZUVVVQUNTRTdIRlZZUzRaSTJLVUIzNUpQSFFSVVBLVERDQVUzQTQ3V0VTUDVMNTdLU1dUNUw2UlQzRlZYV0g0T0EyRE5QSlJNWjJWR0VJQUNGM1BKRUlEQ09VV1VCQzRXNVJQSk5VQjNaVlQyMko0VUpONVVMM1QyVUJQMzZSVkhGSjVQNElQVDJIVVkzUDJZT1kzM0lPVTRPMzNIVUFHN1IyQlVOUk9FSDRUMiIsInVzZXJJZCI6ImFtem4xLmFzay5hY2NvdW50LkFHUjRSMkxPVkhNTk1OT0dST0JWTkxVN0NMNEM1N1g0NjVYSkYyVDJGNTVPVVhOVExDWERRUDNJNTVVWFpJQUxFS0taSjZRMk1BNU1FRlNNWlZQRUw1TlZaUzZGWkxFVTQ0NEJWT0xQQjVXVkg1Q0hZVFFBS0dEN1ZGTEdQUkZaVkhISDJOSUI0SEtOSEhHWDZITTZTNlFEV0NLWFdPSVpMN09OTlFTQlVDVlBNWlFLTUNZWFJHNUJBMlBPWUVYRkRYUlhDR0VWRFdWU01QUSJ9fQ.jcomYhBhU485T4uoe2NyhWnL-kZHoPQKpcycFqa-1sy_lSIitfFGup9DKrf2NkN-I9lZ3xwq9llqx9WRN78fVJjN6GLcDhBDH0irPwt3n9_V7_5bfB6KARv5ZG-JKOmZlLBqQbnln0DAJ10D8HNiytMARNEwduMBVDNK0A5z6YxtRcLYYFD2-Ieg_V8Qx90eE2pd2U5xOuIEL0pXfSoiJ8vpxb8BKwaMO47tdE4qhg_k7v8ClwyXg3EMEhZFjixYNqdW1tCrwDGj58IWMXDyzZhIlRMh6uudMOT6scSzcNVD0v42IOTZ3S_X6rG01B7xhUDlZXMqkrCuzOyqctGaPw' }, 'Viewport': { 'experiences': [ { 'arcMinuteWidth': 246, 'arcMinuteHeight': 144, 'canRotate': False, 'canResize': False } ], 'shape': 'RECTANGLE', 'pixelWidth': 1024, 'pixelHeight': 600, 'dpi': 160, 'currentPixelWidth': 1024, 'currentPixelHeight': 600, 'touch': [ 'SINGLE' ] } }, 'request': { 'type': 'IntentRequest', 'requestId': 'amzn1.echo-api.request.388d0f6e-04b9-4450-a687-b9abaa73ac6a', 'timestamp': '2018-12-19T11:47:38Z', 'locale': 'en-US', 'intent': { 'name': 'AskDeepPavlov', 'confirmationStatus': 'NONE', 'slots': { 'raw_input': { 'name': 'raw_input', 'value': 'my beautiful sandbox skill', 'resolutions': { 'resolutionsPerAuthority': [ { 'authority': 'amzn1.er-authority.echo-sdk.amzn1.ask.skill.8b17a5de-3749-4919-aa1f-e0bbaf8a46a6.GetInput', 'status': { 'code': 'ER_SUCCESS_NO_MATCH' } } ] }, 'confirmationStatus': 'NONE', 'source': 'USER' } } } } } } ], 'responses': { "200": { "description": "A model response" } } } @app.route('/') def index(): return redirect('/apidocs/') @app.route('/interact', methods=['POST']) @swag_from(endpoint_description) def handle_request(): request_body: bytes = request.get_data() signature_chain_url: str = request.headers.get('Signaturecertchainurl') signature: str = request.headers.get('Signature') alexa_request: dict = request.get_json() request_dict = { 'request_body': request_body, 'signature_chain_url': signature_chain_url, 'signature': signature, 'alexa_request': alexa_request } bot.input_queue.put(request_dict) response: dict = bot.output_queue.get() response_code = 400 if 'error' in response.keys() else 200 return jsonify(response), response_code app.run(host=host, port=port, threaded=True, ssl_context=ssl_context)
def run_alexa_server(agent_generator: callable, multi_instance: bool = False, stateful: bool = False, port: Optional[int] = None, https: bool = False, ssl_key: str = None, ssl_cert: str = None) -> None: """Initiates Flask web service with Alexa skill. Args: agent_generator: Callback Alexa agents factory. multi_instance: Multi instance mode flag. stateful: Stateful mode flag. port: Flask web service port. https: Flag for running Alexa skill service in https mode. ssl_key: SSL key file path. ssl_cert: SSL certificate file path. """ server_config_path = Path(get_settings_path(), SERVER_CONFIG_FILENAME).resolve() server_params = read_json(server_config_path) host = server_params['common_defaults']['host'] port = port or server_params['common_defaults']['port'] alexa_server_params = server_params['alexa_defaults'] alexa_server_params['multi_instance'] = multi_instance or server_params['common_defaults']['multi_instance'] alexa_server_params['stateful'] = stateful or server_params['common_defaults']['stateful'] alexa_server_params['amazon_cert_lifetime'] = AMAZON_CERTIFICATE_LIFETIME if https: ssh_key_path = Path(ssl_key or server_params['https_key_path']).resolve() if not ssh_key_path.is_file(): e = FileNotFoundError('Ssh key file not found: please provide correct path in --key param or ' 'https_key_path param in server configuration file') log.error(e) raise e ssh_cert_path = Path(ssl_cert or server_params['https_cert_path']).resolve() if not ssh_cert_path.is_file(): e = FileNotFoundError('Ssh certificate file not found: please provide correct path in --cert param or ' 'https_cert_path param in server configuration file') log.error(e) raise e ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2) ssl_context.load_cert_chain(ssh_cert_path, ssh_key_path) else: ssl_context = None input_q = Queue() output_q = Queue() bot = Bot(agent_generator, alexa_server_params, input_q, output_q) bot.start() endpoint_description = { 'description': 'Amazon Alexa custom service endpoint', 'parameters': [ { 'name': 'Signature', 'in': 'header', 'required': 'true', 'type': 'string', 'example': 'Z5H5wqd06ExFVPNfJiqhKvAFjkf+cTVodOUirucHGcEVAMO1LfvgqWUkZ/X1ITDZbI0w+SMwVkEQZlkeThbVS/54M22StNDUtfz4Ua20xNDpIPwcWIACAmZ38XxbbTEFJI5WwqrbilNcfzqiGrIPfdO5rl+/xUjHFUdcJdUY/QzBxXsceytVYfEiR9MzOCN2m4C0XnpThUavAu159KrLj8AkuzN0JF87iXv+zOEeZRgEuwmsAnJrRUwkJ4yWokEPnSVdjF0D6f6CscfyvRe9nsWShq7/zRTa41meweh+n006zvf58MbzRdXPB22RI4AN0ksWW7hSC8/QLAKQE+lvaw==', }, { 'name': 'Signaturecertchainurl', 'in': 'header', 'required': 'true', 'type': 'string', 'example': 'https://s3.amazonaws.com/echo.api/echo-api-cert-6-ats.pem', }, { 'name': 'data', 'in': 'body', 'required': 'true', 'example': { 'version': '1.0', 'session': { 'new': False, 'sessionId': 'amzn1.echo-api.session.3c6ebffd-55b9-4e1a-bf3c-c921c1801b63', 'application': { 'applicationId': 'amzn1.ask.skill.8b17a5de-3749-4919-aa1f-e0bbaf8a46a6' }, 'attributes': { 'sessionId': 'amzn1.echo-api.session.3c6ebffd-55b9-4e1a-bf3c-c921c1801b63' }, 'user': { 'userId': 'amzn1.ask.account.AGR4R2LOVHMNMNOGROBVNLU7CL4C57X465XJF2T2F55OUXNTLCXDQP3I55UXZIALEKKZJ6Q2MA5MEFSMZVPEL5NVZS6FZLEU444BVOLPB5WVH5CHYTQAKGD7VFLGPRFZVHHH2NIB4HKNHHGX6HM6S6QDWCKXWOIZL7ONNQSBUCVPMZQKMCYXRG5BA2POYEXFDXRXCGEVDWVSMPQ' } }, 'context': { 'System': { 'application': { 'applicationId': 'amzn1.ask.skill.8b17a5de-3749-4919-aa1f-e0bbaf8a46a6' }, 'user': { 'userId': 'amzn1.ask.account.AGR4R2LOVHMNMNOGROBVNLU7CL4C57X465XJF2T2F55OUXNTLCXDQP3I55UXZIALEKKZJ6Q2MA5MEFSMZVPEL5NVZS6FZLEU444BVOLPB5WVH5CHYTQAKGD7VFLGPRFZVHHH2NIB4HKNHHGX6HM6S6QDWCKXWOIZL7ONNQSBUCVPMZQKMCYXRG5BA2POYEXFDXRXCGEVDWVSMPQ' }, 'device': { 'deviceId': 'amzn1.ask.device.AFQAMLYOYQUUACSE7HFVYS4ZI2KUB35JPHQRUPKTDCAU3A47WESP5L57KSWT5L6RT3FVXWH4OA2DNPJRMZ2VGEIACF3PJEIDCOUWUBC4W5RPJNUB3ZVT22J4UJN5UL3T2UBP36RVHFJ5P4IPT2HUY3P2YOY33IOU4O33HUAG7R2BUNROEH4T2', 'supportedInterfaces': {} }, 'apiEndpoint': 'https://api.amazonalexa.com', 'apiAccessToken': 'eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6IjEifQ.eyJhdWQiOiJodHRwczovL2FwaS5hbWF6b25hbGV4YS5jb20iLCJpc3MiOiJBbGV4YVNraWxsS2l0Iiwic3ViIjoiYW16bjEuYXNrLnNraWxsLjhiMTdhNWRlLTM3NDktNDkxOS1hYTFmLWUwYmJhZjhhNDZhNiIsImV4cCI6MTU0NTIyMzY1OCwiaWF0IjoxNTQ1MjIwMDU4LCJuYmYiOjE1NDUyMjAwNTgsInByaXZhdGVDbGFpbXMiOnsiY29uc2VudFRva2VuIjpudWxsLCJkZXZpY2VJZCI6ImFtem4xLmFzay5kZXZpY2UuQUZRQU1MWU9ZUVVVQUNTRTdIRlZZUzRaSTJLVUIzNUpQSFFSVVBLVERDQVUzQTQ3V0VTUDVMNTdLU1dUNUw2UlQzRlZYV0g0T0EyRE5QSlJNWjJWR0VJQUNGM1BKRUlEQ09VV1VCQzRXNVJQSk5VQjNaVlQyMko0VUpONVVMM1QyVUJQMzZSVkhGSjVQNElQVDJIVVkzUDJZT1kzM0lPVTRPMzNIVUFHN1IyQlVOUk9FSDRUMiIsInVzZXJJZCI6ImFtem4xLmFzay5hY2NvdW50LkFHUjRSMkxPVkhNTk1OT0dST0JWTkxVN0NMNEM1N1g0NjVYSkYyVDJGNTVPVVhOVExDWERRUDNJNTVVWFpJQUxFS0taSjZRMk1BNU1FRlNNWlZQRUw1TlZaUzZGWkxFVTQ0NEJWT0xQQjVXVkg1Q0hZVFFBS0dEN1ZGTEdQUkZaVkhISDJOSUI0SEtOSEhHWDZITTZTNlFEV0NLWFdPSVpMN09OTlFTQlVDVlBNWlFLTUNZWFJHNUJBMlBPWUVYRkRYUlhDR0VWRFdWU01QUSJ9fQ.jcomYhBhU485T4uoe2NyhWnL-kZHoPQKpcycFqa-1sy_lSIitfFGup9DKrf2NkN-I9lZ3xwq9llqx9WRN78fVJjN6GLcDhBDH0irPwt3n9_V7_5bfB6KARv5ZG-JKOmZlLBqQbnln0DAJ10D8HNiytMARNEwduMBVDNK0A5z6YxtRcLYYFD2-Ieg_V8Qx90eE2pd2U5xOuIEL0pXfSoiJ8vpxb8BKwaMO47tdE4qhg_k7v8ClwyXg3EMEhZFjixYNqdW1tCrwDGj58IWMXDyzZhIlRMh6uudMOT6scSzcNVD0v42IOTZ3S_X6rG01B7xhUDlZXMqkrCuzOyqctGaPw' }, 'Viewport': { 'experiences': [ { 'arcMinuteWidth': 246, 'arcMinuteHeight': 144, 'canRotate': False, 'canResize': False } ], 'shape': 'RECTANGLE', 'pixelWidth': 1024, 'pixelHeight': 600, 'dpi': 160, 'currentPixelWidth': 1024, 'currentPixelHeight': 600, 'touch': [ 'SINGLE' ] } }, 'request': { 'type': 'IntentRequest', 'requestId': 'amzn1.echo-api.request.388d0f6e-04b9-4450-a687-b9abaa73ac6a', 'timestamp': '2018-12-19T11:47:38Z', 'locale': 'en-US', 'intent': { 'name': 'AskDeepPavlov', 'confirmationStatus': 'NONE', 'slots': { 'raw_input': { 'name': 'raw_input', 'value': 'my beautiful sandbox skill', 'resolutions': { 'resolutionsPerAuthority': [ { 'authority': 'amzn1.er-authority.echo-sdk.amzn1.ask.skill.8b17a5de-3749-4919-aa1f-e0bbaf8a46a6.GetInput', 'status': { 'code': 'ER_SUCCESS_NO_MATCH' } } ] }, 'confirmationStatus': 'NONE', 'source': 'USER' } } } } } } ], 'responses': { "200": { "description": "A model response" } } } @app.route('/') def index(): return redirect('/apidocs/') @app.route('/interact', methods=['POST']) @swag_from(endpoint_description) def handle_request(): request_body: bytes = request.get_data() signature_chain_url: str = request.headers.get('Signaturecertchainurl') signature: str = request.headers.get('Signature') alexa_request: dict = request.get_json() request_dict = { 'request_body': request_body, 'signature_chain_url': signature_chain_url, 'signature': signature, 'alexa_request': alexa_request } bot.input_queue.put(request_dict) response: dict = bot.output_queue.get() response_code = 400 if 'error' in response.keys() else 200 return jsonify(response), response_code app.run(host=host, port=port, threaded=True, ssl_context=ssl_context)
[ "Initiates", "Flask", "web", "service", "with", "Alexa", "skill", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/utils/alexa/server.py#L84-L274
[ "def", "run_alexa_server", "(", "agent_generator", ":", "callable", ",", "multi_instance", ":", "bool", "=", "False", ",", "stateful", ":", "bool", "=", "False", ",", "port", ":", "Optional", "[", "int", "]", "=", "None", ",", "https", ":", "bool", "=", "False", ",", "ssl_key", ":", "str", "=", "None", ",", "ssl_cert", ":", "str", "=", "None", ")", "->", "None", ":", "server_config_path", "=", "Path", "(", "get_settings_path", "(", ")", ",", "SERVER_CONFIG_FILENAME", ")", ".", "resolve", "(", ")", "server_params", "=", "read_json", "(", "server_config_path", ")", "host", "=", "server_params", "[", "'common_defaults'", "]", "[", "'host'", "]", "port", "=", "port", "or", "server_params", "[", "'common_defaults'", "]", "[", "'port'", "]", "alexa_server_params", "=", "server_params", "[", "'alexa_defaults'", "]", "alexa_server_params", "[", "'multi_instance'", "]", "=", "multi_instance", "or", "server_params", "[", "'common_defaults'", "]", "[", "'multi_instance'", "]", "alexa_server_params", "[", "'stateful'", "]", "=", "stateful", "or", "server_params", "[", "'common_defaults'", "]", "[", "'stateful'", "]", "alexa_server_params", "[", "'amazon_cert_lifetime'", "]", "=", "AMAZON_CERTIFICATE_LIFETIME", "if", "https", ":", "ssh_key_path", "=", "Path", "(", "ssl_key", "or", "server_params", "[", "'https_key_path'", "]", ")", ".", "resolve", "(", ")", "if", "not", "ssh_key_path", ".", "is_file", "(", ")", ":", "e", "=", "FileNotFoundError", "(", "'Ssh key file not found: please provide correct path in --key param or '", "'https_key_path param in server configuration file'", ")", "log", ".", "error", "(", "e", ")", "raise", "e", "ssh_cert_path", "=", "Path", "(", "ssl_cert", "or", "server_params", "[", "'https_cert_path'", "]", ")", ".", "resolve", "(", ")", "if", "not", "ssh_cert_path", ".", "is_file", "(", ")", ":", "e", "=", "FileNotFoundError", "(", "'Ssh certificate file not found: please provide correct path in --cert param or '", "'https_cert_path param in server configuration file'", ")", "log", ".", "error", "(", "e", ")", "raise", "e", "ssl_context", "=", "ssl", ".", "SSLContext", "(", "ssl", ".", "PROTOCOL_TLSv1_2", ")", "ssl_context", ".", "load_cert_chain", "(", "ssh_cert_path", ",", "ssh_key_path", ")", "else", ":", "ssl_context", "=", "None", "input_q", "=", "Queue", "(", ")", "output_q", "=", "Queue", "(", ")", "bot", "=", "Bot", "(", "agent_generator", ",", "alexa_server_params", ",", "input_q", ",", "output_q", ")", "bot", ".", "start", "(", ")", "endpoint_description", "=", "{", "'description'", ":", "'Amazon Alexa custom service endpoint'", ",", "'parameters'", ":", "[", "{", "'name'", ":", "'Signature'", ",", "'in'", ":", "'header'", ",", "'required'", ":", "'true'", ",", "'type'", ":", "'string'", ",", "'example'", ":", "'Z5H5wqd06ExFVPNfJiqhKvAFjkf+cTVodOUirucHGcEVAMO1LfvgqWUkZ/X1ITDZbI0w+SMwVkEQZlkeThbVS/54M22StNDUtfz4Ua20xNDpIPwcWIACAmZ38XxbbTEFJI5WwqrbilNcfzqiGrIPfdO5rl+/xUjHFUdcJdUY/QzBxXsceytVYfEiR9MzOCN2m4C0XnpThUavAu159KrLj8AkuzN0JF87iXv+zOEeZRgEuwmsAnJrRUwkJ4yWokEPnSVdjF0D6f6CscfyvRe9nsWShq7/zRTa41meweh+n006zvf58MbzRdXPB22RI4AN0ksWW7hSC8/QLAKQE+lvaw=='", ",", "}", ",", "{", "'name'", ":", "'Signaturecertchainurl'", ",", "'in'", ":", "'header'", ",", "'required'", ":", "'true'", ",", "'type'", ":", "'string'", ",", "'example'", ":", "'https://s3.amazonaws.com/echo.api/echo-api-cert-6-ats.pem'", ",", "}", ",", "{", "'name'", ":", "'data'", ",", "'in'", ":", "'body'", ",", "'required'", ":", "'true'", ",", "'example'", ":", "{", "'version'", ":", "'1.0'", ",", "'session'", ":", "{", "'new'", ":", "False", ",", "'sessionId'", ":", "'amzn1.echo-api.session.3c6ebffd-55b9-4e1a-bf3c-c921c1801b63'", ",", "'application'", ":", "{", "'applicationId'", ":", "'amzn1.ask.skill.8b17a5de-3749-4919-aa1f-e0bbaf8a46a6'", "}", ",", "'attributes'", ":", "{", "'sessionId'", ":", "'amzn1.echo-api.session.3c6ebffd-55b9-4e1a-bf3c-c921c1801b63'", "}", ",", "'user'", ":", "{", "'userId'", ":", "'amzn1.ask.account.AGR4R2LOVHMNMNOGROBVNLU7CL4C57X465XJF2T2F55OUXNTLCXDQP3I55UXZIALEKKZJ6Q2MA5MEFSMZVPEL5NVZS6FZLEU444BVOLPB5WVH5CHYTQAKGD7VFLGPRFZVHHH2NIB4HKNHHGX6HM6S6QDWCKXWOIZL7ONNQSBUCVPMZQKMCYXRG5BA2POYEXFDXRXCGEVDWVSMPQ'", "}", "}", ",", "'context'", ":", "{", "'System'", ":", "{", "'application'", ":", "{", "'applicationId'", ":", "'amzn1.ask.skill.8b17a5de-3749-4919-aa1f-e0bbaf8a46a6'", "}", ",", "'user'", ":", "{", "'userId'", ":", "'amzn1.ask.account.AGR4R2LOVHMNMNOGROBVNLU7CL4C57X465XJF2T2F55OUXNTLCXDQP3I55UXZIALEKKZJ6Q2MA5MEFSMZVPEL5NVZS6FZLEU444BVOLPB5WVH5CHYTQAKGD7VFLGPRFZVHHH2NIB4HKNHHGX6HM6S6QDWCKXWOIZL7ONNQSBUCVPMZQKMCYXRG5BA2POYEXFDXRXCGEVDWVSMPQ'", "}", ",", "'device'", ":", "{", "'deviceId'", ":", "'amzn1.ask.device.AFQAMLYOYQUUACSE7HFVYS4ZI2KUB35JPHQRUPKTDCAU3A47WESP5L57KSWT5L6RT3FVXWH4OA2DNPJRMZ2VGEIACF3PJEIDCOUWUBC4W5RPJNUB3ZVT22J4UJN5UL3T2UBP36RVHFJ5P4IPT2HUY3P2YOY33IOU4O33HUAG7R2BUNROEH4T2'", ",", "'supportedInterfaces'", ":", "{", "}", "}", ",", "'apiEndpoint'", ":", "'https://api.amazonalexa.com'", ",", "'apiAccessToken'", ":", "'eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6IjEifQ.eyJhdWQiOiJodHRwczovL2FwaS5hbWF6b25hbGV4YS5jb20iLCJpc3MiOiJBbGV4YVNraWxsS2l0Iiwic3ViIjoiYW16bjEuYXNrLnNraWxsLjhiMTdhNWRlLTM3NDktNDkxOS1hYTFmLWUwYmJhZjhhNDZhNiIsImV4cCI6MTU0NTIyMzY1OCwiaWF0IjoxNTQ1MjIwMDU4LCJuYmYiOjE1NDUyMjAwNTgsInByaXZhdGVDbGFpbXMiOnsiY29uc2VudFRva2VuIjpudWxsLCJkZXZpY2VJZCI6ImFtem4xLmFzay5kZXZpY2UuQUZRQU1MWU9ZUVVVQUNTRTdIRlZZUzRaSTJLVUIzNUpQSFFSVVBLVERDQVUzQTQ3V0VTUDVMNTdLU1dUNUw2UlQzRlZYV0g0T0EyRE5QSlJNWjJWR0VJQUNGM1BKRUlEQ09VV1VCQzRXNVJQSk5VQjNaVlQyMko0VUpONVVMM1QyVUJQMzZSVkhGSjVQNElQVDJIVVkzUDJZT1kzM0lPVTRPMzNIVUFHN1IyQlVOUk9FSDRUMiIsInVzZXJJZCI6ImFtem4xLmFzay5hY2NvdW50LkFHUjRSMkxPVkhNTk1OT0dST0JWTkxVN0NMNEM1N1g0NjVYSkYyVDJGNTVPVVhOVExDWERRUDNJNTVVWFpJQUxFS0taSjZRMk1BNU1FRlNNWlZQRUw1TlZaUzZGWkxFVTQ0NEJWT0xQQjVXVkg1Q0hZVFFBS0dEN1ZGTEdQUkZaVkhISDJOSUI0SEtOSEhHWDZITTZTNlFEV0NLWFdPSVpMN09OTlFTQlVDVlBNWlFLTUNZWFJHNUJBMlBPWUVYRkRYUlhDR0VWRFdWU01QUSJ9fQ.jcomYhBhU485T4uoe2NyhWnL-kZHoPQKpcycFqa-1sy_lSIitfFGup9DKrf2NkN-I9lZ3xwq9llqx9WRN78fVJjN6GLcDhBDH0irPwt3n9_V7_5bfB6KARv5ZG-JKOmZlLBqQbnln0DAJ10D8HNiytMARNEwduMBVDNK0A5z6YxtRcLYYFD2-Ieg_V8Qx90eE2pd2U5xOuIEL0pXfSoiJ8vpxb8BKwaMO47tdE4qhg_k7v8ClwyXg3EMEhZFjixYNqdW1tCrwDGj58IWMXDyzZhIlRMh6uudMOT6scSzcNVD0v42IOTZ3S_X6rG01B7xhUDlZXMqkrCuzOyqctGaPw'", "}", ",", "'Viewport'", ":", "{", "'experiences'", ":", "[", "{", "'arcMinuteWidth'", ":", "246", ",", "'arcMinuteHeight'", ":", "144", ",", "'canRotate'", ":", "False", ",", "'canResize'", ":", "False", "}", "]", ",", "'shape'", ":", "'RECTANGLE'", ",", "'pixelWidth'", ":", "1024", ",", "'pixelHeight'", ":", "600", ",", "'dpi'", ":", "160", ",", "'currentPixelWidth'", ":", "1024", ",", "'currentPixelHeight'", ":", "600", ",", "'touch'", ":", "[", "'SINGLE'", "]", "}", "}", ",", "'request'", ":", "{", "'type'", ":", "'IntentRequest'", ",", "'requestId'", ":", "'amzn1.echo-api.request.388d0f6e-04b9-4450-a687-b9abaa73ac6a'", ",", "'timestamp'", ":", "'2018-12-19T11:47:38Z'", ",", "'locale'", ":", "'en-US'", ",", "'intent'", ":", "{", "'name'", ":", "'AskDeepPavlov'", ",", "'confirmationStatus'", ":", "'NONE'", ",", "'slots'", ":", "{", "'raw_input'", ":", "{", "'name'", ":", "'raw_input'", ",", "'value'", ":", "'my beautiful sandbox skill'", ",", "'resolutions'", ":", "{", "'resolutionsPerAuthority'", ":", "[", "{", "'authority'", ":", "'amzn1.er-authority.echo-sdk.amzn1.ask.skill.8b17a5de-3749-4919-aa1f-e0bbaf8a46a6.GetInput'", ",", "'status'", ":", "{", "'code'", ":", "'ER_SUCCESS_NO_MATCH'", "}", "}", "]", "}", ",", "'confirmationStatus'", ":", "'NONE'", ",", "'source'", ":", "'USER'", "}", "}", "}", "}", "}", "}", "]", ",", "'responses'", ":", "{", "\"200\"", ":", "{", "\"description\"", ":", "\"A model response\"", "}", "}", "}", "@", "app", ".", "route", "(", "'/'", ")", "def", "index", "(", ")", ":", "return", "redirect", "(", "'/apidocs/'", ")", "@", "app", ".", "route", "(", "'/interact'", ",", "methods", "=", "[", "'POST'", "]", ")", "@", "swag_from", "(", "endpoint_description", ")", "def", "handle_request", "(", ")", ":", "request_body", ":", "bytes", "=", "request", ".", "get_data", "(", ")", "signature_chain_url", ":", "str", "=", "request", ".", "headers", ".", "get", "(", "'Signaturecertchainurl'", ")", "signature", ":", "str", "=", "request", ".", "headers", ".", "get", "(", "'Signature'", ")", "alexa_request", ":", "dict", "=", "request", ".", "get_json", "(", ")", "request_dict", "=", "{", "'request_body'", ":", "request_body", ",", "'signature_chain_url'", ":", "signature_chain_url", ",", "'signature'", ":", "signature", ",", "'alexa_request'", ":", "alexa_request", "}", "bot", ".", "input_queue", ".", "put", "(", "request_dict", ")", "response", ":", "dict", "=", "bot", ".", "output_queue", ".", "get", "(", ")", "response_code", "=", "400", "if", "'error'", "in", "response", ".", "keys", "(", ")", "else", "200", "return", "jsonify", "(", "response", ")", ",", "response_code", "app", ".", "run", "(", "host", "=", "host", ",", "port", "=", "port", ",", "threaded", "=", "True", ",", "ssl_context", "=", "ssl_context", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
TFModel.load
Load model parameters from self.load_path
deeppavlov/core/models/tf_model.py
def load(self, exclude_scopes: tuple = ('Optimizer',)) -> None: """Load model parameters from self.load_path""" if not hasattr(self, 'sess'): raise RuntimeError('Your TensorFlow model {} must' ' have sess attribute!'.format(self.__class__.__name__)) path = str(self.load_path.resolve()) # Check presence of the model files if tf.train.checkpoint_exists(path): log.info('[loading model from {}]'.format(path)) # Exclude optimizer variables from saved variables var_list = self._get_saveable_variables(exclude_scopes) saver = tf.train.Saver(var_list) saver.restore(self.sess, path)
def load(self, exclude_scopes: tuple = ('Optimizer',)) -> None: """Load model parameters from self.load_path""" if not hasattr(self, 'sess'): raise RuntimeError('Your TensorFlow model {} must' ' have sess attribute!'.format(self.__class__.__name__)) path = str(self.load_path.resolve()) # Check presence of the model files if tf.train.checkpoint_exists(path): log.info('[loading model from {}]'.format(path)) # Exclude optimizer variables from saved variables var_list = self._get_saveable_variables(exclude_scopes) saver = tf.train.Saver(var_list) saver.restore(self.sess, path)
[ "Load", "model", "parameters", "from", "self", ".", "load_path" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/models/tf_model.py#L42-L54
[ "def", "load", "(", "self", ",", "exclude_scopes", ":", "tuple", "=", "(", "'Optimizer'", ",", ")", ")", "->", "None", ":", "if", "not", "hasattr", "(", "self", ",", "'sess'", ")", ":", "raise", "RuntimeError", "(", "'Your TensorFlow model {} must'", "' have sess attribute!'", ".", "format", "(", "self", ".", "__class__", ".", "__name__", ")", ")", "path", "=", "str", "(", "self", ".", "load_path", ".", "resolve", "(", ")", ")", "# Check presence of the model files", "if", "tf", ".", "train", ".", "checkpoint_exists", "(", "path", ")", ":", "log", ".", "info", "(", "'[loading model from {}]'", ".", "format", "(", "path", ")", ")", "# Exclude optimizer variables from saved variables", "var_list", "=", "self", ".", "_get_saveable_variables", "(", "exclude_scopes", ")", "saver", "=", "tf", ".", "train", ".", "Saver", "(", "var_list", ")", "saver", ".", "restore", "(", "self", ".", "sess", ",", "path", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
TFModel.save
Save model parameters to self.save_path
deeppavlov/core/models/tf_model.py
def save(self, exclude_scopes: tuple = ('Optimizer',)) -> None: """Save model parameters to self.save_path""" if not hasattr(self, 'sess'): raise RuntimeError('Your TensorFlow model {} must' ' have sess attribute!'.format(self.__class__.__name__)) path = str(self.save_path.resolve()) log.info('[saving model to {}]'.format(path)) var_list = self._get_saveable_variables(exclude_scopes) saver = tf.train.Saver(var_list) saver.save(self.sess, path)
def save(self, exclude_scopes: tuple = ('Optimizer',)) -> None: """Save model parameters to self.save_path""" if not hasattr(self, 'sess'): raise RuntimeError('Your TensorFlow model {} must' ' have sess attribute!'.format(self.__class__.__name__)) path = str(self.save_path.resolve()) log.info('[saving model to {}]'.format(path)) var_list = self._get_saveable_variables(exclude_scopes) saver = tf.train.Saver(var_list) saver.save(self.sess, path)
[ "Save", "model", "parameters", "to", "self", ".", "save_path" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/models/tf_model.py#L68-L77
[ "def", "save", "(", "self", ",", "exclude_scopes", ":", "tuple", "=", "(", "'Optimizer'", ",", ")", ")", "->", "None", ":", "if", "not", "hasattr", "(", "self", ",", "'sess'", ")", ":", "raise", "RuntimeError", "(", "'Your TensorFlow model {} must'", "' have sess attribute!'", ".", "format", "(", "self", ".", "__class__", ".", "__name__", ")", ")", "path", "=", "str", "(", "self", ".", "save_path", ".", "resolve", "(", ")", ")", "log", ".", "info", "(", "'[saving model to {}]'", ".", "format", "(", "path", ")", ")", "var_list", "=", "self", ".", "_get_saveable_variables", "(", "exclude_scopes", ")", "saver", "=", "tf", ".", "train", ".", "Saver", "(", "var_list", ")", "saver", ".", "save", "(", "self", ".", "sess", ",", "path", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
TFModel.get_train_op
Get train operation for given loss Args: loss: loss, tf tensor or scalar learning_rate: scalar or placeholder. clip_norm: clip gradients norm by clip_norm. learnable_scopes: which scopes are trainable (None for all). optimizer: instance of tf.train.Optimizer, default Adam. **kwargs: parameters passed to tf.train.Optimizer object (scalars or placeholders). Returns: train_op
deeppavlov/core/models/tf_model.py
def get_train_op(self, loss, learning_rate, optimizer=None, clip_norm=None, learnable_scopes=None, optimizer_scope_name=None, **kwargs): """ Get train operation for given loss Args: loss: loss, tf tensor or scalar learning_rate: scalar or placeholder. clip_norm: clip gradients norm by clip_norm. learnable_scopes: which scopes are trainable (None for all). optimizer: instance of tf.train.Optimizer, default Adam. **kwargs: parameters passed to tf.train.Optimizer object (scalars or placeholders). Returns: train_op """ if optimizer_scope_name is None: opt_scope = tf.variable_scope('Optimizer') else: opt_scope = tf.variable_scope(optimizer_scope_name) with opt_scope: if learnable_scopes is None: variables_to_train = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) else: variables_to_train = [] for scope_name in learnable_scopes: variables_to_train.extend(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope_name)) if optimizer is None: optimizer = tf.train.AdamOptimizer # For batch norm it is necessary to update running averages extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(extra_update_ops): def clip_if_not_none(grad): if grad is not None: return tf.clip_by_norm(grad, clip_norm) opt = optimizer(learning_rate, **kwargs) grads_and_vars = opt.compute_gradients(loss, var_list=variables_to_train) if clip_norm is not None: grads_and_vars = [(clip_if_not_none(grad), var) for grad, var in grads_and_vars] train_op = opt.apply_gradients(grads_and_vars) return train_op
def get_train_op(self, loss, learning_rate, optimizer=None, clip_norm=None, learnable_scopes=None, optimizer_scope_name=None, **kwargs): """ Get train operation for given loss Args: loss: loss, tf tensor or scalar learning_rate: scalar or placeholder. clip_norm: clip gradients norm by clip_norm. learnable_scopes: which scopes are trainable (None for all). optimizer: instance of tf.train.Optimizer, default Adam. **kwargs: parameters passed to tf.train.Optimizer object (scalars or placeholders). Returns: train_op """ if optimizer_scope_name is None: opt_scope = tf.variable_scope('Optimizer') else: opt_scope = tf.variable_scope(optimizer_scope_name) with opt_scope: if learnable_scopes is None: variables_to_train = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) else: variables_to_train = [] for scope_name in learnable_scopes: variables_to_train.extend(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope_name)) if optimizer is None: optimizer = tf.train.AdamOptimizer # For batch norm it is necessary to update running averages extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(extra_update_ops): def clip_if_not_none(grad): if grad is not None: return tf.clip_by_norm(grad, clip_norm) opt = optimizer(learning_rate, **kwargs) grads_and_vars = opt.compute_gradients(loss, var_list=variables_to_train) if clip_norm is not None: grads_and_vars = [(clip_if_not_none(grad), var) for grad, var in grads_and_vars] train_op = opt.apply_gradients(grads_and_vars) return train_op
[ "Get", "train", "operation", "for", "given", "loss" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/models/tf_model.py#L97-L149
[ "def", "get_train_op", "(", "self", ",", "loss", ",", "learning_rate", ",", "optimizer", "=", "None", ",", "clip_norm", "=", "None", ",", "learnable_scopes", "=", "None", ",", "optimizer_scope_name", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "optimizer_scope_name", "is", "None", ":", "opt_scope", "=", "tf", ".", "variable_scope", "(", "'Optimizer'", ")", "else", ":", "opt_scope", "=", "tf", ".", "variable_scope", "(", "optimizer_scope_name", ")", "with", "opt_scope", ":", "if", "learnable_scopes", "is", "None", ":", "variables_to_train", "=", "tf", ".", "get_collection", "(", "tf", ".", "GraphKeys", ".", "TRAINABLE_VARIABLES", ")", "else", ":", "variables_to_train", "=", "[", "]", "for", "scope_name", "in", "learnable_scopes", ":", "variables_to_train", ".", "extend", "(", "tf", ".", "get_collection", "(", "tf", ".", "GraphKeys", ".", "TRAINABLE_VARIABLES", ",", "scope", "=", "scope_name", ")", ")", "if", "optimizer", "is", "None", ":", "optimizer", "=", "tf", ".", "train", ".", "AdamOptimizer", "# For batch norm it is necessary to update running averages", "extra_update_ops", "=", "tf", ".", "get_collection", "(", "tf", ".", "GraphKeys", ".", "UPDATE_OPS", ")", "with", "tf", ".", "control_dependencies", "(", "extra_update_ops", ")", ":", "def", "clip_if_not_none", "(", "grad", ")", ":", "if", "grad", "is", "not", "None", ":", "return", "tf", ".", "clip_by_norm", "(", "grad", ",", "clip_norm", ")", "opt", "=", "optimizer", "(", "learning_rate", ",", "*", "*", "kwargs", ")", "grads_and_vars", "=", "opt", ".", "compute_gradients", "(", "loss", ",", "var_list", "=", "variables_to_train", ")", "if", "clip_norm", "is", "not", "None", ":", "grads_and_vars", "=", "[", "(", "clip_if_not_none", "(", "grad", ")", ",", "var", ")", "for", "grad", ",", "var", "in", "grads_and_vars", "]", "train_op", "=", "opt", ".", "apply_gradients", "(", "grads_and_vars", ")", "return", "train_op" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
TFModel.print_number_of_parameters
Print number of *trainable* parameters in the network
deeppavlov/core/models/tf_model.py
def print_number_of_parameters(): """ Print number of *trainable* parameters in the network """ log.info('Number of parameters: ') variables = tf.trainable_variables() blocks = defaultdict(int) for var in variables: # Get the top level scope name of variable block_name = var.name.split('/')[0] number_of_parameters = np.prod(var.get_shape().as_list()) blocks[block_name] += number_of_parameters for block_name, cnt in blocks.items(): log.info("{} - {}.".format(block_name, cnt)) total_num_parameters = np.sum(list(blocks.values())) log.info('Total number of parameters equal {}'.format(total_num_parameters))
def print_number_of_parameters(): """ Print number of *trainable* parameters in the network """ log.info('Number of parameters: ') variables = tf.trainable_variables() blocks = defaultdict(int) for var in variables: # Get the top level scope name of variable block_name = var.name.split('/')[0] number_of_parameters = np.prod(var.get_shape().as_list()) blocks[block_name] += number_of_parameters for block_name, cnt in blocks.items(): log.info("{} - {}.".format(block_name, cnt)) total_num_parameters = np.sum(list(blocks.values())) log.info('Total number of parameters equal {}'.format(total_num_parameters))
[ "Print", "number", "of", "*", "trainable", "*", "parameters", "in", "the", "network" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/models/tf_model.py#L152-L167
[ "def", "print_number_of_parameters", "(", ")", ":", "log", ".", "info", "(", "'Number of parameters: '", ")", "variables", "=", "tf", ".", "trainable_variables", "(", ")", "blocks", "=", "defaultdict", "(", "int", ")", "for", "var", "in", "variables", ":", "# Get the top level scope name of variable", "block_name", "=", "var", ".", "name", ".", "split", "(", "'/'", ")", "[", "0", "]", "number_of_parameters", "=", "np", ".", "prod", "(", "var", ".", "get_shape", "(", ")", ".", "as_list", "(", ")", ")", "blocks", "[", "block_name", "]", "+=", "number_of_parameters", "for", "block_name", ",", "cnt", "in", "blocks", ".", "items", "(", ")", ":", "log", ".", "info", "(", "\"{} - {}.\"", ".", "format", "(", "block_name", ",", "cnt", ")", ")", "total_num_parameters", "=", "np", ".", "sum", "(", "list", "(", "blocks", ".", "values", "(", ")", ")", ")", "log", ".", "info", "(", "'Total number of parameters equal {}'", ".", "format", "(", "total_num_parameters", ")", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
_precompute_absense_costs
Вычисляет минимальную стоимость появления нового символа в узлах словаря в соответствии со штрафами из costs Аргументы: --------------- dictionary : Trie словарь, хранящийся в виде ациклического автомата removal_costs : dict штрафы за удаление символов insertion_costs : dict штрафы за вставку символов n : int глубина ``заглядывания вперёд'' в словаре Возвращает --------------- answer : list of dicts, len(answer)=len(dictionary) answer[i][a][j] равно минимальному штрафу за появление символа a в j-ой позиции в вершине с номером i
deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py
def _precompute_absense_costs(dictionary, removal_costs, insertion_costs, n, allow_spaces=False): """ Вычисляет минимальную стоимость появления нового символа в узлах словаря в соответствии со штрафами из costs Аргументы: --------------- dictionary : Trie словарь, хранящийся в виде ациклического автомата removal_costs : dict штрафы за удаление символов insertion_costs : dict штрафы за вставку символов n : int глубина ``заглядывания вперёд'' в словаре Возвращает --------------- answer : list of dicts, len(answer)=len(dictionary) answer[i][a][j] равно минимальному штрафу за появление символа a в j-ой позиции в вершине с номером i """ answer = [dict() for node in dictionary.data] if n == 0: return answer curr_alphabet = copy.copy(dictionary.alphabet) if allow_spaces: curr_alphabet += [' '] for l, (costs_in_node, node) in enumerate(zip(answer, dictionary.data)): # определение минимальной стоимости удаления символов curr_node_removal_costs = np.empty(dtype=np.float64, shape=(n,)) if len(node[0]) > 0: curr_node_removal_costs[0] = min(removal_costs[symbol] for symbol in node[0]) for j, symbols in enumerate(node[1:], 1): if len(symbols) == 0: curr_node_removal_costs[j:] = curr_node_removal_costs[j-1] break curr_cost = min(removal_costs[symbol] for symbol in symbols) curr_node_removal_costs[j] = min(curr_node_removal_costs[j-1], curr_cost) else: curr_node_removal_costs[:] = np.inf # определение минимальной стоимости вставки for a in curr_alphabet: curr_symbol_costs = np.empty(dtype=np.float64, shape=(n,)) curr_symbol_costs.fill(insertion_costs[a]) for j, symbols in enumerate(node): if a in symbols: curr_symbol_costs[j:] = 0.0 break curr_symbol_costs[j] = min(curr_symbol_costs[j], curr_node_removal_costs[j]) costs_in_node[a] = curr_symbol_costs return answer
def _precompute_absense_costs(dictionary, removal_costs, insertion_costs, n, allow_spaces=False): """ Вычисляет минимальную стоимость появления нового символа в узлах словаря в соответствии со штрафами из costs Аргументы: --------------- dictionary : Trie словарь, хранящийся в виде ациклического автомата removal_costs : dict штрафы за удаление символов insertion_costs : dict штрафы за вставку символов n : int глубина ``заглядывания вперёд'' в словаре Возвращает --------------- answer : list of dicts, len(answer)=len(dictionary) answer[i][a][j] равно минимальному штрафу за появление символа a в j-ой позиции в вершине с номером i """ answer = [dict() for node in dictionary.data] if n == 0: return answer curr_alphabet = copy.copy(dictionary.alphabet) if allow_spaces: curr_alphabet += [' '] for l, (costs_in_node, node) in enumerate(zip(answer, dictionary.data)): # определение минимальной стоимости удаления символов curr_node_removal_costs = np.empty(dtype=np.float64, shape=(n,)) if len(node[0]) > 0: curr_node_removal_costs[0] = min(removal_costs[symbol] for symbol in node[0]) for j, symbols in enumerate(node[1:], 1): if len(symbols) == 0: curr_node_removal_costs[j:] = curr_node_removal_costs[j-1] break curr_cost = min(removal_costs[symbol] for symbol in symbols) curr_node_removal_costs[j] = min(curr_node_removal_costs[j-1], curr_cost) else: curr_node_removal_costs[:] = np.inf # определение минимальной стоимости вставки for a in curr_alphabet: curr_symbol_costs = np.empty(dtype=np.float64, shape=(n,)) curr_symbol_costs.fill(insertion_costs[a]) for j, symbols in enumerate(node): if a in symbols: curr_symbol_costs[j:] = 0.0 break curr_symbol_costs[j] = min(curr_symbol_costs[j], curr_node_removal_costs[j]) costs_in_node[a] = curr_symbol_costs return answer
[ "Вычисляет", "минимальную", "стоимость", "появления", "нового", "символа", "в", "узлах", "словаря", "в", "соответствии", "со", "штрафами", "из", "costs" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py#L214-L269
[ "def", "_precompute_absense_costs", "(", "dictionary", ",", "removal_costs", ",", "insertion_costs", ",", "n", ",", "allow_spaces", "=", "False", ")", ":", "answer", "=", "[", "dict", "(", ")", "for", "node", "in", "dictionary", ".", "data", "]", "if", "n", "==", "0", ":", "return", "answer", "curr_alphabet", "=", "copy", ".", "copy", "(", "dictionary", ".", "alphabet", ")", "if", "allow_spaces", ":", "curr_alphabet", "+=", "[", "' '", "]", "for", "l", ",", "(", "costs_in_node", ",", "node", ")", "in", "enumerate", "(", "zip", "(", "answer", ",", "dictionary", ".", "data", ")", ")", ":", "# определение минимальной стоимости удаления символов", "curr_node_removal_costs", "=", "np", ".", "empty", "(", "dtype", "=", "np", ".", "float64", ",", "shape", "=", "(", "n", ",", ")", ")", "if", "len", "(", "node", "[", "0", "]", ")", ">", "0", ":", "curr_node_removal_costs", "[", "0", "]", "=", "min", "(", "removal_costs", "[", "symbol", "]", "for", "symbol", "in", "node", "[", "0", "]", ")", "for", "j", ",", "symbols", "in", "enumerate", "(", "node", "[", "1", ":", "]", ",", "1", ")", ":", "if", "len", "(", "symbols", ")", "==", "0", ":", "curr_node_removal_costs", "[", "j", ":", "]", "=", "curr_node_removal_costs", "[", "j", "-", "1", "]", "break", "curr_cost", "=", "min", "(", "removal_costs", "[", "symbol", "]", "for", "symbol", "in", "symbols", ")", "curr_node_removal_costs", "[", "j", "]", "=", "min", "(", "curr_node_removal_costs", "[", "j", "-", "1", "]", ",", "curr_cost", ")", "else", ":", "curr_node_removal_costs", "[", ":", "]", "=", "np", ".", "inf", "# определение минимальной стоимости вставки", "for", "a", "in", "curr_alphabet", ":", "curr_symbol_costs", "=", "np", ".", "empty", "(", "dtype", "=", "np", ".", "float64", ",", "shape", "=", "(", "n", ",", ")", ")", "curr_symbol_costs", ".", "fill", "(", "insertion_costs", "[", "a", "]", ")", "for", "j", ",", "symbols", "in", "enumerate", "(", "node", ")", ":", "if", "a", "in", "symbols", ":", "curr_symbol_costs", "[", "j", ":", "]", "=", "0.0", "break", "curr_symbol_costs", "[", "j", "]", "=", "min", "(", "curr_symbol_costs", "[", "j", "]", ",", "curr_node_removal_costs", "[", "j", "]", ")", "costs_in_node", "[", "a", "]", "=", "curr_symbol_costs", "return", "answer" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
LevenshteinSearcher.search
Finds all dictionary words in d-window from word
deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py
def search(self, word, d, allow_spaces=True, return_cost=True): """ Finds all dictionary words in d-window from word """ if not all((c in self.alphabet or (c == " " and self.allow_spaces)) for c in word): return [] # raise ValueError("{0} contains an incorrect symbol".format(word)) return self._trie_search( word, d, allow_spaces=allow_spaces, return_cost=return_cost)
def search(self, word, d, allow_spaces=True, return_cost=True): """ Finds all dictionary words in d-window from word """ if not all((c in self.alphabet or (c == " " and self.allow_spaces)) for c in word): return [] # raise ValueError("{0} contains an incorrect symbol".format(word)) return self._trie_search( word, d, allow_spaces=allow_spaces, return_cost=return_cost)
[ "Finds", "all", "dictionary", "words", "in", "d", "-", "window", "from", "word" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py#L44-L53
[ "def", "search", "(", "self", ",", "word", ",", "d", ",", "allow_spaces", "=", "True", ",", "return_cost", "=", "True", ")", ":", "if", "not", "all", "(", "(", "c", "in", "self", ".", "alphabet", "or", "(", "c", "==", "\" \"", "and", "self", ".", "allow_spaces", ")", ")", "for", "c", "in", "word", ")", ":", "return", "[", "]", "# raise ValueError(\"{0} contains an incorrect symbol\".format(word))", "return", "self", ".", "_trie_search", "(", "word", ",", "d", ",", "allow_spaces", "=", "allow_spaces", ",", "return_cost", "=", "return_cost", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
LevenshteinSearcher._trie_search
Находит все слова в префиксном боре, расстояние до которых в соответствии с заданным преобразователем не превышает d
deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py
def _trie_search(self, word, d, transducer=None, allow_spaces=True, return_cost=True): """ Находит все слова в префиксном боре, расстояние до которых в соответствии с заданным преобразователем не превышает d """ if transducer is None: # разобраться с пробелами transducer = self.transducer.inverse() allow_spaces &= self.allow_spaces trie = self.dictionary # инициализация переменных used_agenda_keys = set() agenda = SortedListWithKey(key=(lambda x:x[1])) h = self.h_func(word, trie.root) # agenda[self.agenda_key("", 0, trie.root)] = (0.0, 0.0, h) key, value = ("", 0, trie.root), (0.0, 0.0, h) agenda.add((key, value)) answer = dict() k = 0 # очередь с приоритетом с промежуточными результатами while len(agenda) > 0: key, value = agenda.pop(0) if key in used_agenda_keys: continue used_agenda_keys.add(key) low, pos, index = key cost, g, h = value # g --- текущая стоимость, h --- нижняя оценка будущей стоимости # cost = g + h --- нижняя оценка суммарной стоимости k += 1 max_upperside_length = min(len(word) - pos, transducer.max_up_length) for upperside_length in range(max_upperside_length + 1): new_pos = pos + upperside_length curr_up = word[pos: new_pos] if curr_up not in transducer.operation_costs: continue for curr_low, curr_cost in transducer.operation_costs[curr_up].items(): new_g = g + curr_cost if new_g > d: #если g > d, то h можно не вычислять continue if curr_low == " ": if allow_spaces and trie.is_final(index): new_index = trie.root else: new_index = Trie.NO_NODE else: new_index = trie.descend(index, curr_low) if new_index is Trie.NO_NODE: continue new_low = low + curr_low new_h = self.h_func(word[new_pos: ], new_index) new_cost = new_g + new_h if new_cost > d: continue new_key = (new_low, new_pos, new_index) new_value = (new_cost, new_g, new_h) if new_pos == len(word) and trie.is_final(new_index): old_g = answer.get(new_low, None) if old_g is None or new_g < old_g: answer[new_low] = new_g agenda.add((new_key, new_value)) answer = sorted(answer.items(), key=(lambda x: x[1])) if return_cost: return answer else: return [elem[0] for elem in answer]
def _trie_search(self, word, d, transducer=None, allow_spaces=True, return_cost=True): """ Находит все слова в префиксном боре, расстояние до которых в соответствии с заданным преобразователем не превышает d """ if transducer is None: # разобраться с пробелами transducer = self.transducer.inverse() allow_spaces &= self.allow_spaces trie = self.dictionary # инициализация переменных used_agenda_keys = set() agenda = SortedListWithKey(key=(lambda x:x[1])) h = self.h_func(word, trie.root) # agenda[self.agenda_key("", 0, trie.root)] = (0.0, 0.0, h) key, value = ("", 0, trie.root), (0.0, 0.0, h) agenda.add((key, value)) answer = dict() k = 0 # очередь с приоритетом с промежуточными результатами while len(agenda) > 0: key, value = agenda.pop(0) if key in used_agenda_keys: continue used_agenda_keys.add(key) low, pos, index = key cost, g, h = value # g --- текущая стоимость, h --- нижняя оценка будущей стоимости # cost = g + h --- нижняя оценка суммарной стоимости k += 1 max_upperside_length = min(len(word) - pos, transducer.max_up_length) for upperside_length in range(max_upperside_length + 1): new_pos = pos + upperside_length curr_up = word[pos: new_pos] if curr_up not in transducer.operation_costs: continue for curr_low, curr_cost in transducer.operation_costs[curr_up].items(): new_g = g + curr_cost if new_g > d: #если g > d, то h можно не вычислять continue if curr_low == " ": if allow_spaces and trie.is_final(index): new_index = trie.root else: new_index = Trie.NO_NODE else: new_index = trie.descend(index, curr_low) if new_index is Trie.NO_NODE: continue new_low = low + curr_low new_h = self.h_func(word[new_pos: ], new_index) new_cost = new_g + new_h if new_cost > d: continue new_key = (new_low, new_pos, new_index) new_value = (new_cost, new_g, new_h) if new_pos == len(word) and trie.is_final(new_index): old_g = answer.get(new_low, None) if old_g is None or new_g < old_g: answer[new_low] = new_g agenda.add((new_key, new_value)) answer = sorted(answer.items(), key=(lambda x: x[1])) if return_cost: return answer else: return [elem[0] for elem in answer]
[ "Находит", "все", "слова", "в", "префиксном", "боре", "расстояние", "до", "которых", "в", "соответствии", "с", "заданным", "преобразователем", "не", "превышает", "d" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py#L55-L121
[ "def", "_trie_search", "(", "self", ",", "word", ",", "d", ",", "transducer", "=", "None", ",", "allow_spaces", "=", "True", ",", "return_cost", "=", "True", ")", ":", "if", "transducer", "is", "None", ":", "# разобраться с пробелами", "transducer", "=", "self", ".", "transducer", ".", "inverse", "(", ")", "allow_spaces", "&=", "self", ".", "allow_spaces", "trie", "=", "self", ".", "dictionary", "# инициализация переменных", "used_agenda_keys", "=", "set", "(", ")", "agenda", "=", "SortedListWithKey", "(", "key", "=", "(", "lambda", "x", ":", "x", "[", "1", "]", ")", ")", "h", "=", "self", ".", "h_func", "(", "word", ",", "trie", ".", "root", ")", "# agenda[self.agenda_key(\"\", 0, trie.root)] = (0.0, 0.0, h)", "key", ",", "value", "=", "(", "\"\"", ",", "0", ",", "trie", ".", "root", ")", ",", "(", "0.0", ",", "0.0", ",", "h", ")", "agenda", ".", "add", "(", "(", "key", ",", "value", ")", ")", "answer", "=", "dict", "(", ")", "k", "=", "0", "# очередь с приоритетом с промежуточными результатами", "while", "len", "(", "agenda", ")", ">", "0", ":", "key", ",", "value", "=", "agenda", ".", "pop", "(", "0", ")", "if", "key", "in", "used_agenda_keys", ":", "continue", "used_agenda_keys", ".", "add", "(", "key", ")", "low", ",", "pos", ",", "index", "=", "key", "cost", ",", "g", ",", "h", "=", "value", "# g --- текущая стоимость, h --- нижняя оценка будущей стоимости", "# cost = g + h --- нижняя оценка суммарной стоимости", "k", "+=", "1", "max_upperside_length", "=", "min", "(", "len", "(", "word", ")", "-", "pos", ",", "transducer", ".", "max_up_length", ")", "for", "upperside_length", "in", "range", "(", "max_upperside_length", "+", "1", ")", ":", "new_pos", "=", "pos", "+", "upperside_length", "curr_up", "=", "word", "[", "pos", ":", "new_pos", "]", "if", "curr_up", "not", "in", "transducer", ".", "operation_costs", ":", "continue", "for", "curr_low", ",", "curr_cost", "in", "transducer", ".", "operation_costs", "[", "curr_up", "]", ".", "items", "(", ")", ":", "new_g", "=", "g", "+", "curr_cost", "if", "new_g", ">", "d", ":", "#если g > d, то h можно не вычислять", "continue", "if", "curr_low", "==", "\" \"", ":", "if", "allow_spaces", "and", "trie", ".", "is_final", "(", "index", ")", ":", "new_index", "=", "trie", ".", "root", "else", ":", "new_index", "=", "Trie", ".", "NO_NODE", "else", ":", "new_index", "=", "trie", ".", "descend", "(", "index", ",", "curr_low", ")", "if", "new_index", "is", "Trie", ".", "NO_NODE", ":", "continue", "new_low", "=", "low", "+", "curr_low", "new_h", "=", "self", ".", "h_func", "(", "word", "[", "new_pos", ":", "]", ",", "new_index", ")", "new_cost", "=", "new_g", "+", "new_h", "if", "new_cost", ">", "d", ":", "continue", "new_key", "=", "(", "new_low", ",", "new_pos", ",", "new_index", ")", "new_value", "=", "(", "new_cost", ",", "new_g", ",", "new_h", ")", "if", "new_pos", "==", "len", "(", "word", ")", "and", "trie", ".", "is_final", "(", "new_index", ")", ":", "old_g", "=", "answer", ".", "get", "(", "new_low", ",", "None", ")", "if", "old_g", "is", "None", "or", "new_g", "<", "old_g", ":", "answer", "[", "new_low", "]", "=", "new_g", "agenda", ".", "add", "(", "(", "new_key", ",", "new_value", ")", ")", "answer", "=", "sorted", "(", "answer", ".", "items", "(", ")", ",", "key", "=", "(", "lambda", "x", ":", "x", "[", "1", "]", ")", ")", "if", "return_cost", ":", "return", "answer", "else", ":", "return", "[", "elem", "[", "0", "]", "for", "elem", "in", "answer", "]" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
LevenshteinSearcher._precompute_euristics
Предвычисляет будущие символы и стоимости операций с ними для h-эвристики
deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py
def _precompute_euristics(self): """ Предвычисляет будущие символы и стоимости операций с ними для h-эвристики """ if self.euristics is None: return # вычисление минимальной стоимости операции, # приводящей к появлению ('+') или исчезновению ('-') данного символа removal_costs = {a : np.inf for a in self.alphabet} insertion_costs = {a : np.inf for a in self.alphabet} if self.allow_spaces: removal_costs[' '] = np.inf insertion_costs[' '] = np.inf for up, costs in self.transducer.operation_costs.items(): for low, cost in costs.items(): if up == low: continue if up != '': removal_cost = cost / len(up) for a in up: removal_costs[a] = min(removal_costs[a], removal_cost) if low != '': insertion_cost = cost / len(low) for a in low: insertion_costs[a] = min(insertion_costs[a], insertion_cost) # предвычисление возможных будущих символов в узлах дерева # precompute_future_symbols(self.dictionary, self.euristics, self.allow_spaces) # предвычисление стоимостей потери символа в узлах дерева self._absense_costs_by_node = _precompute_absense_costs( self.dictionary, removal_costs, insertion_costs, self.euristics, self.allow_spaces) # массив для сохранения эвристик self._temporary_euristics = [dict() for i in range(len(self.dictionary))]
def _precompute_euristics(self): """ Предвычисляет будущие символы и стоимости операций с ними для h-эвристики """ if self.euristics is None: return # вычисление минимальной стоимости операции, # приводящей к появлению ('+') или исчезновению ('-') данного символа removal_costs = {a : np.inf for a in self.alphabet} insertion_costs = {a : np.inf for a in self.alphabet} if self.allow_spaces: removal_costs[' '] = np.inf insertion_costs[' '] = np.inf for up, costs in self.transducer.operation_costs.items(): for low, cost in costs.items(): if up == low: continue if up != '': removal_cost = cost / len(up) for a in up: removal_costs[a] = min(removal_costs[a], removal_cost) if low != '': insertion_cost = cost / len(low) for a in low: insertion_costs[a] = min(insertion_costs[a], insertion_cost) # предвычисление возможных будущих символов в узлах дерева # precompute_future_symbols(self.dictionary, self.euristics, self.allow_spaces) # предвычисление стоимостей потери символа в узлах дерева self._absense_costs_by_node = _precompute_absense_costs( self.dictionary, removal_costs, insertion_costs, self.euristics, self.allow_spaces) # массив для сохранения эвристик self._temporary_euristics = [dict() for i in range(len(self.dictionary))]
[ "Предвычисляет", "будущие", "символы", "и", "стоимости", "операций", "с", "ними", "для", "h", "-", "эвристики" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py#L123-L156
[ "def", "_precompute_euristics", "(", "self", ")", ":", "if", "self", ".", "euristics", "is", "None", ":", "return", "# вычисление минимальной стоимости операции,", "# приводящей к появлению ('+') или исчезновению ('-') данного символа", "removal_costs", "=", "{", "a", ":", "np", ".", "inf", "for", "a", "in", "self", ".", "alphabet", "}", "insertion_costs", "=", "{", "a", ":", "np", ".", "inf", "for", "a", "in", "self", ".", "alphabet", "}", "if", "self", ".", "allow_spaces", ":", "removal_costs", "[", "' '", "]", "=", "np", ".", "inf", "insertion_costs", "[", "' '", "]", "=", "np", ".", "inf", "for", "up", ",", "costs", "in", "self", ".", "transducer", ".", "operation_costs", ".", "items", "(", ")", ":", "for", "low", ",", "cost", "in", "costs", ".", "items", "(", ")", ":", "if", "up", "==", "low", ":", "continue", "if", "up", "!=", "''", ":", "removal_cost", "=", "cost", "/", "len", "(", "up", ")", "for", "a", "in", "up", ":", "removal_costs", "[", "a", "]", "=", "min", "(", "removal_costs", "[", "a", "]", ",", "removal_cost", ")", "if", "low", "!=", "''", ":", "insertion_cost", "=", "cost", "/", "len", "(", "low", ")", "for", "a", "in", "low", ":", "insertion_costs", "[", "a", "]", "=", "min", "(", "insertion_costs", "[", "a", "]", ",", "insertion_cost", ")", "# предвычисление возможных будущих символов в узлах дерева", "# precompute_future_symbols(self.dictionary, self.euristics, self.allow_spaces)", "# предвычисление стоимостей потери символа в узлах дерева", "self", ".", "_absense_costs_by_node", "=", "_precompute_absense_costs", "(", "self", ".", "dictionary", ",", "removal_costs", ",", "insertion_costs", ",", "self", ".", "euristics", ",", "self", ".", "allow_spaces", ")", "# массив для сохранения эвристик", "self", ".", "_temporary_euristics", "=", "[", "dict", "(", ")", "for", "i", "in", "range", "(", "len", "(", "self", ".", "dictionary", ")", ")", "]" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
LevenshteinSearcher._euristic_h_function
Вычисление h-эвристики из работы Hulden,2009 для текущей вершины словаря Аргументы: ---------- suffix : string непрочитанный суффикс входного слова index : int индекс текущего узла в словаре Возвращает: ----------- cost : float оценка снизу для стоимости замены, приводящей к входному слову с суффиксом suffix, если прочитанный префикс слова без опечатки привёл в вершину с номером index
deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py
def _euristic_h_function(self, suffix, index): """ Вычисление h-эвристики из работы Hulden,2009 для текущей вершины словаря Аргументы: ---------- suffix : string непрочитанный суффикс входного слова index : int индекс текущего узла в словаре Возвращает: ----------- cost : float оценка снизу для стоимости замены, приводящей к входному слову с суффиксом suffix, если прочитанный префикс слова без опечатки привёл в вершину с номером index """ if self.euristics > 0: suffix = suffix[:self.euristics] # кэширование результатов index_temporary_euristics = self._temporary_euristics[index] cost = index_temporary_euristics.get(suffix, None) if cost is not None: return cost # извлечение нужных данных из массивов absense_costs = self._absense_costs_by_node[index] data = self.dictionary.data[index] costs = np.zeros(dtype=np.float64, shape=(self.euristics,)) # costs[j] --- оценка штрафа при предпросмотре вперёд на j символов for i, a in enumerate(suffix): costs[i:] += absense_costs[a][i:] cost = max(costs) index_temporary_euristics[suffix] = cost return cost
def _euristic_h_function(self, suffix, index): """ Вычисление h-эвристики из работы Hulden,2009 для текущей вершины словаря Аргументы: ---------- suffix : string непрочитанный суффикс входного слова index : int индекс текущего узла в словаре Возвращает: ----------- cost : float оценка снизу для стоимости замены, приводящей к входному слову с суффиксом suffix, если прочитанный префикс слова без опечатки привёл в вершину с номером index """ if self.euristics > 0: suffix = suffix[:self.euristics] # кэширование результатов index_temporary_euristics = self._temporary_euristics[index] cost = index_temporary_euristics.get(suffix, None) if cost is not None: return cost # извлечение нужных данных из массивов absense_costs = self._absense_costs_by_node[index] data = self.dictionary.data[index] costs = np.zeros(dtype=np.float64, shape=(self.euristics,)) # costs[j] --- оценка штрафа при предпросмотре вперёд на j символов for i, a in enumerate(suffix): costs[i:] += absense_costs[a][i:] cost = max(costs) index_temporary_euristics[suffix] = cost return cost
[ "Вычисление", "h", "-", "эвристики", "из", "работы", "Hulden", "2009", "для", "текущей", "вершины", "словаря" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py#L164-L199
[ "def", "_euristic_h_function", "(", "self", ",", "suffix", ",", "index", ")", ":", "if", "self", ".", "euristics", ">", "0", ":", "suffix", "=", "suffix", "[", ":", "self", ".", "euristics", "]", "# кэширование результатов", "index_temporary_euristics", "=", "self", ".", "_temporary_euristics", "[", "index", "]", "cost", "=", "index_temporary_euristics", ".", "get", "(", "suffix", ",", "None", ")", "if", "cost", "is", "not", "None", ":", "return", "cost", "# извлечение нужных данных из массивов", "absense_costs", "=", "self", ".", "_absense_costs_by_node", "[", "index", "]", "data", "=", "self", ".", "dictionary", ".", "data", "[", "index", "]", "costs", "=", "np", ".", "zeros", "(", "dtype", "=", "np", ".", "float64", ",", "shape", "=", "(", "self", ".", "euristics", ",", ")", ")", "# costs[j] --- оценка штрафа при предпросмотре вперёд на j символов", "for", "i", ",", "a", "in", "enumerate", "(", "suffix", ")", ":", "costs", "[", "i", ":", "]", "+=", "absense_costs", "[", "a", "]", "[", "i", ":", "]", "cost", "=", "max", "(", "costs", ")", "index_temporary_euristics", "[", "suffix", "]", "=", "cost", "return", "cost" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
SegmentTransducer.get_operation_cost
Возвращает стоимость элементарной трансдукции up->low или np.inf, если такой элементарной трансдукции нет Аргументы: ---------- up, low : string элементы элементарной трансдукции Возвращает: ----------- cost : float стоимость элементарной трансдукции up->low (np.inf, если такая трансдукция отсутствует)
deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py
def get_operation_cost(self, up, low): """ Возвращает стоимость элементарной трансдукции up->low или np.inf, если такой элементарной трансдукции нет Аргументы: ---------- up, low : string элементы элементарной трансдукции Возвращает: ----------- cost : float стоимость элементарной трансдукции up->low (np.inf, если такая трансдукция отсутствует) """ up_costs = self.operation_costs.get(up, None) if up_costs is None: return np.inf cost = up_costs.get(low, np.inf) return cost
def get_operation_cost(self, up, low): """ Возвращает стоимость элементарной трансдукции up->low или np.inf, если такой элементарной трансдукции нет Аргументы: ---------- up, low : string элементы элементарной трансдукции Возвращает: ----------- cost : float стоимость элементарной трансдукции up->low (np.inf, если такая трансдукция отсутствует) """ up_costs = self.operation_costs.get(up, None) if up_costs is None: return np.inf cost = up_costs.get(low, np.inf) return cost
[ "Возвращает", "стоимость", "элементарной", "трансдукции", "up", "-", ">", "low", "или", "np", ".", "inf", "если", "такой", "элементарной", "трансдукции", "нет" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py#L308-L328
[ "def", "get_operation_cost", "(", "self", ",", "up", ",", "low", ")", ":", "up_costs", "=", "self", ".", "operation_costs", ".", "get", "(", "up", ",", "None", ")", "if", "up_costs", "is", "None", ":", "return", "np", ".", "inf", "cost", "=", "up_costs", ".", "get", "(", "low", ",", "np", ".", "inf", ")", "return", "cost" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
SegmentTransducer.inverse
Строит пробразователь, задающий обратное конечное преобразование
deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py
def inverse(self): """ Строит пробразователь, задающий обратное конечное преобразование """ # УПРОСТИТЬ ОБРАЩЕНИЕ!!! inversed_transducer = SegmentTransducer(self.alphabet, operation_costs=dict()) inversed_transducer.operation_costs = self._reversed_operation_costs inversed_transducer._reversed_operation_costs = self.operation_costs inversed_transducer.max_low_length = self.max_up_length inversed_transducer.max_up_length = self.max_low_length inversed_transducer.max_low_lengths_by_up = self.max_up_lengths_by_low inversed_transducer.max_up_lengths_by_low = self.max_low_lengths_by_up return inversed_transducer
def inverse(self): """ Строит пробразователь, задающий обратное конечное преобразование """ # УПРОСТИТЬ ОБРАЩЕНИЕ!!! inversed_transducer = SegmentTransducer(self.alphabet, operation_costs=dict()) inversed_transducer.operation_costs = self._reversed_operation_costs inversed_transducer._reversed_operation_costs = self.operation_costs inversed_transducer.max_low_length = self.max_up_length inversed_transducer.max_up_length = self.max_low_length inversed_transducer.max_low_lengths_by_up = self.max_up_lengths_by_low inversed_transducer.max_up_lengths_by_low = self.max_low_lengths_by_up return inversed_transducer
[ "Строит", "пробразователь", "задающий", "обратное", "конечное", "преобразование" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py#L330-L342
[ "def", "inverse", "(", "self", ")", ":", "# УПРОСТИТЬ ОБРАЩЕНИЕ!!!", "inversed_transducer", "=", "SegmentTransducer", "(", "self", ".", "alphabet", ",", "operation_costs", "=", "dict", "(", ")", ")", "inversed_transducer", ".", "operation_costs", "=", "self", ".", "_reversed_operation_costs", "inversed_transducer", ".", "_reversed_operation_costs", "=", "self", ".", "operation_costs", "inversed_transducer", ".", "max_low_length", "=", "self", ".", "max_up_length", "inversed_transducer", ".", "max_up_length", "=", "self", ".", "max_low_length", "inversed_transducer", ".", "max_low_lengths_by_up", "=", "self", ".", "max_up_lengths_by_low", "inversed_transducer", ".", "max_up_lengths_by_low", "=", "self", ".", "max_low_lengths_by_up", "return", "inversed_transducer" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
SegmentTransducer.distance
Вычисляет трансдукцию минимальной стоимости, отображающую first в second Аргументы: ----------- first : string second : string Верхний и нижний элементы трансдукции return_transduction : bool (optional, default=False) следует ли возвращать трансдукцию минимального веса (см. возвращаемое значение) Возвращает: ----------- (final_cost, transductions) : tuple(float, list) если return_transduction=True, то возвращает минимальную стоимость трансдукции, переводящей first в second и список трансдукций с данной стоимостью final_cost : float если return_transduction=False, то возвращает минимальную стоимость трансдукции, переводящей first в second
deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py
def distance(self, first, second, return_transduction = False): """ Вычисляет трансдукцию минимальной стоимости, отображающую first в second Аргументы: ----------- first : string second : string Верхний и нижний элементы трансдукции return_transduction : bool (optional, default=False) следует ли возвращать трансдукцию минимального веса (см. возвращаемое значение) Возвращает: ----------- (final_cost, transductions) : tuple(float, list) если return_transduction=True, то возвращает минимальную стоимость трансдукции, переводящей first в second и список трансдукций с данной стоимостью final_cost : float если return_transduction=False, то возвращает минимальную стоимость трансдукции, переводящей first в second """ if return_transduction: add_pred = (lambda x, y: (y == np.inf or x < y)) else: add_pred = (lambda x, y: (y == np.inf or x <= y)) clear_pred = (lambda x, y: (y < np.inf and x < y)) update_func = lambda x, y: min(x, y) costs, backtraces = self._fill_levenshtein_table(first, second, update_func, add_pred, clear_pred) final_cost = costs[-1][-1] if final_cost == np.inf: transductions = [None] elif return_transduction: transductions = self._backtraces_to_transductions(first, second, backtraces, final_cost, return_cost=False) if return_transduction: return final_cost, transductions else: return final_cost
def distance(self, first, second, return_transduction = False): """ Вычисляет трансдукцию минимальной стоимости, отображающую first в second Аргументы: ----------- first : string second : string Верхний и нижний элементы трансдукции return_transduction : bool (optional, default=False) следует ли возвращать трансдукцию минимального веса (см. возвращаемое значение) Возвращает: ----------- (final_cost, transductions) : tuple(float, list) если return_transduction=True, то возвращает минимальную стоимость трансдукции, переводящей first в second и список трансдукций с данной стоимостью final_cost : float если return_transduction=False, то возвращает минимальную стоимость трансдукции, переводящей first в second """ if return_transduction: add_pred = (lambda x, y: (y == np.inf or x < y)) else: add_pred = (lambda x, y: (y == np.inf or x <= y)) clear_pred = (lambda x, y: (y < np.inf and x < y)) update_func = lambda x, y: min(x, y) costs, backtraces = self._fill_levenshtein_table(first, second, update_func, add_pred, clear_pred) final_cost = costs[-1][-1] if final_cost == np.inf: transductions = [None] elif return_transduction: transductions = self._backtraces_to_transductions(first, second, backtraces, final_cost, return_cost=False) if return_transduction: return final_cost, transductions else: return final_cost
[ "Вычисляет", "трансдукцию", "минимальной", "стоимости", "отображающую", "first", "в", "second" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py#L344-L387
[ "def", "distance", "(", "self", ",", "first", ",", "second", ",", "return_transduction", "=", "False", ")", ":", "if", "return_transduction", ":", "add_pred", "=", "(", "lambda", "x", ",", "y", ":", "(", "y", "==", "np", ".", "inf", "or", "x", "<", "y", ")", ")", "else", ":", "add_pred", "=", "(", "lambda", "x", ",", "y", ":", "(", "y", "==", "np", ".", "inf", "or", "x", "<=", "y", ")", ")", "clear_pred", "=", "(", "lambda", "x", ",", "y", ":", "(", "y", "<", "np", ".", "inf", "and", "x", "<", "y", ")", ")", "update_func", "=", "lambda", "x", ",", "y", ":", "min", "(", "x", ",", "y", ")", "costs", ",", "backtraces", "=", "self", ".", "_fill_levenshtein_table", "(", "first", ",", "second", ",", "update_func", ",", "add_pred", ",", "clear_pred", ")", "final_cost", "=", "costs", "[", "-", "1", "]", "[", "-", "1", "]", "if", "final_cost", "==", "np", ".", "inf", ":", "transductions", "=", "[", "None", "]", "elif", "return_transduction", ":", "transductions", "=", "self", ".", "_backtraces_to_transductions", "(", "first", ",", "second", ",", "backtraces", ",", "final_cost", ",", "return_cost", "=", "False", ")", "if", "return_transduction", ":", "return", "final_cost", ",", "transductions", "else", ":", "return", "final_cost" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
SegmentTransducer.transduce
Возвращает все трансдукции, переводящие first в second, чья стоимость не превышает threshold Возвращает: ---------- result : list список вида [(трансдукция, стоимость)]
deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py
def transduce(self, first, second, threshold): """ Возвращает все трансдукции, переводящие first в second, чья стоимость не превышает threshold Возвращает: ---------- result : list список вида [(трансдукция, стоимость)] """ add_pred = (lambda x, y: x <= threshold) clear_pred =(lambda x, y: False) update_func = (lambda x, y: min(x, y)) costs, backtraces = self._fill_levenshtein_table(first, second, update_func, add_pred, clear_pred, threshold=threshold) result = self._backtraces_to_transductions(first, second, backtraces, threshold, return_cost=True) return result
def transduce(self, first, second, threshold): """ Возвращает все трансдукции, переводящие first в second, чья стоимость не превышает threshold Возвращает: ---------- result : list список вида [(трансдукция, стоимость)] """ add_pred = (lambda x, y: x <= threshold) clear_pred =(lambda x, y: False) update_func = (lambda x, y: min(x, y)) costs, backtraces = self._fill_levenshtein_table(first, second, update_func, add_pred, clear_pred, threshold=threshold) result = self._backtraces_to_transductions(first, second, backtraces, threshold, return_cost=True) return result
[ "Возвращает", "все", "трансдукции", "переводящие", "first", "в", "second", "чья", "стоимость", "не", "превышает", "threshold" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py#L389-L407
[ "def", "transduce", "(", "self", ",", "first", ",", "second", ",", "threshold", ")", ":", "add_pred", "=", "(", "lambda", "x", ",", "y", ":", "x", "<=", "threshold", ")", "clear_pred", "=", "(", "lambda", "x", ",", "y", ":", "False", ")", "update_func", "=", "(", "lambda", "x", ",", "y", ":", "min", "(", "x", ",", "y", ")", ")", "costs", ",", "backtraces", "=", "self", ".", "_fill_levenshtein_table", "(", "first", ",", "second", ",", "update_func", ",", "add_pred", ",", "clear_pred", ",", "threshold", "=", "threshold", ")", "result", "=", "self", ".", "_backtraces_to_transductions", "(", "first", ",", "second", ",", "backtraces", ",", "threshold", ",", "return_cost", "=", "True", ")", "return", "result" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
SegmentTransducer.lower_transductions
Возвращает все трансдукции с верхним элементом word, чья стоимость не превышает max_cost ` Возвращает: ---------- result : list список вида [(трансдукция, стоимость)], если return_cost=True список трансдукций, если return_cost=False список отсортирован в порядке возрастания стоимости трансдукции
deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py
def lower_transductions(self, word, max_cost, return_cost=True): """ Возвращает все трансдукции с верхним элементом word, чья стоимость не превышает max_cost ` Возвращает: ---------- result : list список вида [(трансдукция, стоимость)], если return_cost=True список трансдукций, если return_cost=False список отсортирован в порядке возрастания стоимости трансдукции """ prefixes = [[] for i in range(len(word) + 1)] prefixes[0].append(((), 0.0)) for pos in range(len(prefixes)): # вставки prefixes[pos] = self._perform_insertions(prefixes[pos], max_cost) max_upperside_length = min(len(word) - pos, self.max_up_length) for upperside_length in range(1, max_upperside_length + 1): up = word[pos: pos + upperside_length] for low, low_cost in self.operation_costs.get(up, dict()).items(): for transduction, cost in prefixes[pos]: new_cost = cost + low_cost if new_cost <= max_cost: new_transduction = transduction +(up, low) prefixes[pos + upperside_length].append((new_transduction, new_cost)) answer = sorted(prefixes[-1], key=(lambda x: x[0])) if return_cost: return answer else: return [elem[0] for elem in answer]
def lower_transductions(self, word, max_cost, return_cost=True): """ Возвращает все трансдукции с верхним элементом word, чья стоимость не превышает max_cost ` Возвращает: ---------- result : list список вида [(трансдукция, стоимость)], если return_cost=True список трансдукций, если return_cost=False список отсортирован в порядке возрастания стоимости трансдукции """ prefixes = [[] for i in range(len(word) + 1)] prefixes[0].append(((), 0.0)) for pos in range(len(prefixes)): # вставки prefixes[pos] = self._perform_insertions(prefixes[pos], max_cost) max_upperside_length = min(len(word) - pos, self.max_up_length) for upperside_length in range(1, max_upperside_length + 1): up = word[pos: pos + upperside_length] for low, low_cost in self.operation_costs.get(up, dict()).items(): for transduction, cost in prefixes[pos]: new_cost = cost + low_cost if new_cost <= max_cost: new_transduction = transduction +(up, low) prefixes[pos + upperside_length].append((new_transduction, new_cost)) answer = sorted(prefixes[-1], key=(lambda x: x[0])) if return_cost: return answer else: return [elem[0] for elem in answer]
[ "Возвращает", "все", "трансдукции", "с", "верхним", "элементом", "word", "чья", "стоимость", "не", "превышает", "max_cost" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py#L409-L439
[ "def", "lower_transductions", "(", "self", ",", "word", ",", "max_cost", ",", "return_cost", "=", "True", ")", ":", "prefixes", "=", "[", "[", "]", "for", "i", "in", "range", "(", "len", "(", "word", ")", "+", "1", ")", "]", "prefixes", "[", "0", "]", ".", "append", "(", "(", "(", ")", ",", "0.0", ")", ")", "for", "pos", "in", "range", "(", "len", "(", "prefixes", ")", ")", ":", "# вставки", "prefixes", "[", "pos", "]", "=", "self", ".", "_perform_insertions", "(", "prefixes", "[", "pos", "]", ",", "max_cost", ")", "max_upperside_length", "=", "min", "(", "len", "(", "word", ")", "-", "pos", ",", "self", ".", "max_up_length", ")", "for", "upperside_length", "in", "range", "(", "1", ",", "max_upperside_length", "+", "1", ")", ":", "up", "=", "word", "[", "pos", ":", "pos", "+", "upperside_length", "]", "for", "low", ",", "low_cost", "in", "self", ".", "operation_costs", ".", "get", "(", "up", ",", "dict", "(", ")", ")", ".", "items", "(", ")", ":", "for", "transduction", ",", "cost", "in", "prefixes", "[", "pos", "]", ":", "new_cost", "=", "cost", "+", "low_cost", "if", "new_cost", "<=", "max_cost", ":", "new_transduction", "=", "transduction", "+", "(", "up", ",", "low", ")", "prefixes", "[", "pos", "+", "upperside_length", "]", ".", "append", "(", "(", "new_transduction", ",", "new_cost", ")", ")", "answer", "=", "sorted", "(", "prefixes", "[", "-", "1", "]", ",", "key", "=", "(", "lambda", "x", ":", "x", "[", "0", "]", ")", ")", "if", "return_cost", ":", "return", "answer", "else", ":", "return", "[", "elem", "[", "0", "]", "for", "elem", "in", "answer", "]" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
SegmentTransducer._fill_levenshtein_table
Функция, динамически заполняющая таблицу costs стоимости трансдукций, costs[i][j] --- минимальная стоимость трансдукции, переводящей first[:i] в second[:j] Аргументы: ---------- first, second : string Верхний и нижний элементы трансдукции update_func : callable, float*float -> bool update_func(x, y) возвращает новое значение в ячейке таблицы costs, если старое значение --- y, а потенциально новое значение --- x везде update_func = min add_pred : callable : float*float -> bool add_pred(x, y) возвращает, производится ли добавление нового элемента p стоимости x в ячейку backtraces[i][j] в зависимости от значения costs[i][j]=y и текущей стоимости x clear_pred : callable : float*float -> bool clear_pred(x, y) возвращает, производится ли очистка ячейки backtraces[i][j] в зависимости от значения costs[i][j]=y и текущей стоимости x элемента p, добавляемого в эту ячейку Возвращает: ----------- costs : array, dtype=float, shape=(len(first)+1, len(second)+1) массив, в ячейке с индексами i, j которого хранится минимальная стоимость трансдукции, переводящей first[:i] в second[:j] backtraces : array, dtype=list, shape=(len(first)+1, len(second)+1) массив, в ячейке с индексами i, j которого хранятся обратные ссылки на предыдущую ячейку в оптимальной трансдукции, приводящей в ячейку backtraces[i][j]
deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py
def _fill_levenshtein_table(self, first, second, update_func, add_pred, clear_pred, threshold=None): """ Функция, динамически заполняющая таблицу costs стоимости трансдукций, costs[i][j] --- минимальная стоимость трансдукции, переводящей first[:i] в second[:j] Аргументы: ---------- first, second : string Верхний и нижний элементы трансдукции update_func : callable, float*float -> bool update_func(x, y) возвращает новое значение в ячейке таблицы costs, если старое значение --- y, а потенциально новое значение --- x везде update_func = min add_pred : callable : float*float -> bool add_pred(x, y) возвращает, производится ли добавление нового элемента p стоимости x в ячейку backtraces[i][j] в зависимости от значения costs[i][j]=y и текущей стоимости x clear_pred : callable : float*float -> bool clear_pred(x, y) возвращает, производится ли очистка ячейки backtraces[i][j] в зависимости от значения costs[i][j]=y и текущей стоимости x элемента p, добавляемого в эту ячейку Возвращает: ----------- costs : array, dtype=float, shape=(len(first)+1, len(second)+1) массив, в ячейке с индексами i, j которого хранится минимальная стоимость трансдукции, переводящей first[:i] в second[:j] backtraces : array, dtype=list, shape=(len(first)+1, len(second)+1) массив, в ячейке с индексами i, j которого хранятся обратные ссылки на предыдущую ячейку в оптимальной трансдукции, приводящей в ячейку backtraces[i][j] """ m, n = len(first), len(second) # если threshold=None, то в качестве порога берётся удвоенная стоимость # трансдукции, отображающей символы на одинаковых позициях друг в друга if threshold is None: threshold = 0.0 for a, b in zip(first, second): threshold += self.get_operation_cost(a, b) if m > n: for a in first[n: ]: threshold += self.get_operation_cost(a, '') elif m < n: for b in second[m: ]: threshold += self.get_operation_cost('', b) threshold *= 2 # инициализация возвращаемых массивов costs = np.zeros(shape=(m + 1, n + 1), dtype=np.float64) costs[:] = np.inf backtraces = [None] * (m + 1) for i in range(m + 1): backtraces[i] = [[] for j in range(n + 1)] costs[0][0] = 0.0 for i in range(m + 1): for i_right in range(i, min(i + self.max_up_length, m) + 1): up = first[i: i_right] max_low_length = self.max_low_lengths_by_up.get(up, -1) if max_low_length == -1: # no up key in transduction continue up_costs = self.operation_costs[up] for j in range(n + 1): if costs[i][j] > threshold: continue if len(backtraces[i][j]) == 0 and i + j > 0: continue # не нашлось обратных ссылок for j_right in range((j if i_right > i else j + 1), min(j + max_low_length, n) + 1): low = second[j: j_right] curr_cost = up_costs.get(low, np.inf) old_cost = costs[i_right][j_right] new_cost = costs[i][j] + curr_cost if new_cost > threshold: continue if add_pred(new_cost, old_cost): if clear_pred(new_cost, old_cost): backtraces[i_right][j_right] = [] costs[i_right][j_right] = update_func(new_cost, old_cost) backtraces[i_right][j_right].append((i, j)) return costs, backtraces
def _fill_levenshtein_table(self, first, second, update_func, add_pred, clear_pred, threshold=None): """ Функция, динамически заполняющая таблицу costs стоимости трансдукций, costs[i][j] --- минимальная стоимость трансдукции, переводящей first[:i] в second[:j] Аргументы: ---------- first, second : string Верхний и нижний элементы трансдукции update_func : callable, float*float -> bool update_func(x, y) возвращает новое значение в ячейке таблицы costs, если старое значение --- y, а потенциально новое значение --- x везде update_func = min add_pred : callable : float*float -> bool add_pred(x, y) возвращает, производится ли добавление нового элемента p стоимости x в ячейку backtraces[i][j] в зависимости от значения costs[i][j]=y и текущей стоимости x clear_pred : callable : float*float -> bool clear_pred(x, y) возвращает, производится ли очистка ячейки backtraces[i][j] в зависимости от значения costs[i][j]=y и текущей стоимости x элемента p, добавляемого в эту ячейку Возвращает: ----------- costs : array, dtype=float, shape=(len(first)+1, len(second)+1) массив, в ячейке с индексами i, j которого хранится минимальная стоимость трансдукции, переводящей first[:i] в second[:j] backtraces : array, dtype=list, shape=(len(first)+1, len(second)+1) массив, в ячейке с индексами i, j которого хранятся обратные ссылки на предыдущую ячейку в оптимальной трансдукции, приводящей в ячейку backtraces[i][j] """ m, n = len(first), len(second) # если threshold=None, то в качестве порога берётся удвоенная стоимость # трансдукции, отображающей символы на одинаковых позициях друг в друга if threshold is None: threshold = 0.0 for a, b in zip(first, second): threshold += self.get_operation_cost(a, b) if m > n: for a in first[n: ]: threshold += self.get_operation_cost(a, '') elif m < n: for b in second[m: ]: threshold += self.get_operation_cost('', b) threshold *= 2 # инициализация возвращаемых массивов costs = np.zeros(shape=(m + 1, n + 1), dtype=np.float64) costs[:] = np.inf backtraces = [None] * (m + 1) for i in range(m + 1): backtraces[i] = [[] for j in range(n + 1)] costs[0][0] = 0.0 for i in range(m + 1): for i_right in range(i, min(i + self.max_up_length, m) + 1): up = first[i: i_right] max_low_length = self.max_low_lengths_by_up.get(up, -1) if max_low_length == -1: # no up key in transduction continue up_costs = self.operation_costs[up] for j in range(n + 1): if costs[i][j] > threshold: continue if len(backtraces[i][j]) == 0 and i + j > 0: continue # не нашлось обратных ссылок for j_right in range((j if i_right > i else j + 1), min(j + max_low_length, n) + 1): low = second[j: j_right] curr_cost = up_costs.get(low, np.inf) old_cost = costs[i_right][j_right] new_cost = costs[i][j] + curr_cost if new_cost > threshold: continue if add_pred(new_cost, old_cost): if clear_pred(new_cost, old_cost): backtraces[i_right][j_right] = [] costs[i_right][j_right] = update_func(new_cost, old_cost) backtraces[i_right][j_right].append((i, j)) return costs, backtraces
[ "Функция", "динамически", "заполняющая", "таблицу", "costs", "стоимости", "трансдукций", "costs", "[", "i", "]", "[", "j", "]", "---", "минимальная", "стоимость", "трансдукции", "переводящей", "first", "[", ":", "i", "]", "в", "second", "[", ":", "j", "]" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py#L463-L543
[ "def", "_fill_levenshtein_table", "(", "self", ",", "first", ",", "second", ",", "update_func", ",", "add_pred", ",", "clear_pred", ",", "threshold", "=", "None", ")", ":", "m", ",", "n", "=", "len", "(", "first", ")", ",", "len", "(", "second", ")", "# если threshold=None, то в качестве порога берётся удвоенная стоимость", "# трансдукции, отображающей символы на одинаковых позициях друг в друга", "if", "threshold", "is", "None", ":", "threshold", "=", "0.0", "for", "a", ",", "b", "in", "zip", "(", "first", ",", "second", ")", ":", "threshold", "+=", "self", ".", "get_operation_cost", "(", "a", ",", "b", ")", "if", "m", ">", "n", ":", "for", "a", "in", "first", "[", "n", ":", "]", ":", "threshold", "+=", "self", ".", "get_operation_cost", "(", "a", ",", "''", ")", "elif", "m", "<", "n", ":", "for", "b", "in", "second", "[", "m", ":", "]", ":", "threshold", "+=", "self", ".", "get_operation_cost", "(", "''", ",", "b", ")", "threshold", "*=", "2", "# инициализация возвращаемых массивов", "costs", "=", "np", ".", "zeros", "(", "shape", "=", "(", "m", "+", "1", ",", "n", "+", "1", ")", ",", "dtype", "=", "np", ".", "float64", ")", "costs", "[", ":", "]", "=", "np", ".", "inf", "backtraces", "=", "[", "None", "]", "*", "(", "m", "+", "1", ")", "for", "i", "in", "range", "(", "m", "+", "1", ")", ":", "backtraces", "[", "i", "]", "=", "[", "[", "]", "for", "j", "in", "range", "(", "n", "+", "1", ")", "]", "costs", "[", "0", "]", "[", "0", "]", "=", "0.0", "for", "i", "in", "range", "(", "m", "+", "1", ")", ":", "for", "i_right", "in", "range", "(", "i", ",", "min", "(", "i", "+", "self", ".", "max_up_length", ",", "m", ")", "+", "1", ")", ":", "up", "=", "first", "[", "i", ":", "i_right", "]", "max_low_length", "=", "self", ".", "max_low_lengths_by_up", ".", "get", "(", "up", ",", "-", "1", ")", "if", "max_low_length", "==", "-", "1", ":", "# no up key in transduction", "continue", "up_costs", "=", "self", ".", "operation_costs", "[", "up", "]", "for", "j", "in", "range", "(", "n", "+", "1", ")", ":", "if", "costs", "[", "i", "]", "[", "j", "]", ">", "threshold", ":", "continue", "if", "len", "(", "backtraces", "[", "i", "]", "[", "j", "]", ")", "==", "0", "and", "i", "+", "j", ">", "0", ":", "continue", "# не нашлось обратных ссылок", "for", "j_right", "in", "range", "(", "(", "j", "if", "i_right", ">", "i", "else", "j", "+", "1", ")", ",", "min", "(", "j", "+", "max_low_length", ",", "n", ")", "+", "1", ")", ":", "low", "=", "second", "[", "j", ":", "j_right", "]", "curr_cost", "=", "up_costs", ".", "get", "(", "low", ",", "np", ".", "inf", ")", "old_cost", "=", "costs", "[", "i_right", "]", "[", "j_right", "]", "new_cost", "=", "costs", "[", "i", "]", "[", "j", "]", "+", "curr_cost", "if", "new_cost", ">", "threshold", ":", "continue", "if", "add_pred", "(", "new_cost", ",", "old_cost", ")", ":", "if", "clear_pred", "(", "new_cost", ",", "old_cost", ")", ":", "backtraces", "[", "i_right", "]", "[", "j_right", "]", "=", "[", "]", "costs", "[", "i_right", "]", "[", "j_right", "]", "=", "update_func", "(", "new_cost", ",", "old_cost", ")", "backtraces", "[", "i_right", "]", "[", "j_right", "]", ".", "append", "(", "(", "i", ",", "j", ")", ")", "return", "costs", ",", "backtraces" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
SegmentTransducer._make_reversed_operation_costs
Заполняет массив _reversed_operation_costs на основе имеющегося массива operation_costs
deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py
def _make_reversed_operation_costs(self): """ Заполняет массив _reversed_operation_costs на основе имеющегося массива operation_costs """ _reversed_operation_costs = dict() for up, costs in self.operation_costs.items(): for low, cost in costs.items(): if low not in _reversed_operation_costs: _reversed_operation_costs[low] = dict() _reversed_operation_costs[low][up] = cost self._reversed_operation_costs = _reversed_operation_costs
def _make_reversed_operation_costs(self): """ Заполняет массив _reversed_operation_costs на основе имеющегося массива operation_costs """ _reversed_operation_costs = dict() for up, costs in self.operation_costs.items(): for low, cost in costs.items(): if low not in _reversed_operation_costs: _reversed_operation_costs[low] = dict() _reversed_operation_costs[low][up] = cost self._reversed_operation_costs = _reversed_operation_costs
[ "Заполняет", "массив", "_reversed_operation_costs", "на", "основе", "имеющегося", "массива", "operation_costs" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py#L545-L556
[ "def", "_make_reversed_operation_costs", "(", "self", ")", ":", "_reversed_operation_costs", "=", "dict", "(", ")", "for", "up", ",", "costs", "in", "self", ".", "operation_costs", ".", "items", "(", ")", ":", "for", "low", ",", "cost", "in", "costs", ".", "items", "(", ")", ":", "if", "low", "not", "in", "_reversed_operation_costs", ":", "_reversed_operation_costs", "[", "low", "]", "=", "dict", "(", ")", "_reversed_operation_costs", "[", "low", "]", "[", "up", "]", "=", "cost", "self", ".", "_reversed_operation_costs", "=", "_reversed_operation_costs" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
SegmentTransducer._make_maximal_key_lengths
Вычисляет максимальную длину элемента low в элементарной трансдукции (up, low) для каждого up и максимальную длину элемента up в элементарной трансдукции (up, low) для каждого low
deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py
def _make_maximal_key_lengths(self): """ Вычисляет максимальную длину элемента low в элементарной трансдукции (up, low) для каждого up и максимальную длину элемента up в элементарной трансдукции (up, low) для каждого low """ self.max_up_length =\ (max(len(up) for up in self.operation_costs) if len(self.operation_costs) > 0 else -1) self.max_low_length =\ (max(len(low) for low in self._reversed_operation_costs) if len(self._reversed_operation_costs) > 0 else -1) self.max_low_lengths_by_up, self.max_up_lengths_by_low = dict(), dict() for up, costs in self.operation_costs.items(): self.max_low_lengths_by_up[up] =\ max(len(low) for low in costs) if len(costs) > 0 else -1 for low, costs in self._reversed_operation_costs.items(): self.max_up_lengths_by_low[low] =\ max(len(up) for up in costs) if len(costs) > 0 else -1
def _make_maximal_key_lengths(self): """ Вычисляет максимальную длину элемента low в элементарной трансдукции (up, low) для каждого up и максимальную длину элемента up в элементарной трансдукции (up, low) для каждого low """ self.max_up_length =\ (max(len(up) for up in self.operation_costs) if len(self.operation_costs) > 0 else -1) self.max_low_length =\ (max(len(low) for low in self._reversed_operation_costs) if len(self._reversed_operation_costs) > 0 else -1) self.max_low_lengths_by_up, self.max_up_lengths_by_low = dict(), dict() for up, costs in self.operation_costs.items(): self.max_low_lengths_by_up[up] =\ max(len(low) for low in costs) if len(costs) > 0 else -1 for low, costs in self._reversed_operation_costs.items(): self.max_up_lengths_by_low[low] =\ max(len(up) for up in costs) if len(costs) > 0 else -1
[ "Вычисляет", "максимальную", "длину", "элемента", "low", "в", "элементарной", "трансдукции", "(", "up", "low", ")", "для", "каждого", "up", "и", "максимальную", "длину", "элемента", "up", "в", "элементарной", "трансдукции", "(", "up", "low", ")", "для", "каждого", "low" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py#L558-L577
[ "def", "_make_maximal_key_lengths", "(", "self", ")", ":", "self", ".", "max_up_length", "=", "(", "max", "(", "len", "(", "up", ")", "for", "up", "in", "self", ".", "operation_costs", ")", "if", "len", "(", "self", ".", "operation_costs", ")", ">", "0", "else", "-", "1", ")", "self", ".", "max_low_length", "=", "(", "max", "(", "len", "(", "low", ")", "for", "low", "in", "self", ".", "_reversed_operation_costs", ")", "if", "len", "(", "self", ".", "_reversed_operation_costs", ")", ">", "0", "else", "-", "1", ")", "self", ".", "max_low_lengths_by_up", ",", "self", ".", "max_up_lengths_by_low", "=", "dict", "(", ")", ",", "dict", "(", ")", "for", "up", ",", "costs", "in", "self", ".", "operation_costs", ".", "items", "(", ")", ":", "self", ".", "max_low_lengths_by_up", "[", "up", "]", "=", "max", "(", "len", "(", "low", ")", "for", "low", "in", "costs", ")", "if", "len", "(", "costs", ")", ">", "0", "else", "-", "1", "for", "low", ",", "costs", "in", "self", ".", "_reversed_operation_costs", ".", "items", "(", ")", ":", "self", ".", "max_up_lengths_by_low", "[", "low", "]", "=", "max", "(", "len", "(", "up", ")", "for", "up", "in", "costs", ")", "if", "len", "(", "costs", ")", ">", "0", "else", "-", "1" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
SegmentTransducer._backtraces_to_transductions
Восстанавливает трансдукции по таблице обратных ссылок Аргументы: ---------- first, second : string верхние и нижние элементы трансдукции backtraces : array-like, dtype=list, shape=(len(first)+1, len(second)+1) таблица обратных ссылок threshold : float порог для отсева трансдукций, возвращаются только трансдукции стоимостью <= threshold return_cost : bool (optional, default=False) если True, то вместе с трансдукциями возвращается их стоимость Возвращает: ----------- result : list список вида [(трансдукция, стоимость)], если return_cost=True и вида [трансдукция], если return_cost=False, содержащий все трансдукции, переводящие first в second, чья стоимость не превышает threshold
deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py
def _backtraces_to_transductions(self, first, second, backtraces, threshold, return_cost=False): """ Восстанавливает трансдукции по таблице обратных ссылок Аргументы: ---------- first, second : string верхние и нижние элементы трансдукции backtraces : array-like, dtype=list, shape=(len(first)+1, len(second)+1) таблица обратных ссылок threshold : float порог для отсева трансдукций, возвращаются только трансдукции стоимостью <= threshold return_cost : bool (optional, default=False) если True, то вместе с трансдукциями возвращается их стоимость Возвращает: ----------- result : list список вида [(трансдукция, стоимость)], если return_cost=True и вида [трансдукция], если return_cost=False, содержащий все трансдукции, переводящие first в second, чья стоимость не превышает threshold """ m, n = len(first), len(second) agenda = [None] * (m + 1) for i in range(m + 1): agenda[i] = [[] for j in range(n+1)] agenda[m][n] = [((), 0.0)] for i_right in range(m, -1, -1): for j_right in range(n, -1, -1): current_agenda = agenda[i_right][j_right] if len(current_agenda) == 0: continue for (i, j) in backtraces[i_right][j_right]: up, low = first[i:i_right], second[j:j_right] add_cost = self.operation_costs[up][low] for elem, cost in current_agenda: new_cost = cost + add_cost if new_cost <= threshold: # удаление трансдукций большой стоимости agenda[i][j].append((((up, low),) + elem, new_cost)) if return_cost: return agenda[0][0] else: return [elem[0] for elem in agenda[0][0]]
def _backtraces_to_transductions(self, first, second, backtraces, threshold, return_cost=False): """ Восстанавливает трансдукции по таблице обратных ссылок Аргументы: ---------- first, second : string верхние и нижние элементы трансдукции backtraces : array-like, dtype=list, shape=(len(first)+1, len(second)+1) таблица обратных ссылок threshold : float порог для отсева трансдукций, возвращаются только трансдукции стоимостью <= threshold return_cost : bool (optional, default=False) если True, то вместе с трансдукциями возвращается их стоимость Возвращает: ----------- result : list список вида [(трансдукция, стоимость)], если return_cost=True и вида [трансдукция], если return_cost=False, содержащий все трансдукции, переводящие first в second, чья стоимость не превышает threshold """ m, n = len(first), len(second) agenda = [None] * (m + 1) for i in range(m + 1): agenda[i] = [[] for j in range(n+1)] agenda[m][n] = [((), 0.0)] for i_right in range(m, -1, -1): for j_right in range(n, -1, -1): current_agenda = agenda[i_right][j_right] if len(current_agenda) == 0: continue for (i, j) in backtraces[i_right][j_right]: up, low = first[i:i_right], second[j:j_right] add_cost = self.operation_costs[up][low] for elem, cost in current_agenda: new_cost = cost + add_cost if new_cost <= threshold: # удаление трансдукций большой стоимости agenda[i][j].append((((up, low),) + elem, new_cost)) if return_cost: return agenda[0][0] else: return [elem[0] for elem in agenda[0][0]]
[ "Восстанавливает", "трансдукции", "по", "таблице", "обратных", "ссылок" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py#L579-L623
[ "def", "_backtraces_to_transductions", "(", "self", ",", "first", ",", "second", ",", "backtraces", ",", "threshold", ",", "return_cost", "=", "False", ")", ":", "m", ",", "n", "=", "len", "(", "first", ")", ",", "len", "(", "second", ")", "agenda", "=", "[", "None", "]", "*", "(", "m", "+", "1", ")", "for", "i", "in", "range", "(", "m", "+", "1", ")", ":", "agenda", "[", "i", "]", "=", "[", "[", "]", "for", "j", "in", "range", "(", "n", "+", "1", ")", "]", "agenda", "[", "m", "]", "[", "n", "]", "=", "[", "(", "(", ")", ",", "0.0", ")", "]", "for", "i_right", "in", "range", "(", "m", ",", "-", "1", ",", "-", "1", ")", ":", "for", "j_right", "in", "range", "(", "n", ",", "-", "1", ",", "-", "1", ")", ":", "current_agenda", "=", "agenda", "[", "i_right", "]", "[", "j_right", "]", "if", "len", "(", "current_agenda", ")", "==", "0", ":", "continue", "for", "(", "i", ",", "j", ")", "in", "backtraces", "[", "i_right", "]", "[", "j_right", "]", ":", "up", ",", "low", "=", "first", "[", "i", ":", "i_right", "]", ",", "second", "[", "j", ":", "j_right", "]", "add_cost", "=", "self", ".", "operation_costs", "[", "up", "]", "[", "low", "]", "for", "elem", ",", "cost", "in", "current_agenda", ":", "new_cost", "=", "cost", "+", "add_cost", "if", "new_cost", "<=", "threshold", ":", "# удаление трансдукций большой стоимости", "agenda", "[", "i", "]", "[", "j", "]", ".", "append", "(", "(", "(", "(", "up", ",", "low", ")", ",", ")", "+", "elem", ",", "new_cost", ")", ")", "if", "return_cost", ":", "return", "agenda", "[", "0", "]", "[", "0", "]", "else", ":", "return", "[", "elem", "[", "0", "]", "for", "elem", "in", "agenda", "[", "0", "]", "[", "0", "]", "]" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
SegmentTransducer._perform_insertions
возвращает все трансдукции стоимости <= max_cost, которые можно получить из элементов initial Аргументы: ---------- initial : list of tuples список исходных трансдукций вида [(трансдукция, стоимость)] max_cost : float максимальная стоимость трансдукции Возвращает: ----------- final : list of tuples финальный список трансдукций вида [(трансдукция, стоимость)]
deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py
def _perform_insertions(self, initial, max_cost): """ возвращает все трансдукции стоимости <= max_cost, которые можно получить из элементов initial Аргументы: ---------- initial : list of tuples список исходных трансдукций вида [(трансдукция, стоимость)] max_cost : float максимальная стоимость трансдукции Возвращает: ----------- final : list of tuples финальный список трансдукций вида [(трансдукция, стоимость)] """ queue = list(initial) final = initial while len(queue) > 0: transduction, cost = queue[0] queue = queue[1:] for string, string_cost in self.operation_costs[""].items(): new_cost = cost + string_cost if new_cost <= max_cost: new_transduction = transduction + ("", string) final.append((new_transduction, new_cost)) queue.append((new_transduction, new_cost)) return final
def _perform_insertions(self, initial, max_cost): """ возвращает все трансдукции стоимости <= max_cost, которые можно получить из элементов initial Аргументы: ---------- initial : list of tuples список исходных трансдукций вида [(трансдукция, стоимость)] max_cost : float максимальная стоимость трансдукции Возвращает: ----------- final : list of tuples финальный список трансдукций вида [(трансдукция, стоимость)] """ queue = list(initial) final = initial while len(queue) > 0: transduction, cost = queue[0] queue = queue[1:] for string, string_cost in self.operation_costs[""].items(): new_cost = cost + string_cost if new_cost <= max_cost: new_transduction = transduction + ("", string) final.append((new_transduction, new_cost)) queue.append((new_transduction, new_cost)) return final
[ "возвращает", "все", "трансдукции", "стоимости", "<", "=", "max_cost", "которые", "можно", "получить", "из", "элементов", "initial" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py#L625-L653
[ "def", "_perform_insertions", "(", "self", ",", "initial", ",", "max_cost", ")", ":", "queue", "=", "list", "(", "initial", ")", "final", "=", "initial", "while", "len", "(", "queue", ")", ">", "0", ":", "transduction", ",", "cost", "=", "queue", "[", "0", "]", "queue", "=", "queue", "[", "1", ":", "]", "for", "string", ",", "string_cost", "in", "self", ".", "operation_costs", "[", "\"\"", "]", ".", "items", "(", ")", ":", "new_cost", "=", "cost", "+", "string_cost", "if", "new_cost", "<=", "max_cost", ":", "new_transduction", "=", "transduction", "+", "(", "\"\"", ",", "string", ")", "final", ".", "append", "(", "(", "new_transduction", ",", "new_cost", ")", ")", "queue", ".", "append", "(", "(", "new_transduction", ",", "new_cost", ")", ")", "return", "final" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
SegmentTransducer._make_default_operation_costs
sets 1.0 cost for every replacement, insertion, deletion and transposition
deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py
def _make_default_operation_costs(self, allow_spaces=False): """ sets 1.0 cost for every replacement, insertion, deletion and transposition """ self.operation_costs = dict() self.operation_costs[""] = {c: 1.0 for c in list(self.alphabet) + [' ']} for a in self.alphabet: current_costs = {c: 1.0 for c in self.alphabet} current_costs[a] = 0.0 current_costs[""] = 1.0 if allow_spaces: current_costs[" "] = 1.0 self.operation_costs[a] = current_costs # транспозиции for a, b in itertools.permutations(self.alphabet, 2): self.operation_costs[a + b] = {b + a: 1.0} # пробелы if allow_spaces: self.operation_costs[" "] = {c: 1.0 for c in self.alphabet} self.operation_costs[" "][""] = 1.0
def _make_default_operation_costs(self, allow_spaces=False): """ sets 1.0 cost for every replacement, insertion, deletion and transposition """ self.operation_costs = dict() self.operation_costs[""] = {c: 1.0 for c in list(self.alphabet) + [' ']} for a in self.alphabet: current_costs = {c: 1.0 for c in self.alphabet} current_costs[a] = 0.0 current_costs[""] = 1.0 if allow_spaces: current_costs[" "] = 1.0 self.operation_costs[a] = current_costs # транспозиции for a, b in itertools.permutations(self.alphabet, 2): self.operation_costs[a + b] = {b + a: 1.0} # пробелы if allow_spaces: self.operation_costs[" "] = {c: 1.0 for c in self.alphabet} self.operation_costs[" "][""] = 1.0
[ "sets", "1", ".", "0", "cost", "for", "every", "replacement", "insertion", "deletion", "and", "transposition" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/spelling_correction/levenshtein/levenshtein_searcher.py#L655-L674
[ "def", "_make_default_operation_costs", "(", "self", ",", "allow_spaces", "=", "False", ")", ":", "self", ".", "operation_costs", "=", "dict", "(", ")", "self", ".", "operation_costs", "[", "\"\"", "]", "=", "{", "c", ":", "1.0", "for", "c", "in", "list", "(", "self", ".", "alphabet", ")", "+", "[", "' '", "]", "}", "for", "a", "in", "self", ".", "alphabet", ":", "current_costs", "=", "{", "c", ":", "1.0", "for", "c", "in", "self", ".", "alphabet", "}", "current_costs", "[", "a", "]", "=", "0.0", "current_costs", "[", "\"\"", "]", "=", "1.0", "if", "allow_spaces", ":", "current_costs", "[", "\" \"", "]", "=", "1.0", "self", ".", "operation_costs", "[", "a", "]", "=", "current_costs", "# транспозиции", "for", "a", ",", "b", "in", "itertools", ".", "permutations", "(", "self", ".", "alphabet", ",", "2", ")", ":", "self", ".", "operation_costs", "[", "a", "+", "b", "]", "=", "{", "b", "+", "a", ":", "1.0", "}", "# пробелы", "if", "allow_spaces", ":", "self", ".", "operation_costs", "[", "\" \"", "]", "=", "{", "c", ":", "1.0", "for", "c", "in", "self", ".", "alphabet", "}", "self", ".", "operation_costs", "[", "\" \"", "]", "[", "\"\"", "]", "=", "1.0" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
Conversation._start_timer
Initiates self-destruct timer.
deeppavlov/utils/alexa/conversation.py
def _start_timer(self) -> None: """Initiates self-destruct timer.""" self.timer = Timer(self.config['conversation_lifetime'], self.self_destruct_callback) self.timer.start()
def _start_timer(self) -> None: """Initiates self-destruct timer.""" self.timer = Timer(self.config['conversation_lifetime'], self.self_destruct_callback) self.timer.start()
[ "Initiates", "self", "-", "destruct", "timer", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/utils/alexa/conversation.py#L69-L72
[ "def", "_start_timer", "(", "self", ")", "->", "None", ":", "self", ".", "timer", "=", "Timer", "(", "self", ".", "config", "[", "'conversation_lifetime'", "]", ",", "self", ".", "self_destruct_callback", ")", "self", ".", "timer", ".", "start", "(", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
Conversation.handle_request
Routes Alexa requests to appropriate handlers. Args: request: Alexa request. Returns: response: Response conforming Alexa response specification.
deeppavlov/utils/alexa/conversation.py
def handle_request(self, request: dict) -> dict: """Routes Alexa requests to appropriate handlers. Args: request: Alexa request. Returns: response: Response conforming Alexa response specification. """ request_type = request['request']['type'] request_id = request['request']['requestId'] log.debug(f'Received request. Type: {request_type}, id: {request_id}') if request_type in self.handled_requests.keys(): response: dict = self.handled_requests[request_type](request) else: response: dict = self.handled_requests['_unsupported'](request) log.warning(f'Unsupported request type: {request_type}, request id: {request_id}') self._rearm_self_destruct() return response
def handle_request(self, request: dict) -> dict: """Routes Alexa requests to appropriate handlers. Args: request: Alexa request. Returns: response: Response conforming Alexa response specification. """ request_type = request['request']['type'] request_id = request['request']['requestId'] log.debug(f'Received request. Type: {request_type}, id: {request_id}') if request_type in self.handled_requests.keys(): response: dict = self.handled_requests[request_type](request) else: response: dict = self.handled_requests['_unsupported'](request) log.warning(f'Unsupported request type: {request_type}, request id: {request_id}') self._rearm_self_destruct() return response
[ "Routes", "Alexa", "requests", "to", "appropriate", "handlers", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/utils/alexa/conversation.py#L79-L99
[ "def", "handle_request", "(", "self", ",", "request", ":", "dict", ")", "->", "dict", ":", "request_type", "=", "request", "[", "'request'", "]", "[", "'type'", "]", "request_id", "=", "request", "[", "'request'", "]", "[", "'requestId'", "]", "log", ".", "debug", "(", "f'Received request. Type: {request_type}, id: {request_id}'", ")", "if", "request_type", "in", "self", ".", "handled_requests", ".", "keys", "(", ")", ":", "response", ":", "dict", "=", "self", ".", "handled_requests", "[", "request_type", "]", "(", "request", ")", "else", ":", "response", ":", "dict", "=", "self", ".", "handled_requests", "[", "'_unsupported'", "]", "(", "request", ")", "log", ".", "warning", "(", "f'Unsupported request type: {request_type}, request id: {request_id}'", ")", "self", ".", "_rearm_self_destruct", "(", ")", "return", "response" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
Conversation._act
Infers DeepPavlov agent with raw user input extracted from Alexa request. Args: utterance: Raw user input extracted from Alexa request. Returns: response: DeepPavlov agent response.
deeppavlov/utils/alexa/conversation.py
def _act(self, utterance: str) -> list: """Infers DeepPavlov agent with raw user input extracted from Alexa request. Args: utterance: Raw user input extracted from Alexa request. Returns: response: DeepPavlov agent response. """ if self.stateful: utterance = [[utterance], [self.key]] else: utterance = [[utterance]] agent_response: list = self.agent(*utterance) return agent_response
def _act(self, utterance: str) -> list: """Infers DeepPavlov agent with raw user input extracted from Alexa request. Args: utterance: Raw user input extracted from Alexa request. Returns: response: DeepPavlov agent response. """ if self.stateful: utterance = [[utterance], [self.key]] else: utterance = [[utterance]] agent_response: list = self.agent(*utterance) return agent_response
[ "Infers", "DeepPavlov", "agent", "with", "raw", "user", "input", "extracted", "from", "Alexa", "request", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/utils/alexa/conversation.py#L101-L116
[ "def", "_act", "(", "self", ",", "utterance", ":", "str", ")", "->", "list", ":", "if", "self", ".", "stateful", ":", "utterance", "=", "[", "[", "utterance", "]", ",", "[", "self", ".", "key", "]", "]", "else", ":", "utterance", "=", "[", "[", "utterance", "]", "]", "agent_response", ":", "list", "=", "self", ".", "agent", "(", "*", "utterance", ")", "return", "agent_response" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
Conversation._generate_response
Populates generated response with additional data conforming Alexa response specification. Args: response: Raw user input extracted from Alexa request. request: Alexa request. Returns: response: Response conforming Alexa response specification.
deeppavlov/utils/alexa/conversation.py
def _generate_response(self, response: dict, request: dict) -> dict: """Populates generated response with additional data conforming Alexa response specification. Args: response: Raw user input extracted from Alexa request. request: Alexa request. Returns: response: Response conforming Alexa response specification. """ response_template = deepcopy(self.response_template) response_template['sessionAttributes']['sessionId'] = request['session']['sessionId'] for key, value in response_template.items(): if key not in response.keys(): response[key] = value return response
def _generate_response(self, response: dict, request: dict) -> dict: """Populates generated response with additional data conforming Alexa response specification. Args: response: Raw user input extracted from Alexa request. request: Alexa request. Returns: response: Response conforming Alexa response specification. """ response_template = deepcopy(self.response_template) response_template['sessionAttributes']['sessionId'] = request['session']['sessionId'] for key, value in response_template.items(): if key not in response.keys(): response[key] = value return response
[ "Populates", "generated", "response", "with", "additional", "data", "conforming", "Alexa", "response", "specification", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/utils/alexa/conversation.py#L118-L134
[ "def", "_generate_response", "(", "self", ",", "response", ":", "dict", ",", "request", ":", "dict", ")", "->", "dict", ":", "response_template", "=", "deepcopy", "(", "self", ".", "response_template", ")", "response_template", "[", "'sessionAttributes'", "]", "[", "'sessionId'", "]", "=", "request", "[", "'session'", "]", "[", "'sessionId'", "]", "for", "key", ",", "value", "in", "response_template", ".", "items", "(", ")", ":", "if", "key", "not", "in", "response", ".", "keys", "(", ")", ":", "response", "[", "key", "]", "=", "value", "return", "response" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
Conversation._handle_intent
Handles IntentRequest Alexa request. Args: request: Alexa request. Returns: response: "response" part of response dict conforming Alexa specification.
deeppavlov/utils/alexa/conversation.py
def _handle_intent(self, request: dict) -> dict: """Handles IntentRequest Alexa request. Args: request: Alexa request. Returns: response: "response" part of response dict conforming Alexa specification. """ intent_name = self.config['intent_name'] slot_name = self.config['slot_name'] request_id = request['request']['requestId'] request_intent: dict = request['request']['intent'] if intent_name != request_intent['name']: log.error(f"Wrong intent name received: {request_intent['name']} in request {request_id}") return {'error': 'wrong intent name'} if slot_name not in request_intent['slots'].keys(): log.error(f'No slot named {slot_name} found in request {request_id}') return {'error': 'no slot found'} utterance = request_intent['slots'][slot_name]['value'] agent_response = self._act(utterance) if not agent_response: log.error(f'Some error during response generation for request {request_id}') return {'error': 'error during response generation'} prediction: RichMessage = agent_response[0] prediction: list = prediction.alexa() if not prediction: log.error(f'Some error during response generation for request {request_id}') return {'error': 'error during response generation'} response = self._generate_response(prediction[0], request) return response
def _handle_intent(self, request: dict) -> dict: """Handles IntentRequest Alexa request. Args: request: Alexa request. Returns: response: "response" part of response dict conforming Alexa specification. """ intent_name = self.config['intent_name'] slot_name = self.config['slot_name'] request_id = request['request']['requestId'] request_intent: dict = request['request']['intent'] if intent_name != request_intent['name']: log.error(f"Wrong intent name received: {request_intent['name']} in request {request_id}") return {'error': 'wrong intent name'} if slot_name not in request_intent['slots'].keys(): log.error(f'No slot named {slot_name} found in request {request_id}') return {'error': 'no slot found'} utterance = request_intent['slots'][slot_name]['value'] agent_response = self._act(utterance) if not agent_response: log.error(f'Some error during response generation for request {request_id}') return {'error': 'error during response generation'} prediction: RichMessage = agent_response[0] prediction: list = prediction.alexa() if not prediction: log.error(f'Some error during response generation for request {request_id}') return {'error': 'error during response generation'} response = self._generate_response(prediction[0], request) return response
[ "Handles", "IntentRequest", "Alexa", "request", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/utils/alexa/conversation.py#L136-L174
[ "def", "_handle_intent", "(", "self", ",", "request", ":", "dict", ")", "->", "dict", ":", "intent_name", "=", "self", ".", "config", "[", "'intent_name'", "]", "slot_name", "=", "self", ".", "config", "[", "'slot_name'", "]", "request_id", "=", "request", "[", "'request'", "]", "[", "'requestId'", "]", "request_intent", ":", "dict", "=", "request", "[", "'request'", "]", "[", "'intent'", "]", "if", "intent_name", "!=", "request_intent", "[", "'name'", "]", ":", "log", ".", "error", "(", "f\"Wrong intent name received: {request_intent['name']} in request {request_id}\"", ")", "return", "{", "'error'", ":", "'wrong intent name'", "}", "if", "slot_name", "not", "in", "request_intent", "[", "'slots'", "]", ".", "keys", "(", ")", ":", "log", ".", "error", "(", "f'No slot named {slot_name} found in request {request_id}'", ")", "return", "{", "'error'", ":", "'no slot found'", "}", "utterance", "=", "request_intent", "[", "'slots'", "]", "[", "slot_name", "]", "[", "'value'", "]", "agent_response", "=", "self", ".", "_act", "(", "utterance", ")", "if", "not", "agent_response", ":", "log", ".", "error", "(", "f'Some error during response generation for request {request_id}'", ")", "return", "{", "'error'", ":", "'error during response generation'", "}", "prediction", ":", "RichMessage", "=", "agent_response", "[", "0", "]", "prediction", ":", "list", "=", "prediction", ".", "alexa", "(", ")", "if", "not", "prediction", ":", "log", ".", "error", "(", "f'Some error during response generation for request {request_id}'", ")", "return", "{", "'error'", ":", "'error during response generation'", "}", "response", "=", "self", ".", "_generate_response", "(", "prediction", "[", "0", "]", ",", "request", ")", "return", "response" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
Conversation._handle_launch
Handles LaunchRequest Alexa request. Args: request: Alexa request. Returns: response: "response" part of response dict conforming Alexa specification.
deeppavlov/utils/alexa/conversation.py
def _handle_launch(self, request: dict) -> dict: """Handles LaunchRequest Alexa request. Args: request: Alexa request. Returns: response: "response" part of response dict conforming Alexa specification. """ response = { 'response': { 'shouldEndSession': False, 'outputSpeech': { 'type': 'PlainText', 'text': self.config['start_message'] }, 'card': { 'type': 'Simple', 'content': self.config['start_message'] } } } response = self._generate_response(response, request) return response
def _handle_launch(self, request: dict) -> dict: """Handles LaunchRequest Alexa request. Args: request: Alexa request. Returns: response: "response" part of response dict conforming Alexa specification. """ response = { 'response': { 'shouldEndSession': False, 'outputSpeech': { 'type': 'PlainText', 'text': self.config['start_message'] }, 'card': { 'type': 'Simple', 'content': self.config['start_message'] } } } response = self._generate_response(response, request) return response
[ "Handles", "LaunchRequest", "Alexa", "request", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/utils/alexa/conversation.py#L176-L200
[ "def", "_handle_launch", "(", "self", ",", "request", ":", "dict", ")", "->", "dict", ":", "response", "=", "{", "'response'", ":", "{", "'shouldEndSession'", ":", "False", ",", "'outputSpeech'", ":", "{", "'type'", ":", "'PlainText'", ",", "'text'", ":", "self", ".", "config", "[", "'start_message'", "]", "}", ",", "'card'", ":", "{", "'type'", ":", "'Simple'", ",", "'content'", ":", "self", ".", "config", "[", "'start_message'", "]", "}", "}", "}", "response", "=", "self", ".", "_generate_response", "(", "response", ",", "request", ")", "return", "response" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
Conversation._handle_unsupported
Handles all unsupported types of Alexa requests. Returns standard message. Args: request: Alexa request. Returns: response: "response" part of response dict conforming Alexa specification.
deeppavlov/utils/alexa/conversation.py
def _handle_unsupported(self, request: dict) -> dict: """Handles all unsupported types of Alexa requests. Returns standard message. Args: request: Alexa request. Returns: response: "response" part of response dict conforming Alexa specification. """ response = { 'response': { 'shouldEndSession': False, 'outputSpeech': { 'type': 'PlainText', 'text': self.config['unsupported_message'] }, 'card': { 'type': 'Simple', 'content': self.config['unsupported_message'] } } } response = self._generate_response(response, request) return response
def _handle_unsupported(self, request: dict) -> dict: """Handles all unsupported types of Alexa requests. Returns standard message. Args: request: Alexa request. Returns: response: "response" part of response dict conforming Alexa specification. """ response = { 'response': { 'shouldEndSession': False, 'outputSpeech': { 'type': 'PlainText', 'text': self.config['unsupported_message'] }, 'card': { 'type': 'Simple', 'content': self.config['unsupported_message'] } } } response = self._generate_response(response, request) return response
[ "Handles", "all", "unsupported", "types", "of", "Alexa", "requests", ".", "Returns", "standard", "message", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/utils/alexa/conversation.py#L214-L238
[ "def", "_handle_unsupported", "(", "self", ",", "request", ":", "dict", ")", "->", "dict", ":", "response", "=", "{", "'response'", ":", "{", "'shouldEndSession'", ":", "False", ",", "'outputSpeech'", ":", "{", "'type'", ":", "'PlainText'", ",", "'text'", ":", "self", ".", "config", "[", "'unsupported_message'", "]", "}", ",", "'card'", ":", "{", "'type'", ":", "'Simple'", ",", "'content'", ":", "self", ".", "config", "[", "'unsupported_message'", "]", "}", "}", "}", "response", "=", "self", ".", "_generate_response", "(", "response", ",", "request", ")", "return", "response" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
Struct._repr_pretty_
method that defines ``Struct``'s pretty printing rules for iPython Args: p (IPython.lib.pretty.RepresentationPrinter): pretty printer object cycle (bool): is ``True`` if pretty detected a cycle
deeppavlov/configs/__init__.py
def _repr_pretty_(self, p, cycle): """method that defines ``Struct``'s pretty printing rules for iPython Args: p (IPython.lib.pretty.RepresentationPrinter): pretty printer object cycle (bool): is ``True`` if pretty detected a cycle """ if cycle: p.text('Struct(...)') else: with p.group(7, 'Struct(', ')'): p.pretty(self._asdict())
def _repr_pretty_(self, p, cycle): """method that defines ``Struct``'s pretty printing rules for iPython Args: p (IPython.lib.pretty.RepresentationPrinter): pretty printer object cycle (bool): is ``True`` if pretty detected a cycle """ if cycle: p.text('Struct(...)') else: with p.group(7, 'Struct(', ')'): p.pretty(self._asdict())
[ "method", "that", "defines", "Struct", "s", "pretty", "printing", "rules", "for", "iPython" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/configs/__init__.py#L56-L67
[ "def", "_repr_pretty_", "(", "self", ",", "p", ",", "cycle", ")", ":", "if", "cycle", ":", "p", ".", "text", "(", "'Struct(...)'", ")", "else", ":", "with", "p", ".", "group", "(", "7", ",", "'Struct('", ",", "')'", ")", ":", "p", ".", "pretty", "(", "self", ".", "_asdict", "(", ")", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
elmo_loss2ppl
Calculates perplexity by loss Args: losses: list of numpy arrays of model losses Returns: perplexity : float
deeppavlov/metrics/elmo_metrics.py
def elmo_loss2ppl(losses: List[np.ndarray]) -> float: """ Calculates perplexity by loss Args: losses: list of numpy arrays of model losses Returns: perplexity : float """ avg_loss = np.mean(losses) return float(np.exp(avg_loss))
def elmo_loss2ppl(losses: List[np.ndarray]) -> float: """ Calculates perplexity by loss Args: losses: list of numpy arrays of model losses Returns: perplexity : float """ avg_loss = np.mean(losses) return float(np.exp(avg_loss))
[ "Calculates", "perplexity", "by", "loss" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/metrics/elmo_metrics.py#L23-L33
[ "def", "elmo_loss2ppl", "(", "losses", ":", "List", "[", "np", ".", "ndarray", "]", ")", "->", "float", ":", "avg_loss", "=", "np", ".", "mean", "(", "losses", ")", "return", "float", "(", "np", ".", "exp", "(", "avg_loss", ")", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
LanguageModel._build_loss
Create: self.total_loss: total loss op for training self.softmax_W, softmax_b: the softmax variables self.next_token_id / _reverse: placeholders for gold input
deeppavlov/models/elmo/bilm_model.py
def _build_loss(self, lstm_outputs): """ Create: self.total_loss: total loss op for training self.softmax_W, softmax_b: the softmax variables self.next_token_id / _reverse: placeholders for gold input """ batch_size = self.options['batch_size'] unroll_steps = self.options['unroll_steps'] n_tokens_vocab = self.options['n_tokens_vocab'] # DEFINE next_token_id and *_reverse placeholders for the gold input def _get_next_token_placeholders(suffix): name = 'next_token_id' + suffix id_placeholder = tf.placeholder(DTYPE_INT, shape=(batch_size, unroll_steps), name=name) return id_placeholder # get the window and weight placeholders self.next_token_id = _get_next_token_placeholders('') if self.bidirectional: self.next_token_id_reverse = _get_next_token_placeholders( '_reverse') # DEFINE THE SOFTMAX VARIABLES # get the dimension of the softmax weights # softmax dimension is the size of the output projection_dim softmax_dim = self.options['lstm']['projection_dim'] # the output softmax variables -- they are shared if bidirectional if self.share_embedding_softmax: # softmax_W is just the embedding layer self.softmax_W = self.embedding_weights with tf.variable_scope('softmax'), tf.device('/cpu:0'): # Glorit init (std=(1.0 / sqrt(fan_in)) softmax_init = tf.random_normal_initializer(0.0, 1.0 / np.sqrt(softmax_dim)) if not self.share_embedding_softmax: self.softmax_W = tf.get_variable( 'W', [n_tokens_vocab, softmax_dim], dtype=DTYPE, initializer=softmax_init ) self.softmax_b = tf.get_variable( 'b', [n_tokens_vocab], dtype=DTYPE, initializer=tf.constant_initializer(0.0)) # now calculate losses # loss for each direction of the LSTM self.individual_train_losses = [] self.individual_eval_losses = [] if self.bidirectional: next_ids = [self.next_token_id, self.next_token_id_reverse] else: next_ids = [self.next_token_id] for id_placeholder, lstm_output_flat in zip(next_ids, lstm_outputs): # flatten the LSTM output and next token id gold to shape: # (batch_size * unroll_steps, softmax_dim) # Flatten and reshape the token_id placeholders next_token_id_flat = tf.reshape(id_placeholder, [-1, 1]) with tf.control_dependencies([lstm_output_flat]): sampled_losses = tf.nn.sampled_softmax_loss(self.softmax_W, self.softmax_b, next_token_id_flat, lstm_output_flat, self.options['n_negative_samples_batch'], self.options['n_tokens_vocab'], num_true=1) # get the full softmax loss output_scores = tf.matmul( lstm_output_flat, tf.transpose(self.softmax_W) ) + self.softmax_b # NOTE: tf.nn.sparse_softmax_cross_entropy_with_logits # expects unnormalized output since it performs the # softmax internally losses = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=output_scores, labels=tf.squeeze(next_token_id_flat, squeeze_dims=[1]) ) sampled_losses = tf.reshape(sampled_losses, [self.options['batch_size'], -1]) losses = tf.reshape(losses, [self.options['batch_size'], -1]) self.individual_train_losses.append(tf.reduce_mean(sampled_losses, axis=1)) self.individual_eval_losses.append(tf.reduce_mean(losses, axis=1)) # now make the total loss -- it's the train of the individual losses if self.bidirectional: self.total_train_loss = 0.5 * (self.individual_train_losses[0] + self.individual_train_losses[1]) self.total_eval_loss = 0.5 * (self.individual_eval_losses[0] + self.individual_eval_losses[1]) else: self.total_train_loss = self.individual_train_losses[0] self.total_eval_loss = self.individual_eval_losses[0]
def _build_loss(self, lstm_outputs): """ Create: self.total_loss: total loss op for training self.softmax_W, softmax_b: the softmax variables self.next_token_id / _reverse: placeholders for gold input """ batch_size = self.options['batch_size'] unroll_steps = self.options['unroll_steps'] n_tokens_vocab = self.options['n_tokens_vocab'] # DEFINE next_token_id and *_reverse placeholders for the gold input def _get_next_token_placeholders(suffix): name = 'next_token_id' + suffix id_placeholder = tf.placeholder(DTYPE_INT, shape=(batch_size, unroll_steps), name=name) return id_placeholder # get the window and weight placeholders self.next_token_id = _get_next_token_placeholders('') if self.bidirectional: self.next_token_id_reverse = _get_next_token_placeholders( '_reverse') # DEFINE THE SOFTMAX VARIABLES # get the dimension of the softmax weights # softmax dimension is the size of the output projection_dim softmax_dim = self.options['lstm']['projection_dim'] # the output softmax variables -- they are shared if bidirectional if self.share_embedding_softmax: # softmax_W is just the embedding layer self.softmax_W = self.embedding_weights with tf.variable_scope('softmax'), tf.device('/cpu:0'): # Glorit init (std=(1.0 / sqrt(fan_in)) softmax_init = tf.random_normal_initializer(0.0, 1.0 / np.sqrt(softmax_dim)) if not self.share_embedding_softmax: self.softmax_W = tf.get_variable( 'W', [n_tokens_vocab, softmax_dim], dtype=DTYPE, initializer=softmax_init ) self.softmax_b = tf.get_variable( 'b', [n_tokens_vocab], dtype=DTYPE, initializer=tf.constant_initializer(0.0)) # now calculate losses # loss for each direction of the LSTM self.individual_train_losses = [] self.individual_eval_losses = [] if self.bidirectional: next_ids = [self.next_token_id, self.next_token_id_reverse] else: next_ids = [self.next_token_id] for id_placeholder, lstm_output_flat in zip(next_ids, lstm_outputs): # flatten the LSTM output and next token id gold to shape: # (batch_size * unroll_steps, softmax_dim) # Flatten and reshape the token_id placeholders next_token_id_flat = tf.reshape(id_placeholder, [-1, 1]) with tf.control_dependencies([lstm_output_flat]): sampled_losses = tf.nn.sampled_softmax_loss(self.softmax_W, self.softmax_b, next_token_id_flat, lstm_output_flat, self.options['n_negative_samples_batch'], self.options['n_tokens_vocab'], num_true=1) # get the full softmax loss output_scores = tf.matmul( lstm_output_flat, tf.transpose(self.softmax_W) ) + self.softmax_b # NOTE: tf.nn.sparse_softmax_cross_entropy_with_logits # expects unnormalized output since it performs the # softmax internally losses = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=output_scores, labels=tf.squeeze(next_token_id_flat, squeeze_dims=[1]) ) sampled_losses = tf.reshape(sampled_losses, [self.options['batch_size'], -1]) losses = tf.reshape(losses, [self.options['batch_size'], -1]) self.individual_train_losses.append(tf.reduce_mean(sampled_losses, axis=1)) self.individual_eval_losses.append(tf.reduce_mean(losses, axis=1)) # now make the total loss -- it's the train of the individual losses if self.bidirectional: self.total_train_loss = 0.5 * (self.individual_train_losses[0] + self.individual_train_losses[1]) self.total_eval_loss = 0.5 * (self.individual_eval_losses[0] + self.individual_eval_losses[1]) else: self.total_train_loss = self.individual_train_losses[0] self.total_eval_loss = self.individual_eval_losses[0]
[ "Create", ":", "self", ".", "total_loss", ":", "total", "loss", "op", "for", "training", "self", ".", "softmax_W", "softmax_b", ":", "the", "softmax", "variables", "self", ".", "next_token_id", "/", "_reverse", ":", "placeholders", "for", "gold", "input" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/elmo/bilm_model.py#L412-L509
[ "def", "_build_loss", "(", "self", ",", "lstm_outputs", ")", ":", "batch_size", "=", "self", ".", "options", "[", "'batch_size'", "]", "unroll_steps", "=", "self", ".", "options", "[", "'unroll_steps'", "]", "n_tokens_vocab", "=", "self", ".", "options", "[", "'n_tokens_vocab'", "]", "# DEFINE next_token_id and *_reverse placeholders for the gold input", "def", "_get_next_token_placeholders", "(", "suffix", ")", ":", "name", "=", "'next_token_id'", "+", "suffix", "id_placeholder", "=", "tf", ".", "placeholder", "(", "DTYPE_INT", ",", "shape", "=", "(", "batch_size", ",", "unroll_steps", ")", ",", "name", "=", "name", ")", "return", "id_placeholder", "# get the window and weight placeholders", "self", ".", "next_token_id", "=", "_get_next_token_placeholders", "(", "''", ")", "if", "self", ".", "bidirectional", ":", "self", ".", "next_token_id_reverse", "=", "_get_next_token_placeholders", "(", "'_reverse'", ")", "# DEFINE THE SOFTMAX VARIABLES", "# get the dimension of the softmax weights", "# softmax dimension is the size of the output projection_dim", "softmax_dim", "=", "self", ".", "options", "[", "'lstm'", "]", "[", "'projection_dim'", "]", "# the output softmax variables -- they are shared if bidirectional", "if", "self", ".", "share_embedding_softmax", ":", "# softmax_W is just the embedding layer", "self", ".", "softmax_W", "=", "self", ".", "embedding_weights", "with", "tf", ".", "variable_scope", "(", "'softmax'", ")", ",", "tf", ".", "device", "(", "'/cpu:0'", ")", ":", "# Glorit init (std=(1.0 / sqrt(fan_in))", "softmax_init", "=", "tf", ".", "random_normal_initializer", "(", "0.0", ",", "1.0", "/", "np", ".", "sqrt", "(", "softmax_dim", ")", ")", "if", "not", "self", ".", "share_embedding_softmax", ":", "self", ".", "softmax_W", "=", "tf", ".", "get_variable", "(", "'W'", ",", "[", "n_tokens_vocab", ",", "softmax_dim", "]", ",", "dtype", "=", "DTYPE", ",", "initializer", "=", "softmax_init", ")", "self", ".", "softmax_b", "=", "tf", ".", "get_variable", "(", "'b'", ",", "[", "n_tokens_vocab", "]", ",", "dtype", "=", "DTYPE", ",", "initializer", "=", "tf", ".", "constant_initializer", "(", "0.0", ")", ")", "# now calculate losses", "# loss for each direction of the LSTM", "self", ".", "individual_train_losses", "=", "[", "]", "self", ".", "individual_eval_losses", "=", "[", "]", "if", "self", ".", "bidirectional", ":", "next_ids", "=", "[", "self", ".", "next_token_id", ",", "self", ".", "next_token_id_reverse", "]", "else", ":", "next_ids", "=", "[", "self", ".", "next_token_id", "]", "for", "id_placeholder", ",", "lstm_output_flat", "in", "zip", "(", "next_ids", ",", "lstm_outputs", ")", ":", "# flatten the LSTM output and next token id gold to shape:", "# (batch_size * unroll_steps, softmax_dim)", "# Flatten and reshape the token_id placeholders", "next_token_id_flat", "=", "tf", ".", "reshape", "(", "id_placeholder", ",", "[", "-", "1", ",", "1", "]", ")", "with", "tf", ".", "control_dependencies", "(", "[", "lstm_output_flat", "]", ")", ":", "sampled_losses", "=", "tf", ".", "nn", ".", "sampled_softmax_loss", "(", "self", ".", "softmax_W", ",", "self", ".", "softmax_b", ",", "next_token_id_flat", ",", "lstm_output_flat", ",", "self", ".", "options", "[", "'n_negative_samples_batch'", "]", ",", "self", ".", "options", "[", "'n_tokens_vocab'", "]", ",", "num_true", "=", "1", ")", "# get the full softmax loss", "output_scores", "=", "tf", ".", "matmul", "(", "lstm_output_flat", ",", "tf", ".", "transpose", "(", "self", ".", "softmax_W", ")", ")", "+", "self", ".", "softmax_b", "# NOTE: tf.nn.sparse_softmax_cross_entropy_with_logits", "# expects unnormalized output since it performs the", "# softmax internally", "losses", "=", "tf", ".", "nn", ".", "sparse_softmax_cross_entropy_with_logits", "(", "logits", "=", "output_scores", ",", "labels", "=", "tf", ".", "squeeze", "(", "next_token_id_flat", ",", "squeeze_dims", "=", "[", "1", "]", ")", ")", "sampled_losses", "=", "tf", ".", "reshape", "(", "sampled_losses", ",", "[", "self", ".", "options", "[", "'batch_size'", "]", ",", "-", "1", "]", ")", "losses", "=", "tf", ".", "reshape", "(", "losses", ",", "[", "self", ".", "options", "[", "'batch_size'", "]", ",", "-", "1", "]", ")", "self", ".", "individual_train_losses", ".", "append", "(", "tf", ".", "reduce_mean", "(", "sampled_losses", ",", "axis", "=", "1", ")", ")", "self", ".", "individual_eval_losses", ".", "append", "(", "tf", ".", "reduce_mean", "(", "losses", ",", "axis", "=", "1", ")", ")", "# now make the total loss -- it's the train of the individual losses", "if", "self", ".", "bidirectional", ":", "self", ".", "total_train_loss", "=", "0.5", "*", "(", "self", ".", "individual_train_losses", "[", "0", "]", "+", "self", ".", "individual_train_losses", "[", "1", "]", ")", "self", ".", "total_eval_loss", "=", "0.5", "*", "(", "self", ".", "individual_eval_losses", "[", "0", "]", "+", "self", ".", "individual_eval_losses", "[", "1", "]", ")", "else", ":", "self", ".", "total_train_loss", "=", "self", ".", "individual_train_losses", "[", "0", "]", "self", ".", "total_eval_loss", "=", "self", ".", "individual_eval_losses", "[", "0", "]" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
build_model
Build and return the model described in corresponding configuration file.
deeppavlov/core/commands/infer.py
def build_model(config: Union[str, Path, dict], mode: str = 'infer', load_trained: bool = False, download: bool = False, serialized: Optional[bytes] = None) -> Chainer: """Build and return the model described in corresponding configuration file.""" config = parse_config(config) if serialized: serialized: list = pickle.loads(serialized) if download: deep_download(config) import_packages(config.get('metadata', {}).get('imports', [])) model_config = config['chainer'] model = Chainer(model_config['in'], model_config['out'], model_config.get('in_y')) for component_config in model_config['pipe']: if load_trained and ('fit_on' in component_config or 'in_y' in component_config): try: component_config['load_path'] = component_config['save_path'] except KeyError: log.warning('No "save_path" parameter for the {} component, so "load_path" will not be renewed' .format(component_config.get('class_name', component_config.get('ref', 'UNKNOWN')))) if serialized and 'in' in component_config: component_serialized = serialized.pop(0) else: component_serialized = None component = from_params(component_config, mode=mode, serialized=component_serialized) if 'in' in component_config: c_in = component_config['in'] c_out = component_config['out'] in_y = component_config.get('in_y', None) main = component_config.get('main', False) model.append(component, c_in, c_out, in_y, main) return model
def build_model(config: Union[str, Path, dict], mode: str = 'infer', load_trained: bool = False, download: bool = False, serialized: Optional[bytes] = None) -> Chainer: """Build and return the model described in corresponding configuration file.""" config = parse_config(config) if serialized: serialized: list = pickle.loads(serialized) if download: deep_download(config) import_packages(config.get('metadata', {}).get('imports', [])) model_config = config['chainer'] model = Chainer(model_config['in'], model_config['out'], model_config.get('in_y')) for component_config in model_config['pipe']: if load_trained and ('fit_on' in component_config or 'in_y' in component_config): try: component_config['load_path'] = component_config['save_path'] except KeyError: log.warning('No "save_path" parameter for the {} component, so "load_path" will not be renewed' .format(component_config.get('class_name', component_config.get('ref', 'UNKNOWN')))) if serialized and 'in' in component_config: component_serialized = serialized.pop(0) else: component_serialized = None component = from_params(component_config, mode=mode, serialized=component_serialized) if 'in' in component_config: c_in = component_config['in'] c_out = component_config['out'] in_y = component_config.get('in_y', None) main = component_config.get('main', False) model.append(component, c_in, c_out, in_y, main) return model
[ "Build", "and", "return", "the", "model", "described", "in", "corresponding", "configuration", "file", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/commands/infer.py#L30-L70
[ "def", "build_model", "(", "config", ":", "Union", "[", "str", ",", "Path", ",", "dict", "]", ",", "mode", ":", "str", "=", "'infer'", ",", "load_trained", ":", "bool", "=", "False", ",", "download", ":", "bool", "=", "False", ",", "serialized", ":", "Optional", "[", "bytes", "]", "=", "None", ")", "->", "Chainer", ":", "config", "=", "parse_config", "(", "config", ")", "if", "serialized", ":", "serialized", ":", "list", "=", "pickle", ".", "loads", "(", "serialized", ")", "if", "download", ":", "deep_download", "(", "config", ")", "import_packages", "(", "config", ".", "get", "(", "'metadata'", ",", "{", "}", ")", ".", "get", "(", "'imports'", ",", "[", "]", ")", ")", "model_config", "=", "config", "[", "'chainer'", "]", "model", "=", "Chainer", "(", "model_config", "[", "'in'", "]", ",", "model_config", "[", "'out'", "]", ",", "model_config", ".", "get", "(", "'in_y'", ")", ")", "for", "component_config", "in", "model_config", "[", "'pipe'", "]", ":", "if", "load_trained", "and", "(", "'fit_on'", "in", "component_config", "or", "'in_y'", "in", "component_config", ")", ":", "try", ":", "component_config", "[", "'load_path'", "]", "=", "component_config", "[", "'save_path'", "]", "except", "KeyError", ":", "log", ".", "warning", "(", "'No \"save_path\" parameter for the {} component, so \"load_path\" will not be renewed'", ".", "format", "(", "component_config", ".", "get", "(", "'class_name'", ",", "component_config", ".", "get", "(", "'ref'", ",", "'UNKNOWN'", ")", ")", ")", ")", "if", "serialized", "and", "'in'", "in", "component_config", ":", "component_serialized", "=", "serialized", ".", "pop", "(", "0", ")", "else", ":", "component_serialized", "=", "None", "component", "=", "from_params", "(", "component_config", ",", "mode", "=", "mode", ",", "serialized", "=", "component_serialized", ")", "if", "'in'", "in", "component_config", ":", "c_in", "=", "component_config", "[", "'in'", "]", "c_out", "=", "component_config", "[", "'out'", "]", "in_y", "=", "component_config", ".", "get", "(", "'in_y'", ",", "None", ")", "main", "=", "component_config", ".", "get", "(", "'main'", ",", "False", ")", "model", ".", "append", "(", "component", ",", "c_in", ",", "c_out", ",", "in_y", ",", "main", ")", "return", "model" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
interact_model
Start interaction with the model described in corresponding configuration file.
deeppavlov/core/commands/infer.py
def interact_model(config: Union[str, Path, dict]) -> None: """Start interaction with the model described in corresponding configuration file.""" model = build_model(config) while True: args = [] for in_x in model.in_x: args.append((input('{}::'.format(in_x)),)) # check for exit command if args[-1][0] in {'exit', 'stop', 'quit', 'q'}: return pred = model(*args) if len(model.out_params) > 1: pred = zip(*pred) print('>>', *pred)
def interact_model(config: Union[str, Path, dict]) -> None: """Start interaction with the model described in corresponding configuration file.""" model = build_model(config) while True: args = [] for in_x in model.in_x: args.append((input('{}::'.format(in_x)),)) # check for exit command if args[-1][0] in {'exit', 'stop', 'quit', 'q'}: return pred = model(*args) if len(model.out_params) > 1: pred = zip(*pred) print('>>', *pred)
[ "Start", "interaction", "with", "the", "model", "described", "in", "corresponding", "configuration", "file", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/commands/infer.py#L73-L89
[ "def", "interact_model", "(", "config", ":", "Union", "[", "str", ",", "Path", ",", "dict", "]", ")", "->", "None", ":", "model", "=", "build_model", "(", "config", ")", "while", "True", ":", "args", "=", "[", "]", "for", "in_x", "in", "model", ".", "in_x", ":", "args", ".", "append", "(", "(", "input", "(", "'{}::'", ".", "format", "(", "in_x", ")", ")", ",", ")", ")", "# check for exit command", "if", "args", "[", "-", "1", "]", "[", "0", "]", "in", "{", "'exit'", ",", "'stop'", ",", "'quit'", ",", "'q'", "}", ":", "return", "pred", "=", "model", "(", "*", "args", ")", "if", "len", "(", "model", ".", "out_params", ")", ">", "1", ":", "pred", "=", "zip", "(", "*", "pred", ")", "print", "(", "'>>'", ",", "*", "pred", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
predict_on_stream
Make a prediction with the component described in corresponding configuration file.
deeppavlov/core/commands/infer.py
def predict_on_stream(config: Union[str, Path, dict], batch_size: int = 1, file_path: Optional[str] = None) -> None: """Make a prediction with the component described in corresponding configuration file.""" if file_path is None or file_path == '-': if sys.stdin.isatty(): raise RuntimeError('To process data from terminal please use interact mode') f = sys.stdin else: f = open(file_path, encoding='utf8') model: Chainer = build_model(config) args_count = len(model.in_x) while True: batch = list((l.strip() for l in islice(f, batch_size * args_count))) if not batch: break args = [] for i in range(args_count): args.append(batch[i::args_count]) res = model(*args) if len(model.out_params) == 1: res = [res] for res in zip(*res): res = json.dumps(res, ensure_ascii=False) print(res, flush=True) if f is not sys.stdin: f.close()
def predict_on_stream(config: Union[str, Path, dict], batch_size: int = 1, file_path: Optional[str] = None) -> None: """Make a prediction with the component described in corresponding configuration file.""" if file_path is None or file_path == '-': if sys.stdin.isatty(): raise RuntimeError('To process data from terminal please use interact mode') f = sys.stdin else: f = open(file_path, encoding='utf8') model: Chainer = build_model(config) args_count = len(model.in_x) while True: batch = list((l.strip() for l in islice(f, batch_size * args_count))) if not batch: break args = [] for i in range(args_count): args.append(batch[i::args_count]) res = model(*args) if len(model.out_params) == 1: res = [res] for res in zip(*res): res = json.dumps(res, ensure_ascii=False) print(res, flush=True) if f is not sys.stdin: f.close()
[ "Make", "a", "prediction", "with", "the", "component", "described", "in", "corresponding", "configuration", "file", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/commands/infer.py#L92-L122
[ "def", "predict_on_stream", "(", "config", ":", "Union", "[", "str", ",", "Path", ",", "dict", "]", ",", "batch_size", ":", "int", "=", "1", ",", "file_path", ":", "Optional", "[", "str", "]", "=", "None", ")", "->", "None", ":", "if", "file_path", "is", "None", "or", "file_path", "==", "'-'", ":", "if", "sys", ".", "stdin", ".", "isatty", "(", ")", ":", "raise", "RuntimeError", "(", "'To process data from terminal please use interact mode'", ")", "f", "=", "sys", ".", "stdin", "else", ":", "f", "=", "open", "(", "file_path", ",", "encoding", "=", "'utf8'", ")", "model", ":", "Chainer", "=", "build_model", "(", "config", ")", "args_count", "=", "len", "(", "model", ".", "in_x", ")", "while", "True", ":", "batch", "=", "list", "(", "(", "l", ".", "strip", "(", ")", "for", "l", "in", "islice", "(", "f", ",", "batch_size", "*", "args_count", ")", ")", ")", "if", "not", "batch", ":", "break", "args", "=", "[", "]", "for", "i", "in", "range", "(", "args_count", ")", ":", "args", ".", "append", "(", "batch", "[", "i", ":", ":", "args_count", "]", ")", "res", "=", "model", "(", "*", "args", ")", "if", "len", "(", "model", ".", "out_params", ")", "==", "1", ":", "res", "=", "[", "res", "]", "for", "res", "in", "zip", "(", "*", "res", ")", ":", "res", "=", "json", ".", "dumps", "(", "res", ",", "ensure_ascii", "=", "False", ")", "print", "(", "res", ",", "flush", "=", "True", ")", "if", "f", "is", "not", "sys", ".", "stdin", ":", "f", ".", "close", "(", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
read_infile
Reads input file in CONLL-U format Args: infile: a path to a file word_column: column containing words (default=1) pos_column: column containing part-of-speech labels (default=3) tag_column: column containing fine-grained tags (default=5) max_sents: maximal number of sents to read read_only_words: whether to read only words Returns: a list of sentences. Each item contains a word sequence and a tag sequence, which is ``None`` in case ``read_only_words = True``
deeppavlov/dataset_readers/morphotagging_dataset_reader.py
def read_infile(infile: Union[Path, str], from_words=False, word_column: int = WORD_COLUMN, pos_column: int = POS_COLUMN, tag_column: int = TAG_COLUMN, max_sents: int = -1, read_only_words: bool = False) -> List[Tuple[List, Union[List, None]]]: """Reads input file in CONLL-U format Args: infile: a path to a file word_column: column containing words (default=1) pos_column: column containing part-of-speech labels (default=3) tag_column: column containing fine-grained tags (default=5) max_sents: maximal number of sents to read read_only_words: whether to read only words Returns: a list of sentences. Each item contains a word sequence and a tag sequence, which is ``None`` in case ``read_only_words = True`` """ answer, curr_word_sent, curr_tag_sent = [], [], [] if from_words: word_column, read_only_words = 0, True with open(infile, "r", encoding="utf8") as fin: for line in fin: line = line.strip() if line.startswith("#"): continue if line == "": if len(curr_word_sent) > 0: if read_only_words: curr_tag_sent = None answer.append((curr_word_sent, curr_tag_sent)) curr_tag_sent, curr_word_sent = [], [] if len(answer) == max_sents: break continue splitted = line.split("\t") index = splitted[0] if not from_words and not index.isdigit(): continue curr_word_sent.append(splitted[word_column]) if not read_only_words: pos, tag = splitted[pos_column], splitted[tag_column] tag = pos if tag == "_" else "{},{}".format(pos, tag) curr_tag_sent.append(tag) if len(curr_word_sent) > 0: if read_only_words: curr_tag_sent = None answer.append((curr_word_sent, curr_tag_sent)) return answer
def read_infile(infile: Union[Path, str], from_words=False, word_column: int = WORD_COLUMN, pos_column: int = POS_COLUMN, tag_column: int = TAG_COLUMN, max_sents: int = -1, read_only_words: bool = False) -> List[Tuple[List, Union[List, None]]]: """Reads input file in CONLL-U format Args: infile: a path to a file word_column: column containing words (default=1) pos_column: column containing part-of-speech labels (default=3) tag_column: column containing fine-grained tags (default=5) max_sents: maximal number of sents to read read_only_words: whether to read only words Returns: a list of sentences. Each item contains a word sequence and a tag sequence, which is ``None`` in case ``read_only_words = True`` """ answer, curr_word_sent, curr_tag_sent = [], [], [] if from_words: word_column, read_only_words = 0, True with open(infile, "r", encoding="utf8") as fin: for line in fin: line = line.strip() if line.startswith("#"): continue if line == "": if len(curr_word_sent) > 0: if read_only_words: curr_tag_sent = None answer.append((curr_word_sent, curr_tag_sent)) curr_tag_sent, curr_word_sent = [], [] if len(answer) == max_sents: break continue splitted = line.split("\t") index = splitted[0] if not from_words and not index.isdigit(): continue curr_word_sent.append(splitted[word_column]) if not read_only_words: pos, tag = splitted[pos_column], splitted[tag_column] tag = pos if tag == "_" else "{},{}".format(pos, tag) curr_tag_sent.append(tag) if len(curr_word_sent) > 0: if read_only_words: curr_tag_sent = None answer.append((curr_word_sent, curr_tag_sent)) return answer
[ "Reads", "input", "file", "in", "CONLL", "-", "U", "format" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/dataset_readers/morphotagging_dataset_reader.py#L33-L81
[ "def", "read_infile", "(", "infile", ":", "Union", "[", "Path", ",", "str", "]", ",", "from_words", "=", "False", ",", "word_column", ":", "int", "=", "WORD_COLUMN", ",", "pos_column", ":", "int", "=", "POS_COLUMN", ",", "tag_column", ":", "int", "=", "TAG_COLUMN", ",", "max_sents", ":", "int", "=", "-", "1", ",", "read_only_words", ":", "bool", "=", "False", ")", "->", "List", "[", "Tuple", "[", "List", ",", "Union", "[", "List", ",", "None", "]", "]", "]", ":", "answer", ",", "curr_word_sent", ",", "curr_tag_sent", "=", "[", "]", ",", "[", "]", ",", "[", "]", "if", "from_words", ":", "word_column", ",", "read_only_words", "=", "0", ",", "True", "with", "open", "(", "infile", ",", "\"r\"", ",", "encoding", "=", "\"utf8\"", ")", "as", "fin", ":", "for", "line", "in", "fin", ":", "line", "=", "line", ".", "strip", "(", ")", "if", "line", ".", "startswith", "(", "\"#\"", ")", ":", "continue", "if", "line", "==", "\"\"", ":", "if", "len", "(", "curr_word_sent", ")", ">", "0", ":", "if", "read_only_words", ":", "curr_tag_sent", "=", "None", "answer", ".", "append", "(", "(", "curr_word_sent", ",", "curr_tag_sent", ")", ")", "curr_tag_sent", ",", "curr_word_sent", "=", "[", "]", ",", "[", "]", "if", "len", "(", "answer", ")", "==", "max_sents", ":", "break", "continue", "splitted", "=", "line", ".", "split", "(", "\"\\t\"", ")", "index", "=", "splitted", "[", "0", "]", "if", "not", "from_words", "and", "not", "index", ".", "isdigit", "(", ")", ":", "continue", "curr_word_sent", ".", "append", "(", "splitted", "[", "word_column", "]", ")", "if", "not", "read_only_words", ":", "pos", ",", "tag", "=", "splitted", "[", "pos_column", "]", ",", "splitted", "[", "tag_column", "]", "tag", "=", "pos", "if", "tag", "==", "\"_\"", "else", "\"{},{}\"", ".", "format", "(", "pos", ",", "tag", ")", "curr_tag_sent", ".", "append", "(", "tag", ")", "if", "len", "(", "curr_word_sent", ")", ">", "0", ":", "if", "read_only_words", ":", "curr_tag_sent", "=", "None", "answer", ".", "append", "(", "(", "curr_word_sent", ",", "curr_tag_sent", ")", ")", "return", "answer" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
preprocess_data
Processes all words in data using :func:`~deeppavlov.dataset_iterators.morphotagger_iterator.process_word`. Args: data: a list of pairs (words, tags), each pair corresponds to a single sentence to_lower: whether to lowercase append_case: whether to add case mark Returns: a list of preprocessed sentences
deeppavlov/dataset_iterators/morphotagger_iterator.py
def preprocess_data(data: List[Tuple[List[str], List[str]]], to_lower: bool = True, append_case: str = "first") -> List[Tuple[List[Tuple[str]], List[str]]]: """Processes all words in data using :func:`~deeppavlov.dataset_iterators.morphotagger_iterator.process_word`. Args: data: a list of pairs (words, tags), each pair corresponds to a single sentence to_lower: whether to lowercase append_case: whether to add case mark Returns: a list of preprocessed sentences """ new_data = [] for words, tags in data: new_words = [process_word(word, to_lower=to_lower, append_case=append_case) for word in words] # tags could also be processed in future new_tags = tags new_data.append((new_words, new_tags)) return new_data
def preprocess_data(data: List[Tuple[List[str], List[str]]], to_lower: bool = True, append_case: str = "first") -> List[Tuple[List[Tuple[str]], List[str]]]: """Processes all words in data using :func:`~deeppavlov.dataset_iterators.morphotagger_iterator.process_word`. Args: data: a list of pairs (words, tags), each pair corresponds to a single sentence to_lower: whether to lowercase append_case: whether to add case mark Returns: a list of preprocessed sentences """ new_data = [] for words, tags in data: new_words = [process_word(word, to_lower=to_lower, append_case=append_case) for word in words] # tags could also be processed in future new_tags = tags new_data.append((new_words, new_tags)) return new_data
[ "Processes", "all", "words", "in", "data", "using", ":", "func", ":", "~deeppavlov", ".", "dataset_iterators", ".", "morphotagger_iterator", ".", "process_word", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/dataset_iterators/morphotagger_iterator.py#L25-L45
[ "def", "preprocess_data", "(", "data", ":", "List", "[", "Tuple", "[", "List", "[", "str", "]", ",", "List", "[", "str", "]", "]", "]", ",", "to_lower", ":", "bool", "=", "True", ",", "append_case", ":", "str", "=", "\"first\"", ")", "->", "List", "[", "Tuple", "[", "List", "[", "Tuple", "[", "str", "]", "]", ",", "List", "[", "str", "]", "]", "]", ":", "new_data", "=", "[", "]", "for", "words", ",", "tags", "in", "data", ":", "new_words", "=", "[", "process_word", "(", "word", ",", "to_lower", "=", "to_lower", ",", "append_case", "=", "append_case", ")", "for", "word", "in", "words", "]", "# tags could also be processed in future", "new_tags", "=", "tags", "new_data", ".", "append", "(", "(", "new_words", ",", "new_tags", ")", ")", "return", "new_data" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
fn_from_str
Returns a function object with the name given in string.
deeppavlov/core/common/metrics_registry.py
def fn_from_str(name: str) -> Callable[..., Any]: """Returns a function object with the name given in string.""" try: module_name, fn_name = name.split(':') except ValueError: raise ConfigError('Expected function description in a `module.submodules:function_name` form, but got `{}`' .format(name)) return getattr(importlib.import_module(module_name), fn_name)
def fn_from_str(name: str) -> Callable[..., Any]: """Returns a function object with the name given in string.""" try: module_name, fn_name = name.split(':') except ValueError: raise ConfigError('Expected function description in a `module.submodules:function_name` form, but got `{}`' .format(name)) return getattr(importlib.import_module(module_name), fn_name)
[ "Returns", "a", "function", "object", "with", "the", "name", "given", "in", "string", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/common/metrics_registry.py#L19-L27
[ "def", "fn_from_str", "(", "name", ":", "str", ")", "->", "Callable", "[", "...", ",", "Any", "]", ":", "try", ":", "module_name", ",", "fn_name", "=", "name", ".", "split", "(", "':'", ")", "except", "ValueError", ":", "raise", "ConfigError", "(", "'Expected function description in a `module.submodules:function_name` form, but got `{}`'", ".", "format", "(", "name", ")", ")", "return", "getattr", "(", "importlib", ".", "import_module", "(", "module_name", ")", ",", "fn_name", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
register_metric
Decorator for metric registration.
deeppavlov/core/common/metrics_registry.py
def register_metric(metric_name: str) -> Callable[..., Any]: """Decorator for metric registration.""" def decorate(fn): fn_name = fn.__module__ + ':' + fn.__name__ if metric_name in _REGISTRY and _REGISTRY[metric_name] != fn_name: log.warning('"{}" is already registered as a metric name, the old function will be ignored' .format(metric_name)) _REGISTRY[metric_name] = fn_name return fn return decorate
def register_metric(metric_name: str) -> Callable[..., Any]: """Decorator for metric registration.""" def decorate(fn): fn_name = fn.__module__ + ':' + fn.__name__ if metric_name in _REGISTRY and _REGISTRY[metric_name] != fn_name: log.warning('"{}" is already registered as a metric name, the old function will be ignored' .format(metric_name)) _REGISTRY[metric_name] = fn_name return fn return decorate
[ "Decorator", "for", "metric", "registration", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/common/metrics_registry.py#L30-L39
[ "def", "register_metric", "(", "metric_name", ":", "str", ")", "->", "Callable", "[", "...", ",", "Any", "]", ":", "def", "decorate", "(", "fn", ")", ":", "fn_name", "=", "fn", ".", "__module__", "+", "':'", "+", "fn", ".", "__name__", "if", "metric_name", "in", "_REGISTRY", "and", "_REGISTRY", "[", "metric_name", "]", "!=", "fn_name", ":", "log", ".", "warning", "(", "'\"{}\" is already registered as a metric name, the old function will be ignored'", ".", "format", "(", "metric_name", ")", ")", "_REGISTRY", "[", "metric_name", "]", "=", "fn_name", "return", "fn", "return", "decorate" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
get_metric_by_name
Returns a metric callable with a corresponding name.
deeppavlov/core/common/metrics_registry.py
def get_metric_by_name(name: str) -> Callable[..., Any]: """Returns a metric callable with a corresponding name.""" if name not in _REGISTRY: raise ConfigError(f'"{name}" is not registered as a metric') return fn_from_str(_REGISTRY[name])
def get_metric_by_name(name: str) -> Callable[..., Any]: """Returns a metric callable with a corresponding name.""" if name not in _REGISTRY: raise ConfigError(f'"{name}" is not registered as a metric') return fn_from_str(_REGISTRY[name])
[ "Returns", "a", "metric", "callable", "with", "a", "corresponding", "name", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/common/metrics_registry.py#L42-L46
[ "def", "get_metric_by_name", "(", "name", ":", "str", ")", "->", "Callable", "[", "...", ",", "Any", "]", ":", "if", "name", "not", "in", "_REGISTRY", ":", "raise", "ConfigError", "(", "f'\"{name}\" is not registered as a metric'", ")", "return", "fn_from_str", "(", "_REGISTRY", "[", "name", "]", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
DecayType.from_str
Convert given string label of decay type to special index Args: label: name of decay type. Set of values: `"linear"`, `"cosine"`, `"exponential"`, `"onecycle"`, `"trapezoid"`, `["polynomial", K]`, where K is a polynomial power Returns: index of decay type
deeppavlov/core/models/lr_scheduled_model.py
def from_str(cls, label: str) -> int: """ Convert given string label of decay type to special index Args: label: name of decay type. Set of values: `"linear"`, `"cosine"`, `"exponential"`, `"onecycle"`, `"trapezoid"`, `["polynomial", K]`, where K is a polynomial power Returns: index of decay type """ label_norm = label.replace('1', 'one').upper() if label_norm in cls.__members__: return DecayType[label_norm] else: raise NotImplementedError
def from_str(cls, label: str) -> int: """ Convert given string label of decay type to special index Args: label: name of decay type. Set of values: `"linear"`, `"cosine"`, `"exponential"`, `"onecycle"`, `"trapezoid"`, `["polynomial", K]`, where K is a polynomial power Returns: index of decay type """ label_norm = label.replace('1', 'one').upper() if label_norm in cls.__members__: return DecayType[label_norm] else: raise NotImplementedError
[ "Convert", "given", "string", "label", "of", "decay", "type", "to", "special", "index" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/models/lr_scheduled_model.py#L40-L56
[ "def", "from_str", "(", "cls", ",", "label", ":", "str", ")", "->", "int", ":", "label_norm", "=", "label", ".", "replace", "(", "'1'", ",", "'one'", ")", ".", "upper", "(", ")", "if", "label_norm", "in", "cls", ".", "__members__", ":", "return", "DecayType", "[", "label_norm", "]", "else", ":", "raise", "NotImplementedError" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
LRScheduledModel.fit
Find the best learning rate schedule, and set obtained values of learning rate and momentum for further model training. Best learning rate will be divided by `fit_learning_rate_div` for further training model. Args: *args: arguments Returns:
deeppavlov/core/models/lr_scheduled_model.py
def fit(self, *args): """ Find the best learning rate schedule, and set obtained values of learning rate and momentum for further model training. Best learning rate will be divided by `fit_learning_rate_div` for further training model. Args: *args: arguments Returns: """ data = list(zip(*args)) self.save() if self._fit_batch_size is None: raise ConfigError("in order to use fit() method" " set `fit_batch_size` parameter") bs = int(self._fit_batch_size) data_len = len(data) num_batches = self._fit_max_batches or ((data_len - 1) // bs + 1) avg_loss = 0. best_loss = float('inf') lrs, losses = [], [] _lr_find_schedule = DecayScheduler(start_val=self._fit_learning_rate[0], end_val=self._fit_learning_rate[1], dec_type="exponential", num_it=num_batches) self._lr = _lr_find_schedule.start_val self._mom = 0. self._update_graph_variables(learning_rate=self._lr, momentum=self._mom) best_lr = _lr_find_schedule.start_val for i in range(num_batches): batch_start = (i * bs) % data_len batch_end = batch_start + bs report = self.train_on_batch(*zip(*data[batch_start:batch_end])) if not isinstance(report, dict): report = {'loss': report} # Calculating smoothed loss avg_loss = self._fit_beta*avg_loss + (1 - self._fit_beta)*report['loss'] smoothed_loss = avg_loss / (1 - self._fit_beta**(i + 1)) lrs.append(self._lr) losses.append(smoothed_loss) log.info(f"Batch {i}/{num_batches}: smooth_loss = {smoothed_loss}" f", lr = {self._lr}, best_lr = {best_lr}") if math.isnan(smoothed_loss) or (smoothed_loss > 4 * best_loss): break if (smoothed_loss < best_loss) and (i >= self._fit_min_batches): best_loss = smoothed_loss best_lr = self._lr self._lr = _lr_find_schedule.next_val() self._update_graph_variables(learning_rate=self._lr) if i >= num_batches: break # best_lr /= 10 end_val = self._get_best(lrs, losses) start_val = end_val if self._lr_schedule.dec_type in (DecayType.ONECYCLE, DecayType.TRAPEZOID): start_val = end_val / self._fit_learning_rate_div elif self._lr_schedule.dec_type in (DecayType.POLYNOMIAL, DecayType.EXPONENTIAL, DecayType.LINEAR, DecayType.COSINE): start_val = end_val end_val = end_val / self._fit_learning_rate_div self._lr_schedule = DecayScheduler(start_val=start_val, end_val=end_val, num_it=self._lr_schedule.nb, dec_type=self._lr_schedule.dec_type, extra=self._lr_schedule.extra) log.info(f"Found best learning rate value = {best_lr}" f", setting new learning rate schedule with {self._lr_schedule}.") self.load() self._lr = self._lr_schedule.start_val self._mom = self._mom_schedule.start_val self._update_graph_variables(learning_rate=self._lr, momentum=self._mom) return {'smoothed_loss': losses, 'learning_rate': lrs}
def fit(self, *args): """ Find the best learning rate schedule, and set obtained values of learning rate and momentum for further model training. Best learning rate will be divided by `fit_learning_rate_div` for further training model. Args: *args: arguments Returns: """ data = list(zip(*args)) self.save() if self._fit_batch_size is None: raise ConfigError("in order to use fit() method" " set `fit_batch_size` parameter") bs = int(self._fit_batch_size) data_len = len(data) num_batches = self._fit_max_batches or ((data_len - 1) // bs + 1) avg_loss = 0. best_loss = float('inf') lrs, losses = [], [] _lr_find_schedule = DecayScheduler(start_val=self._fit_learning_rate[0], end_val=self._fit_learning_rate[1], dec_type="exponential", num_it=num_batches) self._lr = _lr_find_schedule.start_val self._mom = 0. self._update_graph_variables(learning_rate=self._lr, momentum=self._mom) best_lr = _lr_find_schedule.start_val for i in range(num_batches): batch_start = (i * bs) % data_len batch_end = batch_start + bs report = self.train_on_batch(*zip(*data[batch_start:batch_end])) if not isinstance(report, dict): report = {'loss': report} # Calculating smoothed loss avg_loss = self._fit_beta*avg_loss + (1 - self._fit_beta)*report['loss'] smoothed_loss = avg_loss / (1 - self._fit_beta**(i + 1)) lrs.append(self._lr) losses.append(smoothed_loss) log.info(f"Batch {i}/{num_batches}: smooth_loss = {smoothed_loss}" f", lr = {self._lr}, best_lr = {best_lr}") if math.isnan(smoothed_loss) or (smoothed_loss > 4 * best_loss): break if (smoothed_loss < best_loss) and (i >= self._fit_min_batches): best_loss = smoothed_loss best_lr = self._lr self._lr = _lr_find_schedule.next_val() self._update_graph_variables(learning_rate=self._lr) if i >= num_batches: break # best_lr /= 10 end_val = self._get_best(lrs, losses) start_val = end_val if self._lr_schedule.dec_type in (DecayType.ONECYCLE, DecayType.TRAPEZOID): start_val = end_val / self._fit_learning_rate_div elif self._lr_schedule.dec_type in (DecayType.POLYNOMIAL, DecayType.EXPONENTIAL, DecayType.LINEAR, DecayType.COSINE): start_val = end_val end_val = end_val / self._fit_learning_rate_div self._lr_schedule = DecayScheduler(start_val=start_val, end_val=end_val, num_it=self._lr_schedule.nb, dec_type=self._lr_schedule.dec_type, extra=self._lr_schedule.extra) log.info(f"Found best learning rate value = {best_lr}" f", setting new learning rate schedule with {self._lr_schedule}.") self.load() self._lr = self._lr_schedule.start_val self._mom = self._mom_schedule.start_val self._update_graph_variables(learning_rate=self._lr, momentum=self._mom) return {'smoothed_loss': losses, 'learning_rate': lrs}
[ "Find", "the", "best", "learning", "rate", "schedule", "and", "set", "obtained", "values", "of", "learning", "rate", "and", "momentum", "for", "further", "model", "training", ".", "Best", "learning", "rate", "will", "be", "divided", "by", "fit_learning_rate_div", "for", "further", "training", "model", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/models/lr_scheduled_model.py#L294-L371
[ "def", "fit", "(", "self", ",", "*", "args", ")", ":", "data", "=", "list", "(", "zip", "(", "*", "args", ")", ")", "self", ".", "save", "(", ")", "if", "self", ".", "_fit_batch_size", "is", "None", ":", "raise", "ConfigError", "(", "\"in order to use fit() method\"", "\" set `fit_batch_size` parameter\"", ")", "bs", "=", "int", "(", "self", ".", "_fit_batch_size", ")", "data_len", "=", "len", "(", "data", ")", "num_batches", "=", "self", ".", "_fit_max_batches", "or", "(", "(", "data_len", "-", "1", ")", "//", "bs", "+", "1", ")", "avg_loss", "=", "0.", "best_loss", "=", "float", "(", "'inf'", ")", "lrs", ",", "losses", "=", "[", "]", ",", "[", "]", "_lr_find_schedule", "=", "DecayScheduler", "(", "start_val", "=", "self", ".", "_fit_learning_rate", "[", "0", "]", ",", "end_val", "=", "self", ".", "_fit_learning_rate", "[", "1", "]", ",", "dec_type", "=", "\"exponential\"", ",", "num_it", "=", "num_batches", ")", "self", ".", "_lr", "=", "_lr_find_schedule", ".", "start_val", "self", ".", "_mom", "=", "0.", "self", ".", "_update_graph_variables", "(", "learning_rate", "=", "self", ".", "_lr", ",", "momentum", "=", "self", ".", "_mom", ")", "best_lr", "=", "_lr_find_schedule", ".", "start_val", "for", "i", "in", "range", "(", "num_batches", ")", ":", "batch_start", "=", "(", "i", "*", "bs", ")", "%", "data_len", "batch_end", "=", "batch_start", "+", "bs", "report", "=", "self", ".", "train_on_batch", "(", "*", "zip", "(", "*", "data", "[", "batch_start", ":", "batch_end", "]", ")", ")", "if", "not", "isinstance", "(", "report", ",", "dict", ")", ":", "report", "=", "{", "'loss'", ":", "report", "}", "# Calculating smoothed loss", "avg_loss", "=", "self", ".", "_fit_beta", "*", "avg_loss", "+", "(", "1", "-", "self", ".", "_fit_beta", ")", "*", "report", "[", "'loss'", "]", "smoothed_loss", "=", "avg_loss", "/", "(", "1", "-", "self", ".", "_fit_beta", "**", "(", "i", "+", "1", ")", ")", "lrs", ".", "append", "(", "self", ".", "_lr", ")", "losses", ".", "append", "(", "smoothed_loss", ")", "log", ".", "info", "(", "f\"Batch {i}/{num_batches}: smooth_loss = {smoothed_loss}\"", "f\", lr = {self._lr}, best_lr = {best_lr}\"", ")", "if", "math", ".", "isnan", "(", "smoothed_loss", ")", "or", "(", "smoothed_loss", ">", "4", "*", "best_loss", ")", ":", "break", "if", "(", "smoothed_loss", "<", "best_loss", ")", "and", "(", "i", ">=", "self", ".", "_fit_min_batches", ")", ":", "best_loss", "=", "smoothed_loss", "best_lr", "=", "self", ".", "_lr", "self", ".", "_lr", "=", "_lr_find_schedule", ".", "next_val", "(", ")", "self", ".", "_update_graph_variables", "(", "learning_rate", "=", "self", ".", "_lr", ")", "if", "i", ">=", "num_batches", ":", "break", "# best_lr /= 10", "end_val", "=", "self", ".", "_get_best", "(", "lrs", ",", "losses", ")", "start_val", "=", "end_val", "if", "self", ".", "_lr_schedule", ".", "dec_type", "in", "(", "DecayType", ".", "ONECYCLE", ",", "DecayType", ".", "TRAPEZOID", ")", ":", "start_val", "=", "end_val", "/", "self", ".", "_fit_learning_rate_div", "elif", "self", ".", "_lr_schedule", ".", "dec_type", "in", "(", "DecayType", ".", "POLYNOMIAL", ",", "DecayType", ".", "EXPONENTIAL", ",", "DecayType", ".", "LINEAR", ",", "DecayType", ".", "COSINE", ")", ":", "start_val", "=", "end_val", "end_val", "=", "end_val", "/", "self", ".", "_fit_learning_rate_div", "self", ".", "_lr_schedule", "=", "DecayScheduler", "(", "start_val", "=", "start_val", ",", "end_val", "=", "end_val", ",", "num_it", "=", "self", ".", "_lr_schedule", ".", "nb", ",", "dec_type", "=", "self", ".", "_lr_schedule", ".", "dec_type", ",", "extra", "=", "self", ".", "_lr_schedule", ".", "extra", ")", "log", ".", "info", "(", "f\"Found best learning rate value = {best_lr}\"", "f\", setting new learning rate schedule with {self._lr_schedule}.\"", ")", "self", ".", "load", "(", ")", "self", ".", "_lr", "=", "self", ".", "_lr_schedule", ".", "start_val", "self", ".", "_mom", "=", "self", ".", "_mom_schedule", ".", "start_val", "self", ".", "_update_graph_variables", "(", "learning_rate", "=", "self", ".", "_lr", ",", "momentum", "=", "self", ".", "_mom", ")", "return", "{", "'smoothed_loss'", ":", "losses", ",", "'learning_rate'", ":", "lrs", "}" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
LRScheduledModel._get_best
Find the best value according to given losses Args: values: list of considered values losses: list of obtained loss values corresponding to `values` max_loss_div: maximal divergence of loss to be considered significant min_val_div: minimum divergence of loss to be considered significant Returns: best value divided by `min_val_div`
deeppavlov/core/models/lr_scheduled_model.py
def _get_best(values: List[float], losses: List[float], max_loss_div: float = 0.9, min_val_div: float = 10.0) -> float: """ Find the best value according to given losses Args: values: list of considered values losses: list of obtained loss values corresponding to `values` max_loss_div: maximal divergence of loss to be considered significant min_val_div: minimum divergence of loss to be considered significant Returns: best value divided by `min_val_div` """ assert len(values) == len(losses), "lengths of values and losses should be equal" min_ind = np.argmin(losses) for i in range(min_ind - 1, 0, -1): if (losses[i] * max_loss_div > losses[min_ind]) or\ (values[i] * min_val_div < values[min_ind]): return values[i + 1] return values[min_ind] / min_val_div
def _get_best(values: List[float], losses: List[float], max_loss_div: float = 0.9, min_val_div: float = 10.0) -> float: """ Find the best value according to given losses Args: values: list of considered values losses: list of obtained loss values corresponding to `values` max_loss_div: maximal divergence of loss to be considered significant min_val_div: minimum divergence of loss to be considered significant Returns: best value divided by `min_val_div` """ assert len(values) == len(losses), "lengths of values and losses should be equal" min_ind = np.argmin(losses) for i in range(min_ind - 1, 0, -1): if (losses[i] * max_loss_div > losses[min_ind]) or\ (values[i] * min_val_div < values[min_ind]): return values[i + 1] return values[min_ind] / min_val_div
[ "Find", "the", "best", "value", "according", "to", "given", "losses" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/models/lr_scheduled_model.py#L374-L394
[ "def", "_get_best", "(", "values", ":", "List", "[", "float", "]", ",", "losses", ":", "List", "[", "float", "]", ",", "max_loss_div", ":", "float", "=", "0.9", ",", "min_val_div", ":", "float", "=", "10.0", ")", "->", "float", ":", "assert", "len", "(", "values", ")", "==", "len", "(", "losses", ")", ",", "\"lengths of values and losses should be equal\"", "min_ind", "=", "np", ".", "argmin", "(", "losses", ")", "for", "i", "in", "range", "(", "min_ind", "-", "1", ",", "0", ",", "-", "1", ")", ":", "if", "(", "losses", "[", "i", "]", "*", "max_loss_div", ">", "losses", "[", "min_ind", "]", ")", "or", "(", "values", "[", "i", "]", "*", "min_val_div", "<", "values", "[", "min_ind", "]", ")", ":", "return", "values", "[", "i", "+", "1", "]", "return", "values", "[", "min_ind", "]", "/", "min_val_div" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
LRScheduledModel.process_event
Update learning rate and momentum variables after event (given by `event_name`) Args: event_name: name of event after which the method was called. Set of values: `"after_validation"`, `"after_batch"`, `"after_epoch"`, `"after_train_log"` data: dictionary with parameters values Returns: None
deeppavlov/core/models/lr_scheduled_model.py
def process_event(self, event_name: str, data: dict) -> None: """ Update learning rate and momentum variables after event (given by `event_name`) Args: event_name: name of event after which the method was called. Set of values: `"after_validation"`, `"after_batch"`, `"after_epoch"`, `"after_train_log"` data: dictionary with parameters values Returns: None """ if event_name == "after_validation": if data['impatience'] > self._learning_rate_last_impatience: self._learning_rate_cur_impatience += 1 else: self._learning_rate_cur_impatience = 0 self._learning_rate_last_impatience = data['impatience'] if (self._learning_rate_drop_patience is not None) and\ (self._learning_rate_cur_impatience >= self._learning_rate_drop_patience): self._learning_rate_cur_impatience = 0 self._learning_rate_cur_div *= self._learning_rate_drop_div self._lr /= self._learning_rate_drop_div self._update_graph_variables(learning_rate=self._lr) log.info(f"New learning rate dividor = {self._learning_rate_cur_div}") if event_name == 'after_batch': if (self._lr is not None) and self._lr_update_on_batch: self._lr = self._lr_schedule.next_val() / self._learning_rate_cur_div self._update_graph_variables(learning_rate=self._lr) if (self._mom is not None) and self._mom_update_on_batch: self._mom = min(1., max(0., self._mom_schedule.next_val())) self._update_graph_variables(momentum=self._mom) if event_name == 'after_epoch': if (self._lr is not None) and not self._lr_update_on_batch: self._lr = self._lr_schedule.next_val() / self._learning_rate_cur_div self._update_graph_variables(learning_rate=self._lr) if (self._mom is not None) and not self._mom_update_on_batch: self._mom = min(1., max(0., self._mom_schedule.next_val())) self._update_graph_variables(momentum=self._mom) if event_name == 'after_train_log': if (self._lr is not None) and ('learning_rate' not in data): data['learning_rate'] = self._lr if (self._mom is not None) and ('momentum' not in data): data['momentum'] = self._mom
def process_event(self, event_name: str, data: dict) -> None: """ Update learning rate and momentum variables after event (given by `event_name`) Args: event_name: name of event after which the method was called. Set of values: `"after_validation"`, `"after_batch"`, `"after_epoch"`, `"after_train_log"` data: dictionary with parameters values Returns: None """ if event_name == "after_validation": if data['impatience'] > self._learning_rate_last_impatience: self._learning_rate_cur_impatience += 1 else: self._learning_rate_cur_impatience = 0 self._learning_rate_last_impatience = data['impatience'] if (self._learning_rate_drop_patience is not None) and\ (self._learning_rate_cur_impatience >= self._learning_rate_drop_patience): self._learning_rate_cur_impatience = 0 self._learning_rate_cur_div *= self._learning_rate_drop_div self._lr /= self._learning_rate_drop_div self._update_graph_variables(learning_rate=self._lr) log.info(f"New learning rate dividor = {self._learning_rate_cur_div}") if event_name == 'after_batch': if (self._lr is not None) and self._lr_update_on_batch: self._lr = self._lr_schedule.next_val() / self._learning_rate_cur_div self._update_graph_variables(learning_rate=self._lr) if (self._mom is not None) and self._mom_update_on_batch: self._mom = min(1., max(0., self._mom_schedule.next_val())) self._update_graph_variables(momentum=self._mom) if event_name == 'after_epoch': if (self._lr is not None) and not self._lr_update_on_batch: self._lr = self._lr_schedule.next_val() / self._learning_rate_cur_div self._update_graph_variables(learning_rate=self._lr) if (self._mom is not None) and not self._mom_update_on_batch: self._mom = min(1., max(0., self._mom_schedule.next_val())) self._update_graph_variables(momentum=self._mom) if event_name == 'after_train_log': if (self._lr is not None) and ('learning_rate' not in data): data['learning_rate'] = self._lr if (self._mom is not None) and ('momentum' not in data): data['momentum'] = self._mom
[ "Update", "learning", "rate", "and", "momentum", "variables", "after", "event", "(", "given", "by", "event_name", ")" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/models/lr_scheduled_model.py#L396-L442
[ "def", "process_event", "(", "self", ",", "event_name", ":", "str", ",", "data", ":", "dict", ")", "->", "None", ":", "if", "event_name", "==", "\"after_validation\"", ":", "if", "data", "[", "'impatience'", "]", ">", "self", ".", "_learning_rate_last_impatience", ":", "self", ".", "_learning_rate_cur_impatience", "+=", "1", "else", ":", "self", ".", "_learning_rate_cur_impatience", "=", "0", "self", ".", "_learning_rate_last_impatience", "=", "data", "[", "'impatience'", "]", "if", "(", "self", ".", "_learning_rate_drop_patience", "is", "not", "None", ")", "and", "(", "self", ".", "_learning_rate_cur_impatience", ">=", "self", ".", "_learning_rate_drop_patience", ")", ":", "self", ".", "_learning_rate_cur_impatience", "=", "0", "self", ".", "_learning_rate_cur_div", "*=", "self", ".", "_learning_rate_drop_div", "self", ".", "_lr", "/=", "self", ".", "_learning_rate_drop_div", "self", ".", "_update_graph_variables", "(", "learning_rate", "=", "self", ".", "_lr", ")", "log", ".", "info", "(", "f\"New learning rate dividor = {self._learning_rate_cur_div}\"", ")", "if", "event_name", "==", "'after_batch'", ":", "if", "(", "self", ".", "_lr", "is", "not", "None", ")", "and", "self", ".", "_lr_update_on_batch", ":", "self", ".", "_lr", "=", "self", ".", "_lr_schedule", ".", "next_val", "(", ")", "/", "self", ".", "_learning_rate_cur_div", "self", ".", "_update_graph_variables", "(", "learning_rate", "=", "self", ".", "_lr", ")", "if", "(", "self", ".", "_mom", "is", "not", "None", ")", "and", "self", ".", "_mom_update_on_batch", ":", "self", ".", "_mom", "=", "min", "(", "1.", ",", "max", "(", "0.", ",", "self", ".", "_mom_schedule", ".", "next_val", "(", ")", ")", ")", "self", ".", "_update_graph_variables", "(", "momentum", "=", "self", ".", "_mom", ")", "if", "event_name", "==", "'after_epoch'", ":", "if", "(", "self", ".", "_lr", "is", "not", "None", ")", "and", "not", "self", ".", "_lr_update_on_batch", ":", "self", ".", "_lr", "=", "self", ".", "_lr_schedule", ".", "next_val", "(", ")", "/", "self", ".", "_learning_rate_cur_div", "self", ".", "_update_graph_variables", "(", "learning_rate", "=", "self", ".", "_lr", ")", "if", "(", "self", ".", "_mom", "is", "not", "None", ")", "and", "not", "self", ".", "_mom_update_on_batch", ":", "self", ".", "_mom", "=", "min", "(", "1.", ",", "max", "(", "0.", ",", "self", ".", "_mom_schedule", ".", "next_val", "(", ")", ")", ")", "self", ".", "_update_graph_variables", "(", "momentum", "=", "self", ".", "_mom", ")", "if", "event_name", "==", "'after_train_log'", ":", "if", "(", "self", ".", "_lr", "is", "not", "None", ")", "and", "(", "'learning_rate'", "not", "in", "data", ")", ":", "data", "[", "'learning_rate'", "]", "=", "self", ".", "_lr", "if", "(", "self", ".", "_mom", "is", "not", "None", ")", "and", "(", "'momentum'", "not", "in", "data", ")", ":", "data", "[", "'momentum'", "]", "=", "self", ".", "_mom" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
Embedder._encode
Embed one text sample Args: tokens: tokenized text sample mean: whether to return mean embedding of tokens per sample Returns: list of embedded tokens or array of mean values
deeppavlov/models/embedders/abstract_embedder.py
def _encode(self, tokens: List[str], mean: bool) -> Union[List[np.ndarray], np.ndarray]: """ Embed one text sample Args: tokens: tokenized text sample mean: whether to return mean embedding of tokens per sample Returns: list of embedded tokens or array of mean values """ embedded_tokens = [] for t in tokens: try: emb = self.tok2emb[t] except KeyError: try: emb = self._get_word_vector(t) except KeyError: emb = np.zeros(self.dim, dtype=np.float32) self.tok2emb[t] = emb embedded_tokens.append(emb) if mean is None: mean = self.mean if mean: filtered = [et for et in embedded_tokens if np.any(et)] if filtered: return np.mean(filtered, axis=0) return np.zeros(self.dim, dtype=np.float32) return embedded_tokens
def _encode(self, tokens: List[str], mean: bool) -> Union[List[np.ndarray], np.ndarray]: """ Embed one text sample Args: tokens: tokenized text sample mean: whether to return mean embedding of tokens per sample Returns: list of embedded tokens or array of mean values """ embedded_tokens = [] for t in tokens: try: emb = self.tok2emb[t] except KeyError: try: emb = self._get_word_vector(t) except KeyError: emb = np.zeros(self.dim, dtype=np.float32) self.tok2emb[t] = emb embedded_tokens.append(emb) if mean is None: mean = self.mean if mean: filtered = [et for et in embedded_tokens if np.any(et)] if filtered: return np.mean(filtered, axis=0) return np.zeros(self.dim, dtype=np.float32) return embedded_tokens
[ "Embed", "one", "text", "sample" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/embedders/abstract_embedder.py#L103-L135
[ "def", "_encode", "(", "self", ",", "tokens", ":", "List", "[", "str", "]", ",", "mean", ":", "bool", ")", "->", "Union", "[", "List", "[", "np", ".", "ndarray", "]", ",", "np", ".", "ndarray", "]", ":", "embedded_tokens", "=", "[", "]", "for", "t", "in", "tokens", ":", "try", ":", "emb", "=", "self", ".", "tok2emb", "[", "t", "]", "except", "KeyError", ":", "try", ":", "emb", "=", "self", ".", "_get_word_vector", "(", "t", ")", "except", "KeyError", ":", "emb", "=", "np", ".", "zeros", "(", "self", ".", "dim", ",", "dtype", "=", "np", ".", "float32", ")", "self", ".", "tok2emb", "[", "t", "]", "=", "emb", "embedded_tokens", ".", "append", "(", "emb", ")", "if", "mean", "is", "None", ":", "mean", "=", "self", ".", "mean", "if", "mean", ":", "filtered", "=", "[", "et", "for", "et", "in", "embedded_tokens", "if", "np", ".", "any", "(", "et", ")", "]", "if", "filtered", ":", "return", "np", ".", "mean", "(", "filtered", ",", "axis", "=", "0", ")", "return", "np", ".", "zeros", "(", "self", ".", "dim", ",", "dtype", "=", "np", ".", "float32", ")", "return", "embedded_tokens" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
read_requirements
parses requirements from requirements.txt
setup.py
def read_requirements(): """parses requirements from requirements.txt""" reqs_path = os.path.join(__location__, 'requirements.txt') with open(reqs_path, encoding='utf8') as f: reqs = [line.strip() for line in f if not line.strip().startswith('#')] names = [] links = [] for req in reqs: if '://' in req: links.append(req) else: names.append(req) return {'install_requires': names, 'dependency_links': links}
def read_requirements(): """parses requirements from requirements.txt""" reqs_path = os.path.join(__location__, 'requirements.txt') with open(reqs_path, encoding='utf8') as f: reqs = [line.strip() for line in f if not line.strip().startswith('#')] names = [] links = [] for req in reqs: if '://' in req: links.append(req) else: names.append(req) return {'install_requires': names, 'dependency_links': links}
[ "parses", "requirements", "from", "requirements", ".", "txt" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/setup.py#L22-L35
[ "def", "read_requirements", "(", ")", ":", "reqs_path", "=", "os", ".", "path", ".", "join", "(", "__location__", ",", "'requirements.txt'", ")", "with", "open", "(", "reqs_path", ",", "encoding", "=", "'utf8'", ")", "as", "f", ":", "reqs", "=", "[", "line", ".", "strip", "(", ")", "for", "line", "in", "f", "if", "not", "line", ".", "strip", "(", ")", ".", "startswith", "(", "'#'", ")", "]", "names", "=", "[", "]", "links", "=", "[", "]", "for", "req", "in", "reqs", ":", "if", "'://'", "in", "req", ":", "links", ".", "append", "(", "req", ")", "else", ":", "names", ".", "append", "(", "req", ")", "return", "{", "'install_requires'", ":", "names", ",", "'dependency_links'", ":", "links", "}" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
detokenize
Detokenizing a text undoes the tokenizing operation, restores punctuation and spaces to the places that people expect them to be. Ideally, `detokenize(tokenize(text))` should be identical to `text`, except for line breaks.
deeppavlov/models/tokenizers/utils.py
def detokenize(tokens): """ Detokenizing a text undoes the tokenizing operation, restores punctuation and spaces to the places that people expect them to be. Ideally, `detokenize(tokenize(text))` should be identical to `text`, except for line breaks. """ text = ' '.join(tokens) step0 = text.replace('. . .', '...') step1 = step0.replace("`` ", '"').replace(" ''", '"') step2 = step1.replace(" ( ", " (").replace(" ) ", ") ") step3 = re.sub(r' ([.,:;?!%]+)([ \'"`])', r"\1\2", step2) step4 = re.sub(r' ([.,:;?!%]+)$', r"\1", step3) step5 = step4.replace(" '", "'").replace(" n't", "n't") \ .replace(" nt", "nt").replace("can not", "cannot") step6 = step5.replace(" ` ", " '") return step6.strip()
def detokenize(tokens): """ Detokenizing a text undoes the tokenizing operation, restores punctuation and spaces to the places that people expect them to be. Ideally, `detokenize(tokenize(text))` should be identical to `text`, except for line breaks. """ text = ' '.join(tokens) step0 = text.replace('. . .', '...') step1 = step0.replace("`` ", '"').replace(" ''", '"') step2 = step1.replace(" ( ", " (").replace(" ) ", ") ") step3 = re.sub(r' ([.,:;?!%]+)([ \'"`])', r"\1\2", step2) step4 = re.sub(r' ([.,:;?!%]+)$', r"\1", step3) step5 = step4.replace(" '", "'").replace(" n't", "n't") \ .replace(" nt", "nt").replace("can not", "cannot") step6 = step5.replace(" ` ", " '") return step6.strip()
[ "Detokenizing", "a", "text", "undoes", "the", "tokenizing", "operation", "restores", "punctuation", "and", "spaces", "to", "the", "places", "that", "people", "expect", "them", "to", "be", ".", "Ideally", "detokenize", "(", "tokenize", "(", "text", "))", "should", "be", "identical", "to", "text", "except", "for", "line", "breaks", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/tokenizers/utils.py#L19-L35
[ "def", "detokenize", "(", "tokens", ")", ":", "text", "=", "' '", ".", "join", "(", "tokens", ")", "step0", "=", "text", ".", "replace", "(", "'. . .'", ",", "'...'", ")", "step1", "=", "step0", ".", "replace", "(", "\"`` \"", ",", "'\"'", ")", ".", "replace", "(", "\" ''\"", ",", "'\"'", ")", "step2", "=", "step1", ".", "replace", "(", "\" ( \"", ",", "\" (\"", ")", ".", "replace", "(", "\" ) \"", ",", "\") \"", ")", "step3", "=", "re", ".", "sub", "(", "r' ([.,:;?!%]+)([ \\'\"`])'", ",", "r\"\\1\\2\"", ",", "step2", ")", "step4", "=", "re", ".", "sub", "(", "r' ([.,:;?!%]+)$'", ",", "r\"\\1\"", ",", "step3", ")", "step5", "=", "step4", ".", "replace", "(", "\" '\"", ",", "\"'\"", ")", ".", "replace", "(", "\" n't\"", ",", "\"n't\"", ")", ".", "replace", "(", "\" nt\"", ",", "\"nt\"", ")", ".", "replace", "(", "\"can not\"", ",", "\"cannot\"", ")", "step6", "=", "step5", ".", "replace", "(", "\" ` \"", ",", "\" '\"", ")", "return", "step6", ".", "strip", "(", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
ngramize
Make ngrams from a list of tokens/lemmas :param items: list of tokens, lemmas or other strings to form ngrams :param ngram_range: range for producing ngrams, ex. for unigrams + bigrams should be set to (1, 2), for bigrams only should be set to (2, 2) :return: ngrams (as strings) generator
deeppavlov/models/tokenizers/utils.py
def ngramize(items: List[str], ngram_range=(1, 1)) -> Generator[List[str], Any, None]: """ Make ngrams from a list of tokens/lemmas :param items: list of tokens, lemmas or other strings to form ngrams :param ngram_range: range for producing ngrams, ex. for unigrams + bigrams should be set to (1, 2), for bigrams only should be set to (2, 2) :return: ngrams (as strings) generator """ ngrams = [] ranges = [(0, i) for i in range(ngram_range[0], ngram_range[1] + 1)] for r in ranges: ngrams += list(zip(*[items[j:] for j in range(*r)])) formatted_ngrams = [' '.join(item) for item in ngrams] yield formatted_ngrams
def ngramize(items: List[str], ngram_range=(1, 1)) -> Generator[List[str], Any, None]: """ Make ngrams from a list of tokens/lemmas :param items: list of tokens, lemmas or other strings to form ngrams :param ngram_range: range for producing ngrams, ex. for unigrams + bigrams should be set to (1, 2), for bigrams only should be set to (2, 2) :return: ngrams (as strings) generator """ ngrams = [] ranges = [(0, i) for i in range(ngram_range[0], ngram_range[1] + 1)] for r in ranges: ngrams += list(zip(*[items[j:] for j in range(*r)])) formatted_ngrams = [' '.join(item) for item in ngrams] yield formatted_ngrams
[ "Make", "ngrams", "from", "a", "list", "of", "tokens", "/", "lemmas", ":", "param", "items", ":", "list", "of", "tokens", "lemmas", "or", "other", "strings", "to", "form", "ngrams", ":", "param", "ngram_range", ":", "range", "for", "producing", "ngrams", "ex", ".", "for", "unigrams", "+", "bigrams", "should", "be", "set", "to", "(", "1", "2", ")", "for", "bigrams", "only", "should", "be", "set", "to", "(", "2", "2", ")", ":", "return", ":", "ngrams", "(", "as", "strings", ")", "generator" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/tokenizers/utils.py#L38-L54
[ "def", "ngramize", "(", "items", ":", "List", "[", "str", "]", ",", "ngram_range", "=", "(", "1", ",", "1", ")", ")", "->", "Generator", "[", "List", "[", "str", "]", ",", "Any", ",", "None", "]", ":", "ngrams", "=", "[", "]", "ranges", "=", "[", "(", "0", ",", "i", ")", "for", "i", "in", "range", "(", "ngram_range", "[", "0", "]", ",", "ngram_range", "[", "1", "]", "+", "1", ")", "]", "for", "r", "in", "ranges", ":", "ngrams", "+=", "list", "(", "zip", "(", "*", "[", "items", "[", "j", ":", "]", "for", "j", "in", "range", "(", "*", "r", ")", "]", ")", ")", "formatted_ngrams", "=", "[", "' '", ".", "join", "(", "item", ")", "for", "item", "in", "ngrams", "]", "yield", "formatted_ngrams" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
sk_log_loss
Calculates log loss. Args: y_true: list or array of true values y_predicted: list or array of predicted values Returns: Log loss
deeppavlov/metrics/log_loss.py
def sk_log_loss(y_true: Union[List[List[float]], List[List[int]], np.ndarray], y_predicted: Union[List[List[float]], List[List[int]], np.ndarray]) -> float: """ Calculates log loss. Args: y_true: list or array of true values y_predicted: list or array of predicted values Returns: Log loss """ return log_loss(y_true, y_predicted)
def sk_log_loss(y_true: Union[List[List[float]], List[List[int]], np.ndarray], y_predicted: Union[List[List[float]], List[List[int]], np.ndarray]) -> float: """ Calculates log loss. Args: y_true: list or array of true values y_predicted: list or array of predicted values Returns: Log loss """ return log_loss(y_true, y_predicted)
[ "Calculates", "log", "loss", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/metrics/log_loss.py#L25-L37
[ "def", "sk_log_loss", "(", "y_true", ":", "Union", "[", "List", "[", "List", "[", "float", "]", "]", ",", "List", "[", "List", "[", "int", "]", "]", ",", "np", ".", "ndarray", "]", ",", "y_predicted", ":", "Union", "[", "List", "[", "List", "[", "float", "]", "]", ",", "List", "[", "List", "[", "int", "]", "]", ",", "np", ".", "ndarray", "]", ")", "->", "float", ":", "return", "log_loss", "(", "y_true", ",", "y_predicted", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
make_module_spec
Makes a module spec. Args: options: LM hyperparameters. weight_file: location of the hdf5 file with LM weights. Returns: A module spec object used for constructing a TF-Hub module.
deeppavlov/models/elmo/elmo2tfhub.py
def make_module_spec(options, weight_file): """Makes a module spec. Args: options: LM hyperparameters. weight_file: location of the hdf5 file with LM weights. Returns: A module spec object used for constructing a TF-Hub module. """ def module_fn(): """Spec function for a token embedding module.""" # init _bos_id = 256 _eos_id = 257 _bow_id = 258 _eow_id = 259 _pad_id = 260 _max_word_length = 50 _parallel_iterations = 10 _max_batch_size = 1024 id_dtype = tf.int32 id_nptype = np.int32 max_word_length = tf.constant(_max_word_length, dtype=id_dtype, name='max_word_length') version = tf.constant('from_dp_1', dtype=tf.string, name='version') # the charcter representation of the begin/end of sentence characters def _make_bos_eos(c): r = np.zeros([_max_word_length], dtype=id_nptype) r[:] = _pad_id r[0] = _bow_id r[1] = c r[2] = _eow_id return tf.constant(r, dtype=id_dtype) bos_ids = _make_bos_eos(_bos_id) eos_ids = _make_bos_eos(_eos_id) def token2ids(token): with tf.name_scope("token2ids_preprocessor"): char_ids = tf.decode_raw(token, tf.uint8, name='decode_raw2get_char_ids') char_ids = tf.cast(char_ids, tf.int32, name='cast2int_token') char_ids = tf.strided_slice(char_ids, [0], [max_word_length - 2], [1], name='slice2resized_token') ids_num = tf.shape(char_ids)[0] fill_ids_num = (_max_word_length - 2) - ids_num pads = tf.fill([fill_ids_num], _pad_id) bow_token_eow_pads = tf.concat([[_bow_id], char_ids, [_eow_id], pads], 0, name='concat2bow_token_eow_pads') return bow_token_eow_pads def sentence_tagging_and_padding(sen_dim): with tf.name_scope("sentence_tagging_and_padding_preprocessor"): sen = sen_dim[0] dim = sen_dim[1] extra_dim = tf.shape(sen)[0] - dim sen = tf.slice(sen, [0, 0], [dim, max_word_length], name='slice2sen') bos_sen_eos = tf.concat([[bos_ids], sen, [eos_ids]], 0, name='concat2bos_sen_eos') bos_sen_eos_plus_one = bos_sen_eos + 1 bos_sen_eos_pads = tf.pad(bos_sen_eos_plus_one, [[0, extra_dim], [0, 0]], "CONSTANT", name='pad2bos_sen_eos_pads') return bos_sen_eos_pads # Input placeholders to the biLM. tokens = tf.placeholder(shape=(None, None), dtype=tf.string, name='ph2tokens') sequence_len = tf.placeholder(shape=(None, ), dtype=tf.int32, name='ph2sequence_len') tok_shape = tf.shape(tokens) line_tokens = tf.reshape(tokens, shape=[-1], name='reshape2line_tokens') with tf.device('/cpu:0'): tok_ids = tf.map_fn( token2ids, line_tokens, dtype=tf.int32, back_prop=False, parallel_iterations=_parallel_iterations, name='map_fn2get_tok_ids') tok_ids = tf.reshape(tok_ids, [tok_shape[0], tok_shape[1], -1], name='reshape2tok_ids') with tf.device('/cpu:0'): sen_ids = tf.map_fn( sentence_tagging_and_padding, (tok_ids, sequence_len), dtype=tf.int32, back_prop=False, parallel_iterations=_parallel_iterations, name='map_fn2get_sen_ids') # Build the biLM graph. bilm = BidirectionalLanguageModel(options, str(weight_file), max_batch_size=_max_batch_size) embeddings_op = bilm(sen_ids) # Get an op to compute ELMo (weighted average of the internal biLM layers) elmo_output = weight_layers('elmo_output', embeddings_op, l2_coef=0.0) weighted_op = elmo_output['weighted_op'] mean_op = elmo_output['mean_op'] word_emb = elmo_output['word_emb'] lstm_outputs1 = elmo_output['lstm_outputs1'] lstm_outputs2 = elmo_output['lstm_outputs2'] hub.add_signature("tokens", {"tokens": tokens, "sequence_len": sequence_len}, {"elmo": weighted_op, "default": mean_op, "word_emb": word_emb, "lstm_outputs1": lstm_outputs1, "lstm_outputs2": lstm_outputs2, "version": version}) # #########################Next signature############################# # # Input placeholders to the biLM. def_strings = tf.placeholder(shape=(None), dtype=tf.string) def_tokens_sparse = tf.string_split(def_strings) def_tokens_dense = tf.sparse_to_dense(sparse_indices=def_tokens_sparse.indices, output_shape=def_tokens_sparse.dense_shape, sparse_values=def_tokens_sparse.values, default_value='' ) def_mask = tf.not_equal(def_tokens_dense, '') def_int_mask = tf.cast(def_mask, dtype=tf.int32) def_sequence_len = tf.reduce_sum(def_int_mask, axis=-1) def_tok_shape = tf.shape(def_tokens_dense) def_line_tokens = tf.reshape(def_tokens_dense, shape=[-1], name='reshape2line_tokens') with tf.device('/cpu:0'): def_tok_ids = tf.map_fn( token2ids, def_line_tokens, dtype=tf.int32, back_prop=False, parallel_iterations=_parallel_iterations, name='map_fn2get_tok_ids') def_tok_ids = tf.reshape(def_tok_ids, [def_tok_shape[0], def_tok_shape[1], -1], name='reshape2tok_ids') with tf.device('/cpu:0'): def_sen_ids = tf.map_fn( sentence_tagging_and_padding, (def_tok_ids, def_sequence_len), dtype=tf.int32, back_prop=False, parallel_iterations=_parallel_iterations, name='map_fn2get_sen_ids') # Get ops to compute the LM embeddings. def_embeddings_op = bilm(def_sen_ids) # Get an op to compute ELMo (weighted average of the internal biLM layers) def_elmo_output = weight_layers('elmo_output', def_embeddings_op, l2_coef=0.0, reuse=True) def_weighted_op = def_elmo_output['weighted_op'] def_mean_op = def_elmo_output['mean_op'] def_word_emb = def_elmo_output['word_emb'] def_lstm_outputs1 = def_elmo_output['lstm_outputs1'] def_lstm_outputs2 = def_elmo_output['lstm_outputs2'] hub.add_signature("default", {"strings": def_strings}, {"elmo": def_weighted_op, "default": def_mean_op, "word_emb": def_word_emb, "lstm_outputs1": def_lstm_outputs1, "lstm_outputs2": def_lstm_outputs2, "version": version}) return hub.create_module_spec(module_fn)
def make_module_spec(options, weight_file): """Makes a module spec. Args: options: LM hyperparameters. weight_file: location of the hdf5 file with LM weights. Returns: A module spec object used for constructing a TF-Hub module. """ def module_fn(): """Spec function for a token embedding module.""" # init _bos_id = 256 _eos_id = 257 _bow_id = 258 _eow_id = 259 _pad_id = 260 _max_word_length = 50 _parallel_iterations = 10 _max_batch_size = 1024 id_dtype = tf.int32 id_nptype = np.int32 max_word_length = tf.constant(_max_word_length, dtype=id_dtype, name='max_word_length') version = tf.constant('from_dp_1', dtype=tf.string, name='version') # the charcter representation of the begin/end of sentence characters def _make_bos_eos(c): r = np.zeros([_max_word_length], dtype=id_nptype) r[:] = _pad_id r[0] = _bow_id r[1] = c r[2] = _eow_id return tf.constant(r, dtype=id_dtype) bos_ids = _make_bos_eos(_bos_id) eos_ids = _make_bos_eos(_eos_id) def token2ids(token): with tf.name_scope("token2ids_preprocessor"): char_ids = tf.decode_raw(token, tf.uint8, name='decode_raw2get_char_ids') char_ids = tf.cast(char_ids, tf.int32, name='cast2int_token') char_ids = tf.strided_slice(char_ids, [0], [max_word_length - 2], [1], name='slice2resized_token') ids_num = tf.shape(char_ids)[0] fill_ids_num = (_max_word_length - 2) - ids_num pads = tf.fill([fill_ids_num], _pad_id) bow_token_eow_pads = tf.concat([[_bow_id], char_ids, [_eow_id], pads], 0, name='concat2bow_token_eow_pads') return bow_token_eow_pads def sentence_tagging_and_padding(sen_dim): with tf.name_scope("sentence_tagging_and_padding_preprocessor"): sen = sen_dim[0] dim = sen_dim[1] extra_dim = tf.shape(sen)[0] - dim sen = tf.slice(sen, [0, 0], [dim, max_word_length], name='slice2sen') bos_sen_eos = tf.concat([[bos_ids], sen, [eos_ids]], 0, name='concat2bos_sen_eos') bos_sen_eos_plus_one = bos_sen_eos + 1 bos_sen_eos_pads = tf.pad(bos_sen_eos_plus_one, [[0, extra_dim], [0, 0]], "CONSTANT", name='pad2bos_sen_eos_pads') return bos_sen_eos_pads # Input placeholders to the biLM. tokens = tf.placeholder(shape=(None, None), dtype=tf.string, name='ph2tokens') sequence_len = tf.placeholder(shape=(None, ), dtype=tf.int32, name='ph2sequence_len') tok_shape = tf.shape(tokens) line_tokens = tf.reshape(tokens, shape=[-1], name='reshape2line_tokens') with tf.device('/cpu:0'): tok_ids = tf.map_fn( token2ids, line_tokens, dtype=tf.int32, back_prop=False, parallel_iterations=_parallel_iterations, name='map_fn2get_tok_ids') tok_ids = tf.reshape(tok_ids, [tok_shape[0], tok_shape[1], -1], name='reshape2tok_ids') with tf.device('/cpu:0'): sen_ids = tf.map_fn( sentence_tagging_and_padding, (tok_ids, sequence_len), dtype=tf.int32, back_prop=False, parallel_iterations=_parallel_iterations, name='map_fn2get_sen_ids') # Build the biLM graph. bilm = BidirectionalLanguageModel(options, str(weight_file), max_batch_size=_max_batch_size) embeddings_op = bilm(sen_ids) # Get an op to compute ELMo (weighted average of the internal biLM layers) elmo_output = weight_layers('elmo_output', embeddings_op, l2_coef=0.0) weighted_op = elmo_output['weighted_op'] mean_op = elmo_output['mean_op'] word_emb = elmo_output['word_emb'] lstm_outputs1 = elmo_output['lstm_outputs1'] lstm_outputs2 = elmo_output['lstm_outputs2'] hub.add_signature("tokens", {"tokens": tokens, "sequence_len": sequence_len}, {"elmo": weighted_op, "default": mean_op, "word_emb": word_emb, "lstm_outputs1": lstm_outputs1, "lstm_outputs2": lstm_outputs2, "version": version}) # #########################Next signature############################# # # Input placeholders to the biLM. def_strings = tf.placeholder(shape=(None), dtype=tf.string) def_tokens_sparse = tf.string_split(def_strings) def_tokens_dense = tf.sparse_to_dense(sparse_indices=def_tokens_sparse.indices, output_shape=def_tokens_sparse.dense_shape, sparse_values=def_tokens_sparse.values, default_value='' ) def_mask = tf.not_equal(def_tokens_dense, '') def_int_mask = tf.cast(def_mask, dtype=tf.int32) def_sequence_len = tf.reduce_sum(def_int_mask, axis=-1) def_tok_shape = tf.shape(def_tokens_dense) def_line_tokens = tf.reshape(def_tokens_dense, shape=[-1], name='reshape2line_tokens') with tf.device('/cpu:0'): def_tok_ids = tf.map_fn( token2ids, def_line_tokens, dtype=tf.int32, back_prop=False, parallel_iterations=_parallel_iterations, name='map_fn2get_tok_ids') def_tok_ids = tf.reshape(def_tok_ids, [def_tok_shape[0], def_tok_shape[1], -1], name='reshape2tok_ids') with tf.device('/cpu:0'): def_sen_ids = tf.map_fn( sentence_tagging_and_padding, (def_tok_ids, def_sequence_len), dtype=tf.int32, back_prop=False, parallel_iterations=_parallel_iterations, name='map_fn2get_sen_ids') # Get ops to compute the LM embeddings. def_embeddings_op = bilm(def_sen_ids) # Get an op to compute ELMo (weighted average of the internal biLM layers) def_elmo_output = weight_layers('elmo_output', def_embeddings_op, l2_coef=0.0, reuse=True) def_weighted_op = def_elmo_output['weighted_op'] def_mean_op = def_elmo_output['mean_op'] def_word_emb = def_elmo_output['word_emb'] def_lstm_outputs1 = def_elmo_output['lstm_outputs1'] def_lstm_outputs2 = def_elmo_output['lstm_outputs2'] hub.add_signature("default", {"strings": def_strings}, {"elmo": def_weighted_op, "default": def_mean_op, "word_emb": def_word_emb, "lstm_outputs1": def_lstm_outputs1, "lstm_outputs2": def_lstm_outputs2, "version": version}) return hub.create_module_spec(module_fn)
[ "Makes", "a", "module", "spec", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/elmo/elmo2tfhub.py#L23-L187
[ "def", "make_module_spec", "(", "options", ",", "weight_file", ")", ":", "def", "module_fn", "(", ")", ":", "\"\"\"Spec function for a token embedding module.\"\"\"", "# init", "_bos_id", "=", "256", "_eos_id", "=", "257", "_bow_id", "=", "258", "_eow_id", "=", "259", "_pad_id", "=", "260", "_max_word_length", "=", "50", "_parallel_iterations", "=", "10", "_max_batch_size", "=", "1024", "id_dtype", "=", "tf", ".", "int32", "id_nptype", "=", "np", ".", "int32", "max_word_length", "=", "tf", ".", "constant", "(", "_max_word_length", ",", "dtype", "=", "id_dtype", ",", "name", "=", "'max_word_length'", ")", "version", "=", "tf", ".", "constant", "(", "'from_dp_1'", ",", "dtype", "=", "tf", ".", "string", ",", "name", "=", "'version'", ")", "# the charcter representation of the begin/end of sentence characters", "def", "_make_bos_eos", "(", "c", ")", ":", "r", "=", "np", ".", "zeros", "(", "[", "_max_word_length", "]", ",", "dtype", "=", "id_nptype", ")", "r", "[", ":", "]", "=", "_pad_id", "r", "[", "0", "]", "=", "_bow_id", "r", "[", "1", "]", "=", "c", "r", "[", "2", "]", "=", "_eow_id", "return", "tf", ".", "constant", "(", "r", ",", "dtype", "=", "id_dtype", ")", "bos_ids", "=", "_make_bos_eos", "(", "_bos_id", ")", "eos_ids", "=", "_make_bos_eos", "(", "_eos_id", ")", "def", "token2ids", "(", "token", ")", ":", "with", "tf", ".", "name_scope", "(", "\"token2ids_preprocessor\"", ")", ":", "char_ids", "=", "tf", ".", "decode_raw", "(", "token", ",", "tf", ".", "uint8", ",", "name", "=", "'decode_raw2get_char_ids'", ")", "char_ids", "=", "tf", ".", "cast", "(", "char_ids", ",", "tf", ".", "int32", ",", "name", "=", "'cast2int_token'", ")", "char_ids", "=", "tf", ".", "strided_slice", "(", "char_ids", ",", "[", "0", "]", ",", "[", "max_word_length", "-", "2", "]", ",", "[", "1", "]", ",", "name", "=", "'slice2resized_token'", ")", "ids_num", "=", "tf", ".", "shape", "(", "char_ids", ")", "[", "0", "]", "fill_ids_num", "=", "(", "_max_word_length", "-", "2", ")", "-", "ids_num", "pads", "=", "tf", ".", "fill", "(", "[", "fill_ids_num", "]", ",", "_pad_id", ")", "bow_token_eow_pads", "=", "tf", ".", "concat", "(", "[", "[", "_bow_id", "]", ",", "char_ids", ",", "[", "_eow_id", "]", ",", "pads", "]", ",", "0", ",", "name", "=", "'concat2bow_token_eow_pads'", ")", "return", "bow_token_eow_pads", "def", "sentence_tagging_and_padding", "(", "sen_dim", ")", ":", "with", "tf", ".", "name_scope", "(", "\"sentence_tagging_and_padding_preprocessor\"", ")", ":", "sen", "=", "sen_dim", "[", "0", "]", "dim", "=", "sen_dim", "[", "1", "]", "extra_dim", "=", "tf", ".", "shape", "(", "sen", ")", "[", "0", "]", "-", "dim", "sen", "=", "tf", ".", "slice", "(", "sen", ",", "[", "0", ",", "0", "]", ",", "[", "dim", ",", "max_word_length", "]", ",", "name", "=", "'slice2sen'", ")", "bos_sen_eos", "=", "tf", ".", "concat", "(", "[", "[", "bos_ids", "]", ",", "sen", ",", "[", "eos_ids", "]", "]", ",", "0", ",", "name", "=", "'concat2bos_sen_eos'", ")", "bos_sen_eos_plus_one", "=", "bos_sen_eos", "+", "1", "bos_sen_eos_pads", "=", "tf", ".", "pad", "(", "bos_sen_eos_plus_one", ",", "[", "[", "0", ",", "extra_dim", "]", ",", "[", "0", ",", "0", "]", "]", ",", "\"CONSTANT\"", ",", "name", "=", "'pad2bos_sen_eos_pads'", ")", "return", "bos_sen_eos_pads", "# Input placeholders to the biLM.", "tokens", "=", "tf", ".", "placeholder", "(", "shape", "=", "(", "None", ",", "None", ")", ",", "dtype", "=", "tf", ".", "string", ",", "name", "=", "'ph2tokens'", ")", "sequence_len", "=", "tf", ".", "placeholder", "(", "shape", "=", "(", "None", ",", ")", ",", "dtype", "=", "tf", ".", "int32", ",", "name", "=", "'ph2sequence_len'", ")", "tok_shape", "=", "tf", ".", "shape", "(", "tokens", ")", "line_tokens", "=", "tf", ".", "reshape", "(", "tokens", ",", "shape", "=", "[", "-", "1", "]", ",", "name", "=", "'reshape2line_tokens'", ")", "with", "tf", ".", "device", "(", "'/cpu:0'", ")", ":", "tok_ids", "=", "tf", ".", "map_fn", "(", "token2ids", ",", "line_tokens", ",", "dtype", "=", "tf", ".", "int32", ",", "back_prop", "=", "False", ",", "parallel_iterations", "=", "_parallel_iterations", ",", "name", "=", "'map_fn2get_tok_ids'", ")", "tok_ids", "=", "tf", ".", "reshape", "(", "tok_ids", ",", "[", "tok_shape", "[", "0", "]", ",", "tok_shape", "[", "1", "]", ",", "-", "1", "]", ",", "name", "=", "'reshape2tok_ids'", ")", "with", "tf", ".", "device", "(", "'/cpu:0'", ")", ":", "sen_ids", "=", "tf", ".", "map_fn", "(", "sentence_tagging_and_padding", ",", "(", "tok_ids", ",", "sequence_len", ")", ",", "dtype", "=", "tf", ".", "int32", ",", "back_prop", "=", "False", ",", "parallel_iterations", "=", "_parallel_iterations", ",", "name", "=", "'map_fn2get_sen_ids'", ")", "# Build the biLM graph.", "bilm", "=", "BidirectionalLanguageModel", "(", "options", ",", "str", "(", "weight_file", ")", ",", "max_batch_size", "=", "_max_batch_size", ")", "embeddings_op", "=", "bilm", "(", "sen_ids", ")", "# Get an op to compute ELMo (weighted average of the internal biLM layers)", "elmo_output", "=", "weight_layers", "(", "'elmo_output'", ",", "embeddings_op", ",", "l2_coef", "=", "0.0", ")", "weighted_op", "=", "elmo_output", "[", "'weighted_op'", "]", "mean_op", "=", "elmo_output", "[", "'mean_op'", "]", "word_emb", "=", "elmo_output", "[", "'word_emb'", "]", "lstm_outputs1", "=", "elmo_output", "[", "'lstm_outputs1'", "]", "lstm_outputs2", "=", "elmo_output", "[", "'lstm_outputs2'", "]", "hub", ".", "add_signature", "(", "\"tokens\"", ",", "{", "\"tokens\"", ":", "tokens", ",", "\"sequence_len\"", ":", "sequence_len", "}", ",", "{", "\"elmo\"", ":", "weighted_op", ",", "\"default\"", ":", "mean_op", ",", "\"word_emb\"", ":", "word_emb", ",", "\"lstm_outputs1\"", ":", "lstm_outputs1", ",", "\"lstm_outputs2\"", ":", "lstm_outputs2", ",", "\"version\"", ":", "version", "}", ")", "# #########################Next signature############################# #", "# Input placeholders to the biLM.", "def_strings", "=", "tf", ".", "placeholder", "(", "shape", "=", "(", "None", ")", ",", "dtype", "=", "tf", ".", "string", ")", "def_tokens_sparse", "=", "tf", ".", "string_split", "(", "def_strings", ")", "def_tokens_dense", "=", "tf", ".", "sparse_to_dense", "(", "sparse_indices", "=", "def_tokens_sparse", ".", "indices", ",", "output_shape", "=", "def_tokens_sparse", ".", "dense_shape", ",", "sparse_values", "=", "def_tokens_sparse", ".", "values", ",", "default_value", "=", "''", ")", "def_mask", "=", "tf", ".", "not_equal", "(", "def_tokens_dense", ",", "''", ")", "def_int_mask", "=", "tf", ".", "cast", "(", "def_mask", ",", "dtype", "=", "tf", ".", "int32", ")", "def_sequence_len", "=", "tf", ".", "reduce_sum", "(", "def_int_mask", ",", "axis", "=", "-", "1", ")", "def_tok_shape", "=", "tf", ".", "shape", "(", "def_tokens_dense", ")", "def_line_tokens", "=", "tf", ".", "reshape", "(", "def_tokens_dense", ",", "shape", "=", "[", "-", "1", "]", ",", "name", "=", "'reshape2line_tokens'", ")", "with", "tf", ".", "device", "(", "'/cpu:0'", ")", ":", "def_tok_ids", "=", "tf", ".", "map_fn", "(", "token2ids", ",", "def_line_tokens", ",", "dtype", "=", "tf", ".", "int32", ",", "back_prop", "=", "False", ",", "parallel_iterations", "=", "_parallel_iterations", ",", "name", "=", "'map_fn2get_tok_ids'", ")", "def_tok_ids", "=", "tf", ".", "reshape", "(", "def_tok_ids", ",", "[", "def_tok_shape", "[", "0", "]", ",", "def_tok_shape", "[", "1", "]", ",", "-", "1", "]", ",", "name", "=", "'reshape2tok_ids'", ")", "with", "tf", ".", "device", "(", "'/cpu:0'", ")", ":", "def_sen_ids", "=", "tf", ".", "map_fn", "(", "sentence_tagging_and_padding", ",", "(", "def_tok_ids", ",", "def_sequence_len", ")", ",", "dtype", "=", "tf", ".", "int32", ",", "back_prop", "=", "False", ",", "parallel_iterations", "=", "_parallel_iterations", ",", "name", "=", "'map_fn2get_sen_ids'", ")", "# Get ops to compute the LM embeddings.", "def_embeddings_op", "=", "bilm", "(", "def_sen_ids", ")", "# Get an op to compute ELMo (weighted average of the internal biLM layers)", "def_elmo_output", "=", "weight_layers", "(", "'elmo_output'", ",", "def_embeddings_op", ",", "l2_coef", "=", "0.0", ",", "reuse", "=", "True", ")", "def_weighted_op", "=", "def_elmo_output", "[", "'weighted_op'", "]", "def_mean_op", "=", "def_elmo_output", "[", "'mean_op'", "]", "def_word_emb", "=", "def_elmo_output", "[", "'word_emb'", "]", "def_lstm_outputs1", "=", "def_elmo_output", "[", "'lstm_outputs1'", "]", "def_lstm_outputs2", "=", "def_elmo_output", "[", "'lstm_outputs2'", "]", "hub", ".", "add_signature", "(", "\"default\"", ",", "{", "\"strings\"", ":", "def_strings", "}", ",", "{", "\"elmo\"", ":", "def_weighted_op", ",", "\"default\"", ":", "def_mean_op", ",", "\"word_emb\"", ":", "def_word_emb", ",", "\"lstm_outputs1\"", ":", "def_lstm_outputs1", ",", "\"lstm_outputs2\"", ":", "def_lstm_outputs2", ",", "\"version\"", ":", "version", "}", ")", "return", "hub", ".", "create_module_spec", "(", "module_fn", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
export2hub
Exports a TF-Hub module
deeppavlov/models/elmo/elmo2tfhub.py
def export2hub(weight_file, hub_dir, options): """Exports a TF-Hub module """ spec = make_module_spec(options, str(weight_file)) try: with tf.Graph().as_default(): module = hub.Module(spec) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) if hub_dir.exists(): shutil.rmtree(hub_dir) module.export(str(hub_dir), sess) finally: pass
def export2hub(weight_file, hub_dir, options): """Exports a TF-Hub module """ spec = make_module_spec(options, str(weight_file)) try: with tf.Graph().as_default(): module = hub.Module(spec) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) if hub_dir.exists(): shutil.rmtree(hub_dir) module.export(str(hub_dir), sess) finally: pass
[ "Exports", "a", "TF", "-", "Hub", "module" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/elmo/elmo2tfhub.py#L190-L206
[ "def", "export2hub", "(", "weight_file", ",", "hub_dir", ",", "options", ")", ":", "spec", "=", "make_module_spec", "(", "options", ",", "str", "(", "weight_file", ")", ")", "try", ":", "with", "tf", ".", "Graph", "(", ")", ".", "as_default", "(", ")", ":", "module", "=", "hub", ".", "Module", "(", "spec", ")", "with", "tf", ".", "Session", "(", ")", "as", "sess", ":", "sess", ".", "run", "(", "tf", ".", "global_variables_initializer", "(", ")", ")", "if", "hub_dir", ".", "exists", "(", ")", ":", "shutil", ".", "rmtree", "(", "hub_dir", ")", "module", ".", "export", "(", "str", "(", "hub_dir", ")", ",", "sess", ")", "finally", ":", "pass" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
show_details
Format catalog item output Parameters: item_data: item's attributes values Returns: [rich_message]: list of formatted rich message
deeppavlov/agents/ecommerce_agent/ecommerce_agent.py
def show_details(item_data: Dict[Any, Any]) -> str: """Format catalog item output Parameters: item_data: item's attributes values Returns: [rich_message]: list of formatted rich message """ txt = "" for key, value in item_data.items(): txt += "**" + str(key) + "**" + ': ' + str(value) + " \n" return txt
def show_details(item_data: Dict[Any, Any]) -> str: """Format catalog item output Parameters: item_data: item's attributes values Returns: [rich_message]: list of formatted rich message """ txt = "" for key, value in item_data.items(): txt += "**" + str(key) + "**" + ': ' + str(value) + " \n" return txt
[ "Format", "catalog", "item", "output" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/agents/ecommerce_agent/ecommerce_agent.py#L158-L173
[ "def", "show_details", "(", "item_data", ":", "Dict", "[", "Any", ",", "Any", "]", ")", "->", "str", ":", "txt", "=", "\"\"", "for", "key", ",", "value", "in", "item_data", ".", "items", "(", ")", ":", "txt", "+=", "\"**\"", "+", "str", "(", "key", ")", "+", "\"**\"", "+", "': '", "+", "str", "(", "value", ")", "+", "\" \\n\"", "return", "txt" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
make_agent
Make an agent Returns: agent: created Ecommerce agent
deeppavlov/agents/ecommerce_agent/ecommerce_agent.py
def make_agent() -> EcommerceAgent: """Make an agent Returns: agent: created Ecommerce agent """ config_path = find_config('tfidf_retrieve') skill = build_model(config_path) agent = EcommerceAgent(skills=[skill]) return agent
def make_agent() -> EcommerceAgent: """Make an agent Returns: agent: created Ecommerce agent """ config_path = find_config('tfidf_retrieve') skill = build_model(config_path) agent = EcommerceAgent(skills=[skill]) return agent
[ "Make", "an", "agent" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/agents/ecommerce_agent/ecommerce_agent.py#L176-L186
[ "def", "make_agent", "(", ")", "->", "EcommerceAgent", ":", "config_path", "=", "find_config", "(", "'tfidf_retrieve'", ")", "skill", "=", "build_model", "(", "config_path", ")", "agent", "=", "EcommerceAgent", "(", "skills", "=", "[", "skill", "]", ")", "return", "agent" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
main
Parse parameters and run ms bot framework
deeppavlov/agents/ecommerce_agent/ecommerce_agent.py
def main(): """Parse parameters and run ms bot framework""" args = parser.parse_args() run_ms_bot_framework_server(agent_generator=make_agent, app_id=args.ms_id, app_secret=args.ms_secret, stateful=True)
def main(): """Parse parameters and run ms bot framework""" args = parser.parse_args() run_ms_bot_framework_server(agent_generator=make_agent, app_id=args.ms_id, app_secret=args.ms_secret, stateful=True)
[ "Parse", "parameters", "and", "run", "ms", "bot", "framework" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/agents/ecommerce_agent/ecommerce_agent.py#L189-L196
[ "def", "main", "(", ")", ":", "args", "=", "parser", ".", "parse_args", "(", ")", "run_ms_bot_framework_server", "(", "agent_generator", "=", "make_agent", ",", "app_id", "=", "args", ".", "ms_id", ",", "app_secret", "=", "args", ".", "ms_secret", ",", "stateful", "=", "True", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
EcommerceAgent._call
Processes batch of utterances and returns corresponding responses batch. Args: utterances_batch: Batch of incoming utterances. utterances_ids: Batch of dialog IDs corresponding to incoming utterances. Returns: responses: A batch of responses corresponding to the utterance batch received by agent.
deeppavlov/agents/ecommerce_agent/ecommerce_agent.py
def _call(self, utterances_batch: List[str], utterances_ids: List[int] = None) -> List[RichMessage]: """Processes batch of utterances and returns corresponding responses batch. Args: utterances_batch: Batch of incoming utterances. utterances_ids: Batch of dialog IDs corresponding to incoming utterances. Returns: responses: A batch of responses corresponding to the utterance batch received by agent. """ rich_message = RichMessage() for utt_id, utt in enumerate(utterances_batch): if utterances_ids: id_ = utterances_ids[utt_id] log.debug(f'Utterance: {utt}') if utt == "/start": welcome = "I am a new e-commerce bot. I will help you to find products that you are looking for. Please type your request in plain text." rich_message.add_control(PlainText(welcome)) continue if utt[0] == "@": command, *parts = utt.split(":") log.debug(f'Actions: {parts}') if command == "@details": batch_index = int(parts[0]) # batch index in history list item_index = int(parts[1]) # index in batch rich_message.add_control(PlainText(show_details( self.history[id_][batch_index][item_index]))) continue if command == "@entropy": state = self.history[id_][int(parts[0])] state[parts[1]] = parts[2] state["start"] = 0 state["stop"] = 5 utt = state['query'] self.states[id_] = state if command == "@next": state = self.history[id_][int(parts[0])] state['start'] = state['stop'] state['stop'] = state['stop'] + 5 utt = state['query'] self.states[id_] = state else: if id_ not in self.states: self.states[id_] = {} self.states[id_]["start"] = 0 self.states[id_]["stop"] = 5 responses_batch, confidences_batch, state_batch = self.skills[0]( [utt], self.history[id_], [self.states[id_]]) # update `self.states` with retrieved results self.states[id_] = state_batch[0] self.states[id_]["query"] = utt items_batch, entropy_batch = responses_batch for batch_idx, items in enumerate(items_batch): self.history[id_].append(items) self.history[id_].append(self.states[id_]) for idx, item in enumerate(items): rich_message.add_control(_draw_item(item, idx, self.history[id_])) if len(items) == self.states[id_]['stop'] - self.states[id_]['start']: buttons_frame = _draw_tail(entropy_batch[batch_idx], self.history[id_]) rich_message.add_control(buttons_frame) return [rich_message]
def _call(self, utterances_batch: List[str], utterances_ids: List[int] = None) -> List[RichMessage]: """Processes batch of utterances and returns corresponding responses batch. Args: utterances_batch: Batch of incoming utterances. utterances_ids: Batch of dialog IDs corresponding to incoming utterances. Returns: responses: A batch of responses corresponding to the utterance batch received by agent. """ rich_message = RichMessage() for utt_id, utt in enumerate(utterances_batch): if utterances_ids: id_ = utterances_ids[utt_id] log.debug(f'Utterance: {utt}') if utt == "/start": welcome = "I am a new e-commerce bot. I will help you to find products that you are looking for. Please type your request in plain text." rich_message.add_control(PlainText(welcome)) continue if utt[0] == "@": command, *parts = utt.split(":") log.debug(f'Actions: {parts}') if command == "@details": batch_index = int(parts[0]) # batch index in history list item_index = int(parts[1]) # index in batch rich_message.add_control(PlainText(show_details( self.history[id_][batch_index][item_index]))) continue if command == "@entropy": state = self.history[id_][int(parts[0])] state[parts[1]] = parts[2] state["start"] = 0 state["stop"] = 5 utt = state['query'] self.states[id_] = state if command == "@next": state = self.history[id_][int(parts[0])] state['start'] = state['stop'] state['stop'] = state['stop'] + 5 utt = state['query'] self.states[id_] = state else: if id_ not in self.states: self.states[id_] = {} self.states[id_]["start"] = 0 self.states[id_]["stop"] = 5 responses_batch, confidences_batch, state_batch = self.skills[0]( [utt], self.history[id_], [self.states[id_]]) # update `self.states` with retrieved results self.states[id_] = state_batch[0] self.states[id_]["query"] = utt items_batch, entropy_batch = responses_batch for batch_idx, items in enumerate(items_batch): self.history[id_].append(items) self.history[id_].append(self.states[id_]) for idx, item in enumerate(items): rich_message.add_control(_draw_item(item, idx, self.history[id_])) if len(items) == self.states[id_]['stop'] - self.states[id_]['start']: buttons_frame = _draw_tail(entropy_batch[batch_idx], self.history[id_]) rich_message.add_control(buttons_frame) return [rich_message]
[ "Processes", "batch", "of", "utterances", "and", "returns", "corresponding", "responses", "batch", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/agents/ecommerce_agent/ecommerce_agent.py#L53-L131
[ "def", "_call", "(", "self", ",", "utterances_batch", ":", "List", "[", "str", "]", ",", "utterances_ids", ":", "List", "[", "int", "]", "=", "None", ")", "->", "List", "[", "RichMessage", "]", ":", "rich_message", "=", "RichMessage", "(", ")", "for", "utt_id", ",", "utt", "in", "enumerate", "(", "utterances_batch", ")", ":", "if", "utterances_ids", ":", "id_", "=", "utterances_ids", "[", "utt_id", "]", "log", ".", "debug", "(", "f'Utterance: {utt}'", ")", "if", "utt", "==", "\"/start\"", ":", "welcome", "=", "\"I am a new e-commerce bot. I will help you to find products that you are looking for. Please type your request in plain text.\"", "rich_message", ".", "add_control", "(", "PlainText", "(", "welcome", ")", ")", "continue", "if", "utt", "[", "0", "]", "==", "\"@\"", ":", "command", ",", "", "*", "parts", "=", "utt", ".", "split", "(", "\":\"", ")", "log", ".", "debug", "(", "f'Actions: {parts}'", ")", "if", "command", "==", "\"@details\"", ":", "batch_index", "=", "int", "(", "parts", "[", "0", "]", ")", "# batch index in history list", "item_index", "=", "int", "(", "parts", "[", "1", "]", ")", "# index in batch", "rich_message", ".", "add_control", "(", "PlainText", "(", "show_details", "(", "self", ".", "history", "[", "id_", "]", "[", "batch_index", "]", "[", "item_index", "]", ")", ")", ")", "continue", "if", "command", "==", "\"@entropy\"", ":", "state", "=", "self", ".", "history", "[", "id_", "]", "[", "int", "(", "parts", "[", "0", "]", ")", "]", "state", "[", "parts", "[", "1", "]", "]", "=", "parts", "[", "2", "]", "state", "[", "\"start\"", "]", "=", "0", "state", "[", "\"stop\"", "]", "=", "5", "utt", "=", "state", "[", "'query'", "]", "self", ".", "states", "[", "id_", "]", "=", "state", "if", "command", "==", "\"@next\"", ":", "state", "=", "self", ".", "history", "[", "id_", "]", "[", "int", "(", "parts", "[", "0", "]", ")", "]", "state", "[", "'start'", "]", "=", "state", "[", "'stop'", "]", "state", "[", "'stop'", "]", "=", "state", "[", "'stop'", "]", "+", "5", "utt", "=", "state", "[", "'query'", "]", "self", ".", "states", "[", "id_", "]", "=", "state", "else", ":", "if", "id_", "not", "in", "self", ".", "states", ":", "self", ".", "states", "[", "id_", "]", "=", "{", "}", "self", ".", "states", "[", "id_", "]", "[", "\"start\"", "]", "=", "0", "self", ".", "states", "[", "id_", "]", "[", "\"stop\"", "]", "=", "5", "responses_batch", ",", "confidences_batch", ",", "state_batch", "=", "self", ".", "skills", "[", "0", "]", "(", "[", "utt", "]", ",", "self", ".", "history", "[", "id_", "]", ",", "[", "self", ".", "states", "[", "id_", "]", "]", ")", "# update `self.states` with retrieved results", "self", ".", "states", "[", "id_", "]", "=", "state_batch", "[", "0", "]", "self", ".", "states", "[", "id_", "]", "[", "\"query\"", "]", "=", "utt", "items_batch", ",", "entropy_batch", "=", "responses_batch", "for", "batch_idx", ",", "items", "in", "enumerate", "(", "items_batch", ")", ":", "self", ".", "history", "[", "id_", "]", ".", "append", "(", "items", ")", "self", ".", "history", "[", "id_", "]", ".", "append", "(", "self", ".", "states", "[", "id_", "]", ")", "for", "idx", ",", "item", "in", "enumerate", "(", "items", ")", ":", "rich_message", ".", "add_control", "(", "_draw_item", "(", "item", ",", "idx", ",", "self", ".", "history", "[", "id_", "]", ")", ")", "if", "len", "(", "items", ")", "==", "self", ".", "states", "[", "id_", "]", "[", "'stop'", "]", "-", "self", ".", "states", "[", "id_", "]", "[", "'start'", "]", ":", "buttons_frame", "=", "_draw_tail", "(", "entropy_batch", "[", "batch_idx", "]", ",", "self", ".", "history", "[", "id_", "]", ")", "rich_message", ".", "add_control", "(", "buttons_frame", ")", "return", "[", "rich_message", "]" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
TemporalDropout
Drops with :dropout probability temporal steps of input 3D tensor
deeppavlov/models/morpho_tagger/cells.py
def TemporalDropout(inputs, dropout=0.0): """ Drops with :dropout probability temporal steps of input 3D tensor """ # TO DO: adapt for >3D tensors if dropout == 0.0: return inputs inputs_func = lambda x: kb.ones_like(inputs[:, :, 0:1]) inputs_mask = kl.Lambda(inputs_func)(inputs) inputs_mask = kl.Dropout(dropout)(inputs_mask) tiling_shape = [1, 1, kb.shape(inputs)[2]] + [1] * (kb.ndim(inputs) - 3) inputs_mask = kl.Lambda(kb.tile, arguments={"n": tiling_shape}, output_shape=inputs._keras_shape[1:])(inputs_mask) answer = kl.Multiply()([inputs, inputs_mask]) return answer
def TemporalDropout(inputs, dropout=0.0): """ Drops with :dropout probability temporal steps of input 3D tensor """ # TO DO: adapt for >3D tensors if dropout == 0.0: return inputs inputs_func = lambda x: kb.ones_like(inputs[:, :, 0:1]) inputs_mask = kl.Lambda(inputs_func)(inputs) inputs_mask = kl.Dropout(dropout)(inputs_mask) tiling_shape = [1, 1, kb.shape(inputs)[2]] + [1] * (kb.ndim(inputs) - 3) inputs_mask = kl.Lambda(kb.tile, arguments={"n": tiling_shape}, output_shape=inputs._keras_shape[1:])(inputs_mask) answer = kl.Multiply()([inputs, inputs_mask]) return answer
[ "Drops", "with", ":", "dropout", "probability", "temporal", "steps", "of", "input", "3D", "tensor" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/morpho_tagger/cells.py#L141-L155
[ "def", "TemporalDropout", "(", "inputs", ",", "dropout", "=", "0.0", ")", ":", "# TO DO: adapt for >3D tensors", "if", "dropout", "==", "0.0", ":", "return", "inputs", "inputs_func", "=", "lambda", "x", ":", "kb", ".", "ones_like", "(", "inputs", "[", ":", ",", ":", ",", "0", ":", "1", "]", ")", "inputs_mask", "=", "kl", ".", "Lambda", "(", "inputs_func", ")", "(", "inputs", ")", "inputs_mask", "=", "kl", ".", "Dropout", "(", "dropout", ")", "(", "inputs_mask", ")", "tiling_shape", "=", "[", "1", ",", "1", ",", "kb", ".", "shape", "(", "inputs", ")", "[", "2", "]", "]", "+", "[", "1", "]", "*", "(", "kb", ".", "ndim", "(", "inputs", ")", "-", "3", ")", "inputs_mask", "=", "kl", ".", "Lambda", "(", "kb", ".", "tile", ",", "arguments", "=", "{", "\"n\"", ":", "tiling_shape", "}", ",", "output_shape", "=", "inputs", ".", "_keras_shape", "[", "1", ":", "]", ")", "(", "inputs_mask", ")", "answer", "=", "kl", ".", "Multiply", "(", ")", "(", "[", "inputs", ",", "inputs_mask", "]", ")", "return", "answer" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
positions_func
A layer filling i-th column of a 2D tensor with 1+ln(1+i) when it contains a meaningful symbol and with 0 when it contains PAD
deeppavlov/models/morpho_tagger/cells.py
def positions_func(inputs, pad=0): """ A layer filling i-th column of a 2D tensor with 1+ln(1+i) when it contains a meaningful symbol and with 0 when it contains PAD """ position_inputs = kb.cumsum(kb.ones_like(inputs, dtype="float32"), axis=1) position_inputs *= kb.cast(kb.not_equal(inputs, pad), "float32") return kb.log(1.0 + position_inputs)
def positions_func(inputs, pad=0): """ A layer filling i-th column of a 2D tensor with 1+ln(1+i) when it contains a meaningful symbol and with 0 when it contains PAD """ position_inputs = kb.cumsum(kb.ones_like(inputs, dtype="float32"), axis=1) position_inputs *= kb.cast(kb.not_equal(inputs, pad), "float32") return kb.log(1.0 + position_inputs)
[ "A", "layer", "filling", "i", "-", "th", "column", "of", "a", "2D", "tensor", "with", "1", "+", "ln", "(", "1", "+", "i", ")", "when", "it", "contains", "a", "meaningful", "symbol", "and", "with", "0", "when", "it", "contains", "PAD" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/models/morpho_tagger/cells.py#L158-L166
[ "def", "positions_func", "(", "inputs", ",", "pad", "=", "0", ")", ":", "position_inputs", "=", "kb", ".", "cumsum", "(", "kb", ".", "ones_like", "(", "inputs", ",", "dtype", "=", "\"float32\"", ")", ",", "axis", "=", "1", ")", "position_inputs", "*=", "kb", ".", "cast", "(", "kb", ".", "not_equal", "(", "inputs", ",", "pad", ")", ",", "\"float32\"", ")", "return", "kb", ".", "log", "(", "1.0", "+", "position_inputs", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
download
Download a file from URL to one or several target locations Args: dest_file_path: path or list of paths to the file destination files (including file name) source_url: the source URL force_download: download file if it already exists, or not
deeppavlov/core/data/utils.py
def download(dest_file_path: [List[Union[str, Path]]], source_url: str, force_download=True): """Download a file from URL to one or several target locations Args: dest_file_path: path or list of paths to the file destination files (including file name) source_url: the source URL force_download: download file if it already exists, or not """ if isinstance(dest_file_path, list): dest_file_paths = [Path(path) for path in dest_file_path] else: dest_file_paths = [Path(dest_file_path).absolute()] if not force_download: to_check = list(dest_file_paths) dest_file_paths = [] for p in to_check: if p.exists(): log.info(f'File already exists in {p}') else: dest_file_paths.append(p) if dest_file_paths: cache_dir = os.getenv('DP_CACHE_DIR') cached_exists = False if cache_dir: first_dest_path = Path(cache_dir) / md5(source_url.encode('utf8')).hexdigest()[:15] cached_exists = first_dest_path.exists() else: first_dest_path = dest_file_paths.pop() if not cached_exists: first_dest_path.parent.mkdir(parents=True, exist_ok=True) simple_download(source_url, first_dest_path) else: log.info(f'Found cached {source_url} in {first_dest_path}') for dest_path in dest_file_paths: dest_path.parent.mkdir(parents=True, exist_ok=True) shutil.copy(str(first_dest_path), str(dest_path))
def download(dest_file_path: [List[Union[str, Path]]], source_url: str, force_download=True): """Download a file from URL to one or several target locations Args: dest_file_path: path or list of paths to the file destination files (including file name) source_url: the source URL force_download: download file if it already exists, or not """ if isinstance(dest_file_path, list): dest_file_paths = [Path(path) for path in dest_file_path] else: dest_file_paths = [Path(dest_file_path).absolute()] if not force_download: to_check = list(dest_file_paths) dest_file_paths = [] for p in to_check: if p.exists(): log.info(f'File already exists in {p}') else: dest_file_paths.append(p) if dest_file_paths: cache_dir = os.getenv('DP_CACHE_DIR') cached_exists = False if cache_dir: first_dest_path = Path(cache_dir) / md5(source_url.encode('utf8')).hexdigest()[:15] cached_exists = first_dest_path.exists() else: first_dest_path = dest_file_paths.pop() if not cached_exists: first_dest_path.parent.mkdir(parents=True, exist_ok=True) simple_download(source_url, first_dest_path) else: log.info(f'Found cached {source_url} in {first_dest_path}') for dest_path in dest_file_paths: dest_path.parent.mkdir(parents=True, exist_ok=True) shutil.copy(str(first_dest_path), str(dest_path))
[ "Download", "a", "file", "from", "URL", "to", "one", "or", "several", "target", "locations" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/data/utils.py#L83-L125
[ "def", "download", "(", "dest_file_path", ":", "[", "List", "[", "Union", "[", "str", ",", "Path", "]", "]", "]", ",", "source_url", ":", "str", ",", "force_download", "=", "True", ")", ":", "if", "isinstance", "(", "dest_file_path", ",", "list", ")", ":", "dest_file_paths", "=", "[", "Path", "(", "path", ")", "for", "path", "in", "dest_file_path", "]", "else", ":", "dest_file_paths", "=", "[", "Path", "(", "dest_file_path", ")", ".", "absolute", "(", ")", "]", "if", "not", "force_download", ":", "to_check", "=", "list", "(", "dest_file_paths", ")", "dest_file_paths", "=", "[", "]", "for", "p", "in", "to_check", ":", "if", "p", ".", "exists", "(", ")", ":", "log", ".", "info", "(", "f'File already exists in {p}'", ")", "else", ":", "dest_file_paths", ".", "append", "(", "p", ")", "if", "dest_file_paths", ":", "cache_dir", "=", "os", ".", "getenv", "(", "'DP_CACHE_DIR'", ")", "cached_exists", "=", "False", "if", "cache_dir", ":", "first_dest_path", "=", "Path", "(", "cache_dir", ")", "/", "md5", "(", "source_url", ".", "encode", "(", "'utf8'", ")", ")", ".", "hexdigest", "(", ")", "[", ":", "15", "]", "cached_exists", "=", "first_dest_path", ".", "exists", "(", ")", "else", ":", "first_dest_path", "=", "dest_file_paths", ".", "pop", "(", ")", "if", "not", "cached_exists", ":", "first_dest_path", ".", "parent", ".", "mkdir", "(", "parents", "=", "True", ",", "exist_ok", "=", "True", ")", "simple_download", "(", "source_url", ",", "first_dest_path", ")", "else", ":", "log", ".", "info", "(", "f'Found cached {source_url} in {first_dest_path}'", ")", "for", "dest_path", "in", "dest_file_paths", ":", "dest_path", ".", "parent", ".", "mkdir", "(", "parents", "=", "True", ",", "exist_ok", "=", "True", ")", "shutil", ".", "copy", "(", "str", "(", "first_dest_path", ")", ",", "str", "(", "dest_path", ")", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
untar
Simple tar archive extractor Args: file_path: path to the tar file to be extracted extract_folder: folder to which the files will be extracted
deeppavlov/core/data/utils.py
def untar(file_path, extract_folder=None): """Simple tar archive extractor Args: file_path: path to the tar file to be extracted extract_folder: folder to which the files will be extracted """ file_path = Path(file_path) if extract_folder is None: extract_folder = file_path.parent extract_folder = Path(extract_folder) tar = tarfile.open(file_path) tar.extractall(extract_folder) tar.close()
def untar(file_path, extract_folder=None): """Simple tar archive extractor Args: file_path: path to the tar file to be extracted extract_folder: folder to which the files will be extracted """ file_path = Path(file_path) if extract_folder is None: extract_folder = file_path.parent extract_folder = Path(extract_folder) tar = tarfile.open(file_path) tar.extractall(extract_folder) tar.close()
[ "Simple", "tar", "archive", "extractor" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/data/utils.py#L128-L142
[ "def", "untar", "(", "file_path", ",", "extract_folder", "=", "None", ")", ":", "file_path", "=", "Path", "(", "file_path", ")", "if", "extract_folder", "is", "None", ":", "extract_folder", "=", "file_path", ".", "parent", "extract_folder", "=", "Path", "(", "extract_folder", ")", "tar", "=", "tarfile", ".", "open", "(", "file_path", ")", "tar", ".", "extractall", "(", "extract_folder", ")", "tar", ".", "close", "(", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
ungzip
Simple .gz archive extractor Args: file_path: path to the gzip file to be extracted extract_path: path where the file will be extracted
deeppavlov/core/data/utils.py
def ungzip(file_path, extract_path: Path = None): """Simple .gz archive extractor Args: file_path: path to the gzip file to be extracted extract_path: path where the file will be extracted """ CHUNK = 16 * 1024 file_path = Path(file_path) extract_path = extract_path or file_path.with_suffix('') with gzip.open(file_path, 'rb') as fin, extract_path.open('wb') as fout: while True: block = fin.read(CHUNK) if not block: break fout.write(block)
def ungzip(file_path, extract_path: Path = None): """Simple .gz archive extractor Args: file_path: path to the gzip file to be extracted extract_path: path where the file will be extracted """ CHUNK = 16 * 1024 file_path = Path(file_path) extract_path = extract_path or file_path.with_suffix('') with gzip.open(file_path, 'rb') as fin, extract_path.open('wb') as fout: while True: block = fin.read(CHUNK) if not block: break fout.write(block)
[ "Simple", ".", "gz", "archive", "extractor" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/data/utils.py#L145-L162
[ "def", "ungzip", "(", "file_path", ",", "extract_path", ":", "Path", "=", "None", ")", ":", "CHUNK", "=", "16", "*", "1024", "file_path", "=", "Path", "(", "file_path", ")", "extract_path", "=", "extract_path", "or", "file_path", ".", "with_suffix", "(", "''", ")", "with", "gzip", ".", "open", "(", "file_path", ",", "'rb'", ")", "as", "fin", ",", "extract_path", ".", "open", "(", "'wb'", ")", "as", "fout", ":", "while", "True", ":", "block", "=", "fin", ".", "read", "(", "CHUNK", ")", "if", "not", "block", ":", "break", "fout", ".", "write", "(", "block", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
download_decompress
Download and extract .tar.gz or .gz file to one or several target locations. The archive is deleted if extraction was successful. Args: url: URL for file downloading download_path: path to the directory where downloaded file will be stored until the end of extraction extract_paths: path or list of paths where contents of archive will be extracted
deeppavlov/core/data/utils.py
def download_decompress(url: str, download_path: [Path, str], extract_paths=None): """Download and extract .tar.gz or .gz file to one or several target locations. The archive is deleted if extraction was successful. Args: url: URL for file downloading download_path: path to the directory where downloaded file will be stored until the end of extraction extract_paths: path or list of paths where contents of archive will be extracted """ file_name = Path(urlparse(url).path).name download_path = Path(download_path) if extract_paths is None: extract_paths = [download_path] elif isinstance(extract_paths, list): extract_paths = [Path(path) for path in extract_paths] else: extract_paths = [Path(extract_paths)] cache_dir = os.getenv('DP_CACHE_DIR') extracted = False if cache_dir: cache_dir = Path(cache_dir) url_hash = md5(url.encode('utf8')).hexdigest()[:15] arch_file_path = cache_dir / url_hash extracted_path = cache_dir / (url_hash + '_extracted') extracted = extracted_path.exists() if not extracted and not arch_file_path.exists(): simple_download(url, arch_file_path) else: arch_file_path = download_path / file_name simple_download(url, arch_file_path) extracted_path = extract_paths.pop() if not extracted: log.info('Extracting {} archive into {}'.format(arch_file_path, extracted_path)) extracted_path.mkdir(parents=True, exist_ok=True) if file_name.endswith('.tar.gz'): untar(arch_file_path, extracted_path) elif file_name.endswith('.gz'): ungzip(arch_file_path, extracted_path / Path(file_name).with_suffix('').name) elif file_name.endswith('.zip'): with zipfile.ZipFile(arch_file_path, 'r') as zip_ref: zip_ref.extractall(extracted_path) else: raise RuntimeError(f'Trying to extract an unknown type of archive {file_name}') if not cache_dir: arch_file_path.unlink() for extract_path in extract_paths: for src in extracted_path.iterdir(): dest = extract_path / src.name if src.is_dir(): copytree(src, dest) else: extract_path.mkdir(parents=True, exist_ok=True) shutil.copy(str(src), str(dest))
def download_decompress(url: str, download_path: [Path, str], extract_paths=None): """Download and extract .tar.gz or .gz file to one or several target locations. The archive is deleted if extraction was successful. Args: url: URL for file downloading download_path: path to the directory where downloaded file will be stored until the end of extraction extract_paths: path or list of paths where contents of archive will be extracted """ file_name = Path(urlparse(url).path).name download_path = Path(download_path) if extract_paths is None: extract_paths = [download_path] elif isinstance(extract_paths, list): extract_paths = [Path(path) for path in extract_paths] else: extract_paths = [Path(extract_paths)] cache_dir = os.getenv('DP_CACHE_DIR') extracted = False if cache_dir: cache_dir = Path(cache_dir) url_hash = md5(url.encode('utf8')).hexdigest()[:15] arch_file_path = cache_dir / url_hash extracted_path = cache_dir / (url_hash + '_extracted') extracted = extracted_path.exists() if not extracted and not arch_file_path.exists(): simple_download(url, arch_file_path) else: arch_file_path = download_path / file_name simple_download(url, arch_file_path) extracted_path = extract_paths.pop() if not extracted: log.info('Extracting {} archive into {}'.format(arch_file_path, extracted_path)) extracted_path.mkdir(parents=True, exist_ok=True) if file_name.endswith('.tar.gz'): untar(arch_file_path, extracted_path) elif file_name.endswith('.gz'): ungzip(arch_file_path, extracted_path / Path(file_name).with_suffix('').name) elif file_name.endswith('.zip'): with zipfile.ZipFile(arch_file_path, 'r') as zip_ref: zip_ref.extractall(extracted_path) else: raise RuntimeError(f'Trying to extract an unknown type of archive {file_name}') if not cache_dir: arch_file_path.unlink() for extract_path in extract_paths: for src in extracted_path.iterdir(): dest = extract_path / src.name if src.is_dir(): copytree(src, dest) else: extract_path.mkdir(parents=True, exist_ok=True) shutil.copy(str(src), str(dest))
[ "Download", "and", "extract", ".", "tar", ".", "gz", "or", ".", "gz", "file", "to", "one", "or", "several", "target", "locations", ".", "The", "archive", "is", "deleted", "if", "extraction", "was", "successful", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/data/utils.py#L165-L224
[ "def", "download_decompress", "(", "url", ":", "str", ",", "download_path", ":", "[", "Path", ",", "str", "]", ",", "extract_paths", "=", "None", ")", ":", "file_name", "=", "Path", "(", "urlparse", "(", "url", ")", ".", "path", ")", ".", "name", "download_path", "=", "Path", "(", "download_path", ")", "if", "extract_paths", "is", "None", ":", "extract_paths", "=", "[", "download_path", "]", "elif", "isinstance", "(", "extract_paths", ",", "list", ")", ":", "extract_paths", "=", "[", "Path", "(", "path", ")", "for", "path", "in", "extract_paths", "]", "else", ":", "extract_paths", "=", "[", "Path", "(", "extract_paths", ")", "]", "cache_dir", "=", "os", ".", "getenv", "(", "'DP_CACHE_DIR'", ")", "extracted", "=", "False", "if", "cache_dir", ":", "cache_dir", "=", "Path", "(", "cache_dir", ")", "url_hash", "=", "md5", "(", "url", ".", "encode", "(", "'utf8'", ")", ")", ".", "hexdigest", "(", ")", "[", ":", "15", "]", "arch_file_path", "=", "cache_dir", "/", "url_hash", "extracted_path", "=", "cache_dir", "/", "(", "url_hash", "+", "'_extracted'", ")", "extracted", "=", "extracted_path", ".", "exists", "(", ")", "if", "not", "extracted", "and", "not", "arch_file_path", ".", "exists", "(", ")", ":", "simple_download", "(", "url", ",", "arch_file_path", ")", "else", ":", "arch_file_path", "=", "download_path", "/", "file_name", "simple_download", "(", "url", ",", "arch_file_path", ")", "extracted_path", "=", "extract_paths", ".", "pop", "(", ")", "if", "not", "extracted", ":", "log", ".", "info", "(", "'Extracting {} archive into {}'", ".", "format", "(", "arch_file_path", ",", "extracted_path", ")", ")", "extracted_path", ".", "mkdir", "(", "parents", "=", "True", ",", "exist_ok", "=", "True", ")", "if", "file_name", ".", "endswith", "(", "'.tar.gz'", ")", ":", "untar", "(", "arch_file_path", ",", "extracted_path", ")", "elif", "file_name", ".", "endswith", "(", "'.gz'", ")", ":", "ungzip", "(", "arch_file_path", ",", "extracted_path", "/", "Path", "(", "file_name", ")", ".", "with_suffix", "(", "''", ")", ".", "name", ")", "elif", "file_name", ".", "endswith", "(", "'.zip'", ")", ":", "with", "zipfile", ".", "ZipFile", "(", "arch_file_path", ",", "'r'", ")", "as", "zip_ref", ":", "zip_ref", ".", "extractall", "(", "extracted_path", ")", "else", ":", "raise", "RuntimeError", "(", "f'Trying to extract an unknown type of archive {file_name}'", ")", "if", "not", "cache_dir", ":", "arch_file_path", ".", "unlink", "(", ")", "for", "extract_path", "in", "extract_paths", ":", "for", "src", "in", "extracted_path", ".", "iterdir", "(", ")", ":", "dest", "=", "extract_path", "/", "src", ".", "name", "if", "src", ".", "is_dir", "(", ")", ":", "copytree", "(", "src", ",", "dest", ")", "else", ":", "extract_path", ".", "mkdir", "(", "parents", "=", "True", ",", "exist_ok", "=", "True", ")", "shutil", ".", "copy", "(", "str", "(", "src", ")", ",", "str", "(", "dest", ")", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
update_dict_recursive
Updates dict recursively You need to use this function to update dictionary if depth of editing_dict is more then 1 Args: editable_dict: dictionary, that will be edited editing_dict: dictionary, that contains edits Returns: None
deeppavlov/core/data/utils.py
def update_dict_recursive(editable_dict: dict, editing_dict: dict) -> None: """Updates dict recursively You need to use this function to update dictionary if depth of editing_dict is more then 1 Args: editable_dict: dictionary, that will be edited editing_dict: dictionary, that contains edits Returns: None """ for k, v in editing_dict.items(): if isinstance(v, collections.Mapping): update_dict_recursive(editable_dict.get(k, {}), v) else: editable_dict[k] = v
def update_dict_recursive(editable_dict: dict, editing_dict: dict) -> None: """Updates dict recursively You need to use this function to update dictionary if depth of editing_dict is more then 1 Args: editable_dict: dictionary, that will be edited editing_dict: dictionary, that contains edits Returns: None """ for k, v in editing_dict.items(): if isinstance(v, collections.Mapping): update_dict_recursive(editable_dict.get(k, {}), v) else: editable_dict[k] = v
[ "Updates", "dict", "recursively" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/data/utils.py#L431-L446
[ "def", "update_dict_recursive", "(", "editable_dict", ":", "dict", ",", "editing_dict", ":", "dict", ")", "->", "None", ":", "for", "k", ",", "v", "in", "editing_dict", ".", "items", "(", ")", ":", "if", "isinstance", "(", "v", ",", "collections", ".", "Mapping", ")", ":", "update_dict_recursive", "(", "editable_dict", ".", "get", "(", "k", ",", "{", "}", ")", ",", "v", ")", "else", ":", "editable_dict", "[", "k", "]", "=", "v" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
path_set_md5
Given a file URL, return a md5 query of the file Args: url: a given URL Returns: URL of the md5 file
deeppavlov/core/data/utils.py
def path_set_md5(url): """Given a file URL, return a md5 query of the file Args: url: a given URL Returns: URL of the md5 file """ scheme, netloc, path, query_string, fragment = urlsplit(url) path += '.md5' return urlunsplit((scheme, netloc, path, query_string, fragment))
def path_set_md5(url): """Given a file URL, return a md5 query of the file Args: url: a given URL Returns: URL of the md5 file """ scheme, netloc, path, query_string, fragment = urlsplit(url) path += '.md5' return urlunsplit((scheme, netloc, path, query_string, fragment))
[ "Given", "a", "file", "URL", "return", "a", "md5", "query", "of", "the", "file" ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/data/utils.py#L449-L460
[ "def", "path_set_md5", "(", "url", ")", ":", "scheme", ",", "netloc", ",", "path", ",", "query_string", ",", "fragment", "=", "urlsplit", "(", "url", ")", "path", "+=", "'.md5'", "return", "urlunsplit", "(", "(", "scheme", ",", "netloc", ",", "path", ",", "query_string", ",", "fragment", ")", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
set_query_parameter
Given a URL, set or replace a query parameter and return the modified URL. Args: url: a given URL param_name: the parameter name to add param_value: the parameter value Returns: URL with the added parameter
deeppavlov/core/data/utils.py
def set_query_parameter(url, param_name, param_value): """Given a URL, set or replace a query parameter and return the modified URL. Args: url: a given URL param_name: the parameter name to add param_value: the parameter value Returns: URL with the added parameter """ scheme, netloc, path, query_string, fragment = urlsplit(url) query_params = parse_qs(query_string) query_params[param_name] = [param_value] new_query_string = urlencode(query_params, doseq=True) return urlunsplit((scheme, netloc, path, new_query_string, fragment))
def set_query_parameter(url, param_name, param_value): """Given a URL, set or replace a query parameter and return the modified URL. Args: url: a given URL param_name: the parameter name to add param_value: the parameter value Returns: URL with the added parameter """ scheme, netloc, path, query_string, fragment = urlsplit(url) query_params = parse_qs(query_string) query_params[param_name] = [param_value] new_query_string = urlencode(query_params, doseq=True) return urlunsplit((scheme, netloc, path, new_query_string, fragment))
[ "Given", "a", "URL", "set", "or", "replace", "a", "query", "parameter", "and", "return", "the", "modified", "URL", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/core/data/utils.py#L463-L480
[ "def", "set_query_parameter", "(", "url", ",", "param_name", ",", "param_value", ")", ":", "scheme", ",", "netloc", ",", "path", ",", "query_string", ",", "fragment", "=", "urlsplit", "(", "url", ")", "query_params", "=", "parse_qs", "(", "query_string", ")", "query_params", "[", "param_name", "]", "=", "[", "param_value", "]", "new_query_string", "=", "urlencode", "(", "query_params", ",", "doseq", "=", "True", ")", "return", "urlunsplit", "(", "(", "scheme", ",", "netloc", ",", "path", ",", "new_query_string", ",", "fragment", ")", ")" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c
test
PlainText.alexa
Returns Amazon Alexa compatible state of the PlainText instance. Creating Amazon Alexa response blank with populated "outputSpeech" and "card sections. Returns: response: Amazon Alexa representation of PlainText state.
deeppavlov/agents/rich_content/default_rich_content.py
def alexa(self) -> dict: """Returns Amazon Alexa compatible state of the PlainText instance. Creating Amazon Alexa response blank with populated "outputSpeech" and "card sections. Returns: response: Amazon Alexa representation of PlainText state. """ response = { 'response': { 'shouldEndSession': False, 'outputSpeech': { 'type': 'PlainText', 'text': self.content}, 'card': { 'type': 'Simple', 'content': self.content } } } return response
def alexa(self) -> dict: """Returns Amazon Alexa compatible state of the PlainText instance. Creating Amazon Alexa response blank with populated "outputSpeech" and "card sections. Returns: response: Amazon Alexa representation of PlainText state. """ response = { 'response': { 'shouldEndSession': False, 'outputSpeech': { 'type': 'PlainText', 'text': self.content}, 'card': { 'type': 'Simple', 'content': self.content } } } return response
[ "Returns", "Amazon", "Alexa", "compatible", "state", "of", "the", "PlainText", "instance", "." ]
deepmipt/DeepPavlov
python
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/agents/rich_content/default_rich_content.py#L58-L80
[ "def", "alexa", "(", "self", ")", "->", "dict", ":", "response", "=", "{", "'response'", ":", "{", "'shouldEndSession'", ":", "False", ",", "'outputSpeech'", ":", "{", "'type'", ":", "'PlainText'", ",", "'text'", ":", "self", ".", "content", "}", ",", "'card'", ":", "{", "'type'", ":", "'Simple'", ",", "'content'", ":", "self", ".", "content", "}", "}", "}", "return", "response" ]
f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c