partition
stringclasses
3 values
func_name
stringlengths
1
134
docstring
stringlengths
1
46.9k
path
stringlengths
4
223
original_string
stringlengths
75
104k
code
stringlengths
75
104k
docstring_tokens
listlengths
1
1.97k
repo
stringlengths
7
55
language
stringclasses
1 value
url
stringlengths
87
315
code_tokens
listlengths
19
28.4k
sha
stringlengths
40
40
test
get_config_path
Determine the path to the config file. This will return, in this order of precedence: - the value of $BUGWARRIORRC if set - $XDG_CONFIG_HOME/bugwarrior/bugwarriorc if exists - ~/.bugwarriorrc if exists - <dir>/bugwarrior/bugwarriorc if exists, for dir in $XDG_CONFIG_DIRS - $XDG_CONFIG_HOME/bugwarrior/bugwarriorc otherwise
bugwarrior/config.py
def get_config_path(): """ Determine the path to the config file. This will return, in this order of precedence: - the value of $BUGWARRIORRC if set - $XDG_CONFIG_HOME/bugwarrior/bugwarriorc if exists - ~/.bugwarriorrc if exists - <dir>/bugwarrior/bugwarriorc if exists, for dir in $XDG_CONFIG_DIRS - $XDG_CONFIG_HOME/bugwarrior/bugwarriorc otherwise """ if os.environ.get(BUGWARRIORRC): return os.environ[BUGWARRIORRC] xdg_config_home = ( os.environ.get('XDG_CONFIG_HOME') or os.path.expanduser('~/.config')) xdg_config_dirs = ( (os.environ.get('XDG_CONFIG_DIRS') or '/etc/xdg').split(':')) paths = [ os.path.join(xdg_config_home, 'bugwarrior', 'bugwarriorrc'), os.path.expanduser("~/.bugwarriorrc")] paths += [ os.path.join(d, 'bugwarrior', 'bugwarriorrc') for d in xdg_config_dirs] for path in paths: if os.path.exists(path): return path return paths[0]
def get_config_path(): """ Determine the path to the config file. This will return, in this order of precedence: - the value of $BUGWARRIORRC if set - $XDG_CONFIG_HOME/bugwarrior/bugwarriorc if exists - ~/.bugwarriorrc if exists - <dir>/bugwarrior/bugwarriorc if exists, for dir in $XDG_CONFIG_DIRS - $XDG_CONFIG_HOME/bugwarrior/bugwarriorc otherwise """ if os.environ.get(BUGWARRIORRC): return os.environ[BUGWARRIORRC] xdg_config_home = ( os.environ.get('XDG_CONFIG_HOME') or os.path.expanduser('~/.config')) xdg_config_dirs = ( (os.environ.get('XDG_CONFIG_DIRS') or '/etc/xdg').split(':')) paths = [ os.path.join(xdg_config_home, 'bugwarrior', 'bugwarriorrc'), os.path.expanduser("~/.bugwarriorrc")] paths += [ os.path.join(d, 'bugwarrior', 'bugwarriorrc') for d in xdg_config_dirs] for path in paths: if os.path.exists(path): return path return paths[0]
[ "Determine", "the", "path", "to", "the", "config", "file", ".", "This", "will", "return", "in", "this", "order", "of", "precedence", ":", "-", "the", "value", "of", "$BUGWARRIORRC", "if", "set", "-", "$XDG_CONFIG_HOME", "/", "bugwarrior", "/", "bugwarriorc", "if", "exists", "-", "~", "/", ".", "bugwarriorrc", "if", "exists", "-", "<dir", ">", "/", "bugwarrior", "/", "bugwarriorc", "if", "exists", "for", "dir", "in", "$XDG_CONFIG_DIRS", "-", "$XDG_CONFIG_HOME", "/", "bugwarrior", "/", "bugwarriorc", "otherwise" ]
ralphbean/bugwarrior
python
https://github.com/ralphbean/bugwarrior/blob/b2a5108f7b40cb0c437509b64eaa28f941f7ac8b/bugwarrior/config.py#L186-L210
[ "def", "get_config_path", "(", ")", ":", "if", "os", ".", "environ", ".", "get", "(", "BUGWARRIORRC", ")", ":", "return", "os", ".", "environ", "[", "BUGWARRIORRC", "]", "xdg_config_home", "=", "(", "os", ".", "environ", ".", "get", "(", "'XDG_CONFIG_HOME'", ")", "or", "os", ".", "path", ".", "expanduser", "(", "'~/.config'", ")", ")", "xdg_config_dirs", "=", "(", "(", "os", ".", "environ", ".", "get", "(", "'XDG_CONFIG_DIRS'", ")", "or", "'/etc/xdg'", ")", ".", "split", "(", "':'", ")", ")", "paths", "=", "[", "os", ".", "path", ".", "join", "(", "xdg_config_home", ",", "'bugwarrior'", ",", "'bugwarriorrc'", ")", ",", "os", ".", "path", ".", "expanduser", "(", "\"~/.bugwarriorrc\"", ")", "]", "paths", "+=", "[", "os", ".", "path", ".", "join", "(", "d", ",", "'bugwarrior'", ",", "'bugwarriorrc'", ")", "for", "d", "in", "xdg_config_dirs", "]", "for", "path", "in", "paths", ":", "if", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "return", "path", "return", "paths", "[", "0", "]" ]
b2a5108f7b40cb0c437509b64eaa28f941f7ac8b
test
fix_logging_path
Expand environment variables and user home (~) in the log.file and return as relative path.
bugwarrior/config.py
def fix_logging_path(config, main_section): """ Expand environment variables and user home (~) in the log.file and return as relative path. """ log_file = config.get(main_section, 'log.file') if log_file: log_file = os.path.expanduser(os.path.expandvars(log_file)) if os.path.isabs(log_file): log_file = os.path.relpath(log_file) return log_file
def fix_logging_path(config, main_section): """ Expand environment variables and user home (~) in the log.file and return as relative path. """ log_file = config.get(main_section, 'log.file') if log_file: log_file = os.path.expanduser(os.path.expandvars(log_file)) if os.path.isabs(log_file): log_file = os.path.relpath(log_file) return log_file
[ "Expand", "environment", "variables", "and", "user", "home", "(", "~", ")", "in", "the", "log", ".", "file", "and", "return", "as", "relative", "path", "." ]
ralphbean/bugwarrior
python
https://github.com/ralphbean/bugwarrior/blob/b2a5108f7b40cb0c437509b64eaa28f941f7ac8b/bugwarrior/config.py#L213-L223
[ "def", "fix_logging_path", "(", "config", ",", "main_section", ")", ":", "log_file", "=", "config", ".", "get", "(", "main_section", ",", "'log.file'", ")", "if", "log_file", ":", "log_file", "=", "os", ".", "path", ".", "expanduser", "(", "os", ".", "path", ".", "expandvars", "(", "log_file", ")", ")", "if", "os", ".", "path", ".", "isabs", "(", "log_file", ")", ":", "log_file", "=", "os", ".", "path", ".", "relpath", "(", "log_file", ")", "return", "log_file" ]
b2a5108f7b40cb0c437509b64eaa28f941f7ac8b
test
BugwarriorConfigParser.getint
Accepts both integers and empty values.
bugwarrior/config.py
def getint(self, section, option): """ Accepts both integers and empty values. """ try: return super(BugwarriorConfigParser, self).getint(section, option) except ValueError: if self.get(section, option) == u'': return None else: raise ValueError( "{section}.{option} must be an integer or empty.".format( section=section, option=option))
def getint(self, section, option): """ Accepts both integers and empty values. """ try: return super(BugwarriorConfigParser, self).getint(section, option) except ValueError: if self.get(section, option) == u'': return None else: raise ValueError( "{section}.{option} must be an integer or empty.".format( section=section, option=option))
[ "Accepts", "both", "integers", "and", "empty", "values", "." ]
ralphbean/bugwarrior
python
https://github.com/ralphbean/bugwarrior/blob/b2a5108f7b40cb0c437509b64eaa28f941f7ac8b/bugwarrior/config.py#L272-L282
[ "def", "getint", "(", "self", ",", "section", ",", "option", ")", ":", "try", ":", "return", "super", "(", "BugwarriorConfigParser", ",", "self", ")", ".", "getint", "(", "section", ",", "option", ")", "except", "ValueError", ":", "if", "self", ".", "get", "(", "section", ",", "option", ")", "==", "u''", ":", "return", "None", "else", ":", "raise", "ValueError", "(", "\"{section}.{option} must be an integer or empty.\"", ".", "format", "(", "section", "=", "section", ",", "option", "=", "option", ")", ")" ]
b2a5108f7b40cb0c437509b64eaa28f941f7ac8b
test
_get_bug_attr
Default longdescs/flags case to [] since they may not be present.
bugwarrior/services/bz.py
def _get_bug_attr(bug, attr): """Default longdescs/flags case to [] since they may not be present.""" if attr in ("longdescs", "flags"): return getattr(bug, attr, []) return getattr(bug, attr)
def _get_bug_attr(bug, attr): """Default longdescs/flags case to [] since they may not be present.""" if attr in ("longdescs", "flags"): return getattr(bug, attr, []) return getattr(bug, attr)
[ "Default", "longdescs", "/", "flags", "case", "to", "[]", "since", "they", "may", "not", "be", "present", "." ]
ralphbean/bugwarrior
python
https://github.com/ralphbean/bugwarrior/blob/b2a5108f7b40cb0c437509b64eaa28f941f7ac8b/bugwarrior/services/bz.py#L286-L290
[ "def", "_get_bug_attr", "(", "bug", ",", "attr", ")", ":", "if", "attr", "in", "(", "\"longdescs\"", ",", "\"flags\"", ")", ":", "return", "getattr", "(", "bug", ",", "attr", ",", "[", "]", ")", "return", "getattr", "(", "bug", ",", "attr", ")" ]
b2a5108f7b40cb0c437509b64eaa28f941f7ac8b
test
pull
Pull down tasks from forges and add them to your taskwarrior tasks. Relies on configuration in bugwarriorrc
bugwarrior/command.py
def pull(dry_run, flavor, interactive, debug): """ Pull down tasks from forges and add them to your taskwarrior tasks. Relies on configuration in bugwarriorrc """ try: main_section = _get_section_name(flavor) config = _try_load_config(main_section, interactive) lockfile_path = os.path.join(get_data_path(config, main_section), 'bugwarrior.lockfile') lockfile = PIDLockFile(lockfile_path) lockfile.acquire(timeout=10) try: # Get all the issues. This can take a while. issue_generator = aggregate_issues(config, main_section, debug) # Stuff them in the taskwarrior db as necessary synchronize(issue_generator, config, main_section, dry_run) finally: lockfile.release() except LockTimeout: log.critical( 'Your taskrc repository is currently locked. ' 'Remove the file at %s if you are sure no other ' 'bugwarrior processes are currently running.' % ( lockfile_path ) ) except RuntimeError as e: log.exception("Aborted (%s)" % e)
def pull(dry_run, flavor, interactive, debug): """ Pull down tasks from forges and add them to your taskwarrior tasks. Relies on configuration in bugwarriorrc """ try: main_section = _get_section_name(flavor) config = _try_load_config(main_section, interactive) lockfile_path = os.path.join(get_data_path(config, main_section), 'bugwarrior.lockfile') lockfile = PIDLockFile(lockfile_path) lockfile.acquire(timeout=10) try: # Get all the issues. This can take a while. issue_generator = aggregate_issues(config, main_section, debug) # Stuff them in the taskwarrior db as necessary synchronize(issue_generator, config, main_section, dry_run) finally: lockfile.release() except LockTimeout: log.critical( 'Your taskrc repository is currently locked. ' 'Remove the file at %s if you are sure no other ' 'bugwarrior processes are currently running.' % ( lockfile_path ) ) except RuntimeError as e: log.exception("Aborted (%s)" % e)
[ "Pull", "down", "tasks", "from", "forges", "and", "add", "them", "to", "your", "taskwarrior", "tasks", "." ]
ralphbean/bugwarrior
python
https://github.com/ralphbean/bugwarrior/blob/b2a5108f7b40cb0c437509b64eaa28f941f7ac8b/bugwarrior/command.py#L54-L85
[ "def", "pull", "(", "dry_run", ",", "flavor", ",", "interactive", ",", "debug", ")", ":", "try", ":", "main_section", "=", "_get_section_name", "(", "flavor", ")", "config", "=", "_try_load_config", "(", "main_section", ",", "interactive", ")", "lockfile_path", "=", "os", ".", "path", ".", "join", "(", "get_data_path", "(", "config", ",", "main_section", ")", ",", "'bugwarrior.lockfile'", ")", "lockfile", "=", "PIDLockFile", "(", "lockfile_path", ")", "lockfile", ".", "acquire", "(", "timeout", "=", "10", ")", "try", ":", "# Get all the issues. This can take a while.", "issue_generator", "=", "aggregate_issues", "(", "config", ",", "main_section", ",", "debug", ")", "# Stuff them in the taskwarrior db as necessary", "synchronize", "(", "issue_generator", ",", "config", ",", "main_section", ",", "dry_run", ")", "finally", ":", "lockfile", ".", "release", "(", ")", "except", "LockTimeout", ":", "log", ".", "critical", "(", "'Your taskrc repository is currently locked. '", "'Remove the file at %s if you are sure no other '", "'bugwarrior processes are currently running.'", "%", "(", "lockfile_path", ")", ")", "except", "RuntimeError", "as", "e", ":", "log", ".", "exception", "(", "\"Aborted (%s)\"", "%", "e", ")" ]
b2a5108f7b40cb0c437509b64eaa28f941f7ac8b
test
BitbucketService.get_data
Perform a request to the fully qualified url and return json.
bugwarrior/services/bitbucket.py
def get_data(self, url): """ Perform a request to the fully qualified url and return json. """ return self.json_response(requests.get(url, **self.requests_kwargs))
def get_data(self, url): """ Perform a request to the fully qualified url and return json. """ return self.json_response(requests.get(url, **self.requests_kwargs))
[ "Perform", "a", "request", "to", "the", "fully", "qualified", "url", "and", "return", "json", "." ]
ralphbean/bugwarrior
python
https://github.com/ralphbean/bugwarrior/blob/b2a5108f7b40cb0c437509b64eaa28f941f7ac8b/bugwarrior/services/bitbucket.py#L142-L144
[ "def", "get_data", "(", "self", ",", "url", ")", ":", "return", "self", ".", "json_response", "(", "requests", ".", "get", "(", "url", ",", "*", "*", "self", ".", "requests_kwargs", ")", ")" ]
b2a5108f7b40cb0c437509b64eaa28f941f7ac8b
test
BitbucketService.get_collection
Pages through an object collection from the bitbucket API. Returns an iterator that lazily goes through all the 'values' of all the pages in the collection.
bugwarrior/services/bitbucket.py
def get_collection(self, url): """ Pages through an object collection from the bitbucket API. Returns an iterator that lazily goes through all the 'values' of all the pages in the collection. """ url = self.BASE_API2 + url while url is not None: response = self.get_data(url) for value in response['values']: yield value url = response.get('next', None)
def get_collection(self, url): """ Pages through an object collection from the bitbucket API. Returns an iterator that lazily goes through all the 'values' of all the pages in the collection. """ url = self.BASE_API2 + url while url is not None: response = self.get_data(url) for value in response['values']: yield value url = response.get('next', None)
[ "Pages", "through", "an", "object", "collection", "from", "the", "bitbucket", "API", ".", "Returns", "an", "iterator", "that", "lazily", "goes", "through", "all", "the", "values", "of", "all", "the", "pages", "in", "the", "collection", "." ]
ralphbean/bugwarrior
python
https://github.com/ralphbean/bugwarrior/blob/b2a5108f7b40cb0c437509b64eaa28f941f7ac8b/bugwarrior/services/bitbucket.py#L146-L155
[ "def", "get_collection", "(", "self", ",", "url", ")", ":", "url", "=", "self", ".", "BASE_API2", "+", "url", "while", "url", "is", "not", "None", ":", "response", "=", "self", ".", "get_data", "(", "url", ")", "for", "value", "in", "response", "[", "'values'", "]", ":", "yield", "value", "url", "=", "response", ".", "get", "(", "'next'", ",", "None", ")" ]
b2a5108f7b40cb0c437509b64eaa28f941f7ac8b
test
hamdist
Count the # of differences between equal length strings str1 and str2
bugwarrior/db.py
def hamdist(str1, str2): """Count the # of differences between equal length strings str1 and str2""" diffs = 0 for ch1, ch2 in zip(str1, str2): if ch1 != ch2: diffs += 1 return diffs
def hamdist(str1, str2): """Count the # of differences between equal length strings str1 and str2""" diffs = 0 for ch1, ch2 in zip(str1, str2): if ch1 != ch2: diffs += 1 return diffs
[ "Count", "the", "#", "of", "differences", "between", "equal", "length", "strings", "str1", "and", "str2" ]
ralphbean/bugwarrior
python
https://github.com/ralphbean/bugwarrior/blob/b2a5108f7b40cb0c437509b64eaa28f941f7ac8b/bugwarrior/db.py#L91-L97
[ "def", "hamdist", "(", "str1", ",", "str2", ")", ":", "diffs", "=", "0", "for", "ch1", ",", "ch2", "in", "zip", "(", "str1", ",", "str2", ")", ":", "if", "ch1", "!=", "ch2", ":", "diffs", "+=", "1", "return", "diffs" ]
b2a5108f7b40cb0c437509b64eaa28f941f7ac8b
test
find_local_uuid
For a given issue issue, find its local UUID. Assembles a list of task IDs existing in taskwarrior matching the supplied issue (`issue`) on the combination of any set of supplied unique identifiers (`keys`) or, optionally, the task's description field (should `legacy_matching` be `True`). :params: * `tw`: An instance of `taskw.TaskWarriorShellout` * `keys`: A list of lists of keys to use for uniquely identifying an issue. To clarify the "list of lists" behavior, assume that there are two services, one having a single primary key field -- 'serviceAid' -- and another having a pair of fields composing its primary key -- 'serviceBproject' and 'serviceBnumber' --, the incoming data for this field would be:: [ ['serviceAid'], ['serviceBproject', 'serviceBnumber'], ] * `issue`: An instance of a subclass of `bugwarrior.services.Issue`. * `legacy_matching`: By default, this is disabled, and it allows the matching algorithm to -- in addition to searching by stored issue keys -- search using the task's description for a match. It is prone to error and should avoided if possible. :returns: * A single string UUID. :raises: * `bugwarrior.db.MultipleMatches`: if multiple matches were found. * `bugwarrior.db.NotFound`: if an issue was not found.
bugwarrior/db.py
def find_local_uuid(tw, keys, issue, legacy_matching=False): """ For a given issue issue, find its local UUID. Assembles a list of task IDs existing in taskwarrior matching the supplied issue (`issue`) on the combination of any set of supplied unique identifiers (`keys`) or, optionally, the task's description field (should `legacy_matching` be `True`). :params: * `tw`: An instance of `taskw.TaskWarriorShellout` * `keys`: A list of lists of keys to use for uniquely identifying an issue. To clarify the "list of lists" behavior, assume that there are two services, one having a single primary key field -- 'serviceAid' -- and another having a pair of fields composing its primary key -- 'serviceBproject' and 'serviceBnumber' --, the incoming data for this field would be:: [ ['serviceAid'], ['serviceBproject', 'serviceBnumber'], ] * `issue`: An instance of a subclass of `bugwarrior.services.Issue`. * `legacy_matching`: By default, this is disabled, and it allows the matching algorithm to -- in addition to searching by stored issue keys -- search using the task's description for a match. It is prone to error and should avoided if possible. :returns: * A single string UUID. :raises: * `bugwarrior.db.MultipleMatches`: if multiple matches were found. * `bugwarrior.db.NotFound`: if an issue was not found. """ if not issue['description']: raise ValueError('Issue %s has no description.' % issue) possibilities = set([]) if legacy_matching: legacy_description = issue.get_default_description().rsplit('..', 1)[0] # Furthermore, we have to kill off any single quotes which break in # task-2.4.x, as much as it saddens me. legacy_description = legacy_description.split("'")[0] results = tw.filter_tasks({ 'description.startswith': legacy_description, 'or': [ ('status', 'pending'), ('status', 'waiting'), ], }) possibilities = possibilities | set([ task['uuid'] for task in results ]) for service, key_list in six.iteritems(keys): if any([key in issue for key in key_list]): results = tw.filter_tasks({ 'and': [("%s.is" % key, issue[key]) for key in key_list], 'or': [ ('status', 'pending'), ('status', 'waiting'), ], }) possibilities = possibilities | set([ task['uuid'] for task in results ]) if len(possibilities) == 1: return possibilities.pop() if len(possibilities) > 1: raise MultipleMatches( "Issue %s matched multiple IDs: %s" % ( issue['description'], possibilities ) ) raise NotFound( "No issue was found matching %s" % issue )
def find_local_uuid(tw, keys, issue, legacy_matching=False): """ For a given issue issue, find its local UUID. Assembles a list of task IDs existing in taskwarrior matching the supplied issue (`issue`) on the combination of any set of supplied unique identifiers (`keys`) or, optionally, the task's description field (should `legacy_matching` be `True`). :params: * `tw`: An instance of `taskw.TaskWarriorShellout` * `keys`: A list of lists of keys to use for uniquely identifying an issue. To clarify the "list of lists" behavior, assume that there are two services, one having a single primary key field -- 'serviceAid' -- and another having a pair of fields composing its primary key -- 'serviceBproject' and 'serviceBnumber' --, the incoming data for this field would be:: [ ['serviceAid'], ['serviceBproject', 'serviceBnumber'], ] * `issue`: An instance of a subclass of `bugwarrior.services.Issue`. * `legacy_matching`: By default, this is disabled, and it allows the matching algorithm to -- in addition to searching by stored issue keys -- search using the task's description for a match. It is prone to error and should avoided if possible. :returns: * A single string UUID. :raises: * `bugwarrior.db.MultipleMatches`: if multiple matches were found. * `bugwarrior.db.NotFound`: if an issue was not found. """ if not issue['description']: raise ValueError('Issue %s has no description.' % issue) possibilities = set([]) if legacy_matching: legacy_description = issue.get_default_description().rsplit('..', 1)[0] # Furthermore, we have to kill off any single quotes which break in # task-2.4.x, as much as it saddens me. legacy_description = legacy_description.split("'")[0] results = tw.filter_tasks({ 'description.startswith': legacy_description, 'or': [ ('status', 'pending'), ('status', 'waiting'), ], }) possibilities = possibilities | set([ task['uuid'] for task in results ]) for service, key_list in six.iteritems(keys): if any([key in issue for key in key_list]): results = tw.filter_tasks({ 'and': [("%s.is" % key, issue[key]) for key in key_list], 'or': [ ('status', 'pending'), ('status', 'waiting'), ], }) possibilities = possibilities | set([ task['uuid'] for task in results ]) if len(possibilities) == 1: return possibilities.pop() if len(possibilities) > 1: raise MultipleMatches( "Issue %s matched multiple IDs: %s" % ( issue['description'], possibilities ) ) raise NotFound( "No issue was found matching %s" % issue )
[ "For", "a", "given", "issue", "issue", "find", "its", "local", "UUID", "." ]
ralphbean/bugwarrior
python
https://github.com/ralphbean/bugwarrior/blob/b2a5108f7b40cb0c437509b64eaa28f941f7ac8b/bugwarrior/db.py#L129-L212
[ "def", "find_local_uuid", "(", "tw", ",", "keys", ",", "issue", ",", "legacy_matching", "=", "False", ")", ":", "if", "not", "issue", "[", "'description'", "]", ":", "raise", "ValueError", "(", "'Issue %s has no description.'", "%", "issue", ")", "possibilities", "=", "set", "(", "[", "]", ")", "if", "legacy_matching", ":", "legacy_description", "=", "issue", ".", "get_default_description", "(", ")", ".", "rsplit", "(", "'..'", ",", "1", ")", "[", "0", "]", "# Furthermore, we have to kill off any single quotes which break in", "# task-2.4.x, as much as it saddens me.", "legacy_description", "=", "legacy_description", ".", "split", "(", "\"'\"", ")", "[", "0", "]", "results", "=", "tw", ".", "filter_tasks", "(", "{", "'description.startswith'", ":", "legacy_description", ",", "'or'", ":", "[", "(", "'status'", ",", "'pending'", ")", ",", "(", "'status'", ",", "'waiting'", ")", ",", "]", ",", "}", ")", "possibilities", "=", "possibilities", "|", "set", "(", "[", "task", "[", "'uuid'", "]", "for", "task", "in", "results", "]", ")", "for", "service", ",", "key_list", "in", "six", ".", "iteritems", "(", "keys", ")", ":", "if", "any", "(", "[", "key", "in", "issue", "for", "key", "in", "key_list", "]", ")", ":", "results", "=", "tw", ".", "filter_tasks", "(", "{", "'and'", ":", "[", "(", "\"%s.is\"", "%", "key", ",", "issue", "[", "key", "]", ")", "for", "key", "in", "key_list", "]", ",", "'or'", ":", "[", "(", "'status'", ",", "'pending'", ")", ",", "(", "'status'", ",", "'waiting'", ")", ",", "]", ",", "}", ")", "possibilities", "=", "possibilities", "|", "set", "(", "[", "task", "[", "'uuid'", "]", "for", "task", "in", "results", "]", ")", "if", "len", "(", "possibilities", ")", "==", "1", ":", "return", "possibilities", ".", "pop", "(", ")", "if", "len", "(", "possibilities", ")", ">", "1", ":", "raise", "MultipleMatches", "(", "\"Issue %s matched multiple IDs: %s\"", "%", "(", "issue", "[", "'description'", "]", ",", "possibilities", ")", ")", "raise", "NotFound", "(", "\"No issue was found matching %s\"", "%", "issue", ")" ]
b2a5108f7b40cb0c437509b64eaa28f941f7ac8b
test
merge_left
Merge array field from the remote_issue into local_task * Local 'left' entries are preserved without modification * Remote 'left' are appended to task if not present in local. :param `field`: Task field to merge. :param `local_task`: `taskw.task.Task` object into which to merge remote changes. :param `remote_issue`: `dict` instance from which to merge into local task. :param `hamming`: (default `False`) If `True`, compare entries by truncating to maximum length, and comparing hamming distances. Useful generally only for annotations.
bugwarrior/db.py
def merge_left(field, local_task, remote_issue, hamming=False): """ Merge array field from the remote_issue into local_task * Local 'left' entries are preserved without modification * Remote 'left' are appended to task if not present in local. :param `field`: Task field to merge. :param `local_task`: `taskw.task.Task` object into which to merge remote changes. :param `remote_issue`: `dict` instance from which to merge into local task. :param `hamming`: (default `False`) If `True`, compare entries by truncating to maximum length, and comparing hamming distances. Useful generally only for annotations. """ # Ensure that empty defaults are present local_field = local_task.get(field, []) remote_field = remote_issue.get(field, []) # We need to make sure an array exists for this field because # we will be appending to it in a moment. if field not in local_task: local_task[field] = [] # If a remote does not appear in local, add it to the local task new_count = 0 for remote in remote_field: for local in local_field: if ( # For annotations, they don't have to match *exactly*. ( hamming and get_annotation_hamming_distance(remote, local) == 0 ) # But for everything else, they should. or ( remote == local ) ): break else: log.debug("%s not found in %r" % (remote, local_field)) local_task[field].append(remote) new_count += 1 if new_count > 0: log.debug('Added %s new values to %s (total: %s)' % ( new_count, field, len(local_task[field]),))
def merge_left(field, local_task, remote_issue, hamming=False): """ Merge array field from the remote_issue into local_task * Local 'left' entries are preserved without modification * Remote 'left' are appended to task if not present in local. :param `field`: Task field to merge. :param `local_task`: `taskw.task.Task` object into which to merge remote changes. :param `remote_issue`: `dict` instance from which to merge into local task. :param `hamming`: (default `False`) If `True`, compare entries by truncating to maximum length, and comparing hamming distances. Useful generally only for annotations. """ # Ensure that empty defaults are present local_field = local_task.get(field, []) remote_field = remote_issue.get(field, []) # We need to make sure an array exists for this field because # we will be appending to it in a moment. if field not in local_task: local_task[field] = [] # If a remote does not appear in local, add it to the local task new_count = 0 for remote in remote_field: for local in local_field: if ( # For annotations, they don't have to match *exactly*. ( hamming and get_annotation_hamming_distance(remote, local) == 0 ) # But for everything else, they should. or ( remote == local ) ): break else: log.debug("%s not found in %r" % (remote, local_field)) local_task[field].append(remote) new_count += 1 if new_count > 0: log.debug('Added %s new values to %s (total: %s)' % ( new_count, field, len(local_task[field]),))
[ "Merge", "array", "field", "from", "the", "remote_issue", "into", "local_task" ]
ralphbean/bugwarrior
python
https://github.com/ralphbean/bugwarrior/blob/b2a5108f7b40cb0c437509b64eaa28f941f7ac8b/bugwarrior/db.py#L215-L263
[ "def", "merge_left", "(", "field", ",", "local_task", ",", "remote_issue", ",", "hamming", "=", "False", ")", ":", "# Ensure that empty defaults are present", "local_field", "=", "local_task", ".", "get", "(", "field", ",", "[", "]", ")", "remote_field", "=", "remote_issue", ".", "get", "(", "field", ",", "[", "]", ")", "# We need to make sure an array exists for this field because", "# we will be appending to it in a moment.", "if", "field", "not", "in", "local_task", ":", "local_task", "[", "field", "]", "=", "[", "]", "# If a remote does not appear in local, add it to the local task", "new_count", "=", "0", "for", "remote", "in", "remote_field", ":", "for", "local", "in", "local_field", ":", "if", "(", "# For annotations, they don't have to match *exactly*.", "(", "hamming", "and", "get_annotation_hamming_distance", "(", "remote", ",", "local", ")", "==", "0", ")", "# But for everything else, they should.", "or", "(", "remote", "==", "local", ")", ")", ":", "break", "else", ":", "log", ".", "debug", "(", "\"%s not found in %r\"", "%", "(", "remote", ",", "local_field", ")", ")", "local_task", "[", "field", "]", ".", "append", "(", "remote", ")", "new_count", "+=", "1", "if", "new_count", ">", "0", ":", "log", ".", "debug", "(", "'Added %s new values to %s (total: %s)'", "%", "(", "new_count", ",", "field", ",", "len", "(", "local_task", "[", "field", "]", ")", ",", ")", ")" ]
b2a5108f7b40cb0c437509b64eaa28f941f7ac8b
test
build_uda_config_overrides
Returns a list of UDAs defined by given targets For all targets in `targets`, build a dictionary of configuration overrides representing the UDAs defined by the passed-in services (`targets`). Given a hypothetical situation in which you have two services, the first of which defining a UDA named 'serviceAid' ("Service A ID", string) and a second service defining two UDAs named 'serviceBproject' ("Service B Project", string) and 'serviceBnumber' ("Service B Number", numeric), this would return the following structure:: { 'uda': { 'serviceAid': { 'label': 'Service A ID', 'type': 'string', }, 'serviceBproject': { 'label': 'Service B Project', 'type': 'string', }, 'serviceBnumber': { 'label': 'Service B Number', 'type': 'numeric', } } }
bugwarrior/db.py
def build_uda_config_overrides(targets): """ Returns a list of UDAs defined by given targets For all targets in `targets`, build a dictionary of configuration overrides representing the UDAs defined by the passed-in services (`targets`). Given a hypothetical situation in which you have two services, the first of which defining a UDA named 'serviceAid' ("Service A ID", string) and a second service defining two UDAs named 'serviceBproject' ("Service B Project", string) and 'serviceBnumber' ("Service B Number", numeric), this would return the following structure:: { 'uda': { 'serviceAid': { 'label': 'Service A ID', 'type': 'string', }, 'serviceBproject': { 'label': 'Service B Project', 'type': 'string', }, 'serviceBnumber': { 'label': 'Service B Number', 'type': 'numeric', } } } """ from bugwarrior.services import get_service targets_udas = {} for target in targets: targets_udas.update(get_service(target).ISSUE_CLASS.UDAS) return { 'uda': targets_udas }
def build_uda_config_overrides(targets): """ Returns a list of UDAs defined by given targets For all targets in `targets`, build a dictionary of configuration overrides representing the UDAs defined by the passed-in services (`targets`). Given a hypothetical situation in which you have two services, the first of which defining a UDA named 'serviceAid' ("Service A ID", string) and a second service defining two UDAs named 'serviceBproject' ("Service B Project", string) and 'serviceBnumber' ("Service B Number", numeric), this would return the following structure:: { 'uda': { 'serviceAid': { 'label': 'Service A ID', 'type': 'string', }, 'serviceBproject': { 'label': 'Service B Project', 'type': 'string', }, 'serviceBnumber': { 'label': 'Service B Number', 'type': 'numeric', } } } """ from bugwarrior.services import get_service targets_udas = {} for target in targets: targets_udas.update(get_service(target).ISSUE_CLASS.UDAS) return { 'uda': targets_udas }
[ "Returns", "a", "list", "of", "UDAs", "defined", "by", "given", "targets" ]
ralphbean/bugwarrior
python
https://github.com/ralphbean/bugwarrior/blob/b2a5108f7b40cb0c437509b64eaa28f941f7ac8b/bugwarrior/db.py#L476-L514
[ "def", "build_uda_config_overrides", "(", "targets", ")", ":", "from", "bugwarrior", ".", "services", "import", "get_service", "targets_udas", "=", "{", "}", "for", "target", "in", "targets", ":", "targets_udas", ".", "update", "(", "get_service", "(", "target", ")", ".", "ISSUE_CLASS", ".", "UDAS", ")", "return", "{", "'uda'", ":", "targets_udas", "}" ]
b2a5108f7b40cb0c437509b64eaa28f941f7ac8b
test
_parse_sprint_string
Parse the big ugly sprint string stored by JIRA. They look like: com.atlassian.greenhopper.service.sprint.Sprint@4c9c41a5[id=2322,rapid ViewId=1173,state=ACTIVE,name=Sprint 1,startDate=2016-09-06T16:08:07.4 55Z,endDate=2016-09-23T16:08:00.000Z,completeDate=<null>,sequence=2322]
bugwarrior/services/jira.py
def _parse_sprint_string(sprint): """ Parse the big ugly sprint string stored by JIRA. They look like: com.atlassian.greenhopper.service.sprint.Sprint@4c9c41a5[id=2322,rapid ViewId=1173,state=ACTIVE,name=Sprint 1,startDate=2016-09-06T16:08:07.4 55Z,endDate=2016-09-23T16:08:00.000Z,completeDate=<null>,sequence=2322] """ entries = sprint[sprint.index('[')+1:sprint.index(']')].split('=') fields = sum((entry.rsplit(',', 1) for entry in entries), []) return dict(zip(fields[::2], fields[1::2]))
def _parse_sprint_string(sprint): """ Parse the big ugly sprint string stored by JIRA. They look like: com.atlassian.greenhopper.service.sprint.Sprint@4c9c41a5[id=2322,rapid ViewId=1173,state=ACTIVE,name=Sprint 1,startDate=2016-09-06T16:08:07.4 55Z,endDate=2016-09-23T16:08:00.000Z,completeDate=<null>,sequence=2322] """ entries = sprint[sprint.index('[')+1:sprint.index(']')].split('=') fields = sum((entry.rsplit(',', 1) for entry in entries), []) return dict(zip(fields[::2], fields[1::2]))
[ "Parse", "the", "big", "ugly", "sprint", "string", "stored", "by", "JIRA", "." ]
ralphbean/bugwarrior
python
https://github.com/ralphbean/bugwarrior/blob/b2a5108f7b40cb0c437509b64eaa28f941f7ac8b/bugwarrior/services/jira.py#L43-L53
[ "def", "_parse_sprint_string", "(", "sprint", ")", ":", "entries", "=", "sprint", "[", "sprint", ".", "index", "(", "'['", ")", "+", "1", ":", "sprint", ".", "index", "(", "']'", ")", "]", ".", "split", "(", "'='", ")", "fields", "=", "sum", "(", "(", "entry", ".", "rsplit", "(", "','", ",", "1", ")", "for", "entry", "in", "entries", ")", ",", "[", "]", ")", "return", "dict", "(", "zip", "(", "fields", "[", ":", ":", "2", "]", ",", "fields", "[", "1", ":", ":", "2", "]", ")", ")" ]
b2a5108f7b40cb0c437509b64eaa28f941f7ac8b
test
GmailService.get_credentials
Gets valid user credentials from storage. If nothing has been stored, or if the stored credentials are invalid, the OAuth2 flow is completed to obtain the new credentials. Returns: Credentials, the obtained credential.
bugwarrior/services/gmail.py
def get_credentials(self): """Gets valid user credentials from storage. If nothing has been stored, or if the stored credentials are invalid, the OAuth2 flow is completed to obtain the new credentials. Returns: Credentials, the obtained credential. """ with self.AUTHENTICATION_LOCK: log.info('Starting authentication for %s', self.target) store = oauth2client.file.Storage(self.credentials_path) credentials = store.get() if not credentials or credentials.invalid: log.info("No valid login. Starting OAUTH flow.") flow = oauth2client.client.flow_from_clientsecrets(self.client_secret_path, self.SCOPES) flow.user_agent = self.APPLICATION_NAME flags = oauth2client.tools.argparser.parse_args([]) credentials = oauth2client.tools.run_flow(flow, store, flags) log.info('Storing credentials to %r', self.credentials_path) return credentials
def get_credentials(self): """Gets valid user credentials from storage. If nothing has been stored, or if the stored credentials are invalid, the OAuth2 flow is completed to obtain the new credentials. Returns: Credentials, the obtained credential. """ with self.AUTHENTICATION_LOCK: log.info('Starting authentication for %s', self.target) store = oauth2client.file.Storage(self.credentials_path) credentials = store.get() if not credentials or credentials.invalid: log.info("No valid login. Starting OAUTH flow.") flow = oauth2client.client.flow_from_clientsecrets(self.client_secret_path, self.SCOPES) flow.user_agent = self.APPLICATION_NAME flags = oauth2client.tools.argparser.parse_args([]) credentials = oauth2client.tools.run_flow(flow, store, flags) log.info('Storing credentials to %r', self.credentials_path) return credentials
[ "Gets", "valid", "user", "credentials", "from", "storage", "." ]
ralphbean/bugwarrior
python
https://github.com/ralphbean/bugwarrior/blob/b2a5108f7b40cb0c437509b64eaa28f941f7ac8b/bugwarrior/services/gmail.py#L120-L140
[ "def", "get_credentials", "(", "self", ")", ":", "with", "self", ".", "AUTHENTICATION_LOCK", ":", "log", ".", "info", "(", "'Starting authentication for %s'", ",", "self", ".", "target", ")", "store", "=", "oauth2client", ".", "file", ".", "Storage", "(", "self", ".", "credentials_path", ")", "credentials", "=", "store", ".", "get", "(", ")", "if", "not", "credentials", "or", "credentials", ".", "invalid", ":", "log", ".", "info", "(", "\"No valid login. Starting OAUTH flow.\"", ")", "flow", "=", "oauth2client", ".", "client", ".", "flow_from_clientsecrets", "(", "self", ".", "client_secret_path", ",", "self", ".", "SCOPES", ")", "flow", ".", "user_agent", "=", "self", ".", "APPLICATION_NAME", "flags", "=", "oauth2client", ".", "tools", ".", "argparser", ".", "parse_args", "(", "[", "]", ")", "credentials", "=", "oauth2client", ".", "tools", ".", "run_flow", "(", "flow", ",", "store", ",", "flags", ")", "log", ".", "info", "(", "'Storing credentials to %r'", ",", "self", ".", "credentials_path", ")", "return", "credentials" ]
b2a5108f7b40cb0c437509b64eaa28f941f7ac8b
test
multi_rouge_n
Efficient way to compute highly repetitive scoring i.e. sequences are involved multiple time Args: sequences(list[str]): list of sequences (either hyp or ref) scores_ids(list[tuple(int)]): list of pairs (hyp_id, ref_id) ie. scores[i] = rouge_n(scores_ids[i][0], scores_ids[i][1]) Returns: scores: list of length `len(scores_ids)` containing rouge `n` scores as a dict with 'f', 'r', 'p' Raises: KeyError: if there's a value of i in scores_ids that is not in [0, len(sequences)[
rouge/rouge_score.py
def multi_rouge_n(sequences, scores_ids, n=2): """ Efficient way to compute highly repetitive scoring i.e. sequences are involved multiple time Args: sequences(list[str]): list of sequences (either hyp or ref) scores_ids(list[tuple(int)]): list of pairs (hyp_id, ref_id) ie. scores[i] = rouge_n(scores_ids[i][0], scores_ids[i][1]) Returns: scores: list of length `len(scores_ids)` containing rouge `n` scores as a dict with 'f', 'r', 'p' Raises: KeyError: if there's a value of i in scores_ids that is not in [0, len(sequences)[ """ ngrams = [_get_word_ngrams(n, sequence) for sequence in sequences] counts = [len(ngram) for ngram in ngrams] scores = [] for hyp_id, ref_id in scores_ids: evaluated_ngrams = ngrams[hyp_id] evaluated_count = counts[hyp_id] reference_ngrams = ngrams[ref_id] reference_count = counts[ref_id] overlapping_ngrams = evaluated_ngrams.intersection(reference_ngrams) overlapping_count = len(overlapping_ngrams) scores += [f_r_p_rouge_n(evaluated_count, reference_count, overlapping_count)] return scores
def multi_rouge_n(sequences, scores_ids, n=2): """ Efficient way to compute highly repetitive scoring i.e. sequences are involved multiple time Args: sequences(list[str]): list of sequences (either hyp or ref) scores_ids(list[tuple(int)]): list of pairs (hyp_id, ref_id) ie. scores[i] = rouge_n(scores_ids[i][0], scores_ids[i][1]) Returns: scores: list of length `len(scores_ids)` containing rouge `n` scores as a dict with 'f', 'r', 'p' Raises: KeyError: if there's a value of i in scores_ids that is not in [0, len(sequences)[ """ ngrams = [_get_word_ngrams(n, sequence) for sequence in sequences] counts = [len(ngram) for ngram in ngrams] scores = [] for hyp_id, ref_id in scores_ids: evaluated_ngrams = ngrams[hyp_id] evaluated_count = counts[hyp_id] reference_ngrams = ngrams[ref_id] reference_count = counts[ref_id] overlapping_ngrams = evaluated_ngrams.intersection(reference_ngrams) overlapping_count = len(overlapping_ngrams) scores += [f_r_p_rouge_n(evaluated_count, reference_count, overlapping_count)] return scores
[ "Efficient", "way", "to", "compute", "highly", "repetitive", "scoring", "i", ".", "e", ".", "sequences", "are", "involved", "multiple", "time" ]
pltrdy/rouge
python
https://github.com/pltrdy/rouge/blob/7bf8a83af5ca5c1677b93620b4e1f85ffd63b377/rouge/rouge_score.py#L140-L174
[ "def", "multi_rouge_n", "(", "sequences", ",", "scores_ids", ",", "n", "=", "2", ")", ":", "ngrams", "=", "[", "_get_word_ngrams", "(", "n", ",", "sequence", ")", "for", "sequence", "in", "sequences", "]", "counts", "=", "[", "len", "(", "ngram", ")", "for", "ngram", "in", "ngrams", "]", "scores", "=", "[", "]", "for", "hyp_id", ",", "ref_id", "in", "scores_ids", ":", "evaluated_ngrams", "=", "ngrams", "[", "hyp_id", "]", "evaluated_count", "=", "counts", "[", "hyp_id", "]", "reference_ngrams", "=", "ngrams", "[", "ref_id", "]", "reference_count", "=", "counts", "[", "ref_id", "]", "overlapping_ngrams", "=", "evaluated_ngrams", ".", "intersection", "(", "reference_ngrams", ")", "overlapping_count", "=", "len", "(", "overlapping_ngrams", ")", "scores", "+=", "[", "f_r_p_rouge_n", "(", "evaluated_count", ",", "reference_count", ",", "overlapping_count", ")", "]", "return", "scores" ]
7bf8a83af5ca5c1677b93620b4e1f85ffd63b377
test
rouge_n
Computes ROUGE-N of two text collections of sentences. Sourece: http://research.microsoft.com/en-us/um/people/cyl/download/ papers/rouge-working-note-v1.3.1.pdf Args: evaluated_sentences: The sentences that have been picked by the summarizer reference_sentences: The sentences from the referene set n: Size of ngram. Defaults to 2. Returns: A tuple (f1, precision, recall) for ROUGE-N Raises: ValueError: raises exception if a param has len <= 0
rouge/rouge_score.py
def rouge_n(evaluated_sentences, reference_sentences, n=2): """ Computes ROUGE-N of two text collections of sentences. Sourece: http://research.microsoft.com/en-us/um/people/cyl/download/ papers/rouge-working-note-v1.3.1.pdf Args: evaluated_sentences: The sentences that have been picked by the summarizer reference_sentences: The sentences from the referene set n: Size of ngram. Defaults to 2. Returns: A tuple (f1, precision, recall) for ROUGE-N Raises: ValueError: raises exception if a param has len <= 0 """ if len(evaluated_sentences) <= 0 or len(reference_sentences) <= 0: raise ValueError("Collections must contain at least 1 sentence.") evaluated_ngrams = _get_word_ngrams(n, evaluated_sentences) reference_ngrams = _get_word_ngrams(n, reference_sentences) reference_count = len(reference_ngrams) evaluated_count = len(evaluated_ngrams) # Gets the overlapping ngrams between evaluated and reference overlapping_ngrams = evaluated_ngrams.intersection(reference_ngrams) overlapping_count = len(overlapping_ngrams) return f_r_p_rouge_n(evaluated_count, reference_count, overlapping_count)
def rouge_n(evaluated_sentences, reference_sentences, n=2): """ Computes ROUGE-N of two text collections of sentences. Sourece: http://research.microsoft.com/en-us/um/people/cyl/download/ papers/rouge-working-note-v1.3.1.pdf Args: evaluated_sentences: The sentences that have been picked by the summarizer reference_sentences: The sentences from the referene set n: Size of ngram. Defaults to 2. Returns: A tuple (f1, precision, recall) for ROUGE-N Raises: ValueError: raises exception if a param has len <= 0 """ if len(evaluated_sentences) <= 0 or len(reference_sentences) <= 0: raise ValueError("Collections must contain at least 1 sentence.") evaluated_ngrams = _get_word_ngrams(n, evaluated_sentences) reference_ngrams = _get_word_ngrams(n, reference_sentences) reference_count = len(reference_ngrams) evaluated_count = len(evaluated_ngrams) # Gets the overlapping ngrams between evaluated and reference overlapping_ngrams = evaluated_ngrams.intersection(reference_ngrams) overlapping_count = len(overlapping_ngrams) return f_r_p_rouge_n(evaluated_count, reference_count, overlapping_count)
[ "Computes", "ROUGE", "-", "N", "of", "two", "text", "collections", "of", "sentences", ".", "Sourece", ":", "http", ":", "//", "research", ".", "microsoft", ".", "com", "/", "en", "-", "us", "/", "um", "/", "people", "/", "cyl", "/", "download", "/", "papers", "/", "rouge", "-", "working", "-", "note", "-", "v1", ".", "3", ".", "1", ".", "pdf" ]
pltrdy/rouge
python
https://github.com/pltrdy/rouge/blob/7bf8a83af5ca5c1677b93620b4e1f85ffd63b377/rouge/rouge_score.py#L177-L207
[ "def", "rouge_n", "(", "evaluated_sentences", ",", "reference_sentences", ",", "n", "=", "2", ")", ":", "if", "len", "(", "evaluated_sentences", ")", "<=", "0", "or", "len", "(", "reference_sentences", ")", "<=", "0", ":", "raise", "ValueError", "(", "\"Collections must contain at least 1 sentence.\"", ")", "evaluated_ngrams", "=", "_get_word_ngrams", "(", "n", ",", "evaluated_sentences", ")", "reference_ngrams", "=", "_get_word_ngrams", "(", "n", ",", "reference_sentences", ")", "reference_count", "=", "len", "(", "reference_ngrams", ")", "evaluated_count", "=", "len", "(", "evaluated_ngrams", ")", "# Gets the overlapping ngrams between evaluated and reference", "overlapping_ngrams", "=", "evaluated_ngrams", ".", "intersection", "(", "reference_ngrams", ")", "overlapping_count", "=", "len", "(", "overlapping_ngrams", ")", "return", "f_r_p_rouge_n", "(", "evaluated_count", ",", "reference_count", ",", "overlapping_count", ")" ]
7bf8a83af5ca5c1677b93620b4e1f85ffd63b377
test
_union_lcs
Returns LCS_u(r_i, C) which is the LCS score of the union longest common subsequence between reference sentence ri and candidate summary C. For example: if r_i= w1 w2 w3 w4 w5, and C contains two sentences: c1 = w1 w2 w6 w7 w8 and c2 = w1 w3 w8 w9 w5, then the longest common subsequence of r_i and c1 is "w1 w2" and the longest common subsequence of r_i and c2 is "w1 w3 w5". The union longest common subsequence of r_i, c1, and c2 is "w1 w2 w3 w5" and LCS_u(r_i, C) = 4/5. Args: evaluated_sentences: The sentences that have been picked by the summarizer reference_sentence: One of the sentences in the reference summaries Returns: float: LCS_u(r_i, C) ValueError: Raises exception if a param has len <= 0
rouge/rouge_score.py
def _union_lcs(evaluated_sentences, reference_sentence, prev_union=None): """ Returns LCS_u(r_i, C) which is the LCS score of the union longest common subsequence between reference sentence ri and candidate summary C. For example: if r_i= w1 w2 w3 w4 w5, and C contains two sentences: c1 = w1 w2 w6 w7 w8 and c2 = w1 w3 w8 w9 w5, then the longest common subsequence of r_i and c1 is "w1 w2" and the longest common subsequence of r_i and c2 is "w1 w3 w5". The union longest common subsequence of r_i, c1, and c2 is "w1 w2 w3 w5" and LCS_u(r_i, C) = 4/5. Args: evaluated_sentences: The sentences that have been picked by the summarizer reference_sentence: One of the sentences in the reference summaries Returns: float: LCS_u(r_i, C) ValueError: Raises exception if a param has len <= 0 """ if prev_union is None: prev_union = set() if len(evaluated_sentences) <= 0: raise ValueError("Collections must contain at least 1 sentence.") lcs_union = prev_union prev_count = len(prev_union) reference_words = _split_into_words([reference_sentence]) combined_lcs_length = 0 for eval_s in evaluated_sentences: evaluated_words = _split_into_words([eval_s]) lcs = set(_recon_lcs(reference_words, evaluated_words)) combined_lcs_length += len(lcs) lcs_union = lcs_union.union(lcs) new_lcs_count = len(lcs_union) - prev_count return new_lcs_count, lcs_union
def _union_lcs(evaluated_sentences, reference_sentence, prev_union=None): """ Returns LCS_u(r_i, C) which is the LCS score of the union longest common subsequence between reference sentence ri and candidate summary C. For example: if r_i= w1 w2 w3 w4 w5, and C contains two sentences: c1 = w1 w2 w6 w7 w8 and c2 = w1 w3 w8 w9 w5, then the longest common subsequence of r_i and c1 is "w1 w2" and the longest common subsequence of r_i and c2 is "w1 w3 w5". The union longest common subsequence of r_i, c1, and c2 is "w1 w2 w3 w5" and LCS_u(r_i, C) = 4/5. Args: evaluated_sentences: The sentences that have been picked by the summarizer reference_sentence: One of the sentences in the reference summaries Returns: float: LCS_u(r_i, C) ValueError: Raises exception if a param has len <= 0 """ if prev_union is None: prev_union = set() if len(evaluated_sentences) <= 0: raise ValueError("Collections must contain at least 1 sentence.") lcs_union = prev_union prev_count = len(prev_union) reference_words = _split_into_words([reference_sentence]) combined_lcs_length = 0 for eval_s in evaluated_sentences: evaluated_words = _split_into_words([eval_s]) lcs = set(_recon_lcs(reference_words, evaluated_words)) combined_lcs_length += len(lcs) lcs_union = lcs_union.union(lcs) new_lcs_count = len(lcs_union) - prev_count return new_lcs_count, lcs_union
[ "Returns", "LCS_u", "(", "r_i", "C", ")", "which", "is", "the", "LCS", "score", "of", "the", "union", "longest", "common", "subsequence", "between", "reference", "sentence", "ri", "and", "candidate", "summary", "C", ".", "For", "example", ":", "if", "r_i", "=", "w1", "w2", "w3", "w4", "w5", "and", "C", "contains", "two", "sentences", ":", "c1", "=", "w1", "w2", "w6", "w7", "w8", "and", "c2", "=", "w1", "w3", "w8", "w9", "w5", "then", "the", "longest", "common", "subsequence", "of", "r_i", "and", "c1", "is", "w1", "w2", "and", "the", "longest", "common", "subsequence", "of", "r_i", "and", "c2", "is", "w1", "w3", "w5", ".", "The", "union", "longest", "common", "subsequence", "of", "r_i", "c1", "and", "c2", "is", "w1", "w2", "w3", "w5", "and", "LCS_u", "(", "r_i", "C", ")", "=", "4", "/", "5", "." ]
pltrdy/rouge
python
https://github.com/pltrdy/rouge/blob/7bf8a83af5ca5c1677b93620b4e1f85ffd63b377/rouge/rouge_score.py#L227-L267
[ "def", "_union_lcs", "(", "evaluated_sentences", ",", "reference_sentence", ",", "prev_union", "=", "None", ")", ":", "if", "prev_union", "is", "None", ":", "prev_union", "=", "set", "(", ")", "if", "len", "(", "evaluated_sentences", ")", "<=", "0", ":", "raise", "ValueError", "(", "\"Collections must contain at least 1 sentence.\"", ")", "lcs_union", "=", "prev_union", "prev_count", "=", "len", "(", "prev_union", ")", "reference_words", "=", "_split_into_words", "(", "[", "reference_sentence", "]", ")", "combined_lcs_length", "=", "0", "for", "eval_s", "in", "evaluated_sentences", ":", "evaluated_words", "=", "_split_into_words", "(", "[", "eval_s", "]", ")", "lcs", "=", "set", "(", "_recon_lcs", "(", "reference_words", ",", "evaluated_words", ")", ")", "combined_lcs_length", "+=", "len", "(", "lcs", ")", "lcs_union", "=", "lcs_union", ".", "union", "(", "lcs", ")", "new_lcs_count", "=", "len", "(", "lcs_union", ")", "-", "prev_count", "return", "new_lcs_count", ",", "lcs_union" ]
7bf8a83af5ca5c1677b93620b4e1f85ffd63b377
test
rouge_l_summary_level
Computes ROUGE-L (summary level) of two text collections of sentences. http://research.microsoft.com/en-us/um/people/cyl/download/papers/ rouge-working-note-v1.3.1.pdf Calculated according to: R_lcs = SUM(1, u)[LCS<union>(r_i,C)]/m P_lcs = SUM(1, u)[LCS<union>(r_i,C)]/n F_lcs = ((1 + beta^2)*R_lcs*P_lcs) / (R_lcs + (beta^2) * P_lcs) where: SUM(i,u) = SUM from i through u u = number of sentences in reference summary C = Candidate summary made up of v sentences m = number of words in reference summary n = number of words in candidate summary Args: evaluated_sentences: The sentences that have been picked by the summarizer reference_sentence: One of the sentences in the reference summaries Returns: A float: F_lcs Raises: ValueError: raises exception if a param has len <= 0
rouge/rouge_score.py
def rouge_l_summary_level(evaluated_sentences, reference_sentences): """ Computes ROUGE-L (summary level) of two text collections of sentences. http://research.microsoft.com/en-us/um/people/cyl/download/papers/ rouge-working-note-v1.3.1.pdf Calculated according to: R_lcs = SUM(1, u)[LCS<union>(r_i,C)]/m P_lcs = SUM(1, u)[LCS<union>(r_i,C)]/n F_lcs = ((1 + beta^2)*R_lcs*P_lcs) / (R_lcs + (beta^2) * P_lcs) where: SUM(i,u) = SUM from i through u u = number of sentences in reference summary C = Candidate summary made up of v sentences m = number of words in reference summary n = number of words in candidate summary Args: evaluated_sentences: The sentences that have been picked by the summarizer reference_sentence: One of the sentences in the reference summaries Returns: A float: F_lcs Raises: ValueError: raises exception if a param has len <= 0 """ if len(evaluated_sentences) <= 0 or len(reference_sentences) <= 0: raise ValueError("Collections must contain at least 1 sentence.") # total number of words in reference sentences m = len(set(_split_into_words(reference_sentences))) # total number of words in evaluated sentences n = len(set(_split_into_words(evaluated_sentences))) # print("m,n %d %d" % (m, n)) union_lcs_sum_across_all_references = 0 union = set() for ref_s in reference_sentences: lcs_count, union = _union_lcs(evaluated_sentences, ref_s, prev_union=union) union_lcs_sum_across_all_references += lcs_count llcs = union_lcs_sum_across_all_references r_lcs = llcs / m p_lcs = llcs / n beta = p_lcs / (r_lcs + 1e-12) num = (1 + (beta**2)) * r_lcs * p_lcs denom = r_lcs + ((beta**2) * p_lcs) f_lcs = num / (denom + 1e-12) return {"f": f_lcs, "p": p_lcs, "r": r_lcs}
def rouge_l_summary_level(evaluated_sentences, reference_sentences): """ Computes ROUGE-L (summary level) of two text collections of sentences. http://research.microsoft.com/en-us/um/people/cyl/download/papers/ rouge-working-note-v1.3.1.pdf Calculated according to: R_lcs = SUM(1, u)[LCS<union>(r_i,C)]/m P_lcs = SUM(1, u)[LCS<union>(r_i,C)]/n F_lcs = ((1 + beta^2)*R_lcs*P_lcs) / (R_lcs + (beta^2) * P_lcs) where: SUM(i,u) = SUM from i through u u = number of sentences in reference summary C = Candidate summary made up of v sentences m = number of words in reference summary n = number of words in candidate summary Args: evaluated_sentences: The sentences that have been picked by the summarizer reference_sentence: One of the sentences in the reference summaries Returns: A float: F_lcs Raises: ValueError: raises exception if a param has len <= 0 """ if len(evaluated_sentences) <= 0 or len(reference_sentences) <= 0: raise ValueError("Collections must contain at least 1 sentence.") # total number of words in reference sentences m = len(set(_split_into_words(reference_sentences))) # total number of words in evaluated sentences n = len(set(_split_into_words(evaluated_sentences))) # print("m,n %d %d" % (m, n)) union_lcs_sum_across_all_references = 0 union = set() for ref_s in reference_sentences: lcs_count, union = _union_lcs(evaluated_sentences, ref_s, prev_union=union) union_lcs_sum_across_all_references += lcs_count llcs = union_lcs_sum_across_all_references r_lcs = llcs / m p_lcs = llcs / n beta = p_lcs / (r_lcs + 1e-12) num = (1 + (beta**2)) * r_lcs * p_lcs denom = r_lcs + ((beta**2) * p_lcs) f_lcs = num / (denom + 1e-12) return {"f": f_lcs, "p": p_lcs, "r": r_lcs}
[ "Computes", "ROUGE", "-", "L", "(", "summary", "level", ")", "of", "two", "text", "collections", "of", "sentences", ".", "http", ":", "//", "research", ".", "microsoft", ".", "com", "/", "en", "-", "us", "/", "um", "/", "people", "/", "cyl", "/", "download", "/", "papers", "/", "rouge", "-", "working", "-", "note", "-", "v1", ".", "3", ".", "1", ".", "pdf" ]
pltrdy/rouge
python
https://github.com/pltrdy/rouge/blob/7bf8a83af5ca5c1677b93620b4e1f85ffd63b377/rouge/rouge_score.py#L270-L324
[ "def", "rouge_l_summary_level", "(", "evaluated_sentences", ",", "reference_sentences", ")", ":", "if", "len", "(", "evaluated_sentences", ")", "<=", "0", "or", "len", "(", "reference_sentences", ")", "<=", "0", ":", "raise", "ValueError", "(", "\"Collections must contain at least 1 sentence.\"", ")", "# total number of words in reference sentences", "m", "=", "len", "(", "set", "(", "_split_into_words", "(", "reference_sentences", ")", ")", ")", "# total number of words in evaluated sentences", "n", "=", "len", "(", "set", "(", "_split_into_words", "(", "evaluated_sentences", ")", ")", ")", "# print(\"m,n %d %d\" % (m, n))", "union_lcs_sum_across_all_references", "=", "0", "union", "=", "set", "(", ")", "for", "ref_s", "in", "reference_sentences", ":", "lcs_count", ",", "union", "=", "_union_lcs", "(", "evaluated_sentences", ",", "ref_s", ",", "prev_union", "=", "union", ")", "union_lcs_sum_across_all_references", "+=", "lcs_count", "llcs", "=", "union_lcs_sum_across_all_references", "r_lcs", "=", "llcs", "/", "m", "p_lcs", "=", "llcs", "/", "n", "beta", "=", "p_lcs", "/", "(", "r_lcs", "+", "1e-12", ")", "num", "=", "(", "1", "+", "(", "beta", "**", "2", ")", ")", "*", "r_lcs", "*", "p_lcs", "denom", "=", "r_lcs", "+", "(", "(", "beta", "**", "2", ")", "*", "p_lcs", ")", "f_lcs", "=", "num", "/", "(", "denom", "+", "1e-12", ")", "return", "{", "\"f\"", ":", "f_lcs", ",", "\"p\"", ":", "p_lcs", ",", "\"r\"", ":", "r_lcs", "}" ]
7bf8a83af5ca5c1677b93620b4e1f85ffd63b377
test
FilesRouge.get_scores
Calculate ROUGE scores between each pair of lines (hyp_file[i], ref_file[i]). Args: * hyp_path: hypothesis file path * ref_path: references file path * avg (False): whether to get an average scores or a list
rouge/rouge.py
def get_scores(self, avg=False, ignore_empty=False): """Calculate ROUGE scores between each pair of lines (hyp_file[i], ref_file[i]). Args: * hyp_path: hypothesis file path * ref_path: references file path * avg (False): whether to get an average scores or a list """ hyp_path, ref_path = self.hyp_path, self.ref_path with io.open(hyp_path, encoding="utf-8", mode="r") as hyp_file: hyps = [line[:-1] for line in hyp_file] with io.open(ref_path, encoding="utf-8", mode="r") as ref_file: refs = [line[:-1] for line in ref_file] return self.rouge.get_scores(hyps, refs, avg=avg, ignore_empty=ignore_empty)
def get_scores(self, avg=False, ignore_empty=False): """Calculate ROUGE scores between each pair of lines (hyp_file[i], ref_file[i]). Args: * hyp_path: hypothesis file path * ref_path: references file path * avg (False): whether to get an average scores or a list """ hyp_path, ref_path = self.hyp_path, self.ref_path with io.open(hyp_path, encoding="utf-8", mode="r") as hyp_file: hyps = [line[:-1] for line in hyp_file] with io.open(ref_path, encoding="utf-8", mode="r") as ref_file: refs = [line[:-1] for line in ref_file] return self.rouge.get_scores(hyps, refs, avg=avg, ignore_empty=ignore_empty)
[ "Calculate", "ROUGE", "scores", "between", "each", "pair", "of", "lines", "(", "hyp_file", "[", "i", "]", "ref_file", "[", "i", "]", ")", ".", "Args", ":", "*", "hyp_path", ":", "hypothesis", "file", "path", "*", "ref_path", ":", "references", "file", "path", "*", "avg", "(", "False", ")", ":", "whether", "to", "get", "an", "average", "scores", "or", "a", "list" ]
pltrdy/rouge
python
https://github.com/pltrdy/rouge/blob/7bf8a83af5ca5c1677b93620b4e1f85ffd63b377/rouge/rouge.py#L34-L50
[ "def", "get_scores", "(", "self", ",", "avg", "=", "False", ",", "ignore_empty", "=", "False", ")", ":", "hyp_path", ",", "ref_path", "=", "self", ".", "hyp_path", ",", "self", ".", "ref_path", "with", "io", ".", "open", "(", "hyp_path", ",", "encoding", "=", "\"utf-8\"", ",", "mode", "=", "\"r\"", ")", "as", "hyp_file", ":", "hyps", "=", "[", "line", "[", ":", "-", "1", "]", "for", "line", "in", "hyp_file", "]", "with", "io", ".", "open", "(", "ref_path", ",", "encoding", "=", "\"utf-8\"", ",", "mode", "=", "\"r\"", ")", "as", "ref_file", ":", "refs", "=", "[", "line", "[", ":", "-", "1", "]", "for", "line", "in", "ref_file", "]", "return", "self", ".", "rouge", ".", "get_scores", "(", "hyps", ",", "refs", ",", "avg", "=", "avg", ",", "ignore_empty", "=", "ignore_empty", ")" ]
7bf8a83af5ca5c1677b93620b4e1f85ffd63b377
test
calc_pvalues
calculate pvalues for all categories in the graph :param set query: set of identifiers for which the p value is calculated :param dict gene_sets: gmt file dict after background was set :param set background: total number of genes in your annotated database. :returns: pvalues x: overlapped gene number n: length of gene_set which belongs to each terms hits: overlapped gene names. For 2*2 contingency table: ============================================================================= | in query | not in query | row total => in gene_set | a | b | a+b => not in gene_set | c | d | c+d column total | a+b+c+d = anno database ============================================================================= background genes number = a + b + c + d. Then, in R x=a the number of white balls drawn without replacement from an urn which contains both black and white balls. m=a+b the number of white balls in the urn n=c+d the number of black balls in the urn k=a+c the number of balls drawn from the urn In Scipy: for args in scipy.hypergeom.sf(k, M, n, N, loc=0): M: the total number of objects, n: the total number of Type I objects. k: the random variate represents the number of Type I objects in N drawn without replacement from the total population. Therefore, these two functions are the same when using parameters from 2*2 table: R: > phyper(x-1, m, n, k, lower.tail=FALSE) Scipy: >>> hypergeom.sf(x-1, m+n, m, k)
gseapy/stats.py
def calc_pvalues(query, gene_sets, background=20000, **kwargs): """ calculate pvalues for all categories in the graph :param set query: set of identifiers for which the p value is calculated :param dict gene_sets: gmt file dict after background was set :param set background: total number of genes in your annotated database. :returns: pvalues x: overlapped gene number n: length of gene_set which belongs to each terms hits: overlapped gene names. For 2*2 contingency table: ============================================================================= | in query | not in query | row total => in gene_set | a | b | a+b => not in gene_set | c | d | c+d column total | a+b+c+d = anno database ============================================================================= background genes number = a + b + c + d. Then, in R x=a the number of white balls drawn without replacement from an urn which contains both black and white balls. m=a+b the number of white balls in the urn n=c+d the number of black balls in the urn k=a+c the number of balls drawn from the urn In Scipy: for args in scipy.hypergeom.sf(k, M, n, N, loc=0): M: the total number of objects, n: the total number of Type I objects. k: the random variate represents the number of Type I objects in N drawn without replacement from the total population. Therefore, these two functions are the same when using parameters from 2*2 table: R: > phyper(x-1, m, n, k, lower.tail=FALSE) Scipy: >>> hypergeom.sf(x-1, m+n, m, k) """ # number of genes in your query data k = len(query) query = set(query) vals = [] # background should be all genes in annotated database # such as go, kegg et.al. if isinstance(background, set): bg = len(background) # total number in your annotated database # filter genes that not found in annotated database query = query.intersection(background) elif isinstance(background, int): bg = background else: raise ValueError("background should be set or int object") # pval subsets = sorted(gene_sets.keys()) for s in subsets: category = gene_sets.get(s) m = len(category) hits = query.intersection(set(category)) x = len(hits) if x < 1 : continue # pVal = hypergeom.sf(hitCount-1,popTotal,bgHits,queryTotal) # p(X >= hitCounts) vals.append((s, hypergeom.sf(x-1, bg, m, k), x, m, hits)) return zip(*vals)
def calc_pvalues(query, gene_sets, background=20000, **kwargs): """ calculate pvalues for all categories in the graph :param set query: set of identifiers for which the p value is calculated :param dict gene_sets: gmt file dict after background was set :param set background: total number of genes in your annotated database. :returns: pvalues x: overlapped gene number n: length of gene_set which belongs to each terms hits: overlapped gene names. For 2*2 contingency table: ============================================================================= | in query | not in query | row total => in gene_set | a | b | a+b => not in gene_set | c | d | c+d column total | a+b+c+d = anno database ============================================================================= background genes number = a + b + c + d. Then, in R x=a the number of white balls drawn without replacement from an urn which contains both black and white balls. m=a+b the number of white balls in the urn n=c+d the number of black balls in the urn k=a+c the number of balls drawn from the urn In Scipy: for args in scipy.hypergeom.sf(k, M, n, N, loc=0): M: the total number of objects, n: the total number of Type I objects. k: the random variate represents the number of Type I objects in N drawn without replacement from the total population. Therefore, these two functions are the same when using parameters from 2*2 table: R: > phyper(x-1, m, n, k, lower.tail=FALSE) Scipy: >>> hypergeom.sf(x-1, m+n, m, k) """ # number of genes in your query data k = len(query) query = set(query) vals = [] # background should be all genes in annotated database # such as go, kegg et.al. if isinstance(background, set): bg = len(background) # total number in your annotated database # filter genes that not found in annotated database query = query.intersection(background) elif isinstance(background, int): bg = background else: raise ValueError("background should be set or int object") # pval subsets = sorted(gene_sets.keys()) for s in subsets: category = gene_sets.get(s) m = len(category) hits = query.intersection(set(category)) x = len(hits) if x < 1 : continue # pVal = hypergeom.sf(hitCount-1,popTotal,bgHits,queryTotal) # p(X >= hitCounts) vals.append((s, hypergeom.sf(x-1, bg, m, k), x, m, hits)) return zip(*vals)
[ "calculate", "pvalues", "for", "all", "categories", "in", "the", "graph" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/stats.py#L10-L77
[ "def", "calc_pvalues", "(", "query", ",", "gene_sets", ",", "background", "=", "20000", ",", "*", "*", "kwargs", ")", ":", "# number of genes in your query data", "k", "=", "len", "(", "query", ")", "query", "=", "set", "(", "query", ")", "vals", "=", "[", "]", "# background should be all genes in annotated database", "# such as go, kegg et.al.", "if", "isinstance", "(", "background", ",", "set", ")", ":", "bg", "=", "len", "(", "background", ")", "# total number in your annotated database ", "# filter genes that not found in annotated database", "query", "=", "query", ".", "intersection", "(", "background", ")", "elif", "isinstance", "(", "background", ",", "int", ")", ":", "bg", "=", "background", "else", ":", "raise", "ValueError", "(", "\"background should be set or int object\"", ")", "# pval", "subsets", "=", "sorted", "(", "gene_sets", ".", "keys", "(", ")", ")", "for", "s", "in", "subsets", ":", "category", "=", "gene_sets", ".", "get", "(", "s", ")", "m", "=", "len", "(", "category", ")", "hits", "=", "query", ".", "intersection", "(", "set", "(", "category", ")", ")", "x", "=", "len", "(", "hits", ")", "if", "x", "<", "1", ":", "continue", "# pVal = hypergeom.sf(hitCount-1,popTotal,bgHits,queryTotal) ", "# p(X >= hitCounts)", "vals", ".", "append", "(", "(", "s", ",", "hypergeom", ".", "sf", "(", "x", "-", "1", ",", "bg", ",", "m", ",", "k", ")", ",", "x", ",", "m", ",", "hits", ")", ")", "return", "zip", "(", "*", "vals", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
fdrcorrection
benjamini hocheberg fdr correction. inspired by statsmodels
gseapy/stats.py
def fdrcorrection(pvals, alpha=0.05): """ benjamini hocheberg fdr correction. inspired by statsmodels """ # Implement copy from GOATools. pvals = np.asarray(pvals) pvals_sortind = np.argsort(pvals) pvals_sorted = np.take(pvals, pvals_sortind) ecdffactor = _ecdf(pvals_sorted) reject = pvals_sorted <= ecdffactor*alpha if reject.any(): rejectmax = max(np.nonzero(reject)[0]) reject[:rejectmax] = True pvals_corrected_raw = pvals_sorted / ecdffactor pvals_corrected = np.minimum.accumulate(pvals_corrected_raw[::-1])[::-1] del pvals_corrected_raw pvals_corrected[pvals_corrected>1] = 1 pvals_corrected_ = np.empty_like(pvals_corrected) pvals_corrected_[pvals_sortind] = pvals_corrected del pvals_corrected reject_ = np.empty_like(reject) reject_[pvals_sortind] = reject return reject_, pvals_corrected_
def fdrcorrection(pvals, alpha=0.05): """ benjamini hocheberg fdr correction. inspired by statsmodels """ # Implement copy from GOATools. pvals = np.asarray(pvals) pvals_sortind = np.argsort(pvals) pvals_sorted = np.take(pvals, pvals_sortind) ecdffactor = _ecdf(pvals_sorted) reject = pvals_sorted <= ecdffactor*alpha if reject.any(): rejectmax = max(np.nonzero(reject)[0]) reject[:rejectmax] = True pvals_corrected_raw = pvals_sorted / ecdffactor pvals_corrected = np.minimum.accumulate(pvals_corrected_raw[::-1])[::-1] del pvals_corrected_raw pvals_corrected[pvals_corrected>1] = 1 pvals_corrected_ = np.empty_like(pvals_corrected) pvals_corrected_[pvals_sortind] = pvals_corrected del pvals_corrected reject_ = np.empty_like(reject) reject_[pvals_sortind] = reject return reject_, pvals_corrected_
[ "benjamini", "hocheberg", "fdr", "correction", ".", "inspired", "by", "statsmodels" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/stats.py#L85-L107
[ "def", "fdrcorrection", "(", "pvals", ",", "alpha", "=", "0.05", ")", ":", "# Implement copy from GOATools.", "pvals", "=", "np", ".", "asarray", "(", "pvals", ")", "pvals_sortind", "=", "np", ".", "argsort", "(", "pvals", ")", "pvals_sorted", "=", "np", ".", "take", "(", "pvals", ",", "pvals_sortind", ")", "ecdffactor", "=", "_ecdf", "(", "pvals_sorted", ")", "reject", "=", "pvals_sorted", "<=", "ecdffactor", "*", "alpha", "if", "reject", ".", "any", "(", ")", ":", "rejectmax", "=", "max", "(", "np", ".", "nonzero", "(", "reject", ")", "[", "0", "]", ")", "reject", "[", ":", "rejectmax", "]", "=", "True", "pvals_corrected_raw", "=", "pvals_sorted", "/", "ecdffactor", "pvals_corrected", "=", "np", ".", "minimum", ".", "accumulate", "(", "pvals_corrected_raw", "[", ":", ":", "-", "1", "]", ")", "[", ":", ":", "-", "1", "]", "del", "pvals_corrected_raw", "pvals_corrected", "[", "pvals_corrected", ">", "1", "]", "=", "1", "pvals_corrected_", "=", "np", ".", "empty_like", "(", "pvals_corrected", ")", "pvals_corrected_", "[", "pvals_sortind", "]", "=", "pvals_corrected", "del", "pvals_corrected", "reject_", "=", "np", ".", "empty_like", "(", "reject", ")", "reject_", "[", "pvals_sortind", "]", "=", "reject", "return", "reject_", ",", "pvals_corrected_" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
zscore
Standardize the mean and variance of the data axis Parameters. :param data2d: DataFrame to normalize. :param axis: int, Which axis to normalize across. If 0, normalize across rows, if 1, normalize across columns. If None, don't change data :Returns: Normalized DataFrame. Normalized data with a mean of 0 and variance of 1 across the specified axis.
gseapy/plot.py
def zscore(data2d, axis=0): """Standardize the mean and variance of the data axis Parameters. :param data2d: DataFrame to normalize. :param axis: int, Which axis to normalize across. If 0, normalize across rows, if 1, normalize across columns. If None, don't change data :Returns: Normalized DataFrame. Normalized data with a mean of 0 and variance of 1 across the specified axis. """ if axis is None: # normalized to mean and std using entire matrix # z_scored = (data2d - data2d.values.mean()) / data2d.values.std(ddof=1) return data2d assert axis in [0,1] # if axis == 1: # z_scored = data2d # else: # z_scored = data2d.T # z_scored = (z_scored - z_scored.mean()) / z_scored.std(ddof=1) # if axis == 1: # return z_scored # else: # return z_scored.T z_scored = data2d.apply(lambda x: (x-x.mean())/x.std(ddof=1), axis=operator.xor(1, axis)) return z_scored
def zscore(data2d, axis=0): """Standardize the mean and variance of the data axis Parameters. :param data2d: DataFrame to normalize. :param axis: int, Which axis to normalize across. If 0, normalize across rows, if 1, normalize across columns. If None, don't change data :Returns: Normalized DataFrame. Normalized data with a mean of 0 and variance of 1 across the specified axis. """ if axis is None: # normalized to mean and std using entire matrix # z_scored = (data2d - data2d.values.mean()) / data2d.values.std(ddof=1) return data2d assert axis in [0,1] # if axis == 1: # z_scored = data2d # else: # z_scored = data2d.T # z_scored = (z_scored - z_scored.mean()) / z_scored.std(ddof=1) # if axis == 1: # return z_scored # else: # return z_scored.T z_scored = data2d.apply(lambda x: (x-x.mean())/x.std(ddof=1), axis=operator.xor(1, axis)) return z_scored
[ "Standardize", "the", "mean", "and", "variance", "of", "the", "data", "axis", "Parameters", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/plot.py#L28-L57
[ "def", "zscore", "(", "data2d", ",", "axis", "=", "0", ")", ":", "if", "axis", "is", "None", ":", "# normalized to mean and std using entire matrix", "# z_scored = (data2d - data2d.values.mean()) / data2d.values.std(ddof=1)", "return", "data2d", "assert", "axis", "in", "[", "0", ",", "1", "]", "# if axis == 1:", "# z_scored = data2d", "# else:", "# z_scored = data2d.T", "# z_scored = (z_scored - z_scored.mean()) / z_scored.std(ddof=1)", "# if axis == 1:", "# return z_scored", "# else:", "# return z_scored.T", "z_scored", "=", "data2d", ".", "apply", "(", "lambda", "x", ":", "(", "x", "-", "x", ".", "mean", "(", ")", ")", "/", "x", ".", "std", "(", "ddof", "=", "1", ")", ",", "axis", "=", "operator", ".", "xor", "(", "1", ",", "axis", ")", ")", "return", "z_scored" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
heatmap
Visualize the dataframe. :param df: DataFrame from expression table. :param z_score: z_score axis{0, 1}. If None, don't normalize data. :param title: gene set name. :param outdir: path to save heatmap. :param figsize: heatmap figsize. :param cmap: matplotlib colormap. :param ofname: output file name. If None, don't save figure
gseapy/plot.py
def heatmap(df, z_score=None, title='', figsize=(5,5), cmap='RdBu_r', xticklabels=True, yticklabels=True, ofname=None, **kwargs): """Visualize the dataframe. :param df: DataFrame from expression table. :param z_score: z_score axis{0, 1}. If None, don't normalize data. :param title: gene set name. :param outdir: path to save heatmap. :param figsize: heatmap figsize. :param cmap: matplotlib colormap. :param ofname: output file name. If None, don't save figure """ df = zscore(df, axis=z_score) df = df.iloc[::-1] # Get the positions and used label for the ticks ny, nx = df.shape xticks = np.arange(0, nx, 1) + .5 yticks = np.arange(0, ny, 1) + .5 # If working on commandline, don't show figure if hasattr(sys, 'ps1') and (ofname is None): fig = plt.figure(figsize=figsize) else: fig = Figure(figsize=figsize) canvas = FigureCanvas(fig) ax = fig.add_subplot(111) vmin = np.percentile(df.min(), 2) vmax = np.percentile(df.max(), 98) matrix = ax.pcolormesh(df.values, cmap=cmap, vmin=vmin, vmax=vmax) ax.set_ylim([0,len(df)]) ax.set(xticks=xticks, yticks=yticks) ax.set_xticklabels(df.columns.values if xticklabels else '', fontsize=14, rotation=90) ax.set_yticklabels(df.index.values if yticklabels else '', fontsize=14) ax.set_title("%s\nHeatmap of the Analyzed Geneset"%title, fontsize=20) ax.tick_params(axis='both', which='both', bottom=False, top=False, right=False, left=False) # cax=fig.add_axes([0.93,0.25,0.05,0.20]) # cbar = fig.colorbar(matrix, cax=cax) cbar = colorbar(matrix) cbar.ax.tick_params(axis='both', which='both', bottom=False, top=False, right=False, left=False) for side in ["top", "right", "left", "bottom"]: ax.spines[side].set_visible(False) cbar.ax.spines[side].set_visible(False) # cbar.ax.set_title('',loc='left') if ofname is not None: # canvas.print_figure(ofname, bbox_inches='tight', dpi=300) fig.savefig(ofname, bbox_inches='tight', dpi=300) return
def heatmap(df, z_score=None, title='', figsize=(5,5), cmap='RdBu_r', xticklabels=True, yticklabels=True, ofname=None, **kwargs): """Visualize the dataframe. :param df: DataFrame from expression table. :param z_score: z_score axis{0, 1}. If None, don't normalize data. :param title: gene set name. :param outdir: path to save heatmap. :param figsize: heatmap figsize. :param cmap: matplotlib colormap. :param ofname: output file name. If None, don't save figure """ df = zscore(df, axis=z_score) df = df.iloc[::-1] # Get the positions and used label for the ticks ny, nx = df.shape xticks = np.arange(0, nx, 1) + .5 yticks = np.arange(0, ny, 1) + .5 # If working on commandline, don't show figure if hasattr(sys, 'ps1') and (ofname is None): fig = plt.figure(figsize=figsize) else: fig = Figure(figsize=figsize) canvas = FigureCanvas(fig) ax = fig.add_subplot(111) vmin = np.percentile(df.min(), 2) vmax = np.percentile(df.max(), 98) matrix = ax.pcolormesh(df.values, cmap=cmap, vmin=vmin, vmax=vmax) ax.set_ylim([0,len(df)]) ax.set(xticks=xticks, yticks=yticks) ax.set_xticklabels(df.columns.values if xticklabels else '', fontsize=14, rotation=90) ax.set_yticklabels(df.index.values if yticklabels else '', fontsize=14) ax.set_title("%s\nHeatmap of the Analyzed Geneset"%title, fontsize=20) ax.tick_params(axis='both', which='both', bottom=False, top=False, right=False, left=False) # cax=fig.add_axes([0.93,0.25,0.05,0.20]) # cbar = fig.colorbar(matrix, cax=cax) cbar = colorbar(matrix) cbar.ax.tick_params(axis='both', which='both', bottom=False, top=False, right=False, left=False) for side in ["top", "right", "left", "bottom"]: ax.spines[side].set_visible(False) cbar.ax.spines[side].set_visible(False) # cbar.ax.set_title('',loc='left') if ofname is not None: # canvas.print_figure(ofname, bbox_inches='tight', dpi=300) fig.savefig(ofname, bbox_inches='tight', dpi=300) return
[ "Visualize", "the", "dataframe", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/plot.py#L67-L117
[ "def", "heatmap", "(", "df", ",", "z_score", "=", "None", ",", "title", "=", "''", ",", "figsize", "=", "(", "5", ",", "5", ")", ",", "cmap", "=", "'RdBu_r'", ",", "xticklabels", "=", "True", ",", "yticklabels", "=", "True", ",", "ofname", "=", "None", ",", "*", "*", "kwargs", ")", ":", "df", "=", "zscore", "(", "df", ",", "axis", "=", "z_score", ")", "df", "=", "df", ".", "iloc", "[", ":", ":", "-", "1", "]", "# Get the positions and used label for the ticks", "ny", ",", "nx", "=", "df", ".", "shape", "xticks", "=", "np", ".", "arange", "(", "0", ",", "nx", ",", "1", ")", "+", ".5", "yticks", "=", "np", ".", "arange", "(", "0", ",", "ny", ",", "1", ")", "+", ".5", "# If working on commandline, don't show figure", "if", "hasattr", "(", "sys", ",", "'ps1'", ")", "and", "(", "ofname", "is", "None", ")", ":", "fig", "=", "plt", ".", "figure", "(", "figsize", "=", "figsize", ")", "else", ":", "fig", "=", "Figure", "(", "figsize", "=", "figsize", ")", "canvas", "=", "FigureCanvas", "(", "fig", ")", "ax", "=", "fig", ".", "add_subplot", "(", "111", ")", "vmin", "=", "np", ".", "percentile", "(", "df", ".", "min", "(", ")", ",", "2", ")", "vmax", "=", "np", ".", "percentile", "(", "df", ".", "max", "(", ")", ",", "98", ")", "matrix", "=", "ax", ".", "pcolormesh", "(", "df", ".", "values", ",", "cmap", "=", "cmap", ",", "vmin", "=", "vmin", ",", "vmax", "=", "vmax", ")", "ax", ".", "set_ylim", "(", "[", "0", ",", "len", "(", "df", ")", "]", ")", "ax", ".", "set", "(", "xticks", "=", "xticks", ",", "yticks", "=", "yticks", ")", "ax", ".", "set_xticklabels", "(", "df", ".", "columns", ".", "values", "if", "xticklabels", "else", "''", ",", "fontsize", "=", "14", ",", "rotation", "=", "90", ")", "ax", ".", "set_yticklabels", "(", "df", ".", "index", ".", "values", "if", "yticklabels", "else", "''", ",", "fontsize", "=", "14", ")", "ax", ".", "set_title", "(", "\"%s\\nHeatmap of the Analyzed Geneset\"", "%", "title", ",", "fontsize", "=", "20", ")", "ax", ".", "tick_params", "(", "axis", "=", "'both'", ",", "which", "=", "'both'", ",", "bottom", "=", "False", ",", "top", "=", "False", ",", "right", "=", "False", ",", "left", "=", "False", ")", "# cax=fig.add_axes([0.93,0.25,0.05,0.20])", "# cbar = fig.colorbar(matrix, cax=cax)", "cbar", "=", "colorbar", "(", "matrix", ")", "cbar", ".", "ax", ".", "tick_params", "(", "axis", "=", "'both'", ",", "which", "=", "'both'", ",", "bottom", "=", "False", ",", "top", "=", "False", ",", "right", "=", "False", ",", "left", "=", "False", ")", "for", "side", "in", "[", "\"top\"", ",", "\"right\"", ",", "\"left\"", ",", "\"bottom\"", "]", ":", "ax", ".", "spines", "[", "side", "]", ".", "set_visible", "(", "False", ")", "cbar", ".", "ax", ".", "spines", "[", "side", "]", ".", "set_visible", "(", "False", ")", "# cbar.ax.set_title('',loc='left')", "if", "ofname", "is", "not", "None", ":", "# canvas.print_figure(ofname, bbox_inches='tight', dpi=300)", "fig", ".", "savefig", "(", "ofname", ",", "bbox_inches", "=", "'tight'", ",", "dpi", "=", "300", ")", "return" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
gseaplot
This is the main function for reproducing the gsea plot. :param rank_metric: pd.Series for rankings, rank_metric.values. :param term: gene_set name :param hits_indices: hits indices of rank_metric.index presented in gene set S. :param nes: Normalized enrichment scores. :param pval: nominal p-value. :param fdr: false discovery rate. :param RES: running enrichment scores. :param pheno_pos: phenotype label, positive correlated. :param pheno_neg: phenotype label, negative correlated. :param figsize: matplotlib figsize. :param ofname: output file name. If None, don't save figure
gseapy/plot.py
def gseaplot(rank_metric, term, hits_indices, nes, pval, fdr, RES, pheno_pos='', pheno_neg='', figsize=(6,5.5), cmap='seismic', ofname=None, **kwargs): """This is the main function for reproducing the gsea plot. :param rank_metric: pd.Series for rankings, rank_metric.values. :param term: gene_set name :param hits_indices: hits indices of rank_metric.index presented in gene set S. :param nes: Normalized enrichment scores. :param pval: nominal p-value. :param fdr: false discovery rate. :param RES: running enrichment scores. :param pheno_pos: phenotype label, positive correlated. :param pheno_neg: phenotype label, negative correlated. :param figsize: matplotlib figsize. :param ofname: output file name. If None, don't save figure """ # plt.style.use('classic') # center color map at midpoint = 0 norm = _MidpointNormalize(midpoint=0) #dataFrame of ranked matrix scores x = np.arange(len(rank_metric)) rankings = rank_metric.values # figsize = (6,6) phenoP_label = pheno_pos + ' (Positively Correlated)' phenoN_label = pheno_neg + ' (Negatively Correlated)' zero_score_ind = np.abs(rankings).argmin() z_score_label = 'Zero score at ' + str(zero_score_ind) nes_label = 'NES: '+ "{:.3f}".format(float(nes)) pval_label = 'Pval: '+ "{:.3f}".format(float(pval)) fdr_label = 'FDR: '+ "{:.3f}".format(float(fdr)) im_matrix = np.tile(rankings, (2,1)) # output truetype plt.rcParams.update({'pdf.fonttype':42,'ps.fonttype':42}) # in most case, we will have many plots, so do not display plots # It's also usefull to run this script on command line. # GSEA Plots gs = plt.GridSpec(16,1) if hasattr(sys, 'ps1') and (ofname is None): # working inside python console, show figure fig = plt.figure(figsize=figsize) else: # If working on commandline, don't show figure fig = Figure(figsize=figsize) canvas = FigureCanvas(fig) # Ranked Metric Scores Plot ax1 = fig.add_subplot(gs[11:]) module = 'tmp' if ofname is None else ofname.split(".")[-2] if module == 'ssgsea': nes_label = 'ES: '+ "{:.3f}".format(float(nes)) pval_label='Pval: ' fdr_label='FDR: ' ax1.fill_between(x, y1=np.log(rankings), y2=0, color='#C9D3DB') ax1.set_ylabel("log ranked metric", fontsize=14) else: ax1.fill_between(x, y1=rankings, y2=0, color='#C9D3DB') ax1.set_ylabel("Ranked list metric", fontsize=14) ax1.text(.05, .9, phenoP_label, color='red', horizontalalignment='left', verticalalignment='top', transform=ax1.transAxes) ax1.text(.95, .05, phenoN_label, color='Blue', horizontalalignment='right', verticalalignment='bottom', transform=ax1.transAxes) # the x coords of this transformation are data, and the y coord are axes trans1 = transforms.blended_transform_factory(ax1.transData, ax1.transAxes) if module != 'ssgsea': ax1.vlines(zero_score_ind, 0, 1, linewidth=.5, transform=trans1, linestyles='--', color='grey') ax1.text(zero_score_ind, 0.5, z_score_label, horizontalalignment='center', verticalalignment='center', transform=trans1) ax1.set_xlabel("Rank in Ordered Dataset", fontsize=14) ax1.spines['top'].set_visible(False) ax1.tick_params(axis='both', which='both', top=False, right=False, left=False) ax1.locator_params(axis='y', nbins=5) ax1.yaxis.set_major_formatter(plt.FuncFormatter(lambda tick_loc,tick_num : '{:.1f}'.format(tick_loc) )) # use round method to control float number # ax1.yaxis.set_major_formatter(plt.FuncFormatter(lambda tick_loc,tick_num : round(tick_loc, 1) )) # gene hits ax2 = fig.add_subplot(gs[8:10], sharex=ax1) # the x coords of this transformation are data, and the y coord are axes trans2 = transforms.blended_transform_factory(ax2.transData, ax2.transAxes) ax2.vlines(hits_indices, 0, 1,linewidth=.5,transform=trans2) ax2.spines['bottom'].set_visible(False) ax2.tick_params(axis='both', which='both', bottom=False, top=False, labelbottom=False, right=False, left=False, labelleft=False) # colormap ax3 = fig.add_subplot(gs[10], sharex=ax1) ax3.imshow(im_matrix, aspect='auto', norm=norm, cmap=cmap, interpolation='none') # cm.coolwarm ax3.spines['bottom'].set_visible(False) ax3.tick_params(axis='both', which='both', bottom=False, top=False, labelbottom=False, right=False, left=False,labelleft=False) # Enrichment score plot ax4 = fig.add_subplot(gs[:8], sharex=ax1) ax4.plot(x, RES, linewidth=4, color ='#88C544') ax4.text(.1, .1, fdr_label, transform=ax4.transAxes) ax4.text(.1, .2, pval_label, transform=ax4.transAxes) ax4.text(.1, .3, nes_label, transform=ax4.transAxes) # the y coords of this transformation are data, and the x coord are axes trans4 = transforms.blended_transform_factory(ax4.transAxes, ax4.transData) ax4.hlines(0, 0, 1, linewidth=.5, transform=trans4, color='grey') ax4.set_ylabel("Enrichment score (ES)", fontsize=14) ax4.set_xlim(min(x), max(x)) ax4.tick_params(axis='both', which='both', bottom=False, top=False, labelbottom=False, right=False) ax4.locator_params(axis='y', nbins=5) # FuncFormatter need two argument, I don't know why. this lambda function used to format yaxis tick labels. ax4.yaxis.set_major_formatter(plt.FuncFormatter(lambda tick_loc,tick_num : '{:.1f}'.format(tick_loc)) ) # fig adjustment fig.suptitle(term, fontsize=16, fontweight='bold') fig.subplots_adjust(hspace=0) # fig.tight_layout() if ofname is not None: # canvas.print_figure(ofname, bbox_inches='tight', dpi=300) fig.savefig(ofname, bbox_inches='tight', dpi=300) return
def gseaplot(rank_metric, term, hits_indices, nes, pval, fdr, RES, pheno_pos='', pheno_neg='', figsize=(6,5.5), cmap='seismic', ofname=None, **kwargs): """This is the main function for reproducing the gsea plot. :param rank_metric: pd.Series for rankings, rank_metric.values. :param term: gene_set name :param hits_indices: hits indices of rank_metric.index presented in gene set S. :param nes: Normalized enrichment scores. :param pval: nominal p-value. :param fdr: false discovery rate. :param RES: running enrichment scores. :param pheno_pos: phenotype label, positive correlated. :param pheno_neg: phenotype label, negative correlated. :param figsize: matplotlib figsize. :param ofname: output file name. If None, don't save figure """ # plt.style.use('classic') # center color map at midpoint = 0 norm = _MidpointNormalize(midpoint=0) #dataFrame of ranked matrix scores x = np.arange(len(rank_metric)) rankings = rank_metric.values # figsize = (6,6) phenoP_label = pheno_pos + ' (Positively Correlated)' phenoN_label = pheno_neg + ' (Negatively Correlated)' zero_score_ind = np.abs(rankings).argmin() z_score_label = 'Zero score at ' + str(zero_score_ind) nes_label = 'NES: '+ "{:.3f}".format(float(nes)) pval_label = 'Pval: '+ "{:.3f}".format(float(pval)) fdr_label = 'FDR: '+ "{:.3f}".format(float(fdr)) im_matrix = np.tile(rankings, (2,1)) # output truetype plt.rcParams.update({'pdf.fonttype':42,'ps.fonttype':42}) # in most case, we will have many plots, so do not display plots # It's also usefull to run this script on command line. # GSEA Plots gs = plt.GridSpec(16,1) if hasattr(sys, 'ps1') and (ofname is None): # working inside python console, show figure fig = plt.figure(figsize=figsize) else: # If working on commandline, don't show figure fig = Figure(figsize=figsize) canvas = FigureCanvas(fig) # Ranked Metric Scores Plot ax1 = fig.add_subplot(gs[11:]) module = 'tmp' if ofname is None else ofname.split(".")[-2] if module == 'ssgsea': nes_label = 'ES: '+ "{:.3f}".format(float(nes)) pval_label='Pval: ' fdr_label='FDR: ' ax1.fill_between(x, y1=np.log(rankings), y2=0, color='#C9D3DB') ax1.set_ylabel("log ranked metric", fontsize=14) else: ax1.fill_between(x, y1=rankings, y2=0, color='#C9D3DB') ax1.set_ylabel("Ranked list metric", fontsize=14) ax1.text(.05, .9, phenoP_label, color='red', horizontalalignment='left', verticalalignment='top', transform=ax1.transAxes) ax1.text(.95, .05, phenoN_label, color='Blue', horizontalalignment='right', verticalalignment='bottom', transform=ax1.transAxes) # the x coords of this transformation are data, and the y coord are axes trans1 = transforms.blended_transform_factory(ax1.transData, ax1.transAxes) if module != 'ssgsea': ax1.vlines(zero_score_ind, 0, 1, linewidth=.5, transform=trans1, linestyles='--', color='grey') ax1.text(zero_score_ind, 0.5, z_score_label, horizontalalignment='center', verticalalignment='center', transform=trans1) ax1.set_xlabel("Rank in Ordered Dataset", fontsize=14) ax1.spines['top'].set_visible(False) ax1.tick_params(axis='both', which='both', top=False, right=False, left=False) ax1.locator_params(axis='y', nbins=5) ax1.yaxis.set_major_formatter(plt.FuncFormatter(lambda tick_loc,tick_num : '{:.1f}'.format(tick_loc) )) # use round method to control float number # ax1.yaxis.set_major_formatter(plt.FuncFormatter(lambda tick_loc,tick_num : round(tick_loc, 1) )) # gene hits ax2 = fig.add_subplot(gs[8:10], sharex=ax1) # the x coords of this transformation are data, and the y coord are axes trans2 = transforms.blended_transform_factory(ax2.transData, ax2.transAxes) ax2.vlines(hits_indices, 0, 1,linewidth=.5,transform=trans2) ax2.spines['bottom'].set_visible(False) ax2.tick_params(axis='both', which='both', bottom=False, top=False, labelbottom=False, right=False, left=False, labelleft=False) # colormap ax3 = fig.add_subplot(gs[10], sharex=ax1) ax3.imshow(im_matrix, aspect='auto', norm=norm, cmap=cmap, interpolation='none') # cm.coolwarm ax3.spines['bottom'].set_visible(False) ax3.tick_params(axis='both', which='both', bottom=False, top=False, labelbottom=False, right=False, left=False,labelleft=False) # Enrichment score plot ax4 = fig.add_subplot(gs[:8], sharex=ax1) ax4.plot(x, RES, linewidth=4, color ='#88C544') ax4.text(.1, .1, fdr_label, transform=ax4.transAxes) ax4.text(.1, .2, pval_label, transform=ax4.transAxes) ax4.text(.1, .3, nes_label, transform=ax4.transAxes) # the y coords of this transformation are data, and the x coord are axes trans4 = transforms.blended_transform_factory(ax4.transAxes, ax4.transData) ax4.hlines(0, 0, 1, linewidth=.5, transform=trans4, color='grey') ax4.set_ylabel("Enrichment score (ES)", fontsize=14) ax4.set_xlim(min(x), max(x)) ax4.tick_params(axis='both', which='both', bottom=False, top=False, labelbottom=False, right=False) ax4.locator_params(axis='y', nbins=5) # FuncFormatter need two argument, I don't know why. this lambda function used to format yaxis tick labels. ax4.yaxis.set_major_formatter(plt.FuncFormatter(lambda tick_loc,tick_num : '{:.1f}'.format(tick_loc)) ) # fig adjustment fig.suptitle(term, fontsize=16, fontweight='bold') fig.subplots_adjust(hspace=0) # fig.tight_layout() if ofname is not None: # canvas.print_figure(ofname, bbox_inches='tight', dpi=300) fig.savefig(ofname, bbox_inches='tight', dpi=300) return
[ "This", "is", "the", "main", "function", "for", "reproducing", "the", "gsea", "plot", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/plot.py#L119-L243
[ "def", "gseaplot", "(", "rank_metric", ",", "term", ",", "hits_indices", ",", "nes", ",", "pval", ",", "fdr", ",", "RES", ",", "pheno_pos", "=", "''", ",", "pheno_neg", "=", "''", ",", "figsize", "=", "(", "6", ",", "5.5", ")", ",", "cmap", "=", "'seismic'", ",", "ofname", "=", "None", ",", "*", "*", "kwargs", ")", ":", "# plt.style.use('classic')", "# center color map at midpoint = 0", "norm", "=", "_MidpointNormalize", "(", "midpoint", "=", "0", ")", "#dataFrame of ranked matrix scores", "x", "=", "np", ".", "arange", "(", "len", "(", "rank_metric", ")", ")", "rankings", "=", "rank_metric", ".", "values", "# figsize = (6,6)", "phenoP_label", "=", "pheno_pos", "+", "' (Positively Correlated)'", "phenoN_label", "=", "pheno_neg", "+", "' (Negatively Correlated)'", "zero_score_ind", "=", "np", ".", "abs", "(", "rankings", ")", ".", "argmin", "(", ")", "z_score_label", "=", "'Zero score at '", "+", "str", "(", "zero_score_ind", ")", "nes_label", "=", "'NES: '", "+", "\"{:.3f}\"", ".", "format", "(", "float", "(", "nes", ")", ")", "pval_label", "=", "'Pval: '", "+", "\"{:.3f}\"", ".", "format", "(", "float", "(", "pval", ")", ")", "fdr_label", "=", "'FDR: '", "+", "\"{:.3f}\"", ".", "format", "(", "float", "(", "fdr", ")", ")", "im_matrix", "=", "np", ".", "tile", "(", "rankings", ",", "(", "2", ",", "1", ")", ")", "# output truetype", "plt", ".", "rcParams", ".", "update", "(", "{", "'pdf.fonttype'", ":", "42", ",", "'ps.fonttype'", ":", "42", "}", ")", "# in most case, we will have many plots, so do not display plots", "# It's also usefull to run this script on command line.", "# GSEA Plots", "gs", "=", "plt", ".", "GridSpec", "(", "16", ",", "1", ")", "if", "hasattr", "(", "sys", ",", "'ps1'", ")", "and", "(", "ofname", "is", "None", ")", ":", "# working inside python console, show figure", "fig", "=", "plt", ".", "figure", "(", "figsize", "=", "figsize", ")", "else", ":", "# If working on commandline, don't show figure", "fig", "=", "Figure", "(", "figsize", "=", "figsize", ")", "canvas", "=", "FigureCanvas", "(", "fig", ")", "# Ranked Metric Scores Plot", "ax1", "=", "fig", ".", "add_subplot", "(", "gs", "[", "11", ":", "]", ")", "module", "=", "'tmp'", "if", "ofname", "is", "None", "else", "ofname", ".", "split", "(", "\".\"", ")", "[", "-", "2", "]", "if", "module", "==", "'ssgsea'", ":", "nes_label", "=", "'ES: '", "+", "\"{:.3f}\"", ".", "format", "(", "float", "(", "nes", ")", ")", "pval_label", "=", "'Pval: '", "fdr_label", "=", "'FDR: '", "ax1", ".", "fill_between", "(", "x", ",", "y1", "=", "np", ".", "log", "(", "rankings", ")", ",", "y2", "=", "0", ",", "color", "=", "'#C9D3DB'", ")", "ax1", ".", "set_ylabel", "(", "\"log ranked metric\"", ",", "fontsize", "=", "14", ")", "else", ":", "ax1", ".", "fill_between", "(", "x", ",", "y1", "=", "rankings", ",", "y2", "=", "0", ",", "color", "=", "'#C9D3DB'", ")", "ax1", ".", "set_ylabel", "(", "\"Ranked list metric\"", ",", "fontsize", "=", "14", ")", "ax1", ".", "text", "(", ".05", ",", ".9", ",", "phenoP_label", ",", "color", "=", "'red'", ",", "horizontalalignment", "=", "'left'", ",", "verticalalignment", "=", "'top'", ",", "transform", "=", "ax1", ".", "transAxes", ")", "ax1", ".", "text", "(", ".95", ",", ".05", ",", "phenoN_label", ",", "color", "=", "'Blue'", ",", "horizontalalignment", "=", "'right'", ",", "verticalalignment", "=", "'bottom'", ",", "transform", "=", "ax1", ".", "transAxes", ")", "# the x coords of this transformation are data, and the y coord are axes", "trans1", "=", "transforms", ".", "blended_transform_factory", "(", "ax1", ".", "transData", ",", "ax1", ".", "transAxes", ")", "if", "module", "!=", "'ssgsea'", ":", "ax1", ".", "vlines", "(", "zero_score_ind", ",", "0", ",", "1", ",", "linewidth", "=", ".5", ",", "transform", "=", "trans1", ",", "linestyles", "=", "'--'", ",", "color", "=", "'grey'", ")", "ax1", ".", "text", "(", "zero_score_ind", ",", "0.5", ",", "z_score_label", ",", "horizontalalignment", "=", "'center'", ",", "verticalalignment", "=", "'center'", ",", "transform", "=", "trans1", ")", "ax1", ".", "set_xlabel", "(", "\"Rank in Ordered Dataset\"", ",", "fontsize", "=", "14", ")", "ax1", ".", "spines", "[", "'top'", "]", ".", "set_visible", "(", "False", ")", "ax1", ".", "tick_params", "(", "axis", "=", "'both'", ",", "which", "=", "'both'", ",", "top", "=", "False", ",", "right", "=", "False", ",", "left", "=", "False", ")", "ax1", ".", "locator_params", "(", "axis", "=", "'y'", ",", "nbins", "=", "5", ")", "ax1", ".", "yaxis", ".", "set_major_formatter", "(", "plt", ".", "FuncFormatter", "(", "lambda", "tick_loc", ",", "tick_num", ":", "'{:.1f}'", ".", "format", "(", "tick_loc", ")", ")", ")", "# use round method to control float number", "# ax1.yaxis.set_major_formatter(plt.FuncFormatter(lambda tick_loc,tick_num : round(tick_loc, 1) ))", "# gene hits", "ax2", "=", "fig", ".", "add_subplot", "(", "gs", "[", "8", ":", "10", "]", ",", "sharex", "=", "ax1", ")", "# the x coords of this transformation are data, and the y coord are axes", "trans2", "=", "transforms", ".", "blended_transform_factory", "(", "ax2", ".", "transData", ",", "ax2", ".", "transAxes", ")", "ax2", ".", "vlines", "(", "hits_indices", ",", "0", ",", "1", ",", "linewidth", "=", ".5", ",", "transform", "=", "trans2", ")", "ax2", ".", "spines", "[", "'bottom'", "]", ".", "set_visible", "(", "False", ")", "ax2", ".", "tick_params", "(", "axis", "=", "'both'", ",", "which", "=", "'both'", ",", "bottom", "=", "False", ",", "top", "=", "False", ",", "labelbottom", "=", "False", ",", "right", "=", "False", ",", "left", "=", "False", ",", "labelleft", "=", "False", ")", "# colormap", "ax3", "=", "fig", ".", "add_subplot", "(", "gs", "[", "10", "]", ",", "sharex", "=", "ax1", ")", "ax3", ".", "imshow", "(", "im_matrix", ",", "aspect", "=", "'auto'", ",", "norm", "=", "norm", ",", "cmap", "=", "cmap", ",", "interpolation", "=", "'none'", ")", "# cm.coolwarm", "ax3", ".", "spines", "[", "'bottom'", "]", ".", "set_visible", "(", "False", ")", "ax3", ".", "tick_params", "(", "axis", "=", "'both'", ",", "which", "=", "'both'", ",", "bottom", "=", "False", ",", "top", "=", "False", ",", "labelbottom", "=", "False", ",", "right", "=", "False", ",", "left", "=", "False", ",", "labelleft", "=", "False", ")", "# Enrichment score plot", "ax4", "=", "fig", ".", "add_subplot", "(", "gs", "[", ":", "8", "]", ",", "sharex", "=", "ax1", ")", "ax4", ".", "plot", "(", "x", ",", "RES", ",", "linewidth", "=", "4", ",", "color", "=", "'#88C544'", ")", "ax4", ".", "text", "(", ".1", ",", ".1", ",", "fdr_label", ",", "transform", "=", "ax4", ".", "transAxes", ")", "ax4", ".", "text", "(", ".1", ",", ".2", ",", "pval_label", ",", "transform", "=", "ax4", ".", "transAxes", ")", "ax4", ".", "text", "(", ".1", ",", ".3", ",", "nes_label", ",", "transform", "=", "ax4", ".", "transAxes", ")", "# the y coords of this transformation are data, and the x coord are axes", "trans4", "=", "transforms", ".", "blended_transform_factory", "(", "ax4", ".", "transAxes", ",", "ax4", ".", "transData", ")", "ax4", ".", "hlines", "(", "0", ",", "0", ",", "1", ",", "linewidth", "=", ".5", ",", "transform", "=", "trans4", ",", "color", "=", "'grey'", ")", "ax4", ".", "set_ylabel", "(", "\"Enrichment score (ES)\"", ",", "fontsize", "=", "14", ")", "ax4", ".", "set_xlim", "(", "min", "(", "x", ")", ",", "max", "(", "x", ")", ")", "ax4", ".", "tick_params", "(", "axis", "=", "'both'", ",", "which", "=", "'both'", ",", "bottom", "=", "False", ",", "top", "=", "False", ",", "labelbottom", "=", "False", ",", "right", "=", "False", ")", "ax4", ".", "locator_params", "(", "axis", "=", "'y'", ",", "nbins", "=", "5", ")", "# FuncFormatter need two argument, I don't know why. this lambda function used to format yaxis tick labels.", "ax4", ".", "yaxis", ".", "set_major_formatter", "(", "plt", ".", "FuncFormatter", "(", "lambda", "tick_loc", ",", "tick_num", ":", "'{:.1f}'", ".", "format", "(", "tick_loc", ")", ")", ")", "# fig adjustment", "fig", ".", "suptitle", "(", "term", ",", "fontsize", "=", "16", ",", "fontweight", "=", "'bold'", ")", "fig", ".", "subplots_adjust", "(", "hspace", "=", "0", ")", "# fig.tight_layout()", "if", "ofname", "is", "not", "None", ":", "# canvas.print_figure(ofname, bbox_inches='tight', dpi=300)", "fig", ".", "savefig", "(", "ofname", ",", "bbox_inches", "=", "'tight'", ",", "dpi", "=", "300", ")", "return" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
dotplot
Visualize enrichr results. :param df: GSEApy DataFrame results. :param column: which column of DataFrame to show. Default: Adjusted P-value :param title: figure title :param cutoff: p-adjust cut-off. :param top_term: number of enriched terms to show. :param ascending: bool, the order of y axis. :param sizes: tuple, (min, max) scatter size. Not functional for now :param norm: maplotlib.colors.Normalize object. :param legend: bool, whether to show legend. :param figsize: tuple, figure size. :param cmap: matplotlib colormap :param ofname: output file name. If None, don't save figure
gseapy/plot.py
def dotplot(df, column='Adjusted P-value', title='', cutoff=0.05, top_term=10, sizes=None, norm=None, legend=True, figsize=(6, 5.5), cmap='RdBu_r', ofname=None, **kwargs): """Visualize enrichr results. :param df: GSEApy DataFrame results. :param column: which column of DataFrame to show. Default: Adjusted P-value :param title: figure title :param cutoff: p-adjust cut-off. :param top_term: number of enriched terms to show. :param ascending: bool, the order of y axis. :param sizes: tuple, (min, max) scatter size. Not functional for now :param norm: maplotlib.colors.Normalize object. :param legend: bool, whether to show legend. :param figsize: tuple, figure size. :param cmap: matplotlib colormap :param ofname: output file name. If None, don't save figure """ colname = column # sorting the dataframe for better visualization if colname in ['Adjusted P-value', 'P-value']: # check if any values in `df[colname]` can't be coerced to floats can_be_coerced = df[colname].map(isfloat) if np.sum(~can_be_coerced) > 0: raise ValueError('some value in %s could not be typecast to `float`'%colname) else: df.loc[:, colname] = df[colname].map(float) df = df[df[colname] <= cutoff] if len(df) < 1: msg = "Warning: No enrich terms when cutoff = %s"%cutoff return msg df = df.assign(logAP=lambda x: - x[colname].apply(np.log10)) colname='logAP' df = df.sort_values(by=colname).iloc[-top_term:,:] # temp = df['Overlap'].str.split("/", expand=True).astype(int) df = df.assign(Hits=temp.iloc[:,0], Background=temp.iloc[:,1]) df = df.assign(Hits_ratio=lambda x:x.Hits / x.Background) # x axis values x = df.loc[:, colname].values combined_score = df['Combined Score'].round().astype('int') # y axis index and values y = [i for i in range(0,len(df))] ylabels = df['Term'].values # Normalise to [0,1] # b = (df['Count'] - df['Count'].min())/ np.ptp(df['Count']) # area = 100 * b # control the size of scatter and legend marker levels = numbers = np.sort(df.Hits.unique()) if norm is None: norm = Normalize() elif isinstance(norm, tuple): norm = Normalize(*norm) elif not isinstance(norm, Normalize): err = ("``size_norm`` must be None, tuple, " "or Normalize object.") raise ValueError(err) min_width, max_width = np.r_[20, 100] * plt.rcParams["lines.linewidth"] norm.clip = True if not norm.scaled(): norm(np.asarray(numbers)) size_limits = norm.vmin, norm.vmax scl = norm(numbers) widths = np.asarray(min_width + scl * (max_width - min_width)) if scl.mask.any(): widths[scl.mask] = 0 sizes = dict(zip(levels, widths)) df['sizes'] = df.Hits.map(sizes) area = df['sizes'].values # creat scatter plot if hasattr(sys, 'ps1') and (ofname is None): # working inside python console, show figure fig, ax = plt.subplots(figsize=figsize) else: # If working on commandline, don't show figure fig = Figure(figsize=figsize) canvas = FigureCanvas(fig) ax = fig.add_subplot(111) vmin = np.percentile(combined_score.min(), 2) vmax = np.percentile(combined_score.max(), 98) sc = ax.scatter(x=x, y=y, s=area, edgecolors='face', c=combined_score, cmap=cmap, vmin=vmin, vmax=vmax) if column in ['Adjusted P-value', 'P-value']: xlabel = "-log$_{10}$(%s)"%column else: xlabel = column ax.set_xlabel(xlabel, fontsize=14, fontweight='bold') ax.yaxis.set_major_locator(plt.FixedLocator(y)) ax.yaxis.set_major_formatter(plt.FixedFormatter(ylabels)) ax.set_yticklabels(ylabels, fontsize=16) # ax.set_ylim([-1, len(df)]) ax.grid() # colorbar cax=fig.add_axes([0.95,0.20,0.03,0.22]) cbar = fig.colorbar(sc, cax=cax,) cbar.ax.tick_params(right=True) cbar.ax.set_title('Combined\nScore',loc='left', fontsize=12) # for terms less than 3 if len(df) >= 3: # find the index of the closest value to the median idx = [area.argmax(), np.abs(area - area.mean()).argmin(), area.argmin()] idx = unique(idx) else: idx = df.index.values label = df.iloc[idx, df.columns.get_loc('Hits')] if legend: handles, _ = ax.get_legend_handles_labels() legend_markers = [] for ix in idx: legend_markers.append(ax.scatter([],[], s=area[ix], c='b')) # artist = ax.scatter([], [], s=size_levels,) ax.legend(legend_markers, label, title='Hits') ax.set_title(title, fontsize=20, fontweight='bold') if ofname is not None: # canvas.print_figure(ofname, bbox_inches='tight', dpi=300) fig.savefig(ofname, bbox_inches='tight', dpi=300) return return ax
def dotplot(df, column='Adjusted P-value', title='', cutoff=0.05, top_term=10, sizes=None, norm=None, legend=True, figsize=(6, 5.5), cmap='RdBu_r', ofname=None, **kwargs): """Visualize enrichr results. :param df: GSEApy DataFrame results. :param column: which column of DataFrame to show. Default: Adjusted P-value :param title: figure title :param cutoff: p-adjust cut-off. :param top_term: number of enriched terms to show. :param ascending: bool, the order of y axis. :param sizes: tuple, (min, max) scatter size. Not functional for now :param norm: maplotlib.colors.Normalize object. :param legend: bool, whether to show legend. :param figsize: tuple, figure size. :param cmap: matplotlib colormap :param ofname: output file name. If None, don't save figure """ colname = column # sorting the dataframe for better visualization if colname in ['Adjusted P-value', 'P-value']: # check if any values in `df[colname]` can't be coerced to floats can_be_coerced = df[colname].map(isfloat) if np.sum(~can_be_coerced) > 0: raise ValueError('some value in %s could not be typecast to `float`'%colname) else: df.loc[:, colname] = df[colname].map(float) df = df[df[colname] <= cutoff] if len(df) < 1: msg = "Warning: No enrich terms when cutoff = %s"%cutoff return msg df = df.assign(logAP=lambda x: - x[colname].apply(np.log10)) colname='logAP' df = df.sort_values(by=colname).iloc[-top_term:,:] # temp = df['Overlap'].str.split("/", expand=True).astype(int) df = df.assign(Hits=temp.iloc[:,0], Background=temp.iloc[:,1]) df = df.assign(Hits_ratio=lambda x:x.Hits / x.Background) # x axis values x = df.loc[:, colname].values combined_score = df['Combined Score'].round().astype('int') # y axis index and values y = [i for i in range(0,len(df))] ylabels = df['Term'].values # Normalise to [0,1] # b = (df['Count'] - df['Count'].min())/ np.ptp(df['Count']) # area = 100 * b # control the size of scatter and legend marker levels = numbers = np.sort(df.Hits.unique()) if norm is None: norm = Normalize() elif isinstance(norm, tuple): norm = Normalize(*norm) elif not isinstance(norm, Normalize): err = ("``size_norm`` must be None, tuple, " "or Normalize object.") raise ValueError(err) min_width, max_width = np.r_[20, 100] * plt.rcParams["lines.linewidth"] norm.clip = True if not norm.scaled(): norm(np.asarray(numbers)) size_limits = norm.vmin, norm.vmax scl = norm(numbers) widths = np.asarray(min_width + scl * (max_width - min_width)) if scl.mask.any(): widths[scl.mask] = 0 sizes = dict(zip(levels, widths)) df['sizes'] = df.Hits.map(sizes) area = df['sizes'].values # creat scatter plot if hasattr(sys, 'ps1') and (ofname is None): # working inside python console, show figure fig, ax = plt.subplots(figsize=figsize) else: # If working on commandline, don't show figure fig = Figure(figsize=figsize) canvas = FigureCanvas(fig) ax = fig.add_subplot(111) vmin = np.percentile(combined_score.min(), 2) vmax = np.percentile(combined_score.max(), 98) sc = ax.scatter(x=x, y=y, s=area, edgecolors='face', c=combined_score, cmap=cmap, vmin=vmin, vmax=vmax) if column in ['Adjusted P-value', 'P-value']: xlabel = "-log$_{10}$(%s)"%column else: xlabel = column ax.set_xlabel(xlabel, fontsize=14, fontweight='bold') ax.yaxis.set_major_locator(plt.FixedLocator(y)) ax.yaxis.set_major_formatter(plt.FixedFormatter(ylabels)) ax.set_yticklabels(ylabels, fontsize=16) # ax.set_ylim([-1, len(df)]) ax.grid() # colorbar cax=fig.add_axes([0.95,0.20,0.03,0.22]) cbar = fig.colorbar(sc, cax=cax,) cbar.ax.tick_params(right=True) cbar.ax.set_title('Combined\nScore',loc='left', fontsize=12) # for terms less than 3 if len(df) >= 3: # find the index of the closest value to the median idx = [area.argmax(), np.abs(area - area.mean()).argmin(), area.argmin()] idx = unique(idx) else: idx = df.index.values label = df.iloc[idx, df.columns.get_loc('Hits')] if legend: handles, _ = ax.get_legend_handles_labels() legend_markers = [] for ix in idx: legend_markers.append(ax.scatter([],[], s=area[ix], c='b')) # artist = ax.scatter([], [], s=size_levels,) ax.legend(legend_markers, label, title='Hits') ax.set_title(title, fontsize=20, fontweight='bold') if ofname is not None: # canvas.print_figure(ofname, bbox_inches='tight', dpi=300) fig.savefig(ofname, bbox_inches='tight', dpi=300) return return ax
[ "Visualize", "enrichr", "results", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/plot.py#L253-L380
[ "def", "dotplot", "(", "df", ",", "column", "=", "'Adjusted P-value'", ",", "title", "=", "''", ",", "cutoff", "=", "0.05", ",", "top_term", "=", "10", ",", "sizes", "=", "None", ",", "norm", "=", "None", ",", "legend", "=", "True", ",", "figsize", "=", "(", "6", ",", "5.5", ")", ",", "cmap", "=", "'RdBu_r'", ",", "ofname", "=", "None", ",", "*", "*", "kwargs", ")", ":", "colname", "=", "column", "# sorting the dataframe for better visualization", "if", "colname", "in", "[", "'Adjusted P-value'", ",", "'P-value'", "]", ":", "# check if any values in `df[colname]` can't be coerced to floats", "can_be_coerced", "=", "df", "[", "colname", "]", ".", "map", "(", "isfloat", ")", "if", "np", ".", "sum", "(", "~", "can_be_coerced", ")", ">", "0", ":", "raise", "ValueError", "(", "'some value in %s could not be typecast to `float`'", "%", "colname", ")", "else", ":", "df", ".", "loc", "[", ":", ",", "colname", "]", "=", "df", "[", "colname", "]", ".", "map", "(", "float", ")", "df", "=", "df", "[", "df", "[", "colname", "]", "<=", "cutoff", "]", "if", "len", "(", "df", ")", "<", "1", ":", "msg", "=", "\"Warning: No enrich terms when cutoff = %s\"", "%", "cutoff", "return", "msg", "df", "=", "df", ".", "assign", "(", "logAP", "=", "lambda", "x", ":", "-", "x", "[", "colname", "]", ".", "apply", "(", "np", ".", "log10", ")", ")", "colname", "=", "'logAP'", "df", "=", "df", ".", "sort_values", "(", "by", "=", "colname", ")", ".", "iloc", "[", "-", "top_term", ":", ",", ":", "]", "# ", "temp", "=", "df", "[", "'Overlap'", "]", ".", "str", ".", "split", "(", "\"/\"", ",", "expand", "=", "True", ")", ".", "astype", "(", "int", ")", "df", "=", "df", ".", "assign", "(", "Hits", "=", "temp", ".", "iloc", "[", ":", ",", "0", "]", ",", "Background", "=", "temp", ".", "iloc", "[", ":", ",", "1", "]", ")", "df", "=", "df", ".", "assign", "(", "Hits_ratio", "=", "lambda", "x", ":", "x", ".", "Hits", "/", "x", ".", "Background", ")", "# x axis values", "x", "=", "df", ".", "loc", "[", ":", ",", "colname", "]", ".", "values", "combined_score", "=", "df", "[", "'Combined Score'", "]", ".", "round", "(", ")", ".", "astype", "(", "'int'", ")", "# y axis index and values", "y", "=", "[", "i", "for", "i", "in", "range", "(", "0", ",", "len", "(", "df", ")", ")", "]", "ylabels", "=", "df", "[", "'Term'", "]", ".", "values", "# Normalise to [0,1]", "# b = (df['Count'] - df['Count'].min())/ np.ptp(df['Count'])", "# area = 100 * b", "# control the size of scatter and legend marker", "levels", "=", "numbers", "=", "np", ".", "sort", "(", "df", ".", "Hits", ".", "unique", "(", ")", ")", "if", "norm", "is", "None", ":", "norm", "=", "Normalize", "(", ")", "elif", "isinstance", "(", "norm", ",", "tuple", ")", ":", "norm", "=", "Normalize", "(", "*", "norm", ")", "elif", "not", "isinstance", "(", "norm", ",", "Normalize", ")", ":", "err", "=", "(", "\"``size_norm`` must be None, tuple, \"", "\"or Normalize object.\"", ")", "raise", "ValueError", "(", "err", ")", "min_width", ",", "max_width", "=", "np", ".", "r_", "[", "20", ",", "100", "]", "*", "plt", ".", "rcParams", "[", "\"lines.linewidth\"", "]", "norm", ".", "clip", "=", "True", "if", "not", "norm", ".", "scaled", "(", ")", ":", "norm", "(", "np", ".", "asarray", "(", "numbers", ")", ")", "size_limits", "=", "norm", ".", "vmin", ",", "norm", ".", "vmax", "scl", "=", "norm", "(", "numbers", ")", "widths", "=", "np", ".", "asarray", "(", "min_width", "+", "scl", "*", "(", "max_width", "-", "min_width", ")", ")", "if", "scl", ".", "mask", ".", "any", "(", ")", ":", "widths", "[", "scl", ".", "mask", "]", "=", "0", "sizes", "=", "dict", "(", "zip", "(", "levels", ",", "widths", ")", ")", "df", "[", "'sizes'", "]", "=", "df", ".", "Hits", ".", "map", "(", "sizes", ")", "area", "=", "df", "[", "'sizes'", "]", ".", "values", "# creat scatter plot", "if", "hasattr", "(", "sys", ",", "'ps1'", ")", "and", "(", "ofname", "is", "None", ")", ":", "# working inside python console, show figure", "fig", ",", "ax", "=", "plt", ".", "subplots", "(", "figsize", "=", "figsize", ")", "else", ":", "# If working on commandline, don't show figure", "fig", "=", "Figure", "(", "figsize", "=", "figsize", ")", "canvas", "=", "FigureCanvas", "(", "fig", ")", "ax", "=", "fig", ".", "add_subplot", "(", "111", ")", "vmin", "=", "np", ".", "percentile", "(", "combined_score", ".", "min", "(", ")", ",", "2", ")", "vmax", "=", "np", ".", "percentile", "(", "combined_score", ".", "max", "(", ")", ",", "98", ")", "sc", "=", "ax", ".", "scatter", "(", "x", "=", "x", ",", "y", "=", "y", ",", "s", "=", "area", ",", "edgecolors", "=", "'face'", ",", "c", "=", "combined_score", ",", "cmap", "=", "cmap", ",", "vmin", "=", "vmin", ",", "vmax", "=", "vmax", ")", "if", "column", "in", "[", "'Adjusted P-value'", ",", "'P-value'", "]", ":", "xlabel", "=", "\"-log$_{10}$(%s)\"", "%", "column", "else", ":", "xlabel", "=", "column", "ax", ".", "set_xlabel", "(", "xlabel", ",", "fontsize", "=", "14", ",", "fontweight", "=", "'bold'", ")", "ax", ".", "yaxis", ".", "set_major_locator", "(", "plt", ".", "FixedLocator", "(", "y", ")", ")", "ax", ".", "yaxis", ".", "set_major_formatter", "(", "plt", ".", "FixedFormatter", "(", "ylabels", ")", ")", "ax", ".", "set_yticklabels", "(", "ylabels", ",", "fontsize", "=", "16", ")", "# ax.set_ylim([-1, len(df)])", "ax", ".", "grid", "(", ")", "# colorbar", "cax", "=", "fig", ".", "add_axes", "(", "[", "0.95", ",", "0.20", ",", "0.03", ",", "0.22", "]", ")", "cbar", "=", "fig", ".", "colorbar", "(", "sc", ",", "cax", "=", "cax", ",", ")", "cbar", ".", "ax", ".", "tick_params", "(", "right", "=", "True", ")", "cbar", ".", "ax", ".", "set_title", "(", "'Combined\\nScore'", ",", "loc", "=", "'left'", ",", "fontsize", "=", "12", ")", "# for terms less than 3", "if", "len", "(", "df", ")", ">=", "3", ":", "# find the index of the closest value to the median", "idx", "=", "[", "area", ".", "argmax", "(", ")", ",", "np", ".", "abs", "(", "area", "-", "area", ".", "mean", "(", ")", ")", ".", "argmin", "(", ")", ",", "area", ".", "argmin", "(", ")", "]", "idx", "=", "unique", "(", "idx", ")", "else", ":", "idx", "=", "df", ".", "index", ".", "values", "label", "=", "df", ".", "iloc", "[", "idx", ",", "df", ".", "columns", ".", "get_loc", "(", "'Hits'", ")", "]", "if", "legend", ":", "handles", ",", "_", "=", "ax", ".", "get_legend_handles_labels", "(", ")", "legend_markers", "=", "[", "]", "for", "ix", "in", "idx", ":", "legend_markers", ".", "append", "(", "ax", ".", "scatter", "(", "[", "]", ",", "[", "]", ",", "s", "=", "area", "[", "ix", "]", ",", "c", "=", "'b'", ")", ")", "# artist = ax.scatter([], [], s=size_levels,) ", "ax", ".", "legend", "(", "legend_markers", ",", "label", ",", "title", "=", "'Hits'", ")", "ax", ".", "set_title", "(", "title", ",", "fontsize", "=", "20", ",", "fontweight", "=", "'bold'", ")", "if", "ofname", "is", "not", "None", ":", "# canvas.print_figure(ofname, bbox_inches='tight', dpi=300)", "fig", ".", "savefig", "(", "ofname", ",", "bbox_inches", "=", "'tight'", ",", "dpi", "=", "300", ")", "return", "return", "ax" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
barplot
Visualize enrichr results. :param df: GSEApy DataFrame results. :param column: which column of DataFrame to show. Default: Adjusted P-value :param title: figure title. :param cutoff: cut-off of the cloumn you've chosen. :param top_term: number of top enriched terms to show. :param figsize: tuple, matplotlib figsize. :param color: color for bars. :param ofname: output file name. If None, don't save figure
gseapy/plot.py
def barplot(df, column='Adjusted P-value', title="", cutoff=0.05, top_term=10, figsize=(6.5,6), color='salmon', ofname=None, **kwargs): """Visualize enrichr results. :param df: GSEApy DataFrame results. :param column: which column of DataFrame to show. Default: Adjusted P-value :param title: figure title. :param cutoff: cut-off of the cloumn you've chosen. :param top_term: number of top enriched terms to show. :param figsize: tuple, matplotlib figsize. :param color: color for bars. :param ofname: output file name. If None, don't save figure """ colname = column if colname in ['Adjusted P-value', 'P-value']: df = df[df[colname] <= cutoff] if len(df) < 1: msg = "Warning: No enrich terms using library %s when cutoff = %s"%(title, cutoff) return msg df = df.assign(logAP = lambda x: - x[colname].apply(np.log10)) colname = 'logAP' dd = df.sort_values(by=colname).iloc[-top_term:,:] # dd = d.head(top_term).sort_values('logAP') # create bar plot if hasattr(sys, 'ps1') and (ofname is None): # working inside python console, show (True) figure fig = plt.figure(figsize=figsize) else: # If working on commandline, don't show figure fig = Figure(figsize=figsize) canvas = FigureCanvas(fig) ax = fig.add_subplot(111) bar = dd.plot.barh(x='Term', y=colname, color=color, alpha=0.75, fontsize=16, ax=ax) if column in ['Adjusted P-value', 'P-value']: xlabel = "-log$_{10}$(%s)"%column else: xlabel = column bar.set_xlabel(xlabel, fontsize=16, fontweight='bold') bar.set_ylabel("") bar.set_title(title, fontsize=24, fontweight='bold') bar.xaxis.set_major_locator(MaxNLocator(integer=True)) bar.legend_.remove() adjust_spines(ax, spines=['left','bottom']) if ofname is not None: # canvas.print_figure(ofname, bbox_inches='tight', dpi=300) fig.savefig(ofname, bbox_inches='tight', dpi=300) return return ax
def barplot(df, column='Adjusted P-value', title="", cutoff=0.05, top_term=10, figsize=(6.5,6), color='salmon', ofname=None, **kwargs): """Visualize enrichr results. :param df: GSEApy DataFrame results. :param column: which column of DataFrame to show. Default: Adjusted P-value :param title: figure title. :param cutoff: cut-off of the cloumn you've chosen. :param top_term: number of top enriched terms to show. :param figsize: tuple, matplotlib figsize. :param color: color for bars. :param ofname: output file name. If None, don't save figure """ colname = column if colname in ['Adjusted P-value', 'P-value']: df = df[df[colname] <= cutoff] if len(df) < 1: msg = "Warning: No enrich terms using library %s when cutoff = %s"%(title, cutoff) return msg df = df.assign(logAP = lambda x: - x[colname].apply(np.log10)) colname = 'logAP' dd = df.sort_values(by=colname).iloc[-top_term:,:] # dd = d.head(top_term).sort_values('logAP') # create bar plot if hasattr(sys, 'ps1') and (ofname is None): # working inside python console, show (True) figure fig = plt.figure(figsize=figsize) else: # If working on commandline, don't show figure fig = Figure(figsize=figsize) canvas = FigureCanvas(fig) ax = fig.add_subplot(111) bar = dd.plot.barh(x='Term', y=colname, color=color, alpha=0.75, fontsize=16, ax=ax) if column in ['Adjusted P-value', 'P-value']: xlabel = "-log$_{10}$(%s)"%column else: xlabel = column bar.set_xlabel(xlabel, fontsize=16, fontweight='bold') bar.set_ylabel("") bar.set_title(title, fontsize=24, fontweight='bold') bar.xaxis.set_major_locator(MaxNLocator(integer=True)) bar.legend_.remove() adjust_spines(ax, spines=['left','bottom']) if ofname is not None: # canvas.print_figure(ofname, bbox_inches='tight', dpi=300) fig.savefig(ofname, bbox_inches='tight', dpi=300) return return ax
[ "Visualize", "enrichr", "results", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/plot.py#L382-L434
[ "def", "barplot", "(", "df", ",", "column", "=", "'Adjusted P-value'", ",", "title", "=", "\"\"", ",", "cutoff", "=", "0.05", ",", "top_term", "=", "10", ",", "figsize", "=", "(", "6.5", ",", "6", ")", ",", "color", "=", "'salmon'", ",", "ofname", "=", "None", ",", "*", "*", "kwargs", ")", ":", "colname", "=", "column", "if", "colname", "in", "[", "'Adjusted P-value'", ",", "'P-value'", "]", ":", "df", "=", "df", "[", "df", "[", "colname", "]", "<=", "cutoff", "]", "if", "len", "(", "df", ")", "<", "1", ":", "msg", "=", "\"Warning: No enrich terms using library %s when cutoff = %s\"", "%", "(", "title", ",", "cutoff", ")", "return", "msg", "df", "=", "df", ".", "assign", "(", "logAP", "=", "lambda", "x", ":", "-", "x", "[", "colname", "]", ".", "apply", "(", "np", ".", "log10", ")", ")", "colname", "=", "'logAP'", "dd", "=", "df", ".", "sort_values", "(", "by", "=", "colname", ")", ".", "iloc", "[", "-", "top_term", ":", ",", ":", "]", "# dd = d.head(top_term).sort_values('logAP')", "# create bar plot", "if", "hasattr", "(", "sys", ",", "'ps1'", ")", "and", "(", "ofname", "is", "None", ")", ":", "# working inside python console, show (True) figure", "fig", "=", "plt", ".", "figure", "(", "figsize", "=", "figsize", ")", "else", ":", "# If working on commandline, don't show figure", "fig", "=", "Figure", "(", "figsize", "=", "figsize", ")", "canvas", "=", "FigureCanvas", "(", "fig", ")", "ax", "=", "fig", ".", "add_subplot", "(", "111", ")", "bar", "=", "dd", ".", "plot", ".", "barh", "(", "x", "=", "'Term'", ",", "y", "=", "colname", ",", "color", "=", "color", ",", "alpha", "=", "0.75", ",", "fontsize", "=", "16", ",", "ax", "=", "ax", ")", "if", "column", "in", "[", "'Adjusted P-value'", ",", "'P-value'", "]", ":", "xlabel", "=", "\"-log$_{10}$(%s)\"", "%", "column", "else", ":", "xlabel", "=", "column", "bar", ".", "set_xlabel", "(", "xlabel", ",", "fontsize", "=", "16", ",", "fontweight", "=", "'bold'", ")", "bar", ".", "set_ylabel", "(", "\"\"", ")", "bar", ".", "set_title", "(", "title", ",", "fontsize", "=", "24", ",", "fontweight", "=", "'bold'", ")", "bar", ".", "xaxis", ".", "set_major_locator", "(", "MaxNLocator", "(", "integer", "=", "True", ")", ")", "bar", ".", "legend_", ".", "remove", "(", ")", "adjust_spines", "(", "ax", ",", "spines", "=", "[", "'left'", ",", "'bottom'", "]", ")", "if", "ofname", "is", "not", "None", ":", "# canvas.print_figure(ofname, bbox_inches='tight', dpi=300)", "fig", ".", "savefig", "(", "ofname", ",", "bbox_inches", "=", "'tight'", ",", "dpi", "=", "300", ")", "return", "return", "ax" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
adjust_spines
function for removing spines and ticks. :param ax: axes object :param spines: a list of spines names to keep. e.g [left, right, top, bottom] if spines = []. remove all spines and ticks.
gseapy/plot.py
def adjust_spines(ax, spines): """function for removing spines and ticks. :param ax: axes object :param spines: a list of spines names to keep. e.g [left, right, top, bottom] if spines = []. remove all spines and ticks. """ for loc, spine in ax.spines.items(): if loc in spines: # spine.set_position(('outward', 10)) # outward by 10 points # spine.set_smart_bounds(True) continue else: spine.set_color('none') # don't draw spine # turn off ticks where there is no spine if 'left' in spines: ax.yaxis.set_ticks_position('left') else: # no yaxis ticks ax.yaxis.set_ticks([]) if 'bottom' in spines: ax.xaxis.set_ticks_position('bottom') else: # no xaxis ticks ax.xaxis.set_ticks([])
def adjust_spines(ax, spines): """function for removing spines and ticks. :param ax: axes object :param spines: a list of spines names to keep. e.g [left, right, top, bottom] if spines = []. remove all spines and ticks. """ for loc, spine in ax.spines.items(): if loc in spines: # spine.set_position(('outward', 10)) # outward by 10 points # spine.set_smart_bounds(True) continue else: spine.set_color('none') # don't draw spine # turn off ticks where there is no spine if 'left' in spines: ax.yaxis.set_ticks_position('left') else: # no yaxis ticks ax.yaxis.set_ticks([]) if 'bottom' in spines: ax.xaxis.set_ticks_position('bottom') else: # no xaxis ticks ax.xaxis.set_ticks([])
[ "function", "for", "removing", "spines", "and", "ticks", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/plot.py#L436-L463
[ "def", "adjust_spines", "(", "ax", ",", "spines", ")", ":", "for", "loc", ",", "spine", "in", "ax", ".", "spines", ".", "items", "(", ")", ":", "if", "loc", "in", "spines", ":", "# spine.set_position(('outward', 10)) # outward by 10 points", "# spine.set_smart_bounds(True)", "continue", "else", ":", "spine", ".", "set_color", "(", "'none'", ")", "# don't draw spine", "# turn off ticks where there is no spine", "if", "'left'", "in", "spines", ":", "ax", ".", "yaxis", ".", "set_ticks_position", "(", "'left'", ")", "else", ":", "# no yaxis ticks", "ax", ".", "yaxis", ".", "set_ticks", "(", "[", "]", ")", "if", "'bottom'", "in", "spines", ":", "ax", ".", "xaxis", ".", "set_ticks_position", "(", "'bottom'", ")", "else", ":", "# no xaxis ticks", "ax", ".", "xaxis", ".", "set_ticks", "(", "[", "]", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
main
The Main function/pipeline for GSEApy.
gseapy/__main__.py
def main(): """The Main function/pipeline for GSEApy.""" # Parse options... argparser = prepare_argparser() args = argparser.parse_args() subcommand = args.subcommand_name if subcommand == "replot": # reproduce plots using GSEAPY from .gsea import Replot rep = Replot(indir=args.indir, outdir=args.outdir, weighted_score_type=args.weight, figsize=args.figsize, graph_num=args.graph, format=args.format, verbose=args.verbose) rep.run() elif subcommand == "gsea": # compute using GSEAPY from .gsea import GSEA gs = GSEA(args.data, args.gmt, args.cls, args.outdir, args.mins, args.maxs, args.n, args.weight, args.type, args.method, args.ascending, args.threads, args.figsize, args.format, args.graph, args.noplot, args.seed, args.verbose) gs.run() elif subcommand == "prerank": from .gsea import Prerank pre = Prerank(args.rnk, args.gmt, args.outdir, args.label[0], args.label[1], args.mins, args.maxs, args.n, args.weight, args.ascending, args.threads, args.figsize, args.format, args.graph, args.noplot, args.seed, args.verbose) pre.run() elif subcommand == "ssgsea": from .gsea import SingleSampleGSEA ss = SingleSampleGSEA(data=args.data, gene_sets=args.gmt, outdir=args.outdir, sample_norm_method=args.norm, min_size=args.mins, max_size=args.maxs, permutation_num=args.n, weighted_score_type=args.weight, scale=args.scale, ascending=args.ascending, processes=args.threads, figsize=args.figsize, format=args.format, graph_num=args.graph, no_plot=args.noplot, seed=args.seed, verbose=args.verbose) ss.run() elif subcommand == "enrichr": # calling enrichr API from .enrichr import Enrichr enr = Enrichr(gene_list=args.gene_list, descriptions=args.descrip, gene_sets=args.library, organism=args.organism, outdir=args.outdir, format=args.format, cutoff=args.thresh, background=args.bg, figsize=args.figsize, top_term=args.term, no_plot=args.noplot, verbose=args.verbose) enr.run() elif subcommand == "biomart": from .parser import Biomart # read input file or a argument name, value = args.filter if os.path.isfile(value): with open(value, 'r') as val: lines = val.readlines() value = [ l.strip() for l in lines] # run query bm = Biomart(host=args.host, verbose=args.verbose) bm.query(dataset=args.bg, attributes=args.attrs.split(","), filters={name : value}, filename=args.ofile) else: argparser.print_help() sys.exit(0)
def main(): """The Main function/pipeline for GSEApy.""" # Parse options... argparser = prepare_argparser() args = argparser.parse_args() subcommand = args.subcommand_name if subcommand == "replot": # reproduce plots using GSEAPY from .gsea import Replot rep = Replot(indir=args.indir, outdir=args.outdir, weighted_score_type=args.weight, figsize=args.figsize, graph_num=args.graph, format=args.format, verbose=args.verbose) rep.run() elif subcommand == "gsea": # compute using GSEAPY from .gsea import GSEA gs = GSEA(args.data, args.gmt, args.cls, args.outdir, args.mins, args.maxs, args.n, args.weight, args.type, args.method, args.ascending, args.threads, args.figsize, args.format, args.graph, args.noplot, args.seed, args.verbose) gs.run() elif subcommand == "prerank": from .gsea import Prerank pre = Prerank(args.rnk, args.gmt, args.outdir, args.label[0], args.label[1], args.mins, args.maxs, args.n, args.weight, args.ascending, args.threads, args.figsize, args.format, args.graph, args.noplot, args.seed, args.verbose) pre.run() elif subcommand == "ssgsea": from .gsea import SingleSampleGSEA ss = SingleSampleGSEA(data=args.data, gene_sets=args.gmt, outdir=args.outdir, sample_norm_method=args.norm, min_size=args.mins, max_size=args.maxs, permutation_num=args.n, weighted_score_type=args.weight, scale=args.scale, ascending=args.ascending, processes=args.threads, figsize=args.figsize, format=args.format, graph_num=args.graph, no_plot=args.noplot, seed=args.seed, verbose=args.verbose) ss.run() elif subcommand == "enrichr": # calling enrichr API from .enrichr import Enrichr enr = Enrichr(gene_list=args.gene_list, descriptions=args.descrip, gene_sets=args.library, organism=args.organism, outdir=args.outdir, format=args.format, cutoff=args.thresh, background=args.bg, figsize=args.figsize, top_term=args.term, no_plot=args.noplot, verbose=args.verbose) enr.run() elif subcommand == "biomart": from .parser import Biomart # read input file or a argument name, value = args.filter if os.path.isfile(value): with open(value, 'r') as val: lines = val.readlines() value = [ l.strip() for l in lines] # run query bm = Biomart(host=args.host, verbose=args.verbose) bm.query(dataset=args.bg, attributes=args.attrs.split(","), filters={name : value}, filename=args.ofile) else: argparser.print_help() sys.exit(0)
[ "The", "Main", "function", "/", "pipeline", "for", "GSEApy", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/__main__.py#L16-L84
[ "def", "main", "(", ")", ":", "# Parse options...", "argparser", "=", "prepare_argparser", "(", ")", "args", "=", "argparser", ".", "parse_args", "(", ")", "subcommand", "=", "args", ".", "subcommand_name", "if", "subcommand", "==", "\"replot\"", ":", "# reproduce plots using GSEAPY", "from", ".", "gsea", "import", "Replot", "rep", "=", "Replot", "(", "indir", "=", "args", ".", "indir", ",", "outdir", "=", "args", ".", "outdir", ",", "weighted_score_type", "=", "args", ".", "weight", ",", "figsize", "=", "args", ".", "figsize", ",", "graph_num", "=", "args", ".", "graph", ",", "format", "=", "args", ".", "format", ",", "verbose", "=", "args", ".", "verbose", ")", "rep", ".", "run", "(", ")", "elif", "subcommand", "==", "\"gsea\"", ":", "# compute using GSEAPY", "from", ".", "gsea", "import", "GSEA", "gs", "=", "GSEA", "(", "args", ".", "data", ",", "args", ".", "gmt", ",", "args", ".", "cls", ",", "args", ".", "outdir", ",", "args", ".", "mins", ",", "args", ".", "maxs", ",", "args", ".", "n", ",", "args", ".", "weight", ",", "args", ".", "type", ",", "args", ".", "method", ",", "args", ".", "ascending", ",", "args", ".", "threads", ",", "args", ".", "figsize", ",", "args", ".", "format", ",", "args", ".", "graph", ",", "args", ".", "noplot", ",", "args", ".", "seed", ",", "args", ".", "verbose", ")", "gs", ".", "run", "(", ")", "elif", "subcommand", "==", "\"prerank\"", ":", "from", ".", "gsea", "import", "Prerank", "pre", "=", "Prerank", "(", "args", ".", "rnk", ",", "args", ".", "gmt", ",", "args", ".", "outdir", ",", "args", ".", "label", "[", "0", "]", ",", "args", ".", "label", "[", "1", "]", ",", "args", ".", "mins", ",", "args", ".", "maxs", ",", "args", ".", "n", ",", "args", ".", "weight", ",", "args", ".", "ascending", ",", "args", ".", "threads", ",", "args", ".", "figsize", ",", "args", ".", "format", ",", "args", ".", "graph", ",", "args", ".", "noplot", ",", "args", ".", "seed", ",", "args", ".", "verbose", ")", "pre", ".", "run", "(", ")", "elif", "subcommand", "==", "\"ssgsea\"", ":", "from", ".", "gsea", "import", "SingleSampleGSEA", "ss", "=", "SingleSampleGSEA", "(", "data", "=", "args", ".", "data", ",", "gene_sets", "=", "args", ".", "gmt", ",", "outdir", "=", "args", ".", "outdir", ",", "sample_norm_method", "=", "args", ".", "norm", ",", "min_size", "=", "args", ".", "mins", ",", "max_size", "=", "args", ".", "maxs", ",", "permutation_num", "=", "args", ".", "n", ",", "weighted_score_type", "=", "args", ".", "weight", ",", "scale", "=", "args", ".", "scale", ",", "ascending", "=", "args", ".", "ascending", ",", "processes", "=", "args", ".", "threads", ",", "figsize", "=", "args", ".", "figsize", ",", "format", "=", "args", ".", "format", ",", "graph_num", "=", "args", ".", "graph", ",", "no_plot", "=", "args", ".", "noplot", ",", "seed", "=", "args", ".", "seed", ",", "verbose", "=", "args", ".", "verbose", ")", "ss", ".", "run", "(", ")", "elif", "subcommand", "==", "\"enrichr\"", ":", "# calling enrichr API", "from", ".", "enrichr", "import", "Enrichr", "enr", "=", "Enrichr", "(", "gene_list", "=", "args", ".", "gene_list", ",", "descriptions", "=", "args", ".", "descrip", ",", "gene_sets", "=", "args", ".", "library", ",", "organism", "=", "args", ".", "organism", ",", "outdir", "=", "args", ".", "outdir", ",", "format", "=", "args", ".", "format", ",", "cutoff", "=", "args", ".", "thresh", ",", "background", "=", "args", ".", "bg", ",", "figsize", "=", "args", ".", "figsize", ",", "top_term", "=", "args", ".", "term", ",", "no_plot", "=", "args", ".", "noplot", ",", "verbose", "=", "args", ".", "verbose", ")", "enr", ".", "run", "(", ")", "elif", "subcommand", "==", "\"biomart\"", ":", "from", ".", "parser", "import", "Biomart", "# read input file or a argument", "name", ",", "value", "=", "args", ".", "filter", "if", "os", ".", "path", ".", "isfile", "(", "value", ")", ":", "with", "open", "(", "value", ",", "'r'", ")", "as", "val", ":", "lines", "=", "val", ".", "readlines", "(", ")", "value", "=", "[", "l", ".", "strip", "(", ")", "for", "l", "in", "lines", "]", "# run query", "bm", "=", "Biomart", "(", "host", "=", "args", ".", "host", ",", "verbose", "=", "args", ".", "verbose", ")", "bm", ".", "query", "(", "dataset", "=", "args", ".", "bg", ",", "attributes", "=", "args", ".", "attrs", ".", "split", "(", "\",\"", ")", ",", "filters", "=", "{", "name", ":", "value", "}", ",", "filename", "=", "args", ".", "ofile", ")", "else", ":", "argparser", ".", "print_help", "(", ")", "sys", ".", "exit", "(", "0", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
prepare_argparser
Prepare argparser object. New options will be added in this function first.
gseapy/__main__.py
def prepare_argparser(): """Prepare argparser object. New options will be added in this function first.""" description = "%(prog)s -- Gene Set Enrichment Analysis in Python" epilog = "For command line options of each command, type: %(prog)s COMMAND -h" # top-level parser argparser = ap.ArgumentParser(description=description, epilog=epilog) argparser.add_argument("--version", action="version", version="%(prog)s "+ __version__) subparsers = argparser.add_subparsers(dest='subcommand_name') #help="sub-command help") # command for 'gsea' add_gsea_parser(subparsers) # command for 'prerank' add_prerank_parser(subparsers) # command for 'ssgsea' add_singlesample_parser(subparsers) # command for 'plot' add_plot_parser(subparsers) # command for 'enrichr' add_enrichr_parser(subparsers) # command for 'biomart' add_biomart_parser(subparsers) return argparser
def prepare_argparser(): """Prepare argparser object. New options will be added in this function first.""" description = "%(prog)s -- Gene Set Enrichment Analysis in Python" epilog = "For command line options of each command, type: %(prog)s COMMAND -h" # top-level parser argparser = ap.ArgumentParser(description=description, epilog=epilog) argparser.add_argument("--version", action="version", version="%(prog)s "+ __version__) subparsers = argparser.add_subparsers(dest='subcommand_name') #help="sub-command help") # command for 'gsea' add_gsea_parser(subparsers) # command for 'prerank' add_prerank_parser(subparsers) # command for 'ssgsea' add_singlesample_parser(subparsers) # command for 'plot' add_plot_parser(subparsers) # command for 'enrichr' add_enrichr_parser(subparsers) # command for 'biomart' add_biomart_parser(subparsers) return argparser
[ "Prepare", "argparser", "object", ".", "New", "options", "will", "be", "added", "in", "this", "function", "first", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/__main__.py#L87-L110
[ "def", "prepare_argparser", "(", ")", ":", "description", "=", "\"%(prog)s -- Gene Set Enrichment Analysis in Python\"", "epilog", "=", "\"For command line options of each command, type: %(prog)s COMMAND -h\"", "# top-level parser", "argparser", "=", "ap", ".", "ArgumentParser", "(", "description", "=", "description", ",", "epilog", "=", "epilog", ")", "argparser", ".", "add_argument", "(", "\"--version\"", ",", "action", "=", "\"version\"", ",", "version", "=", "\"%(prog)s \"", "+", "__version__", ")", "subparsers", "=", "argparser", ".", "add_subparsers", "(", "dest", "=", "'subcommand_name'", ")", "#help=\"sub-command help\")", "# command for 'gsea'", "add_gsea_parser", "(", "subparsers", ")", "# command for 'prerank'", "add_prerank_parser", "(", "subparsers", ")", "# command for 'ssgsea'", "add_singlesample_parser", "(", "subparsers", ")", "# command for 'plot'", "add_plot_parser", "(", "subparsers", ")", "# command for 'enrichr'", "add_enrichr_parser", "(", "subparsers", ")", "# command for 'biomart'", "add_biomart_parser", "(", "subparsers", ")", "return", "argparser" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
add_output_option
output option
gseapy/__main__.py
def add_output_option(parser): """output option""" parser.add_argument("-o", "--outdir", dest="outdir", type=str, default='GSEApy_reports', metavar='', action="store", help="The GSEApy output directory. Default: the current working directory") parser.add_argument("-f", "--format", dest="format", type=str, metavar='', action="store", choices=("pdf", "png", "jpeg", "eps", "svg"), default="pdf", help="File extensions supported by Matplotlib active backend,\ choose from {'pdf', 'png', 'jpeg','ps', 'eps','svg'}. Default: 'pdf'.") parser.add_argument("--fs", "--figsize", action='store', nargs=2, dest='figsize', metavar=('width', 'height'),type=float, default=(6.5, 6), help="The figsize keyword argument need two parameters to define. Default: (6.5, 6)") parser.add_argument("--graph", dest = "graph", action="store", type=int, default=20, metavar='int', help="Numbers of top graphs produced. Default: 20") parser.add_argument("--no-plot", action='store_true', dest='noplot', default=False, help="Speed up computing by suppressing the plot output."+\ "This is useful only if data are interested. Default: False.") parser.add_argument("-v", "--verbose", action="store_true", default=False, dest='verbose', help="Increase output verbosity, print out progress of your job", )
def add_output_option(parser): """output option""" parser.add_argument("-o", "--outdir", dest="outdir", type=str, default='GSEApy_reports', metavar='', action="store", help="The GSEApy output directory. Default: the current working directory") parser.add_argument("-f", "--format", dest="format", type=str, metavar='', action="store", choices=("pdf", "png", "jpeg", "eps", "svg"), default="pdf", help="File extensions supported by Matplotlib active backend,\ choose from {'pdf', 'png', 'jpeg','ps', 'eps','svg'}. Default: 'pdf'.") parser.add_argument("--fs", "--figsize", action='store', nargs=2, dest='figsize', metavar=('width', 'height'),type=float, default=(6.5, 6), help="The figsize keyword argument need two parameters to define. Default: (6.5, 6)") parser.add_argument("--graph", dest = "graph", action="store", type=int, default=20, metavar='int', help="Numbers of top graphs produced. Default: 20") parser.add_argument("--no-plot", action='store_true', dest='noplot', default=False, help="Speed up computing by suppressing the plot output."+\ "This is useful only if data are interested. Default: False.") parser.add_argument("-v", "--verbose", action="store_true", default=False, dest='verbose', help="Increase output verbosity, print out progress of your job", )
[ "output", "option" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/__main__.py#L112-L131
[ "def", "add_output_option", "(", "parser", ")", ":", "parser", ".", "add_argument", "(", "\"-o\"", ",", "\"--outdir\"", ",", "dest", "=", "\"outdir\"", ",", "type", "=", "str", ",", "default", "=", "'GSEApy_reports'", ",", "metavar", "=", "''", ",", "action", "=", "\"store\"", ",", "help", "=", "\"The GSEApy output directory. Default: the current working directory\"", ")", "parser", ".", "add_argument", "(", "\"-f\"", ",", "\"--format\"", ",", "dest", "=", "\"format\"", ",", "type", "=", "str", ",", "metavar", "=", "''", ",", "action", "=", "\"store\"", ",", "choices", "=", "(", "\"pdf\"", ",", "\"png\"", ",", "\"jpeg\"", ",", "\"eps\"", ",", "\"svg\"", ")", ",", "default", "=", "\"pdf\"", ",", "help", "=", "\"File extensions supported by Matplotlib active backend,\\\n choose from {'pdf', 'png', 'jpeg','ps', 'eps','svg'}. Default: 'pdf'.\"", ")", "parser", ".", "add_argument", "(", "\"--fs\"", ",", "\"--figsize\"", ",", "action", "=", "'store'", ",", "nargs", "=", "2", ",", "dest", "=", "'figsize'", ",", "metavar", "=", "(", "'width'", ",", "'height'", ")", ",", "type", "=", "float", ",", "default", "=", "(", "6.5", ",", "6", ")", ",", "help", "=", "\"The figsize keyword argument need two parameters to define. Default: (6.5, 6)\"", ")", "parser", ".", "add_argument", "(", "\"--graph\"", ",", "dest", "=", "\"graph\"", ",", "action", "=", "\"store\"", ",", "type", "=", "int", ",", "default", "=", "20", ",", "metavar", "=", "'int'", ",", "help", "=", "\"Numbers of top graphs produced. Default: 20\"", ")", "parser", ".", "add_argument", "(", "\"--no-plot\"", ",", "action", "=", "'store_true'", ",", "dest", "=", "'noplot'", ",", "default", "=", "False", ",", "help", "=", "\"Speed up computing by suppressing the plot output.\"", "+", "\"This is useful only if data are interested. Default: False.\"", ")", "parser", ".", "add_argument", "(", "\"-v\"", ",", "\"--verbose\"", ",", "action", "=", "\"store_true\"", ",", "default", "=", "False", ",", "dest", "=", "'verbose'", ",", "help", "=", "\"Increase output verbosity, print out progress of your job\"", ",", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
add_output_group
output group
gseapy/__main__.py
def add_output_group(parser, required=True): """output group""" output_group = parser.add_mutually_exclusive_group(required=required) output_group.add_argument("-o", "--ofile", dest="ofile", type=str, default='GSEApy_reports', help="Output file name. Mutually exclusive with --o-prefix.") output_group.add_argument("--o-prefix", dest="ofile", type=str, default='GSEApy_reports', help="Output file prefix. Mutually exclusive with -o/--ofile.")
def add_output_group(parser, required=True): """output group""" output_group = parser.add_mutually_exclusive_group(required=required) output_group.add_argument("-o", "--ofile", dest="ofile", type=str, default='GSEApy_reports', help="Output file name. Mutually exclusive with --o-prefix.") output_group.add_argument("--o-prefix", dest="ofile", type=str, default='GSEApy_reports', help="Output file prefix. Mutually exclusive with -o/--ofile.")
[ "output", "group" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/__main__.py#L134-L141
[ "def", "add_output_group", "(", "parser", ",", "required", "=", "True", ")", ":", "output_group", "=", "parser", ".", "add_mutually_exclusive_group", "(", "required", "=", "required", ")", "output_group", ".", "add_argument", "(", "\"-o\"", ",", "\"--ofile\"", ",", "dest", "=", "\"ofile\"", ",", "type", "=", "str", ",", "default", "=", "'GSEApy_reports'", ",", "help", "=", "\"Output file name. Mutually exclusive with --o-prefix.\"", ")", "output_group", ".", "add_argument", "(", "\"--o-prefix\"", ",", "dest", "=", "\"ofile\"", ",", "type", "=", "str", ",", "default", "=", "'GSEApy_reports'", ",", "help", "=", "\"Output file prefix. Mutually exclusive with -o/--ofile.\"", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
add_gsea_parser
Add main function 'gsea' argument parsers.
gseapy/__main__.py
def add_gsea_parser(subparsers): """Add main function 'gsea' argument parsers.""" argparser_gsea = subparsers.add_parser("gsea", help="Main GSEApy Function: run GSEApy instead of GSEA.") # group for input files group_input = argparser_gsea.add_argument_group("Input files arguments") group_input.add_argument("-d", "--data", dest="data", action="store", type=str, required=True, help="Input gene expression dataset file in txt format.Same with GSEA.") group_input.add_argument("-c", "--cls", dest="cls", action="store", type=str, required=True, help="Input class vector (phenotype) file in CLS format. Same with GSEA.") group_input.add_argument("-g", "--gmt", dest="gmt", action="store", type=str, required=True, help="Gene set database in GMT format. Same with GSEA.") group_input.add_argument("-t", "--permu-type", action="store", dest="type", type=str, metavar='perType', choices=("gene_set", "phenotype"), default="gene_set", help="Permutation type. Same with GSEA, choose from {'gene_set', 'phenotype'}") # group for output files group_output = argparser_gsea.add_argument_group("Output arguments") add_output_option(group_output) # group for General options. group_opt = argparser_gsea.add_argument_group("GSEA advanced arguments") group_opt.add_argument("-n", "--permu-num", dest = "n", action="store", type=int, default=1000, metavar='nperm', help="Number of random permutations. For calculating esnulls. Default: 1000") group_opt.add_argument("--min-size", dest="mins", action="store", type=int, default=15, metavar='int', help="Min size of input genes presented in Gene Sets. Default: 15") group_opt.add_argument("--max-size", dest = "maxs", action="store", type=int, default=500, metavar='int', help="Max size of input genes presented in Gene Sets. Default: 500") group_opt.add_argument("-w", "--weight", action='store', dest='weight', default=1.0, type=float, metavar='float', help='Weighted_score of rank_metrics. For weighting input genes. Choose from {0, 1, 1.5, 2}. Default: 1',) group_opt.add_argument("-m", "--method", action="store", dest="method", type=str, metavar='', choices=("signal_to_noise", "t_test", "ratio_of_classes", "diff_of_classes", "log2_ratio_of_classes"), default="log2_ratio_of_classes", help="Methods to calculate correlations of ranking metrics. \ Choose from {'signal_to_noise', 't_test', 'ratio_of_classes', 'diff_of_classes','log2_ratio_of_classes'}.\ Default: 'log2_ratio_of_classes'") group_opt.add_argument("-a", "--ascending", action='store_true', dest='ascending', default=False, help='Rank metric sorting order. If the -a flag was chosen, then ascending equals to True. Default: False.') group_opt.add_argument("-s", "--seed", dest = "seed", action="store", type=int, default=None, metavar='', help="Number of random seed. Default: None") group_opt.add_argument("-p", "--threads", dest = "threads", action="store", type=int, default=1, metavar='procs', help="Number of Processes you are going to use. Default: 1") return
def add_gsea_parser(subparsers): """Add main function 'gsea' argument parsers.""" argparser_gsea = subparsers.add_parser("gsea", help="Main GSEApy Function: run GSEApy instead of GSEA.") # group for input files group_input = argparser_gsea.add_argument_group("Input files arguments") group_input.add_argument("-d", "--data", dest="data", action="store", type=str, required=True, help="Input gene expression dataset file in txt format.Same with GSEA.") group_input.add_argument("-c", "--cls", dest="cls", action="store", type=str, required=True, help="Input class vector (phenotype) file in CLS format. Same with GSEA.") group_input.add_argument("-g", "--gmt", dest="gmt", action="store", type=str, required=True, help="Gene set database in GMT format. Same with GSEA.") group_input.add_argument("-t", "--permu-type", action="store", dest="type", type=str, metavar='perType', choices=("gene_set", "phenotype"), default="gene_set", help="Permutation type. Same with GSEA, choose from {'gene_set', 'phenotype'}") # group for output files group_output = argparser_gsea.add_argument_group("Output arguments") add_output_option(group_output) # group for General options. group_opt = argparser_gsea.add_argument_group("GSEA advanced arguments") group_opt.add_argument("-n", "--permu-num", dest = "n", action="store", type=int, default=1000, metavar='nperm', help="Number of random permutations. For calculating esnulls. Default: 1000") group_opt.add_argument("--min-size", dest="mins", action="store", type=int, default=15, metavar='int', help="Min size of input genes presented in Gene Sets. Default: 15") group_opt.add_argument("--max-size", dest = "maxs", action="store", type=int, default=500, metavar='int', help="Max size of input genes presented in Gene Sets. Default: 500") group_opt.add_argument("-w", "--weight", action='store', dest='weight', default=1.0, type=float, metavar='float', help='Weighted_score of rank_metrics. For weighting input genes. Choose from {0, 1, 1.5, 2}. Default: 1',) group_opt.add_argument("-m", "--method", action="store", dest="method", type=str, metavar='', choices=("signal_to_noise", "t_test", "ratio_of_classes", "diff_of_classes", "log2_ratio_of_classes"), default="log2_ratio_of_classes", help="Methods to calculate correlations of ranking metrics. \ Choose from {'signal_to_noise', 't_test', 'ratio_of_classes', 'diff_of_classes','log2_ratio_of_classes'}.\ Default: 'log2_ratio_of_classes'") group_opt.add_argument("-a", "--ascending", action='store_true', dest='ascending', default=False, help='Rank metric sorting order. If the -a flag was chosen, then ascending equals to True. Default: False.') group_opt.add_argument("-s", "--seed", dest = "seed", action="store", type=int, default=None, metavar='', help="Number of random seed. Default: None") group_opt.add_argument("-p", "--threads", dest = "threads", action="store", type=int, default=1, metavar='procs', help="Number of Processes you are going to use. Default: 1") return
[ "Add", "main", "function", "gsea", "argument", "parsers", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/__main__.py#L144-L188
[ "def", "add_gsea_parser", "(", "subparsers", ")", ":", "argparser_gsea", "=", "subparsers", ".", "add_parser", "(", "\"gsea\"", ",", "help", "=", "\"Main GSEApy Function: run GSEApy instead of GSEA.\"", ")", "# group for input files", "group_input", "=", "argparser_gsea", ".", "add_argument_group", "(", "\"Input files arguments\"", ")", "group_input", ".", "add_argument", "(", "\"-d\"", ",", "\"--data\"", ",", "dest", "=", "\"data\"", ",", "action", "=", "\"store\"", ",", "type", "=", "str", ",", "required", "=", "True", ",", "help", "=", "\"Input gene expression dataset file in txt format.Same with GSEA.\"", ")", "group_input", ".", "add_argument", "(", "\"-c\"", ",", "\"--cls\"", ",", "dest", "=", "\"cls\"", ",", "action", "=", "\"store\"", ",", "type", "=", "str", ",", "required", "=", "True", ",", "help", "=", "\"Input class vector (phenotype) file in CLS format. Same with GSEA.\"", ")", "group_input", ".", "add_argument", "(", "\"-g\"", ",", "\"--gmt\"", ",", "dest", "=", "\"gmt\"", ",", "action", "=", "\"store\"", ",", "type", "=", "str", ",", "required", "=", "True", ",", "help", "=", "\"Gene set database in GMT format. Same with GSEA.\"", ")", "group_input", ".", "add_argument", "(", "\"-t\"", ",", "\"--permu-type\"", ",", "action", "=", "\"store\"", ",", "dest", "=", "\"type\"", ",", "type", "=", "str", ",", "metavar", "=", "'perType'", ",", "choices", "=", "(", "\"gene_set\"", ",", "\"phenotype\"", ")", ",", "default", "=", "\"gene_set\"", ",", "help", "=", "\"Permutation type. Same with GSEA, choose from {'gene_set', 'phenotype'}\"", ")", "# group for output files", "group_output", "=", "argparser_gsea", ".", "add_argument_group", "(", "\"Output arguments\"", ")", "add_output_option", "(", "group_output", ")", "# group for General options.", "group_opt", "=", "argparser_gsea", ".", "add_argument_group", "(", "\"GSEA advanced arguments\"", ")", "group_opt", ".", "add_argument", "(", "\"-n\"", ",", "\"--permu-num\"", ",", "dest", "=", "\"n\"", ",", "action", "=", "\"store\"", ",", "type", "=", "int", ",", "default", "=", "1000", ",", "metavar", "=", "'nperm'", ",", "help", "=", "\"Number of random permutations. For calculating esnulls. Default: 1000\"", ")", "group_opt", ".", "add_argument", "(", "\"--min-size\"", ",", "dest", "=", "\"mins\"", ",", "action", "=", "\"store\"", ",", "type", "=", "int", ",", "default", "=", "15", ",", "metavar", "=", "'int'", ",", "help", "=", "\"Min size of input genes presented in Gene Sets. Default: 15\"", ")", "group_opt", ".", "add_argument", "(", "\"--max-size\"", ",", "dest", "=", "\"maxs\"", ",", "action", "=", "\"store\"", ",", "type", "=", "int", ",", "default", "=", "500", ",", "metavar", "=", "'int'", ",", "help", "=", "\"Max size of input genes presented in Gene Sets. Default: 500\"", ")", "group_opt", ".", "add_argument", "(", "\"-w\"", ",", "\"--weight\"", ",", "action", "=", "'store'", ",", "dest", "=", "'weight'", ",", "default", "=", "1.0", ",", "type", "=", "float", ",", "metavar", "=", "'float'", ",", "help", "=", "'Weighted_score of rank_metrics. For weighting input genes. Choose from {0, 1, 1.5, 2}. Default: 1'", ",", ")", "group_opt", ".", "add_argument", "(", "\"-m\"", ",", "\"--method\"", ",", "action", "=", "\"store\"", ",", "dest", "=", "\"method\"", ",", "type", "=", "str", ",", "metavar", "=", "''", ",", "choices", "=", "(", "\"signal_to_noise\"", ",", "\"t_test\"", ",", "\"ratio_of_classes\"", ",", "\"diff_of_classes\"", ",", "\"log2_ratio_of_classes\"", ")", ",", "default", "=", "\"log2_ratio_of_classes\"", ",", "help", "=", "\"Methods to calculate correlations of ranking metrics. \\\n Choose from {'signal_to_noise', 't_test', 'ratio_of_classes', 'diff_of_classes','log2_ratio_of_classes'}.\\\n Default: 'log2_ratio_of_classes'\"", ")", "group_opt", ".", "add_argument", "(", "\"-a\"", ",", "\"--ascending\"", ",", "action", "=", "'store_true'", ",", "dest", "=", "'ascending'", ",", "default", "=", "False", ",", "help", "=", "'Rank metric sorting order. If the -a flag was chosen, then ascending equals to True. Default: False.'", ")", "group_opt", ".", "add_argument", "(", "\"-s\"", ",", "\"--seed\"", ",", "dest", "=", "\"seed\"", ",", "action", "=", "\"store\"", ",", "type", "=", "int", ",", "default", "=", "None", ",", "metavar", "=", "''", ",", "help", "=", "\"Number of random seed. Default: None\"", ")", "group_opt", ".", "add_argument", "(", "\"-p\"", ",", "\"--threads\"", ",", "dest", "=", "\"threads\"", ",", "action", "=", "\"store\"", ",", "type", "=", "int", ",", "default", "=", "1", ",", "metavar", "=", "'procs'", ",", "help", "=", "\"Number of Processes you are going to use. Default: 1\"", ")", "return" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
add_prerank_parser
Add function 'prerank' argument parsers.
gseapy/__main__.py
def add_prerank_parser(subparsers): """Add function 'prerank' argument parsers.""" argparser_prerank = subparsers.add_parser("prerank", help="Run GSEApy Prerank tool on preranked gene list.") # group for input files prerank_input = argparser_prerank.add_argument_group("Input files arguments") prerank_input.add_argument("-r", "--rnk", dest="rnk", action="store", type=str, required=True, help="Ranking metric file in .rnk format. Same with GSEA.") prerank_input.add_argument("-g", "--gmt", dest="gmt", action="store", type=str, required=True, help="Gene set database in GMT format. Same with GSEA.") prerank_input.add_argument("-l", "--label", action='store', nargs=2, dest='label', metavar=('pos', 'neg'), type=str, default=('Pos','Neg'), help="The phenotype label argument need two parameters to define. Default: ('Pos','Neg')") # group for output files prerank_output = argparser_prerank.add_argument_group("Output arguments") add_output_option(prerank_output) # group for General options. prerank_opt = argparser_prerank.add_argument_group("GSEA advanced arguments") prerank_opt.add_argument("-n", "--permu-num", dest = "n", action="store", type=int, default=1000, metavar='nperm', help="Number of random permutations. For calculating esnulls. Default: 1000") prerank_opt.add_argument("--min-size", dest="mins", action="store", type=int, default=15, metavar='int', help="Min size of input genes presented in Gene Sets. Default: 15") prerank_opt.add_argument("--max-size", dest = "maxs", action="store", type=int, default=500, metavar='int', help="Max size of input genes presented in Gene Sets. Default: 500") prerank_opt.add_argument("-w", "--weight", action='store', dest='weight', default=1.0, type=float, metavar='float', help='Weighted_score of rank_metrics. For weighting input genes. Choose from {0, 1, 1.5, 2}. Default: 1',) prerank_opt.add_argument("-a", "--ascending", action='store_true', dest='ascending', default=False, help='Rank metric sorting order. If the -a flag was chosen, then ascending equals to True. Default: False.') prerank_opt.add_argument("-s", "--seed", dest = "seed", action="store", type=int, default=None, metavar='', help="Number of random seed. Default: None") prerank_opt.add_argument("-p", "--threads", dest = "threads", action="store", type=int, default=1, metavar='procs', help="Number of Processes you are going to use. Default: 1") return
def add_prerank_parser(subparsers): """Add function 'prerank' argument parsers.""" argparser_prerank = subparsers.add_parser("prerank", help="Run GSEApy Prerank tool on preranked gene list.") # group for input files prerank_input = argparser_prerank.add_argument_group("Input files arguments") prerank_input.add_argument("-r", "--rnk", dest="rnk", action="store", type=str, required=True, help="Ranking metric file in .rnk format. Same with GSEA.") prerank_input.add_argument("-g", "--gmt", dest="gmt", action="store", type=str, required=True, help="Gene set database in GMT format. Same with GSEA.") prerank_input.add_argument("-l", "--label", action='store', nargs=2, dest='label', metavar=('pos', 'neg'), type=str, default=('Pos','Neg'), help="The phenotype label argument need two parameters to define. Default: ('Pos','Neg')") # group for output files prerank_output = argparser_prerank.add_argument_group("Output arguments") add_output_option(prerank_output) # group for General options. prerank_opt = argparser_prerank.add_argument_group("GSEA advanced arguments") prerank_opt.add_argument("-n", "--permu-num", dest = "n", action="store", type=int, default=1000, metavar='nperm', help="Number of random permutations. For calculating esnulls. Default: 1000") prerank_opt.add_argument("--min-size", dest="mins", action="store", type=int, default=15, metavar='int', help="Min size of input genes presented in Gene Sets. Default: 15") prerank_opt.add_argument("--max-size", dest = "maxs", action="store", type=int, default=500, metavar='int', help="Max size of input genes presented in Gene Sets. Default: 500") prerank_opt.add_argument("-w", "--weight", action='store', dest='weight', default=1.0, type=float, metavar='float', help='Weighted_score of rank_metrics. For weighting input genes. Choose from {0, 1, 1.5, 2}. Default: 1',) prerank_opt.add_argument("-a", "--ascending", action='store_true', dest='ascending', default=False, help='Rank metric sorting order. If the -a flag was chosen, then ascending equals to True. Default: False.') prerank_opt.add_argument("-s", "--seed", dest = "seed", action="store", type=int, default=None, metavar='', help="Number of random seed. Default: None") prerank_opt.add_argument("-p", "--threads", dest = "threads", action="store", type=int, default=1, metavar='procs', help="Number of Processes you are going to use. Default: 1") return
[ "Add", "function", "prerank", "argument", "parsers", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/__main__.py#L191-L227
[ "def", "add_prerank_parser", "(", "subparsers", ")", ":", "argparser_prerank", "=", "subparsers", ".", "add_parser", "(", "\"prerank\"", ",", "help", "=", "\"Run GSEApy Prerank tool on preranked gene list.\"", ")", "# group for input files", "prerank_input", "=", "argparser_prerank", ".", "add_argument_group", "(", "\"Input files arguments\"", ")", "prerank_input", ".", "add_argument", "(", "\"-r\"", ",", "\"--rnk\"", ",", "dest", "=", "\"rnk\"", ",", "action", "=", "\"store\"", ",", "type", "=", "str", ",", "required", "=", "True", ",", "help", "=", "\"Ranking metric file in .rnk format. Same with GSEA.\"", ")", "prerank_input", ".", "add_argument", "(", "\"-g\"", ",", "\"--gmt\"", ",", "dest", "=", "\"gmt\"", ",", "action", "=", "\"store\"", ",", "type", "=", "str", ",", "required", "=", "True", ",", "help", "=", "\"Gene set database in GMT format. Same with GSEA.\"", ")", "prerank_input", ".", "add_argument", "(", "\"-l\"", ",", "\"--label\"", ",", "action", "=", "'store'", ",", "nargs", "=", "2", ",", "dest", "=", "'label'", ",", "metavar", "=", "(", "'pos'", ",", "'neg'", ")", ",", "type", "=", "str", ",", "default", "=", "(", "'Pos'", ",", "'Neg'", ")", ",", "help", "=", "\"The phenotype label argument need two parameters to define. Default: ('Pos','Neg')\"", ")", "# group for output files", "prerank_output", "=", "argparser_prerank", ".", "add_argument_group", "(", "\"Output arguments\"", ")", "add_output_option", "(", "prerank_output", ")", "# group for General options.", "prerank_opt", "=", "argparser_prerank", ".", "add_argument_group", "(", "\"GSEA advanced arguments\"", ")", "prerank_opt", ".", "add_argument", "(", "\"-n\"", ",", "\"--permu-num\"", ",", "dest", "=", "\"n\"", ",", "action", "=", "\"store\"", ",", "type", "=", "int", ",", "default", "=", "1000", ",", "metavar", "=", "'nperm'", ",", "help", "=", "\"Number of random permutations. For calculating esnulls. Default: 1000\"", ")", "prerank_opt", ".", "add_argument", "(", "\"--min-size\"", ",", "dest", "=", "\"mins\"", ",", "action", "=", "\"store\"", ",", "type", "=", "int", ",", "default", "=", "15", ",", "metavar", "=", "'int'", ",", "help", "=", "\"Min size of input genes presented in Gene Sets. Default: 15\"", ")", "prerank_opt", ".", "add_argument", "(", "\"--max-size\"", ",", "dest", "=", "\"maxs\"", ",", "action", "=", "\"store\"", ",", "type", "=", "int", ",", "default", "=", "500", ",", "metavar", "=", "'int'", ",", "help", "=", "\"Max size of input genes presented in Gene Sets. Default: 500\"", ")", "prerank_opt", ".", "add_argument", "(", "\"-w\"", ",", "\"--weight\"", ",", "action", "=", "'store'", ",", "dest", "=", "'weight'", ",", "default", "=", "1.0", ",", "type", "=", "float", ",", "metavar", "=", "'float'", ",", "help", "=", "'Weighted_score of rank_metrics. For weighting input genes. Choose from {0, 1, 1.5, 2}. Default: 1'", ",", ")", "prerank_opt", ".", "add_argument", "(", "\"-a\"", ",", "\"--ascending\"", ",", "action", "=", "'store_true'", ",", "dest", "=", "'ascending'", ",", "default", "=", "False", ",", "help", "=", "'Rank metric sorting order. If the -a flag was chosen, then ascending equals to True. Default: False.'", ")", "prerank_opt", ".", "add_argument", "(", "\"-s\"", ",", "\"--seed\"", ",", "dest", "=", "\"seed\"", ",", "action", "=", "\"store\"", ",", "type", "=", "int", ",", "default", "=", "None", ",", "metavar", "=", "''", ",", "help", "=", "\"Number of random seed. Default: None\"", ")", "prerank_opt", ".", "add_argument", "(", "\"-p\"", ",", "\"--threads\"", ",", "dest", "=", "\"threads\"", ",", "action", "=", "\"store\"", ",", "type", "=", "int", ",", "default", "=", "1", ",", "metavar", "=", "'procs'", ",", "help", "=", "\"Number of Processes you are going to use. Default: 1\"", ")", "return" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
add_plot_parser
Add function 'plot' argument parsers.
gseapy/__main__.py
def add_plot_parser(subparsers): """Add function 'plot' argument parsers.""" argparser_replot = subparsers.add_parser("replot", help="Reproduce GSEA desktop output figures.") group_replot = argparser_replot.add_argument_group("Input arguments") group_replot.add_argument("-i", "--indir", action="store", dest="indir", required=True, metavar='GSEA_dir', help="The GSEA desktop results directroy that you want to reproduce the figure ") add_output_option(group_replot) #add_output_group( argparser_plot ) group_replot.add_argument("-w", "--weight", action='store', dest='weight', default=1.0, type=float, metavar='float', help='Weighted_score of rank_metrics. Please Use the same value in GSEA. Choose from (0, 1, 1.5, 2),default: 1',) return
def add_plot_parser(subparsers): """Add function 'plot' argument parsers.""" argparser_replot = subparsers.add_parser("replot", help="Reproduce GSEA desktop output figures.") group_replot = argparser_replot.add_argument_group("Input arguments") group_replot.add_argument("-i", "--indir", action="store", dest="indir", required=True, metavar='GSEA_dir', help="The GSEA desktop results directroy that you want to reproduce the figure ") add_output_option(group_replot) #add_output_group( argparser_plot ) group_replot.add_argument("-w", "--weight", action='store', dest='weight', default=1.0, type=float, metavar='float', help='Weighted_score of rank_metrics. Please Use the same value in GSEA. Choose from (0, 1, 1.5, 2),default: 1',) return
[ "Add", "function", "plot", "argument", "parsers", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/__main__.py#L271-L285
[ "def", "add_plot_parser", "(", "subparsers", ")", ":", "argparser_replot", "=", "subparsers", ".", "add_parser", "(", "\"replot\"", ",", "help", "=", "\"Reproduce GSEA desktop output figures.\"", ")", "group_replot", "=", "argparser_replot", ".", "add_argument_group", "(", "\"Input arguments\"", ")", "group_replot", ".", "add_argument", "(", "\"-i\"", ",", "\"--indir\"", ",", "action", "=", "\"store\"", ",", "dest", "=", "\"indir\"", ",", "required", "=", "True", ",", "metavar", "=", "'GSEA_dir'", ",", "help", "=", "\"The GSEA desktop results directroy that you want to reproduce the figure \"", ")", "add_output_option", "(", "group_replot", ")", "#add_output_group( argparser_plot )", "group_replot", ".", "add_argument", "(", "\"-w\"", ",", "\"--weight\"", ",", "action", "=", "'store'", ",", "dest", "=", "'weight'", ",", "default", "=", "1.0", ",", "type", "=", "float", ",", "metavar", "=", "'float'", ",", "help", "=", "'Weighted_score of rank_metrics. Please Use the same value in GSEA. Choose from (0, 1, 1.5, 2),default: 1'", ",", ")", "return" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
add_enrichr_parser
Add function 'enrichr' argument parsers.
gseapy/__main__.py
def add_enrichr_parser(subparsers): """Add function 'enrichr' argument parsers.""" argparser_enrichr = subparsers.add_parser("enrichr", help="Using Enrichr API to perform GO analysis.") # group for required options. enrichr_opt = argparser_enrichr.add_argument_group("Input arguments") enrichr_opt.add_argument("-i", "--input-list", action="store", dest="gene_list", type=str, required=True, metavar='IDs', help="Enrichr uses a list of gene names as input.") enrichr_opt.add_argument("-g", "--gene-sets", action="store", dest="library", type=str, required=True, metavar='GMT', help="Enrichr library name(s) required. Separate each name by comma.") enrichr_opt.add_argument("--org", "--organism", action="store", dest="organism", type=str, default='', help="Enrichr supported organism name. Default: human. See here: https://amp.pharm.mssm.edu/modEnrichr.") enrichr_opt.add_argument("--ds", "--description", action="store", dest="descrip", type=str, default='enrichr', metavar='STRING', help="It is recommended to enter a short description for your list so that multiple lists \ can be differentiated from each other if you choose to save or share your list.") enrichr_opt.add_argument("--cut", "--cut-off", action="store", dest="thresh", metavar='float', type=float, default=0.05, help="Adjust-Pval cutoff, used for generating plots. Default: 0.05.") enrichr_opt.add_argument("--bg", "--background", action="store", dest="bg", default='hsapiens_gene_ensembl', metavar='BGNUM', help="BioMart Dataset name or Background total genes number. Default: None") enrichr_opt.add_argument("-t", "--top-term", dest="term", action="store", type=int, default=10, metavar='int', help="Numbers of top terms shown in the plot. Default: 10") # enrichr_opt.add_argument("--scale", dest = "scale", action="store", type=float, default=0.5, metavar='float', # help="scatter dot scale in the dotplot. Default: 0.5") # enrichr_opt.add_argument("--no-plot", action='store_true', dest='no_plot', default=False, # help="Suppress the plot output.This is useful only if data are interested. Default: False.") enrichr_output = argparser_enrichr.add_argument_group("Output figure arguments") add_output_option(enrichr_output) return
def add_enrichr_parser(subparsers): """Add function 'enrichr' argument parsers.""" argparser_enrichr = subparsers.add_parser("enrichr", help="Using Enrichr API to perform GO analysis.") # group for required options. enrichr_opt = argparser_enrichr.add_argument_group("Input arguments") enrichr_opt.add_argument("-i", "--input-list", action="store", dest="gene_list", type=str, required=True, metavar='IDs', help="Enrichr uses a list of gene names as input.") enrichr_opt.add_argument("-g", "--gene-sets", action="store", dest="library", type=str, required=True, metavar='GMT', help="Enrichr library name(s) required. Separate each name by comma.") enrichr_opt.add_argument("--org", "--organism", action="store", dest="organism", type=str, default='', help="Enrichr supported organism name. Default: human. See here: https://amp.pharm.mssm.edu/modEnrichr.") enrichr_opt.add_argument("--ds", "--description", action="store", dest="descrip", type=str, default='enrichr', metavar='STRING', help="It is recommended to enter a short description for your list so that multiple lists \ can be differentiated from each other if you choose to save or share your list.") enrichr_opt.add_argument("--cut", "--cut-off", action="store", dest="thresh", metavar='float', type=float, default=0.05, help="Adjust-Pval cutoff, used for generating plots. Default: 0.05.") enrichr_opt.add_argument("--bg", "--background", action="store", dest="bg", default='hsapiens_gene_ensembl', metavar='BGNUM', help="BioMart Dataset name or Background total genes number. Default: None") enrichr_opt.add_argument("-t", "--top-term", dest="term", action="store", type=int, default=10, metavar='int', help="Numbers of top terms shown in the plot. Default: 10") # enrichr_opt.add_argument("--scale", dest = "scale", action="store", type=float, default=0.5, metavar='float', # help="scatter dot scale in the dotplot. Default: 0.5") # enrichr_opt.add_argument("--no-plot", action='store_true', dest='no_plot', default=False, # help="Suppress the plot output.This is useful only if data are interested. Default: False.") enrichr_output = argparser_enrichr.add_argument_group("Output figure arguments") add_output_option(enrichr_output) return
[ "Add", "function", "enrichr", "argument", "parsers", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/__main__.py#L288-L317
[ "def", "add_enrichr_parser", "(", "subparsers", ")", ":", "argparser_enrichr", "=", "subparsers", ".", "add_parser", "(", "\"enrichr\"", ",", "help", "=", "\"Using Enrichr API to perform GO analysis.\"", ")", "# group for required options.", "enrichr_opt", "=", "argparser_enrichr", ".", "add_argument_group", "(", "\"Input arguments\"", ")", "enrichr_opt", ".", "add_argument", "(", "\"-i\"", ",", "\"--input-list\"", ",", "action", "=", "\"store\"", ",", "dest", "=", "\"gene_list\"", ",", "type", "=", "str", ",", "required", "=", "True", ",", "metavar", "=", "'IDs'", ",", "help", "=", "\"Enrichr uses a list of gene names as input.\"", ")", "enrichr_opt", ".", "add_argument", "(", "\"-g\"", ",", "\"--gene-sets\"", ",", "action", "=", "\"store\"", ",", "dest", "=", "\"library\"", ",", "type", "=", "str", ",", "required", "=", "True", ",", "metavar", "=", "'GMT'", ",", "help", "=", "\"Enrichr library name(s) required. Separate each name by comma.\"", ")", "enrichr_opt", ".", "add_argument", "(", "\"--org\"", ",", "\"--organism\"", ",", "action", "=", "\"store\"", ",", "dest", "=", "\"organism\"", ",", "type", "=", "str", ",", "default", "=", "''", ",", "help", "=", "\"Enrichr supported organism name. Default: human. See here: https://amp.pharm.mssm.edu/modEnrichr.\"", ")", "enrichr_opt", ".", "add_argument", "(", "\"--ds\"", ",", "\"--description\"", ",", "action", "=", "\"store\"", ",", "dest", "=", "\"descrip\"", ",", "type", "=", "str", ",", "default", "=", "'enrichr'", ",", "metavar", "=", "'STRING'", ",", "help", "=", "\"It is recommended to enter a short description for your list so that multiple lists \\\n can be differentiated from each other if you choose to save or share your list.\"", ")", "enrichr_opt", ".", "add_argument", "(", "\"--cut\"", ",", "\"--cut-off\"", ",", "action", "=", "\"store\"", ",", "dest", "=", "\"thresh\"", ",", "metavar", "=", "'float'", ",", "type", "=", "float", ",", "default", "=", "0.05", ",", "help", "=", "\"Adjust-Pval cutoff, used for generating plots. Default: 0.05.\"", ")", "enrichr_opt", ".", "add_argument", "(", "\"--bg\"", ",", "\"--background\"", ",", "action", "=", "\"store\"", ",", "dest", "=", "\"bg\"", ",", "default", "=", "'hsapiens_gene_ensembl'", ",", "metavar", "=", "'BGNUM'", ",", "help", "=", "\"BioMart Dataset name or Background total genes number. Default: None\"", ")", "enrichr_opt", ".", "add_argument", "(", "\"-t\"", ",", "\"--top-term\"", ",", "dest", "=", "\"term\"", ",", "action", "=", "\"store\"", ",", "type", "=", "int", ",", "default", "=", "10", ",", "metavar", "=", "'int'", ",", "help", "=", "\"Numbers of top terms shown in the plot. Default: 10\"", ")", "# enrichr_opt.add_argument(\"--scale\", dest = \"scale\", action=\"store\", type=float, default=0.5, metavar='float',", "# help=\"scatter dot scale in the dotplot. Default: 0.5\")", "# enrichr_opt.add_argument(\"--no-plot\", action='store_true', dest='no_plot', default=False,", "# help=\"Suppress the plot output.This is useful only if data are interested. Default: False.\")", "enrichr_output", "=", "argparser_enrichr", ".", "add_argument_group", "(", "\"Output figure arguments\"", ")", "add_output_option", "(", "enrichr_output", ")", "return" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
add_biomart_parser
Add function 'biomart' argument parsers.
gseapy/__main__.py
def add_biomart_parser(subparsers): """Add function 'biomart' argument parsers.""" argparser_biomart = subparsers.add_parser("biomart", help="Using BioMart API to convert gene ids.") # group for required options. biomart_opt = argparser_biomart.add_argument_group("Input arguments") biomart_opt.add_argument("-f", "--filter", action='store', nargs=2, dest='filter', required=True, metavar=('NAME', 'VALUE'), help="""Which filter to use. Input filter name, and value. If multi-value required, separate each value by comma. If value is a txt file, then one ID per row, exclude header.""") biomart_opt.add_argument("-a", "--attributes", action="store", dest="attrs", type=str, required=True, metavar='ATTR', help="Which attribute(s) to retrieve. Separate each attr by comma.") biomart_opt.add_argument("-o", "--ofile", dest="ofile", type=str, required=True, help="Output file name") biomart_opt.add_argument("-d", "--dataset", action="store", dest="bg", type=str, default='hsapiens_gene_ensembl', metavar='DATA', help="Which dataset to use. Default: hsapiens_gene_ensembl") biomart_opt.add_argument("--host", action="store", dest="host", type=str, default='www.ensembl.org', metavar='HOST', help="Which host to use. Select from {'www.ensembl.org', 'asia.ensembl.org', 'useast.ensembl.org'}.") biomart_opt.add_argument("-m", "--mart", action="store", dest="mart", type=str, metavar='MART', default="ENSEMBL_MART_ENSEMBL", help="Which mart to use. Default: ENSEMBL_MART_ENSEMBL.") biomart_opt.add_argument("-v", "--verbose", action="store_true", default=False, dest='verbose', help="Increase output verbosity, print out progress of your job", )
def add_biomart_parser(subparsers): """Add function 'biomart' argument parsers.""" argparser_biomart = subparsers.add_parser("biomart", help="Using BioMart API to convert gene ids.") # group for required options. biomart_opt = argparser_biomart.add_argument_group("Input arguments") biomart_opt.add_argument("-f", "--filter", action='store', nargs=2, dest='filter', required=True, metavar=('NAME', 'VALUE'), help="""Which filter to use. Input filter name, and value. If multi-value required, separate each value by comma. If value is a txt file, then one ID per row, exclude header.""") biomart_opt.add_argument("-a", "--attributes", action="store", dest="attrs", type=str, required=True, metavar='ATTR', help="Which attribute(s) to retrieve. Separate each attr by comma.") biomart_opt.add_argument("-o", "--ofile", dest="ofile", type=str, required=True, help="Output file name") biomart_opt.add_argument("-d", "--dataset", action="store", dest="bg", type=str, default='hsapiens_gene_ensembl', metavar='DATA', help="Which dataset to use. Default: hsapiens_gene_ensembl") biomart_opt.add_argument("--host", action="store", dest="host", type=str, default='www.ensembl.org', metavar='HOST', help="Which host to use. Select from {'www.ensembl.org', 'asia.ensembl.org', 'useast.ensembl.org'}.") biomart_opt.add_argument("-m", "--mart", action="store", dest="mart", type=str, metavar='MART', default="ENSEMBL_MART_ENSEMBL", help="Which mart to use. Default: ENSEMBL_MART_ENSEMBL.") biomart_opt.add_argument("-v", "--verbose", action="store_true", default=False, dest='verbose', help="Increase output verbosity, print out progress of your job", )
[ "Add", "function", "biomart", "argument", "parsers", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/__main__.py#L320-L342
[ "def", "add_biomart_parser", "(", "subparsers", ")", ":", "argparser_biomart", "=", "subparsers", ".", "add_parser", "(", "\"biomart\"", ",", "help", "=", "\"Using BioMart API to convert gene ids.\"", ")", "# group for required options.", "biomart_opt", "=", "argparser_biomart", ".", "add_argument_group", "(", "\"Input arguments\"", ")", "biomart_opt", ".", "add_argument", "(", "\"-f\"", ",", "\"--filter\"", ",", "action", "=", "'store'", ",", "nargs", "=", "2", ",", "dest", "=", "'filter'", ",", "required", "=", "True", ",", "metavar", "=", "(", "'NAME'", ",", "'VALUE'", ")", ",", "help", "=", "\"\"\"Which filter to use. Input filter name, and value.\n If multi-value required, separate each value by comma.\n If value is a txt file, then one ID per row, exclude header.\"\"\"", ")", "biomart_opt", ".", "add_argument", "(", "\"-a\"", ",", "\"--attributes\"", ",", "action", "=", "\"store\"", ",", "dest", "=", "\"attrs\"", ",", "type", "=", "str", ",", "required", "=", "True", ",", "metavar", "=", "'ATTR'", ",", "help", "=", "\"Which attribute(s) to retrieve. Separate each attr by comma.\"", ")", "biomart_opt", ".", "add_argument", "(", "\"-o\"", ",", "\"--ofile\"", ",", "dest", "=", "\"ofile\"", ",", "type", "=", "str", ",", "required", "=", "True", ",", "help", "=", "\"Output file name\"", ")", "biomart_opt", ".", "add_argument", "(", "\"-d\"", ",", "\"--dataset\"", ",", "action", "=", "\"store\"", ",", "dest", "=", "\"bg\"", ",", "type", "=", "str", ",", "default", "=", "'hsapiens_gene_ensembl'", ",", "metavar", "=", "'DATA'", ",", "help", "=", "\"Which dataset to use. Default: hsapiens_gene_ensembl\"", ")", "biomart_opt", ".", "add_argument", "(", "\"--host\"", ",", "action", "=", "\"store\"", ",", "dest", "=", "\"host\"", ",", "type", "=", "str", ",", "default", "=", "'www.ensembl.org'", ",", "metavar", "=", "'HOST'", ",", "help", "=", "\"Which host to use. Select from {'www.ensembl.org', 'asia.ensembl.org', 'useast.ensembl.org'}.\"", ")", "biomart_opt", ".", "add_argument", "(", "\"-m\"", ",", "\"--mart\"", ",", "action", "=", "\"store\"", ",", "dest", "=", "\"mart\"", ",", "type", "=", "str", ",", "metavar", "=", "'MART'", ",", "default", "=", "\"ENSEMBL_MART_ENSEMBL\"", ",", "help", "=", "\"Which mart to use. Default: ENSEMBL_MART_ENSEMBL.\"", ")", "biomart_opt", ".", "add_argument", "(", "\"-v\"", ",", "\"--verbose\"", ",", "action", "=", "\"store_true\"", ",", "default", "=", "False", ",", "dest", "=", "'verbose'", ",", "help", "=", "\"Increase output verbosity, print out progress of your job\"", ",", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
enrichment_score
This is the most important function of GSEApy. It has the same algorithm with GSEA and ssGSEA. :param gene_list: The ordered gene list gene_name_list, rank_metric.index.values :param gene_set: gene_sets in gmt file, please use gsea_gmt_parser to get gene_set. :param weighted_score_type: It's the same with gsea's weighted_score method. Weighting by the correlation is a very reasonable choice that allows significant gene sets with less than perfect coherence. options: 0(classic),1,1.5,2. default:1. if one is interested in penalizing sets for lack of coherence or to discover sets with any type of nonrandom distribution of tags, a value p < 1 might be appropriate. On the other hand, if one uses sets with large number of genes and only a small subset of those is expected to be coherent, then one could consider using p > 1. Our recommendation is to use p = 1 and use other settings only if you are very experienced with the method and its behavior. :param correl_vector: A vector with the correlations (e.g. signal to noise scores) corresponding to the genes in the gene list. Or rankings, rank_metric.values :param nperm: Only use this parameter when computing esnull for statistical testing. Set the esnull value equal to the permutation number. :param rs: Random state for initializing gene list shuffling. Default: np.random.RandomState(seed=None) :return: ES: Enrichment score (real number between -1 and +1) ESNULL: Enrichment score calculated from random permutations. Hits_Indices: Index of a gene in gene_list, if gene is included in gene_set. RES: Numerical vector containing the running enrichment score for all locations in the gene list .
gseapy/algorithm.py
def enrichment_score(gene_list, correl_vector, gene_set, weighted_score_type=1, nperm=1000, rs=np.random.RandomState(), single=False, scale=False): """This is the most important function of GSEApy. It has the same algorithm with GSEA and ssGSEA. :param gene_list: The ordered gene list gene_name_list, rank_metric.index.values :param gene_set: gene_sets in gmt file, please use gsea_gmt_parser to get gene_set. :param weighted_score_type: It's the same with gsea's weighted_score method. Weighting by the correlation is a very reasonable choice that allows significant gene sets with less than perfect coherence. options: 0(classic),1,1.5,2. default:1. if one is interested in penalizing sets for lack of coherence or to discover sets with any type of nonrandom distribution of tags, a value p < 1 might be appropriate. On the other hand, if one uses sets with large number of genes and only a small subset of those is expected to be coherent, then one could consider using p > 1. Our recommendation is to use p = 1 and use other settings only if you are very experienced with the method and its behavior. :param correl_vector: A vector with the correlations (e.g. signal to noise scores) corresponding to the genes in the gene list. Or rankings, rank_metric.values :param nperm: Only use this parameter when computing esnull for statistical testing. Set the esnull value equal to the permutation number. :param rs: Random state for initializing gene list shuffling. Default: np.random.RandomState(seed=None) :return: ES: Enrichment score (real number between -1 and +1) ESNULL: Enrichment score calculated from random permutations. Hits_Indices: Index of a gene in gene_list, if gene is included in gene_set. RES: Numerical vector containing the running enrichment score for all locations in the gene list . """ N = len(gene_list) # Test whether each element of a 1-D array is also present in a second array # It's more intuitive here than original enrichment_score source code. # use .astype to covert bool to integer tag_indicator = np.in1d(gene_list, gene_set, assume_unique=True).astype(int) # notice that the sign is 0 (no tag) or 1 (tag) if weighted_score_type == 0 : correl_vector = np.repeat(1, N) else: correl_vector = np.abs(correl_vector)**weighted_score_type # get indices of tag_indicator hit_ind = np.flatnonzero(tag_indicator).tolist() # if used for compute esnull, set esnull equal to permutation number, e.g. 1000 # else just compute enrichment scores # set axis to 1, because we have 2D array axis = 1 tag_indicator = np.tile(tag_indicator, (nperm+1,1)) correl_vector = np.tile(correl_vector,(nperm+1,1)) # gene list permutation for i in range(nperm): rs.shuffle(tag_indicator[i]) # np.apply_along_axis(rs.shuffle, 1, tag_indicator) Nhint = tag_indicator.sum(axis=axis, keepdims=True) sum_correl_tag = np.sum(correl_vector*tag_indicator, axis=axis, keepdims=True) # compute ES score, the code below is identical to gsea enrichment_score method. no_tag_indicator = 1 - tag_indicator Nmiss = N - Nhint norm_tag = 1.0/sum_correl_tag norm_no_tag = 1.0/Nmiss RES = np.cumsum(tag_indicator * correl_vector * norm_tag - no_tag_indicator * norm_no_tag, axis=axis) if scale: RES = RES / N if single: es_vec = RES.sum(axis=axis) else: max_ES, min_ES = RES.max(axis=axis), RES.min(axis=axis) es_vec = np.where(np.abs(max_ES) > np.abs(min_ES), max_ES, min_ES) # extract values es, esnull, RES = es_vec[-1], es_vec[:-1], RES[-1,:] return es, esnull, hit_ind, RES
def enrichment_score(gene_list, correl_vector, gene_set, weighted_score_type=1, nperm=1000, rs=np.random.RandomState(), single=False, scale=False): """This is the most important function of GSEApy. It has the same algorithm with GSEA and ssGSEA. :param gene_list: The ordered gene list gene_name_list, rank_metric.index.values :param gene_set: gene_sets in gmt file, please use gsea_gmt_parser to get gene_set. :param weighted_score_type: It's the same with gsea's weighted_score method. Weighting by the correlation is a very reasonable choice that allows significant gene sets with less than perfect coherence. options: 0(classic),1,1.5,2. default:1. if one is interested in penalizing sets for lack of coherence or to discover sets with any type of nonrandom distribution of tags, a value p < 1 might be appropriate. On the other hand, if one uses sets with large number of genes and only a small subset of those is expected to be coherent, then one could consider using p > 1. Our recommendation is to use p = 1 and use other settings only if you are very experienced with the method and its behavior. :param correl_vector: A vector with the correlations (e.g. signal to noise scores) corresponding to the genes in the gene list. Or rankings, rank_metric.values :param nperm: Only use this parameter when computing esnull for statistical testing. Set the esnull value equal to the permutation number. :param rs: Random state for initializing gene list shuffling. Default: np.random.RandomState(seed=None) :return: ES: Enrichment score (real number between -1 and +1) ESNULL: Enrichment score calculated from random permutations. Hits_Indices: Index of a gene in gene_list, if gene is included in gene_set. RES: Numerical vector containing the running enrichment score for all locations in the gene list . """ N = len(gene_list) # Test whether each element of a 1-D array is also present in a second array # It's more intuitive here than original enrichment_score source code. # use .astype to covert bool to integer tag_indicator = np.in1d(gene_list, gene_set, assume_unique=True).astype(int) # notice that the sign is 0 (no tag) or 1 (tag) if weighted_score_type == 0 : correl_vector = np.repeat(1, N) else: correl_vector = np.abs(correl_vector)**weighted_score_type # get indices of tag_indicator hit_ind = np.flatnonzero(tag_indicator).tolist() # if used for compute esnull, set esnull equal to permutation number, e.g. 1000 # else just compute enrichment scores # set axis to 1, because we have 2D array axis = 1 tag_indicator = np.tile(tag_indicator, (nperm+1,1)) correl_vector = np.tile(correl_vector,(nperm+1,1)) # gene list permutation for i in range(nperm): rs.shuffle(tag_indicator[i]) # np.apply_along_axis(rs.shuffle, 1, tag_indicator) Nhint = tag_indicator.sum(axis=axis, keepdims=True) sum_correl_tag = np.sum(correl_vector*tag_indicator, axis=axis, keepdims=True) # compute ES score, the code below is identical to gsea enrichment_score method. no_tag_indicator = 1 - tag_indicator Nmiss = N - Nhint norm_tag = 1.0/sum_correl_tag norm_no_tag = 1.0/Nmiss RES = np.cumsum(tag_indicator * correl_vector * norm_tag - no_tag_indicator * norm_no_tag, axis=axis) if scale: RES = RES / N if single: es_vec = RES.sum(axis=axis) else: max_ES, min_ES = RES.max(axis=axis), RES.min(axis=axis) es_vec = np.where(np.abs(max_ES) > np.abs(min_ES), max_ES, min_ES) # extract values es, esnull, RES = es_vec[-1], es_vec[:-1], RES[-1,:] return es, esnull, hit_ind, RES
[ "This", "is", "the", "most", "important", "function", "of", "GSEApy", ".", "It", "has", "the", "same", "algorithm", "with", "GSEA", "and", "ssGSEA", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/algorithm.py#L10-L85
[ "def", "enrichment_score", "(", "gene_list", ",", "correl_vector", ",", "gene_set", ",", "weighted_score_type", "=", "1", ",", "nperm", "=", "1000", ",", "rs", "=", "np", ".", "random", ".", "RandomState", "(", ")", ",", "single", "=", "False", ",", "scale", "=", "False", ")", ":", "N", "=", "len", "(", "gene_list", ")", "# Test whether each element of a 1-D array is also present in a second array", "# It's more intuitive here than original enrichment_score source code.", "# use .astype to covert bool to integer", "tag_indicator", "=", "np", ".", "in1d", "(", "gene_list", ",", "gene_set", ",", "assume_unique", "=", "True", ")", ".", "astype", "(", "int", ")", "# notice that the sign is 0 (no tag) or 1 (tag)", "if", "weighted_score_type", "==", "0", ":", "correl_vector", "=", "np", ".", "repeat", "(", "1", ",", "N", ")", "else", ":", "correl_vector", "=", "np", ".", "abs", "(", "correl_vector", ")", "**", "weighted_score_type", "# get indices of tag_indicator", "hit_ind", "=", "np", ".", "flatnonzero", "(", "tag_indicator", ")", ".", "tolist", "(", ")", "# if used for compute esnull, set esnull equal to permutation number, e.g. 1000", "# else just compute enrichment scores", "# set axis to 1, because we have 2D array", "axis", "=", "1", "tag_indicator", "=", "np", ".", "tile", "(", "tag_indicator", ",", "(", "nperm", "+", "1", ",", "1", ")", ")", "correl_vector", "=", "np", ".", "tile", "(", "correl_vector", ",", "(", "nperm", "+", "1", ",", "1", ")", ")", "# gene list permutation", "for", "i", "in", "range", "(", "nperm", ")", ":", "rs", ".", "shuffle", "(", "tag_indicator", "[", "i", "]", ")", "# np.apply_along_axis(rs.shuffle, 1, tag_indicator)", "Nhint", "=", "tag_indicator", ".", "sum", "(", "axis", "=", "axis", ",", "keepdims", "=", "True", ")", "sum_correl_tag", "=", "np", ".", "sum", "(", "correl_vector", "*", "tag_indicator", ",", "axis", "=", "axis", ",", "keepdims", "=", "True", ")", "# compute ES score, the code below is identical to gsea enrichment_score method.", "no_tag_indicator", "=", "1", "-", "tag_indicator", "Nmiss", "=", "N", "-", "Nhint", "norm_tag", "=", "1.0", "/", "sum_correl_tag", "norm_no_tag", "=", "1.0", "/", "Nmiss", "RES", "=", "np", ".", "cumsum", "(", "tag_indicator", "*", "correl_vector", "*", "norm_tag", "-", "no_tag_indicator", "*", "norm_no_tag", ",", "axis", "=", "axis", ")", "if", "scale", ":", "RES", "=", "RES", "/", "N", "if", "single", ":", "es_vec", "=", "RES", ".", "sum", "(", "axis", "=", "axis", ")", "else", ":", "max_ES", ",", "min_ES", "=", "RES", ".", "max", "(", "axis", "=", "axis", ")", ",", "RES", ".", "min", "(", "axis", "=", "axis", ")", "es_vec", "=", "np", ".", "where", "(", "np", ".", "abs", "(", "max_ES", ")", ">", "np", ".", "abs", "(", "min_ES", ")", ",", "max_ES", ",", "min_ES", ")", "# extract values", "es", ",", "esnull", ",", "RES", "=", "es_vec", "[", "-", "1", "]", ",", "es_vec", "[", ":", "-", "1", "]", ",", "RES", "[", "-", "1", ",", ":", "]", "return", "es", ",", "esnull", ",", "hit_ind", ",", "RES" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
enrichment_score_tensor
Next generation algorithm of GSEA and ssGSEA. :param gene_mat: the ordered gene list(vector) with or without gene indices matrix. :param cor_mat: correlation vector or matrix (e.g. signal to noise scores) corresponding to the genes in the gene list or matrix. :param dict gene_sets: gmt file dict. :param float weighted_score_type: weighting by the correlation. options: 0(classic), 1, 1.5, 2. default:1 for GSEA and 0.25 for ssGSEA. :param int nperm: permutation times. :param bool scale: If True, normalize the scores by number of genes_mat. :param bool single: If True, use ssGSEA algorithm, otherwise use GSEA. :param rs: Random state for initialize gene list shuffling. Default: np.random.RandomState(seed=None) :return: a tuple contains:: | ES: Enrichment score (real number between -1 and +1), for ssGSEA, set scale eq to True. | ESNULL: Enrichment score calculated from random permutation. | Hits_Indices: Indices of genes if genes are included in gene_set. | RES: The running enrichment score for all locations in the gene list.
gseapy/algorithm.py
def enrichment_score_tensor(gene_mat, cor_mat, gene_sets, weighted_score_type, nperm=1000, rs=np.random.RandomState(), single=False, scale=False): """Next generation algorithm of GSEA and ssGSEA. :param gene_mat: the ordered gene list(vector) with or without gene indices matrix. :param cor_mat: correlation vector or matrix (e.g. signal to noise scores) corresponding to the genes in the gene list or matrix. :param dict gene_sets: gmt file dict. :param float weighted_score_type: weighting by the correlation. options: 0(classic), 1, 1.5, 2. default:1 for GSEA and 0.25 for ssGSEA. :param int nperm: permutation times. :param bool scale: If True, normalize the scores by number of genes_mat. :param bool single: If True, use ssGSEA algorithm, otherwise use GSEA. :param rs: Random state for initialize gene list shuffling. Default: np.random.RandomState(seed=None) :return: a tuple contains:: | ES: Enrichment score (real number between -1 and +1), for ssGSEA, set scale eq to True. | ESNULL: Enrichment score calculated from random permutation. | Hits_Indices: Indices of genes if genes are included in gene_set. | RES: The running enrichment score for all locations in the gene list. """ # gene_mat -> 1d: prerank, ssSSEA or 2d: GSEA keys = sorted(gene_sets.keys()) if weighted_score_type == 0: # don't bother doing calcuation, just set to 1 cor_mat = np.ones(cor_mat.shape) elif weighted_score_type > 0: pass else: logging.error("Using negative values of weighted_score_type, not allowed") sys.exit(0) cor_mat = np.abs(cor_mat) if cor_mat.ndim ==1: # ssGSEA or Prerank # genestes->M, genes->N, perm-> axis=2 N, M = len(gene_mat), len(keys) # generate gene hits matrix # for 1d ndarray of gene_mat, set assume_unique=True, # means the input arrays are both assumed to be unique, # which can speed up the calculation. tag_indicator = np.vstack([np.in1d(gene_mat, gene_sets[key], assume_unique=True) for key in keys]) tag_indicator = tag_indicator.astype(int) # index of hits hit_ind = [ np.flatnonzero(tag).tolist() for tag in tag_indicator ] # generate permutated hits matrix perm_tag_tensor = np.repeat(tag_indicator, nperm+1).reshape((M,N,nperm+1)) # shuffle matrix, last matrix is not shuffled when nperm > 0 if nperm: np.apply_along_axis(lambda x: np.apply_along_axis(rs.shuffle,0,x),1, perm_tag_tensor[:,:,:-1]) # missing hits no_tag_tensor = 1 - perm_tag_tensor # calculate numerator, denominator of each gene hits rank_alpha = (perm_tag_tensor*cor_mat[np.newaxis,:,np.newaxis])** weighted_score_type elif cor_mat.ndim == 2: # GSEA # 2d ndarray, gene_mat and cor_mat are shuffled already # reshape matrix cor_mat = cor_mat.T # gene_mat is a tuple contains (gene_name, permuate_gene_name_indices) genes, genes_ind = gene_mat # genestes->M, genes->N, perm-> axis=2 # don't use assume_unique=True in 2d array when use np.isin(). # elements in gene_mat are not unique, or will cause unwanted results tag_indicator = np.vstack([np.in1d(genes, gene_sets[key], assume_unique=True) for key in keys]) tag_indicator = tag_indicator.astype(int) perm_tag_tensor = np.stack([tag.take(genes_ind).T for tag in tag_indicator], axis=0) #index of hits hit_ind = [ np.flatnonzero(tag).tolist() for tag in perm_tag_tensor[:,:,-1] ] # nohits no_tag_tensor = 1 - perm_tag_tensor # calculate numerator, denominator of each gene hits rank_alpha = (perm_tag_tensor*cor_mat[np.newaxis,:,:])** weighted_score_type else: logging.error("Program die because of unsupported input") sys.exit(0) # Nhint = tag_indicator.sum(1) # Nmiss = N - Nhint axis=1 P_GW_denominator = np.sum(rank_alpha, axis=axis, keepdims=True) P_NG_denominator = np.sum(no_tag_tensor, axis=axis, keepdims=True) REStensor = np.cumsum(rank_alpha / P_GW_denominator - no_tag_tensor / P_NG_denominator, axis=axis) # ssGSEA: scale es by gene numbers ? # https://gist.github.com/gaoce/39e0907146c752c127728ad74e123b33 if scale: REStensor = REStensor / len(gene_mat) if single: #ssGSEA esmatrix = REStensor.sum(axis=axis) else: #GSEA esmax, esmin = REStensor.max(axis=axis), REStensor.min(axis=axis) esmatrix = np.where(np.abs(esmax)>np.abs(esmin), esmax, esmin) es, esnull, RES = esmatrix[:,-1], esmatrix[:,:-1], REStensor[:,:,-1] return es, esnull, hit_ind, RES
def enrichment_score_tensor(gene_mat, cor_mat, gene_sets, weighted_score_type, nperm=1000, rs=np.random.RandomState(), single=False, scale=False): """Next generation algorithm of GSEA and ssGSEA. :param gene_mat: the ordered gene list(vector) with or without gene indices matrix. :param cor_mat: correlation vector or matrix (e.g. signal to noise scores) corresponding to the genes in the gene list or matrix. :param dict gene_sets: gmt file dict. :param float weighted_score_type: weighting by the correlation. options: 0(classic), 1, 1.5, 2. default:1 for GSEA and 0.25 for ssGSEA. :param int nperm: permutation times. :param bool scale: If True, normalize the scores by number of genes_mat. :param bool single: If True, use ssGSEA algorithm, otherwise use GSEA. :param rs: Random state for initialize gene list shuffling. Default: np.random.RandomState(seed=None) :return: a tuple contains:: | ES: Enrichment score (real number between -1 and +1), for ssGSEA, set scale eq to True. | ESNULL: Enrichment score calculated from random permutation. | Hits_Indices: Indices of genes if genes are included in gene_set. | RES: The running enrichment score for all locations in the gene list. """ # gene_mat -> 1d: prerank, ssSSEA or 2d: GSEA keys = sorted(gene_sets.keys()) if weighted_score_type == 0: # don't bother doing calcuation, just set to 1 cor_mat = np.ones(cor_mat.shape) elif weighted_score_type > 0: pass else: logging.error("Using negative values of weighted_score_type, not allowed") sys.exit(0) cor_mat = np.abs(cor_mat) if cor_mat.ndim ==1: # ssGSEA or Prerank # genestes->M, genes->N, perm-> axis=2 N, M = len(gene_mat), len(keys) # generate gene hits matrix # for 1d ndarray of gene_mat, set assume_unique=True, # means the input arrays are both assumed to be unique, # which can speed up the calculation. tag_indicator = np.vstack([np.in1d(gene_mat, gene_sets[key], assume_unique=True) for key in keys]) tag_indicator = tag_indicator.astype(int) # index of hits hit_ind = [ np.flatnonzero(tag).tolist() for tag in tag_indicator ] # generate permutated hits matrix perm_tag_tensor = np.repeat(tag_indicator, nperm+1).reshape((M,N,nperm+1)) # shuffle matrix, last matrix is not shuffled when nperm > 0 if nperm: np.apply_along_axis(lambda x: np.apply_along_axis(rs.shuffle,0,x),1, perm_tag_tensor[:,:,:-1]) # missing hits no_tag_tensor = 1 - perm_tag_tensor # calculate numerator, denominator of each gene hits rank_alpha = (perm_tag_tensor*cor_mat[np.newaxis,:,np.newaxis])** weighted_score_type elif cor_mat.ndim == 2: # GSEA # 2d ndarray, gene_mat and cor_mat are shuffled already # reshape matrix cor_mat = cor_mat.T # gene_mat is a tuple contains (gene_name, permuate_gene_name_indices) genes, genes_ind = gene_mat # genestes->M, genes->N, perm-> axis=2 # don't use assume_unique=True in 2d array when use np.isin(). # elements in gene_mat are not unique, or will cause unwanted results tag_indicator = np.vstack([np.in1d(genes, gene_sets[key], assume_unique=True) for key in keys]) tag_indicator = tag_indicator.astype(int) perm_tag_tensor = np.stack([tag.take(genes_ind).T for tag in tag_indicator], axis=0) #index of hits hit_ind = [ np.flatnonzero(tag).tolist() for tag in perm_tag_tensor[:,:,-1] ] # nohits no_tag_tensor = 1 - perm_tag_tensor # calculate numerator, denominator of each gene hits rank_alpha = (perm_tag_tensor*cor_mat[np.newaxis,:,:])** weighted_score_type else: logging.error("Program die because of unsupported input") sys.exit(0) # Nhint = tag_indicator.sum(1) # Nmiss = N - Nhint axis=1 P_GW_denominator = np.sum(rank_alpha, axis=axis, keepdims=True) P_NG_denominator = np.sum(no_tag_tensor, axis=axis, keepdims=True) REStensor = np.cumsum(rank_alpha / P_GW_denominator - no_tag_tensor / P_NG_denominator, axis=axis) # ssGSEA: scale es by gene numbers ? # https://gist.github.com/gaoce/39e0907146c752c127728ad74e123b33 if scale: REStensor = REStensor / len(gene_mat) if single: #ssGSEA esmatrix = REStensor.sum(axis=axis) else: #GSEA esmax, esmin = REStensor.max(axis=axis), REStensor.min(axis=axis) esmatrix = np.where(np.abs(esmax)>np.abs(esmin), esmax, esmin) es, esnull, RES = esmatrix[:,-1], esmatrix[:,:-1], REStensor[:,:,-1] return es, esnull, hit_ind, RES
[ "Next", "generation", "algorithm", "of", "GSEA", "and", "ssGSEA", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/algorithm.py#L89-L188
[ "def", "enrichment_score_tensor", "(", "gene_mat", ",", "cor_mat", ",", "gene_sets", ",", "weighted_score_type", ",", "nperm", "=", "1000", ",", "rs", "=", "np", ".", "random", ".", "RandomState", "(", ")", ",", "single", "=", "False", ",", "scale", "=", "False", ")", ":", "# gene_mat -> 1d: prerank, ssSSEA or 2d: GSEA", "keys", "=", "sorted", "(", "gene_sets", ".", "keys", "(", ")", ")", "if", "weighted_score_type", "==", "0", ":", "# don't bother doing calcuation, just set to 1", "cor_mat", "=", "np", ".", "ones", "(", "cor_mat", ".", "shape", ")", "elif", "weighted_score_type", ">", "0", ":", "pass", "else", ":", "logging", ".", "error", "(", "\"Using negative values of weighted_score_type, not allowed\"", ")", "sys", ".", "exit", "(", "0", ")", "cor_mat", "=", "np", ".", "abs", "(", "cor_mat", ")", "if", "cor_mat", ".", "ndim", "==", "1", ":", "# ssGSEA or Prerank", "# genestes->M, genes->N, perm-> axis=2", "N", ",", "M", "=", "len", "(", "gene_mat", ")", ",", "len", "(", "keys", ")", "# generate gene hits matrix", "# for 1d ndarray of gene_mat, set assume_unique=True,", "# means the input arrays are both assumed to be unique,", "# which can speed up the calculation.", "tag_indicator", "=", "np", ".", "vstack", "(", "[", "np", ".", "in1d", "(", "gene_mat", ",", "gene_sets", "[", "key", "]", ",", "assume_unique", "=", "True", ")", "for", "key", "in", "keys", "]", ")", "tag_indicator", "=", "tag_indicator", ".", "astype", "(", "int", ")", "# index of hits", "hit_ind", "=", "[", "np", ".", "flatnonzero", "(", "tag", ")", ".", "tolist", "(", ")", "for", "tag", "in", "tag_indicator", "]", "# generate permutated hits matrix", "perm_tag_tensor", "=", "np", ".", "repeat", "(", "tag_indicator", ",", "nperm", "+", "1", ")", ".", "reshape", "(", "(", "M", ",", "N", ",", "nperm", "+", "1", ")", ")", "# shuffle matrix, last matrix is not shuffled when nperm > 0", "if", "nperm", ":", "np", ".", "apply_along_axis", "(", "lambda", "x", ":", "np", ".", "apply_along_axis", "(", "rs", ".", "shuffle", ",", "0", ",", "x", ")", ",", "1", ",", "perm_tag_tensor", "[", ":", ",", ":", ",", ":", "-", "1", "]", ")", "# missing hits", "no_tag_tensor", "=", "1", "-", "perm_tag_tensor", "# calculate numerator, denominator of each gene hits", "rank_alpha", "=", "(", "perm_tag_tensor", "*", "cor_mat", "[", "np", ".", "newaxis", ",", ":", ",", "np", ".", "newaxis", "]", ")", "**", "weighted_score_type", "elif", "cor_mat", ".", "ndim", "==", "2", ":", "# GSEA", "# 2d ndarray, gene_mat and cor_mat are shuffled already", "# reshape matrix", "cor_mat", "=", "cor_mat", ".", "T", "# gene_mat is a tuple contains (gene_name, permuate_gene_name_indices)", "genes", ",", "genes_ind", "=", "gene_mat", "# genestes->M, genes->N, perm-> axis=2", "# don't use assume_unique=True in 2d array when use np.isin().", "# elements in gene_mat are not unique, or will cause unwanted results", "tag_indicator", "=", "np", ".", "vstack", "(", "[", "np", ".", "in1d", "(", "genes", ",", "gene_sets", "[", "key", "]", ",", "assume_unique", "=", "True", ")", "for", "key", "in", "keys", "]", ")", "tag_indicator", "=", "tag_indicator", ".", "astype", "(", "int", ")", "perm_tag_tensor", "=", "np", ".", "stack", "(", "[", "tag", ".", "take", "(", "genes_ind", ")", ".", "T", "for", "tag", "in", "tag_indicator", "]", ",", "axis", "=", "0", ")", "#index of hits", "hit_ind", "=", "[", "np", ".", "flatnonzero", "(", "tag", ")", ".", "tolist", "(", ")", "for", "tag", "in", "perm_tag_tensor", "[", ":", ",", ":", ",", "-", "1", "]", "]", "# nohits", "no_tag_tensor", "=", "1", "-", "perm_tag_tensor", "# calculate numerator, denominator of each gene hits", "rank_alpha", "=", "(", "perm_tag_tensor", "*", "cor_mat", "[", "np", ".", "newaxis", ",", ":", ",", ":", "]", ")", "**", "weighted_score_type", "else", ":", "logging", ".", "error", "(", "\"Program die because of unsupported input\"", ")", "sys", ".", "exit", "(", "0", ")", "# Nhint = tag_indicator.sum(1)", "# Nmiss = N - Nhint", "axis", "=", "1", "P_GW_denominator", "=", "np", ".", "sum", "(", "rank_alpha", ",", "axis", "=", "axis", ",", "keepdims", "=", "True", ")", "P_NG_denominator", "=", "np", ".", "sum", "(", "no_tag_tensor", ",", "axis", "=", "axis", ",", "keepdims", "=", "True", ")", "REStensor", "=", "np", ".", "cumsum", "(", "rank_alpha", "/", "P_GW_denominator", "-", "no_tag_tensor", "/", "P_NG_denominator", ",", "axis", "=", "axis", ")", "# ssGSEA: scale es by gene numbers ?", "# https://gist.github.com/gaoce/39e0907146c752c127728ad74e123b33", "if", "scale", ":", "REStensor", "=", "REStensor", "/", "len", "(", "gene_mat", ")", "if", "single", ":", "#ssGSEA", "esmatrix", "=", "REStensor", ".", "sum", "(", "axis", "=", "axis", ")", "else", ":", "#GSEA", "esmax", ",", "esmin", "=", "REStensor", ".", "max", "(", "axis", "=", "axis", ")", ",", "REStensor", ".", "min", "(", "axis", "=", "axis", ")", "esmatrix", "=", "np", ".", "where", "(", "np", ".", "abs", "(", "esmax", ")", ">", "np", ".", "abs", "(", "esmin", ")", ",", "esmax", ",", "esmin", ")", "es", ",", "esnull", ",", "RES", "=", "esmatrix", "[", ":", ",", "-", "1", "]", ",", "esmatrix", "[", ":", ",", ":", "-", "1", "]", ",", "REStensor", "[", ":", ",", ":", ",", "-", "1", "]", "return", "es", ",", "esnull", ",", "hit_ind", ",", "RES" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
ranking_metric_tensor
Build shuffled ranking matrix when permutation_type eq to phenotype. :param exprs: gene_expression DataFrame, gene_name indexed. :param str method: calculate correlation or ranking. methods including: 1. 'signal_to_noise'. 2. 't_test'. 3. 'ratio_of_classes' (also referred to as fold change). 4. 'diff_of_classes'. 5. 'log2_ratio_of_classes'. :param int permuation_num: how many times of classes is being shuffled :param str pos: one of labels of phenotype's names. :param str neg: one of labels of phenotype's names. :param list classes: a list of phenotype labels, to specify which column of dataframe belongs to what class of phenotype. :param bool ascending: bool. Sort ascending vs. descending. :return: returns two 2d ndarray with shape (nperm, gene_num). | cor_mat_indices: the indices of sorted and permutated (exclude last row) ranking matrix. | cor_mat: sorted and permutated (exclude last row) ranking matrix.
gseapy/algorithm.py
def ranking_metric_tensor(exprs, method, permutation_num, pos, neg, classes, ascending, rs=np.random.RandomState()): """Build shuffled ranking matrix when permutation_type eq to phenotype. :param exprs: gene_expression DataFrame, gene_name indexed. :param str method: calculate correlation or ranking. methods including: 1. 'signal_to_noise'. 2. 't_test'. 3. 'ratio_of_classes' (also referred to as fold change). 4. 'diff_of_classes'. 5. 'log2_ratio_of_classes'. :param int permuation_num: how many times of classes is being shuffled :param str pos: one of labels of phenotype's names. :param str neg: one of labels of phenotype's names. :param list classes: a list of phenotype labels, to specify which column of dataframe belongs to what class of phenotype. :param bool ascending: bool. Sort ascending vs. descending. :return: returns two 2d ndarray with shape (nperm, gene_num). | cor_mat_indices: the indices of sorted and permutated (exclude last row) ranking matrix. | cor_mat: sorted and permutated (exclude last row) ranking matrix. """ # S: samples, G: gene number G, S = exprs.shape # genes = exprs.index.values expr_mat = exprs.values.T perm_cor_tensor = np.tile(expr_mat, (permutation_num+1,1,1)) # random shuffle on the first dim, last matrix is not shuffled for arr in perm_cor_tensor[:-1]: rs.shuffle(arr) classes = np.array(classes) pos = classes == pos neg = classes == neg pos_cor_mean = perm_cor_tensor[:,pos,:].mean(axis=1) neg_cor_mean = perm_cor_tensor[:,neg,:].mean(axis=1) pos_cor_std = perm_cor_tensor[:,pos,:].std(axis=1, ddof=1) neg_cor_std = perm_cor_tensor[:,neg,:].std(axis=1, ddof=1) if method == 'signal_to_noise': cor_mat = (pos_cor_mean - neg_cor_mean)/(pos_cor_std + neg_cor_std) elif method == 't_test': denom = 1.0/G cor_mat = (pos_cor_mean - neg_cor_mean)/ np.sqrt(denom*pos_cor_std**2 + denom*neg_cor_std**2) elif method == 'ratio_of_classes': cor_mat = pos_cor_mean / neg_cor_mean elif method == 'diff_of_classes': cor_mat = pos_cor_mean - neg_cor_mean elif method == 'log2_ratio_of_classes': cor_mat = np.log2(pos_cor_mean / neg_cor_mean) else: logging.error("Please provide correct method name!!!") sys.exit(0) # return matix[nperm+1, perm_cors] cor_mat_ind = cor_mat.argsort() # ndarray: sort in place cor_mat.sort() # genes_mat = genes.take(cor_mat_ind) if ascending: return cor_mat_ind, cor_mat # descending order of ranking and genes # return genes_mat[:,::-1], cor_mat[:,::-1] return cor_mat_ind[:, ::-1], cor_mat[:, ::-1]
def ranking_metric_tensor(exprs, method, permutation_num, pos, neg, classes, ascending, rs=np.random.RandomState()): """Build shuffled ranking matrix when permutation_type eq to phenotype. :param exprs: gene_expression DataFrame, gene_name indexed. :param str method: calculate correlation or ranking. methods including: 1. 'signal_to_noise'. 2. 't_test'. 3. 'ratio_of_classes' (also referred to as fold change). 4. 'diff_of_classes'. 5. 'log2_ratio_of_classes'. :param int permuation_num: how many times of classes is being shuffled :param str pos: one of labels of phenotype's names. :param str neg: one of labels of phenotype's names. :param list classes: a list of phenotype labels, to specify which column of dataframe belongs to what class of phenotype. :param bool ascending: bool. Sort ascending vs. descending. :return: returns two 2d ndarray with shape (nperm, gene_num). | cor_mat_indices: the indices of sorted and permutated (exclude last row) ranking matrix. | cor_mat: sorted and permutated (exclude last row) ranking matrix. """ # S: samples, G: gene number G, S = exprs.shape # genes = exprs.index.values expr_mat = exprs.values.T perm_cor_tensor = np.tile(expr_mat, (permutation_num+1,1,1)) # random shuffle on the first dim, last matrix is not shuffled for arr in perm_cor_tensor[:-1]: rs.shuffle(arr) classes = np.array(classes) pos = classes == pos neg = classes == neg pos_cor_mean = perm_cor_tensor[:,pos,:].mean(axis=1) neg_cor_mean = perm_cor_tensor[:,neg,:].mean(axis=1) pos_cor_std = perm_cor_tensor[:,pos,:].std(axis=1, ddof=1) neg_cor_std = perm_cor_tensor[:,neg,:].std(axis=1, ddof=1) if method == 'signal_to_noise': cor_mat = (pos_cor_mean - neg_cor_mean)/(pos_cor_std + neg_cor_std) elif method == 't_test': denom = 1.0/G cor_mat = (pos_cor_mean - neg_cor_mean)/ np.sqrt(denom*pos_cor_std**2 + denom*neg_cor_std**2) elif method == 'ratio_of_classes': cor_mat = pos_cor_mean / neg_cor_mean elif method == 'diff_of_classes': cor_mat = pos_cor_mean - neg_cor_mean elif method == 'log2_ratio_of_classes': cor_mat = np.log2(pos_cor_mean / neg_cor_mean) else: logging.error("Please provide correct method name!!!") sys.exit(0) # return matix[nperm+1, perm_cors] cor_mat_ind = cor_mat.argsort() # ndarray: sort in place cor_mat.sort() # genes_mat = genes.take(cor_mat_ind) if ascending: return cor_mat_ind, cor_mat # descending order of ranking and genes # return genes_mat[:,::-1], cor_mat[:,::-1] return cor_mat_ind[:, ::-1], cor_mat[:, ::-1]
[ "Build", "shuffled", "ranking", "matrix", "when", "permutation_type", "eq", "to", "phenotype", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/algorithm.py#L191-L253
[ "def", "ranking_metric_tensor", "(", "exprs", ",", "method", ",", "permutation_num", ",", "pos", ",", "neg", ",", "classes", ",", "ascending", ",", "rs", "=", "np", ".", "random", ".", "RandomState", "(", ")", ")", ":", "# S: samples, G: gene number", "G", ",", "S", "=", "exprs", ".", "shape", "# genes = exprs.index.values", "expr_mat", "=", "exprs", ".", "values", ".", "T", "perm_cor_tensor", "=", "np", ".", "tile", "(", "expr_mat", ",", "(", "permutation_num", "+", "1", ",", "1", ",", "1", ")", ")", "# random shuffle on the first dim, last matrix is not shuffled", "for", "arr", "in", "perm_cor_tensor", "[", ":", "-", "1", "]", ":", "rs", ".", "shuffle", "(", "arr", ")", "classes", "=", "np", ".", "array", "(", "classes", ")", "pos", "=", "classes", "==", "pos", "neg", "=", "classes", "==", "neg", "pos_cor_mean", "=", "perm_cor_tensor", "[", ":", ",", "pos", ",", ":", "]", ".", "mean", "(", "axis", "=", "1", ")", "neg_cor_mean", "=", "perm_cor_tensor", "[", ":", ",", "neg", ",", ":", "]", ".", "mean", "(", "axis", "=", "1", ")", "pos_cor_std", "=", "perm_cor_tensor", "[", ":", ",", "pos", ",", ":", "]", ".", "std", "(", "axis", "=", "1", ",", "ddof", "=", "1", ")", "neg_cor_std", "=", "perm_cor_tensor", "[", ":", ",", "neg", ",", ":", "]", ".", "std", "(", "axis", "=", "1", ",", "ddof", "=", "1", ")", "if", "method", "==", "'signal_to_noise'", ":", "cor_mat", "=", "(", "pos_cor_mean", "-", "neg_cor_mean", ")", "/", "(", "pos_cor_std", "+", "neg_cor_std", ")", "elif", "method", "==", "'t_test'", ":", "denom", "=", "1.0", "/", "G", "cor_mat", "=", "(", "pos_cor_mean", "-", "neg_cor_mean", ")", "/", "np", ".", "sqrt", "(", "denom", "*", "pos_cor_std", "**", "2", "+", "denom", "*", "neg_cor_std", "**", "2", ")", "elif", "method", "==", "'ratio_of_classes'", ":", "cor_mat", "=", "pos_cor_mean", "/", "neg_cor_mean", "elif", "method", "==", "'diff_of_classes'", ":", "cor_mat", "=", "pos_cor_mean", "-", "neg_cor_mean", "elif", "method", "==", "'log2_ratio_of_classes'", ":", "cor_mat", "=", "np", ".", "log2", "(", "pos_cor_mean", "/", "neg_cor_mean", ")", "else", ":", "logging", ".", "error", "(", "\"Please provide correct method name!!!\"", ")", "sys", ".", "exit", "(", "0", ")", "# return matix[nperm+1, perm_cors]", "cor_mat_ind", "=", "cor_mat", ".", "argsort", "(", ")", "# ndarray: sort in place", "cor_mat", ".", "sort", "(", ")", "# genes_mat = genes.take(cor_mat_ind)", "if", "ascending", ":", "return", "cor_mat_ind", ",", "cor_mat", "# descending order of ranking and genes", "# return genes_mat[:,::-1], cor_mat[:,::-1]", "return", "cor_mat_ind", "[", ":", ",", ":", ":", "-", "1", "]", ",", "cor_mat", "[", ":", ",", ":", ":", "-", "1", "]" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
ranking_metric
The main function to rank an expression table. :param df: gene_expression DataFrame. :param method: The method used to calculate a correlation or ranking. Default: 'log2_ratio_of_classes'. Others methods are: 1. 'signal_to_noise' You must have at least three samples for each phenotype to use this metric. The larger the signal-to-noise ratio, the larger the differences of the means (scaled by the standard deviations); that is, the more distinct the gene expression is in each phenotype and the more the gene acts as a “class marker.” 2. 't_test' Uses the difference of means scaled by the standard deviation and number of samples. Note: You must have at least three samples for each phenotype to use this metric. The larger the tTest ratio, the more distinct the gene expression is in each phenotype and the more the gene acts as a “class marker.” 3. 'ratio_of_classes' (also referred to as fold change). Uses the ratio of class means to calculate fold change for natural scale data. 4. 'diff_of_classes' Uses the difference of class means to calculate fold change for natural scale data 5. 'log2_ratio_of_classes' Uses the log2 ratio of class means to calculate fold change for natural scale data. This is the recommended statistic for calculating fold change for log scale data. :param str pos: one of labels of phenotype's names. :param str neg: one of labels of phenotype's names. :param list classes: a list of phenotype labels, to specify which column of dataframe belongs to what category of phenotype. :param bool ascending: bool or list of bool. Sort ascending vs. descending. :return: returns a pd.Series of correlation to class of each variable. Gene_name is index, and value is rankings. visit here for more docs: http://software.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html
gseapy/algorithm.py
def ranking_metric(df, method, pos, neg, classes, ascending): """The main function to rank an expression table. :param df: gene_expression DataFrame. :param method: The method used to calculate a correlation or ranking. Default: 'log2_ratio_of_classes'. Others methods are: 1. 'signal_to_noise' You must have at least three samples for each phenotype to use this metric. The larger the signal-to-noise ratio, the larger the differences of the means (scaled by the standard deviations); that is, the more distinct the gene expression is in each phenotype and the more the gene acts as a “class marker.” 2. 't_test' Uses the difference of means scaled by the standard deviation and number of samples. Note: You must have at least three samples for each phenotype to use this metric. The larger the tTest ratio, the more distinct the gene expression is in each phenotype and the more the gene acts as a “class marker.” 3. 'ratio_of_classes' (also referred to as fold change). Uses the ratio of class means to calculate fold change for natural scale data. 4. 'diff_of_classes' Uses the difference of class means to calculate fold change for natural scale data 5. 'log2_ratio_of_classes' Uses the log2 ratio of class means to calculate fold change for natural scale data. This is the recommended statistic for calculating fold change for log scale data. :param str pos: one of labels of phenotype's names. :param str neg: one of labels of phenotype's names. :param list classes: a list of phenotype labels, to specify which column of dataframe belongs to what category of phenotype. :param bool ascending: bool or list of bool. Sort ascending vs. descending. :return: returns a pd.Series of correlation to class of each variable. Gene_name is index, and value is rankings. visit here for more docs: http://software.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html """ # exclude any zero stds. df_mean = df.groupby(by=classes, axis=1).mean() df_std = df.groupby(by=classes, axis=1).std() if method == 'signal_to_noise': ser = (df_mean[pos] - df_mean[neg])/(df_std[pos] + df_std[neg]) elif method == 't_test': ser = (df_mean[pos] - df_mean[neg])/ np.sqrt(df_std[pos]**2/len(df_std)+df_std[neg]**2/len(df_std) ) elif method == 'ratio_of_classes': ser = df_mean[pos] / df_mean[neg] elif method == 'diff_of_classes': ser = df_mean[pos] - df_mean[neg] elif method == 'log2_ratio_of_classes': ser = np.log2(df_mean[pos] / df_mean[neg]) else: logging.error("Please provide correct method name!!!") sys.exit(0) ser = ser.sort_values(ascending=ascending) return ser
def ranking_metric(df, method, pos, neg, classes, ascending): """The main function to rank an expression table. :param df: gene_expression DataFrame. :param method: The method used to calculate a correlation or ranking. Default: 'log2_ratio_of_classes'. Others methods are: 1. 'signal_to_noise' You must have at least three samples for each phenotype to use this metric. The larger the signal-to-noise ratio, the larger the differences of the means (scaled by the standard deviations); that is, the more distinct the gene expression is in each phenotype and the more the gene acts as a “class marker.” 2. 't_test' Uses the difference of means scaled by the standard deviation and number of samples. Note: You must have at least three samples for each phenotype to use this metric. The larger the tTest ratio, the more distinct the gene expression is in each phenotype and the more the gene acts as a “class marker.” 3. 'ratio_of_classes' (also referred to as fold change). Uses the ratio of class means to calculate fold change for natural scale data. 4. 'diff_of_classes' Uses the difference of class means to calculate fold change for natural scale data 5. 'log2_ratio_of_classes' Uses the log2 ratio of class means to calculate fold change for natural scale data. This is the recommended statistic for calculating fold change for log scale data. :param str pos: one of labels of phenotype's names. :param str neg: one of labels of phenotype's names. :param list classes: a list of phenotype labels, to specify which column of dataframe belongs to what category of phenotype. :param bool ascending: bool or list of bool. Sort ascending vs. descending. :return: returns a pd.Series of correlation to class of each variable. Gene_name is index, and value is rankings. visit here for more docs: http://software.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html """ # exclude any zero stds. df_mean = df.groupby(by=classes, axis=1).mean() df_std = df.groupby(by=classes, axis=1).std() if method == 'signal_to_noise': ser = (df_mean[pos] - df_mean[neg])/(df_std[pos] + df_std[neg]) elif method == 't_test': ser = (df_mean[pos] - df_mean[neg])/ np.sqrt(df_std[pos]**2/len(df_std)+df_std[neg]**2/len(df_std) ) elif method == 'ratio_of_classes': ser = df_mean[pos] / df_mean[neg] elif method == 'diff_of_classes': ser = df_mean[pos] - df_mean[neg] elif method == 'log2_ratio_of_classes': ser = np.log2(df_mean[pos] / df_mean[neg]) else: logging.error("Please provide correct method name!!!") sys.exit(0) ser = ser.sort_values(ascending=ascending) return ser
[ "The", "main", "function", "to", "rank", "an", "expression", "table", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/algorithm.py#L255-L320
[ "def", "ranking_metric", "(", "df", ",", "method", ",", "pos", ",", "neg", ",", "classes", ",", "ascending", ")", ":", "# exclude any zero stds.", "df_mean", "=", "df", ".", "groupby", "(", "by", "=", "classes", ",", "axis", "=", "1", ")", ".", "mean", "(", ")", "df_std", "=", "df", ".", "groupby", "(", "by", "=", "classes", ",", "axis", "=", "1", ")", ".", "std", "(", ")", "if", "method", "==", "'signal_to_noise'", ":", "ser", "=", "(", "df_mean", "[", "pos", "]", "-", "df_mean", "[", "neg", "]", ")", "/", "(", "df_std", "[", "pos", "]", "+", "df_std", "[", "neg", "]", ")", "elif", "method", "==", "'t_test'", ":", "ser", "=", "(", "df_mean", "[", "pos", "]", "-", "df_mean", "[", "neg", "]", ")", "/", "np", ".", "sqrt", "(", "df_std", "[", "pos", "]", "**", "2", "/", "len", "(", "df_std", ")", "+", "df_std", "[", "neg", "]", "**", "2", "/", "len", "(", "df_std", ")", ")", "elif", "method", "==", "'ratio_of_classes'", ":", "ser", "=", "df_mean", "[", "pos", "]", "/", "df_mean", "[", "neg", "]", "elif", "method", "==", "'diff_of_classes'", ":", "ser", "=", "df_mean", "[", "pos", "]", "-", "df_mean", "[", "neg", "]", "elif", "method", "==", "'log2_ratio_of_classes'", ":", "ser", "=", "np", ".", "log2", "(", "df_mean", "[", "pos", "]", "/", "df_mean", "[", "neg", "]", ")", "else", ":", "logging", ".", "error", "(", "\"Please provide correct method name!!!\"", ")", "sys", ".", "exit", "(", "0", ")", "ser", "=", "ser", ".", "sort_values", "(", "ascending", "=", "ascending", ")", "return", "ser" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
gsea_compute_tensor
compute enrichment scores and enrichment nulls. :param data: preprocessed expression dataframe or a pre-ranked file if prerank=True. :param dict gmt: all gene sets in .gmt file. need to call load_gmt() to get results. :param int n: permutation number. default: 1000. :param str method: ranking_metric method. see above. :param str pheno_pos: one of labels of phenotype's names. :param str pheno_neg: one of labels of phenotype's names. :param list classes: a list of phenotype labels, to specify which column of dataframe belongs to what category of phenotype. :param float weighted_score_type: default:1 :param bool ascending: sorting order of rankings. Default: False. :param seed: random seed. Default: np.random.RandomState() :param bool scale: if true, scale es by gene number. :return: a tuple contains:: | zipped results of es, nes, pval, fdr. | nested list of hit indices of input gene_list. | nested list of ranked enrichment score of each input gene_sets. | list of enriched terms
gseapy/algorithm.py
def gsea_compute_tensor(data, gmt, n, weighted_score_type, permutation_type, method, pheno_pos, pheno_neg, classes, ascending, processes=1, seed=None, single=False, scale=False): """compute enrichment scores and enrichment nulls. :param data: preprocessed expression dataframe or a pre-ranked file if prerank=True. :param dict gmt: all gene sets in .gmt file. need to call load_gmt() to get results. :param int n: permutation number. default: 1000. :param str method: ranking_metric method. see above. :param str pheno_pos: one of labels of phenotype's names. :param str pheno_neg: one of labels of phenotype's names. :param list classes: a list of phenotype labels, to specify which column of dataframe belongs to what category of phenotype. :param float weighted_score_type: default:1 :param bool ascending: sorting order of rankings. Default: False. :param seed: random seed. Default: np.random.RandomState() :param bool scale: if true, scale es by gene number. :return: a tuple contains:: | zipped results of es, nes, pval, fdr. | nested list of hit indices of input gene_list. | nested list of ranked enrichment score of each input gene_sets. | list of enriched terms """ w = weighted_score_type subsets = sorted(gmt.keys()) rs = np.random.RandomState(seed) genes_mat, cor_mat = data.index.values, data.values base = 5 if data.shape[0] >= 5000 else 10 block = ceil(len(subsets) / base) if permutation_type == "phenotype": # shuffling classes and generate random correlation rankings logging.debug("Start to permutate classes..............................") genes_ind = [] cor_mat = [] temp_rnk = [] pool_rnk = Pool(processes=processes) # split large array into smaller blocks to avoid memory overflow i=1 while i <= block: rs = np.random.RandomState(seed) temp_rnk.append(pool_rnk.apply_async(ranking_metric_tensor, args=(data, method, base, pheno_pos, pheno_neg, classes, ascending, rs))) i +=1 pool_rnk.close() pool_rnk.join() for k, temp in enumerate(temp_rnk): gi, cor = temp.get() if k+1 == block: genes_ind.append(gi) cor_mat.append(cor) else: genes_ind.append(gi[:-1]) cor_mat.append(cor[:-1]) genes_ind, cor_mat = np.vstack(genes_ind), np.vstack(cor_mat) # convert to tuple genes_mat = (data.index.values, genes_ind) logging.debug("Start to compute es and esnulls........................") # Prerank, ssGSEA, GSEA es = [] RES = [] hit_ind = [] esnull = [] temp_esnu = [] pool_esnu = Pool(processes=processes) # split large array into smaller blocks to avoid memory overflow i, m = 1, 0 while i <= block: # you have to reseed, or all your processes are sharing the same seed value rs = np.random.RandomState(seed) gmtrim = {k: gmt.get(k) for k in subsets[m:base * i]} temp_esnu.append(pool_esnu.apply_async(enrichment_score_tensor, args=(genes_mat, cor_mat, gmtrim, w, n, rs, single, scale))) m = base * i i += 1 pool_esnu.close() pool_esnu.join() # esn is a list, don't need to use append method. for si, temp in enumerate(temp_esnu): e, enu, hit, rune = temp.get() esnull.append(enu) es.append(e) RES.append(rune) hit_ind += hit # concate results es, esnull, RES = np.hstack(es), np.vstack(esnull), np.vstack(RES) return gsea_significance(es, esnull), hit_ind, RES, subsets
def gsea_compute_tensor(data, gmt, n, weighted_score_type, permutation_type, method, pheno_pos, pheno_neg, classes, ascending, processes=1, seed=None, single=False, scale=False): """compute enrichment scores and enrichment nulls. :param data: preprocessed expression dataframe or a pre-ranked file if prerank=True. :param dict gmt: all gene sets in .gmt file. need to call load_gmt() to get results. :param int n: permutation number. default: 1000. :param str method: ranking_metric method. see above. :param str pheno_pos: one of labels of phenotype's names. :param str pheno_neg: one of labels of phenotype's names. :param list classes: a list of phenotype labels, to specify which column of dataframe belongs to what category of phenotype. :param float weighted_score_type: default:1 :param bool ascending: sorting order of rankings. Default: False. :param seed: random seed. Default: np.random.RandomState() :param bool scale: if true, scale es by gene number. :return: a tuple contains:: | zipped results of es, nes, pval, fdr. | nested list of hit indices of input gene_list. | nested list of ranked enrichment score of each input gene_sets. | list of enriched terms """ w = weighted_score_type subsets = sorted(gmt.keys()) rs = np.random.RandomState(seed) genes_mat, cor_mat = data.index.values, data.values base = 5 if data.shape[0] >= 5000 else 10 block = ceil(len(subsets) / base) if permutation_type == "phenotype": # shuffling classes and generate random correlation rankings logging.debug("Start to permutate classes..............................") genes_ind = [] cor_mat = [] temp_rnk = [] pool_rnk = Pool(processes=processes) # split large array into smaller blocks to avoid memory overflow i=1 while i <= block: rs = np.random.RandomState(seed) temp_rnk.append(pool_rnk.apply_async(ranking_metric_tensor, args=(data, method, base, pheno_pos, pheno_neg, classes, ascending, rs))) i +=1 pool_rnk.close() pool_rnk.join() for k, temp in enumerate(temp_rnk): gi, cor = temp.get() if k+1 == block: genes_ind.append(gi) cor_mat.append(cor) else: genes_ind.append(gi[:-1]) cor_mat.append(cor[:-1]) genes_ind, cor_mat = np.vstack(genes_ind), np.vstack(cor_mat) # convert to tuple genes_mat = (data.index.values, genes_ind) logging.debug("Start to compute es and esnulls........................") # Prerank, ssGSEA, GSEA es = [] RES = [] hit_ind = [] esnull = [] temp_esnu = [] pool_esnu = Pool(processes=processes) # split large array into smaller blocks to avoid memory overflow i, m = 1, 0 while i <= block: # you have to reseed, or all your processes are sharing the same seed value rs = np.random.RandomState(seed) gmtrim = {k: gmt.get(k) for k in subsets[m:base * i]} temp_esnu.append(pool_esnu.apply_async(enrichment_score_tensor, args=(genes_mat, cor_mat, gmtrim, w, n, rs, single, scale))) m = base * i i += 1 pool_esnu.close() pool_esnu.join() # esn is a list, don't need to use append method. for si, temp in enumerate(temp_esnu): e, enu, hit, rune = temp.get() esnull.append(enu) es.append(e) RES.append(rune) hit_ind += hit # concate results es, esnull, RES = np.hstack(es), np.vstack(esnull), np.vstack(RES) return gsea_significance(es, esnull), hit_ind, RES, subsets
[ "compute", "enrichment", "scores", "and", "enrichment", "nulls", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/algorithm.py#L323-L418
[ "def", "gsea_compute_tensor", "(", "data", ",", "gmt", ",", "n", ",", "weighted_score_type", ",", "permutation_type", ",", "method", ",", "pheno_pos", ",", "pheno_neg", ",", "classes", ",", "ascending", ",", "processes", "=", "1", ",", "seed", "=", "None", ",", "single", "=", "False", ",", "scale", "=", "False", ")", ":", "w", "=", "weighted_score_type", "subsets", "=", "sorted", "(", "gmt", ".", "keys", "(", ")", ")", "rs", "=", "np", ".", "random", ".", "RandomState", "(", "seed", ")", "genes_mat", ",", "cor_mat", "=", "data", ".", "index", ".", "values", ",", "data", ".", "values", "base", "=", "5", "if", "data", ".", "shape", "[", "0", "]", ">=", "5000", "else", "10", "block", "=", "ceil", "(", "len", "(", "subsets", ")", "/", "base", ")", "if", "permutation_type", "==", "\"phenotype\"", ":", "# shuffling classes and generate random correlation rankings", "logging", ".", "debug", "(", "\"Start to permutate classes..............................\"", ")", "genes_ind", "=", "[", "]", "cor_mat", "=", "[", "]", "temp_rnk", "=", "[", "]", "pool_rnk", "=", "Pool", "(", "processes", "=", "processes", ")", "# split large array into smaller blocks to avoid memory overflow", "i", "=", "1", "while", "i", "<=", "block", ":", "rs", "=", "np", ".", "random", ".", "RandomState", "(", "seed", ")", "temp_rnk", ".", "append", "(", "pool_rnk", ".", "apply_async", "(", "ranking_metric_tensor", ",", "args", "=", "(", "data", ",", "method", ",", "base", ",", "pheno_pos", ",", "pheno_neg", ",", "classes", ",", "ascending", ",", "rs", ")", ")", ")", "i", "+=", "1", "pool_rnk", ".", "close", "(", ")", "pool_rnk", ".", "join", "(", ")", "for", "k", ",", "temp", "in", "enumerate", "(", "temp_rnk", ")", ":", "gi", ",", "cor", "=", "temp", ".", "get", "(", ")", "if", "k", "+", "1", "==", "block", ":", "genes_ind", ".", "append", "(", "gi", ")", "cor_mat", ".", "append", "(", "cor", ")", "else", ":", "genes_ind", ".", "append", "(", "gi", "[", ":", "-", "1", "]", ")", "cor_mat", ".", "append", "(", "cor", "[", ":", "-", "1", "]", ")", "genes_ind", ",", "cor_mat", "=", "np", ".", "vstack", "(", "genes_ind", ")", ",", "np", ".", "vstack", "(", "cor_mat", ")", "# convert to tuple", "genes_mat", "=", "(", "data", ".", "index", ".", "values", ",", "genes_ind", ")", "logging", ".", "debug", "(", "\"Start to compute es and esnulls........................\"", ")", "# Prerank, ssGSEA, GSEA", "es", "=", "[", "]", "RES", "=", "[", "]", "hit_ind", "=", "[", "]", "esnull", "=", "[", "]", "temp_esnu", "=", "[", "]", "pool_esnu", "=", "Pool", "(", "processes", "=", "processes", ")", "# split large array into smaller blocks to avoid memory overflow", "i", ",", "m", "=", "1", ",", "0", "while", "i", "<=", "block", ":", "# you have to reseed, or all your processes are sharing the same seed value", "rs", "=", "np", ".", "random", ".", "RandomState", "(", "seed", ")", "gmtrim", "=", "{", "k", ":", "gmt", ".", "get", "(", "k", ")", "for", "k", "in", "subsets", "[", "m", ":", "base", "*", "i", "]", "}", "temp_esnu", ".", "append", "(", "pool_esnu", ".", "apply_async", "(", "enrichment_score_tensor", ",", "args", "=", "(", "genes_mat", ",", "cor_mat", ",", "gmtrim", ",", "w", ",", "n", ",", "rs", ",", "single", ",", "scale", ")", ")", ")", "m", "=", "base", "*", "i", "i", "+=", "1", "pool_esnu", ".", "close", "(", ")", "pool_esnu", ".", "join", "(", ")", "# esn is a list, don't need to use append method.", "for", "si", ",", "temp", "in", "enumerate", "(", "temp_esnu", ")", ":", "e", ",", "enu", ",", "hit", ",", "rune", "=", "temp", ".", "get", "(", ")", "esnull", ".", "append", "(", "enu", ")", "es", ".", "append", "(", "e", ")", "RES", ".", "append", "(", "rune", ")", "hit_ind", "+=", "hit", "# concate results", "es", ",", "esnull", ",", "RES", "=", "np", ".", "hstack", "(", "es", ")", ",", "np", ".", "vstack", "(", "esnull", ")", ",", "np", ".", "vstack", "(", "RES", ")", "return", "gsea_significance", "(", "es", ",", "esnull", ")", ",", "hit_ind", ",", "RES", ",", "subsets" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
gsea_compute
compute enrichment scores and enrichment nulls. :param data: preprocessed expression dataframe or a pre-ranked file if prerank=True. :param dict gmt: all gene sets in .gmt file. need to call load_gmt() to get results. :param int n: permutation number. default: 1000. :param str method: ranking_metric method. see above. :param str pheno_pos: one of labels of phenotype's names. :param str pheno_neg: one of labels of phenotype's names. :param list classes: a list of phenotype labels, to specify which column of dataframe belongs to what category of phenotype. :param float weighted_score_type: default:1 :param bool ascending: sorting order of rankings. Default: False. :param seed: random seed. Default: np.random.RandomState() :param bool scale: if true, scale es by gene number. :return: a tuple contains:: | zipped results of es, nes, pval, fdr. | nested list of hit indices of input gene_list. | nested list of ranked enrichment score of each input gene_sets. | list of enriched terms
gseapy/algorithm.py
def gsea_compute(data, gmt, n, weighted_score_type, permutation_type, method, pheno_pos, pheno_neg, classes, ascending, processes=1, seed=None, single=False, scale=False): """compute enrichment scores and enrichment nulls. :param data: preprocessed expression dataframe or a pre-ranked file if prerank=True. :param dict gmt: all gene sets in .gmt file. need to call load_gmt() to get results. :param int n: permutation number. default: 1000. :param str method: ranking_metric method. see above. :param str pheno_pos: one of labels of phenotype's names. :param str pheno_neg: one of labels of phenotype's names. :param list classes: a list of phenotype labels, to specify which column of dataframe belongs to what category of phenotype. :param float weighted_score_type: default:1 :param bool ascending: sorting order of rankings. Default: False. :param seed: random seed. Default: np.random.RandomState() :param bool scale: if true, scale es by gene number. :return: a tuple contains:: | zipped results of es, nes, pval, fdr. | nested list of hit indices of input gene_list. | nested list of ranked enrichment score of each input gene_sets. | list of enriched terms """ w = weighted_score_type subsets = sorted(gmt.keys()) es = [] RES=[] hit_ind=[] esnull = [ [] for a in range(len(subsets)) ] logging.debug("Start to compute enrichment scores......................") if permutation_type == "phenotype": logging.debug("Start to permutate classes..............................") # shuffling classes and generate random correlation rankings rs = np.random.RandomState(seed) genes_mat, cor_mat = ranking_metric_tensor(exprs=data, method=method, permutation_num=n, pos=pheno_pos, neg=pheno_neg, classes=classes, ascending=ascending, rs=rs) # compute es, esnulls. hits, RES logging.debug("Start to compute enrichment nulls.......................") es, esnull, hit_ind, RES = enrichment_score_tensor(gene_mat=genes_mat, cor_mat=cor_mat, gene_sets=gmt, weighted_score_type=w, nperm=n, rs=rs, single=False, scale=False,) else: # Prerank, ssGSEA, GSEA with gene_set permutation gl, cor_vec = data.index.values, data.values logging.debug("Start to compute es and esnulls........................") # es, esnull, hit_ind, RES = enrichment_score_tensor(gene_mat=gl, # cor_mat=cor_mat, # gene_sets=gmt, # weighted_score_type=w, # nperm=n, rs=rs # single=single, scale=scale) # split large array into smaller blocks to avoid memory overflow temp_esnu=[] pool_esnu = Pool(processes=processes) for subset in subsets: # you have to reseed, or all your processes are sharing the same seed value rs = np.random.RandomState(seed) temp_esnu.append(pool_esnu.apply_async(enrichment_score, args=(gl, cor_vec, gmt.get(subset), w, n, rs, single, scale))) pool_esnu.close() pool_esnu.join() # esn is a list, don't need to use append method. for si, temp in enumerate(temp_esnu): e, enu, hit, rune = temp.get() esnull[si] = enu es.append(e) RES.append(rune) hit_ind.append(hit) return gsea_significance(es, esnull), hit_ind, RES, subsets
def gsea_compute(data, gmt, n, weighted_score_type, permutation_type, method, pheno_pos, pheno_neg, classes, ascending, processes=1, seed=None, single=False, scale=False): """compute enrichment scores and enrichment nulls. :param data: preprocessed expression dataframe or a pre-ranked file if prerank=True. :param dict gmt: all gene sets in .gmt file. need to call load_gmt() to get results. :param int n: permutation number. default: 1000. :param str method: ranking_metric method. see above. :param str pheno_pos: one of labels of phenotype's names. :param str pheno_neg: one of labels of phenotype's names. :param list classes: a list of phenotype labels, to specify which column of dataframe belongs to what category of phenotype. :param float weighted_score_type: default:1 :param bool ascending: sorting order of rankings. Default: False. :param seed: random seed. Default: np.random.RandomState() :param bool scale: if true, scale es by gene number. :return: a tuple contains:: | zipped results of es, nes, pval, fdr. | nested list of hit indices of input gene_list. | nested list of ranked enrichment score of each input gene_sets. | list of enriched terms """ w = weighted_score_type subsets = sorted(gmt.keys()) es = [] RES=[] hit_ind=[] esnull = [ [] for a in range(len(subsets)) ] logging.debug("Start to compute enrichment scores......................") if permutation_type == "phenotype": logging.debug("Start to permutate classes..............................") # shuffling classes and generate random correlation rankings rs = np.random.RandomState(seed) genes_mat, cor_mat = ranking_metric_tensor(exprs=data, method=method, permutation_num=n, pos=pheno_pos, neg=pheno_neg, classes=classes, ascending=ascending, rs=rs) # compute es, esnulls. hits, RES logging.debug("Start to compute enrichment nulls.......................") es, esnull, hit_ind, RES = enrichment_score_tensor(gene_mat=genes_mat, cor_mat=cor_mat, gene_sets=gmt, weighted_score_type=w, nperm=n, rs=rs, single=False, scale=False,) else: # Prerank, ssGSEA, GSEA with gene_set permutation gl, cor_vec = data.index.values, data.values logging.debug("Start to compute es and esnulls........................") # es, esnull, hit_ind, RES = enrichment_score_tensor(gene_mat=gl, # cor_mat=cor_mat, # gene_sets=gmt, # weighted_score_type=w, # nperm=n, rs=rs # single=single, scale=scale) # split large array into smaller blocks to avoid memory overflow temp_esnu=[] pool_esnu = Pool(processes=processes) for subset in subsets: # you have to reseed, or all your processes are sharing the same seed value rs = np.random.RandomState(seed) temp_esnu.append(pool_esnu.apply_async(enrichment_score, args=(gl, cor_vec, gmt.get(subset), w, n, rs, single, scale))) pool_esnu.close() pool_esnu.join() # esn is a list, don't need to use append method. for si, temp in enumerate(temp_esnu): e, enu, hit, rune = temp.get() esnull[si] = enu es.append(e) RES.append(rune) hit_ind.append(hit) return gsea_significance(es, esnull), hit_ind, RES, subsets
[ "compute", "enrichment", "scores", "and", "enrichment", "nulls", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/algorithm.py#L422-L507
[ "def", "gsea_compute", "(", "data", ",", "gmt", ",", "n", ",", "weighted_score_type", ",", "permutation_type", ",", "method", ",", "pheno_pos", ",", "pheno_neg", ",", "classes", ",", "ascending", ",", "processes", "=", "1", ",", "seed", "=", "None", ",", "single", "=", "False", ",", "scale", "=", "False", ")", ":", "w", "=", "weighted_score_type", "subsets", "=", "sorted", "(", "gmt", ".", "keys", "(", ")", ")", "es", "=", "[", "]", "RES", "=", "[", "]", "hit_ind", "=", "[", "]", "esnull", "=", "[", "[", "]", "for", "a", "in", "range", "(", "len", "(", "subsets", ")", ")", "]", "logging", ".", "debug", "(", "\"Start to compute enrichment scores......................\"", ")", "if", "permutation_type", "==", "\"phenotype\"", ":", "logging", ".", "debug", "(", "\"Start to permutate classes..............................\"", ")", "# shuffling classes and generate random correlation rankings", "rs", "=", "np", ".", "random", ".", "RandomState", "(", "seed", ")", "genes_mat", ",", "cor_mat", "=", "ranking_metric_tensor", "(", "exprs", "=", "data", ",", "method", "=", "method", ",", "permutation_num", "=", "n", ",", "pos", "=", "pheno_pos", ",", "neg", "=", "pheno_neg", ",", "classes", "=", "classes", ",", "ascending", "=", "ascending", ",", "rs", "=", "rs", ")", "# compute es, esnulls. hits, RES", "logging", ".", "debug", "(", "\"Start to compute enrichment nulls.......................\"", ")", "es", ",", "esnull", ",", "hit_ind", ",", "RES", "=", "enrichment_score_tensor", "(", "gene_mat", "=", "genes_mat", ",", "cor_mat", "=", "cor_mat", ",", "gene_sets", "=", "gmt", ",", "weighted_score_type", "=", "w", ",", "nperm", "=", "n", ",", "rs", "=", "rs", ",", "single", "=", "False", ",", "scale", "=", "False", ",", ")", "else", ":", "# Prerank, ssGSEA, GSEA with gene_set permutation", "gl", ",", "cor_vec", "=", "data", ".", "index", ".", "values", ",", "data", ".", "values", "logging", ".", "debug", "(", "\"Start to compute es and esnulls........................\"", ")", "# es, esnull, hit_ind, RES = enrichment_score_tensor(gene_mat=gl,", "# cor_mat=cor_mat,", "# gene_sets=gmt,", "# weighted_score_type=w,", "# nperm=n, rs=rs", "# single=single, scale=scale)", "# split large array into smaller blocks to avoid memory overflow", "temp_esnu", "=", "[", "]", "pool_esnu", "=", "Pool", "(", "processes", "=", "processes", ")", "for", "subset", "in", "subsets", ":", "# you have to reseed, or all your processes are sharing the same seed value", "rs", "=", "np", ".", "random", ".", "RandomState", "(", "seed", ")", "temp_esnu", ".", "append", "(", "pool_esnu", ".", "apply_async", "(", "enrichment_score", ",", "args", "=", "(", "gl", ",", "cor_vec", ",", "gmt", ".", "get", "(", "subset", ")", ",", "w", ",", "n", ",", "rs", ",", "single", ",", "scale", ")", ")", ")", "pool_esnu", ".", "close", "(", ")", "pool_esnu", ".", "join", "(", ")", "# esn is a list, don't need to use append method.", "for", "si", ",", "temp", "in", "enumerate", "(", "temp_esnu", ")", ":", "e", ",", "enu", ",", "hit", ",", "rune", "=", "temp", ".", "get", "(", ")", "esnull", "[", "si", "]", "=", "enu", "es", ".", "append", "(", "e", ")", "RES", ".", "append", "(", "rune", ")", "hit_ind", ".", "append", "(", "hit", ")", "return", "gsea_significance", "(", "es", ",", "esnull", ")", ",", "hit_ind", ",", "RES", ",", "subsets" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
gsea_pval
Compute nominal p-value. From article (PNAS): estimate nominal p-value for S from esnull by using the positive or negative portion of the distribution corresponding to the sign of the observed ES(S).
gseapy/algorithm.py
def gsea_pval(es, esnull): """Compute nominal p-value. From article (PNAS): estimate nominal p-value for S from esnull by using the positive or negative portion of the distribution corresponding to the sign of the observed ES(S). """ # to speed up, using numpy function to compute pval in parallel. condlist = [ es < 0, es >=0] choicelist = [np.sum(esnull < es.reshape(len(es),1), axis=1)/ np.sum(esnull < 0, axis=1), np.sum(esnull >= es.reshape(len(es),1), axis=1)/ np.sum(esnull >= 0, axis=1)] pval = np.select(condlist, choicelist) return pval
def gsea_pval(es, esnull): """Compute nominal p-value. From article (PNAS): estimate nominal p-value for S from esnull by using the positive or negative portion of the distribution corresponding to the sign of the observed ES(S). """ # to speed up, using numpy function to compute pval in parallel. condlist = [ es < 0, es >=0] choicelist = [np.sum(esnull < es.reshape(len(es),1), axis=1)/ np.sum(esnull < 0, axis=1), np.sum(esnull >= es.reshape(len(es),1), axis=1)/ np.sum(esnull >= 0, axis=1)] pval = np.select(condlist, choicelist) return pval
[ "Compute", "nominal", "p", "-", "value", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/algorithm.py#L509-L524
[ "def", "gsea_pval", "(", "es", ",", "esnull", ")", ":", "# to speed up, using numpy function to compute pval in parallel.", "condlist", "=", "[", "es", "<", "0", ",", "es", ">=", "0", "]", "choicelist", "=", "[", "np", ".", "sum", "(", "esnull", "<", "es", ".", "reshape", "(", "len", "(", "es", ")", ",", "1", ")", ",", "axis", "=", "1", ")", "/", "np", ".", "sum", "(", "esnull", "<", "0", ",", "axis", "=", "1", ")", ",", "np", ".", "sum", "(", "esnull", ">=", "es", ".", "reshape", "(", "len", "(", "es", ")", ",", "1", ")", ",", "axis", "=", "1", ")", "/", "np", ".", "sum", "(", "esnull", ">=", "0", ",", "axis", "=", "1", ")", "]", "pval", "=", "np", ".", "select", "(", "condlist", ",", "choicelist", ")", "return", "pval" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
normalize
normalize the ES(S,pi) and the observed ES(S), separately rescaling the positive and negative scores by dividing the mean of the ES(S,pi). return: NES, NESnull
gseapy/algorithm.py
def normalize(es, esnull): """normalize the ES(S,pi) and the observed ES(S), separately rescaling the positive and negative scores by dividing the mean of the ES(S,pi). return: NES, NESnull """ nEnrichmentScores =np.zeros(es.shape) nEnrichmentNulls=np.zeros(esnull.shape) esnull_pos = (esnull * (esnull >= 0)).mean(axis=1) esnull_neg = (esnull * (esnull < 0)).mean(axis=1) # calculate nESnulls for i in range(esnull.shape[0]): # NES if es[i] >= 0: nEnrichmentScores[i] = es[i] / esnull_pos[i] else: nEnrichmentScores[i] = - es[i] / esnull_neg[i] # NESnull for j in range(esnull.shape[1]): if esnull[i,j] >= 0: nEnrichmentNulls[i,j] = esnull[i,j] / esnull_pos[i] else: nEnrichmentNulls[i,j] = - esnull[i,j] / esnull_neg[i] return nEnrichmentScores, nEnrichmentNulls
def normalize(es, esnull): """normalize the ES(S,pi) and the observed ES(S), separately rescaling the positive and negative scores by dividing the mean of the ES(S,pi). return: NES, NESnull """ nEnrichmentScores =np.zeros(es.shape) nEnrichmentNulls=np.zeros(esnull.shape) esnull_pos = (esnull * (esnull >= 0)).mean(axis=1) esnull_neg = (esnull * (esnull < 0)).mean(axis=1) # calculate nESnulls for i in range(esnull.shape[0]): # NES if es[i] >= 0: nEnrichmentScores[i] = es[i] / esnull_pos[i] else: nEnrichmentScores[i] = - es[i] / esnull_neg[i] # NESnull for j in range(esnull.shape[1]): if esnull[i,j] >= 0: nEnrichmentNulls[i,j] = esnull[i,j] / esnull_pos[i] else: nEnrichmentNulls[i,j] = - esnull[i,j] / esnull_neg[i] return nEnrichmentScores, nEnrichmentNulls
[ "normalize", "the", "ES", "(", "S", "pi", ")", "and", "the", "observed", "ES", "(", "S", ")", "separately", "rescaling", "the", "positive", "and", "negative", "scores", "by", "dividing", "the", "mean", "of", "the", "ES", "(", "S", "pi", ")", ".", "return", ":", "NES", "NESnull" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/algorithm.py#L527-L554
[ "def", "normalize", "(", "es", ",", "esnull", ")", ":", "nEnrichmentScores", "=", "np", ".", "zeros", "(", "es", ".", "shape", ")", "nEnrichmentNulls", "=", "np", ".", "zeros", "(", "esnull", ".", "shape", ")", "esnull_pos", "=", "(", "esnull", "*", "(", "esnull", ">=", "0", ")", ")", ".", "mean", "(", "axis", "=", "1", ")", "esnull_neg", "=", "(", "esnull", "*", "(", "esnull", "<", "0", ")", ")", ".", "mean", "(", "axis", "=", "1", ")", "# calculate nESnulls", "for", "i", "in", "range", "(", "esnull", ".", "shape", "[", "0", "]", ")", ":", "# NES", "if", "es", "[", "i", "]", ">=", "0", ":", "nEnrichmentScores", "[", "i", "]", "=", "es", "[", "i", "]", "/", "esnull_pos", "[", "i", "]", "else", ":", "nEnrichmentScores", "[", "i", "]", "=", "-", "es", "[", "i", "]", "/", "esnull_neg", "[", "i", "]", "# NESnull", "for", "j", "in", "range", "(", "esnull", ".", "shape", "[", "1", "]", ")", ":", "if", "esnull", "[", "i", ",", "j", "]", ">=", "0", ":", "nEnrichmentNulls", "[", "i", ",", "j", "]", "=", "esnull", "[", "i", ",", "j", "]", "/", "esnull_pos", "[", "i", "]", "else", ":", "nEnrichmentNulls", "[", "i", ",", "j", "]", "=", "-", "esnull", "[", "i", ",", "j", "]", "/", "esnull_neg", "[", "i", "]", "return", "nEnrichmentScores", ",", "nEnrichmentNulls" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
gsea_significance
Compute nominal pvals, normalized ES, and FDR q value. For a given NES(S) = NES* >= 0. The FDR is the ratio of the percentage of all (S,pi) with NES(S,pi) >= 0, whose NES(S,pi) >= NES*, divided by the percentage of observed S wih NES(S) >= 0, whose NES(S) >= NES*, and similarly if NES(S) = NES* <= 0.
gseapy/algorithm.py
def gsea_significance(enrichment_scores, enrichment_nulls): """Compute nominal pvals, normalized ES, and FDR q value. For a given NES(S) = NES* >= 0. The FDR is the ratio of the percentage of all (S,pi) with NES(S,pi) >= 0, whose NES(S,pi) >= NES*, divided by the percentage of observed S wih NES(S) >= 0, whose NES(S) >= NES*, and similarly if NES(S) = NES* <= 0. """ # For a zero by zero division (undetermined, results in a NaN), np.seterr(divide='ignore', invalid='ignore') # import warnings # warnings.simplefilter("ignore") es = np.array(enrichment_scores) esnull = np.array(enrichment_nulls) logging.debug("Start to compute pvals..................................") # compute pvals. enrichmentPVals = gsea_pval(es, esnull).tolist() logging.debug("Compute nes and nesnull.................................") # nEnrichmentScores, nEnrichmentNulls = normalize(es, esnull) # new normalized enrichment score implementation. # this could speed up significantly. esnull_pos = (esnull*(esnull>=0)).mean(axis=1) esnull_neg = (esnull*(esnull<0)).mean(axis=1) nEnrichmentScores = np.where(es>=0, es/esnull_pos, -es/esnull_neg) nEnrichmentNulls = np.where(esnull>=0, esnull/esnull_pos[:,np.newaxis], -esnull/esnull_neg[:,np.newaxis]) logging.debug("start to compute fdrs..................................") # FDR null distribution histogram # create a histogram of all NES(S,pi) over all S and pi # Use this null distribution to compute an FDR q value, # vals = reduce(lambda x,y: x+y, nEnrichmentNulls, []) # nvals = np.array(sorted(vals)) # or nvals = np.sort(nEnrichmentNulls.flatten()) nnes = np.sort(nEnrichmentScores) fdrs = [] # FDR computation for i in range(len(enrichment_scores)): nes = nEnrichmentScores[i] # use the same pval method to calculate fdr if nes >= 0: allPos = int(len(nvals) - np.searchsorted(nvals, 0, side="left")) allHigherAndPos = int(len(nvals) - np.searchsorted(nvals, nes, side="left")) nesPos = len(nnes) - int(np.searchsorted(nnes, 0, side="left")) nesHigherAndPos = len(nnes) - int(np.searchsorted(nnes, nes, side="left")) # allPos = (nvals >= 0).sum() # allHigherAndPos = (nvals >= nes).sum() # nesPos = (nnes >=0).sum() # nesHigherAndPos = (nnes >= nes).sum() else: allPos = int(np.searchsorted(nvals, 0, side="left")) allHigherAndPos = int(np.searchsorted(nvals, nes, side="right")) nesPos = int(np.searchsorted(nnes, 0, side="left")) nesHigherAndPos = int(np.searchsorted(nnes, nes, side="right")) # allPos = (nvals < 0).sum() # allHigherAndPos = (nvals < nes).sum() # nesPos = (nnes < 0).sum() # nesHigherAndPos = (nnes < nes).sum() try: pi_norm = allHigherAndPos/float(allPos) pi_obs = nesHigherAndPos/float(nesPos) fdr = pi_norm / pi_obs fdrs.append(fdr if fdr < 1 else 1.0) except: fdrs.append(1000000000.0) logging.debug("Statistical testing finished.............................") return zip(enrichment_scores, nEnrichmentScores, enrichmentPVals, fdrs)
def gsea_significance(enrichment_scores, enrichment_nulls): """Compute nominal pvals, normalized ES, and FDR q value. For a given NES(S) = NES* >= 0. The FDR is the ratio of the percentage of all (S,pi) with NES(S,pi) >= 0, whose NES(S,pi) >= NES*, divided by the percentage of observed S wih NES(S) >= 0, whose NES(S) >= NES*, and similarly if NES(S) = NES* <= 0. """ # For a zero by zero division (undetermined, results in a NaN), np.seterr(divide='ignore', invalid='ignore') # import warnings # warnings.simplefilter("ignore") es = np.array(enrichment_scores) esnull = np.array(enrichment_nulls) logging.debug("Start to compute pvals..................................") # compute pvals. enrichmentPVals = gsea_pval(es, esnull).tolist() logging.debug("Compute nes and nesnull.................................") # nEnrichmentScores, nEnrichmentNulls = normalize(es, esnull) # new normalized enrichment score implementation. # this could speed up significantly. esnull_pos = (esnull*(esnull>=0)).mean(axis=1) esnull_neg = (esnull*(esnull<0)).mean(axis=1) nEnrichmentScores = np.where(es>=0, es/esnull_pos, -es/esnull_neg) nEnrichmentNulls = np.where(esnull>=0, esnull/esnull_pos[:,np.newaxis], -esnull/esnull_neg[:,np.newaxis]) logging.debug("start to compute fdrs..................................") # FDR null distribution histogram # create a histogram of all NES(S,pi) over all S and pi # Use this null distribution to compute an FDR q value, # vals = reduce(lambda x,y: x+y, nEnrichmentNulls, []) # nvals = np.array(sorted(vals)) # or nvals = np.sort(nEnrichmentNulls.flatten()) nnes = np.sort(nEnrichmentScores) fdrs = [] # FDR computation for i in range(len(enrichment_scores)): nes = nEnrichmentScores[i] # use the same pval method to calculate fdr if nes >= 0: allPos = int(len(nvals) - np.searchsorted(nvals, 0, side="left")) allHigherAndPos = int(len(nvals) - np.searchsorted(nvals, nes, side="left")) nesPos = len(nnes) - int(np.searchsorted(nnes, 0, side="left")) nesHigherAndPos = len(nnes) - int(np.searchsorted(nnes, nes, side="left")) # allPos = (nvals >= 0).sum() # allHigherAndPos = (nvals >= nes).sum() # nesPos = (nnes >=0).sum() # nesHigherAndPos = (nnes >= nes).sum() else: allPos = int(np.searchsorted(nvals, 0, side="left")) allHigherAndPos = int(np.searchsorted(nvals, nes, side="right")) nesPos = int(np.searchsorted(nnes, 0, side="left")) nesHigherAndPos = int(np.searchsorted(nnes, nes, side="right")) # allPos = (nvals < 0).sum() # allHigherAndPos = (nvals < nes).sum() # nesPos = (nnes < 0).sum() # nesHigherAndPos = (nnes < nes).sum() try: pi_norm = allHigherAndPos/float(allPos) pi_obs = nesHigherAndPos/float(nesPos) fdr = pi_norm / pi_obs fdrs.append(fdr if fdr < 1 else 1.0) except: fdrs.append(1000000000.0) logging.debug("Statistical testing finished.............................") return zip(enrichment_scores, nEnrichmentScores, enrichmentPVals, fdrs)
[ "Compute", "nominal", "pvals", "normalized", "ES", "and", "FDR", "q", "value", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/algorithm.py#L557-L629
[ "def", "gsea_significance", "(", "enrichment_scores", ",", "enrichment_nulls", ")", ":", "# For a zero by zero division (undetermined, results in a NaN),", "np", ".", "seterr", "(", "divide", "=", "'ignore'", ",", "invalid", "=", "'ignore'", ")", "# import warnings", "# warnings.simplefilter(\"ignore\")", "es", "=", "np", ".", "array", "(", "enrichment_scores", ")", "esnull", "=", "np", ".", "array", "(", "enrichment_nulls", ")", "logging", ".", "debug", "(", "\"Start to compute pvals..................................\"", ")", "# compute pvals.", "enrichmentPVals", "=", "gsea_pval", "(", "es", ",", "esnull", ")", ".", "tolist", "(", ")", "logging", ".", "debug", "(", "\"Compute nes and nesnull.................................\"", ")", "# nEnrichmentScores, nEnrichmentNulls = normalize(es, esnull)", "# new normalized enrichment score implementation.", "# this could speed up significantly.", "esnull_pos", "=", "(", "esnull", "*", "(", "esnull", ">=", "0", ")", ")", ".", "mean", "(", "axis", "=", "1", ")", "esnull_neg", "=", "(", "esnull", "*", "(", "esnull", "<", "0", ")", ")", ".", "mean", "(", "axis", "=", "1", ")", "nEnrichmentScores", "=", "np", ".", "where", "(", "es", ">=", "0", ",", "es", "/", "esnull_pos", ",", "-", "es", "/", "esnull_neg", ")", "nEnrichmentNulls", "=", "np", ".", "where", "(", "esnull", ">=", "0", ",", "esnull", "/", "esnull_pos", "[", ":", ",", "np", ".", "newaxis", "]", ",", "-", "esnull", "/", "esnull_neg", "[", ":", ",", "np", ".", "newaxis", "]", ")", "logging", ".", "debug", "(", "\"start to compute fdrs..................................\"", ")", "# FDR null distribution histogram", "# create a histogram of all NES(S,pi) over all S and pi", "# Use this null distribution to compute an FDR q value,", "# vals = reduce(lambda x,y: x+y, nEnrichmentNulls, [])", "# nvals = np.array(sorted(vals))", "# or", "nvals", "=", "np", ".", "sort", "(", "nEnrichmentNulls", ".", "flatten", "(", ")", ")", "nnes", "=", "np", ".", "sort", "(", "nEnrichmentScores", ")", "fdrs", "=", "[", "]", "# FDR computation", "for", "i", "in", "range", "(", "len", "(", "enrichment_scores", ")", ")", ":", "nes", "=", "nEnrichmentScores", "[", "i", "]", "# use the same pval method to calculate fdr", "if", "nes", ">=", "0", ":", "allPos", "=", "int", "(", "len", "(", "nvals", ")", "-", "np", ".", "searchsorted", "(", "nvals", ",", "0", ",", "side", "=", "\"left\"", ")", ")", "allHigherAndPos", "=", "int", "(", "len", "(", "nvals", ")", "-", "np", ".", "searchsorted", "(", "nvals", ",", "nes", ",", "side", "=", "\"left\"", ")", ")", "nesPos", "=", "len", "(", "nnes", ")", "-", "int", "(", "np", ".", "searchsorted", "(", "nnes", ",", "0", ",", "side", "=", "\"left\"", ")", ")", "nesHigherAndPos", "=", "len", "(", "nnes", ")", "-", "int", "(", "np", ".", "searchsorted", "(", "nnes", ",", "nes", ",", "side", "=", "\"left\"", ")", ")", "# allPos = (nvals >= 0).sum()", "# allHigherAndPos = (nvals >= nes).sum()", "# nesPos = (nnes >=0).sum()", "# nesHigherAndPos = (nnes >= nes).sum()", "else", ":", "allPos", "=", "int", "(", "np", ".", "searchsorted", "(", "nvals", ",", "0", ",", "side", "=", "\"left\"", ")", ")", "allHigherAndPos", "=", "int", "(", "np", ".", "searchsorted", "(", "nvals", ",", "nes", ",", "side", "=", "\"right\"", ")", ")", "nesPos", "=", "int", "(", "np", ".", "searchsorted", "(", "nnes", ",", "0", ",", "side", "=", "\"left\"", ")", ")", "nesHigherAndPos", "=", "int", "(", "np", ".", "searchsorted", "(", "nnes", ",", "nes", ",", "side", "=", "\"right\"", ")", ")", "# allPos = (nvals < 0).sum()", "# allHigherAndPos = (nvals < nes).sum()", "# nesPos = (nnes < 0).sum()", "# nesHigherAndPos = (nnes < nes).sum()", "try", ":", "pi_norm", "=", "allHigherAndPos", "/", "float", "(", "allPos", ")", "pi_obs", "=", "nesHigherAndPos", "/", "float", "(", "nesPos", ")", "fdr", "=", "pi_norm", "/", "pi_obs", "fdrs", ".", "append", "(", "fdr", "if", "fdr", "<", "1", "else", "1.0", ")", "except", ":", "fdrs", ".", "append", "(", "1000000000.0", ")", "logging", ".", "debug", "(", "\"Statistical testing finished.............................\"", ")", "return", "zip", "(", "enrichment_scores", ",", "nEnrichmentScores", ",", "enrichmentPVals", ",", "fdrs", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
log_init
logging start
gseapy/utils.py
def log_init(outlog, log_level=logging.INFO): """logging start""" # clear old root logger handlers logging.getLogger("gseapy").handlers = [] # init a root logger logging.basicConfig(level = logging.DEBUG, format = 'LINE %(lineno)-4d: %(asctime)s [%(levelname)-8s] %(message)s', filename = outlog, filemode = 'w') # define a Handler which writes INFO messages or higher to the sys.stderr console = logging.StreamHandler() console.setLevel(log_level) # set a format which is simpler for console use formatter = logging.Formatter('%(asctime)s %(message)s') # tell the handler to use this format console.setFormatter(formatter) # add handlers logging.getLogger("gseapy").addHandler(console) logger = logging.getLogger("gseapy") # logger.setLevel(log_level) return logger
def log_init(outlog, log_level=logging.INFO): """logging start""" # clear old root logger handlers logging.getLogger("gseapy").handlers = [] # init a root logger logging.basicConfig(level = logging.DEBUG, format = 'LINE %(lineno)-4d: %(asctime)s [%(levelname)-8s] %(message)s', filename = outlog, filemode = 'w') # define a Handler which writes INFO messages or higher to the sys.stderr console = logging.StreamHandler() console.setLevel(log_level) # set a format which is simpler for console use formatter = logging.Formatter('%(asctime)s %(message)s') # tell the handler to use this format console.setFormatter(formatter) # add handlers logging.getLogger("gseapy").addHandler(console) logger = logging.getLogger("gseapy") # logger.setLevel(log_level) return logger
[ "logging", "start" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/utils.py#L39-L61
[ "def", "log_init", "(", "outlog", ",", "log_level", "=", "logging", ".", "INFO", ")", ":", "# clear old root logger handlers", "logging", ".", "getLogger", "(", "\"gseapy\"", ")", ".", "handlers", "=", "[", "]", "# init a root logger", "logging", ".", "basicConfig", "(", "level", "=", "logging", ".", "DEBUG", ",", "format", "=", "'LINE %(lineno)-4d: %(asctime)s [%(levelname)-8s] %(message)s'", ",", "filename", "=", "outlog", ",", "filemode", "=", "'w'", ")", "# define a Handler which writes INFO messages or higher to the sys.stderr", "console", "=", "logging", ".", "StreamHandler", "(", ")", "console", ".", "setLevel", "(", "log_level", ")", "# set a format which is simpler for console use", "formatter", "=", "logging", ".", "Formatter", "(", "'%(asctime)s %(message)s'", ")", "# tell the handler to use this format", "console", ".", "setFormatter", "(", "formatter", ")", "# add handlers", "logging", ".", "getLogger", "(", "\"gseapy\"", ")", ".", "addHandler", "(", "console", ")", "logger", "=", "logging", ".", "getLogger", "(", "\"gseapy\"", ")", "# logger.setLevel(log_level)", "return", "logger" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
log_stop
log stop
gseapy/utils.py
def log_stop(logger): """log stop""" handlers = logger.handlers[:] for handler in handlers: handler.close() logger.removeHandler(handler)
def log_stop(logger): """log stop""" handlers = logger.handlers[:] for handler in handlers: handler.close() logger.removeHandler(handler)
[ "log", "stop" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/utils.py#L63-L69
[ "def", "log_stop", "(", "logger", ")", ":", "handlers", "=", "logger", ".", "handlers", "[", ":", "]", "for", "handler", "in", "handlers", ":", "handler", ".", "close", "(", ")", "logger", ".", "removeHandler", "(", "handler", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
retry
retry connection. define max tries num if the backoff_factor is 0.1, then sleep() will sleep for [0.1s, 0.2s, 0.4s, ...] between retries. It will also force a retry if the status code returned is 500, 502, 503 or 504.
gseapy/utils.py
def retry(num=5): """"retry connection. define max tries num if the backoff_factor is 0.1, then sleep() will sleep for [0.1s, 0.2s, 0.4s, ...] between retries. It will also force a retry if the status code returned is 500, 502, 503 or 504. """ s = requests.Session() retries = Retry(total=num, backoff_factor=0.1, status_forcelist=[500, 502, 503, 504]) s.mount('http://', HTTPAdapter(max_retries=retries)) return s
def retry(num=5): """"retry connection. define max tries num if the backoff_factor is 0.1, then sleep() will sleep for [0.1s, 0.2s, 0.4s, ...] between retries. It will also force a retry if the status code returned is 500, 502, 503 or 504. """ s = requests.Session() retries = Retry(total=num, backoff_factor=0.1, status_forcelist=[500, 502, 503, 504]) s.mount('http://', HTTPAdapter(max_retries=retries)) return s
[ "retry", "connection", ".", "define", "max", "tries", "num", "if", "the", "backoff_factor", "is", "0", ".", "1", "then", "sleep", "()", "will", "sleep", "for", "[", "0", ".", "1s", "0", ".", "2s", "0", ".", "4s", "...", "]", "between", "retries", ".", "It", "will", "also", "force", "a", "retry", "if", "the", "status", "code", "returned", "is", "500", "502", "503", "or", "504", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/utils.py#L72-L86
[ "def", "retry", "(", "num", "=", "5", ")", ":", "s", "=", "requests", ".", "Session", "(", ")", "retries", "=", "Retry", "(", "total", "=", "num", ",", "backoff_factor", "=", "0.1", ",", "status_forcelist", "=", "[", "500", ",", "502", ",", "503", ",", "504", "]", ")", "s", ".", "mount", "(", "'http://'", ",", "HTTPAdapter", "(", "max_retries", "=", "retries", ")", ")", "return", "s" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
gsea_cls_parser
Extract class(phenotype) name from .cls file. :param cls: the a class list instance or .cls file which is identical to GSEA input . :return: phenotype name and a list of class vector.
gseapy/parser.py
def gsea_cls_parser(cls): """Extract class(phenotype) name from .cls file. :param cls: the a class list instance or .cls file which is identical to GSEA input . :return: phenotype name and a list of class vector. """ if isinstance(cls, list) : classes = cls sample_name= unique(classes) elif isinstance(cls, str) : with open(cls) as c: file = c.readlines() classes = file[2].strip('\n').split(" ") sample_name = file[1].lstrip("# ").strip('\n').split(" ") else: raise Exception('Error parsing sample name!') return sample_name[0], sample_name[1], classes
def gsea_cls_parser(cls): """Extract class(phenotype) name from .cls file. :param cls: the a class list instance or .cls file which is identical to GSEA input . :return: phenotype name and a list of class vector. """ if isinstance(cls, list) : classes = cls sample_name= unique(classes) elif isinstance(cls, str) : with open(cls) as c: file = c.readlines() classes = file[2].strip('\n').split(" ") sample_name = file[1].lstrip("# ").strip('\n').split(" ") else: raise Exception('Error parsing sample name!') return sample_name[0], sample_name[1], classes
[ "Extract", "class", "(", "phenotype", ")", "name", "from", ".", "cls", "file", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/parser.py#L13-L31
[ "def", "gsea_cls_parser", "(", "cls", ")", ":", "if", "isinstance", "(", "cls", ",", "list", ")", ":", "classes", "=", "cls", "sample_name", "=", "unique", "(", "classes", ")", "elif", "isinstance", "(", "cls", ",", "str", ")", ":", "with", "open", "(", "cls", ")", "as", "c", ":", "file", "=", "c", ".", "readlines", "(", ")", "classes", "=", "file", "[", "2", "]", ".", "strip", "(", "'\\n'", ")", ".", "split", "(", "\" \"", ")", "sample_name", "=", "file", "[", "1", "]", ".", "lstrip", "(", "\"# \"", ")", ".", "strip", "(", "'\\n'", ")", ".", "split", "(", "\" \"", ")", "else", ":", "raise", "Exception", "(", "'Error parsing sample name!'", ")", "return", "sample_name", "[", "0", "]", ",", "sample_name", "[", "1", "]", ",", "classes" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
gsea_edb_parser
Parse results.edb file stored under **edb** file folder. :param results_path: the .results file located inside edb folder. :param index: gene_set index of gmt database, used for iterating items. :return: enrichment_term, hit_index,nes, pval, fdr.
gseapy/parser.py
def gsea_edb_parser(results_path, index=0): """Parse results.edb file stored under **edb** file folder. :param results_path: the .results file located inside edb folder. :param index: gene_set index of gmt database, used for iterating items. :return: enrichment_term, hit_index,nes, pval, fdr. """ from bs4 import BeautifulSoup soup = BeautifulSoup(open(results_path), features='xml') tag = soup.findAll('DTG') term = dict(tag[index].attrs) # dict_keys(['RANKED_LIST', 'GENESET', 'FWER', 'ES_PROFILE', # 'HIT_INDICES', 'ES', 'NES', 'TEMPLATE', 'RND_ES', 'RANK_SCORE_AT_ES', # 'NP', 'RANK_AT_ES', 'FDR']) enrich_term = term.get('GENESET').split("#")[1] es_profile = term.get('ES_PROFILE').split(" ") # rank_es = term.get('RND_ES').split(" ") hit_ind =term.get('HIT_INDICES').split(" ") es_profile = [float(i) for i in es_profile ] hit_ind = [float(i) for i in hit_ind ] #r ank_es = [float(i) for i in rank_es ] nes = term.get('NES') pval = term.get('NP') fdr = term.get('FDR') # fwer = term.get('FWER') # index_range = len(tag)-1 logging.debug("Enriched Gene set is: "+ enrich_term) return enrich_term, hit_ind, nes, pval, fdr
def gsea_edb_parser(results_path, index=0): """Parse results.edb file stored under **edb** file folder. :param results_path: the .results file located inside edb folder. :param index: gene_set index of gmt database, used for iterating items. :return: enrichment_term, hit_index,nes, pval, fdr. """ from bs4 import BeautifulSoup soup = BeautifulSoup(open(results_path), features='xml') tag = soup.findAll('DTG') term = dict(tag[index].attrs) # dict_keys(['RANKED_LIST', 'GENESET', 'FWER', 'ES_PROFILE', # 'HIT_INDICES', 'ES', 'NES', 'TEMPLATE', 'RND_ES', 'RANK_SCORE_AT_ES', # 'NP', 'RANK_AT_ES', 'FDR']) enrich_term = term.get('GENESET').split("#")[1] es_profile = term.get('ES_PROFILE').split(" ") # rank_es = term.get('RND_ES').split(" ") hit_ind =term.get('HIT_INDICES').split(" ") es_profile = [float(i) for i in es_profile ] hit_ind = [float(i) for i in hit_ind ] #r ank_es = [float(i) for i in rank_es ] nes = term.get('NES') pval = term.get('NP') fdr = term.get('FDR') # fwer = term.get('FWER') # index_range = len(tag)-1 logging.debug("Enriched Gene set is: "+ enrich_term) return enrich_term, hit_ind, nes, pval, fdr
[ "Parse", "results", ".", "edb", "file", "stored", "under", "**", "edb", "**", "file", "folder", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/parser.py#L33-L62
[ "def", "gsea_edb_parser", "(", "results_path", ",", "index", "=", "0", ")", ":", "from", "bs4", "import", "BeautifulSoup", "soup", "=", "BeautifulSoup", "(", "open", "(", "results_path", ")", ",", "features", "=", "'xml'", ")", "tag", "=", "soup", ".", "findAll", "(", "'DTG'", ")", "term", "=", "dict", "(", "tag", "[", "index", "]", ".", "attrs", ")", "# dict_keys(['RANKED_LIST', 'GENESET', 'FWER', 'ES_PROFILE',", "# 'HIT_INDICES', 'ES', 'NES', 'TEMPLATE', 'RND_ES', 'RANK_SCORE_AT_ES',", "# 'NP', 'RANK_AT_ES', 'FDR'])", "enrich_term", "=", "term", ".", "get", "(", "'GENESET'", ")", ".", "split", "(", "\"#\"", ")", "[", "1", "]", "es_profile", "=", "term", ".", "get", "(", "'ES_PROFILE'", ")", ".", "split", "(", "\" \"", ")", "# rank_es = term.get('RND_ES').split(\" \")", "hit_ind", "=", "term", ".", "get", "(", "'HIT_INDICES'", ")", ".", "split", "(", "\" \"", ")", "es_profile", "=", "[", "float", "(", "i", ")", "for", "i", "in", "es_profile", "]", "hit_ind", "=", "[", "float", "(", "i", ")", "for", "i", "in", "hit_ind", "]", "#r ank_es = [float(i) for i in rank_es ]", "nes", "=", "term", ".", "get", "(", "'NES'", ")", "pval", "=", "term", ".", "get", "(", "'NP'", ")", "fdr", "=", "term", ".", "get", "(", "'FDR'", ")", "# fwer = term.get('FWER')", "# index_range = len(tag)-1", "logging", ".", "debug", "(", "\"Enriched Gene set is: \"", "+", "enrich_term", ")", "return", "enrich_term", ",", "hit_ind", ",", "nes", ",", "pval", ",", "fdr" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
gsea_gmt_parser
Parse gene_sets.gmt(gene set database) file or download from enrichr server. :param gmt: the gene_sets.gmt file of GSEA input or an enrichr library name. checkout full enrichr library name here: http://amp.pharm.mssm.edu/Enrichr/#stats :param min_size: Minimum allowed number of genes from gene set also the data set. Default: 3. :param max_size: Maximum allowed number of genes from gene set also the data set. Default: 5000. :param gene_list: Used for filtering gene set. Only used this argument for :func:`call` method. :return: Return a new filtered gene set database dictionary. **DO NOT** filter gene sets, when use :func:`replot`. Because ``GSEA`` Desktop have already done this for you.
gseapy/parser.py
def gsea_gmt_parser(gmt, min_size = 3, max_size = 1000, gene_list=None): """Parse gene_sets.gmt(gene set database) file or download from enrichr server. :param gmt: the gene_sets.gmt file of GSEA input or an enrichr library name. checkout full enrichr library name here: http://amp.pharm.mssm.edu/Enrichr/#stats :param min_size: Minimum allowed number of genes from gene set also the data set. Default: 3. :param max_size: Maximum allowed number of genes from gene set also the data set. Default: 5000. :param gene_list: Used for filtering gene set. Only used this argument for :func:`call` method. :return: Return a new filtered gene set database dictionary. **DO NOT** filter gene sets, when use :func:`replot`. Because ``GSEA`` Desktop have already done this for you. """ if gmt.lower().endswith(".gmt"): logging.info("User Defined gene sets is given.......continue..........") with open(gmt) as genesets: genesets_dict = { line.strip().split("\t")[0]: line.strip().split("\t")[2:] for line in genesets.readlines()} else: logging.info("Downloading and generating Enrichr library gene sets...") if gmt in DEFAULT_LIBRARY: names = DEFAULT_LIBRARY else: names = get_library_name() if gmt in names: """ define max tries num if the backoff_factor is 0.1, then sleep() will sleep for [0.1s, 0.2s, 0.4s, ...] between retries. It will also force a retry if the status code returned is 500, 502, 503 or 504. """ s = requests.Session() retries = Retry(total=5, backoff_factor=0.1, status_forcelist=[ 500, 502, 503, 504 ]) s.mount('http://', HTTPAdapter(max_retries=retries)) # queery string ENRICHR_URL = 'http://amp.pharm.mssm.edu/Enrichr/geneSetLibrary' query_string = '?mode=text&libraryName=%s' # get response = s.get( ENRICHR_URL + query_string % gmt, timeout=None) else: raise Exception("gene_set files(.gmt) not found") if not response.ok: raise Exception('Error fetching enrichment results, check internet connection first.') genesets_dict = { line.strip().split("\t")[0]: list(map(lambda x: x.split(",")[0], line.strip().split("\t")[2:])) for line in response.iter_lines(chunk_size=1024, decode_unicode='utf-8')} # filtering dict if sys.version_info[0] >= 3 : genesets_filter = {k: v for k, v in genesets_dict.items() if len(v) >= min_size and len(v) <= max_size} elif sys.version_info[0] == 2: genesets_filter = {k: v for k, v in genesets_dict.iteritems() if len(v) >= min_size and len(v) <= max_size} else: logging.error("System failure. Please Provide correct input files") sys.exit(1) if gene_list is not None: subsets = sorted(genesets_filter.keys()) for subset in subsets: tag_indicator = in1d(gene_list, genesets_filter.get(subset), assume_unique=True) tag_len = sum(tag_indicator) if tag_len <= min_size or tag_len >= max_size: del genesets_filter[subset] else: continue # some_dict = {key: value for key, value in some_dict.items() if value != value_to_remove} # use np.intersect1d() may be faster??? filsets_num = len(genesets_dict) - len(genesets_filter) logging.info("%04d gene_sets have been filtered out when max_size=%s and min_size=%s"%(filsets_num, max_size, min_size)) if filsets_num == len(genesets_dict): logging.error("No gene sets passed throught filtering condition!!!, try new paramters again!\n" +\ "Note: Gene names for gseapy is case sensitive." ) sys.exit(1) else: return genesets_filter
def gsea_gmt_parser(gmt, min_size = 3, max_size = 1000, gene_list=None): """Parse gene_sets.gmt(gene set database) file or download from enrichr server. :param gmt: the gene_sets.gmt file of GSEA input or an enrichr library name. checkout full enrichr library name here: http://amp.pharm.mssm.edu/Enrichr/#stats :param min_size: Minimum allowed number of genes from gene set also the data set. Default: 3. :param max_size: Maximum allowed number of genes from gene set also the data set. Default: 5000. :param gene_list: Used for filtering gene set. Only used this argument for :func:`call` method. :return: Return a new filtered gene set database dictionary. **DO NOT** filter gene sets, when use :func:`replot`. Because ``GSEA`` Desktop have already done this for you. """ if gmt.lower().endswith(".gmt"): logging.info("User Defined gene sets is given.......continue..........") with open(gmt) as genesets: genesets_dict = { line.strip().split("\t")[0]: line.strip().split("\t")[2:] for line in genesets.readlines()} else: logging.info("Downloading and generating Enrichr library gene sets...") if gmt in DEFAULT_LIBRARY: names = DEFAULT_LIBRARY else: names = get_library_name() if gmt in names: """ define max tries num if the backoff_factor is 0.1, then sleep() will sleep for [0.1s, 0.2s, 0.4s, ...] between retries. It will also force a retry if the status code returned is 500, 502, 503 or 504. """ s = requests.Session() retries = Retry(total=5, backoff_factor=0.1, status_forcelist=[ 500, 502, 503, 504 ]) s.mount('http://', HTTPAdapter(max_retries=retries)) # queery string ENRICHR_URL = 'http://amp.pharm.mssm.edu/Enrichr/geneSetLibrary' query_string = '?mode=text&libraryName=%s' # get response = s.get( ENRICHR_URL + query_string % gmt, timeout=None) else: raise Exception("gene_set files(.gmt) not found") if not response.ok: raise Exception('Error fetching enrichment results, check internet connection first.') genesets_dict = { line.strip().split("\t")[0]: list(map(lambda x: x.split(",")[0], line.strip().split("\t")[2:])) for line in response.iter_lines(chunk_size=1024, decode_unicode='utf-8')} # filtering dict if sys.version_info[0] >= 3 : genesets_filter = {k: v for k, v in genesets_dict.items() if len(v) >= min_size and len(v) <= max_size} elif sys.version_info[0] == 2: genesets_filter = {k: v for k, v in genesets_dict.iteritems() if len(v) >= min_size and len(v) <= max_size} else: logging.error("System failure. Please Provide correct input files") sys.exit(1) if gene_list is not None: subsets = sorted(genesets_filter.keys()) for subset in subsets: tag_indicator = in1d(gene_list, genesets_filter.get(subset), assume_unique=True) tag_len = sum(tag_indicator) if tag_len <= min_size or tag_len >= max_size: del genesets_filter[subset] else: continue # some_dict = {key: value for key, value in some_dict.items() if value != value_to_remove} # use np.intersect1d() may be faster??? filsets_num = len(genesets_dict) - len(genesets_filter) logging.info("%04d gene_sets have been filtered out when max_size=%s and min_size=%s"%(filsets_num, max_size, min_size)) if filsets_num == len(genesets_dict): logging.error("No gene sets passed throught filtering condition!!!, try new paramters again!\n" +\ "Note: Gene names for gseapy is case sensitive." ) sys.exit(1) else: return genesets_filter
[ "Parse", "gene_sets", ".", "gmt", "(", "gene", "set", "database", ")", "file", "or", "download", "from", "enrichr", "server", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/parser.py#L65-L146
[ "def", "gsea_gmt_parser", "(", "gmt", ",", "min_size", "=", "3", ",", "max_size", "=", "1000", ",", "gene_list", "=", "None", ")", ":", "if", "gmt", ".", "lower", "(", ")", ".", "endswith", "(", "\".gmt\"", ")", ":", "logging", ".", "info", "(", "\"User Defined gene sets is given.......continue..........\"", ")", "with", "open", "(", "gmt", ")", "as", "genesets", ":", "genesets_dict", "=", "{", "line", ".", "strip", "(", ")", ".", "split", "(", "\"\\t\"", ")", "[", "0", "]", ":", "line", ".", "strip", "(", ")", ".", "split", "(", "\"\\t\"", ")", "[", "2", ":", "]", "for", "line", "in", "genesets", ".", "readlines", "(", ")", "}", "else", ":", "logging", ".", "info", "(", "\"Downloading and generating Enrichr library gene sets...\"", ")", "if", "gmt", "in", "DEFAULT_LIBRARY", ":", "names", "=", "DEFAULT_LIBRARY", "else", ":", "names", "=", "get_library_name", "(", ")", "if", "gmt", "in", "names", ":", "\"\"\"\n define max tries num\n if the backoff_factor is 0.1, then sleep() will sleep for\n [0.1s, 0.2s, 0.4s, ...] between retries.\n It will also force a retry if the status code returned is 500, 502, 503 or 504.\n \"\"\"", "s", "=", "requests", ".", "Session", "(", ")", "retries", "=", "Retry", "(", "total", "=", "5", ",", "backoff_factor", "=", "0.1", ",", "status_forcelist", "=", "[", "500", ",", "502", ",", "503", ",", "504", "]", ")", "s", ".", "mount", "(", "'http://'", ",", "HTTPAdapter", "(", "max_retries", "=", "retries", ")", ")", "# queery string", "ENRICHR_URL", "=", "'http://amp.pharm.mssm.edu/Enrichr/geneSetLibrary'", "query_string", "=", "'?mode=text&libraryName=%s'", "# get", "response", "=", "s", ".", "get", "(", "ENRICHR_URL", "+", "query_string", "%", "gmt", ",", "timeout", "=", "None", ")", "else", ":", "raise", "Exception", "(", "\"gene_set files(.gmt) not found\"", ")", "if", "not", "response", ".", "ok", ":", "raise", "Exception", "(", "'Error fetching enrichment results, check internet connection first.'", ")", "genesets_dict", "=", "{", "line", ".", "strip", "(", ")", ".", "split", "(", "\"\\t\"", ")", "[", "0", "]", ":", "list", "(", "map", "(", "lambda", "x", ":", "x", ".", "split", "(", "\",\"", ")", "[", "0", "]", ",", "line", ".", "strip", "(", ")", ".", "split", "(", "\"\\t\"", ")", "[", "2", ":", "]", ")", ")", "for", "line", "in", "response", ".", "iter_lines", "(", "chunk_size", "=", "1024", ",", "decode_unicode", "=", "'utf-8'", ")", "}", "# filtering dict", "if", "sys", ".", "version_info", "[", "0", "]", ">=", "3", ":", "genesets_filter", "=", "{", "k", ":", "v", "for", "k", ",", "v", "in", "genesets_dict", ".", "items", "(", ")", "if", "len", "(", "v", ")", ">=", "min_size", "and", "len", "(", "v", ")", "<=", "max_size", "}", "elif", "sys", ".", "version_info", "[", "0", "]", "==", "2", ":", "genesets_filter", "=", "{", "k", ":", "v", "for", "k", ",", "v", "in", "genesets_dict", ".", "iteritems", "(", ")", "if", "len", "(", "v", ")", ">=", "min_size", "and", "len", "(", "v", ")", "<=", "max_size", "}", "else", ":", "logging", ".", "error", "(", "\"System failure. Please Provide correct input files\"", ")", "sys", ".", "exit", "(", "1", ")", "if", "gene_list", "is", "not", "None", ":", "subsets", "=", "sorted", "(", "genesets_filter", ".", "keys", "(", ")", ")", "for", "subset", "in", "subsets", ":", "tag_indicator", "=", "in1d", "(", "gene_list", ",", "genesets_filter", ".", "get", "(", "subset", ")", ",", "assume_unique", "=", "True", ")", "tag_len", "=", "sum", "(", "tag_indicator", ")", "if", "tag_len", "<=", "min_size", "or", "tag_len", ">=", "max_size", ":", "del", "genesets_filter", "[", "subset", "]", "else", ":", "continue", "# some_dict = {key: value for key, value in some_dict.items() if value != value_to_remove}", "# use np.intersect1d() may be faster???", "filsets_num", "=", "len", "(", "genesets_dict", ")", "-", "len", "(", "genesets_filter", ")", "logging", ".", "info", "(", "\"%04d gene_sets have been filtered out when max_size=%s and min_size=%s\"", "%", "(", "filsets_num", ",", "max_size", ",", "min_size", ")", ")", "if", "filsets_num", "==", "len", "(", "genesets_dict", ")", ":", "logging", ".", "error", "(", "\"No gene sets passed throught filtering condition!!!, try new paramters again!\\n\"", "+", "\"Note: Gene names for gseapy is case sensitive.\"", ")", "sys", ".", "exit", "(", "1", ")", "else", ":", "return", "genesets_filter" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
get_library_name
return enrichr active enrichr library name. :param str database: Select one from { 'Human', 'Mouse', 'Yeast', 'Fly', 'Fish', 'Worm' }
gseapy/parser.py
def get_library_name(database='Human'): """return enrichr active enrichr library name. :param str database: Select one from { 'Human', 'Mouse', 'Yeast', 'Fly', 'Fish', 'Worm' } """ # make a get request to get the gmt names and meta data from Enrichr # old code # response = requests.get('http://amp.pharm.mssm.edu/Enrichr/geneSetLibrary?mode=meta') # gmt_data = response.json() # # generate list of lib names # libs = [] # # get library names # for inst_gmt in gmt_data['libraries']: # # only include active gmts # if inst_gmt['isActive'] == True: # libs.append(inst_gmt['libraryName']) if database not in ['Human', 'Mouse', 'Yeast', 'Fly', 'Fish', 'Worm']: sys.stderr.write("""No supported database. Please input one of these: 'Human', 'Mouse', 'Yeast', 'Fly', 'Fish', 'Worm' """) return if database in ['Human', 'Mouse']: database='' lib_url='http://amp.pharm.mssm.edu/%sEnrichr/datasetStatistics'%database libs_json = json.loads(requests.get(lib_url).text) libs = [lib['libraryName'] for lib in libs_json['statistics']] return sorted(libs)
def get_library_name(database='Human'): """return enrichr active enrichr library name. :param str database: Select one from { 'Human', 'Mouse', 'Yeast', 'Fly', 'Fish', 'Worm' } """ # make a get request to get the gmt names and meta data from Enrichr # old code # response = requests.get('http://amp.pharm.mssm.edu/Enrichr/geneSetLibrary?mode=meta') # gmt_data = response.json() # # generate list of lib names # libs = [] # # get library names # for inst_gmt in gmt_data['libraries']: # # only include active gmts # if inst_gmt['isActive'] == True: # libs.append(inst_gmt['libraryName']) if database not in ['Human', 'Mouse', 'Yeast', 'Fly', 'Fish', 'Worm']: sys.stderr.write("""No supported database. Please input one of these: 'Human', 'Mouse', 'Yeast', 'Fly', 'Fish', 'Worm' """) return if database in ['Human', 'Mouse']: database='' lib_url='http://amp.pharm.mssm.edu/%sEnrichr/datasetStatistics'%database libs_json = json.loads(requests.get(lib_url).text) libs = [lib['libraryName'] for lib in libs_json['statistics']] return sorted(libs)
[ "return", "enrichr", "active", "enrichr", "library", "name", ".", ":", "param", "str", "database", ":", "Select", "one", "from", "{", "Human", "Mouse", "Yeast", "Fly", "Fish", "Worm", "}" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/parser.py#L148-L177
[ "def", "get_library_name", "(", "database", "=", "'Human'", ")", ":", "# make a get request to get the gmt names and meta data from Enrichr", "# old code", "# response = requests.get('http://amp.pharm.mssm.edu/Enrichr/geneSetLibrary?mode=meta')", "# gmt_data = response.json()", "# # generate list of lib names", "# libs = []", "# # get library names", "# for inst_gmt in gmt_data['libraries']:", "# # only include active gmts", "# if inst_gmt['isActive'] == True:", "# libs.append(inst_gmt['libraryName'])", "if", "database", "not", "in", "[", "'Human'", ",", "'Mouse'", ",", "'Yeast'", ",", "'Fly'", ",", "'Fish'", ",", "'Worm'", "]", ":", "sys", ".", "stderr", ".", "write", "(", "\"\"\"No supported database. Please input one of these:\n 'Human', 'Mouse', 'Yeast', 'Fly', 'Fish', 'Worm' \"\"\"", ")", "return", "if", "database", "in", "[", "'Human'", ",", "'Mouse'", "]", ":", "database", "=", "''", "lib_url", "=", "'http://amp.pharm.mssm.edu/%sEnrichr/datasetStatistics'", "%", "database", "libs_json", "=", "json", ".", "loads", "(", "requests", ".", "get", "(", "lib_url", ")", ".", "text", ")", "libs", "=", "[", "lib", "[", "'libraryName'", "]", "for", "lib", "in", "libs_json", "[", "'statistics'", "]", "]", "return", "sorted", "(", "libs", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
Biomart.get_marts
Get available marts and their names.
gseapy/parser.py
def get_marts(self): """Get available marts and their names.""" mart_names = pd.Series(self.names, name="Name") mart_descriptions = pd.Series(self.displayNames, name="Description") return pd.concat([mart_names, mart_descriptions], axis=1)
def get_marts(self): """Get available marts and their names.""" mart_names = pd.Series(self.names, name="Name") mart_descriptions = pd.Series(self.displayNames, name="Description") return pd.concat([mart_names, mart_descriptions], axis=1)
[ "Get", "available", "marts", "and", "their", "names", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/parser.py#L211-L217
[ "def", "get_marts", "(", "self", ")", ":", "mart_names", "=", "pd", ".", "Series", "(", "self", ".", "names", ",", "name", "=", "\"Name\"", ")", "mart_descriptions", "=", "pd", ".", "Series", "(", "self", ".", "displayNames", ",", "name", "=", "\"Description\"", ")", "return", "pd", ".", "concat", "(", "[", "mart_names", ",", "mart_descriptions", "]", ",", "axis", "=", "1", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
Biomart.get_datasets
Get available datasets from mart you've selected
gseapy/parser.py
def get_datasets(self, mart='ENSEMBL_MART_ENSEMBL'): """Get available datasets from mart you've selected""" datasets = self.datasets(mart, raw=True) return pd.read_csv(StringIO(datasets), header=None, usecols=[1, 2], names = ["Name", "Description"],sep="\t")
def get_datasets(self, mart='ENSEMBL_MART_ENSEMBL'): """Get available datasets from mart you've selected""" datasets = self.datasets(mart, raw=True) return pd.read_csv(StringIO(datasets), header=None, usecols=[1, 2], names = ["Name", "Description"],sep="\t")
[ "Get", "available", "datasets", "from", "mart", "you", "ve", "selected" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/parser.py#L219-L223
[ "def", "get_datasets", "(", "self", ",", "mart", "=", "'ENSEMBL_MART_ENSEMBL'", ")", ":", "datasets", "=", "self", ".", "datasets", "(", "mart", ",", "raw", "=", "True", ")", "return", "pd", ".", "read_csv", "(", "StringIO", "(", "datasets", ")", ",", "header", "=", "None", ",", "usecols", "=", "[", "1", ",", "2", "]", ",", "names", "=", "[", "\"Name\"", ",", "\"Description\"", "]", ",", "sep", "=", "\"\\t\"", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
Biomart.get_attributes
Get available attritbutes from dataset you've selected
gseapy/parser.py
def get_attributes(self, dataset): """Get available attritbutes from dataset you've selected""" attributes = self.attributes(dataset) attr_ = [ (k, v[0]) for k, v in attributes.items()] return pd.DataFrame(attr_, columns=["Attribute","Description"])
def get_attributes(self, dataset): """Get available attritbutes from dataset you've selected""" attributes = self.attributes(dataset) attr_ = [ (k, v[0]) for k, v in attributes.items()] return pd.DataFrame(attr_, columns=["Attribute","Description"])
[ "Get", "available", "attritbutes", "from", "dataset", "you", "ve", "selected" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/parser.py#L225-L229
[ "def", "get_attributes", "(", "self", ",", "dataset", ")", ":", "attributes", "=", "self", ".", "attributes", "(", "dataset", ")", "attr_", "=", "[", "(", "k", ",", "v", "[", "0", "]", ")", "for", "k", ",", "v", "in", "attributes", ".", "items", "(", ")", "]", "return", "pd", ".", "DataFrame", "(", "attr_", ",", "columns", "=", "[", "\"Attribute\"", ",", "\"Description\"", "]", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
Biomart.get_filters
Get available filters from dataset you've selected
gseapy/parser.py
def get_filters(self, dataset): """Get available filters from dataset you've selected""" filters = self.filters(dataset) filt_ = [ (k, v[0]) for k, v in filters.items()] return pd.DataFrame(filt_, columns=["Filter", "Description"])
def get_filters(self, dataset): """Get available filters from dataset you've selected""" filters = self.filters(dataset) filt_ = [ (k, v[0]) for k, v in filters.items()] return pd.DataFrame(filt_, columns=["Filter", "Description"])
[ "Get", "available", "filters", "from", "dataset", "you", "ve", "selected" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/parser.py#L231-L235
[ "def", "get_filters", "(", "self", ",", "dataset", ")", ":", "filters", "=", "self", ".", "filters", "(", "dataset", ")", "filt_", "=", "[", "(", "k", ",", "v", "[", "0", "]", ")", "for", "k", ",", "v", "in", "filters", ".", "items", "(", ")", "]", "return", "pd", ".", "DataFrame", "(", "filt_", ",", "columns", "=", "[", "\"Filter\"", ",", "\"Description\"", "]", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
Biomart.query
mapping ids using BioMart. :param dataset: str, default: 'hsapiens_gene_ensembl' :param attributes: str, list, tuple :param filters: dict, {'filter name': list(filter value)} :param host: www.ensembl.org, asia.ensembl.org, useast.ensembl.org :return: a dataframe contains all attributes you selected. **Note**: it will take a couple of minutes to get the results. A xml template for querying biomart. (see https://gist.github.com/keithshep/7776579) exampleTaxonomy = "mmusculus_gene_ensembl" exampleGene = "ENSMUSG00000086981,ENSMUSG00000086982,ENSMUSG00000086983" urlTemplate = \ '''http://ensembl.org/biomart/martservice?query=''' \ '''<?xml version="1.0" encoding="UTF-8"?>''' \ '''<!DOCTYPE Query>''' \ '''<Query virtualSchemaName="default" formatter="CSV" header="0" uniqueRows="0" count="" datasetConfigVersion="0.6">''' \ '''<Dataset name="%s" interface="default"><Filter name="ensembl_gene_id" value="%s"/>''' \ '''<Attribute name="ensembl_gene_id"/><Attribute name="ensembl_transcript_id"/>''' \ '''<Attribute name="transcript_start"/><Attribute name="transcript_end"/>''' \ '''<Attribute name="exon_chrom_start"/><Attribute name="exon_chrom_end"/>''' \ '''</Dataset>''' \ '''</Query>''' exampleURL = urlTemplate % (exampleTaxonomy, exampleGene) req = requests.get(exampleURL, stream=True)
gseapy/parser.py
def query(self, dataset='hsapiens_gene_ensembl', attributes=[], filters={}, filename=None): """mapping ids using BioMart. :param dataset: str, default: 'hsapiens_gene_ensembl' :param attributes: str, list, tuple :param filters: dict, {'filter name': list(filter value)} :param host: www.ensembl.org, asia.ensembl.org, useast.ensembl.org :return: a dataframe contains all attributes you selected. **Note**: it will take a couple of minutes to get the results. A xml template for querying biomart. (see https://gist.github.com/keithshep/7776579) exampleTaxonomy = "mmusculus_gene_ensembl" exampleGene = "ENSMUSG00000086981,ENSMUSG00000086982,ENSMUSG00000086983" urlTemplate = \ '''http://ensembl.org/biomart/martservice?query=''' \ '''<?xml version="1.0" encoding="UTF-8"?>''' \ '''<!DOCTYPE Query>''' \ '''<Query virtualSchemaName="default" formatter="CSV" header="0" uniqueRows="0" count="" datasetConfigVersion="0.6">''' \ '''<Dataset name="%s" interface="default"><Filter name="ensembl_gene_id" value="%s"/>''' \ '''<Attribute name="ensembl_gene_id"/><Attribute name="ensembl_transcript_id"/>''' \ '''<Attribute name="transcript_start"/><Attribute name="transcript_end"/>''' \ '''<Attribute name="exon_chrom_start"/><Attribute name="exon_chrom_end"/>''' \ '''</Dataset>''' \ '''</Query>''' exampleURL = urlTemplate % (exampleTaxonomy, exampleGene) req = requests.get(exampleURL, stream=True) """ if not attributes: attributes = ['ensembl_gene_id', 'external_gene_name', 'entrezgene', 'go_id'] # i=0 # while (self.host is None) and (i < 3): # self.host = self.ghosts[i] # i +=1 self.new_query() # 'mmusculus_gene_ensembl' self.add_dataset_to_xml(dataset) for at in attributes: self.add_attribute_to_xml(at) # add filters if filters: for k, v in filters.items(): if isinstance(v, list): v = ",".join(v) self.add_filter_to_xml(k, v) xml_query = self.get_xml() results = super(Biomart, self).query(xml_query) df = pd.read_csv(StringIO(results), header=None, sep="\t", names=attributes, index_col=None) # save file to cache path. if filename is None: mkdirs(DEFAULT_CACHE_PATH) filename = os.path.join(DEFAULT_CACHE_PATH, "{}.background.genes.txt".format(dataset)) df.to_csv(filename, sep="\t", index=False) return df
def query(self, dataset='hsapiens_gene_ensembl', attributes=[], filters={}, filename=None): """mapping ids using BioMart. :param dataset: str, default: 'hsapiens_gene_ensembl' :param attributes: str, list, tuple :param filters: dict, {'filter name': list(filter value)} :param host: www.ensembl.org, asia.ensembl.org, useast.ensembl.org :return: a dataframe contains all attributes you selected. **Note**: it will take a couple of minutes to get the results. A xml template for querying biomart. (see https://gist.github.com/keithshep/7776579) exampleTaxonomy = "mmusculus_gene_ensembl" exampleGene = "ENSMUSG00000086981,ENSMUSG00000086982,ENSMUSG00000086983" urlTemplate = \ '''http://ensembl.org/biomart/martservice?query=''' \ '''<?xml version="1.0" encoding="UTF-8"?>''' \ '''<!DOCTYPE Query>''' \ '''<Query virtualSchemaName="default" formatter="CSV" header="0" uniqueRows="0" count="" datasetConfigVersion="0.6">''' \ '''<Dataset name="%s" interface="default"><Filter name="ensembl_gene_id" value="%s"/>''' \ '''<Attribute name="ensembl_gene_id"/><Attribute name="ensembl_transcript_id"/>''' \ '''<Attribute name="transcript_start"/><Attribute name="transcript_end"/>''' \ '''<Attribute name="exon_chrom_start"/><Attribute name="exon_chrom_end"/>''' \ '''</Dataset>''' \ '''</Query>''' exampleURL = urlTemplate % (exampleTaxonomy, exampleGene) req = requests.get(exampleURL, stream=True) """ if not attributes: attributes = ['ensembl_gene_id', 'external_gene_name', 'entrezgene', 'go_id'] # i=0 # while (self.host is None) and (i < 3): # self.host = self.ghosts[i] # i +=1 self.new_query() # 'mmusculus_gene_ensembl' self.add_dataset_to_xml(dataset) for at in attributes: self.add_attribute_to_xml(at) # add filters if filters: for k, v in filters.items(): if isinstance(v, list): v = ",".join(v) self.add_filter_to_xml(k, v) xml_query = self.get_xml() results = super(Biomart, self).query(xml_query) df = pd.read_csv(StringIO(results), header=None, sep="\t", names=attributes, index_col=None) # save file to cache path. if filename is None: mkdirs(DEFAULT_CACHE_PATH) filename = os.path.join(DEFAULT_CACHE_PATH, "{}.background.genes.txt".format(dataset)) df.to_csv(filename, sep="\t", index=False) return df
[ "mapping", "ids", "using", "BioMart", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/parser.py#L237-L295
[ "def", "query", "(", "self", ",", "dataset", "=", "'hsapiens_gene_ensembl'", ",", "attributes", "=", "[", "]", ",", "filters", "=", "{", "}", ",", "filename", "=", "None", ")", ":", "if", "not", "attributes", ":", "attributes", "=", "[", "'ensembl_gene_id'", ",", "'external_gene_name'", ",", "'entrezgene'", ",", "'go_id'", "]", "# i=0", "# while (self.host is None) and (i < 3):", "# self.host = self.ghosts[i]", "# i +=1 ", "self", ".", "new_query", "(", ")", "# 'mmusculus_gene_ensembl'", "self", ".", "add_dataset_to_xml", "(", "dataset", ")", "for", "at", "in", "attributes", ":", "self", ".", "add_attribute_to_xml", "(", "at", ")", "# add filters", "if", "filters", ":", "for", "k", ",", "v", "in", "filters", ".", "items", "(", ")", ":", "if", "isinstance", "(", "v", ",", "list", ")", ":", "v", "=", "\",\"", ".", "join", "(", "v", ")", "self", ".", "add_filter_to_xml", "(", "k", ",", "v", ")", "xml_query", "=", "self", ".", "get_xml", "(", ")", "results", "=", "super", "(", "Biomart", ",", "self", ")", ".", "query", "(", "xml_query", ")", "df", "=", "pd", ".", "read_csv", "(", "StringIO", "(", "results", ")", ",", "header", "=", "None", ",", "sep", "=", "\"\\t\"", ",", "names", "=", "attributes", ",", "index_col", "=", "None", ")", "# save file to cache path.", "if", "filename", "is", "None", ":", "mkdirs", "(", "DEFAULT_CACHE_PATH", ")", "filename", "=", "os", ".", "path", ".", "join", "(", "DEFAULT_CACHE_PATH", ",", "\"{}.background.genes.txt\"", ".", "format", "(", "dataset", ")", ")", "df", ".", "to_csv", "(", "filename", ",", "sep", "=", "\"\\t\"", ",", "index", "=", "False", ")", "return", "df" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
gsea
Run Gene Set Enrichment Analysis. :param data: Gene expression data table, Pandas DataFrame, gct file. :param gene_sets: Enrichr Library name or .gmt gene sets file or dict of gene sets. Same input with GSEA. :param cls: A list or a .cls file format required for GSEA. :param str outdir: Results output directory. :param int permutation_num: Number of permutations for significance computation. Default: 1000. :param str permutation_type: Permutation type, "phenotype" for phenotypes, "gene_set" for genes. :param int min_size: Minimum allowed number of genes from gene set also the data set. Default: 15. :param int max_size: Maximum allowed number of genes from gene set also the data set. Default: 500. :param float weighted_score_type: Refer to :func:`algorithm.enrichment_score`. Default:1. :param method: The method used to calculate a correlation or ranking. Default: 'log2_ratio_of_classes'. Others methods are: 1. 'signal_to_noise' You must have at least three samples for each phenotype to use this metric. The larger the signal-to-noise ratio, the larger the differences of the means (scaled by the standard deviations); that is, the more distinct the gene expression is in each phenotype and the more the gene acts as a “class marker.” 2. 't_test' Uses the difference of means scaled by the standard deviation and number of samples. Note: You must have at least three samples for each phenotype to use this metric. The larger the tTest ratio, the more distinct the gene expression is in each phenotype and the more the gene acts as a “class marker.” 3. 'ratio_of_classes' (also referred to as fold change). Uses the ratio of class means to calculate fold change for natural scale data. 4. 'diff_of_classes' Uses the difference of class means to calculate fold change for nature scale data 5. 'log2_ratio_of_classes' Uses the log2 ratio of class means to calculate fold change for natural scale data. This is the recommended statistic for calculating fold change for log scale data. :param bool ascending: Sorting order of rankings. Default: False. :param int processes: Number of Processes you are going to use. Default: 1. :param list figsize: Matplotlib figsize, accept a tuple or list, e.g. [width,height]. Default: [6.5,6]. :param str format: Matplotlib figure format. Default: 'pdf'. :param int graph_num: Plot graphs for top sets of each phenotype. :param bool no_plot: If equals to True, no figure will be drawn. Default: False. :param seed: Random seed. expect an integer. Default:None. :param bool verbose: Bool, increase output verbosity, print out progress of your job, Default: False. :return: Return a GSEA obj. All results store to a dictionary, obj.results, where contains:: | {es: enrichment score, | nes: normalized enrichment score, | p: P-value, | fdr: FDR, | size: gene set size, | matched_size: genes matched to the data, | genes: gene names from the data set | ledge_genes: leading edge genes}
gseapy/gsea.py
def gsea(data, gene_sets, cls, outdir='GSEA_', min_size=15, max_size=500, permutation_num=1000, weighted_score_type=1,permutation_type='gene_set', method='log2_ratio_of_classes', ascending=False, processes=1, figsize=(6.5,6), format='pdf', graph_num=20, no_plot=False, seed=None, verbose=False): """ Run Gene Set Enrichment Analysis. :param data: Gene expression data table, Pandas DataFrame, gct file. :param gene_sets: Enrichr Library name or .gmt gene sets file or dict of gene sets. Same input with GSEA. :param cls: A list or a .cls file format required for GSEA. :param str outdir: Results output directory. :param int permutation_num: Number of permutations for significance computation. Default: 1000. :param str permutation_type: Permutation type, "phenotype" for phenotypes, "gene_set" for genes. :param int min_size: Minimum allowed number of genes from gene set also the data set. Default: 15. :param int max_size: Maximum allowed number of genes from gene set also the data set. Default: 500. :param float weighted_score_type: Refer to :func:`algorithm.enrichment_score`. Default:1. :param method: The method used to calculate a correlation or ranking. Default: 'log2_ratio_of_classes'. Others methods are: 1. 'signal_to_noise' You must have at least three samples for each phenotype to use this metric. The larger the signal-to-noise ratio, the larger the differences of the means (scaled by the standard deviations); that is, the more distinct the gene expression is in each phenotype and the more the gene acts as a “class marker.” 2. 't_test' Uses the difference of means scaled by the standard deviation and number of samples. Note: You must have at least three samples for each phenotype to use this metric. The larger the tTest ratio, the more distinct the gene expression is in each phenotype and the more the gene acts as a “class marker.” 3. 'ratio_of_classes' (also referred to as fold change). Uses the ratio of class means to calculate fold change for natural scale data. 4. 'diff_of_classes' Uses the difference of class means to calculate fold change for nature scale data 5. 'log2_ratio_of_classes' Uses the log2 ratio of class means to calculate fold change for natural scale data. This is the recommended statistic for calculating fold change for log scale data. :param bool ascending: Sorting order of rankings. Default: False. :param int processes: Number of Processes you are going to use. Default: 1. :param list figsize: Matplotlib figsize, accept a tuple or list, e.g. [width,height]. Default: [6.5,6]. :param str format: Matplotlib figure format. Default: 'pdf'. :param int graph_num: Plot graphs for top sets of each phenotype. :param bool no_plot: If equals to True, no figure will be drawn. Default: False. :param seed: Random seed. expect an integer. Default:None. :param bool verbose: Bool, increase output verbosity, print out progress of your job, Default: False. :return: Return a GSEA obj. All results store to a dictionary, obj.results, where contains:: | {es: enrichment score, | nes: normalized enrichment score, | p: P-value, | fdr: FDR, | size: gene set size, | matched_size: genes matched to the data, | genes: gene names from the data set | ledge_genes: leading edge genes} """ gs = GSEA(data, gene_sets, cls, outdir, min_size, max_size, permutation_num, weighted_score_type, permutation_type, method, ascending, processes, figsize, format, graph_num, no_plot, seed, verbose) gs.run() return gs
def gsea(data, gene_sets, cls, outdir='GSEA_', min_size=15, max_size=500, permutation_num=1000, weighted_score_type=1,permutation_type='gene_set', method='log2_ratio_of_classes', ascending=False, processes=1, figsize=(6.5,6), format='pdf', graph_num=20, no_plot=False, seed=None, verbose=False): """ Run Gene Set Enrichment Analysis. :param data: Gene expression data table, Pandas DataFrame, gct file. :param gene_sets: Enrichr Library name or .gmt gene sets file or dict of gene sets. Same input with GSEA. :param cls: A list or a .cls file format required for GSEA. :param str outdir: Results output directory. :param int permutation_num: Number of permutations for significance computation. Default: 1000. :param str permutation_type: Permutation type, "phenotype" for phenotypes, "gene_set" for genes. :param int min_size: Minimum allowed number of genes from gene set also the data set. Default: 15. :param int max_size: Maximum allowed number of genes from gene set also the data set. Default: 500. :param float weighted_score_type: Refer to :func:`algorithm.enrichment_score`. Default:1. :param method: The method used to calculate a correlation or ranking. Default: 'log2_ratio_of_classes'. Others methods are: 1. 'signal_to_noise' You must have at least three samples for each phenotype to use this metric. The larger the signal-to-noise ratio, the larger the differences of the means (scaled by the standard deviations); that is, the more distinct the gene expression is in each phenotype and the more the gene acts as a “class marker.” 2. 't_test' Uses the difference of means scaled by the standard deviation and number of samples. Note: You must have at least three samples for each phenotype to use this metric. The larger the tTest ratio, the more distinct the gene expression is in each phenotype and the more the gene acts as a “class marker.” 3. 'ratio_of_classes' (also referred to as fold change). Uses the ratio of class means to calculate fold change for natural scale data. 4. 'diff_of_classes' Uses the difference of class means to calculate fold change for nature scale data 5. 'log2_ratio_of_classes' Uses the log2 ratio of class means to calculate fold change for natural scale data. This is the recommended statistic for calculating fold change for log scale data. :param bool ascending: Sorting order of rankings. Default: False. :param int processes: Number of Processes you are going to use. Default: 1. :param list figsize: Matplotlib figsize, accept a tuple or list, e.g. [width,height]. Default: [6.5,6]. :param str format: Matplotlib figure format. Default: 'pdf'. :param int graph_num: Plot graphs for top sets of each phenotype. :param bool no_plot: If equals to True, no figure will be drawn. Default: False. :param seed: Random seed. expect an integer. Default:None. :param bool verbose: Bool, increase output verbosity, print out progress of your job, Default: False. :return: Return a GSEA obj. All results store to a dictionary, obj.results, where contains:: | {es: enrichment score, | nes: normalized enrichment score, | p: P-value, | fdr: FDR, | size: gene set size, | matched_size: genes matched to the data, | genes: gene names from the data set | ledge_genes: leading edge genes} """ gs = GSEA(data, gene_sets, cls, outdir, min_size, max_size, permutation_num, weighted_score_type, permutation_type, method, ascending, processes, figsize, format, graph_num, no_plot, seed, verbose) gs.run() return gs
[ "Run", "Gene", "Set", "Enrichment", "Analysis", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L858-L933
[ "def", "gsea", "(", "data", ",", "gene_sets", ",", "cls", ",", "outdir", "=", "'GSEA_'", ",", "min_size", "=", "15", ",", "max_size", "=", "500", ",", "permutation_num", "=", "1000", ",", "weighted_score_type", "=", "1", ",", "permutation_type", "=", "'gene_set'", ",", "method", "=", "'log2_ratio_of_classes'", ",", "ascending", "=", "False", ",", "processes", "=", "1", ",", "figsize", "=", "(", "6.5", ",", "6", ")", ",", "format", "=", "'pdf'", ",", "graph_num", "=", "20", ",", "no_plot", "=", "False", ",", "seed", "=", "None", ",", "verbose", "=", "False", ")", ":", "gs", "=", "GSEA", "(", "data", ",", "gene_sets", ",", "cls", ",", "outdir", ",", "min_size", ",", "max_size", ",", "permutation_num", ",", "weighted_score_type", ",", "permutation_type", ",", "method", ",", "ascending", ",", "processes", ",", "figsize", ",", "format", ",", "graph_num", ",", "no_plot", ",", "seed", ",", "verbose", ")", "gs", ".", "run", "(", ")", "return", "gs" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
ssgsea
Run Gene Set Enrichment Analysis with single sample GSEA tool :param data: Expression table, pd.Series, pd.DataFrame, GCT file, or .rnk file format. :param gene_sets: Enrichr Library name or .gmt gene sets file or dict of gene sets. Same input with GSEA. :param outdir: Results output directory. :param str sample_norm_method: "Sample normalization method. Choose from {'rank', 'log', 'log_rank'}. Default: rank. 1. 'rank': Rank your expression data, and transform by 10000*rank_dat/gene_numbers 2. 'log' : Do not rank, but transform data by log(data + exp(1)), while data = data[data<1] =1. 3. 'log_rank': Rank your expression data, and transform by log(10000*rank_dat/gene_numbers+ exp(1)) 4. 'custom': Do nothing, and use your own rank value to calculate enrichment score. see here: https://github.com/GSEA-MSigDB/ssGSEAProjection-gpmodule/blob/master/src/ssGSEAProjection.Library.R, line 86 :param int min_size: Minimum allowed number of genes from gene set also the data set. Default: 15. :param int max_size: Maximum allowed number of genes from gene set also the data set. Default: 2000. :param int permutation_num: Number of permutations for significance computation. Default: 0. :param str weighted_score_type: Refer to :func:`algorithm.enrichment_score`. Default:0.25. :param bool scale: If True, normalize the scores by number of genes in the gene sets. :param bool ascending: Sorting order of rankings. Default: False. :param int processes: Number of Processes you are going to use. Default: 1. :param list figsize: Matplotlib figsize, accept a tuple or list, e.g. [width,height]. Default: [7,6]. :param str format: Matplotlib figure format. Default: 'pdf'. :param int graph_num: Plot graphs for top sets of each phenotype. :param bool no_plot: If equals to True, no figure will be drawn. Default: False. :param seed: Random seed. expect an integer. Default:None. :param bool verbose: Bool, increase output verbosity, print out progress of your job, Default: False. :return: Return a ssGSEA obj. All results store to a dictionary, access enrichment score by obj.resultsOnSamples, and normalized enrichment score by obj.res2d. if permutation_num > 0, additional results contain:: | {es: enrichment score, | nes: normalized enrichment score, | p: P-value, | fdr: FDR, | size: gene set size, | matched_size: genes matched to the data, | genes: gene names from the data set | ledge_genes: leading edge genes, if permutation_num >0}
gseapy/gsea.py
def ssgsea(data, gene_sets, outdir="ssGSEA_", sample_norm_method='rank', min_size=15, max_size=2000, permutation_num=0, weighted_score_type=0.25, scale=True, ascending=False, processes=1, figsize=(7,6), format='pdf', graph_num=20, no_plot=False, seed=None, verbose=False): """Run Gene Set Enrichment Analysis with single sample GSEA tool :param data: Expression table, pd.Series, pd.DataFrame, GCT file, or .rnk file format. :param gene_sets: Enrichr Library name or .gmt gene sets file or dict of gene sets. Same input with GSEA. :param outdir: Results output directory. :param str sample_norm_method: "Sample normalization method. Choose from {'rank', 'log', 'log_rank'}. Default: rank. 1. 'rank': Rank your expression data, and transform by 10000*rank_dat/gene_numbers 2. 'log' : Do not rank, but transform data by log(data + exp(1)), while data = data[data<1] =1. 3. 'log_rank': Rank your expression data, and transform by log(10000*rank_dat/gene_numbers+ exp(1)) 4. 'custom': Do nothing, and use your own rank value to calculate enrichment score. see here: https://github.com/GSEA-MSigDB/ssGSEAProjection-gpmodule/blob/master/src/ssGSEAProjection.Library.R, line 86 :param int min_size: Minimum allowed number of genes from gene set also the data set. Default: 15. :param int max_size: Maximum allowed number of genes from gene set also the data set. Default: 2000. :param int permutation_num: Number of permutations for significance computation. Default: 0. :param str weighted_score_type: Refer to :func:`algorithm.enrichment_score`. Default:0.25. :param bool scale: If True, normalize the scores by number of genes in the gene sets. :param bool ascending: Sorting order of rankings. Default: False. :param int processes: Number of Processes you are going to use. Default: 1. :param list figsize: Matplotlib figsize, accept a tuple or list, e.g. [width,height]. Default: [7,6]. :param str format: Matplotlib figure format. Default: 'pdf'. :param int graph_num: Plot graphs for top sets of each phenotype. :param bool no_plot: If equals to True, no figure will be drawn. Default: False. :param seed: Random seed. expect an integer. Default:None. :param bool verbose: Bool, increase output verbosity, print out progress of your job, Default: False. :return: Return a ssGSEA obj. All results store to a dictionary, access enrichment score by obj.resultsOnSamples, and normalized enrichment score by obj.res2d. if permutation_num > 0, additional results contain:: | {es: enrichment score, | nes: normalized enrichment score, | p: P-value, | fdr: FDR, | size: gene set size, | matched_size: genes matched to the data, | genes: gene names from the data set | ledge_genes: leading edge genes, if permutation_num >0} """ ss = SingleSampleGSEA(data, gene_sets, outdir, sample_norm_method, min_size, max_size, permutation_num, weighted_score_type, scale, ascending, processes, figsize, format, graph_num, no_plot, seed, verbose) ss.run() return ss
def ssgsea(data, gene_sets, outdir="ssGSEA_", sample_norm_method='rank', min_size=15, max_size=2000, permutation_num=0, weighted_score_type=0.25, scale=True, ascending=False, processes=1, figsize=(7,6), format='pdf', graph_num=20, no_plot=False, seed=None, verbose=False): """Run Gene Set Enrichment Analysis with single sample GSEA tool :param data: Expression table, pd.Series, pd.DataFrame, GCT file, or .rnk file format. :param gene_sets: Enrichr Library name or .gmt gene sets file or dict of gene sets. Same input with GSEA. :param outdir: Results output directory. :param str sample_norm_method: "Sample normalization method. Choose from {'rank', 'log', 'log_rank'}. Default: rank. 1. 'rank': Rank your expression data, and transform by 10000*rank_dat/gene_numbers 2. 'log' : Do not rank, but transform data by log(data + exp(1)), while data = data[data<1] =1. 3. 'log_rank': Rank your expression data, and transform by log(10000*rank_dat/gene_numbers+ exp(1)) 4. 'custom': Do nothing, and use your own rank value to calculate enrichment score. see here: https://github.com/GSEA-MSigDB/ssGSEAProjection-gpmodule/blob/master/src/ssGSEAProjection.Library.R, line 86 :param int min_size: Minimum allowed number of genes from gene set also the data set. Default: 15. :param int max_size: Maximum allowed number of genes from gene set also the data set. Default: 2000. :param int permutation_num: Number of permutations for significance computation. Default: 0. :param str weighted_score_type: Refer to :func:`algorithm.enrichment_score`. Default:0.25. :param bool scale: If True, normalize the scores by number of genes in the gene sets. :param bool ascending: Sorting order of rankings. Default: False. :param int processes: Number of Processes you are going to use. Default: 1. :param list figsize: Matplotlib figsize, accept a tuple or list, e.g. [width,height]. Default: [7,6]. :param str format: Matplotlib figure format. Default: 'pdf'. :param int graph_num: Plot graphs for top sets of each phenotype. :param bool no_plot: If equals to True, no figure will be drawn. Default: False. :param seed: Random seed. expect an integer. Default:None. :param bool verbose: Bool, increase output verbosity, print out progress of your job, Default: False. :return: Return a ssGSEA obj. All results store to a dictionary, access enrichment score by obj.resultsOnSamples, and normalized enrichment score by obj.res2d. if permutation_num > 0, additional results contain:: | {es: enrichment score, | nes: normalized enrichment score, | p: P-value, | fdr: FDR, | size: gene set size, | matched_size: genes matched to the data, | genes: gene names from the data set | ledge_genes: leading edge genes, if permutation_num >0} """ ss = SingleSampleGSEA(data, gene_sets, outdir, sample_norm_method, min_size, max_size, permutation_num, weighted_score_type, scale, ascending, processes, figsize, format, graph_num, no_plot, seed, verbose) ss.run() return ss
[ "Run", "Gene", "Set", "Enrichment", "Analysis", "with", "single", "sample", "GSEA", "tool" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L936-L988
[ "def", "ssgsea", "(", "data", ",", "gene_sets", ",", "outdir", "=", "\"ssGSEA_\"", ",", "sample_norm_method", "=", "'rank'", ",", "min_size", "=", "15", ",", "max_size", "=", "2000", ",", "permutation_num", "=", "0", ",", "weighted_score_type", "=", "0.25", ",", "scale", "=", "True", ",", "ascending", "=", "False", ",", "processes", "=", "1", ",", "figsize", "=", "(", "7", ",", "6", ")", ",", "format", "=", "'pdf'", ",", "graph_num", "=", "20", ",", "no_plot", "=", "False", ",", "seed", "=", "None", ",", "verbose", "=", "False", ")", ":", "ss", "=", "SingleSampleGSEA", "(", "data", ",", "gene_sets", ",", "outdir", ",", "sample_norm_method", ",", "min_size", ",", "max_size", ",", "permutation_num", ",", "weighted_score_type", ",", "scale", ",", "ascending", ",", "processes", ",", "figsize", ",", "format", ",", "graph_num", ",", "no_plot", ",", "seed", ",", "verbose", ")", "ss", ".", "run", "(", ")", "return", "ss" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
prerank
Run Gene Set Enrichment Analysis with pre-ranked correlation defined by user. :param rnk: pre-ranked correlation table or pandas DataFrame. Same input with ``GSEA`` .rnk file. :param gene_sets: Enrichr Library name or .gmt gene sets file or dict of gene sets. Same input with GSEA. :param outdir: results output directory. :param int permutation_num: Number of permutations for significance computation. Default: 1000. :param int min_size: Minimum allowed number of genes from gene set also the data set. Default: 15. :param int max_size: Maximum allowed number of genes from gene set also the data set. Defaults: 500. :param str weighted_score_type: Refer to :func:`algorithm.enrichment_score`. Default:1. :param bool ascending: Sorting order of rankings. Default: False. :param int processes: Number of Processes you are going to use. Default: 1. :param list figsize: Matplotlib figsize, accept a tuple or list, e.g. [width,height]. Default: [6.5,6]. :param str format: Matplotlib figure format. Default: 'pdf'. :param int graph_num: Plot graphs for top sets of each phenotype. :param bool no_plot: If equals to True, no figure will be drawn. Default: False. :param seed: Random seed. expect an integer. Default:None. :param bool verbose: Bool, increase output verbosity, print out progress of your job, Default: False. :return: Return a Prerank obj. All results store to a dictionary, obj.results, where contains:: | {es: enrichment score, | nes: normalized enrichment score, | p: P-value, | fdr: FDR, | size: gene set size, | matched_size: genes matched to the data, | genes: gene names from the data set | ledge_genes: leading edge genes}
gseapy/gsea.py
def prerank(rnk, gene_sets, outdir='GSEA_Prerank', pheno_pos='Pos', pheno_neg='Neg', min_size=15, max_size=500, permutation_num=1000, weighted_score_type=1, ascending=False, processes=1, figsize=(6.5,6), format='pdf', graph_num=20, no_plot=False, seed=None, verbose=False): """ Run Gene Set Enrichment Analysis with pre-ranked correlation defined by user. :param rnk: pre-ranked correlation table or pandas DataFrame. Same input with ``GSEA`` .rnk file. :param gene_sets: Enrichr Library name or .gmt gene sets file or dict of gene sets. Same input with GSEA. :param outdir: results output directory. :param int permutation_num: Number of permutations for significance computation. Default: 1000. :param int min_size: Minimum allowed number of genes from gene set also the data set. Default: 15. :param int max_size: Maximum allowed number of genes from gene set also the data set. Defaults: 500. :param str weighted_score_type: Refer to :func:`algorithm.enrichment_score`. Default:1. :param bool ascending: Sorting order of rankings. Default: False. :param int processes: Number of Processes you are going to use. Default: 1. :param list figsize: Matplotlib figsize, accept a tuple or list, e.g. [width,height]. Default: [6.5,6]. :param str format: Matplotlib figure format. Default: 'pdf'. :param int graph_num: Plot graphs for top sets of each phenotype. :param bool no_plot: If equals to True, no figure will be drawn. Default: False. :param seed: Random seed. expect an integer. Default:None. :param bool verbose: Bool, increase output verbosity, print out progress of your job, Default: False. :return: Return a Prerank obj. All results store to a dictionary, obj.results, where contains:: | {es: enrichment score, | nes: normalized enrichment score, | p: P-value, | fdr: FDR, | size: gene set size, | matched_size: genes matched to the data, | genes: gene names from the data set | ledge_genes: leading edge genes} """ pre = Prerank(rnk, gene_sets, outdir, pheno_pos, pheno_neg, min_size, max_size, permutation_num, weighted_score_type, ascending, processes, figsize, format, graph_num, no_plot, seed, verbose) pre.run() return pre
def prerank(rnk, gene_sets, outdir='GSEA_Prerank', pheno_pos='Pos', pheno_neg='Neg', min_size=15, max_size=500, permutation_num=1000, weighted_score_type=1, ascending=False, processes=1, figsize=(6.5,6), format='pdf', graph_num=20, no_plot=False, seed=None, verbose=False): """ Run Gene Set Enrichment Analysis with pre-ranked correlation defined by user. :param rnk: pre-ranked correlation table or pandas DataFrame. Same input with ``GSEA`` .rnk file. :param gene_sets: Enrichr Library name or .gmt gene sets file or dict of gene sets. Same input with GSEA. :param outdir: results output directory. :param int permutation_num: Number of permutations for significance computation. Default: 1000. :param int min_size: Minimum allowed number of genes from gene set also the data set. Default: 15. :param int max_size: Maximum allowed number of genes from gene set also the data set. Defaults: 500. :param str weighted_score_type: Refer to :func:`algorithm.enrichment_score`. Default:1. :param bool ascending: Sorting order of rankings. Default: False. :param int processes: Number of Processes you are going to use. Default: 1. :param list figsize: Matplotlib figsize, accept a tuple or list, e.g. [width,height]. Default: [6.5,6]. :param str format: Matplotlib figure format. Default: 'pdf'. :param int graph_num: Plot graphs for top sets of each phenotype. :param bool no_plot: If equals to True, no figure will be drawn. Default: False. :param seed: Random seed. expect an integer. Default:None. :param bool verbose: Bool, increase output verbosity, print out progress of your job, Default: False. :return: Return a Prerank obj. All results store to a dictionary, obj.results, where contains:: | {es: enrichment score, | nes: normalized enrichment score, | p: P-value, | fdr: FDR, | size: gene set size, | matched_size: genes matched to the data, | genes: gene names from the data set | ledge_genes: leading edge genes} """ pre = Prerank(rnk, gene_sets, outdir, pheno_pos, pheno_neg, min_size, max_size, permutation_num, weighted_score_type, ascending, processes, figsize, format, graph_num, no_plot, seed, verbose) pre.run() return pre
[ "Run", "Gene", "Set", "Enrichment", "Analysis", "with", "pre", "-", "ranked", "correlation", "defined", "by", "user", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L991-L1031
[ "def", "prerank", "(", "rnk", ",", "gene_sets", ",", "outdir", "=", "'GSEA_Prerank'", ",", "pheno_pos", "=", "'Pos'", ",", "pheno_neg", "=", "'Neg'", ",", "min_size", "=", "15", ",", "max_size", "=", "500", ",", "permutation_num", "=", "1000", ",", "weighted_score_type", "=", "1", ",", "ascending", "=", "False", ",", "processes", "=", "1", ",", "figsize", "=", "(", "6.5", ",", "6", ")", ",", "format", "=", "'pdf'", ",", "graph_num", "=", "20", ",", "no_plot", "=", "False", ",", "seed", "=", "None", ",", "verbose", "=", "False", ")", ":", "pre", "=", "Prerank", "(", "rnk", ",", "gene_sets", ",", "outdir", ",", "pheno_pos", ",", "pheno_neg", ",", "min_size", ",", "max_size", ",", "permutation_num", ",", "weighted_score_type", ",", "ascending", ",", "processes", ",", "figsize", ",", "format", ",", "graph_num", ",", "no_plot", ",", "seed", ",", "verbose", ")", "pre", ".", "run", "(", ")", "return", "pre" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
replot
The main function to reproduce GSEA desktop outputs. :param indir: GSEA desktop results directory. In the sub folder, you must contain edb file folder. :param outdir: Output directory. :param float weighted_score_type: weighted score type. choose from {0,1,1.5,2}. Default: 1. :param list figsize: Matplotlib output figure figsize. Default: [6.5,6]. :param str format: Matplotlib output figure format. Default: 'pdf'. :param int min_size: Min size of input genes presented in Gene Sets. Default: 3. :param int max_size: Max size of input genes presented in Gene Sets. Default: 5000. You are not encouraged to use min_size, or max_size argument in :func:`replot` function. Because gmt file has already been filtered. :param verbose: Bool, increase output verbosity, print out progress of your job, Default: False. :return: Generate new figures with selected figure format. Default: 'pdf'.
gseapy/gsea.py
def replot(indir, outdir='GSEA_Replot', weighted_score_type=1, min_size=3, max_size=1000, figsize=(6.5,6), graph_num=20, format='pdf', verbose=False): """The main function to reproduce GSEA desktop outputs. :param indir: GSEA desktop results directory. In the sub folder, you must contain edb file folder. :param outdir: Output directory. :param float weighted_score_type: weighted score type. choose from {0,1,1.5,2}. Default: 1. :param list figsize: Matplotlib output figure figsize. Default: [6.5,6]. :param str format: Matplotlib output figure format. Default: 'pdf'. :param int min_size: Min size of input genes presented in Gene Sets. Default: 3. :param int max_size: Max size of input genes presented in Gene Sets. Default: 5000. You are not encouraged to use min_size, or max_size argument in :func:`replot` function. Because gmt file has already been filtered. :param verbose: Bool, increase output verbosity, print out progress of your job, Default: False. :return: Generate new figures with selected figure format. Default: 'pdf'. """ rep = Replot(indir, outdir, weighted_score_type, min_size, max_size, figsize, graph_num, format, verbose) rep.run() return
def replot(indir, outdir='GSEA_Replot', weighted_score_type=1, min_size=3, max_size=1000, figsize=(6.5,6), graph_num=20, format='pdf', verbose=False): """The main function to reproduce GSEA desktop outputs. :param indir: GSEA desktop results directory. In the sub folder, you must contain edb file folder. :param outdir: Output directory. :param float weighted_score_type: weighted score type. choose from {0,1,1.5,2}. Default: 1. :param list figsize: Matplotlib output figure figsize. Default: [6.5,6]. :param str format: Matplotlib output figure format. Default: 'pdf'. :param int min_size: Min size of input genes presented in Gene Sets. Default: 3. :param int max_size: Max size of input genes presented in Gene Sets. Default: 5000. You are not encouraged to use min_size, or max_size argument in :func:`replot` function. Because gmt file has already been filtered. :param verbose: Bool, increase output verbosity, print out progress of your job, Default: False. :return: Generate new figures with selected figure format. Default: 'pdf'. """ rep = Replot(indir, outdir, weighted_score_type, min_size, max_size, figsize, graph_num, format, verbose) rep.run() return
[ "The", "main", "function", "to", "reproduce", "GSEA", "desktop", "outputs", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L1034-L1056
[ "def", "replot", "(", "indir", ",", "outdir", "=", "'GSEA_Replot'", ",", "weighted_score_type", "=", "1", ",", "min_size", "=", "3", ",", "max_size", "=", "1000", ",", "figsize", "=", "(", "6.5", ",", "6", ")", ",", "graph_num", "=", "20", ",", "format", "=", "'pdf'", ",", "verbose", "=", "False", ")", ":", "rep", "=", "Replot", "(", "indir", ",", "outdir", ",", "weighted_score_type", ",", "min_size", ",", "max_size", ",", "figsize", ",", "graph_num", ",", "format", ",", "verbose", ")", "rep", ".", "run", "(", ")", "return" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
GSEAbase.prepare_outdir
create temp directory.
gseapy/gsea.py
def prepare_outdir(self): """create temp directory.""" self._outdir = self.outdir if self._outdir is None: self._tmpdir = TemporaryDirectory() self.outdir = self._tmpdir.name elif isinstance(self.outdir, str): mkdirs(self.outdir) else: raise Exception("Error parsing outdir: %s"%type(self.outdir)) # handle gmt type if isinstance(self.gene_sets, str): _gset = os.path.split(self.gene_sets)[-1].lower().rstrip(".gmt") elif isinstance(self.gene_sets, dict): _gset = "blank_name" else: raise Exception("Error parsing gene_sets parameter for gene sets") logfile = os.path.join(self.outdir, "gseapy.%s.%s.log" % (self.module, _gset)) return logfile
def prepare_outdir(self): """create temp directory.""" self._outdir = self.outdir if self._outdir is None: self._tmpdir = TemporaryDirectory() self.outdir = self._tmpdir.name elif isinstance(self.outdir, str): mkdirs(self.outdir) else: raise Exception("Error parsing outdir: %s"%type(self.outdir)) # handle gmt type if isinstance(self.gene_sets, str): _gset = os.path.split(self.gene_sets)[-1].lower().rstrip(".gmt") elif isinstance(self.gene_sets, dict): _gset = "blank_name" else: raise Exception("Error parsing gene_sets parameter for gene sets") logfile = os.path.join(self.outdir, "gseapy.%s.%s.log" % (self.module, _gset)) return logfile
[ "create", "temp", "directory", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L34-L54
[ "def", "prepare_outdir", "(", "self", ")", ":", "self", ".", "_outdir", "=", "self", ".", "outdir", "if", "self", ".", "_outdir", "is", "None", ":", "self", ".", "_tmpdir", "=", "TemporaryDirectory", "(", ")", "self", ".", "outdir", "=", "self", ".", "_tmpdir", ".", "name", "elif", "isinstance", "(", "self", ".", "outdir", ",", "str", ")", ":", "mkdirs", "(", "self", ".", "outdir", ")", "else", ":", "raise", "Exception", "(", "\"Error parsing outdir: %s\"", "%", "type", "(", "self", ".", "outdir", ")", ")", "# handle gmt type", "if", "isinstance", "(", "self", ".", "gene_sets", ",", "str", ")", ":", "_gset", "=", "os", ".", "path", ".", "split", "(", "self", ".", "gene_sets", ")", "[", "-", "1", "]", ".", "lower", "(", ")", ".", "rstrip", "(", "\".gmt\"", ")", "elif", "isinstance", "(", "self", ".", "gene_sets", ",", "dict", ")", ":", "_gset", "=", "\"blank_name\"", "else", ":", "raise", "Exception", "(", "\"Error parsing gene_sets parameter for gene sets\"", ")", "logfile", "=", "os", ".", "path", ".", "join", "(", "self", ".", "outdir", ",", "\"gseapy.%s.%s.log\"", "%", "(", "self", ".", "module", ",", "_gset", ")", ")", "return", "logfile" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
GSEAbase._set_cores
set cpu numbers to be used
gseapy/gsea.py
def _set_cores(self): """set cpu numbers to be used""" cpu_num = cpu_count()-1 if self._processes > cpu_num: cores = cpu_num elif self._processes < 1: cores = 1 else: cores = self._processes # have to be int if user input is float self._processes = int(cores)
def _set_cores(self): """set cpu numbers to be used""" cpu_num = cpu_count()-1 if self._processes > cpu_num: cores = cpu_num elif self._processes < 1: cores = 1 else: cores = self._processes # have to be int if user input is float self._processes = int(cores)
[ "set", "cpu", "numbers", "to", "be", "used" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L56-L67
[ "def", "_set_cores", "(", "self", ")", ":", "cpu_num", "=", "cpu_count", "(", ")", "-", "1", "if", "self", ".", "_processes", ">", "cpu_num", ":", "cores", "=", "cpu_num", "elif", "self", ".", "_processes", "<", "1", ":", "cores", "=", "1", "else", ":", "cores", "=", "self", ".", "_processes", "# have to be int if user input is float", "self", ".", "_processes", "=", "int", "(", "cores", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
GSEAbase._load_ranking
Parse ranking file. This file contains ranking correlation vector( or expression values) and gene names or ids. :param rnk: the .rnk file of GSEA input or a Pandas DataFrame, Series instance. :return: a Pandas Series with gene name indexed rankings
gseapy/gsea.py
def _load_ranking(self, rnk): """Parse ranking file. This file contains ranking correlation vector( or expression values) and gene names or ids. :param rnk: the .rnk file of GSEA input or a Pandas DataFrame, Series instance. :return: a Pandas Series with gene name indexed rankings """ # load data if isinstance(rnk, pd.DataFrame): rank_metric = rnk.copy() # handle dataframe with gene_name as index. if rnk.shape[1] == 1: rank_metric = rnk.reset_index() elif isinstance(rnk, pd.Series): rank_metric = rnk.reset_index() elif os.path.isfile(rnk): rank_metric = pd.read_csv(rnk, header=None, comment='#', sep="\t") else: raise Exception('Error parsing gene ranking values!') # sort ranking values from high to low rank_metric.sort_values(by=rank_metric.columns[1], ascending=self.ascending, inplace=True) # drop na values if rank_metric.isnull().any(axis=1).sum() >0: self._logger.warning("Input gene rankings contains NA values(gene name and ranking value), drop them all!") # print out NAs NAs = rank_metric[rank_metric.isnull().any(axis=1)] self._logger.debug('NAs list:\n'+NAs.to_string()) rank_metric.dropna(how='any', inplace=True) # drop duplicate IDs, keep the first if rank_metric.duplicated(subset=rank_metric.columns[0]).sum() >0: self._logger.warning("Input gene rankings contains duplicated IDs, Only use the duplicated ID with highest value!") # print out duplicated IDs. dups = rank_metric[rank_metric.duplicated(subset=rank_metric.columns[0])] self._logger.debug('Dups list:\n'+dups.to_string()) rank_metric.drop_duplicates(subset=rank_metric.columns[0], inplace=True, keep='first') # reset ranking index, because you have sort values and drop duplicates. rank_metric.reset_index(drop=True, inplace=True) rank_metric.columns = ['gene_name','rank'] rankser = rank_metric.set_index('gene_name')['rank'] self.ranking = rankser # return series return rankser
def _load_ranking(self, rnk): """Parse ranking file. This file contains ranking correlation vector( or expression values) and gene names or ids. :param rnk: the .rnk file of GSEA input or a Pandas DataFrame, Series instance. :return: a Pandas Series with gene name indexed rankings """ # load data if isinstance(rnk, pd.DataFrame): rank_metric = rnk.copy() # handle dataframe with gene_name as index. if rnk.shape[1] == 1: rank_metric = rnk.reset_index() elif isinstance(rnk, pd.Series): rank_metric = rnk.reset_index() elif os.path.isfile(rnk): rank_metric = pd.read_csv(rnk, header=None, comment='#', sep="\t") else: raise Exception('Error parsing gene ranking values!') # sort ranking values from high to low rank_metric.sort_values(by=rank_metric.columns[1], ascending=self.ascending, inplace=True) # drop na values if rank_metric.isnull().any(axis=1).sum() >0: self._logger.warning("Input gene rankings contains NA values(gene name and ranking value), drop them all!") # print out NAs NAs = rank_metric[rank_metric.isnull().any(axis=1)] self._logger.debug('NAs list:\n'+NAs.to_string()) rank_metric.dropna(how='any', inplace=True) # drop duplicate IDs, keep the first if rank_metric.duplicated(subset=rank_metric.columns[0]).sum() >0: self._logger.warning("Input gene rankings contains duplicated IDs, Only use the duplicated ID with highest value!") # print out duplicated IDs. dups = rank_metric[rank_metric.duplicated(subset=rank_metric.columns[0])] self._logger.debug('Dups list:\n'+dups.to_string()) rank_metric.drop_duplicates(subset=rank_metric.columns[0], inplace=True, keep='first') # reset ranking index, because you have sort values and drop duplicates. rank_metric.reset_index(drop=True, inplace=True) rank_metric.columns = ['gene_name','rank'] rankser = rank_metric.set_index('gene_name')['rank'] self.ranking = rankser # return series return rankser
[ "Parse", "ranking", "file", ".", "This", "file", "contains", "ranking", "correlation", "vector", "(", "or", "expression", "values", ")", "and", "gene", "names", "or", "ids", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L69-L110
[ "def", "_load_ranking", "(", "self", ",", "rnk", ")", ":", "# load data", "if", "isinstance", "(", "rnk", ",", "pd", ".", "DataFrame", ")", ":", "rank_metric", "=", "rnk", ".", "copy", "(", ")", "# handle dataframe with gene_name as index.", "if", "rnk", ".", "shape", "[", "1", "]", "==", "1", ":", "rank_metric", "=", "rnk", ".", "reset_index", "(", ")", "elif", "isinstance", "(", "rnk", ",", "pd", ".", "Series", ")", ":", "rank_metric", "=", "rnk", ".", "reset_index", "(", ")", "elif", "os", ".", "path", ".", "isfile", "(", "rnk", ")", ":", "rank_metric", "=", "pd", ".", "read_csv", "(", "rnk", ",", "header", "=", "None", ",", "comment", "=", "'#'", ",", "sep", "=", "\"\\t\"", ")", "else", ":", "raise", "Exception", "(", "'Error parsing gene ranking values!'", ")", "# sort ranking values from high to low", "rank_metric", ".", "sort_values", "(", "by", "=", "rank_metric", ".", "columns", "[", "1", "]", ",", "ascending", "=", "self", ".", "ascending", ",", "inplace", "=", "True", ")", "# drop na values", "if", "rank_metric", ".", "isnull", "(", ")", ".", "any", "(", "axis", "=", "1", ")", ".", "sum", "(", ")", ">", "0", ":", "self", ".", "_logger", ".", "warning", "(", "\"Input gene rankings contains NA values(gene name and ranking value), drop them all!\"", ")", "# print out NAs", "NAs", "=", "rank_metric", "[", "rank_metric", ".", "isnull", "(", ")", ".", "any", "(", "axis", "=", "1", ")", "]", "self", ".", "_logger", ".", "debug", "(", "'NAs list:\\n'", "+", "NAs", ".", "to_string", "(", ")", ")", "rank_metric", ".", "dropna", "(", "how", "=", "'any'", ",", "inplace", "=", "True", ")", "# drop duplicate IDs, keep the first", "if", "rank_metric", ".", "duplicated", "(", "subset", "=", "rank_metric", ".", "columns", "[", "0", "]", ")", ".", "sum", "(", ")", ">", "0", ":", "self", ".", "_logger", ".", "warning", "(", "\"Input gene rankings contains duplicated IDs, Only use the duplicated ID with highest value!\"", ")", "# print out duplicated IDs.", "dups", "=", "rank_metric", "[", "rank_metric", ".", "duplicated", "(", "subset", "=", "rank_metric", ".", "columns", "[", "0", "]", ")", "]", "self", ".", "_logger", ".", "debug", "(", "'Dups list:\\n'", "+", "dups", ".", "to_string", "(", ")", ")", "rank_metric", ".", "drop_duplicates", "(", "subset", "=", "rank_metric", ".", "columns", "[", "0", "]", ",", "inplace", "=", "True", ",", "keep", "=", "'first'", ")", "# reset ranking index, because you have sort values and drop duplicates.", "rank_metric", ".", "reset_index", "(", "drop", "=", "True", ",", "inplace", "=", "True", ")", "rank_metric", ".", "columns", "=", "[", "'gene_name'", ",", "'rank'", "]", "rankser", "=", "rank_metric", ".", "set_index", "(", "'gene_name'", ")", "[", "'rank'", "]", "self", ".", "ranking", "=", "rankser", "# return series", "return", "rankser" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
GSEAbase.load_gmt
load gene set dict
gseapy/gsea.py
def load_gmt(self, gene_list, gmt): """load gene set dict""" if isinstance(gmt, dict): genesets_dict = gmt elif isinstance(gmt, str): genesets_dict = self.parse_gmt(gmt) else: raise Exception("Error parsing gmt parameter for gene sets") subsets = list(genesets_dict.keys()) self.n_genesets = len(subsets) for subset in subsets: subset_list = genesets_dict.get(subset) if isinstance(subset_list, set): subset_list = list(subset_list) genesets_dict[subset] = subset_list tag_indicator = np.in1d(gene_list, subset_list, assume_unique=True) tag_len = tag_indicator.sum() if self.min_size <= tag_len <= self.max_size: continue del genesets_dict[subset] filsets_num = len(subsets) - len(genesets_dict) self._logger.info("%04d gene_sets have been filtered out when max_size=%s and min_size=%s"%(filsets_num, self.max_size, self.min_size)) if filsets_num == len(subsets): self._logger.error("No gene sets passed through filtering condition!!!, try new parameters again!\n" +\ "Note: check gene name, gmt file format, or filtering size." ) sys.exit(0) self._gmtdct=genesets_dict return genesets_dict
def load_gmt(self, gene_list, gmt): """load gene set dict""" if isinstance(gmt, dict): genesets_dict = gmt elif isinstance(gmt, str): genesets_dict = self.parse_gmt(gmt) else: raise Exception("Error parsing gmt parameter for gene sets") subsets = list(genesets_dict.keys()) self.n_genesets = len(subsets) for subset in subsets: subset_list = genesets_dict.get(subset) if isinstance(subset_list, set): subset_list = list(subset_list) genesets_dict[subset] = subset_list tag_indicator = np.in1d(gene_list, subset_list, assume_unique=True) tag_len = tag_indicator.sum() if self.min_size <= tag_len <= self.max_size: continue del genesets_dict[subset] filsets_num = len(subsets) - len(genesets_dict) self._logger.info("%04d gene_sets have been filtered out when max_size=%s and min_size=%s"%(filsets_num, self.max_size, self.min_size)) if filsets_num == len(subsets): self._logger.error("No gene sets passed through filtering condition!!!, try new parameters again!\n" +\ "Note: check gene name, gmt file format, or filtering size." ) sys.exit(0) self._gmtdct=genesets_dict return genesets_dict
[ "load", "gene", "set", "dict" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L112-L143
[ "def", "load_gmt", "(", "self", ",", "gene_list", ",", "gmt", ")", ":", "if", "isinstance", "(", "gmt", ",", "dict", ")", ":", "genesets_dict", "=", "gmt", "elif", "isinstance", "(", "gmt", ",", "str", ")", ":", "genesets_dict", "=", "self", ".", "parse_gmt", "(", "gmt", ")", "else", ":", "raise", "Exception", "(", "\"Error parsing gmt parameter for gene sets\"", ")", "subsets", "=", "list", "(", "genesets_dict", ".", "keys", "(", ")", ")", "self", ".", "n_genesets", "=", "len", "(", "subsets", ")", "for", "subset", "in", "subsets", ":", "subset_list", "=", "genesets_dict", ".", "get", "(", "subset", ")", "if", "isinstance", "(", "subset_list", ",", "set", ")", ":", "subset_list", "=", "list", "(", "subset_list", ")", "genesets_dict", "[", "subset", "]", "=", "subset_list", "tag_indicator", "=", "np", ".", "in1d", "(", "gene_list", ",", "subset_list", ",", "assume_unique", "=", "True", ")", "tag_len", "=", "tag_indicator", ".", "sum", "(", ")", "if", "self", ".", "min_size", "<=", "tag_len", "<=", "self", ".", "max_size", ":", "continue", "del", "genesets_dict", "[", "subset", "]", "filsets_num", "=", "len", "(", "subsets", ")", "-", "len", "(", "genesets_dict", ")", "self", ".", "_logger", ".", "info", "(", "\"%04d gene_sets have been filtered out when max_size=%s and min_size=%s\"", "%", "(", "filsets_num", ",", "self", ".", "max_size", ",", "self", ".", "min_size", ")", ")", "if", "filsets_num", "==", "len", "(", "subsets", ")", ":", "self", ".", "_logger", ".", "error", "(", "\"No gene sets passed through filtering condition!!!, try new parameters again!\\n\"", "+", "\"Note: check gene name, gmt file format, or filtering size.\"", ")", "sys", ".", "exit", "(", "0", ")", "self", ".", "_gmtdct", "=", "genesets_dict", "return", "genesets_dict" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
GSEAbase.parse_gmt
gmt parser
gseapy/gsea.py
def parse_gmt(self, gmt): """gmt parser""" if gmt.lower().endswith(".gmt"): with open(gmt) as genesets: genesets_dict = { line.strip().split("\t")[0]: line.strip().split("\t")[2:] for line in genesets.readlines()} return genesets_dict elif gmt in DEFAULT_LIBRARY: pass elif gmt in self.get_libraries(): pass else: self._logger.error("No supported gene_sets: %s"%gmt) sys.exit(0) tmpname = "enrichr." + gmt + ".gmt" tempath = os.path.join(DEFAULT_CACHE_PATH, tmpname) # if file already download if os.path.isfile(tempath): self._logger.info("Enrichr library gene sets already downloaded in: %s, use local file"%DEFAULT_CACHE_PATH) return self.parse_gmt(tempath) else: return self._download_libraries(gmt)
def parse_gmt(self, gmt): """gmt parser""" if gmt.lower().endswith(".gmt"): with open(gmt) as genesets: genesets_dict = { line.strip().split("\t")[0]: line.strip().split("\t")[2:] for line in genesets.readlines()} return genesets_dict elif gmt in DEFAULT_LIBRARY: pass elif gmt in self.get_libraries(): pass else: self._logger.error("No supported gene_sets: %s"%gmt) sys.exit(0) tmpname = "enrichr." + gmt + ".gmt" tempath = os.path.join(DEFAULT_CACHE_PATH, tmpname) # if file already download if os.path.isfile(tempath): self._logger.info("Enrichr library gene sets already downloaded in: %s, use local file"%DEFAULT_CACHE_PATH) return self.parse_gmt(tempath) else: return self._download_libraries(gmt)
[ "gmt", "parser" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L145-L169
[ "def", "parse_gmt", "(", "self", ",", "gmt", ")", ":", "if", "gmt", ".", "lower", "(", ")", ".", "endswith", "(", "\".gmt\"", ")", ":", "with", "open", "(", "gmt", ")", "as", "genesets", ":", "genesets_dict", "=", "{", "line", ".", "strip", "(", ")", ".", "split", "(", "\"\\t\"", ")", "[", "0", "]", ":", "line", ".", "strip", "(", ")", ".", "split", "(", "\"\\t\"", ")", "[", "2", ":", "]", "for", "line", "in", "genesets", ".", "readlines", "(", ")", "}", "return", "genesets_dict", "elif", "gmt", "in", "DEFAULT_LIBRARY", ":", "pass", "elif", "gmt", "in", "self", ".", "get_libraries", "(", ")", ":", "pass", "else", ":", "self", ".", "_logger", ".", "error", "(", "\"No supported gene_sets: %s\"", "%", "gmt", ")", "sys", ".", "exit", "(", "0", ")", "tmpname", "=", "\"enrichr.\"", "+", "gmt", "+", "\".gmt\"", "tempath", "=", "os", ".", "path", ".", "join", "(", "DEFAULT_CACHE_PATH", ",", "tmpname", ")", "# if file already download", "if", "os", ".", "path", ".", "isfile", "(", "tempath", ")", ":", "self", ".", "_logger", ".", "info", "(", "\"Enrichr library gene sets already downloaded in: %s, use local file\"", "%", "DEFAULT_CACHE_PATH", ")", "return", "self", ".", "parse_gmt", "(", "tempath", ")", "else", ":", "return", "self", ".", "_download_libraries", "(", "gmt", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
GSEAbase.get_libraries
return active enrichr library name.Offical API
gseapy/gsea.py
def get_libraries(self, database=''): """return active enrichr library name.Offical API """ lib_url='http://amp.pharm.mssm.edu/%sEnrichr/datasetStatistics'%database libs_json = json.loads(requests.get(lib_url).text) libs = [lib['libraryName'] for lib in libs_json['statistics']] return sorted(libs)
def get_libraries(self, database=''): """return active enrichr library name.Offical API """ lib_url='http://amp.pharm.mssm.edu/%sEnrichr/datasetStatistics'%database libs_json = json.loads(requests.get(lib_url).text) libs = [lib['libraryName'] for lib in libs_json['statistics']] return sorted(libs)
[ "return", "active", "enrichr", "library", "name", ".", "Offical", "API" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L171-L177
[ "def", "get_libraries", "(", "self", ",", "database", "=", "''", ")", ":", "lib_url", "=", "'http://amp.pharm.mssm.edu/%sEnrichr/datasetStatistics'", "%", "database", "libs_json", "=", "json", ".", "loads", "(", "requests", ".", "get", "(", "lib_url", ")", ".", "text", ")", "libs", "=", "[", "lib", "[", "'libraryName'", "]", "for", "lib", "in", "libs_json", "[", "'statistics'", "]", "]", "return", "sorted", "(", "libs", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
GSEAbase._download_libraries
download enrichr libraries.
gseapy/gsea.py
def _download_libraries(self, libname): """ download enrichr libraries.""" self._logger.info("Downloading and generating Enrichr library gene sets......") s = retry(5) # queery string ENRICHR_URL = 'http://amp.pharm.mssm.edu/Enrichr/geneSetLibrary' query_string = '?mode=text&libraryName=%s' # get response = s.get( ENRICHR_URL + query_string % libname, timeout=None) if not response.ok: raise Exception('Error fetching enrichment results, check internet connection first.') # reformat to dict and save to disk mkdirs(DEFAULT_CACHE_PATH) genesets_dict = {} outname = "enrichr.%s.gmt"%libname gmtout = open(os.path.join(DEFAULT_CACHE_PATH, outname), "w") for line in response.iter_lines(chunk_size=1024, decode_unicode='utf-8'): line=line.strip() k = line.split("\t")[0] v = list(map(lambda x: x.split(",")[0], line.split("\t")[2:])) genesets_dict.update({ k: v}) outline = "%s\t\t%s\n"%(k, "\t".join(v)) gmtout.write(outline) gmtout.close() return genesets_dict
def _download_libraries(self, libname): """ download enrichr libraries.""" self._logger.info("Downloading and generating Enrichr library gene sets......") s = retry(5) # queery string ENRICHR_URL = 'http://amp.pharm.mssm.edu/Enrichr/geneSetLibrary' query_string = '?mode=text&libraryName=%s' # get response = s.get( ENRICHR_URL + query_string % libname, timeout=None) if not response.ok: raise Exception('Error fetching enrichment results, check internet connection first.') # reformat to dict and save to disk mkdirs(DEFAULT_CACHE_PATH) genesets_dict = {} outname = "enrichr.%s.gmt"%libname gmtout = open(os.path.join(DEFAULT_CACHE_PATH, outname), "w") for line in response.iter_lines(chunk_size=1024, decode_unicode='utf-8'): line=line.strip() k = line.split("\t")[0] v = list(map(lambda x: x.split(",")[0], line.split("\t")[2:])) genesets_dict.update({ k: v}) outline = "%s\t\t%s\n"%(k, "\t".join(v)) gmtout.write(outline) gmtout.close() return genesets_dict
[ "download", "enrichr", "libraries", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L179-L204
[ "def", "_download_libraries", "(", "self", ",", "libname", ")", ":", "self", ".", "_logger", ".", "info", "(", "\"Downloading and generating Enrichr library gene sets......\"", ")", "s", "=", "retry", "(", "5", ")", "# queery string", "ENRICHR_URL", "=", "'http://amp.pharm.mssm.edu/Enrichr/geneSetLibrary'", "query_string", "=", "'?mode=text&libraryName=%s'", "# get", "response", "=", "s", ".", "get", "(", "ENRICHR_URL", "+", "query_string", "%", "libname", ",", "timeout", "=", "None", ")", "if", "not", "response", ".", "ok", ":", "raise", "Exception", "(", "'Error fetching enrichment results, check internet connection first.'", ")", "# reformat to dict and save to disk", "mkdirs", "(", "DEFAULT_CACHE_PATH", ")", "genesets_dict", "=", "{", "}", "outname", "=", "\"enrichr.%s.gmt\"", "%", "libname", "gmtout", "=", "open", "(", "os", ".", "path", ".", "join", "(", "DEFAULT_CACHE_PATH", ",", "outname", ")", ",", "\"w\"", ")", "for", "line", "in", "response", ".", "iter_lines", "(", "chunk_size", "=", "1024", ",", "decode_unicode", "=", "'utf-8'", ")", ":", "line", "=", "line", ".", "strip", "(", ")", "k", "=", "line", ".", "split", "(", "\"\\t\"", ")", "[", "0", "]", "v", "=", "list", "(", "map", "(", "lambda", "x", ":", "x", ".", "split", "(", "\",\"", ")", "[", "0", "]", ",", "line", ".", "split", "(", "\"\\t\"", ")", "[", "2", ":", "]", ")", ")", "genesets_dict", ".", "update", "(", "{", "k", ":", "v", "}", ")", "outline", "=", "\"%s\\t\\t%s\\n\"", "%", "(", "k", ",", "\"\\t\"", ".", "join", "(", "v", ")", ")", "gmtout", ".", "write", "(", "outline", ")", "gmtout", ".", "close", "(", ")", "return", "genesets_dict" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
GSEAbase._heatmat
only use for gsea heatmap
gseapy/gsea.py
def _heatmat(self, df, classes, pheno_pos, pheno_neg): """only use for gsea heatmap""" width = len(classes) if len(classes) >= 6 else 5 cls_booA =list(map(lambda x: True if x == pheno_pos else False, classes)) cls_booB =list(map(lambda x: True if x == pheno_neg else False, classes)) datA = df.loc[:, cls_booA] datB = df.loc[:, cls_booB] datAB=pd.concat([datA,datB], axis=1) self._width = width self.heatmat = datAB return
def _heatmat(self, df, classes, pheno_pos, pheno_neg): """only use for gsea heatmap""" width = len(classes) if len(classes) >= 6 else 5 cls_booA =list(map(lambda x: True if x == pheno_pos else False, classes)) cls_booB =list(map(lambda x: True if x == pheno_neg else False, classes)) datA = df.loc[:, cls_booA] datB = df.loc[:, cls_booB] datAB=pd.concat([datA,datB], axis=1) self._width = width self.heatmat = datAB return
[ "only", "use", "for", "gsea", "heatmap" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L206-L216
[ "def", "_heatmat", "(", "self", ",", "df", ",", "classes", ",", "pheno_pos", ",", "pheno_neg", ")", ":", "width", "=", "len", "(", "classes", ")", "if", "len", "(", "classes", ")", ">=", "6", "else", "5", "cls_booA", "=", "list", "(", "map", "(", "lambda", "x", ":", "True", "if", "x", "==", "pheno_pos", "else", "False", ",", "classes", ")", ")", "cls_booB", "=", "list", "(", "map", "(", "lambda", "x", ":", "True", "if", "x", "==", "pheno_neg", "else", "False", ",", "classes", ")", ")", "datA", "=", "df", ".", "loc", "[", ":", ",", "cls_booA", "]", "datB", "=", "df", ".", "loc", "[", ":", ",", "cls_booB", "]", "datAB", "=", "pd", ".", "concat", "(", "[", "datA", ",", "datB", "]", ",", "axis", "=", "1", ")", "self", ".", "_width", "=", "width", "self", ".", "heatmat", "=", "datAB", "return" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
GSEAbase._plotting
Plotting API. :param rank_metric: sorted pd.Series with rankings values. :param results: self.results :param data: preprocessed expression table
gseapy/gsea.py
def _plotting(self, rank_metric, results, graph_num, outdir, format, figsize, pheno_pos='', pheno_neg=''): """ Plotting API. :param rank_metric: sorted pd.Series with rankings values. :param results: self.results :param data: preprocessed expression table """ # no values need to be returned if self._outdir is None: return #Plotting top_term = self.res2d.index[:graph_num] # multi-threading pool = Pool(self._processes) for gs in top_term: hit = results.get(gs)['hits_indices'] NES = 'nes' if self.module != 'ssgsea' else 'es' term = gs.replace('/','_').replace(":","_") outfile = '{0}/{1}.{2}.{3}'.format(self.outdir, term, self.module, self.format) # gseaplot(rank_metric=rank_metric, term=term, hits_indices=hit, # nes=results.get(gs)[NES], pval=results.get(gs)['pval'], # fdr=results.get(gs)['fdr'], RES=results.get(gs)['RES'], # pheno_pos=pheno_pos, pheno_neg=pheno_neg, figsize=figsize, # ofname=outfile) pool.apply_async(gseaplot, args=(rank_metric, term, hit, results.get(gs)[NES], results.get(gs)['pval'],results.get(gs)['fdr'], results.get(gs)['RES'], pheno_pos, pheno_neg, figsize, 'seismic', outfile)) if self.module == 'gsea': outfile2 = "{0}/{1}.heatmap.{2}".format(self.outdir, term, self.format) # heatmap(df=self.heatmat.iloc[hit, :], title=term, ofname=outfile2, # z_score=0, figsize=(self._width, len(hit)/2)) pool.apply_async(heatmap, args=(self.heatmat.iloc[hit, :], 0, term, (self._width, len(hit)/2+2), 'RdBu_r', True, True, outfile2)) pool.close() pool.join()
def _plotting(self, rank_metric, results, graph_num, outdir, format, figsize, pheno_pos='', pheno_neg=''): """ Plotting API. :param rank_metric: sorted pd.Series with rankings values. :param results: self.results :param data: preprocessed expression table """ # no values need to be returned if self._outdir is None: return #Plotting top_term = self.res2d.index[:graph_num] # multi-threading pool = Pool(self._processes) for gs in top_term: hit = results.get(gs)['hits_indices'] NES = 'nes' if self.module != 'ssgsea' else 'es' term = gs.replace('/','_').replace(":","_") outfile = '{0}/{1}.{2}.{3}'.format(self.outdir, term, self.module, self.format) # gseaplot(rank_metric=rank_metric, term=term, hits_indices=hit, # nes=results.get(gs)[NES], pval=results.get(gs)['pval'], # fdr=results.get(gs)['fdr'], RES=results.get(gs)['RES'], # pheno_pos=pheno_pos, pheno_neg=pheno_neg, figsize=figsize, # ofname=outfile) pool.apply_async(gseaplot, args=(rank_metric, term, hit, results.get(gs)[NES], results.get(gs)['pval'],results.get(gs)['fdr'], results.get(gs)['RES'], pheno_pos, pheno_neg, figsize, 'seismic', outfile)) if self.module == 'gsea': outfile2 = "{0}/{1}.heatmap.{2}".format(self.outdir, term, self.format) # heatmap(df=self.heatmat.iloc[hit, :], title=term, ofname=outfile2, # z_score=0, figsize=(self._width, len(hit)/2)) pool.apply_async(heatmap, args=(self.heatmat.iloc[hit, :], 0, term, (self._width, len(hit)/2+2), 'RdBu_r', True, True, outfile2)) pool.close() pool.join()
[ "Plotting", "API", ".", ":", "param", "rank_metric", ":", "sorted", "pd", ".", "Series", "with", "rankings", "values", ".", ":", "param", "results", ":", "self", ".", "results", ":", "param", "data", ":", "preprocessed", "expression", "table" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L218-L256
[ "def", "_plotting", "(", "self", ",", "rank_metric", ",", "results", ",", "graph_num", ",", "outdir", ",", "format", ",", "figsize", ",", "pheno_pos", "=", "''", ",", "pheno_neg", "=", "''", ")", ":", "# no values need to be returned", "if", "self", ".", "_outdir", "is", "None", ":", "return", "#Plotting", "top_term", "=", "self", ".", "res2d", ".", "index", "[", ":", "graph_num", "]", "# multi-threading", "pool", "=", "Pool", "(", "self", ".", "_processes", ")", "for", "gs", "in", "top_term", ":", "hit", "=", "results", ".", "get", "(", "gs", ")", "[", "'hits_indices'", "]", "NES", "=", "'nes'", "if", "self", ".", "module", "!=", "'ssgsea'", "else", "'es'", "term", "=", "gs", ".", "replace", "(", "'/'", ",", "'_'", ")", ".", "replace", "(", "\":\"", ",", "\"_\"", ")", "outfile", "=", "'{0}/{1}.{2}.{3}'", ".", "format", "(", "self", ".", "outdir", ",", "term", ",", "self", ".", "module", ",", "self", ".", "format", ")", "# gseaplot(rank_metric=rank_metric, term=term, hits_indices=hit,", "# nes=results.get(gs)[NES], pval=results.get(gs)['pval'], ", "# fdr=results.get(gs)['fdr'], RES=results.get(gs)['RES'],", "# pheno_pos=pheno_pos, pheno_neg=pheno_neg, figsize=figsize,", "# ofname=outfile)", "pool", ".", "apply_async", "(", "gseaplot", ",", "args", "=", "(", "rank_metric", ",", "term", ",", "hit", ",", "results", ".", "get", "(", "gs", ")", "[", "NES", "]", ",", "results", ".", "get", "(", "gs", ")", "[", "'pval'", "]", ",", "results", ".", "get", "(", "gs", ")", "[", "'fdr'", "]", ",", "results", ".", "get", "(", "gs", ")", "[", "'RES'", "]", ",", "pheno_pos", ",", "pheno_neg", ",", "figsize", ",", "'seismic'", ",", "outfile", ")", ")", "if", "self", ".", "module", "==", "'gsea'", ":", "outfile2", "=", "\"{0}/{1}.heatmap.{2}\"", ".", "format", "(", "self", ".", "outdir", ",", "term", ",", "self", ".", "format", ")", "# heatmap(df=self.heatmat.iloc[hit, :], title=term, ofname=outfile2, ", "# z_score=0, figsize=(self._width, len(hit)/2))", "pool", ".", "apply_async", "(", "heatmap", ",", "args", "=", "(", "self", ".", "heatmat", ".", "iloc", "[", "hit", ",", ":", "]", ",", "0", ",", "term", ",", "(", "self", ".", "_width", ",", "len", "(", "hit", ")", "/", "2", "+", "2", ")", ",", "'RdBu_r'", ",", "True", ",", "True", ",", "outfile2", ")", ")", "pool", ".", "close", "(", ")", "pool", ".", "join", "(", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
GSEAbase._save_results
reformat gsea results, and save to txt
gseapy/gsea.py
def _save_results(self, zipdata, outdir, module, gmt, rank_metric, permutation_type): """reformat gsea results, and save to txt""" res = OrderedDict() for gs, gseale, ind, RES in zipdata: rdict = OrderedDict() rdict['es'] = gseale[0] rdict['nes'] = gseale[1] rdict['pval'] = gseale[2] rdict['fdr'] = gseale[3] rdict['geneset_size'] = len(gmt[gs]) rdict['matched_size'] = len(ind) #reformat gene list. _genes = rank_metric.index.values[ind] rdict['genes'] = ";".join([ str(g).strip() for g in _genes ]) if self.module != 'ssgsea': # extract leading edge genes if rdict['es'] > 0: # RES -> ndarray, ind -> list idx = RES.argmax() ldg_pos = list(filter(lambda x: x<= idx, ind)) elif rdict['es'] < 0: idx = RES.argmin() ldg_pos = list(filter(lambda x: x >= idx, ind)) else: ldg_pos = ind # es == 0 ? rdict['ledge_genes'] = ';'.join(list(map(str,rank_metric.iloc[ldg_pos].index))) rdict['RES'] = RES rdict['hits_indices'] = ind # save to one odict res[gs] = rdict # save self.results = res # save to dataframe res_df = pd.DataFrame.from_dict(res, orient='index') res_df.index.name = 'Term' res_df.drop(['RES','hits_indices'], axis=1, inplace=True) res_df.sort_values(by=['fdr','pval'], inplace=True) self.res2d = res_df if self._outdir is None: return out = os.path.join(outdir,'gseapy.{b}.{c}.report.csv'.format(b=module, c=permutation_type)) if self.module == 'ssgsea': out = out.replace(".csv",".txt") with open(out, 'a') as f: f.write('# normalize enrichment scores by random permutation procedure (GSEA method)\n') f.write("# might not proper for publication\n") res_df.to_csv(f, sep='\t') else: res_df.to_csv(out) return
def _save_results(self, zipdata, outdir, module, gmt, rank_metric, permutation_type): """reformat gsea results, and save to txt""" res = OrderedDict() for gs, gseale, ind, RES in zipdata: rdict = OrderedDict() rdict['es'] = gseale[0] rdict['nes'] = gseale[1] rdict['pval'] = gseale[2] rdict['fdr'] = gseale[3] rdict['geneset_size'] = len(gmt[gs]) rdict['matched_size'] = len(ind) #reformat gene list. _genes = rank_metric.index.values[ind] rdict['genes'] = ";".join([ str(g).strip() for g in _genes ]) if self.module != 'ssgsea': # extract leading edge genes if rdict['es'] > 0: # RES -> ndarray, ind -> list idx = RES.argmax() ldg_pos = list(filter(lambda x: x<= idx, ind)) elif rdict['es'] < 0: idx = RES.argmin() ldg_pos = list(filter(lambda x: x >= idx, ind)) else: ldg_pos = ind # es == 0 ? rdict['ledge_genes'] = ';'.join(list(map(str,rank_metric.iloc[ldg_pos].index))) rdict['RES'] = RES rdict['hits_indices'] = ind # save to one odict res[gs] = rdict # save self.results = res # save to dataframe res_df = pd.DataFrame.from_dict(res, orient='index') res_df.index.name = 'Term' res_df.drop(['RES','hits_indices'], axis=1, inplace=True) res_df.sort_values(by=['fdr','pval'], inplace=True) self.res2d = res_df if self._outdir is None: return out = os.path.join(outdir,'gseapy.{b}.{c}.report.csv'.format(b=module, c=permutation_type)) if self.module == 'ssgsea': out = out.replace(".csv",".txt") with open(out, 'a') as f: f.write('# normalize enrichment scores by random permutation procedure (GSEA method)\n') f.write("# might not proper for publication\n") res_df.to_csv(f, sep='\t') else: res_df.to_csv(out) return
[ "reformat", "gsea", "results", "and", "save", "to", "txt" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L259-L312
[ "def", "_save_results", "(", "self", ",", "zipdata", ",", "outdir", ",", "module", ",", "gmt", ",", "rank_metric", ",", "permutation_type", ")", ":", "res", "=", "OrderedDict", "(", ")", "for", "gs", ",", "gseale", ",", "ind", ",", "RES", "in", "zipdata", ":", "rdict", "=", "OrderedDict", "(", ")", "rdict", "[", "'es'", "]", "=", "gseale", "[", "0", "]", "rdict", "[", "'nes'", "]", "=", "gseale", "[", "1", "]", "rdict", "[", "'pval'", "]", "=", "gseale", "[", "2", "]", "rdict", "[", "'fdr'", "]", "=", "gseale", "[", "3", "]", "rdict", "[", "'geneset_size'", "]", "=", "len", "(", "gmt", "[", "gs", "]", ")", "rdict", "[", "'matched_size'", "]", "=", "len", "(", "ind", ")", "#reformat gene list.", "_genes", "=", "rank_metric", ".", "index", ".", "values", "[", "ind", "]", "rdict", "[", "'genes'", "]", "=", "\";\"", ".", "join", "(", "[", "str", "(", "g", ")", ".", "strip", "(", ")", "for", "g", "in", "_genes", "]", ")", "if", "self", ".", "module", "!=", "'ssgsea'", ":", "# extract leading edge genes", "if", "rdict", "[", "'es'", "]", ">", "0", ":", "# RES -> ndarray, ind -> list", "idx", "=", "RES", ".", "argmax", "(", ")", "ldg_pos", "=", "list", "(", "filter", "(", "lambda", "x", ":", "x", "<=", "idx", ",", "ind", ")", ")", "elif", "rdict", "[", "'es'", "]", "<", "0", ":", "idx", "=", "RES", ".", "argmin", "(", ")", "ldg_pos", "=", "list", "(", "filter", "(", "lambda", "x", ":", "x", ">=", "idx", ",", "ind", ")", ")", "else", ":", "ldg_pos", "=", "ind", "# es == 0 ?", "rdict", "[", "'ledge_genes'", "]", "=", "';'", ".", "join", "(", "list", "(", "map", "(", "str", ",", "rank_metric", ".", "iloc", "[", "ldg_pos", "]", ".", "index", ")", ")", ")", "rdict", "[", "'RES'", "]", "=", "RES", "rdict", "[", "'hits_indices'", "]", "=", "ind", "# save to one odict", "res", "[", "gs", "]", "=", "rdict", "# save", "self", ".", "results", "=", "res", "# save to dataframe", "res_df", "=", "pd", ".", "DataFrame", ".", "from_dict", "(", "res", ",", "orient", "=", "'index'", ")", "res_df", ".", "index", ".", "name", "=", "'Term'", "res_df", ".", "drop", "(", "[", "'RES'", ",", "'hits_indices'", "]", ",", "axis", "=", "1", ",", "inplace", "=", "True", ")", "res_df", ".", "sort_values", "(", "by", "=", "[", "'fdr'", ",", "'pval'", "]", ",", "inplace", "=", "True", ")", "self", ".", "res2d", "=", "res_df", "if", "self", ".", "_outdir", "is", "None", ":", "return", "out", "=", "os", ".", "path", ".", "join", "(", "outdir", ",", "'gseapy.{b}.{c}.report.csv'", ".", "format", "(", "b", "=", "module", ",", "c", "=", "permutation_type", ")", ")", "if", "self", ".", "module", "==", "'ssgsea'", ":", "out", "=", "out", ".", "replace", "(", "\".csv\"", ",", "\".txt\"", ")", "with", "open", "(", "out", ",", "'a'", ")", "as", "f", ":", "f", ".", "write", "(", "'# normalize enrichment scores by random permutation procedure (GSEA method)\\n'", ")", "f", ".", "write", "(", "\"# might not proper for publication\\n\"", ")", "res_df", ".", "to_csv", "(", "f", ",", "sep", "=", "'\\t'", ")", "else", ":", "res_df", ".", "to_csv", "(", "out", ")", "return" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
GSEA.load_data
pre-processed the data frame.new filtering methods will be implement here.
gseapy/gsea.py
def load_data(self, cls_vec): """pre-processed the data frame.new filtering methods will be implement here. """ # read data in if isinstance(self.data, pd.DataFrame) : exprs = self.data.copy() # handle index is gene_names if exprs.index.dtype == 'O': exprs = exprs.reset_index() elif os.path.isfile(self.data) : # GCT input format? if self.data.endswith("gct"): exprs = pd.read_csv(self.data, skiprows=1, comment='#',sep="\t") else: exprs = pd.read_csv(self.data, comment='#',sep="\t") else: raise Exception('Error parsing gene expression DataFrame!') #drop duplicated gene names if exprs.iloc[:,0].duplicated().sum() > 0: self._logger.warning("Warning: dropping duplicated gene names, only keep the first values") exprs.drop_duplicates(subset=exprs.columns[0], inplace=True) #drop duplicate gene_names. if exprs.isnull().any().sum() > 0: self._logger.warning("Warning: Input data contains NA, filled NA with 0") exprs.dropna(how='all', inplace=True) #drop rows with all NAs exprs = exprs.fillna(0) # set gene name as index exprs.set_index(keys=exprs.columns[0], inplace=True) # select numberic columns df = exprs.select_dtypes(include=[np.number]) # drop any genes which std ==0 df_std = df.groupby(by=cls_vec, axis=1).std() df = df[~df_std.isin([0]).any(axis=1)] df = df + 0.00001 # we don't like zeros!!! return df
def load_data(self, cls_vec): """pre-processed the data frame.new filtering methods will be implement here. """ # read data in if isinstance(self.data, pd.DataFrame) : exprs = self.data.copy() # handle index is gene_names if exprs.index.dtype == 'O': exprs = exprs.reset_index() elif os.path.isfile(self.data) : # GCT input format? if self.data.endswith("gct"): exprs = pd.read_csv(self.data, skiprows=1, comment='#',sep="\t") else: exprs = pd.read_csv(self.data, comment='#',sep="\t") else: raise Exception('Error parsing gene expression DataFrame!') #drop duplicated gene names if exprs.iloc[:,0].duplicated().sum() > 0: self._logger.warning("Warning: dropping duplicated gene names, only keep the first values") exprs.drop_duplicates(subset=exprs.columns[0], inplace=True) #drop duplicate gene_names. if exprs.isnull().any().sum() > 0: self._logger.warning("Warning: Input data contains NA, filled NA with 0") exprs.dropna(how='all', inplace=True) #drop rows with all NAs exprs = exprs.fillna(0) # set gene name as index exprs.set_index(keys=exprs.columns[0], inplace=True) # select numberic columns df = exprs.select_dtypes(include=[np.number]) # drop any genes which std ==0 df_std = df.groupby(by=cls_vec, axis=1).std() df = df[~df_std.isin([0]).any(axis=1)] df = df + 0.00001 # we don't like zeros!!! return df
[ "pre", "-", "processed", "the", "data", "frame", ".", "new", "filtering", "methods", "will", "be", "implement", "here", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L348-L382
[ "def", "load_data", "(", "self", ",", "cls_vec", ")", ":", "# read data in", "if", "isinstance", "(", "self", ".", "data", ",", "pd", ".", "DataFrame", ")", ":", "exprs", "=", "self", ".", "data", ".", "copy", "(", ")", "# handle index is gene_names", "if", "exprs", ".", "index", ".", "dtype", "==", "'O'", ":", "exprs", "=", "exprs", ".", "reset_index", "(", ")", "elif", "os", ".", "path", ".", "isfile", "(", "self", ".", "data", ")", ":", "# GCT input format?", "if", "self", ".", "data", ".", "endswith", "(", "\"gct\"", ")", ":", "exprs", "=", "pd", ".", "read_csv", "(", "self", ".", "data", ",", "skiprows", "=", "1", ",", "comment", "=", "'#'", ",", "sep", "=", "\"\\t\"", ")", "else", ":", "exprs", "=", "pd", ".", "read_csv", "(", "self", ".", "data", ",", "comment", "=", "'#'", ",", "sep", "=", "\"\\t\"", ")", "else", ":", "raise", "Exception", "(", "'Error parsing gene expression DataFrame!'", ")", "#drop duplicated gene names", "if", "exprs", ".", "iloc", "[", ":", ",", "0", "]", ".", "duplicated", "(", ")", ".", "sum", "(", ")", ">", "0", ":", "self", ".", "_logger", ".", "warning", "(", "\"Warning: dropping duplicated gene names, only keep the first values\"", ")", "exprs", ".", "drop_duplicates", "(", "subset", "=", "exprs", ".", "columns", "[", "0", "]", ",", "inplace", "=", "True", ")", "#drop duplicate gene_names.", "if", "exprs", ".", "isnull", "(", ")", ".", "any", "(", ")", ".", "sum", "(", ")", ">", "0", ":", "self", ".", "_logger", ".", "warning", "(", "\"Warning: Input data contains NA, filled NA with 0\"", ")", "exprs", ".", "dropna", "(", "how", "=", "'all'", ",", "inplace", "=", "True", ")", "#drop rows with all NAs", "exprs", "=", "exprs", ".", "fillna", "(", "0", ")", "# set gene name as index", "exprs", ".", "set_index", "(", "keys", "=", "exprs", ".", "columns", "[", "0", "]", ",", "inplace", "=", "True", ")", "# select numberic columns", "df", "=", "exprs", ".", "select_dtypes", "(", "include", "=", "[", "np", ".", "number", "]", ")", "# drop any genes which std ==0", "df_std", "=", "df", ".", "groupby", "(", "by", "=", "cls_vec", ",", "axis", "=", "1", ")", ".", "std", "(", ")", "df", "=", "df", "[", "~", "df_std", ".", "isin", "(", "[", "0", "]", ")", ".", "any", "(", "axis", "=", "1", ")", "]", "df", "=", "df", "+", "0.00001", "# we don't like zeros!!!", "return", "df" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
GSEA.run
GSEA main procedure
gseapy/gsea.py
def run(self): """GSEA main procedure""" assert self.permutation_type in ["phenotype", "gene_set"] assert self.min_size <= self.max_size # Start Analysis self._logger.info("Parsing data files for GSEA.............................") # phenotype labels parsing phenoPos, phenoNeg, cls_vector = gsea_cls_parser(self.classes) # select correct expression genes and values. dat = self.load_data(cls_vector) # data frame must have length > 1 assert len(dat) > 1 # ranking metrics calculation. dat2 = ranking_metric(df=dat, method=self.method, pos=phenoPos, neg=phenoNeg, classes=cls_vector, ascending=self.ascending) self.ranking = dat2 # filtering out gene sets and build gene sets dictionary gmt = self.load_gmt(gene_list=dat2.index.values, gmt=self.gene_sets) self._logger.info("%04d gene_sets used for further statistical testing....."% len(gmt)) self._logger.info("Start to run GSEA...Might take a while..................") # cpu numbers self._set_cores() # compute ES, NES, pval, FDR, RES dataset = dat if self.permutation_type =='phenotype' else dat2 gsea_results,hit_ind,rank_ES, subsets = gsea_compute_tensor(data=dataset, gmt=gmt, n=self.permutation_num, weighted_score_type=self.weighted_score_type, permutation_type=self.permutation_type, method=self.method, pheno_pos=phenoPos, pheno_neg=phenoNeg, classes=cls_vector, ascending=self.ascending, processes=self._processes, seed=self.seed) self._logger.info("Start to generate GSEApy reports and figures............") res_zip = zip(subsets, list(gsea_results), hit_ind, rank_ES) self._save_results(zipdata=res_zip, outdir=self.outdir, module=self.module, gmt=gmt, rank_metric=dat2, permutation_type=self.permutation_type) # reorder datarame for heatmap self._heatmat(df=dat.loc[dat2.index], classes=cls_vector, pheno_pos=phenoPos, pheno_neg=phenoNeg) # Plotting if not self._noplot: self._plotting(rank_metric=dat2, results=self.results, graph_num=self.graph_num, outdir=self.outdir, figsize=self.figsize, format=self.format, pheno_pos=phenoPos, pheno_neg=phenoNeg) self._logger.info("Congratulations. GSEApy ran successfully.................\n") if self._outdir is None: self._tmpdir.cleanup() return
def run(self): """GSEA main procedure""" assert self.permutation_type in ["phenotype", "gene_set"] assert self.min_size <= self.max_size # Start Analysis self._logger.info("Parsing data files for GSEA.............................") # phenotype labels parsing phenoPos, phenoNeg, cls_vector = gsea_cls_parser(self.classes) # select correct expression genes and values. dat = self.load_data(cls_vector) # data frame must have length > 1 assert len(dat) > 1 # ranking metrics calculation. dat2 = ranking_metric(df=dat, method=self.method, pos=phenoPos, neg=phenoNeg, classes=cls_vector, ascending=self.ascending) self.ranking = dat2 # filtering out gene sets and build gene sets dictionary gmt = self.load_gmt(gene_list=dat2.index.values, gmt=self.gene_sets) self._logger.info("%04d gene_sets used for further statistical testing....."% len(gmt)) self._logger.info("Start to run GSEA...Might take a while..................") # cpu numbers self._set_cores() # compute ES, NES, pval, FDR, RES dataset = dat if self.permutation_type =='phenotype' else dat2 gsea_results,hit_ind,rank_ES, subsets = gsea_compute_tensor(data=dataset, gmt=gmt, n=self.permutation_num, weighted_score_type=self.weighted_score_type, permutation_type=self.permutation_type, method=self.method, pheno_pos=phenoPos, pheno_neg=phenoNeg, classes=cls_vector, ascending=self.ascending, processes=self._processes, seed=self.seed) self._logger.info("Start to generate GSEApy reports and figures............") res_zip = zip(subsets, list(gsea_results), hit_ind, rank_ES) self._save_results(zipdata=res_zip, outdir=self.outdir, module=self.module, gmt=gmt, rank_metric=dat2, permutation_type=self.permutation_type) # reorder datarame for heatmap self._heatmat(df=dat.loc[dat2.index], classes=cls_vector, pheno_pos=phenoPos, pheno_neg=phenoNeg) # Plotting if not self._noplot: self._plotting(rank_metric=dat2, results=self.results, graph_num=self.graph_num, outdir=self.outdir, figsize=self.figsize, format=self.format, pheno_pos=phenoPos, pheno_neg=phenoNeg) self._logger.info("Congratulations. GSEApy ran successfully.................\n") if self._outdir is None: self._tmpdir.cleanup() return
[ "GSEA", "main", "procedure" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L384-L438
[ "def", "run", "(", "self", ")", ":", "assert", "self", ".", "permutation_type", "in", "[", "\"phenotype\"", ",", "\"gene_set\"", "]", "assert", "self", ".", "min_size", "<=", "self", ".", "max_size", "# Start Analysis", "self", ".", "_logger", ".", "info", "(", "\"Parsing data files for GSEA.............................\"", ")", "# phenotype labels parsing", "phenoPos", ",", "phenoNeg", ",", "cls_vector", "=", "gsea_cls_parser", "(", "self", ".", "classes", ")", "# select correct expression genes and values.", "dat", "=", "self", ".", "load_data", "(", "cls_vector", ")", "# data frame must have length > 1", "assert", "len", "(", "dat", ")", ">", "1", "# ranking metrics calculation.", "dat2", "=", "ranking_metric", "(", "df", "=", "dat", ",", "method", "=", "self", ".", "method", ",", "pos", "=", "phenoPos", ",", "neg", "=", "phenoNeg", ",", "classes", "=", "cls_vector", ",", "ascending", "=", "self", ".", "ascending", ")", "self", ".", "ranking", "=", "dat2", "# filtering out gene sets and build gene sets dictionary", "gmt", "=", "self", ".", "load_gmt", "(", "gene_list", "=", "dat2", ".", "index", ".", "values", ",", "gmt", "=", "self", ".", "gene_sets", ")", "self", ".", "_logger", ".", "info", "(", "\"%04d gene_sets used for further statistical testing.....\"", "%", "len", "(", "gmt", ")", ")", "self", ".", "_logger", ".", "info", "(", "\"Start to run GSEA...Might take a while..................\"", ")", "# cpu numbers", "self", ".", "_set_cores", "(", ")", "# compute ES, NES, pval, FDR, RES", "dataset", "=", "dat", "if", "self", ".", "permutation_type", "==", "'phenotype'", "else", "dat2", "gsea_results", ",", "hit_ind", ",", "rank_ES", ",", "subsets", "=", "gsea_compute_tensor", "(", "data", "=", "dataset", ",", "gmt", "=", "gmt", ",", "n", "=", "self", ".", "permutation_num", ",", "weighted_score_type", "=", "self", ".", "weighted_score_type", ",", "permutation_type", "=", "self", ".", "permutation_type", ",", "method", "=", "self", ".", "method", ",", "pheno_pos", "=", "phenoPos", ",", "pheno_neg", "=", "phenoNeg", ",", "classes", "=", "cls_vector", ",", "ascending", "=", "self", ".", "ascending", ",", "processes", "=", "self", ".", "_processes", ",", "seed", "=", "self", ".", "seed", ")", "self", ".", "_logger", ".", "info", "(", "\"Start to generate GSEApy reports and figures............\"", ")", "res_zip", "=", "zip", "(", "subsets", ",", "list", "(", "gsea_results", ")", ",", "hit_ind", ",", "rank_ES", ")", "self", ".", "_save_results", "(", "zipdata", "=", "res_zip", ",", "outdir", "=", "self", ".", "outdir", ",", "module", "=", "self", ".", "module", ",", "gmt", "=", "gmt", ",", "rank_metric", "=", "dat2", ",", "permutation_type", "=", "self", ".", "permutation_type", ")", "# reorder datarame for heatmap", "self", ".", "_heatmat", "(", "df", "=", "dat", ".", "loc", "[", "dat2", ".", "index", "]", ",", "classes", "=", "cls_vector", ",", "pheno_pos", "=", "phenoPos", ",", "pheno_neg", "=", "phenoNeg", ")", "# Plotting", "if", "not", "self", ".", "_noplot", ":", "self", ".", "_plotting", "(", "rank_metric", "=", "dat2", ",", "results", "=", "self", ".", "results", ",", "graph_num", "=", "self", ".", "graph_num", ",", "outdir", "=", "self", ".", "outdir", ",", "figsize", "=", "self", ".", "figsize", ",", "format", "=", "self", ".", "format", ",", "pheno_pos", "=", "phenoPos", ",", "pheno_neg", "=", "phenoNeg", ")", "self", ".", "_logger", ".", "info", "(", "\"Congratulations. GSEApy ran successfully.................\\n\"", ")", "if", "self", ".", "_outdir", "is", "None", ":", "self", ".", "_tmpdir", ".", "cleanup", "(", ")", "return" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
Prerank.run
GSEA prerank workflow
gseapy/gsea.py
def run(self): """GSEA prerank workflow""" assert self.min_size <= self.max_size # parsing rankings dat2 = self._load_ranking(self.rnk) assert len(dat2) > 1 # cpu numbers self._set_cores() # Start Analysis self._logger.info("Parsing data files for GSEA.............................") # filtering out gene sets and build gene sets dictionary gmt = self.load_gmt(gene_list=dat2.index.values, gmt=self.gene_sets) self._logger.info("%04d gene_sets used for further statistical testing....."% len(gmt)) self._logger.info("Start to run GSEA...Might take a while..................") # compute ES, NES, pval, FDR, RES gsea_results, hit_ind,rank_ES, subsets = gsea_compute(data=dat2, n=self.permutation_num, gmt=gmt, weighted_score_type=self.weighted_score_type, permutation_type='gene_set', method=None, pheno_pos=self.pheno_pos, pheno_neg=self.pheno_neg, classes=None, ascending=self.ascending, processes=self._processes, seed=self.seed) self._logger.info("Start to generate gseapy reports, and produce figures...") res_zip = zip(subsets, list(gsea_results), hit_ind, rank_ES) self._save_results(zipdata=res_zip, outdir=self.outdir, module=self.module, gmt=gmt, rank_metric=dat2, permutation_type="gene_sets") # Plotting if not self._noplot: self._plotting(rank_metric=dat2, results=self.results, graph_num=self.graph_num, outdir=self.outdir, figsize=self.figsize, format=self.format, pheno_pos=self.pheno_pos, pheno_neg=self.pheno_neg) self._logger.info("Congratulations. GSEApy runs successfully................\n") if self._outdir is None: self._tmpdir.cleanup() return
def run(self): """GSEA prerank workflow""" assert self.min_size <= self.max_size # parsing rankings dat2 = self._load_ranking(self.rnk) assert len(dat2) > 1 # cpu numbers self._set_cores() # Start Analysis self._logger.info("Parsing data files for GSEA.............................") # filtering out gene sets and build gene sets dictionary gmt = self.load_gmt(gene_list=dat2.index.values, gmt=self.gene_sets) self._logger.info("%04d gene_sets used for further statistical testing....."% len(gmt)) self._logger.info("Start to run GSEA...Might take a while..................") # compute ES, NES, pval, FDR, RES gsea_results, hit_ind,rank_ES, subsets = gsea_compute(data=dat2, n=self.permutation_num, gmt=gmt, weighted_score_type=self.weighted_score_type, permutation_type='gene_set', method=None, pheno_pos=self.pheno_pos, pheno_neg=self.pheno_neg, classes=None, ascending=self.ascending, processes=self._processes, seed=self.seed) self._logger.info("Start to generate gseapy reports, and produce figures...") res_zip = zip(subsets, list(gsea_results), hit_ind, rank_ES) self._save_results(zipdata=res_zip, outdir=self.outdir, module=self.module, gmt=gmt, rank_metric=dat2, permutation_type="gene_sets") # Plotting if not self._noplot: self._plotting(rank_metric=dat2, results=self.results, graph_num=self.graph_num, outdir=self.outdir, figsize=self.figsize, format=self.format, pheno_pos=self.pheno_pos, pheno_neg=self.pheno_neg) self._logger.info("Congratulations. GSEApy runs successfully................\n") if self._outdir is None: self._tmpdir.cleanup() return
[ "GSEA", "prerank", "workflow" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L474-L515
[ "def", "run", "(", "self", ")", ":", "assert", "self", ".", "min_size", "<=", "self", ".", "max_size", "# parsing rankings", "dat2", "=", "self", ".", "_load_ranking", "(", "self", ".", "rnk", ")", "assert", "len", "(", "dat2", ")", ">", "1", "# cpu numbers", "self", ".", "_set_cores", "(", ")", "# Start Analysis", "self", ".", "_logger", ".", "info", "(", "\"Parsing data files for GSEA.............................\"", ")", "# filtering out gene sets and build gene sets dictionary", "gmt", "=", "self", ".", "load_gmt", "(", "gene_list", "=", "dat2", ".", "index", ".", "values", ",", "gmt", "=", "self", ".", "gene_sets", ")", "self", ".", "_logger", ".", "info", "(", "\"%04d gene_sets used for further statistical testing.....\"", "%", "len", "(", "gmt", ")", ")", "self", ".", "_logger", ".", "info", "(", "\"Start to run GSEA...Might take a while..................\"", ")", "# compute ES, NES, pval, FDR, RES", "gsea_results", ",", "hit_ind", ",", "rank_ES", ",", "subsets", "=", "gsea_compute", "(", "data", "=", "dat2", ",", "n", "=", "self", ".", "permutation_num", ",", "gmt", "=", "gmt", ",", "weighted_score_type", "=", "self", ".", "weighted_score_type", ",", "permutation_type", "=", "'gene_set'", ",", "method", "=", "None", ",", "pheno_pos", "=", "self", ".", "pheno_pos", ",", "pheno_neg", "=", "self", ".", "pheno_neg", ",", "classes", "=", "None", ",", "ascending", "=", "self", ".", "ascending", ",", "processes", "=", "self", ".", "_processes", ",", "seed", "=", "self", ".", "seed", ")", "self", ".", "_logger", ".", "info", "(", "\"Start to generate gseapy reports, and produce figures...\"", ")", "res_zip", "=", "zip", "(", "subsets", ",", "list", "(", "gsea_results", ")", ",", "hit_ind", ",", "rank_ES", ")", "self", ".", "_save_results", "(", "zipdata", "=", "res_zip", ",", "outdir", "=", "self", ".", "outdir", ",", "module", "=", "self", ".", "module", ",", "gmt", "=", "gmt", ",", "rank_metric", "=", "dat2", ",", "permutation_type", "=", "\"gene_sets\"", ")", "# Plotting", "if", "not", "self", ".", "_noplot", ":", "self", ".", "_plotting", "(", "rank_metric", "=", "dat2", ",", "results", "=", "self", ".", "results", ",", "graph_num", "=", "self", ".", "graph_num", ",", "outdir", "=", "self", ".", "outdir", ",", "figsize", "=", "self", ".", "figsize", ",", "format", "=", "self", ".", "format", ",", "pheno_pos", "=", "self", ".", "pheno_pos", ",", "pheno_neg", "=", "self", ".", "pheno_neg", ")", "self", ".", "_logger", ".", "info", "(", "\"Congratulations. GSEApy runs successfully................\\n\"", ")", "if", "self", ".", "_outdir", "is", "None", ":", "self", ".", "_tmpdir", ".", "cleanup", "(", ")", "return" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
SingleSampleGSEA.norm_samples
normalization samples see here: http://rowley.mit.edu/caw_web/ssGSEAProjection/ssGSEAProjection.Library.R
gseapy/gsea.py
def norm_samples(self, dat): """normalization samples see here: http://rowley.mit.edu/caw_web/ssGSEAProjection/ssGSEAProjection.Library.R """ if self.sample_norm_method == 'rank': data = dat.rank(axis=0, method='average', na_option='bottom') data = 10000*data / data.shape[0] elif self.sample_norm_method == 'log_rank': data = dat.rank(axis=0, method='average', na_option='bottom') data = log(10000*data / data.shape[0] + exp(1)) elif self.sample_norm_method == 'log': dat[dat < 1] = 1 data = log(dat + exp(1)) elif self.sample_norm_method == 'custom': self._logger.info("Use custom rank metric for ssGSEA") data = dat else: sys.stderr.write("No supported method: %s"%self.sample_norm_method) sys.exit(0) return data
def norm_samples(self, dat): """normalization samples see here: http://rowley.mit.edu/caw_web/ssGSEAProjection/ssGSEAProjection.Library.R """ if self.sample_norm_method == 'rank': data = dat.rank(axis=0, method='average', na_option='bottom') data = 10000*data / data.shape[0] elif self.sample_norm_method == 'log_rank': data = dat.rank(axis=0, method='average', na_option='bottom') data = log(10000*data / data.shape[0] + exp(1)) elif self.sample_norm_method == 'log': dat[dat < 1] = 1 data = log(dat + exp(1)) elif self.sample_norm_method == 'custom': self._logger.info("Use custom rank metric for ssGSEA") data = dat else: sys.stderr.write("No supported method: %s"%self.sample_norm_method) sys.exit(0) return data
[ "normalization", "samples", "see", "here", ":", "http", ":", "//", "rowley", ".", "mit", ".", "edu", "/", "caw_web", "/", "ssGSEAProjection", "/", "ssGSEAProjection", ".", "Library", ".", "R" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L602-L623
[ "def", "norm_samples", "(", "self", ",", "dat", ")", ":", "if", "self", ".", "sample_norm_method", "==", "'rank'", ":", "data", "=", "dat", ".", "rank", "(", "axis", "=", "0", ",", "method", "=", "'average'", ",", "na_option", "=", "'bottom'", ")", "data", "=", "10000", "*", "data", "/", "data", ".", "shape", "[", "0", "]", "elif", "self", ".", "sample_norm_method", "==", "'log_rank'", ":", "data", "=", "dat", ".", "rank", "(", "axis", "=", "0", ",", "method", "=", "'average'", ",", "na_option", "=", "'bottom'", ")", "data", "=", "log", "(", "10000", "*", "data", "/", "data", ".", "shape", "[", "0", "]", "+", "exp", "(", "1", ")", ")", "elif", "self", ".", "sample_norm_method", "==", "'log'", ":", "dat", "[", "dat", "<", "1", "]", "=", "1", "data", "=", "log", "(", "dat", "+", "exp", "(", "1", ")", ")", "elif", "self", ".", "sample_norm_method", "==", "'custom'", ":", "self", ".", "_logger", ".", "info", "(", "\"Use custom rank metric for ssGSEA\"", ")", "data", "=", "dat", "else", ":", "sys", ".", "stderr", ".", "write", "(", "\"No supported method: %s\"", "%", "self", ".", "sample_norm_method", ")", "sys", ".", "exit", "(", "0", ")", "return", "data" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
SingleSampleGSEA.run
run entry
gseapy/gsea.py
def run(self): """run entry""" self._logger.info("Parsing data files for ssGSEA...........................") # load data data = self.load_data() # normalized samples, and rank normdat = self.norm_samples(data) # filtering out gene sets and build gene sets dictionary gmt = self.load_gmt(gene_list=normdat.index.values, gmt=self.gene_sets) self._logger.info("%04d gene_sets used for further statistical testing....."% len(gmt)) # set cpu numbers self._set_cores() # start analsis self._logger.info("Start to run ssGSEA...Might take a while................") if self.permutation_num == 0 : # ssGSEA without permutation self.runSamples(df=normdat, gmt=gmt) else: # run permutation procedure and calculate pvals, fdrs self._logger.warning("run ssGSEA with permutation procedure, don't use these part of results for publication.") self.runSamplesPermu(df=normdat, gmt=gmt) # clean up all outputs if _outdir is None if self._outdir is None: self._tmpdir.cleanup()
def run(self): """run entry""" self._logger.info("Parsing data files for ssGSEA...........................") # load data data = self.load_data() # normalized samples, and rank normdat = self.norm_samples(data) # filtering out gene sets and build gene sets dictionary gmt = self.load_gmt(gene_list=normdat.index.values, gmt=self.gene_sets) self._logger.info("%04d gene_sets used for further statistical testing....."% len(gmt)) # set cpu numbers self._set_cores() # start analsis self._logger.info("Start to run ssGSEA...Might take a while................") if self.permutation_num == 0 : # ssGSEA without permutation self.runSamples(df=normdat, gmt=gmt) else: # run permutation procedure and calculate pvals, fdrs self._logger.warning("run ssGSEA with permutation procedure, don't use these part of results for publication.") self.runSamplesPermu(df=normdat, gmt=gmt) # clean up all outputs if _outdir is None if self._outdir is None: self._tmpdir.cleanup()
[ "run", "entry" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L625-L648
[ "def", "run", "(", "self", ")", ":", "self", ".", "_logger", ".", "info", "(", "\"Parsing data files for ssGSEA...........................\"", ")", "# load data", "data", "=", "self", ".", "load_data", "(", ")", "# normalized samples, and rank", "normdat", "=", "self", ".", "norm_samples", "(", "data", ")", "# filtering out gene sets and build gene sets dictionary", "gmt", "=", "self", ".", "load_gmt", "(", "gene_list", "=", "normdat", ".", "index", ".", "values", ",", "gmt", "=", "self", ".", "gene_sets", ")", "self", ".", "_logger", ".", "info", "(", "\"%04d gene_sets used for further statistical testing.....\"", "%", "len", "(", "gmt", ")", ")", "# set cpu numbers", "self", ".", "_set_cores", "(", ")", "# start analsis", "self", ".", "_logger", ".", "info", "(", "\"Start to run ssGSEA...Might take a while................\"", ")", "if", "self", ".", "permutation_num", "==", "0", ":", "# ssGSEA without permutation", "self", ".", "runSamples", "(", "df", "=", "normdat", ",", "gmt", "=", "gmt", ")", "else", ":", "# run permutation procedure and calculate pvals, fdrs", "self", ".", "_logger", ".", "warning", "(", "\"run ssGSEA with permutation procedure, don't use these part of results for publication.\"", ")", "self", ".", "runSamplesPermu", "(", "df", "=", "normdat", ",", "gmt", "=", "gmt", ")", "# clean up all outputs if _outdir is None", "if", "self", ".", "_outdir", "is", "None", ":", "self", ".", "_tmpdir", ".", "cleanup", "(", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
SingleSampleGSEA.runSamplesPermu
Single Sample GSEA workflow with permutation procedure
gseapy/gsea.py
def runSamplesPermu(self, df, gmt=None): """Single Sample GSEA workflow with permutation procedure""" assert self.min_size <= self.max_size mkdirs(self.outdir) self.resultsOnSamples = OrderedDict() outdir = self.outdir # iter throught each sample for name, ser in df.iteritems(): self.outdir = os.path.join(outdir, str(name)) self._logger.info("Run Sample: %s " % name) mkdirs(self.outdir) # sort ranking values from high to low or reverse dat2 = ser.sort_values(ascending=self.ascending) # reset integer index, or caused unwanted problems # df.reset_index(drop=True, inplace=True) # compute ES, NES, pval, FDR, RES gsea_results, hit_ind,rank_ES, subsets = gsea_compute(data=dat2, n=self.permutation_num, gmt=gmt, weighted_score_type=self.weighted_score_type, permutation_type='gene_set', method=None, pheno_pos='', pheno_neg='', classes=None, ascending=self.ascending, processes=self._processes, seed=self.seed, single=True, scale=self.scale) # write file res_zip = zip(subsets, list(gsea_results), hit_ind, rank_ES) self._save_results(zipdata=res_zip, outdir=self.outdir, module=self.module, gmt=gmt, rank_metric=dat2, permutation_type="gene_sets") self.resultsOnSamples[name] = self.res2d.es # plotting if self._noplot: continue self._logger.info("Plotting Sample: %s \n" % name) self._plotting(rank_metric=dat2, results=self.results, graph_num=self.graph_num, outdir=self.outdir, figsize=self.figsize, format=self.format) # save es, nes to file self._save(outdir) return
def runSamplesPermu(self, df, gmt=None): """Single Sample GSEA workflow with permutation procedure""" assert self.min_size <= self.max_size mkdirs(self.outdir) self.resultsOnSamples = OrderedDict() outdir = self.outdir # iter throught each sample for name, ser in df.iteritems(): self.outdir = os.path.join(outdir, str(name)) self._logger.info("Run Sample: %s " % name) mkdirs(self.outdir) # sort ranking values from high to low or reverse dat2 = ser.sort_values(ascending=self.ascending) # reset integer index, or caused unwanted problems # df.reset_index(drop=True, inplace=True) # compute ES, NES, pval, FDR, RES gsea_results, hit_ind,rank_ES, subsets = gsea_compute(data=dat2, n=self.permutation_num, gmt=gmt, weighted_score_type=self.weighted_score_type, permutation_type='gene_set', method=None, pheno_pos='', pheno_neg='', classes=None, ascending=self.ascending, processes=self._processes, seed=self.seed, single=True, scale=self.scale) # write file res_zip = zip(subsets, list(gsea_results), hit_ind, rank_ES) self._save_results(zipdata=res_zip, outdir=self.outdir, module=self.module, gmt=gmt, rank_metric=dat2, permutation_type="gene_sets") self.resultsOnSamples[name] = self.res2d.es # plotting if self._noplot: continue self._logger.info("Plotting Sample: %s \n" % name) self._plotting(rank_metric=dat2, results=self.results, graph_num=self.graph_num, outdir=self.outdir, figsize=self.figsize, format=self.format) # save es, nes to file self._save(outdir) return
[ "Single", "Sample", "GSEA", "workflow", "with", "permutation", "procedure" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L650-L691
[ "def", "runSamplesPermu", "(", "self", ",", "df", ",", "gmt", "=", "None", ")", ":", "assert", "self", ".", "min_size", "<=", "self", ".", "max_size", "mkdirs", "(", "self", ".", "outdir", ")", "self", ".", "resultsOnSamples", "=", "OrderedDict", "(", ")", "outdir", "=", "self", ".", "outdir", "# iter throught each sample", "for", "name", ",", "ser", "in", "df", ".", "iteritems", "(", ")", ":", "self", ".", "outdir", "=", "os", ".", "path", ".", "join", "(", "outdir", ",", "str", "(", "name", ")", ")", "self", ".", "_logger", ".", "info", "(", "\"Run Sample: %s \"", "%", "name", ")", "mkdirs", "(", "self", ".", "outdir", ")", "# sort ranking values from high to low or reverse", "dat2", "=", "ser", ".", "sort_values", "(", "ascending", "=", "self", ".", "ascending", ")", "# reset integer index, or caused unwanted problems", "# df.reset_index(drop=True, inplace=True)", "# compute ES, NES, pval, FDR, RES", "gsea_results", ",", "hit_ind", ",", "rank_ES", ",", "subsets", "=", "gsea_compute", "(", "data", "=", "dat2", ",", "n", "=", "self", ".", "permutation_num", ",", "gmt", "=", "gmt", ",", "weighted_score_type", "=", "self", ".", "weighted_score_type", ",", "permutation_type", "=", "'gene_set'", ",", "method", "=", "None", ",", "pheno_pos", "=", "''", ",", "pheno_neg", "=", "''", ",", "classes", "=", "None", ",", "ascending", "=", "self", ".", "ascending", ",", "processes", "=", "self", ".", "_processes", ",", "seed", "=", "self", ".", "seed", ",", "single", "=", "True", ",", "scale", "=", "self", ".", "scale", ")", "# write file", "res_zip", "=", "zip", "(", "subsets", ",", "list", "(", "gsea_results", ")", ",", "hit_ind", ",", "rank_ES", ")", "self", ".", "_save_results", "(", "zipdata", "=", "res_zip", ",", "outdir", "=", "self", ".", "outdir", ",", "module", "=", "self", ".", "module", ",", "gmt", "=", "gmt", ",", "rank_metric", "=", "dat2", ",", "permutation_type", "=", "\"gene_sets\"", ")", "self", ".", "resultsOnSamples", "[", "name", "]", "=", "self", ".", "res2d", ".", "es", "# plotting", "if", "self", ".", "_noplot", ":", "continue", "self", ".", "_logger", ".", "info", "(", "\"Plotting Sample: %s \\n\"", "%", "name", ")", "self", ".", "_plotting", "(", "rank_metric", "=", "dat2", ",", "results", "=", "self", ".", "results", ",", "graph_num", "=", "self", ".", "graph_num", ",", "outdir", "=", "self", ".", "outdir", ",", "figsize", "=", "self", ".", "figsize", ",", "format", "=", "self", ".", "format", ")", "# save es, nes to file", "self", ".", "_save", "(", "outdir", ")", "return" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
SingleSampleGSEA.runSamples
Single Sample GSEA workflow. multiprocessing utility on samples.
gseapy/gsea.py
def runSamples(self, df, gmt=None): """Single Sample GSEA workflow. multiprocessing utility on samples. """ # df.index.values are gene_names # Save each sample results to odict self.resultsOnSamples = OrderedDict() outdir = self.outdir # run ssgsea for gct expression matrix #multi-threading subsets = sorted(gmt.keys()) tempes=[] names=[] rankings=[] pool = Pool(processes=self._processes) for name, ser in df.iteritems(): #prepare input dat = ser.sort_values(ascending=self.ascending) rankings.append(dat) names.append(name) genes_sorted, cor_vec = dat.index.values, dat.values rs = np.random.RandomState(self.seed) # apply_async tempes.append(pool.apply_async(enrichment_score_tensor, args=(genes_sorted, cor_vec, gmt, self.weighted_score_type, self.permutation_num, rs, True, self.scale))) pool.close() pool.join() # save results and plotting for i, temp in enumerate(tempes): name, rnk = names[i], rankings[i] self._logger.info("Calculate Enrichment Score for Sample: %s "%name) es, esnull, hit_ind, RES = temp.get() # create results subdir self.outdir= os.path.join(outdir, str(name)) mkdirs(self.outdir) # save results self.resultsOnSamples[name] = pd.Series(data=es, index=subsets, name=name) # plotting if self._noplot: continue self._logger.info("Plotting Sample: %s \n" % name) for i, term in enumerate(subsets): term = term.replace('/','_').replace(":","_") outfile = '{0}/{1}.{2}.{3}'.format(self.outdir, term, self.module, self.format) gseaplot(rank_metric=rnk, term=term, hits_indices=hit_ind[i], nes=es[i], pval=1, fdr=1, RES=RES[i], pheno_pos='', pheno_neg='', figsize=self.figsize, ofname=outfile) # save es, nes to file self._save(outdir) return
def runSamples(self, df, gmt=None): """Single Sample GSEA workflow. multiprocessing utility on samples. """ # df.index.values are gene_names # Save each sample results to odict self.resultsOnSamples = OrderedDict() outdir = self.outdir # run ssgsea for gct expression matrix #multi-threading subsets = sorted(gmt.keys()) tempes=[] names=[] rankings=[] pool = Pool(processes=self._processes) for name, ser in df.iteritems(): #prepare input dat = ser.sort_values(ascending=self.ascending) rankings.append(dat) names.append(name) genes_sorted, cor_vec = dat.index.values, dat.values rs = np.random.RandomState(self.seed) # apply_async tempes.append(pool.apply_async(enrichment_score_tensor, args=(genes_sorted, cor_vec, gmt, self.weighted_score_type, self.permutation_num, rs, True, self.scale))) pool.close() pool.join() # save results and plotting for i, temp in enumerate(tempes): name, rnk = names[i], rankings[i] self._logger.info("Calculate Enrichment Score for Sample: %s "%name) es, esnull, hit_ind, RES = temp.get() # create results subdir self.outdir= os.path.join(outdir, str(name)) mkdirs(self.outdir) # save results self.resultsOnSamples[name] = pd.Series(data=es, index=subsets, name=name) # plotting if self._noplot: continue self._logger.info("Plotting Sample: %s \n" % name) for i, term in enumerate(subsets): term = term.replace('/','_').replace(":","_") outfile = '{0}/{1}.{2}.{3}'.format(self.outdir, term, self.module, self.format) gseaplot(rank_metric=rnk, term=term, hits_indices=hit_ind[i], nes=es[i], pval=1, fdr=1, RES=RES[i], pheno_pos='', pheno_neg='', figsize=self.figsize, ofname=outfile) # save es, nes to file self._save(outdir) return
[ "Single", "Sample", "GSEA", "workflow", ".", "multiprocessing", "utility", "on", "samples", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L693-L747
[ "def", "runSamples", "(", "self", ",", "df", ",", "gmt", "=", "None", ")", ":", "# df.index.values are gene_names", "# Save each sample results to odict", "self", ".", "resultsOnSamples", "=", "OrderedDict", "(", ")", "outdir", "=", "self", ".", "outdir", "# run ssgsea for gct expression matrix", "#multi-threading", "subsets", "=", "sorted", "(", "gmt", ".", "keys", "(", ")", ")", "tempes", "=", "[", "]", "names", "=", "[", "]", "rankings", "=", "[", "]", "pool", "=", "Pool", "(", "processes", "=", "self", ".", "_processes", ")", "for", "name", ",", "ser", "in", "df", ".", "iteritems", "(", ")", ":", "#prepare input", "dat", "=", "ser", ".", "sort_values", "(", "ascending", "=", "self", ".", "ascending", ")", "rankings", ".", "append", "(", "dat", ")", "names", ".", "append", "(", "name", ")", "genes_sorted", ",", "cor_vec", "=", "dat", ".", "index", ".", "values", ",", "dat", ".", "values", "rs", "=", "np", ".", "random", ".", "RandomState", "(", "self", ".", "seed", ")", "# apply_async", "tempes", ".", "append", "(", "pool", ".", "apply_async", "(", "enrichment_score_tensor", ",", "args", "=", "(", "genes_sorted", ",", "cor_vec", ",", "gmt", ",", "self", ".", "weighted_score_type", ",", "self", ".", "permutation_num", ",", "rs", ",", "True", ",", "self", ".", "scale", ")", ")", ")", "pool", ".", "close", "(", ")", "pool", ".", "join", "(", ")", "# save results and plotting", "for", "i", ",", "temp", "in", "enumerate", "(", "tempes", ")", ":", "name", ",", "rnk", "=", "names", "[", "i", "]", ",", "rankings", "[", "i", "]", "self", ".", "_logger", ".", "info", "(", "\"Calculate Enrichment Score for Sample: %s \"", "%", "name", ")", "es", ",", "esnull", ",", "hit_ind", ",", "RES", "=", "temp", ".", "get", "(", ")", "# create results subdir", "self", ".", "outdir", "=", "os", ".", "path", ".", "join", "(", "outdir", ",", "str", "(", "name", ")", ")", "mkdirs", "(", "self", ".", "outdir", ")", "# save results", "self", ".", "resultsOnSamples", "[", "name", "]", "=", "pd", ".", "Series", "(", "data", "=", "es", ",", "index", "=", "subsets", ",", "name", "=", "name", ")", "# plotting", "if", "self", ".", "_noplot", ":", "continue", "self", ".", "_logger", ".", "info", "(", "\"Plotting Sample: %s \\n\"", "%", "name", ")", "for", "i", ",", "term", "in", "enumerate", "(", "subsets", ")", ":", "term", "=", "term", ".", "replace", "(", "'/'", ",", "'_'", ")", ".", "replace", "(", "\":\"", ",", "\"_\"", ")", "outfile", "=", "'{0}/{1}.{2}.{3}'", ".", "format", "(", "self", ".", "outdir", ",", "term", ",", "self", ".", "module", ",", "self", ".", "format", ")", "gseaplot", "(", "rank_metric", "=", "rnk", ",", "term", "=", "term", ",", "hits_indices", "=", "hit_ind", "[", "i", "]", ",", "nes", "=", "es", "[", "i", "]", ",", "pval", "=", "1", ",", "fdr", "=", "1", ",", "RES", "=", "RES", "[", "i", "]", ",", "pheno_pos", "=", "''", ",", "pheno_neg", "=", "''", ",", "figsize", "=", "self", ".", "figsize", ",", "ofname", "=", "outfile", ")", "# save es, nes to file", "self", ".", "_save", "(", "outdir", ")", "return" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
SingleSampleGSEA._save
save es and stats
gseapy/gsea.py
def _save(self, outdir): """save es and stats""" # save raw ES to one csv file samplesRawES = pd.DataFrame(self.resultsOnSamples) samplesRawES.index.name = 'Term|ES' # normalize enrichment scores by using the entire data set, as indicated # by Barbie et al., 2009, online methods, pg. 2 samplesNES = samplesRawES / (samplesRawES.values.max() - samplesRawES.values.min()) samplesNES = samplesNES.copy() samplesNES.index.rename('Term|NES', inplace=True) self.res2d = samplesNES self._logger.info("Congratulations. GSEApy runs successfully................\n") if self._outdir is None: return # write es outESfile = os.path.join(outdir, "gseapy.samples.raw.es.txt") with open(outESfile, 'a') as f: if self.scale: f.write('# scale the enrichment scores by number of genes in the gene sets\n') f.write('# this normalization has not effects on the final NES, ' + \ 'as indicated by Barbie et al., 2009, online methods, pg. 2\n') else: f.write('# raw enrichment scores of all data\n') f.write('# no scale es by numbers of genes in the gene sets\n') samplesRawES.to_csv(f, sep='\t') outNESfile = os.path.join(outdir, "gseapy.samples.normalized.es.txt") with open(outNESfile, 'a') as f: f.write('# normalize enrichment scores by using the entire data set\n') f.write('# as indicated by Barbie et al., 2009, online methods, pg. 2\n') samplesNES.to_csv(f, sep='\t') return
def _save(self, outdir): """save es and stats""" # save raw ES to one csv file samplesRawES = pd.DataFrame(self.resultsOnSamples) samplesRawES.index.name = 'Term|ES' # normalize enrichment scores by using the entire data set, as indicated # by Barbie et al., 2009, online methods, pg. 2 samplesNES = samplesRawES / (samplesRawES.values.max() - samplesRawES.values.min()) samplesNES = samplesNES.copy() samplesNES.index.rename('Term|NES', inplace=True) self.res2d = samplesNES self._logger.info("Congratulations. GSEApy runs successfully................\n") if self._outdir is None: return # write es outESfile = os.path.join(outdir, "gseapy.samples.raw.es.txt") with open(outESfile, 'a') as f: if self.scale: f.write('# scale the enrichment scores by number of genes in the gene sets\n') f.write('# this normalization has not effects on the final NES, ' + \ 'as indicated by Barbie et al., 2009, online methods, pg. 2\n') else: f.write('# raw enrichment scores of all data\n') f.write('# no scale es by numbers of genes in the gene sets\n') samplesRawES.to_csv(f, sep='\t') outNESfile = os.path.join(outdir, "gseapy.samples.normalized.es.txt") with open(outNESfile, 'a') as f: f.write('# normalize enrichment scores by using the entire data set\n') f.write('# as indicated by Barbie et al., 2009, online methods, pg. 2\n') samplesNES.to_csv(f, sep='\t') return
[ "save", "es", "and", "stats" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L749-L779
[ "def", "_save", "(", "self", ",", "outdir", ")", ":", "# save raw ES to one csv file", "samplesRawES", "=", "pd", ".", "DataFrame", "(", "self", ".", "resultsOnSamples", ")", "samplesRawES", ".", "index", ".", "name", "=", "'Term|ES'", "# normalize enrichment scores by using the entire data set, as indicated", "# by Barbie et al., 2009, online methods, pg. 2", "samplesNES", "=", "samplesRawES", "/", "(", "samplesRawES", ".", "values", ".", "max", "(", ")", "-", "samplesRawES", ".", "values", ".", "min", "(", ")", ")", "samplesNES", "=", "samplesNES", ".", "copy", "(", ")", "samplesNES", ".", "index", ".", "rename", "(", "'Term|NES'", ",", "inplace", "=", "True", ")", "self", ".", "res2d", "=", "samplesNES", "self", ".", "_logger", ".", "info", "(", "\"Congratulations. GSEApy runs successfully................\\n\"", ")", "if", "self", ".", "_outdir", "is", "None", ":", "return", "# write es", "outESfile", "=", "os", ".", "path", ".", "join", "(", "outdir", ",", "\"gseapy.samples.raw.es.txt\"", ")", "with", "open", "(", "outESfile", ",", "'a'", ")", "as", "f", ":", "if", "self", ".", "scale", ":", "f", ".", "write", "(", "'# scale the enrichment scores by number of genes in the gene sets\\n'", ")", "f", ".", "write", "(", "'# this normalization has not effects on the final NES, '", "+", "'as indicated by Barbie et al., 2009, online methods, pg. 2\\n'", ")", "else", ":", "f", ".", "write", "(", "'# raw enrichment scores of all data\\n'", ")", "f", ".", "write", "(", "'# no scale es by numbers of genes in the gene sets\\n'", ")", "samplesRawES", ".", "to_csv", "(", "f", ",", "sep", "=", "'\\t'", ")", "outNESfile", "=", "os", ".", "path", ".", "join", "(", "outdir", ",", "\"gseapy.samples.normalized.es.txt\"", ")", "with", "open", "(", "outNESfile", ",", "'a'", ")", "as", "f", ":", "f", ".", "write", "(", "'# normalize enrichment scores by using the entire data set\\n'", ")", "f", ".", "write", "(", "'# as indicated by Barbie et al., 2009, online methods, pg. 2\\n'", ")", "samplesNES", ".", "to_csv", "(", "f", ",", "sep", "=", "'\\t'", ")", "return" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
Replot.run
main replot function
gseapy/gsea.py
def run(self): """main replot function""" assert self.min_size <= self.max_size assert self.fignum > 0 import glob from bs4 import BeautifulSoup # parsing files....... try: results_path = glob.glob(self.indir+'*/edb/results.edb')[0] rank_path = glob.glob(self.indir+'*/edb/*.rnk')[0] gene_set_path = glob.glob(self.indir+'*/edb/gene_sets.gmt')[0] except IndexError as e: sys.stderr.write("Could not locate GSEA files in the given directory!") sys.exit(1) # extract sample names from .cls file cls_path = glob.glob(self.indir+'*/edb/*.cls') if cls_path: pos, neg, classes = gsea_cls_parser(cls_path[0]) else: # logic for prerank results pos, neg = '','' # start reploting self.gene_sets=gene_set_path # obtain gene sets gene_set_dict = self.parse_gmt(gmt=gene_set_path) # obtain rank_metrics rank_metric = self._load_ranking(rank_path) correl_vector = rank_metric.values gene_list = rank_metric.index.values # extract each enriment term in the results.edb files and plot. database = BeautifulSoup(open(results_path), features='xml') length = len(database.findAll('DTG')) fig_num = self.fignum if self.fignum <= length else length for idx in range(fig_num): # extract statistical resutls from results.edb file enrich_term, hit_ind, nes, pval, fdr= gsea_edb_parser(results_path, index=idx) gene_set = gene_set_dict.get(enrich_term) # calculate enrichment score RES = enrichment_score(gene_list=gene_list, correl_vector=correl_vector, gene_set=gene_set, weighted_score_type=self.weighted_score_type, nperm=0)[-1] # plotting term = enrich_term.replace('/','_').replace(":","_") outfile = '{0}/{1}.{2}.{3}'.format(self.outdir, term, self.module, self.format) gseaplot(rank_metric=rank_metric, term=enrich_term, hits_indices=hit_ind, nes=nes, pval=pval, fdr=fdr, RES=RES, pheno_pos=pos, pheno_neg=neg, figsize=self.figsize, ofname=outfile) self._logger.info("Congratulations! Your plots have been reproduced successfully!\n")
def run(self): """main replot function""" assert self.min_size <= self.max_size assert self.fignum > 0 import glob from bs4 import BeautifulSoup # parsing files....... try: results_path = glob.glob(self.indir+'*/edb/results.edb')[0] rank_path = glob.glob(self.indir+'*/edb/*.rnk')[0] gene_set_path = glob.glob(self.indir+'*/edb/gene_sets.gmt')[0] except IndexError as e: sys.stderr.write("Could not locate GSEA files in the given directory!") sys.exit(1) # extract sample names from .cls file cls_path = glob.glob(self.indir+'*/edb/*.cls') if cls_path: pos, neg, classes = gsea_cls_parser(cls_path[0]) else: # logic for prerank results pos, neg = '','' # start reploting self.gene_sets=gene_set_path # obtain gene sets gene_set_dict = self.parse_gmt(gmt=gene_set_path) # obtain rank_metrics rank_metric = self._load_ranking(rank_path) correl_vector = rank_metric.values gene_list = rank_metric.index.values # extract each enriment term in the results.edb files and plot. database = BeautifulSoup(open(results_path), features='xml') length = len(database.findAll('DTG')) fig_num = self.fignum if self.fignum <= length else length for idx in range(fig_num): # extract statistical resutls from results.edb file enrich_term, hit_ind, nes, pval, fdr= gsea_edb_parser(results_path, index=idx) gene_set = gene_set_dict.get(enrich_term) # calculate enrichment score RES = enrichment_score(gene_list=gene_list, correl_vector=correl_vector, gene_set=gene_set, weighted_score_type=self.weighted_score_type, nperm=0)[-1] # plotting term = enrich_term.replace('/','_').replace(":","_") outfile = '{0}/{1}.{2}.{3}'.format(self.outdir, term, self.module, self.format) gseaplot(rank_metric=rank_metric, term=enrich_term, hits_indices=hit_ind, nes=nes, pval=pval, fdr=fdr, RES=RES, pheno_pos=pos, pheno_neg=neg, figsize=self.figsize, ofname=outfile) self._logger.info("Congratulations! Your plots have been reproduced successfully!\n")
[ "main", "replot", "function" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/gsea.py#L802-L854
[ "def", "run", "(", "self", ")", ":", "assert", "self", ".", "min_size", "<=", "self", ".", "max_size", "assert", "self", ".", "fignum", ">", "0", "import", "glob", "from", "bs4", "import", "BeautifulSoup", "# parsing files.......", "try", ":", "results_path", "=", "glob", ".", "glob", "(", "self", ".", "indir", "+", "'*/edb/results.edb'", ")", "[", "0", "]", "rank_path", "=", "glob", ".", "glob", "(", "self", ".", "indir", "+", "'*/edb/*.rnk'", ")", "[", "0", "]", "gene_set_path", "=", "glob", ".", "glob", "(", "self", ".", "indir", "+", "'*/edb/gene_sets.gmt'", ")", "[", "0", "]", "except", "IndexError", "as", "e", ":", "sys", ".", "stderr", ".", "write", "(", "\"Could not locate GSEA files in the given directory!\"", ")", "sys", ".", "exit", "(", "1", ")", "# extract sample names from .cls file", "cls_path", "=", "glob", ".", "glob", "(", "self", ".", "indir", "+", "'*/edb/*.cls'", ")", "if", "cls_path", ":", "pos", ",", "neg", ",", "classes", "=", "gsea_cls_parser", "(", "cls_path", "[", "0", "]", ")", "else", ":", "# logic for prerank results", "pos", ",", "neg", "=", "''", ",", "''", "# start reploting", "self", ".", "gene_sets", "=", "gene_set_path", "# obtain gene sets", "gene_set_dict", "=", "self", ".", "parse_gmt", "(", "gmt", "=", "gene_set_path", ")", "# obtain rank_metrics", "rank_metric", "=", "self", ".", "_load_ranking", "(", "rank_path", ")", "correl_vector", "=", "rank_metric", ".", "values", "gene_list", "=", "rank_metric", ".", "index", ".", "values", "# extract each enriment term in the results.edb files and plot.", "database", "=", "BeautifulSoup", "(", "open", "(", "results_path", ")", ",", "features", "=", "'xml'", ")", "length", "=", "len", "(", "database", ".", "findAll", "(", "'DTG'", ")", ")", "fig_num", "=", "self", ".", "fignum", "if", "self", ".", "fignum", "<=", "length", "else", "length", "for", "idx", "in", "range", "(", "fig_num", ")", ":", "# extract statistical resutls from results.edb file", "enrich_term", ",", "hit_ind", ",", "nes", ",", "pval", ",", "fdr", "=", "gsea_edb_parser", "(", "results_path", ",", "index", "=", "idx", ")", "gene_set", "=", "gene_set_dict", ".", "get", "(", "enrich_term", ")", "# calculate enrichment score", "RES", "=", "enrichment_score", "(", "gene_list", "=", "gene_list", ",", "correl_vector", "=", "correl_vector", ",", "gene_set", "=", "gene_set", ",", "weighted_score_type", "=", "self", ".", "weighted_score_type", ",", "nperm", "=", "0", ")", "[", "-", "1", "]", "# plotting", "term", "=", "enrich_term", ".", "replace", "(", "'/'", ",", "'_'", ")", ".", "replace", "(", "\":\"", ",", "\"_\"", ")", "outfile", "=", "'{0}/{1}.{2}.{3}'", ".", "format", "(", "self", ".", "outdir", ",", "term", ",", "self", ".", "module", ",", "self", ".", "format", ")", "gseaplot", "(", "rank_metric", "=", "rank_metric", ",", "term", "=", "enrich_term", ",", "hits_indices", "=", "hit_ind", ",", "nes", "=", "nes", ",", "pval", "=", "pval", ",", "fdr", "=", "fdr", ",", "RES", "=", "RES", ",", "pheno_pos", "=", "pos", ",", "pheno_neg", "=", "neg", ",", "figsize", "=", "self", ".", "figsize", ",", "ofname", "=", "outfile", ")", "self", ".", "_logger", ".", "info", "(", "\"Congratulations! Your plots have been reproduced successfully!\\n\"", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
enrichr
Enrichr API. :param gene_list: Flat file with list of genes, one gene id per row, or a python list object :param gene_sets: Enrichr Library to query. Required enrichr library name(s). Separate each name by comma. :param organism: Enrichr supported organism. Select from (human, mouse, yeast, fly, fish, worm). see here for details: https://amp.pharm.mssm.edu/modEnrichr :param description: name of analysis. optional. :param outdir: Output file directory :param float cutoff: Adjusted P-value (benjamini-hochberg correction) cutoff. Default: 0.05 :param int background: BioMart dataset name for retrieving background gene information. This argument only works when gene_sets input is a gmt file or python dict. You could also specify a number by yourself, e.g. total expressed genes number. In this case, you will skip retrieving background infos from biomart. Use the code below to see valid background dataset names from BioMart. Here are example code: >>> from gseapy.parser import Biomart >>> bm = Biomart(verbose=False, host="asia.ensembl.org") >>> ## view validated marts >>> marts = bm.get_marts() >>> ## view validated dataset >>> datasets = bm.get_datasets(mart='ENSEMBL_MART_ENSEMBL') :param str format: Output figure format supported by matplotlib,('pdf','png','eps'...). Default: 'pdf'. :param list figsize: Matplotlib figsize, accept a tuple or list, e.g. (width,height). Default: (6.5,6). :param bool no_plot: If equals to True, no figure will be drawn. Default: False. :param bool verbose: Increase output verbosity, print out progress of your job, Default: False. :return: An Enrichr object, which obj.res2d stores your last query, obj.results stores your all queries.
gseapy/enrichr.py
def enrichr(gene_list, gene_sets, organism='human', description='', outdir='Enrichr', background='hsapiens_gene_ensembl', cutoff=0.05, format='pdf', figsize=(8,6), top_term=10, no_plot=False, verbose=False): """Enrichr API. :param gene_list: Flat file with list of genes, one gene id per row, or a python list object :param gene_sets: Enrichr Library to query. Required enrichr library name(s). Separate each name by comma. :param organism: Enrichr supported organism. Select from (human, mouse, yeast, fly, fish, worm). see here for details: https://amp.pharm.mssm.edu/modEnrichr :param description: name of analysis. optional. :param outdir: Output file directory :param float cutoff: Adjusted P-value (benjamini-hochberg correction) cutoff. Default: 0.05 :param int background: BioMart dataset name for retrieving background gene information. This argument only works when gene_sets input is a gmt file or python dict. You could also specify a number by yourself, e.g. total expressed genes number. In this case, you will skip retrieving background infos from biomart. Use the code below to see valid background dataset names from BioMart. Here are example code: >>> from gseapy.parser import Biomart >>> bm = Biomart(verbose=False, host="asia.ensembl.org") >>> ## view validated marts >>> marts = bm.get_marts() >>> ## view validated dataset >>> datasets = bm.get_datasets(mart='ENSEMBL_MART_ENSEMBL') :param str format: Output figure format supported by matplotlib,('pdf','png','eps'...). Default: 'pdf'. :param list figsize: Matplotlib figsize, accept a tuple or list, e.g. (width,height). Default: (6.5,6). :param bool no_plot: If equals to True, no figure will be drawn. Default: False. :param bool verbose: Increase output verbosity, print out progress of your job, Default: False. :return: An Enrichr object, which obj.res2d stores your last query, obj.results stores your all queries. """ enr = Enrichr(gene_list, gene_sets, organism, description, outdir, cutoff, background, format, figsize, top_term, no_plot, verbose) enr.run() return enr
def enrichr(gene_list, gene_sets, organism='human', description='', outdir='Enrichr', background='hsapiens_gene_ensembl', cutoff=0.05, format='pdf', figsize=(8,6), top_term=10, no_plot=False, verbose=False): """Enrichr API. :param gene_list: Flat file with list of genes, one gene id per row, or a python list object :param gene_sets: Enrichr Library to query. Required enrichr library name(s). Separate each name by comma. :param organism: Enrichr supported organism. Select from (human, mouse, yeast, fly, fish, worm). see here for details: https://amp.pharm.mssm.edu/modEnrichr :param description: name of analysis. optional. :param outdir: Output file directory :param float cutoff: Adjusted P-value (benjamini-hochberg correction) cutoff. Default: 0.05 :param int background: BioMart dataset name for retrieving background gene information. This argument only works when gene_sets input is a gmt file or python dict. You could also specify a number by yourself, e.g. total expressed genes number. In this case, you will skip retrieving background infos from biomart. Use the code below to see valid background dataset names from BioMart. Here are example code: >>> from gseapy.parser import Biomart >>> bm = Biomart(verbose=False, host="asia.ensembl.org") >>> ## view validated marts >>> marts = bm.get_marts() >>> ## view validated dataset >>> datasets = bm.get_datasets(mart='ENSEMBL_MART_ENSEMBL') :param str format: Output figure format supported by matplotlib,('pdf','png','eps'...). Default: 'pdf'. :param list figsize: Matplotlib figsize, accept a tuple or list, e.g. (width,height). Default: (6.5,6). :param bool no_plot: If equals to True, no figure will be drawn. Default: False. :param bool verbose: Increase output verbosity, print out progress of your job, Default: False. :return: An Enrichr object, which obj.res2d stores your last query, obj.results stores your all queries. """ enr = Enrichr(gene_list, gene_sets, organism, description, outdir, cutoff, background, format, figsize, top_term, no_plot, verbose) enr.run() return enr
[ "Enrichr", "API", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/enrichr.py#L355-L393
[ "def", "enrichr", "(", "gene_list", ",", "gene_sets", ",", "organism", "=", "'human'", ",", "description", "=", "''", ",", "outdir", "=", "'Enrichr'", ",", "background", "=", "'hsapiens_gene_ensembl'", ",", "cutoff", "=", "0.05", ",", "format", "=", "'pdf'", ",", "figsize", "=", "(", "8", ",", "6", ")", ",", "top_term", "=", "10", ",", "no_plot", "=", "False", ",", "verbose", "=", "False", ")", ":", "enr", "=", "Enrichr", "(", "gene_list", ",", "gene_sets", ",", "organism", ",", "description", ",", "outdir", ",", "cutoff", ",", "background", ",", "format", ",", "figsize", ",", "top_term", ",", "no_plot", ",", "verbose", ")", "enr", ".", "run", "(", ")", "return", "enr" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
Enrichr.prepare_outdir
create temp directory.
gseapy/enrichr.py
def prepare_outdir(self): """create temp directory.""" self._outdir = self.outdir if self._outdir is None: self._tmpdir = TemporaryDirectory() self.outdir = self._tmpdir.name elif isinstance(self.outdir, str): mkdirs(self.outdir) else: raise Exception("Error parsing outdir: %s"%type(self.outdir)) # handle gene_sets logfile = os.path.join(self.outdir, "gseapy.%s.%s.log" % (self.module, self.descriptions)) return logfile
def prepare_outdir(self): """create temp directory.""" self._outdir = self.outdir if self._outdir is None: self._tmpdir = TemporaryDirectory() self.outdir = self._tmpdir.name elif isinstance(self.outdir, str): mkdirs(self.outdir) else: raise Exception("Error parsing outdir: %s"%type(self.outdir)) # handle gene_sets logfile = os.path.join(self.outdir, "gseapy.%s.%s.log" % (self.module, self.descriptions)) return logfile
[ "create", "temp", "directory", "." ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/enrichr.py#L50-L63
[ "def", "prepare_outdir", "(", "self", ")", ":", "self", ".", "_outdir", "=", "self", ".", "outdir", "if", "self", ".", "_outdir", "is", "None", ":", "self", ".", "_tmpdir", "=", "TemporaryDirectory", "(", ")", "self", ".", "outdir", "=", "self", ".", "_tmpdir", ".", "name", "elif", "isinstance", "(", "self", ".", "outdir", ",", "str", ")", ":", "mkdirs", "(", "self", ".", "outdir", ")", "else", ":", "raise", "Exception", "(", "\"Error parsing outdir: %s\"", "%", "type", "(", "self", ".", "outdir", ")", ")", "# handle gene_sets", "logfile", "=", "os", ".", "path", ".", "join", "(", "self", ".", "outdir", ",", "\"gseapy.%s.%s.log\"", "%", "(", "self", ".", "module", ",", "self", ".", "descriptions", ")", ")", "return", "logfile" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
Enrichr.parse_genesets
parse gene_sets input file type
gseapy/enrichr.py
def parse_genesets(self): """parse gene_sets input file type""" enrichr_library = self.get_libraries() if isinstance(self.gene_sets, list): gss = self.gene_sets elif isinstance(self.gene_sets, str): gss = [ g.strip() for g in self.gene_sets.strip().split(",") ] elif isinstance(self.gene_sets, dict): gss = [self.gene_sets] else: raise Exception("Error parsing enrichr libraries, please provided corrected one") # gss: a list contain .gmt, dict, enrichr_liraries. # now, convert .gmt to dict gss_exist = [] for g in gss: if isinstance(g, dict): gss_exist.append(g) continue if isinstance(g, str): if g in enrichr_library: gss_exist.append(g) continue if g.lower().endswith(".gmt") and os.path.exists(g): self._logger.info("User Defined gene sets is given: %s"%g) with open(g) as genesets: g_dict = { line.strip().split("\t")[0]: line.strip().split("\t")[2:] for line in genesets.readlines() } gss_exist.append(g_dict) return gss_exist
def parse_genesets(self): """parse gene_sets input file type""" enrichr_library = self.get_libraries() if isinstance(self.gene_sets, list): gss = self.gene_sets elif isinstance(self.gene_sets, str): gss = [ g.strip() for g in self.gene_sets.strip().split(",") ] elif isinstance(self.gene_sets, dict): gss = [self.gene_sets] else: raise Exception("Error parsing enrichr libraries, please provided corrected one") # gss: a list contain .gmt, dict, enrichr_liraries. # now, convert .gmt to dict gss_exist = [] for g in gss: if isinstance(g, dict): gss_exist.append(g) continue if isinstance(g, str): if g in enrichr_library: gss_exist.append(g) continue if g.lower().endswith(".gmt") and os.path.exists(g): self._logger.info("User Defined gene sets is given: %s"%g) with open(g) as genesets: g_dict = { line.strip().split("\t")[0]: line.strip().split("\t")[2:] for line in genesets.readlines() } gss_exist.append(g_dict) return gss_exist
[ "parse", "gene_sets", "input", "file", "type" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/enrichr.py#L65-L96
[ "def", "parse_genesets", "(", "self", ")", ":", "enrichr_library", "=", "self", ".", "get_libraries", "(", ")", "if", "isinstance", "(", "self", ".", "gene_sets", ",", "list", ")", ":", "gss", "=", "self", ".", "gene_sets", "elif", "isinstance", "(", "self", ".", "gene_sets", ",", "str", ")", ":", "gss", "=", "[", "g", ".", "strip", "(", ")", "for", "g", "in", "self", ".", "gene_sets", ".", "strip", "(", ")", ".", "split", "(", "\",\"", ")", "]", "elif", "isinstance", "(", "self", ".", "gene_sets", ",", "dict", ")", ":", "gss", "=", "[", "self", ".", "gene_sets", "]", "else", ":", "raise", "Exception", "(", "\"Error parsing enrichr libraries, please provided corrected one\"", ")", "# gss: a list contain .gmt, dict, enrichr_liraries.", "# now, convert .gmt to dict", "gss_exist", "=", "[", "]", "for", "g", "in", "gss", ":", "if", "isinstance", "(", "g", ",", "dict", ")", ":", "gss_exist", ".", "append", "(", "g", ")", "continue", "if", "isinstance", "(", "g", ",", "str", ")", ":", "if", "g", "in", "enrichr_library", ":", "gss_exist", ".", "append", "(", "g", ")", "continue", "if", "g", ".", "lower", "(", ")", ".", "endswith", "(", "\".gmt\"", ")", "and", "os", ".", "path", ".", "exists", "(", "g", ")", ":", "self", ".", "_logger", ".", "info", "(", "\"User Defined gene sets is given: %s\"", "%", "g", ")", "with", "open", "(", "g", ")", "as", "genesets", ":", "g_dict", "=", "{", "line", ".", "strip", "(", ")", ".", "split", "(", "\"\\t\"", ")", "[", "0", "]", ":", "line", ".", "strip", "(", ")", ".", "split", "(", "\"\\t\"", ")", "[", "2", ":", "]", "for", "line", "in", "genesets", ".", "readlines", "(", ")", "}", "gss_exist", ".", "append", "(", "g_dict", ")", "return", "gss_exist" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
Enrichr.parse_genelists
parse gene list
gseapy/enrichr.py
def parse_genelists(self): """parse gene list""" if isinstance(self.gene_list, list): genes = self.gene_list elif isinstance(self.gene_list, pd.DataFrame): # input type is bed file if self.gene_list.shape[1] >=3: genes= self.gene_list.iloc[:,:3].apply(lambda x: "\t".join([str(i) for i in x]), axis=1).tolist() # input type with weight values elif self.gene_list.shape[1] == 2: genes= self.gene_list.apply(lambda x: ",".join([str(i) for i in x]), axis=1).tolist() else: genes = self.gene_list.squeeze().tolist() elif isinstance(self.gene_list, pd.Series): genes = self.gene_list.squeeze().tolist() else: # get gene lists or bed file, or gene list with weighted values. genes=[] with open(self.gene_list) as f: for gene in f: genes.append(gene.strip()) self._isezid = all(map(self._is_entrez_id, genes)) if self._isezid: self._gls = set(map(int, self._gls)) else: self._gls = genes return '\n'.join(genes)
def parse_genelists(self): """parse gene list""" if isinstance(self.gene_list, list): genes = self.gene_list elif isinstance(self.gene_list, pd.DataFrame): # input type is bed file if self.gene_list.shape[1] >=3: genes= self.gene_list.iloc[:,:3].apply(lambda x: "\t".join([str(i) for i in x]), axis=1).tolist() # input type with weight values elif self.gene_list.shape[1] == 2: genes= self.gene_list.apply(lambda x: ",".join([str(i) for i in x]), axis=1).tolist() else: genes = self.gene_list.squeeze().tolist() elif isinstance(self.gene_list, pd.Series): genes = self.gene_list.squeeze().tolist() else: # get gene lists or bed file, or gene list with weighted values. genes=[] with open(self.gene_list) as f: for gene in f: genes.append(gene.strip()) self._isezid = all(map(self._is_entrez_id, genes)) if self._isezid: self._gls = set(map(int, self._gls)) else: self._gls = genes return '\n'.join(genes)
[ "parse", "gene", "list" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/enrichr.py#L98-L126
[ "def", "parse_genelists", "(", "self", ")", ":", "if", "isinstance", "(", "self", ".", "gene_list", ",", "list", ")", ":", "genes", "=", "self", ".", "gene_list", "elif", "isinstance", "(", "self", ".", "gene_list", ",", "pd", ".", "DataFrame", ")", ":", "# input type is bed file", "if", "self", ".", "gene_list", ".", "shape", "[", "1", "]", ">=", "3", ":", "genes", "=", "self", ".", "gene_list", ".", "iloc", "[", ":", ",", ":", "3", "]", ".", "apply", "(", "lambda", "x", ":", "\"\\t\"", ".", "join", "(", "[", "str", "(", "i", ")", "for", "i", "in", "x", "]", ")", ",", "axis", "=", "1", ")", ".", "tolist", "(", ")", "# input type with weight values", "elif", "self", ".", "gene_list", ".", "shape", "[", "1", "]", "==", "2", ":", "genes", "=", "self", ".", "gene_list", ".", "apply", "(", "lambda", "x", ":", "\",\"", ".", "join", "(", "[", "str", "(", "i", ")", "for", "i", "in", "x", "]", ")", ",", "axis", "=", "1", ")", ".", "tolist", "(", ")", "else", ":", "genes", "=", "self", ".", "gene_list", ".", "squeeze", "(", ")", ".", "tolist", "(", ")", "elif", "isinstance", "(", "self", ".", "gene_list", ",", "pd", ".", "Series", ")", ":", "genes", "=", "self", ".", "gene_list", ".", "squeeze", "(", ")", ".", "tolist", "(", ")", "else", ":", "# get gene lists or bed file, or gene list with weighted values.", "genes", "=", "[", "]", "with", "open", "(", "self", ".", "gene_list", ")", "as", "f", ":", "for", "gene", "in", "f", ":", "genes", ".", "append", "(", "gene", ".", "strip", "(", ")", ")", "self", ".", "_isezid", "=", "all", "(", "map", "(", "self", ".", "_is_entrez_id", ",", "genes", ")", ")", "if", "self", ".", "_isezid", ":", "self", ".", "_gls", "=", "set", "(", "map", "(", "int", ",", "self", ".", "_gls", ")", ")", "else", ":", "self", ".", "_gls", "=", "genes", "return", "'\\n'", ".", "join", "(", "genes", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
Enrichr.send_genes
send gene list to enrichr server
gseapy/enrichr.py
def send_genes(self, gene_list, url): """ send gene list to enrichr server""" payload = { 'list': (None, gene_list), 'description': (None, self.descriptions) } # response response = requests.post(url, files=payload) if not response.ok: raise Exception('Error analyzing gene list') sleep(1) job_id = json.loads(response.text) return job_id
def send_genes(self, gene_list, url): """ send gene list to enrichr server""" payload = { 'list': (None, gene_list), 'description': (None, self.descriptions) } # response response = requests.post(url, files=payload) if not response.ok: raise Exception('Error analyzing gene list') sleep(1) job_id = json.loads(response.text) return job_id
[ "send", "gene", "list", "to", "enrichr", "server" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/enrichr.py#L128-L141
[ "def", "send_genes", "(", "self", ",", "gene_list", ",", "url", ")", ":", "payload", "=", "{", "'list'", ":", "(", "None", ",", "gene_list", ")", ",", "'description'", ":", "(", "None", ",", "self", ".", "descriptions", ")", "}", "# response", "response", "=", "requests", ".", "post", "(", "url", ",", "files", "=", "payload", ")", "if", "not", "response", ".", "ok", ":", "raise", "Exception", "(", "'Error analyzing gene list'", ")", "sleep", "(", "1", ")", "job_id", "=", "json", ".", "loads", "(", "response", ".", "text", ")", "return", "job_id" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
Enrichr.check_genes
Compare the genes sent and received to get successfully recognized genes
gseapy/enrichr.py
def check_genes(self, gene_list, usr_list_id): ''' Compare the genes sent and received to get successfully recognized genes ''' response = requests.get('http://amp.pharm.mssm.edu/Enrichr/view?userListId=%s' % usr_list_id) if not response.ok: raise Exception('Error getting gene list back') returnedL = json.loads(response.text)["genes"] returnedN = sum([1 for gene in gene_list if gene in returnedL]) self._logger.info('{} genes successfully recognized by Enrichr'.format(returnedN))
def check_genes(self, gene_list, usr_list_id): ''' Compare the genes sent and received to get successfully recognized genes ''' response = requests.get('http://amp.pharm.mssm.edu/Enrichr/view?userListId=%s' % usr_list_id) if not response.ok: raise Exception('Error getting gene list back') returnedL = json.loads(response.text)["genes"] returnedN = sum([1 for gene in gene_list if gene in returnedL]) self._logger.info('{} genes successfully recognized by Enrichr'.format(returnedN))
[ "Compare", "the", "genes", "sent", "and", "received", "to", "get", "successfully", "recognized", "genes" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/enrichr.py#L143-L152
[ "def", "check_genes", "(", "self", ",", "gene_list", ",", "usr_list_id", ")", ":", "response", "=", "requests", ".", "get", "(", "'http://amp.pharm.mssm.edu/Enrichr/view?userListId=%s'", "%", "usr_list_id", ")", "if", "not", "response", ".", "ok", ":", "raise", "Exception", "(", "'Error getting gene list back'", ")", "returnedL", "=", "json", ".", "loads", "(", "response", ".", "text", ")", "[", "\"genes\"", "]", "returnedN", "=", "sum", "(", "[", "1", "for", "gene", "in", "gene_list", "if", "gene", "in", "returnedL", "]", ")", "self", ".", "_logger", ".", "info", "(", "'{} genes successfully recognized by Enrichr'", ".", "format", "(", "returnedN", ")", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
Enrichr.get_results
Enrichr API
gseapy/enrichr.py
def get_results(self, gene_list): """Enrichr API""" ADDLIST_URL = 'http://amp.pharm.mssm.edu/%sEnrichr/addList'%self._organism job_id = self.send_genes(gene_list, ADDLIST_URL) user_list_id = job_id['userListId'] RESULTS_URL = 'http://amp.pharm.mssm.edu/%sEnrichr/export'%self._organism query_string = '?userListId=%s&filename=%s&backgroundType=%s' # set max retries num =5 s = retry(num=5) filename = "%s.%s.reports" % (self._gs, self.descriptions) url = RESULTS_URL + query_string % (user_list_id, filename, self._gs) response = s.get(url, stream=True, timeout=None) # response = requests.get(RESULTS_URL + query_string % (user_list_id, gene_set)) sleep(1) res = pd.read_csv(StringIO(response.content.decode('utf-8')),sep="\t") return [job_id['shortId'], res]
def get_results(self, gene_list): """Enrichr API""" ADDLIST_URL = 'http://amp.pharm.mssm.edu/%sEnrichr/addList'%self._organism job_id = self.send_genes(gene_list, ADDLIST_URL) user_list_id = job_id['userListId'] RESULTS_URL = 'http://amp.pharm.mssm.edu/%sEnrichr/export'%self._organism query_string = '?userListId=%s&filename=%s&backgroundType=%s' # set max retries num =5 s = retry(num=5) filename = "%s.%s.reports" % (self._gs, self.descriptions) url = RESULTS_URL + query_string % (user_list_id, filename, self._gs) response = s.get(url, stream=True, timeout=None) # response = requests.get(RESULTS_URL + query_string % (user_list_id, gene_set)) sleep(1) res = pd.read_csv(StringIO(response.content.decode('utf-8')),sep="\t") return [job_id['shortId'], res]
[ "Enrichr", "API" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/enrichr.py#L154-L170
[ "def", "get_results", "(", "self", ",", "gene_list", ")", ":", "ADDLIST_URL", "=", "'http://amp.pharm.mssm.edu/%sEnrichr/addList'", "%", "self", ".", "_organism", "job_id", "=", "self", ".", "send_genes", "(", "gene_list", ",", "ADDLIST_URL", ")", "user_list_id", "=", "job_id", "[", "'userListId'", "]", "RESULTS_URL", "=", "'http://amp.pharm.mssm.edu/%sEnrichr/export'", "%", "self", ".", "_organism", "query_string", "=", "'?userListId=%s&filename=%s&backgroundType=%s'", "# set max retries num =5", "s", "=", "retry", "(", "num", "=", "5", ")", "filename", "=", "\"%s.%s.reports\"", "%", "(", "self", ".", "_gs", ",", "self", ".", "descriptions", ")", "url", "=", "RESULTS_URL", "+", "query_string", "%", "(", "user_list_id", ",", "filename", ",", "self", ".", "_gs", ")", "response", "=", "s", ".", "get", "(", "url", ",", "stream", "=", "True", ",", "timeout", "=", "None", ")", "# response = requests.get(RESULTS_URL + query_string % (user_list_id, gene_set))", "sleep", "(", "1", ")", "res", "=", "pd", ".", "read_csv", "(", "StringIO", "(", "response", ".", "content", ".", "decode", "(", "'utf-8'", ")", ")", ",", "sep", "=", "\"\\t\"", ")", "return", "[", "job_id", "[", "'shortId'", "]", ",", "res", "]" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
Enrichr.get_background
get background gene
gseapy/enrichr.py
def get_background(self): """get background gene""" # input is a file if os.path.isfile(self.background): with open(self.background) as b: bg2 = b.readlines() bg = [g.strip() for g in bg2] return set(bg) # package included data DB_FILE = resource_filename("gseapy", "data/{}.background.genes.txt".format(self.background)) filename = os.path.join(DEFAULT_CACHE_PATH, "{}.background.genes.txt".format(self.background)) if os.path.exists(filename): df = pd.read_csv(filename,sep="\t") elif os.path.exists(DB_FILE): df = pd.read_csv(DB_FILE,sep="\t") else: # background is a biomart database name self._logger.warning("Downloading %s for the first time. It might take a couple of miniutes."%self.background) bm = Biomart() df = bm.query(dataset=self.background) df.dropna(subset=['go_id'], inplace=True) self._logger.info("using all annotated genes with GO_ID as background genes") df.dropna(subset=['entrezgene'], inplace=True) # input id type: entrez or gene_name if self._isezid: bg = df['entrezgene'].astype(int) else: bg = df['external_gene_name'] return set(bg)
def get_background(self): """get background gene""" # input is a file if os.path.isfile(self.background): with open(self.background) as b: bg2 = b.readlines() bg = [g.strip() for g in bg2] return set(bg) # package included data DB_FILE = resource_filename("gseapy", "data/{}.background.genes.txt".format(self.background)) filename = os.path.join(DEFAULT_CACHE_PATH, "{}.background.genes.txt".format(self.background)) if os.path.exists(filename): df = pd.read_csv(filename,sep="\t") elif os.path.exists(DB_FILE): df = pd.read_csv(DB_FILE,sep="\t") else: # background is a biomart database name self._logger.warning("Downloading %s for the first time. It might take a couple of miniutes."%self.background) bm = Biomart() df = bm.query(dataset=self.background) df.dropna(subset=['go_id'], inplace=True) self._logger.info("using all annotated genes with GO_ID as background genes") df.dropna(subset=['entrezgene'], inplace=True) # input id type: entrez or gene_name if self._isezid: bg = df['entrezgene'].astype(int) else: bg = df['external_gene_name'] return set(bg)
[ "get", "background", "gene" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/enrichr.py#L186-L217
[ "def", "get_background", "(", "self", ")", ":", "# input is a file", "if", "os", ".", "path", ".", "isfile", "(", "self", ".", "background", ")", ":", "with", "open", "(", "self", ".", "background", ")", "as", "b", ":", "bg2", "=", "b", ".", "readlines", "(", ")", "bg", "=", "[", "g", ".", "strip", "(", ")", "for", "g", "in", "bg2", "]", "return", "set", "(", "bg", ")", "# package included data", "DB_FILE", "=", "resource_filename", "(", "\"gseapy\"", ",", "\"data/{}.background.genes.txt\"", ".", "format", "(", "self", ".", "background", ")", ")", "filename", "=", "os", ".", "path", ".", "join", "(", "DEFAULT_CACHE_PATH", ",", "\"{}.background.genes.txt\"", ".", "format", "(", "self", ".", "background", ")", ")", "if", "os", ".", "path", ".", "exists", "(", "filename", ")", ":", "df", "=", "pd", ".", "read_csv", "(", "filename", ",", "sep", "=", "\"\\t\"", ")", "elif", "os", ".", "path", ".", "exists", "(", "DB_FILE", ")", ":", "df", "=", "pd", ".", "read_csv", "(", "DB_FILE", ",", "sep", "=", "\"\\t\"", ")", "else", ":", "# background is a biomart database name", "self", ".", "_logger", ".", "warning", "(", "\"Downloading %s for the first time. It might take a couple of miniutes.\"", "%", "self", ".", "background", ")", "bm", "=", "Biomart", "(", ")", "df", "=", "bm", ".", "query", "(", "dataset", "=", "self", ".", "background", ")", "df", ".", "dropna", "(", "subset", "=", "[", "'go_id'", "]", ",", "inplace", "=", "True", ")", "self", ".", "_logger", ".", "info", "(", "\"using all annotated genes with GO_ID as background genes\"", ")", "df", ".", "dropna", "(", "subset", "=", "[", "'entrezgene'", "]", ",", "inplace", "=", "True", ")", "# input id type: entrez or gene_name", "if", "self", ".", "_isezid", ":", "bg", "=", "df", "[", "'entrezgene'", "]", ".", "astype", "(", "int", ")", "else", ":", "bg", "=", "df", "[", "'external_gene_name'", "]", "return", "set", "(", "bg", ")" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
Enrichr.get_organism
Select Enrichr organism from below: Human & Mouse: H. sapiens & M. musculus Fly: D. melanogaster Yeast: S. cerevisiae Worm: C. elegans Fish: D. rerio
gseapy/enrichr.py
def get_organism(self): """Select Enrichr organism from below: Human & Mouse: H. sapiens & M. musculus Fly: D. melanogaster Yeast: S. cerevisiae Worm: C. elegans Fish: D. rerio """ organism = {'default': ['', 'hs', 'mm', 'human','mouse', 'homo sapiens', 'mus musculus', 'h. sapiens', 'm. musculus'], 'Fly': ['fly', 'd. melanogaster', 'drosophila melanogaster'], 'Yeast': ['yeast', 's. cerevisiae', 'saccharomyces cerevisiae'], 'Worm': ['worm', 'c. elegans', 'caenorhabditis elegans', 'nematode'], 'Fish': ['fish', 'd. rerio', 'danio rerio', 'zebrafish'] } for k, v in organism.items(): if self.organism.lower() in v : self._organism = k if self._organism is None: raise Exception("No supported organism found !!!") if self._organism == 'default': self._organism = '' return
def get_organism(self): """Select Enrichr organism from below: Human & Mouse: H. sapiens & M. musculus Fly: D. melanogaster Yeast: S. cerevisiae Worm: C. elegans Fish: D. rerio """ organism = {'default': ['', 'hs', 'mm', 'human','mouse', 'homo sapiens', 'mus musculus', 'h. sapiens', 'm. musculus'], 'Fly': ['fly', 'd. melanogaster', 'drosophila melanogaster'], 'Yeast': ['yeast', 's. cerevisiae', 'saccharomyces cerevisiae'], 'Worm': ['worm', 'c. elegans', 'caenorhabditis elegans', 'nematode'], 'Fish': ['fish', 'd. rerio', 'danio rerio', 'zebrafish'] } for k, v in organism.items(): if self.organism.lower() in v : self._organism = k if self._organism is None: raise Exception("No supported organism found !!!") if self._organism == 'default': self._organism = '' return
[ "Select", "Enrichr", "organism", "from", "below", ":" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/enrichr.py#L219-L248
[ "def", "get_organism", "(", "self", ")", ":", "organism", "=", "{", "'default'", ":", "[", "''", ",", "'hs'", ",", "'mm'", ",", "'human'", ",", "'mouse'", ",", "'homo sapiens'", ",", "'mus musculus'", ",", "'h. sapiens'", ",", "'m. musculus'", "]", ",", "'Fly'", ":", "[", "'fly'", ",", "'d. melanogaster'", ",", "'drosophila melanogaster'", "]", ",", "'Yeast'", ":", "[", "'yeast'", ",", "'s. cerevisiae'", ",", "'saccharomyces cerevisiae'", "]", ",", "'Worm'", ":", "[", "'worm'", ",", "'c. elegans'", ",", "'caenorhabditis elegans'", ",", "'nematode'", "]", ",", "'Fish'", ":", "[", "'fish'", ",", "'d. rerio'", ",", "'danio rerio'", ",", "'zebrafish'", "]", "}", "for", "k", ",", "v", "in", "organism", ".", "items", "(", ")", ":", "if", "self", ".", "organism", ".", "lower", "(", ")", "in", "v", ":", "self", ".", "_organism", "=", "k", "if", "self", ".", "_organism", "is", "None", ":", "raise", "Exception", "(", "\"No supported organism found !!!\"", ")", "if", "self", ".", "_organism", "==", "'default'", ":", "self", ".", "_organism", "=", "''", "return" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
Enrichr.enrich
use local mode p = p-value computed using the Fisher exact test (Hypergeometric test) Not implemented here: combine score = log(p)·z see here: http://amp.pharm.mssm.edu/Enrichr/help#background&q=4 columns contain: Term Overlap P-value Adjusted_P-value Genes
gseapy/enrichr.py
def enrich(self, gmt): """use local mode p = p-value computed using the Fisher exact test (Hypergeometric test) Not implemented here: combine score = log(p)·z see here: http://amp.pharm.mssm.edu/Enrichr/help#background&q=4 columns contain: Term Overlap P-value Adjusted_P-value Genes """ if isscalar(self.background): if isinstance(self.background, int) or self.background.isdigit(): self._bg = int(self.background) elif isinstance(self.background, str): # self.background = set(reduce(lambda x,y: x+y, gmt.values(),[])) self._bg = self.get_background() self._logger.info("Background: found %s genes"%(len(self._bg))) else: raise Exception("Unsupported background data type") else: # handle array object: nd.array, list, tuple, set, Series try: it = iter(self.background) self._bg = set(self.background) except TypeError: self._logger.error("Unsupported background data type") # statistical testing hgtest = list(calc_pvalues(query=self._gls, gene_sets=gmt, background=self._bg)) if len(hgtest) > 0: terms, pvals, olsz, gsetsz, genes = hgtest fdrs, rej = multiple_testing_correction(ps = pvals, alpha=self.cutoff, method='benjamini-hochberg') # save to a dataframe odict = OrderedDict() odict['Term'] = terms odict['Overlap'] = list(map(lambda h,g: "%s/%s"%(h, g), olsz, gsetsz)) odict['P-value'] = pvals odict['Adjusted P-value'] = fdrs # odict['Reject (FDR< %s)'%self.cutoff ] = rej odict['Genes'] = [";".join(g) for g in genes] res = pd.DataFrame(odict) return res return
def enrich(self, gmt): """use local mode p = p-value computed using the Fisher exact test (Hypergeometric test) Not implemented here: combine score = log(p)·z see here: http://amp.pharm.mssm.edu/Enrichr/help#background&q=4 columns contain: Term Overlap P-value Adjusted_P-value Genes """ if isscalar(self.background): if isinstance(self.background, int) or self.background.isdigit(): self._bg = int(self.background) elif isinstance(self.background, str): # self.background = set(reduce(lambda x,y: x+y, gmt.values(),[])) self._bg = self.get_background() self._logger.info("Background: found %s genes"%(len(self._bg))) else: raise Exception("Unsupported background data type") else: # handle array object: nd.array, list, tuple, set, Series try: it = iter(self.background) self._bg = set(self.background) except TypeError: self._logger.error("Unsupported background data type") # statistical testing hgtest = list(calc_pvalues(query=self._gls, gene_sets=gmt, background=self._bg)) if len(hgtest) > 0: terms, pvals, olsz, gsetsz, genes = hgtest fdrs, rej = multiple_testing_correction(ps = pvals, alpha=self.cutoff, method='benjamini-hochberg') # save to a dataframe odict = OrderedDict() odict['Term'] = terms odict['Overlap'] = list(map(lambda h,g: "%s/%s"%(h, g), olsz, gsetsz)) odict['P-value'] = pvals odict['Adjusted P-value'] = fdrs # odict['Reject (FDR< %s)'%self.cutoff ] = rej odict['Genes'] = [";".join(g) for g in genes] res = pd.DataFrame(odict) return res return
[ "use", "local", "mode", "p", "=", "p", "-", "value", "computed", "using", "the", "Fisher", "exact", "test", "(", "Hypergeometric", "test", ")" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/enrichr.py#L250-L300
[ "def", "enrich", "(", "self", ",", "gmt", ")", ":", "if", "isscalar", "(", "self", ".", "background", ")", ":", "if", "isinstance", "(", "self", ".", "background", ",", "int", ")", "or", "self", ".", "background", ".", "isdigit", "(", ")", ":", "self", ".", "_bg", "=", "int", "(", "self", ".", "background", ")", "elif", "isinstance", "(", "self", ".", "background", ",", "str", ")", ":", "# self.background = set(reduce(lambda x,y: x+y, gmt.values(),[]))", "self", ".", "_bg", "=", "self", ".", "get_background", "(", ")", "self", ".", "_logger", ".", "info", "(", "\"Background: found %s genes\"", "%", "(", "len", "(", "self", ".", "_bg", ")", ")", ")", "else", ":", "raise", "Exception", "(", "\"Unsupported background data type\"", ")", "else", ":", "# handle array object: nd.array, list, tuple, set, Series", "try", ":", "it", "=", "iter", "(", "self", ".", "background", ")", "self", ".", "_bg", "=", "set", "(", "self", ".", "background", ")", "except", "TypeError", ":", "self", ".", "_logger", ".", "error", "(", "\"Unsupported background data type\"", ")", "# statistical testing", "hgtest", "=", "list", "(", "calc_pvalues", "(", "query", "=", "self", ".", "_gls", ",", "gene_sets", "=", "gmt", ",", "background", "=", "self", ".", "_bg", ")", ")", "if", "len", "(", "hgtest", ")", ">", "0", ":", "terms", ",", "pvals", ",", "olsz", ",", "gsetsz", ",", "genes", "=", "hgtest", "fdrs", ",", "rej", "=", "multiple_testing_correction", "(", "ps", "=", "pvals", ",", "alpha", "=", "self", ".", "cutoff", ",", "method", "=", "'benjamini-hochberg'", ")", "# save to a dataframe", "odict", "=", "OrderedDict", "(", ")", "odict", "[", "'Term'", "]", "=", "terms", "odict", "[", "'Overlap'", "]", "=", "list", "(", "map", "(", "lambda", "h", ",", "g", ":", "\"%s/%s\"", "%", "(", "h", ",", "g", ")", ",", "olsz", ",", "gsetsz", ")", ")", "odict", "[", "'P-value'", "]", "=", "pvals", "odict", "[", "'Adjusted P-value'", "]", "=", "fdrs", "# odict['Reject (FDR< %s)'%self.cutoff ] = rej", "odict", "[", "'Genes'", "]", "=", "[", "\";\"", ".", "join", "(", "g", ")", "for", "g", "in", "genes", "]", "res", "=", "pd", ".", "DataFrame", "(", "odict", ")", "return", "res", "return" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
Enrichr.run
run enrichr for one sample gene list but multi-libraries
gseapy/enrichr.py
def run(self): """run enrichr for one sample gene list but multi-libraries""" # set organism self.get_organism() # read input file genes_list = self.parse_genelists() gss = self.parse_genesets() # if gmt self._logger.info("Connecting to Enrichr Server to get latest library names") if len(gss) < 1: sys.stderr.write("Not validated Enrichr library name provided\n") sys.stdout.write("Hint: use get_library_name() to view full list of supported names") sys.exit(1) self.results = pd.DataFrame() for g in gss: if isinstance(g, dict): ## local mode res = self.enrich(g) shortID, self._gs = str(id(g)), "CUSTOM%s"%id(g) if res is None: self._logger.info("No hits return, for gene set: Custom%s"%shortID) continue else: ## online mode self._gs = str(g) self._logger.debug("Start Enrichr using library: %s" % (self._gs)) self._logger.info('Analysis name: %s, Enrichr Library: %s' % (self.descriptions, self._gs)) shortID, res = self.get_results(genes_list) # Remember gene set library used res.insert(0, "Gene_set", self._gs) # Append to master dataframe self.results = self.results.append(res, ignore_index=True, sort=True) self.res2d = res if self._outdir is None: continue self._logger.info('Save file of enrichment results: Job Id:' + str(shortID)) outfile = "%s/%s.%s.%s.reports.txt" % (self.outdir, self._gs, self.descriptions, self.module) self.res2d.to_csv(outfile, index=False, encoding='utf-8', sep="\t") # plotting if not self.__no_plot: msg = barplot(df=res, cutoff=self.cutoff, figsize=self.figsize, top_term=self.__top_term, color='salmon', title=self._gs, ofname=outfile.replace("txt", self.format)) if msg is not None : self._logger.warning(msg) self._logger.info('Done.\n') # clean up tmpdir if self._outdir is None: self._tmpdir.cleanup() return
def run(self): """run enrichr for one sample gene list but multi-libraries""" # set organism self.get_organism() # read input file genes_list = self.parse_genelists() gss = self.parse_genesets() # if gmt self._logger.info("Connecting to Enrichr Server to get latest library names") if len(gss) < 1: sys.stderr.write("Not validated Enrichr library name provided\n") sys.stdout.write("Hint: use get_library_name() to view full list of supported names") sys.exit(1) self.results = pd.DataFrame() for g in gss: if isinstance(g, dict): ## local mode res = self.enrich(g) shortID, self._gs = str(id(g)), "CUSTOM%s"%id(g) if res is None: self._logger.info("No hits return, for gene set: Custom%s"%shortID) continue else: ## online mode self._gs = str(g) self._logger.debug("Start Enrichr using library: %s" % (self._gs)) self._logger.info('Analysis name: %s, Enrichr Library: %s' % (self.descriptions, self._gs)) shortID, res = self.get_results(genes_list) # Remember gene set library used res.insert(0, "Gene_set", self._gs) # Append to master dataframe self.results = self.results.append(res, ignore_index=True, sort=True) self.res2d = res if self._outdir is None: continue self._logger.info('Save file of enrichment results: Job Id:' + str(shortID)) outfile = "%s/%s.%s.%s.reports.txt" % (self.outdir, self._gs, self.descriptions, self.module) self.res2d.to_csv(outfile, index=False, encoding='utf-8', sep="\t") # plotting if not self.__no_plot: msg = barplot(df=res, cutoff=self.cutoff, figsize=self.figsize, top_term=self.__top_term, color='salmon', title=self._gs, ofname=outfile.replace("txt", self.format)) if msg is not None : self._logger.warning(msg) self._logger.info('Done.\n') # clean up tmpdir if self._outdir is None: self._tmpdir.cleanup() return
[ "run", "enrichr", "for", "one", "sample", "gene", "list", "but", "multi", "-", "libraries" ]
zqfang/GSEApy
python
https://github.com/zqfang/GSEApy/blob/673e9ec1391e3b14d3e8a4353117151fd2cb9345/gseapy/enrichr.py#L302-L352
[ "def", "run", "(", "self", ")", ":", "# set organism", "self", ".", "get_organism", "(", ")", "# read input file", "genes_list", "=", "self", ".", "parse_genelists", "(", ")", "gss", "=", "self", ".", "parse_genesets", "(", ")", "# if gmt", "self", ".", "_logger", ".", "info", "(", "\"Connecting to Enrichr Server to get latest library names\"", ")", "if", "len", "(", "gss", ")", "<", "1", ":", "sys", ".", "stderr", ".", "write", "(", "\"Not validated Enrichr library name provided\\n\"", ")", "sys", ".", "stdout", ".", "write", "(", "\"Hint: use get_library_name() to view full list of supported names\"", ")", "sys", ".", "exit", "(", "1", ")", "self", ".", "results", "=", "pd", ".", "DataFrame", "(", ")", "for", "g", "in", "gss", ":", "if", "isinstance", "(", "g", ",", "dict", ")", ":", "## local mode", "res", "=", "self", ".", "enrich", "(", "g", ")", "shortID", ",", "self", ".", "_gs", "=", "str", "(", "id", "(", "g", ")", ")", ",", "\"CUSTOM%s\"", "%", "id", "(", "g", ")", "if", "res", "is", "None", ":", "self", ".", "_logger", ".", "info", "(", "\"No hits return, for gene set: Custom%s\"", "%", "shortID", ")", "continue", "else", ":", "## online mode", "self", ".", "_gs", "=", "str", "(", "g", ")", "self", ".", "_logger", ".", "debug", "(", "\"Start Enrichr using library: %s\"", "%", "(", "self", ".", "_gs", ")", ")", "self", ".", "_logger", ".", "info", "(", "'Analysis name: %s, Enrichr Library: %s'", "%", "(", "self", ".", "descriptions", ",", "self", ".", "_gs", ")", ")", "shortID", ",", "res", "=", "self", ".", "get_results", "(", "genes_list", ")", "# Remember gene set library used", "res", ".", "insert", "(", "0", ",", "\"Gene_set\"", ",", "self", ".", "_gs", ")", "# Append to master dataframe", "self", ".", "results", "=", "self", ".", "results", ".", "append", "(", "res", ",", "ignore_index", "=", "True", ",", "sort", "=", "True", ")", "self", ".", "res2d", "=", "res", "if", "self", ".", "_outdir", "is", "None", ":", "continue", "self", ".", "_logger", ".", "info", "(", "'Save file of enrichment results: Job Id:'", "+", "str", "(", "shortID", ")", ")", "outfile", "=", "\"%s/%s.%s.%s.reports.txt\"", "%", "(", "self", ".", "outdir", ",", "self", ".", "_gs", ",", "self", ".", "descriptions", ",", "self", ".", "module", ")", "self", ".", "res2d", ".", "to_csv", "(", "outfile", ",", "index", "=", "False", ",", "encoding", "=", "'utf-8'", ",", "sep", "=", "\"\\t\"", ")", "# plotting", "if", "not", "self", ".", "__no_plot", ":", "msg", "=", "barplot", "(", "df", "=", "res", ",", "cutoff", "=", "self", ".", "cutoff", ",", "figsize", "=", "self", ".", "figsize", ",", "top_term", "=", "self", ".", "__top_term", ",", "color", "=", "'salmon'", ",", "title", "=", "self", ".", "_gs", ",", "ofname", "=", "outfile", ".", "replace", "(", "\"txt\"", ",", "self", ".", "format", ")", ")", "if", "msg", "is", "not", "None", ":", "self", ".", "_logger", ".", "warning", "(", "msg", ")", "self", ".", "_logger", ".", "info", "(", "'Done.\\n'", ")", "# clean up tmpdir", "if", "self", ".", "_outdir", "is", "None", ":", "self", ".", "_tmpdir", ".", "cleanup", "(", ")", "return" ]
673e9ec1391e3b14d3e8a4353117151fd2cb9345
test
cube
Create a cube primitive Note that this is made of 6 quads, not triangles
meshlabxml/create.py
def cube(script, size=1.0, center=False, color=None): """Create a cube primitive Note that this is made of 6 quads, not triangles """ """# Convert size to list if it isn't already if not isinstance(size, list): size = list(size) # If a single value was supplied use it for all 3 axes if len(size) == 1: size = [size[0], size[0], size[0]]""" size = util.make_list(size, 3) if script.ml_version == '1.3.4BETA': filter_name = 'Box' else: filter_name = 'Box/Cube' filter_xml = ''.join([ ' <filter name="{}">\n'.format(filter_name), ' <Param name="size" ', 'value="1.0" ', 'description="Scale factor" ', 'type="RichFloat" ', '/>\n', ' </filter>\n']) util.write_filter(script, filter_xml) if isinstance(script, FilterScript): script.add_layer('Cube', change_layer=True) transform.scale(script, value=size) # Box is centered on origin at creation if not center: transform.translate(script, value=[size[0]/2, size[1]/2, size[2]/2]) if color is not None: vert_color.function(script, color=color) return None
def cube(script, size=1.0, center=False, color=None): """Create a cube primitive Note that this is made of 6 quads, not triangles """ """# Convert size to list if it isn't already if not isinstance(size, list): size = list(size) # If a single value was supplied use it for all 3 axes if len(size) == 1: size = [size[0], size[0], size[0]]""" size = util.make_list(size, 3) if script.ml_version == '1.3.4BETA': filter_name = 'Box' else: filter_name = 'Box/Cube' filter_xml = ''.join([ ' <filter name="{}">\n'.format(filter_name), ' <Param name="size" ', 'value="1.0" ', 'description="Scale factor" ', 'type="RichFloat" ', '/>\n', ' </filter>\n']) util.write_filter(script, filter_xml) if isinstance(script, FilterScript): script.add_layer('Cube', change_layer=True) transform.scale(script, value=size) # Box is centered on origin at creation if not center: transform.translate(script, value=[size[0]/2, size[1]/2, size[2]/2]) if color is not None: vert_color.function(script, color=color) return None
[ "Create", "a", "cube", "primitive" ]
3DLIRIOUS/MeshLabXML
python
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/create.py#L13-L47
[ "def", "cube", "(", "script", ",", "size", "=", "1.0", ",", "center", "=", "False", ",", "color", "=", "None", ")", ":", "\"\"\"# Convert size to list if it isn't already\n if not isinstance(size, list):\n size = list(size)\n # If a single value was supplied use it for all 3 axes\n if len(size) == 1:\n size = [size[0], size[0], size[0]]\"\"\"", "size", "=", "util", ".", "make_list", "(", "size", ",", "3", ")", "if", "script", ".", "ml_version", "==", "'1.3.4BETA'", ":", "filter_name", "=", "'Box'", "else", ":", "filter_name", "=", "'Box/Cube'", "filter_xml", "=", "''", ".", "join", "(", "[", "' <filter name=\"{}\">\\n'", ".", "format", "(", "filter_name", ")", ",", "' <Param name=\"size\" '", ",", "'value=\"1.0\" '", ",", "'description=\"Scale factor\" '", ",", "'type=\"RichFloat\" '", ",", "'/>\\n'", ",", "' </filter>\\n'", "]", ")", "util", ".", "write_filter", "(", "script", ",", "filter_xml", ")", "if", "isinstance", "(", "script", ",", "FilterScript", ")", ":", "script", ".", "add_layer", "(", "'Cube'", ",", "change_layer", "=", "True", ")", "transform", ".", "scale", "(", "script", ",", "value", "=", "size", ")", "# Box is centered on origin at creation", "if", "not", "center", ":", "transform", ".", "translate", "(", "script", ",", "value", "=", "[", "size", "[", "0", "]", "/", "2", ",", "size", "[", "1", "]", "/", "2", ",", "size", "[", "2", "]", "/", "2", "]", ")", "if", "color", "is", "not", "None", ":", "vert_color", ".", "function", "(", "script", ",", "color", "=", "color", ")", "return", "None" ]
177cce21e92baca500f56a932d66bd9a33257af8
test
cylinder
Create a cylinder or cone primitive. Usage is based on OpenSCAD. # height = height of the cylinder # radius1 = radius of the cone on bottom end # radius2 = radius of the cone on top end # center = If true will center the height of the cone/cylinder around # the origin. Default is false, placing the base of the cylinder or radius1 # radius of cone at the origin. # cir_segments Number of sides of the polygonal approximation of the cone color = specify a color name to apply vertex colors to the newly # created mesh
meshlabxml/create.py
def cylinder(script, up='z', height=1.0, radius=None, radius1=None, radius2=None, diameter=None, diameter1=None, diameter2=None, center=False, cir_segments=32, color=None): """Create a cylinder or cone primitive. Usage is based on OpenSCAD. # height = height of the cylinder # radius1 = radius of the cone on bottom end # radius2 = radius of the cone on top end # center = If true will center the height of the cone/cylinder around # the origin. Default is false, placing the base of the cylinder or radius1 # radius of cone at the origin. # cir_segments Number of sides of the polygonal approximation of the cone color = specify a color name to apply vertex colors to the newly # created mesh """ if radius is not None and diameter is None: if radius1 is None and diameter1 is None: radius1 = radius if radius2 is None and diameter2 is None: radius2 = radius if diameter is not None: if radius1 is None and diameter1 is None: radius1 = diameter / 2 if radius2 is None and diameter2 is None: radius2 = diameter / 2 if diameter1 is not None: radius1 = diameter1 / 2 if diameter2 is not None: radius2 = diameter2 / 2 if radius1 is None: radius1 = 1.0 if radius2 is None: radius2 = radius1 # Cylinder is created centered with Y up filter_xml = ''.join([ ' <filter name="Cone">\n', ' <Param name="h" ', 'value="%s" ' % height, 'description="Height" ', 'type="RichFloat" ', '/>\n', ' <Param name="r0" ', 'value="%s" ' % radius1, 'description="Radius 1" ', 'type="RichFloat" ', '/>\n', ' <Param name="r1" ', 'value="%s" ' % radius2, 'description="Radius 2" ', 'type="RichFloat" ', '/>\n', ' <Param name="subdiv" ', 'value="%d" ' % cir_segments, 'description="Side" ', 'type="RichInt" ', '/>\n', ' </filter>\n']) util.write_filter(script, filter_xml) if isinstance(script, FilterScript): script.add_layer('Cone', change_layer=True) if not center: transform.translate(script, [0, height / 2, 0]) if up.lower() == 'z': transform.rotate(script, axis='x', angle=90) # rotate to Z up if color is not None: vert_color.function(script, color=color) return None
def cylinder(script, up='z', height=1.0, radius=None, radius1=None, radius2=None, diameter=None, diameter1=None, diameter2=None, center=False, cir_segments=32, color=None): """Create a cylinder or cone primitive. Usage is based on OpenSCAD. # height = height of the cylinder # radius1 = radius of the cone on bottom end # radius2 = radius of the cone on top end # center = If true will center the height of the cone/cylinder around # the origin. Default is false, placing the base of the cylinder or radius1 # radius of cone at the origin. # cir_segments Number of sides of the polygonal approximation of the cone color = specify a color name to apply vertex colors to the newly # created mesh """ if radius is not None and diameter is None: if radius1 is None and diameter1 is None: radius1 = radius if radius2 is None and diameter2 is None: radius2 = radius if diameter is not None: if radius1 is None and diameter1 is None: radius1 = diameter / 2 if radius2 is None and diameter2 is None: radius2 = diameter / 2 if diameter1 is not None: radius1 = diameter1 / 2 if diameter2 is not None: radius2 = diameter2 / 2 if radius1 is None: radius1 = 1.0 if radius2 is None: radius2 = radius1 # Cylinder is created centered with Y up filter_xml = ''.join([ ' <filter name="Cone">\n', ' <Param name="h" ', 'value="%s" ' % height, 'description="Height" ', 'type="RichFloat" ', '/>\n', ' <Param name="r0" ', 'value="%s" ' % radius1, 'description="Radius 1" ', 'type="RichFloat" ', '/>\n', ' <Param name="r1" ', 'value="%s" ' % radius2, 'description="Radius 2" ', 'type="RichFloat" ', '/>\n', ' <Param name="subdiv" ', 'value="%d" ' % cir_segments, 'description="Side" ', 'type="RichInt" ', '/>\n', ' </filter>\n']) util.write_filter(script, filter_xml) if isinstance(script, FilterScript): script.add_layer('Cone', change_layer=True) if not center: transform.translate(script, [0, height / 2, 0]) if up.lower() == 'z': transform.rotate(script, axis='x', angle=90) # rotate to Z up if color is not None: vert_color.function(script, color=color) return None
[ "Create", "a", "cylinder", "or", "cone", "primitive", ".", "Usage", "is", "based", "on", "OpenSCAD", ".", "#", "height", "=", "height", "of", "the", "cylinder", "#", "radius1", "=", "radius", "of", "the", "cone", "on", "bottom", "end", "#", "radius2", "=", "radius", "of", "the", "cone", "on", "top", "end", "#", "center", "=", "If", "true", "will", "center", "the", "height", "of", "the", "cone", "/", "cylinder", "around", "#", "the", "origin", ".", "Default", "is", "false", "placing", "the", "base", "of", "the", "cylinder", "or", "radius1", "#", "radius", "of", "cone", "at", "the", "origin", ".", "#", "cir_segments", "Number", "of", "sides", "of", "the", "polygonal", "approximation", "of", "the", "cone" ]
3DLIRIOUS/MeshLabXML
python
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/create.py#L63-L131
[ "def", "cylinder", "(", "script", ",", "up", "=", "'z'", ",", "height", "=", "1.0", ",", "radius", "=", "None", ",", "radius1", "=", "None", ",", "radius2", "=", "None", ",", "diameter", "=", "None", ",", "diameter1", "=", "None", ",", "diameter2", "=", "None", ",", "center", "=", "False", ",", "cir_segments", "=", "32", ",", "color", "=", "None", ")", ":", "if", "radius", "is", "not", "None", "and", "diameter", "is", "None", ":", "if", "radius1", "is", "None", "and", "diameter1", "is", "None", ":", "radius1", "=", "radius", "if", "radius2", "is", "None", "and", "diameter2", "is", "None", ":", "radius2", "=", "radius", "if", "diameter", "is", "not", "None", ":", "if", "radius1", "is", "None", "and", "diameter1", "is", "None", ":", "radius1", "=", "diameter", "/", "2", "if", "radius2", "is", "None", "and", "diameter2", "is", "None", ":", "radius2", "=", "diameter", "/", "2", "if", "diameter1", "is", "not", "None", ":", "radius1", "=", "diameter1", "/", "2", "if", "diameter2", "is", "not", "None", ":", "radius2", "=", "diameter2", "/", "2", "if", "radius1", "is", "None", ":", "radius1", "=", "1.0", "if", "radius2", "is", "None", ":", "radius2", "=", "radius1", "# Cylinder is created centered with Y up", "filter_xml", "=", "''", ".", "join", "(", "[", "' <filter name=\"Cone\">\\n'", ",", "' <Param name=\"h\" '", ",", "'value=\"%s\" '", "%", "height", ",", "'description=\"Height\" '", ",", "'type=\"RichFloat\" '", ",", "'/>\\n'", ",", "' <Param name=\"r0\" '", ",", "'value=\"%s\" '", "%", "radius1", ",", "'description=\"Radius 1\" '", ",", "'type=\"RichFloat\" '", ",", "'/>\\n'", ",", "' <Param name=\"r1\" '", ",", "'value=\"%s\" '", "%", "radius2", ",", "'description=\"Radius 2\" '", ",", "'type=\"RichFloat\" '", ",", "'/>\\n'", ",", "' <Param name=\"subdiv\" '", ",", "'value=\"%d\" '", "%", "cir_segments", ",", "'description=\"Side\" '", ",", "'type=\"RichInt\" '", ",", "'/>\\n'", ",", "' </filter>\\n'", "]", ")", "util", ".", "write_filter", "(", "script", ",", "filter_xml", ")", "if", "isinstance", "(", "script", ",", "FilterScript", ")", ":", "script", ".", "add_layer", "(", "'Cone'", ",", "change_layer", "=", "True", ")", "if", "not", "center", ":", "transform", ".", "translate", "(", "script", ",", "[", "0", ",", "height", "/", "2", ",", "0", "]", ")", "if", "up", ".", "lower", "(", ")", "==", "'z'", ":", "transform", ".", "rotate", "(", "script", ",", "axis", "=", "'x'", ",", "angle", "=", "90", ")", "# rotate to Z up", "if", "color", "is", "not", "None", ":", "vert_color", ".", "function", "(", "script", ",", "color", "=", "color", ")", "return", "None" ]
177cce21e92baca500f56a932d66bd9a33257af8
test
icosphere
create an icosphere mesh radius Radius of the sphere # subdivisions = Subdivision level; Number of the recursive subdivision of the # surface. Default is 3 (a sphere approximation composed by 1280 faces). # Admitted values are in the range 0 (an icosahedron) to 8 (a 1.3 MegaTris # approximation of a sphere). Formula for number of faces: F=20*4^subdiv # color = specify a color name to apply vertex colors to the newly # created mesh
meshlabxml/create.py
def icosphere(script, radius=1.0, diameter=None, subdivisions=3, color=None): """create an icosphere mesh radius Radius of the sphere # subdivisions = Subdivision level; Number of the recursive subdivision of the # surface. Default is 3 (a sphere approximation composed by 1280 faces). # Admitted values are in the range 0 (an icosahedron) to 8 (a 1.3 MegaTris # approximation of a sphere). Formula for number of faces: F=20*4^subdiv # color = specify a color name to apply vertex colors to the newly # created mesh""" if diameter is not None: radius = diameter / 2 filter_xml = ''.join([ ' <filter name="Sphere">\n', ' <Param name="radius" ', 'value="%s" ' % radius, 'description="Radius" ', 'type="RichFloat" ', '/>\n', ' <Param name="subdiv" ', 'value="%d" ' % subdivisions, 'description="Subdiv. Level" ', 'type="RichInt" ', '/>\n', ' </filter>\n']) util.write_filter(script, filter_xml) if isinstance(script, FilterScript): script.add_layer('Sphere', change_layer=True) if color is not None: vert_color.function(script, color=color) return None
def icosphere(script, radius=1.0, diameter=None, subdivisions=3, color=None): """create an icosphere mesh radius Radius of the sphere # subdivisions = Subdivision level; Number of the recursive subdivision of the # surface. Default is 3 (a sphere approximation composed by 1280 faces). # Admitted values are in the range 0 (an icosahedron) to 8 (a 1.3 MegaTris # approximation of a sphere). Formula for number of faces: F=20*4^subdiv # color = specify a color name to apply vertex colors to the newly # created mesh""" if diameter is not None: radius = diameter / 2 filter_xml = ''.join([ ' <filter name="Sphere">\n', ' <Param name="radius" ', 'value="%s" ' % radius, 'description="Radius" ', 'type="RichFloat" ', '/>\n', ' <Param name="subdiv" ', 'value="%d" ' % subdivisions, 'description="Subdiv. Level" ', 'type="RichInt" ', '/>\n', ' </filter>\n']) util.write_filter(script, filter_xml) if isinstance(script, FilterScript): script.add_layer('Sphere', change_layer=True) if color is not None: vert_color.function(script, color=color) return None
[ "create", "an", "icosphere", "mesh" ]
3DLIRIOUS/MeshLabXML
python
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/create.py#L134-L164
[ "def", "icosphere", "(", "script", ",", "radius", "=", "1.0", ",", "diameter", "=", "None", ",", "subdivisions", "=", "3", ",", "color", "=", "None", ")", ":", "if", "diameter", "is", "not", "None", ":", "radius", "=", "diameter", "/", "2", "filter_xml", "=", "''", ".", "join", "(", "[", "' <filter name=\"Sphere\">\\n'", ",", "' <Param name=\"radius\" '", ",", "'value=\"%s\" '", "%", "radius", ",", "'description=\"Radius\" '", ",", "'type=\"RichFloat\" '", ",", "'/>\\n'", ",", "' <Param name=\"subdiv\" '", ",", "'value=\"%d\" '", "%", "subdivisions", ",", "'description=\"Subdiv. Level\" '", ",", "'type=\"RichInt\" '", ",", "'/>\\n'", ",", "' </filter>\\n'", "]", ")", "util", ".", "write_filter", "(", "script", ",", "filter_xml", ")", "if", "isinstance", "(", "script", ",", "FilterScript", ")", ":", "script", ".", "add_layer", "(", "'Sphere'", ",", "change_layer", "=", "True", ")", "if", "color", "is", "not", "None", ":", "vert_color", ".", "function", "(", "script", ",", "color", "=", "color", ")", "return", "None" ]
177cce21e92baca500f56a932d66bd9a33257af8
test
sphere_cap
# angle = Angle of the cone subtending the cap. It must be <180 less than 180 # subdivisions = Subdivision level; Number of the recursive subdivision of the # surface. Default is 3 (a sphere approximation composed by 1280 faces). # Admitted values are in the range 0 (an icosahedron) to 8 (a 1.3 MegaTris # approximation of a sphere). Formula for number of faces: F=20*4^subdivisions # color = specify a color name to apply vertex colors to the newly # created mesh
meshlabxml/create.py
def sphere_cap(script, angle=1.0, subdivisions=3, color=None): """# angle = Angle of the cone subtending the cap. It must be <180 less than 180 # subdivisions = Subdivision level; Number of the recursive subdivision of the # surface. Default is 3 (a sphere approximation composed by 1280 faces). # Admitted values are in the range 0 (an icosahedron) to 8 (a 1.3 MegaTris # approximation of a sphere). Formula for number of faces: F=20*4^subdivisions # color = specify a color name to apply vertex colors to the newly # created mesh""" filter_xml = ''.join([ ' <filter name="Sphere Cap">\n', ' <Param name="angle" ', 'value="%s" ' % angle, 'description="Angle" ', 'type="RichFloat" ', '/>\n', ' <Param name="subdiv" ', 'value="%d" ' % subdivisions, 'description="Subdiv. Level" ', 'type="RichInt" ', '/>\n', ' </filter>\n']) util.write_filter(script, filter_xml) if isinstance(script, FilterScript): script.add_layer('Sphere Cap', change_layer=True) if color is not None: vert_color.function(script, color=color) return None
def sphere_cap(script, angle=1.0, subdivisions=3, color=None): """# angle = Angle of the cone subtending the cap. It must be <180 less than 180 # subdivisions = Subdivision level; Number of the recursive subdivision of the # surface. Default is 3 (a sphere approximation composed by 1280 faces). # Admitted values are in the range 0 (an icosahedron) to 8 (a 1.3 MegaTris # approximation of a sphere). Formula for number of faces: F=20*4^subdivisions # color = specify a color name to apply vertex colors to the newly # created mesh""" filter_xml = ''.join([ ' <filter name="Sphere Cap">\n', ' <Param name="angle" ', 'value="%s" ' % angle, 'description="Angle" ', 'type="RichFloat" ', '/>\n', ' <Param name="subdiv" ', 'value="%d" ' % subdivisions, 'description="Subdiv. Level" ', 'type="RichInt" ', '/>\n', ' </filter>\n']) util.write_filter(script, filter_xml) if isinstance(script, FilterScript): script.add_layer('Sphere Cap', change_layer=True) if color is not None: vert_color.function(script, color=color) return None
[ "#", "angle", "=", "Angle", "of", "the", "cone", "subtending", "the", "cap", ".", "It", "must", "be", "<180", "less", "than", "180", "#", "subdivisions", "=", "Subdivision", "level", ";", "Number", "of", "the", "recursive", "subdivision", "of", "the", "#", "surface", ".", "Default", "is", "3", "(", "a", "sphere", "approximation", "composed", "by", "1280", "faces", ")", ".", "#", "Admitted", "values", "are", "in", "the", "range", "0", "(", "an", "icosahedron", ")", "to", "8", "(", "a", "1", ".", "3", "MegaTris", "#", "approximation", "of", "a", "sphere", ")", ".", "Formula", "for", "number", "of", "faces", ":", "F", "=", "20", "*", "4^subdivisions", "#", "color", "=", "specify", "a", "color", "name", "to", "apply", "vertex", "colors", "to", "the", "newly", "#", "created", "mesh" ]
3DLIRIOUS/MeshLabXML
python
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/create.py#L167-L193
[ "def", "sphere_cap", "(", "script", ",", "angle", "=", "1.0", ",", "subdivisions", "=", "3", ",", "color", "=", "None", ")", ":", "filter_xml", "=", "''", ".", "join", "(", "[", "' <filter name=\"Sphere Cap\">\\n'", ",", "' <Param name=\"angle\" '", ",", "'value=\"%s\" '", "%", "angle", ",", "'description=\"Angle\" '", ",", "'type=\"RichFloat\" '", ",", "'/>\\n'", ",", "' <Param name=\"subdiv\" '", ",", "'value=\"%d\" '", "%", "subdivisions", ",", "'description=\"Subdiv. Level\" '", ",", "'type=\"RichInt\" '", ",", "'/>\\n'", ",", "' </filter>\\n'", "]", ")", "util", ".", "write_filter", "(", "script", ",", "filter_xml", ")", "if", "isinstance", "(", "script", ",", "FilterScript", ")", ":", "script", ".", "add_layer", "(", "'Sphere Cap'", ",", "change_layer", "=", "True", ")", "if", "color", "is", "not", "None", ":", "vert_color", ".", "function", "(", "script", ",", "color", "=", "color", ")", "return", "None" ]
177cce21e92baca500f56a932d66bd9a33257af8
test
torus
Create a torus mesh Args: major_radius (float, (optional)): radius from the origin to the center of the cross sections minor_radius (float, (optional)): radius of the torus cross section inner_diameter (float, (optional)): inner diameter of torus. If both inner_diameter and outer_diameter are provided then these will override major_radius and minor_radius., outer_diameter (float, (optional)): outer diameter of torus. If both inner_diameter and outer_diameter are provided then these will override major_radius and minor_radius. major_segments (int (optional)): number of segments for the main ring of the torus minor_segments (int (optional)): number of segments for the minor ring of the torus color (str (optional)): color name to apply vertex colors to the newly created mesh Returns: None
meshlabxml/create.py
def torus(script, major_radius=3.0, minor_radius=1.0, inner_diameter=None, outer_diameter=None, major_segments=48, minor_segments=12, color=None): """Create a torus mesh Args: major_radius (float, (optional)): radius from the origin to the center of the cross sections minor_radius (float, (optional)): radius of the torus cross section inner_diameter (float, (optional)): inner diameter of torus. If both inner_diameter and outer_diameter are provided then these will override major_radius and minor_radius., outer_diameter (float, (optional)): outer diameter of torus. If both inner_diameter and outer_diameter are provided then these will override major_radius and minor_radius. major_segments (int (optional)): number of segments for the main ring of the torus minor_segments (int (optional)): number of segments for the minor ring of the torus color (str (optional)): color name to apply vertex colors to the newly created mesh Returns: None """ if inner_diameter is not None and outer_diameter is not None: major_radius = (inner_diameter + outer_diameter) / 4 minor_radius = major_radius - inner_diameter / 2 # Ref: inner_diameter = 2 * (major_radius - minor_radius) # Ref: outer_diameter = 2 * (major_radius + minor_radius) filter_xml = ''.join([ ' <filter name="Torus">\n', ' <Param name="hRadius" ', 'value="%s" ' % major_radius, 'description="Horizontal Radius" ', 'type="RichFloat" ', '/>\n', ' <Param name="vRadius" ', 'value="%s" ' % minor_radius, 'description="Vertical Radius" ', 'type="RichFloat" ', '/>\n', ' <Param name="hSubdiv" ', 'value="%d" ' % major_segments, 'description="Horizontal Subdivision" ', 'type="RichInt" ', '/>\n', ' <Param name="vSubdiv" ', 'value="%d" ' % minor_segments, 'description="Vertical Subdivision" ', 'type="RichInt" ', '/>\n', ' </filter>\n']) util.write_filter(script, filter_xml) if isinstance(script, FilterScript): script.add_layer('Torus', change_layer=True) if color is not None: vert_color.function(script, color=color) return None
def torus(script, major_radius=3.0, minor_radius=1.0, inner_diameter=None, outer_diameter=None, major_segments=48, minor_segments=12, color=None): """Create a torus mesh Args: major_radius (float, (optional)): radius from the origin to the center of the cross sections minor_radius (float, (optional)): radius of the torus cross section inner_diameter (float, (optional)): inner diameter of torus. If both inner_diameter and outer_diameter are provided then these will override major_radius and minor_radius., outer_diameter (float, (optional)): outer diameter of torus. If both inner_diameter and outer_diameter are provided then these will override major_radius and minor_radius. major_segments (int (optional)): number of segments for the main ring of the torus minor_segments (int (optional)): number of segments for the minor ring of the torus color (str (optional)): color name to apply vertex colors to the newly created mesh Returns: None """ if inner_diameter is not None and outer_diameter is not None: major_radius = (inner_diameter + outer_diameter) / 4 minor_radius = major_radius - inner_diameter / 2 # Ref: inner_diameter = 2 * (major_radius - minor_radius) # Ref: outer_diameter = 2 * (major_radius + minor_radius) filter_xml = ''.join([ ' <filter name="Torus">\n', ' <Param name="hRadius" ', 'value="%s" ' % major_radius, 'description="Horizontal Radius" ', 'type="RichFloat" ', '/>\n', ' <Param name="vRadius" ', 'value="%s" ' % minor_radius, 'description="Vertical Radius" ', 'type="RichFloat" ', '/>\n', ' <Param name="hSubdiv" ', 'value="%d" ' % major_segments, 'description="Horizontal Subdivision" ', 'type="RichInt" ', '/>\n', ' <Param name="vSubdiv" ', 'value="%d" ' % minor_segments, 'description="Vertical Subdivision" ', 'type="RichInt" ', '/>\n', ' </filter>\n']) util.write_filter(script, filter_xml) if isinstance(script, FilterScript): script.add_layer('Torus', change_layer=True) if color is not None: vert_color.function(script, color=color) return None
[ "Create", "a", "torus", "mesh" ]
3DLIRIOUS/MeshLabXML
python
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/create.py#L196-L256
[ "def", "torus", "(", "script", ",", "major_radius", "=", "3.0", ",", "minor_radius", "=", "1.0", ",", "inner_diameter", "=", "None", ",", "outer_diameter", "=", "None", ",", "major_segments", "=", "48", ",", "minor_segments", "=", "12", ",", "color", "=", "None", ")", ":", "if", "inner_diameter", "is", "not", "None", "and", "outer_diameter", "is", "not", "None", ":", "major_radius", "=", "(", "inner_diameter", "+", "outer_diameter", ")", "/", "4", "minor_radius", "=", "major_radius", "-", "inner_diameter", "/", "2", "# Ref: inner_diameter = 2 * (major_radius - minor_radius)", "# Ref: outer_diameter = 2 * (major_radius + minor_radius)", "filter_xml", "=", "''", ".", "join", "(", "[", "' <filter name=\"Torus\">\\n'", ",", "' <Param name=\"hRadius\" '", ",", "'value=\"%s\" '", "%", "major_radius", ",", "'description=\"Horizontal Radius\" '", ",", "'type=\"RichFloat\" '", ",", "'/>\\n'", ",", "' <Param name=\"vRadius\" '", ",", "'value=\"%s\" '", "%", "minor_radius", ",", "'description=\"Vertical Radius\" '", ",", "'type=\"RichFloat\" '", ",", "'/>\\n'", ",", "' <Param name=\"hSubdiv\" '", ",", "'value=\"%d\" '", "%", "major_segments", ",", "'description=\"Horizontal Subdivision\" '", ",", "'type=\"RichInt\" '", ",", "'/>\\n'", ",", "' <Param name=\"vSubdiv\" '", ",", "'value=\"%d\" '", "%", "minor_segments", ",", "'description=\"Vertical Subdivision\" '", ",", "'type=\"RichInt\" '", ",", "'/>\\n'", ",", "' </filter>\\n'", "]", ")", "util", ".", "write_filter", "(", "script", ",", "filter_xml", ")", "if", "isinstance", "(", "script", ",", "FilterScript", ")", ":", "script", ".", "add_layer", "(", "'Torus'", ",", "change_layer", "=", "True", ")", "if", "color", "is", "not", "None", ":", "vert_color", ".", "function", "(", "script", ",", "color", "=", "color", ")", "return", "None" ]
177cce21e92baca500f56a932d66bd9a33257af8
test
grid
2D square/plane/grid created on XY plane x_segments # Number of segments in the X direction. y_segments # Number of segments in the Y direction. center="false" # If true square will be centered on origin; otherwise it is place in the positive XY quadrant.
meshlabxml/create.py
def grid(script, size=1.0, x_segments=1, y_segments=1, center=False, color=None): """2D square/plane/grid created on XY plane x_segments # Number of segments in the X direction. y_segments # Number of segments in the Y direction. center="false" # If true square will be centered on origin; otherwise it is place in the positive XY quadrant. """ size = util.make_list(size, 2) filter_xml = ''.join([ ' <filter name="Grid Generator">\n', ' <Param name="absScaleX" ', 'value="{}" '.format(size[0]), 'description="x scale" ', 'type="RichFloat" ', '/>\n', ' <Param name="absScaleY" ', 'value="{}" '.format(size[1]), 'description="y scale" ', 'type="RichFloat" ', '/>\n', ' <Param name="numVertX" ', 'value="{:d}" '.format(x_segments + 1), 'description="num vertices on x" ', 'type="RichInt" ', '/>\n', ' <Param name="numVertY" ', 'value="{:d}" '.format(y_segments + 1), 'description="num vertices on y" ', 'type="RichInt" ', '/>\n', ' <Param name="center" ', 'value="false" ', 'description="centered on origin" ', 'type="RichBool" ', '/>\n', ' </filter>\n']) util.write_filter(script, filter_xml) if isinstance(script, FilterScript): script.add_layer('Grid Generator', change_layer=True) """This is to work around a bug in MeshLab whereby the Grid Generator does not create zero values for z. Ref bug #458: https://sourceforge.net/p/meshlab/bugs/458/""" transform.vert_function(script, z_func='rint(z)') """Note that the "center" parameter in the mlx script does not actually center the square, not sure what it is doing. Instead this is set to false, which places the plane in the -X,+Y quadrant, and it is translated to the appropriate position after creation. """ if center: transform.translate(script, value=[size[0]/2, -size[1]/2, 0]) else: transform.translate(script, value=[size[0], 0, 0]) if color is not None: vert_color.function(script, color=color) return None
def grid(script, size=1.0, x_segments=1, y_segments=1, center=False, color=None): """2D square/plane/grid created on XY plane x_segments # Number of segments in the X direction. y_segments # Number of segments in the Y direction. center="false" # If true square will be centered on origin; otherwise it is place in the positive XY quadrant. """ size = util.make_list(size, 2) filter_xml = ''.join([ ' <filter name="Grid Generator">\n', ' <Param name="absScaleX" ', 'value="{}" '.format(size[0]), 'description="x scale" ', 'type="RichFloat" ', '/>\n', ' <Param name="absScaleY" ', 'value="{}" '.format(size[1]), 'description="y scale" ', 'type="RichFloat" ', '/>\n', ' <Param name="numVertX" ', 'value="{:d}" '.format(x_segments + 1), 'description="num vertices on x" ', 'type="RichInt" ', '/>\n', ' <Param name="numVertY" ', 'value="{:d}" '.format(y_segments + 1), 'description="num vertices on y" ', 'type="RichInt" ', '/>\n', ' <Param name="center" ', 'value="false" ', 'description="centered on origin" ', 'type="RichBool" ', '/>\n', ' </filter>\n']) util.write_filter(script, filter_xml) if isinstance(script, FilterScript): script.add_layer('Grid Generator', change_layer=True) """This is to work around a bug in MeshLab whereby the Grid Generator does not create zero values for z. Ref bug #458: https://sourceforge.net/p/meshlab/bugs/458/""" transform.vert_function(script, z_func='rint(z)') """Note that the "center" parameter in the mlx script does not actually center the square, not sure what it is doing. Instead this is set to false, which places the plane in the -X,+Y quadrant, and it is translated to the appropriate position after creation. """ if center: transform.translate(script, value=[size[0]/2, -size[1]/2, 0]) else: transform.translate(script, value=[size[0], 0, 0]) if color is not None: vert_color.function(script, color=color) return None
[ "2D", "square", "/", "plane", "/", "grid", "created", "on", "XY", "plane" ]
3DLIRIOUS/MeshLabXML
python
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/create.py#L259-L318
[ "def", "grid", "(", "script", ",", "size", "=", "1.0", ",", "x_segments", "=", "1", ",", "y_segments", "=", "1", ",", "center", "=", "False", ",", "color", "=", "None", ")", ":", "size", "=", "util", ".", "make_list", "(", "size", ",", "2", ")", "filter_xml", "=", "''", ".", "join", "(", "[", "' <filter name=\"Grid Generator\">\\n'", ",", "' <Param name=\"absScaleX\" '", ",", "'value=\"{}\" '", ".", "format", "(", "size", "[", "0", "]", ")", ",", "'description=\"x scale\" '", ",", "'type=\"RichFloat\" '", ",", "'/>\\n'", ",", "' <Param name=\"absScaleY\" '", ",", "'value=\"{}\" '", ".", "format", "(", "size", "[", "1", "]", ")", ",", "'description=\"y scale\" '", ",", "'type=\"RichFloat\" '", ",", "'/>\\n'", ",", "' <Param name=\"numVertX\" '", ",", "'value=\"{:d}\" '", ".", "format", "(", "x_segments", "+", "1", ")", ",", "'description=\"num vertices on x\" '", ",", "'type=\"RichInt\" '", ",", "'/>\\n'", ",", "' <Param name=\"numVertY\" '", ",", "'value=\"{:d}\" '", ".", "format", "(", "y_segments", "+", "1", ")", ",", "'description=\"num vertices on y\" '", ",", "'type=\"RichInt\" '", ",", "'/>\\n'", ",", "' <Param name=\"center\" '", ",", "'value=\"false\" '", ",", "'description=\"centered on origin\" '", ",", "'type=\"RichBool\" '", ",", "'/>\\n'", ",", "' </filter>\\n'", "]", ")", "util", ".", "write_filter", "(", "script", ",", "filter_xml", ")", "if", "isinstance", "(", "script", ",", "FilterScript", ")", ":", "script", ".", "add_layer", "(", "'Grid Generator'", ",", "change_layer", "=", "True", ")", "\"\"\"This is to work around a bug in MeshLab whereby the Grid Generator does not\n create zero values for z. Ref bug #458: https://sourceforge.net/p/meshlab/bugs/458/\"\"\"", "transform", ".", "vert_function", "(", "script", ",", "z_func", "=", "'rint(z)'", ")", "\"\"\"Note that the \"center\" parameter in the mlx script does not actually\n center the square, not sure what it is doing. Instead this is set to false,\n which places the plane in the -X,+Y quadrant, and it is translated to the\n appropriate position after creation.\n \"\"\"", "if", "center", ":", "transform", ".", "translate", "(", "script", ",", "value", "=", "[", "size", "[", "0", "]", "/", "2", ",", "-", "size", "[", "1", "]", "/", "2", ",", "0", "]", ")", "else", ":", "transform", ".", "translate", "(", "script", ",", "value", "=", "[", "size", "[", "0", "]", ",", "0", ",", "0", "]", ")", "if", "color", "is", "not", "None", ":", "vert_color", ".", "function", "(", "script", ",", "color", "=", "color", ")", "return", "None" ]
177cce21e92baca500f56a932d66bd9a33257af8
test
annulus
Create a 2D (surface) circle or annulus radius1=1 # Outer radius of the circle radius2=0 # Inner radius of the circle (if non-zero it creates an annulus) color="" # specify a color name to apply vertex colors to the newly created mesh OpenSCAD: parameters: diameter overrides radius, radius1 & radius2 override radius
meshlabxml/create.py
def annulus(script, radius=None, radius1=None, radius2=None, diameter=None, diameter1=None, diameter2=None, cir_segments=32, color=None): """Create a 2D (surface) circle or annulus radius1=1 # Outer radius of the circle radius2=0 # Inner radius of the circle (if non-zero it creates an annulus) color="" # specify a color name to apply vertex colors to the newly created mesh OpenSCAD: parameters: diameter overrides radius, radius1 & radius2 override radius """ if radius is not None and diameter is None: if radius1 is None and diameter1 is None: radius1 = radius if radius2 is None and diameter2 is None: radius2 = 0 if diameter is not None: if radius1 is None and diameter1 is None: radius1 = diameter / 2 if radius2 is None and diameter2 is None: radius2 = 0 if diameter1 is not None: radius1 = diameter1 / 2 if diameter2 is not None: radius2 = diameter2 / 2 if radius1 is None: radius1 = 1 if radius2 is None: radius2 = 0 # Circle is created centered on the XY plane filter_xml = ''.join([ ' <filter name="Annulus">\n', ' <Param name="externalRadius" ', 'value="%s" ' % radius1, 'description="External Radius" ', 'type="RichFloat" ', '/>\n', ' <Param name="internalRadius" ', 'value="%s" ' % radius2, 'description="Internal Radius" ', 'type="RichFloat" ', '/>\n', ' <Param name="sides" ', 'value="%d" ' % cir_segments, 'description="Sides" ', 'type="RichInt" ', '/>\n', ' </filter>\n']) util.write_filter(script, filter_xml) if isinstance(script, FilterScript): script.add_layer('Annulus', change_layer=True) if color is not None: vert_color.function(script, color=color) return None
def annulus(script, radius=None, radius1=None, radius2=None, diameter=None, diameter1=None, diameter2=None, cir_segments=32, color=None): """Create a 2D (surface) circle or annulus radius1=1 # Outer radius of the circle radius2=0 # Inner radius of the circle (if non-zero it creates an annulus) color="" # specify a color name to apply vertex colors to the newly created mesh OpenSCAD: parameters: diameter overrides radius, radius1 & radius2 override radius """ if radius is not None and diameter is None: if radius1 is None and diameter1 is None: radius1 = radius if radius2 is None and diameter2 is None: radius2 = 0 if diameter is not None: if radius1 is None and diameter1 is None: radius1 = diameter / 2 if radius2 is None and diameter2 is None: radius2 = 0 if diameter1 is not None: radius1 = diameter1 / 2 if diameter2 is not None: radius2 = diameter2 / 2 if radius1 is None: radius1 = 1 if radius2 is None: radius2 = 0 # Circle is created centered on the XY plane filter_xml = ''.join([ ' <filter name="Annulus">\n', ' <Param name="externalRadius" ', 'value="%s" ' % radius1, 'description="External Radius" ', 'type="RichFloat" ', '/>\n', ' <Param name="internalRadius" ', 'value="%s" ' % radius2, 'description="Internal Radius" ', 'type="RichFloat" ', '/>\n', ' <Param name="sides" ', 'value="%d" ' % cir_segments, 'description="Sides" ', 'type="RichInt" ', '/>\n', ' </filter>\n']) util.write_filter(script, filter_xml) if isinstance(script, FilterScript): script.add_layer('Annulus', change_layer=True) if color is not None: vert_color.function(script, color=color) return None
[ "Create", "a", "2D", "(", "surface", ")", "circle", "or", "annulus", "radius1", "=", "1", "#", "Outer", "radius", "of", "the", "circle", "radius2", "=", "0", "#", "Inner", "radius", "of", "the", "circle", "(", "if", "non", "-", "zero", "it", "creates", "an", "annulus", ")", "color", "=", "#", "specify", "a", "color", "name", "to", "apply", "vertex", "colors", "to", "the", "newly", "created", "mesh" ]
3DLIRIOUS/MeshLabXML
python
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/create.py#L321-L373
[ "def", "annulus", "(", "script", ",", "radius", "=", "None", ",", "radius1", "=", "None", ",", "radius2", "=", "None", ",", "diameter", "=", "None", ",", "diameter1", "=", "None", ",", "diameter2", "=", "None", ",", "cir_segments", "=", "32", ",", "color", "=", "None", ")", ":", "if", "radius", "is", "not", "None", "and", "diameter", "is", "None", ":", "if", "radius1", "is", "None", "and", "diameter1", "is", "None", ":", "radius1", "=", "radius", "if", "radius2", "is", "None", "and", "diameter2", "is", "None", ":", "radius2", "=", "0", "if", "diameter", "is", "not", "None", ":", "if", "radius1", "is", "None", "and", "diameter1", "is", "None", ":", "radius1", "=", "diameter", "/", "2", "if", "radius2", "is", "None", "and", "diameter2", "is", "None", ":", "radius2", "=", "0", "if", "diameter1", "is", "not", "None", ":", "radius1", "=", "diameter1", "/", "2", "if", "diameter2", "is", "not", "None", ":", "radius2", "=", "diameter2", "/", "2", "if", "radius1", "is", "None", ":", "radius1", "=", "1", "if", "radius2", "is", "None", ":", "radius2", "=", "0", "# Circle is created centered on the XY plane", "filter_xml", "=", "''", ".", "join", "(", "[", "' <filter name=\"Annulus\">\\n'", ",", "' <Param name=\"externalRadius\" '", ",", "'value=\"%s\" '", "%", "radius1", ",", "'description=\"External Radius\" '", ",", "'type=\"RichFloat\" '", ",", "'/>\\n'", ",", "' <Param name=\"internalRadius\" '", ",", "'value=\"%s\" '", "%", "radius2", ",", "'description=\"Internal Radius\" '", ",", "'type=\"RichFloat\" '", ",", "'/>\\n'", ",", "' <Param name=\"sides\" '", ",", "'value=\"%d\" '", "%", "cir_segments", ",", "'description=\"Sides\" '", ",", "'type=\"RichInt\" '", ",", "'/>\\n'", ",", "' </filter>\\n'", "]", ")", "util", ".", "write_filter", "(", "script", ",", "filter_xml", ")", "if", "isinstance", "(", "script", ",", "FilterScript", ")", ":", "script", ".", "add_layer", "(", "'Annulus'", ",", "change_layer", "=", "True", ")", "if", "color", "is", "not", "None", ":", "vert_color", ".", "function", "(", "script", ",", "color", "=", "color", ")", "return", "None" ]
177cce21e92baca500f56a932d66bd9a33257af8
test
cylinder_open_hires
Creates a round open tube, e.g. a cylinder with no top or bottom. Useful if you want to wrap it around and join the open ends together, forming a torus. invert_normals (bool (optional)): if True normals point outward; in false normals point inward.
meshlabxml/create.py
def cylinder_open_hires(script, height=1.0, radius=1, diameter=None, cir_segments=48, height_segments=1, invert_normals=False, center=False, color=None): """ Creates a round open tube, e.g. a cylinder with no top or bottom. Useful if you want to wrap it around and join the open ends together, forming a torus. invert_normals (bool (optional)): if True normals point outward; in false normals point inward. """ if diameter is not None: radius = diameter / 2 if center: z_translate = -height / 2 else: z_translate = 0.0 grid(script, [2 * math.pi * radius, height], x_segments=cir_segments, y_segments=height_segments) transform.rotate(script, 'x', 90) transform.translate(script, [math.pi * radius / 2, 0, z_translate]) if not invert_normals: transform.rotate(script, 'z', 180) transform.wrap2cylinder(script, radius) clean.merge_vert(script, threshold=0.00002) if color is not None: vert_color.function(script, color=color) return None
def cylinder_open_hires(script, height=1.0, radius=1, diameter=None, cir_segments=48, height_segments=1, invert_normals=False, center=False, color=None): """ Creates a round open tube, e.g. a cylinder with no top or bottom. Useful if you want to wrap it around and join the open ends together, forming a torus. invert_normals (bool (optional)): if True normals point outward; in false normals point inward. """ if diameter is not None: radius = diameter / 2 if center: z_translate = -height / 2 else: z_translate = 0.0 grid(script, [2 * math.pi * radius, height], x_segments=cir_segments, y_segments=height_segments) transform.rotate(script, 'x', 90) transform.translate(script, [math.pi * radius / 2, 0, z_translate]) if not invert_normals: transform.rotate(script, 'z', 180) transform.wrap2cylinder(script, radius) clean.merge_vert(script, threshold=0.00002) if color is not None: vert_color.function(script, color=color) return None
[ "Creates", "a", "round", "open", "tube", "e", ".", "g", ".", "a", "cylinder", "with", "no", "top", "or", "bottom", "." ]
3DLIRIOUS/MeshLabXML
python
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/create.py#L376-L405
[ "def", "cylinder_open_hires", "(", "script", ",", "height", "=", "1.0", ",", "radius", "=", "1", ",", "diameter", "=", "None", ",", "cir_segments", "=", "48", ",", "height_segments", "=", "1", ",", "invert_normals", "=", "False", ",", "center", "=", "False", ",", "color", "=", "None", ")", ":", "if", "diameter", "is", "not", "None", ":", "radius", "=", "diameter", "/", "2", "if", "center", ":", "z_translate", "=", "-", "height", "/", "2", "else", ":", "z_translate", "=", "0.0", "grid", "(", "script", ",", "[", "2", "*", "math", ".", "pi", "*", "radius", ",", "height", "]", ",", "x_segments", "=", "cir_segments", ",", "y_segments", "=", "height_segments", ")", "transform", ".", "rotate", "(", "script", ",", "'x'", ",", "90", ")", "transform", ".", "translate", "(", "script", ",", "[", "math", ".", "pi", "*", "radius", "/", "2", ",", "0", ",", "z_translate", "]", ")", "if", "not", "invert_normals", ":", "transform", ".", "rotate", "(", "script", ",", "'z'", ",", "180", ")", "transform", ".", "wrap2cylinder", "(", "script", ",", "radius", ")", "clean", ".", "merge_vert", "(", "script", ",", "threshold", "=", "0.00002", ")", "if", "color", "is", "not", "None", ":", "vert_color", ".", "function", "(", "script", ",", "color", "=", "color", ")", "return", "None" ]
177cce21e92baca500f56a932d66bd9a33257af8
test
cube_open_hires_old
Creates a square open tube, e.g. a box with no top or bottom. Useful if you want to wrap it around and join the open ends together, forming a torus.
meshlabxml/create.py
def cube_open_hires_old(script, size=1.0, x_segments=1, y_segments=1, z_segments=1, center=False, color=None): """ Creates a square open tube, e.g. a box with no top or bottom. Useful if you want to wrap it around and join the open ends together, forming a torus. """ """# Convert size to list if it isn't already if not isinstance(size, list): size = list(size) # If a single value was supplied use it for all 3 axes if len(size) == 1: size = [size[0], size[0], size[0]]""" size = util.make_list(size, 3) # X sides grid(script, [size[0], size[2]], x_segments=x_segments, y_segments=z_segments) transform.rotate(script, 'x', 90) #transform.translate(script, [0, 0, -size[2]]) layers.duplicate(script) # Rotate to correct normals transform.rotate(script, 'z', 180) transform.translate(script, [size[0], size[1], 0]) # Y sides grid(script, [size[2], size[1]], x_segments=z_segments, y_segments=y_segments) transform.rotate(script, 'y', -90) #transform.rotate(script, 'z', 90) #transform.translate(script, [0, 0, -size[2]]) layers.duplicate(script) # Rotate to correct normals transform.rotate(script, 'z', 180) transform.translate(script, [size[0], size[1], 0]) layers.join(script) clean.merge_vert(script, threshold=0.00002) # normals.fix(script) if center: transform.translate(script, [-size[0] / 2, -size[1] / 2, -size[2] / 2]) if color is not None: vert_color.function(script, color=color) return None
def cube_open_hires_old(script, size=1.0, x_segments=1, y_segments=1, z_segments=1, center=False, color=None): """ Creates a square open tube, e.g. a box with no top or bottom. Useful if you want to wrap it around and join the open ends together, forming a torus. """ """# Convert size to list if it isn't already if not isinstance(size, list): size = list(size) # If a single value was supplied use it for all 3 axes if len(size) == 1: size = [size[0], size[0], size[0]]""" size = util.make_list(size, 3) # X sides grid(script, [size[0], size[2]], x_segments=x_segments, y_segments=z_segments) transform.rotate(script, 'x', 90) #transform.translate(script, [0, 0, -size[2]]) layers.duplicate(script) # Rotate to correct normals transform.rotate(script, 'z', 180) transform.translate(script, [size[0], size[1], 0]) # Y sides grid(script, [size[2], size[1]], x_segments=z_segments, y_segments=y_segments) transform.rotate(script, 'y', -90) #transform.rotate(script, 'z', 90) #transform.translate(script, [0, 0, -size[2]]) layers.duplicate(script) # Rotate to correct normals transform.rotate(script, 'z', 180) transform.translate(script, [size[0], size[1], 0]) layers.join(script) clean.merge_vert(script, threshold=0.00002) # normals.fix(script) if center: transform.translate(script, [-size[0] / 2, -size[1] / 2, -size[2] / 2]) if color is not None: vert_color.function(script, color=color) return None
[ "Creates", "a", "square", "open", "tube", "e", ".", "g", ".", "a", "box", "with", "no", "top", "or", "bottom", "." ]
3DLIRIOUS/MeshLabXML
python
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/create.py#L408-L452
[ "def", "cube_open_hires_old", "(", "script", ",", "size", "=", "1.0", ",", "x_segments", "=", "1", ",", "y_segments", "=", "1", ",", "z_segments", "=", "1", ",", "center", "=", "False", ",", "color", "=", "None", ")", ":", "\"\"\"# Convert size to list if it isn't already\n if not isinstance(size, list):\n size = list(size)\n # If a single value was supplied use it for all 3 axes\n if len(size) == 1:\n size = [size[0], size[0], size[0]]\"\"\"", "size", "=", "util", ".", "make_list", "(", "size", ",", "3", ")", "# X sides", "grid", "(", "script", ",", "[", "size", "[", "0", "]", ",", "size", "[", "2", "]", "]", ",", "x_segments", "=", "x_segments", ",", "y_segments", "=", "z_segments", ")", "transform", ".", "rotate", "(", "script", ",", "'x'", ",", "90", ")", "#transform.translate(script, [0, 0, -size[2]])", "layers", ".", "duplicate", "(", "script", ")", "# Rotate to correct normals", "transform", ".", "rotate", "(", "script", ",", "'z'", ",", "180", ")", "transform", ".", "translate", "(", "script", ",", "[", "size", "[", "0", "]", ",", "size", "[", "1", "]", ",", "0", "]", ")", "# Y sides", "grid", "(", "script", ",", "[", "size", "[", "2", "]", ",", "size", "[", "1", "]", "]", ",", "x_segments", "=", "z_segments", ",", "y_segments", "=", "y_segments", ")", "transform", ".", "rotate", "(", "script", ",", "'y'", ",", "-", "90", ")", "#transform.rotate(script, 'z', 90)", "#transform.translate(script, [0, 0, -size[2]])", "layers", ".", "duplicate", "(", "script", ")", "# Rotate to correct normals", "transform", ".", "rotate", "(", "script", ",", "'z'", ",", "180", ")", "transform", ".", "translate", "(", "script", ",", "[", "size", "[", "0", "]", ",", "size", "[", "1", "]", ",", "0", "]", ")", "layers", ".", "join", "(", "script", ")", "clean", ".", "merge_vert", "(", "script", ",", "threshold", "=", "0.00002", ")", "# normals.fix(script)", "if", "center", ":", "transform", ".", "translate", "(", "script", ",", "[", "-", "size", "[", "0", "]", "/", "2", ",", "-", "size", "[", "1", "]", "/", "2", ",", "-", "size", "[", "2", "]", "/", "2", "]", ")", "if", "color", "is", "not", "None", ":", "vert_color", ".", "function", "(", "script", ",", "color", "=", "color", ")", "return", "None" ]
177cce21e92baca500f56a932d66bd9a33257af8
test
cube_open_hires
Creates a square open tube, e.g. a box with no top or bottom. Useful if you want to wrap it around and join the open ends together, forming a torus.
meshlabxml/create.py
def cube_open_hires(script, size=1.0, x_segments=1, y_segments=1, z_segments=1, center=False, color=None): """ Creates a square open tube, e.g. a box with no top or bottom. Useful if you want to wrap it around and join the open ends together, forming a torus. """ """# Convert size to list if it isn't already if not isinstance(size, list): size = list(size) # If a single value was supplied use it for all 3 axes if len(size) == 1: size = [size[0], size[0], size[0]]""" size = util.make_list(size, 3) # Make big grid and bend grid(script, [2*(x_segments + y_segments), z_segments], x_segments=2*(x_segments + y_segments), y_segments=z_segments) transform.rotate(script, 'x', 90) # Bend 3 times into a rectangular tube if script.ml_version == '1.3.4BETA': # muparser version: 1.3.2 transform.vert_function(script, x_func='if(x>{x_size}, {x_size}, x)'.format(x_size=x_segments), y_func='if(x>{x_size}, (x-{x_size}), y)'.format(x_size=x_segments), z_func='z') transform.vert_function(script, x_func='if(y>{y_size}, ({y_size}-y+{x_size}), x)'.format(x_size=x_segments, y_size=y_segments), y_func='if(y>{y_size}, {y_size}, y)'.format(y_size=y_segments), z_func='z') transform.vert_function(script, x_func='if(x<0, 0, x)', y_func='if(x<0, ({y_size}+x), y)'.format(y_size=y_segments), z_func='z') else: # muparser version: 2.2.5 transform.vert_function(script, x_func='(x>{x_size} ? {x_size} : x)'.format(x_size=x_segments), y_func='(x>{x_size} ? (x-{x_size}) : y)'.format(x_size=x_segments), z_func='z') transform.vert_function(script, x_func='(y>{y_size} ? ({y_size}-y+{x_size}) : x)'.format(x_size=x_segments, y_size=y_segments), y_func='(y>{y_size} ? {y_size} : y)'.format(y_size=y_segments), z_func='z') transform.vert_function(script, x_func='(x<0 ? 0 : x)', y_func='(x<0 ? ({y_size}+x) : y)'.format(y_size=y_segments), z_func='z') clean.merge_vert(script, threshold=0.00002) transform.scale(script, [size[0]/x_segments, size[1]/y_segments, size[2]/z_segments]) if center: transform.translate(script, [-size[0] / 2, -size[1] / 2, -size[2] / 2]) if color is not None: vert_color.function(script, color=color) return None
def cube_open_hires(script, size=1.0, x_segments=1, y_segments=1, z_segments=1, center=False, color=None): """ Creates a square open tube, e.g. a box with no top or bottom. Useful if you want to wrap it around and join the open ends together, forming a torus. """ """# Convert size to list if it isn't already if not isinstance(size, list): size = list(size) # If a single value was supplied use it for all 3 axes if len(size) == 1: size = [size[0], size[0], size[0]]""" size = util.make_list(size, 3) # Make big grid and bend grid(script, [2*(x_segments + y_segments), z_segments], x_segments=2*(x_segments + y_segments), y_segments=z_segments) transform.rotate(script, 'x', 90) # Bend 3 times into a rectangular tube if script.ml_version == '1.3.4BETA': # muparser version: 1.3.2 transform.vert_function(script, x_func='if(x>{x_size}, {x_size}, x)'.format(x_size=x_segments), y_func='if(x>{x_size}, (x-{x_size}), y)'.format(x_size=x_segments), z_func='z') transform.vert_function(script, x_func='if(y>{y_size}, ({y_size}-y+{x_size}), x)'.format(x_size=x_segments, y_size=y_segments), y_func='if(y>{y_size}, {y_size}, y)'.format(y_size=y_segments), z_func='z') transform.vert_function(script, x_func='if(x<0, 0, x)', y_func='if(x<0, ({y_size}+x), y)'.format(y_size=y_segments), z_func='z') else: # muparser version: 2.2.5 transform.vert_function(script, x_func='(x>{x_size} ? {x_size} : x)'.format(x_size=x_segments), y_func='(x>{x_size} ? (x-{x_size}) : y)'.format(x_size=x_segments), z_func='z') transform.vert_function(script, x_func='(y>{y_size} ? ({y_size}-y+{x_size}) : x)'.format(x_size=x_segments, y_size=y_segments), y_func='(y>{y_size} ? {y_size} : y)'.format(y_size=y_segments), z_func='z') transform.vert_function(script, x_func='(x<0 ? 0 : x)', y_func='(x<0 ? ({y_size}+x) : y)'.format(y_size=y_segments), z_func='z') clean.merge_vert(script, threshold=0.00002) transform.scale(script, [size[0]/x_segments, size[1]/y_segments, size[2]/z_segments]) if center: transform.translate(script, [-size[0] / 2, -size[1] / 2, -size[2] / 2]) if color is not None: vert_color.function(script, color=color) return None
[ "Creates", "a", "square", "open", "tube", "e", ".", "g", ".", "a", "box", "with", "no", "top", "or", "bottom", "." ]
3DLIRIOUS/MeshLabXML
python
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/create.py#L455-L507
[ "def", "cube_open_hires", "(", "script", ",", "size", "=", "1.0", ",", "x_segments", "=", "1", ",", "y_segments", "=", "1", ",", "z_segments", "=", "1", ",", "center", "=", "False", ",", "color", "=", "None", ")", ":", "\"\"\"# Convert size to list if it isn't already\n if not isinstance(size, list):\n size = list(size)\n # If a single value was supplied use it for all 3 axes\n if len(size) == 1:\n size = [size[0], size[0], size[0]]\"\"\"", "size", "=", "util", ".", "make_list", "(", "size", ",", "3", ")", "# Make big grid and bend", "grid", "(", "script", ",", "[", "2", "*", "(", "x_segments", "+", "y_segments", ")", ",", "z_segments", "]", ",", "x_segments", "=", "2", "*", "(", "x_segments", "+", "y_segments", ")", ",", "y_segments", "=", "z_segments", ")", "transform", ".", "rotate", "(", "script", ",", "'x'", ",", "90", ")", "# Bend 3 times into a rectangular tube", "if", "script", ".", "ml_version", "==", "'1.3.4BETA'", ":", "# muparser version: 1.3.2", "transform", ".", "vert_function", "(", "script", ",", "x_func", "=", "'if(x>{x_size}, {x_size}, x)'", ".", "format", "(", "x_size", "=", "x_segments", ")", ",", "y_func", "=", "'if(x>{x_size}, (x-{x_size}), y)'", ".", "format", "(", "x_size", "=", "x_segments", ")", ",", "z_func", "=", "'z'", ")", "transform", ".", "vert_function", "(", "script", ",", "x_func", "=", "'if(y>{y_size}, ({y_size}-y+{x_size}), x)'", ".", "format", "(", "x_size", "=", "x_segments", ",", "y_size", "=", "y_segments", ")", ",", "y_func", "=", "'if(y>{y_size}, {y_size}, y)'", ".", "format", "(", "y_size", "=", "y_segments", ")", ",", "z_func", "=", "'z'", ")", "transform", ".", "vert_function", "(", "script", ",", "x_func", "=", "'if(x<0, 0, x)'", ",", "y_func", "=", "'if(x<0, ({y_size}+x), y)'", ".", "format", "(", "y_size", "=", "y_segments", ")", ",", "z_func", "=", "'z'", ")", "else", ":", "# muparser version: 2.2.5", "transform", ".", "vert_function", "(", "script", ",", "x_func", "=", "'(x>{x_size} ? {x_size} : x)'", ".", "format", "(", "x_size", "=", "x_segments", ")", ",", "y_func", "=", "'(x>{x_size} ? (x-{x_size}) : y)'", ".", "format", "(", "x_size", "=", "x_segments", ")", ",", "z_func", "=", "'z'", ")", "transform", ".", "vert_function", "(", "script", ",", "x_func", "=", "'(y>{y_size} ? ({y_size}-y+{x_size}) : x)'", ".", "format", "(", "x_size", "=", "x_segments", ",", "y_size", "=", "y_segments", ")", ",", "y_func", "=", "'(y>{y_size} ? {y_size} : y)'", ".", "format", "(", "y_size", "=", "y_segments", ")", ",", "z_func", "=", "'z'", ")", "transform", ".", "vert_function", "(", "script", ",", "x_func", "=", "'(x<0 ? 0 : x)'", ",", "y_func", "=", "'(x<0 ? ({y_size}+x) : y)'", ".", "format", "(", "y_size", "=", "y_segments", ")", ",", "z_func", "=", "'z'", ")", "clean", ".", "merge_vert", "(", "script", ",", "threshold", "=", "0.00002", ")", "transform", ".", "scale", "(", "script", ",", "[", "size", "[", "0", "]", "/", "x_segments", ",", "size", "[", "1", "]", "/", "y_segments", ",", "size", "[", "2", "]", "/", "z_segments", "]", ")", "if", "center", ":", "transform", ".", "translate", "(", "script", ",", "[", "-", "size", "[", "0", "]", "/", "2", ",", "-", "size", "[", "1", "]", "/", "2", ",", "-", "size", "[", "2", "]", "/", "2", "]", ")", "if", "color", "is", "not", "None", ":", "vert_color", ".", "function", "(", "script", ",", "color", "=", "color", ")", "return", "None" ]
177cce21e92baca500f56a932d66bd9a33257af8