partition
stringclasses 3
values | func_name
stringlengths 1
134
| docstring
stringlengths 1
46.9k
| path
stringlengths 4
223
| original_string
stringlengths 75
104k
| code
stringlengths 75
104k
| docstring_tokens
listlengths 1
1.97k
| repo
stringlengths 7
55
| language
stringclasses 1
value | url
stringlengths 87
315
| code_tokens
listlengths 19
28.4k
| sha
stringlengths 40
40
|
|---|---|---|---|---|---|---|---|---|---|---|---|
test
|
vq_function
|
:Quality function using muparser to generate new Quality for every vertex<br>It's possibile to use the following per-vertex variables in the expression:<br>x, y, z, nx, ny, nz (normal), r, g, b (color), q (quality), rad, vi, <br>and all custom <i>vertex attributes</i> already defined by user.
function function to generate new Quality for every vertex
normalize if checked normalize all quality values in range [0..1]
color if checked map quality generated values into per-vertex color
|
meshlabxml/mp_func.py
|
def vq_function(script, function='vi', normalize=False, color=False):
""":Quality function using muparser to generate new Quality for every vertex<br>It's possibile to use the following per-vertex variables in the expression:<br>x, y, z, nx, ny, nz (normal), r, g, b (color), q (quality), rad, vi, <br>and all custom <i>vertex attributes</i> already defined by user.
function function to generate new Quality for every vertex
normalize if checked normalize all quality values in range [0..1]
color if checked map quality generated values into per-vertex color
"""
filter_xml = ''.join([
' <filter name="Per Vertex Quality Function">\n',
' <Param name="q" ',
'value="{}" '.format(str(function).replace('&', '&').replace('<', '<')),
'description="func q = " ',
'type="RichString" ',
'/>\n',
' <Param name="normalize" ',
'value="{}" '.format(str(normalize).lower()),
'description="normalize" ',
'type="RichBool" ',
'/>\n',
' <Param name="map" ',
'value="{}" '.format(str(color).lower()),
'description="map into color" ',
'type="RichBool" ',
'/>\n',
' </filter>\n'])
util.write_filter(script, filter_xml)
return None
|
def vq_function(script, function='vi', normalize=False, color=False):
""":Quality function using muparser to generate new Quality for every vertex<br>It's possibile to use the following per-vertex variables in the expression:<br>x, y, z, nx, ny, nz (normal), r, g, b (color), q (quality), rad, vi, <br>and all custom <i>vertex attributes</i> already defined by user.
function function to generate new Quality for every vertex
normalize if checked normalize all quality values in range [0..1]
color if checked map quality generated values into per-vertex color
"""
filter_xml = ''.join([
' <filter name="Per Vertex Quality Function">\n',
' <Param name="q" ',
'value="{}" '.format(str(function).replace('&', '&').replace('<', '<')),
'description="func q = " ',
'type="RichString" ',
'/>\n',
' <Param name="normalize" ',
'value="{}" '.format(str(normalize).lower()),
'description="normalize" ',
'type="RichBool" ',
'/>\n',
' <Param name="map" ',
'value="{}" '.format(str(color).lower()),
'description="map into color" ',
'type="RichBool" ',
'/>\n',
' </filter>\n'])
util.write_filter(script, filter_xml)
return None
|
[
":",
"Quality",
"function",
"using",
"muparser",
"to",
"generate",
"new",
"Quality",
"for",
"every",
"vertex<br",
">",
"It",
"s",
"possibile",
"to",
"use",
"the",
"following",
"per",
"-",
"vertex",
"variables",
"in",
"the",
"expression",
":",
"<br",
">",
"x",
"y",
"z",
"nx",
"ny",
"nz",
"(",
"normal",
")",
"r",
"g",
"b",
"(",
"color",
")",
"q",
"(",
"quality",
")",
"rad",
"vi",
"<br",
">",
"and",
"all",
"custom",
"<i",
">",
"vertex",
"attributes<",
"/",
"i",
">",
"already",
"defined",
"by",
"user",
"."
] |
3DLIRIOUS/MeshLabXML
|
python
|
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/mp_func.py#L317-L345
|
[
"def",
"vq_function",
"(",
"script",
",",
"function",
"=",
"'vi'",
",",
"normalize",
"=",
"False",
",",
"color",
"=",
"False",
")",
":",
"filter_xml",
"=",
"''",
".",
"join",
"(",
"[",
"' <filter name=\"Per Vertex Quality Function\">\\n'",
",",
"' <Param name=\"q\" '",
",",
"'value=\"{}\" '",
".",
"format",
"(",
"str",
"(",
"function",
")",
".",
"replace",
"(",
"'&'",
",",
"'&'",
")",
".",
"replace",
"(",
"'<'",
",",
"'<'",
")",
")",
",",
"'description=\"func q = \" '",
",",
"'type=\"RichString\" '",
",",
"'/>\\n'",
",",
"' <Param name=\"normalize\" '",
",",
"'value=\"{}\" '",
".",
"format",
"(",
"str",
"(",
"normalize",
")",
".",
"lower",
"(",
")",
")",
",",
"'description=\"normalize\" '",
",",
"'type=\"RichBool\" '",
",",
"'/>\\n'",
",",
"' <Param name=\"map\" '",
",",
"'value=\"{}\" '",
".",
"format",
"(",
"str",
"(",
"color",
")",
".",
"lower",
"(",
")",
")",
",",
"'description=\"map into color\" '",
",",
"'type=\"RichBool\" '",
",",
"'/>\\n'",
",",
"' </filter>\\n'",
"]",
")",
"util",
".",
"write_filter",
"(",
"script",
",",
"filter_xml",
")",
"return",
"None"
] |
177cce21e92baca500f56a932d66bd9a33257af8
|
test
|
quatrefoil
|
Rainbow colored voronoi quatrefoil (3,4) torus knot
|
examples/quatrefoil_voronoi.py
|
def quatrefoil():
""" Rainbow colored voronoi quatrefoil (3,4) torus knot """
start_time = time.time()
os.chdir(THIS_SCRIPTPATH)
#ml_version = '1.3.4BETA'
ml_version = '2016.12'
# Add meshlabserver directory to OS PATH; omit this if it is already in
# your PATH
meshlabserver_path = 'C:\\Program Files\\VCG\\MeshLab'
"""
if ml_version is '1.3.4BETA':
meshlabserver_path = 'C:\\Program Files\\VCG\\MeshLab'
elif ml_version is '2016.12':
meshlabserver_path = 'C:\\Program Files\\VCG\\MeshLab_2016_12'
"""
os.environ['PATH'] = meshlabserver_path + os.pathsep + os.environ['PATH']
# Cross section parameters
length = math.radians(360)
tube_size = [10, 10, length]
segments = [64, 64, 720*2]
inner_radius = 2.0
# Sinusoidal deformation parametera
amplitude = 4.2
freq = 4
phase = 270
center = 'r'
start_pt = 0
increment = 'z-{}'.format(start_pt)
# Cyclic rainbow color parameters
c_start_pt = 0
c_freq = 5
c_phase_shift = 0 #90 #300
c_phase = (0 + c_phase_shift, 120 + c_phase_shift, 240 + c_phase_shift, 0)
# Voronoi surface parameters
holes = [2, 2, 44] # Number of holes in each axis; x are sides, y is outside
web_thickness = 0.5
solid_radius = 5.0 # If the mesh is smaller than this radius the holes will be closed
faces_surface = 50000
# Voronoi solid parameters
voxel = 0.5
thickness = 2.5
faces_solid = 200000
# Scaling parameters
size = 75 # desired max size of the curve
curve_max_size = 2*(1 + 1.5) # the 1.5 s/b inner_radius, but am keepng current scaling
scale = (size-2*(thickness + amplitude) - tube_size[1])/curve_max_size
# File names
file_color = 'quatrefoil_color.ply'
file_voronoi_surf = 'quatrefoil_voronoi_surf.ply'
file_voronoi_solid = 'quatrefoil_voronoi_solid.ply'
file_voronoi_color = 'quatrefoil_voronoi_final.ply'
# Create FilterScript objects for each step in the process
quatrefoil_color = mlx.FilterScript(
file_in=None, file_out=file_color, ml_version=ml_version)
quatrefoil_voronoi_surf = mlx.FilterScript(
file_in=file_color, file_out=file_voronoi_surf, ml_version=ml_version)
quatrefoil_voronoi_solid = mlx.FilterScript(
file_in=file_voronoi_surf, file_out=file_voronoi_solid,
ml_version=ml_version)
quatrefoil_voronoi_color = mlx.FilterScript(
file_in=[file_color, file_voronoi_solid], file_out=file_voronoi_color,
ml_version=ml_version)
print('\n Create colored quatrefoil curve ...')
mlx.create.cube_open_hires(
quatrefoil_color, size=tube_size, x_segments=segments[0],
y_segments=segments[1], z_segments=segments[2], center=True)
mlx.transform.translate(quatrefoil_color, [0, 0, length/2])
# Sinusoidal deformation
r_func = '({a})*sin(({f})*({i}) + ({p})) + ({c})'.format(
f=freq, i=increment, p=math.radians(phase), a=amplitude, c=center)
mlx.transform.function_cyl_co(
quatrefoil_color, r_func=r_func, theta_func='theta', z_func='z')
# Save max radius in quality field so that we can save it with the file
# for use in the next step
max_radius = math.sqrt((tube_size[0]/2)**2+(tube_size[1]/2)**2) # at corners
q_func = '({a})*sin(({f})*({i}) + ({p})) + ({c})'.format(
f=freq, i=increment, p=math.radians(phase), a=amplitude, c=max_radius)
mlx.mp_func.vq_function(quatrefoil_color, function=q_func)
# Apply rainbow vertex colors
mlx.vert_color.cyclic_rainbow(
quatrefoil_color, direction='z', start_pt=c_start_pt, amplitude=255 / 2,
center=255 / 2, freq=c_freq, phase=c_phase)
# Deform mesh to quatrefoil curve. Merge vertices after, which
# will weld the ends together so it becomes watertight
quatrefoil_func = mlx.transform.deform2curve(
quatrefoil_color,
curve=mlx.mp_func.torus_knot('t', p=3, q=4, scale=scale,
radius=inner_radius))
mlx.clean.merge_vert(quatrefoil_color, threshold=0.0001)
# Run script
mlx.layers.delete_lower(quatrefoil_color)
quatrefoil_color.run_script(output_mask='-m vc vq')
print('\n Create Voronoi surface ...')
# Move quality value into radius attribute
mlx.mp_func.vert_attr(quatrefoil_voronoi_surf, name='radius', function='q')
# Create seed vertices
# For grid style holes, we will create a mesh similar to the original
# but with fewer vertices.
mlx.create.cube_open_hires(
quatrefoil_voronoi_surf, size=tube_size, x_segments=holes[0]+1,
y_segments=holes[1]+1, z_segments=holes[2]+1, center=True)
mlx.select.all(quatrefoil_voronoi_surf, vert=False)
mlx.delete.selected(quatrefoil_voronoi_surf, vert=False)
mlx.select.cylindrical_vert(quatrefoil_voronoi_surf,
radius=max_radius-0.0001, inside=False)
mlx.transform.translate(quatrefoil_voronoi_surf, [0, 0, 20])
mlx.delete.selected(quatrefoil_voronoi_surf, face=False)
mlx.transform.function_cyl_co(quatrefoil_voronoi_surf, r_func=r_func,
theta_func='theta', z_func='z')
mlx.transform.vert_function(
quatrefoil_voronoi_surf, x_func=quatrefoil_func[0],
y_func=quatrefoil_func[1], z_func=quatrefoil_func[2])
mlx.layers.change(quatrefoil_voronoi_surf, 0)
mlx.vert_color.voronoi(quatrefoil_voronoi_surf)
if quatrefoil_voronoi_surf.ml_version == '1.3.4BETA':
sel_func = '(q <= {}) or ((radius)<={})'.format(web_thickness, solid_radius)
else:
sel_func = '(q <= {}) || ((radius)<={})'.format(web_thickness, solid_radius)
mlx.select.vert_function(quatrefoil_voronoi_surf, function=sel_func)
#mlx.select.face_function(quatrefoil_voronoi_surf, function='(vsel0 && vsel1 && vsel2)')
mlx.select.invert(quatrefoil_voronoi_surf, face=False)
mlx.delete.selected(quatrefoil_voronoi_surf, face=False)
mlx.smooth.laplacian(quatrefoil_voronoi_surf, iterations=3)
mlx.remesh.simplify(quatrefoil_voronoi_surf, texture=False, faces=faces_surface)
mlx.layers.delete_lower(quatrefoil_voronoi_surf)
#quatrefoil_voronoi_surf.save_to_file('temp_script.mlx')
quatrefoil_voronoi_surf.run_script(script_file=None, output_mask='-m vc vq')
print('\n Solidify Voronoi surface ...')
mlx.remesh.uniform_resampling(quatrefoil_voronoi_solid, voxel=voxel,
offset=thickness/2, thicken=True)
mlx.layers.delete_lower(quatrefoil_voronoi_solid)
quatrefoil_voronoi_solid.run_script()
print('\n Clean up & transfer color to final model ...')
# Clean up from uniform mesh resamplng
mlx.delete.small_parts(quatrefoil_voronoi_color)
mlx.delete.unreferenced_vert(quatrefoil_voronoi_color)
mlx.delete.faces_from_nonmanifold_edges(quatrefoil_voronoi_color)
mlx.clean.split_vert_on_nonmanifold_face(quatrefoil_voronoi_color)
mlx.clean.close_holes(quatrefoil_voronoi_color)
# Simplify (to improve triangulation quality), refine, & smooth
mlx.remesh.simplify(quatrefoil_voronoi_color, texture=False, faces=faces_solid)
mlx.subdivide.ls3loop(quatrefoil_voronoi_color, iterations=1)
mlx.smooth.laplacian(quatrefoil_voronoi_color, iterations=3)
# Transfer colors from original curve
mlx.transfer.vert_attr_2_meshes(
quatrefoil_voronoi_color, source_mesh=0, target_mesh=1, color=True,
max_distance=7)
mlx.layers.delete_lower(quatrefoil_voronoi_color)
quatrefoil_voronoi_color.run_script(script_file=None)
print(' done! Took %.1f sec' % (time.time() - start_time))
return None
|
def quatrefoil():
""" Rainbow colored voronoi quatrefoil (3,4) torus knot """
start_time = time.time()
os.chdir(THIS_SCRIPTPATH)
#ml_version = '1.3.4BETA'
ml_version = '2016.12'
# Add meshlabserver directory to OS PATH; omit this if it is already in
# your PATH
meshlabserver_path = 'C:\\Program Files\\VCG\\MeshLab'
"""
if ml_version is '1.3.4BETA':
meshlabserver_path = 'C:\\Program Files\\VCG\\MeshLab'
elif ml_version is '2016.12':
meshlabserver_path = 'C:\\Program Files\\VCG\\MeshLab_2016_12'
"""
os.environ['PATH'] = meshlabserver_path + os.pathsep + os.environ['PATH']
# Cross section parameters
length = math.radians(360)
tube_size = [10, 10, length]
segments = [64, 64, 720*2]
inner_radius = 2.0
# Sinusoidal deformation parametera
amplitude = 4.2
freq = 4
phase = 270
center = 'r'
start_pt = 0
increment = 'z-{}'.format(start_pt)
# Cyclic rainbow color parameters
c_start_pt = 0
c_freq = 5
c_phase_shift = 0 #90 #300
c_phase = (0 + c_phase_shift, 120 + c_phase_shift, 240 + c_phase_shift, 0)
# Voronoi surface parameters
holes = [2, 2, 44] # Number of holes in each axis; x are sides, y is outside
web_thickness = 0.5
solid_radius = 5.0 # If the mesh is smaller than this radius the holes will be closed
faces_surface = 50000
# Voronoi solid parameters
voxel = 0.5
thickness = 2.5
faces_solid = 200000
# Scaling parameters
size = 75 # desired max size of the curve
curve_max_size = 2*(1 + 1.5) # the 1.5 s/b inner_radius, but am keepng current scaling
scale = (size-2*(thickness + amplitude) - tube_size[1])/curve_max_size
# File names
file_color = 'quatrefoil_color.ply'
file_voronoi_surf = 'quatrefoil_voronoi_surf.ply'
file_voronoi_solid = 'quatrefoil_voronoi_solid.ply'
file_voronoi_color = 'quatrefoil_voronoi_final.ply'
# Create FilterScript objects for each step in the process
quatrefoil_color = mlx.FilterScript(
file_in=None, file_out=file_color, ml_version=ml_version)
quatrefoil_voronoi_surf = mlx.FilterScript(
file_in=file_color, file_out=file_voronoi_surf, ml_version=ml_version)
quatrefoil_voronoi_solid = mlx.FilterScript(
file_in=file_voronoi_surf, file_out=file_voronoi_solid,
ml_version=ml_version)
quatrefoil_voronoi_color = mlx.FilterScript(
file_in=[file_color, file_voronoi_solid], file_out=file_voronoi_color,
ml_version=ml_version)
print('\n Create colored quatrefoil curve ...')
mlx.create.cube_open_hires(
quatrefoil_color, size=tube_size, x_segments=segments[0],
y_segments=segments[1], z_segments=segments[2], center=True)
mlx.transform.translate(quatrefoil_color, [0, 0, length/2])
# Sinusoidal deformation
r_func = '({a})*sin(({f})*({i}) + ({p})) + ({c})'.format(
f=freq, i=increment, p=math.radians(phase), a=amplitude, c=center)
mlx.transform.function_cyl_co(
quatrefoil_color, r_func=r_func, theta_func='theta', z_func='z')
# Save max radius in quality field so that we can save it with the file
# for use in the next step
max_radius = math.sqrt((tube_size[0]/2)**2+(tube_size[1]/2)**2) # at corners
q_func = '({a})*sin(({f})*({i}) + ({p})) + ({c})'.format(
f=freq, i=increment, p=math.radians(phase), a=amplitude, c=max_radius)
mlx.mp_func.vq_function(quatrefoil_color, function=q_func)
# Apply rainbow vertex colors
mlx.vert_color.cyclic_rainbow(
quatrefoil_color, direction='z', start_pt=c_start_pt, amplitude=255 / 2,
center=255 / 2, freq=c_freq, phase=c_phase)
# Deform mesh to quatrefoil curve. Merge vertices after, which
# will weld the ends together so it becomes watertight
quatrefoil_func = mlx.transform.deform2curve(
quatrefoil_color,
curve=mlx.mp_func.torus_knot('t', p=3, q=4, scale=scale,
radius=inner_radius))
mlx.clean.merge_vert(quatrefoil_color, threshold=0.0001)
# Run script
mlx.layers.delete_lower(quatrefoil_color)
quatrefoil_color.run_script(output_mask='-m vc vq')
print('\n Create Voronoi surface ...')
# Move quality value into radius attribute
mlx.mp_func.vert_attr(quatrefoil_voronoi_surf, name='radius', function='q')
# Create seed vertices
# For grid style holes, we will create a mesh similar to the original
# but with fewer vertices.
mlx.create.cube_open_hires(
quatrefoil_voronoi_surf, size=tube_size, x_segments=holes[0]+1,
y_segments=holes[1]+1, z_segments=holes[2]+1, center=True)
mlx.select.all(quatrefoil_voronoi_surf, vert=False)
mlx.delete.selected(quatrefoil_voronoi_surf, vert=False)
mlx.select.cylindrical_vert(quatrefoil_voronoi_surf,
radius=max_radius-0.0001, inside=False)
mlx.transform.translate(quatrefoil_voronoi_surf, [0, 0, 20])
mlx.delete.selected(quatrefoil_voronoi_surf, face=False)
mlx.transform.function_cyl_co(quatrefoil_voronoi_surf, r_func=r_func,
theta_func='theta', z_func='z')
mlx.transform.vert_function(
quatrefoil_voronoi_surf, x_func=quatrefoil_func[0],
y_func=quatrefoil_func[1], z_func=quatrefoil_func[2])
mlx.layers.change(quatrefoil_voronoi_surf, 0)
mlx.vert_color.voronoi(quatrefoil_voronoi_surf)
if quatrefoil_voronoi_surf.ml_version == '1.3.4BETA':
sel_func = '(q <= {}) or ((radius)<={})'.format(web_thickness, solid_radius)
else:
sel_func = '(q <= {}) || ((radius)<={})'.format(web_thickness, solid_radius)
mlx.select.vert_function(quatrefoil_voronoi_surf, function=sel_func)
#mlx.select.face_function(quatrefoil_voronoi_surf, function='(vsel0 && vsel1 && vsel2)')
mlx.select.invert(quatrefoil_voronoi_surf, face=False)
mlx.delete.selected(quatrefoil_voronoi_surf, face=False)
mlx.smooth.laplacian(quatrefoil_voronoi_surf, iterations=3)
mlx.remesh.simplify(quatrefoil_voronoi_surf, texture=False, faces=faces_surface)
mlx.layers.delete_lower(quatrefoil_voronoi_surf)
#quatrefoil_voronoi_surf.save_to_file('temp_script.mlx')
quatrefoil_voronoi_surf.run_script(script_file=None, output_mask='-m vc vq')
print('\n Solidify Voronoi surface ...')
mlx.remesh.uniform_resampling(quatrefoil_voronoi_solid, voxel=voxel,
offset=thickness/2, thicken=True)
mlx.layers.delete_lower(quatrefoil_voronoi_solid)
quatrefoil_voronoi_solid.run_script()
print('\n Clean up & transfer color to final model ...')
# Clean up from uniform mesh resamplng
mlx.delete.small_parts(quatrefoil_voronoi_color)
mlx.delete.unreferenced_vert(quatrefoil_voronoi_color)
mlx.delete.faces_from_nonmanifold_edges(quatrefoil_voronoi_color)
mlx.clean.split_vert_on_nonmanifold_face(quatrefoil_voronoi_color)
mlx.clean.close_holes(quatrefoil_voronoi_color)
# Simplify (to improve triangulation quality), refine, & smooth
mlx.remesh.simplify(quatrefoil_voronoi_color, texture=False, faces=faces_solid)
mlx.subdivide.ls3loop(quatrefoil_voronoi_color, iterations=1)
mlx.smooth.laplacian(quatrefoil_voronoi_color, iterations=3)
# Transfer colors from original curve
mlx.transfer.vert_attr_2_meshes(
quatrefoil_voronoi_color, source_mesh=0, target_mesh=1, color=True,
max_distance=7)
mlx.layers.delete_lower(quatrefoil_voronoi_color)
quatrefoil_voronoi_color.run_script(script_file=None)
print(' done! Took %.1f sec' % (time.time() - start_time))
return None
|
[
"Rainbow",
"colored",
"voronoi",
"quatrefoil",
"(",
"3",
"4",
")",
"torus",
"knot"
] |
3DLIRIOUS/MeshLabXML
|
python
|
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/examples/quatrefoil_voronoi.py#L37-L216
|
[
"def",
"quatrefoil",
"(",
")",
":",
"start_time",
"=",
"time",
".",
"time",
"(",
")",
"os",
".",
"chdir",
"(",
"THIS_SCRIPTPATH",
")",
"#ml_version = '1.3.4BETA'",
"ml_version",
"=",
"'2016.12'",
"# Add meshlabserver directory to OS PATH; omit this if it is already in",
"# your PATH",
"meshlabserver_path",
"=",
"'C:\\\\Program Files\\\\VCG\\\\MeshLab'",
"\"\"\"\n if ml_version is '1.3.4BETA':\n meshlabserver_path = 'C:\\\\Program Files\\\\VCG\\\\MeshLab'\n elif ml_version is '2016.12':\n meshlabserver_path = 'C:\\\\Program Files\\\\VCG\\\\MeshLab_2016_12'\n \"\"\"",
"os",
".",
"environ",
"[",
"'PATH'",
"]",
"=",
"meshlabserver_path",
"+",
"os",
".",
"pathsep",
"+",
"os",
".",
"environ",
"[",
"'PATH'",
"]",
"# Cross section parameters",
"length",
"=",
"math",
".",
"radians",
"(",
"360",
")",
"tube_size",
"=",
"[",
"10",
",",
"10",
",",
"length",
"]",
"segments",
"=",
"[",
"64",
",",
"64",
",",
"720",
"*",
"2",
"]",
"inner_radius",
"=",
"2.0",
"# Sinusoidal deformation parametera",
"amplitude",
"=",
"4.2",
"freq",
"=",
"4",
"phase",
"=",
"270",
"center",
"=",
"'r'",
"start_pt",
"=",
"0",
"increment",
"=",
"'z-{}'",
".",
"format",
"(",
"start_pt",
")",
"# Cyclic rainbow color parameters",
"c_start_pt",
"=",
"0",
"c_freq",
"=",
"5",
"c_phase_shift",
"=",
"0",
"#90 #300",
"c_phase",
"=",
"(",
"0",
"+",
"c_phase_shift",
",",
"120",
"+",
"c_phase_shift",
",",
"240",
"+",
"c_phase_shift",
",",
"0",
")",
"# Voronoi surface parameters",
"holes",
"=",
"[",
"2",
",",
"2",
",",
"44",
"]",
"# Number of holes in each axis; x are sides, y is outside",
"web_thickness",
"=",
"0.5",
"solid_radius",
"=",
"5.0",
"# If the mesh is smaller than this radius the holes will be closed",
"faces_surface",
"=",
"50000",
"# Voronoi solid parameters",
"voxel",
"=",
"0.5",
"thickness",
"=",
"2.5",
"faces_solid",
"=",
"200000",
"# Scaling parameters",
"size",
"=",
"75",
"# desired max size of the curve",
"curve_max_size",
"=",
"2",
"*",
"(",
"1",
"+",
"1.5",
")",
"# the 1.5 s/b inner_radius, but am keepng current scaling",
"scale",
"=",
"(",
"size",
"-",
"2",
"*",
"(",
"thickness",
"+",
"amplitude",
")",
"-",
"tube_size",
"[",
"1",
"]",
")",
"/",
"curve_max_size",
"# File names",
"file_color",
"=",
"'quatrefoil_color.ply'",
"file_voronoi_surf",
"=",
"'quatrefoil_voronoi_surf.ply'",
"file_voronoi_solid",
"=",
"'quatrefoil_voronoi_solid.ply'",
"file_voronoi_color",
"=",
"'quatrefoil_voronoi_final.ply'",
"# Create FilterScript objects for each step in the process",
"quatrefoil_color",
"=",
"mlx",
".",
"FilterScript",
"(",
"file_in",
"=",
"None",
",",
"file_out",
"=",
"file_color",
",",
"ml_version",
"=",
"ml_version",
")",
"quatrefoil_voronoi_surf",
"=",
"mlx",
".",
"FilterScript",
"(",
"file_in",
"=",
"file_color",
",",
"file_out",
"=",
"file_voronoi_surf",
",",
"ml_version",
"=",
"ml_version",
")",
"quatrefoil_voronoi_solid",
"=",
"mlx",
".",
"FilterScript",
"(",
"file_in",
"=",
"file_voronoi_surf",
",",
"file_out",
"=",
"file_voronoi_solid",
",",
"ml_version",
"=",
"ml_version",
")",
"quatrefoil_voronoi_color",
"=",
"mlx",
".",
"FilterScript",
"(",
"file_in",
"=",
"[",
"file_color",
",",
"file_voronoi_solid",
"]",
",",
"file_out",
"=",
"file_voronoi_color",
",",
"ml_version",
"=",
"ml_version",
")",
"print",
"(",
"'\\n Create colored quatrefoil curve ...'",
")",
"mlx",
".",
"create",
".",
"cube_open_hires",
"(",
"quatrefoil_color",
",",
"size",
"=",
"tube_size",
",",
"x_segments",
"=",
"segments",
"[",
"0",
"]",
",",
"y_segments",
"=",
"segments",
"[",
"1",
"]",
",",
"z_segments",
"=",
"segments",
"[",
"2",
"]",
",",
"center",
"=",
"True",
")",
"mlx",
".",
"transform",
".",
"translate",
"(",
"quatrefoil_color",
",",
"[",
"0",
",",
"0",
",",
"length",
"/",
"2",
"]",
")",
"# Sinusoidal deformation",
"r_func",
"=",
"'({a})*sin(({f})*({i}) + ({p})) + ({c})'",
".",
"format",
"(",
"f",
"=",
"freq",
",",
"i",
"=",
"increment",
",",
"p",
"=",
"math",
".",
"radians",
"(",
"phase",
")",
",",
"a",
"=",
"amplitude",
",",
"c",
"=",
"center",
")",
"mlx",
".",
"transform",
".",
"function_cyl_co",
"(",
"quatrefoil_color",
",",
"r_func",
"=",
"r_func",
",",
"theta_func",
"=",
"'theta'",
",",
"z_func",
"=",
"'z'",
")",
"# Save max radius in quality field so that we can save it with the file",
"# for use in the next step",
"max_radius",
"=",
"math",
".",
"sqrt",
"(",
"(",
"tube_size",
"[",
"0",
"]",
"/",
"2",
")",
"**",
"2",
"+",
"(",
"tube_size",
"[",
"1",
"]",
"/",
"2",
")",
"**",
"2",
")",
"# at corners",
"q_func",
"=",
"'({a})*sin(({f})*({i}) + ({p})) + ({c})'",
".",
"format",
"(",
"f",
"=",
"freq",
",",
"i",
"=",
"increment",
",",
"p",
"=",
"math",
".",
"radians",
"(",
"phase",
")",
",",
"a",
"=",
"amplitude",
",",
"c",
"=",
"max_radius",
")",
"mlx",
".",
"mp_func",
".",
"vq_function",
"(",
"quatrefoil_color",
",",
"function",
"=",
"q_func",
")",
"# Apply rainbow vertex colors",
"mlx",
".",
"vert_color",
".",
"cyclic_rainbow",
"(",
"quatrefoil_color",
",",
"direction",
"=",
"'z'",
",",
"start_pt",
"=",
"c_start_pt",
",",
"amplitude",
"=",
"255",
"/",
"2",
",",
"center",
"=",
"255",
"/",
"2",
",",
"freq",
"=",
"c_freq",
",",
"phase",
"=",
"c_phase",
")",
"# Deform mesh to quatrefoil curve. Merge vertices after, which",
"# will weld the ends together so it becomes watertight",
"quatrefoil_func",
"=",
"mlx",
".",
"transform",
".",
"deform2curve",
"(",
"quatrefoil_color",
",",
"curve",
"=",
"mlx",
".",
"mp_func",
".",
"torus_knot",
"(",
"'t'",
",",
"p",
"=",
"3",
",",
"q",
"=",
"4",
",",
"scale",
"=",
"scale",
",",
"radius",
"=",
"inner_radius",
")",
")",
"mlx",
".",
"clean",
".",
"merge_vert",
"(",
"quatrefoil_color",
",",
"threshold",
"=",
"0.0001",
")",
"# Run script",
"mlx",
".",
"layers",
".",
"delete_lower",
"(",
"quatrefoil_color",
")",
"quatrefoil_color",
".",
"run_script",
"(",
"output_mask",
"=",
"'-m vc vq'",
")",
"print",
"(",
"'\\n Create Voronoi surface ...'",
")",
"# Move quality value into radius attribute",
"mlx",
".",
"mp_func",
".",
"vert_attr",
"(",
"quatrefoil_voronoi_surf",
",",
"name",
"=",
"'radius'",
",",
"function",
"=",
"'q'",
")",
"# Create seed vertices",
"# For grid style holes, we will create a mesh similar to the original",
"# but with fewer vertices.",
"mlx",
".",
"create",
".",
"cube_open_hires",
"(",
"quatrefoil_voronoi_surf",
",",
"size",
"=",
"tube_size",
",",
"x_segments",
"=",
"holes",
"[",
"0",
"]",
"+",
"1",
",",
"y_segments",
"=",
"holes",
"[",
"1",
"]",
"+",
"1",
",",
"z_segments",
"=",
"holes",
"[",
"2",
"]",
"+",
"1",
",",
"center",
"=",
"True",
")",
"mlx",
".",
"select",
".",
"all",
"(",
"quatrefoil_voronoi_surf",
",",
"vert",
"=",
"False",
")",
"mlx",
".",
"delete",
".",
"selected",
"(",
"quatrefoil_voronoi_surf",
",",
"vert",
"=",
"False",
")",
"mlx",
".",
"select",
".",
"cylindrical_vert",
"(",
"quatrefoil_voronoi_surf",
",",
"radius",
"=",
"max_radius",
"-",
"0.0001",
",",
"inside",
"=",
"False",
")",
"mlx",
".",
"transform",
".",
"translate",
"(",
"quatrefoil_voronoi_surf",
",",
"[",
"0",
",",
"0",
",",
"20",
"]",
")",
"mlx",
".",
"delete",
".",
"selected",
"(",
"quatrefoil_voronoi_surf",
",",
"face",
"=",
"False",
")",
"mlx",
".",
"transform",
".",
"function_cyl_co",
"(",
"quatrefoil_voronoi_surf",
",",
"r_func",
"=",
"r_func",
",",
"theta_func",
"=",
"'theta'",
",",
"z_func",
"=",
"'z'",
")",
"mlx",
".",
"transform",
".",
"vert_function",
"(",
"quatrefoil_voronoi_surf",
",",
"x_func",
"=",
"quatrefoil_func",
"[",
"0",
"]",
",",
"y_func",
"=",
"quatrefoil_func",
"[",
"1",
"]",
",",
"z_func",
"=",
"quatrefoil_func",
"[",
"2",
"]",
")",
"mlx",
".",
"layers",
".",
"change",
"(",
"quatrefoil_voronoi_surf",
",",
"0",
")",
"mlx",
".",
"vert_color",
".",
"voronoi",
"(",
"quatrefoil_voronoi_surf",
")",
"if",
"quatrefoil_voronoi_surf",
".",
"ml_version",
"==",
"'1.3.4BETA'",
":",
"sel_func",
"=",
"'(q <= {}) or ((radius)<={})'",
".",
"format",
"(",
"web_thickness",
",",
"solid_radius",
")",
"else",
":",
"sel_func",
"=",
"'(q <= {}) || ((radius)<={})'",
".",
"format",
"(",
"web_thickness",
",",
"solid_radius",
")",
"mlx",
".",
"select",
".",
"vert_function",
"(",
"quatrefoil_voronoi_surf",
",",
"function",
"=",
"sel_func",
")",
"#mlx.select.face_function(quatrefoil_voronoi_surf, function='(vsel0 && vsel1 && vsel2)')",
"mlx",
".",
"select",
".",
"invert",
"(",
"quatrefoil_voronoi_surf",
",",
"face",
"=",
"False",
")",
"mlx",
".",
"delete",
".",
"selected",
"(",
"quatrefoil_voronoi_surf",
",",
"face",
"=",
"False",
")",
"mlx",
".",
"smooth",
".",
"laplacian",
"(",
"quatrefoil_voronoi_surf",
",",
"iterations",
"=",
"3",
")",
"mlx",
".",
"remesh",
".",
"simplify",
"(",
"quatrefoil_voronoi_surf",
",",
"texture",
"=",
"False",
",",
"faces",
"=",
"faces_surface",
")",
"mlx",
".",
"layers",
".",
"delete_lower",
"(",
"quatrefoil_voronoi_surf",
")",
"#quatrefoil_voronoi_surf.save_to_file('temp_script.mlx')",
"quatrefoil_voronoi_surf",
".",
"run_script",
"(",
"script_file",
"=",
"None",
",",
"output_mask",
"=",
"'-m vc vq'",
")",
"print",
"(",
"'\\n Solidify Voronoi surface ...'",
")",
"mlx",
".",
"remesh",
".",
"uniform_resampling",
"(",
"quatrefoil_voronoi_solid",
",",
"voxel",
"=",
"voxel",
",",
"offset",
"=",
"thickness",
"/",
"2",
",",
"thicken",
"=",
"True",
")",
"mlx",
".",
"layers",
".",
"delete_lower",
"(",
"quatrefoil_voronoi_solid",
")",
"quatrefoil_voronoi_solid",
".",
"run_script",
"(",
")",
"print",
"(",
"'\\n Clean up & transfer color to final model ...'",
")",
"# Clean up from uniform mesh resamplng",
"mlx",
".",
"delete",
".",
"small_parts",
"(",
"quatrefoil_voronoi_color",
")",
"mlx",
".",
"delete",
".",
"unreferenced_vert",
"(",
"quatrefoil_voronoi_color",
")",
"mlx",
".",
"delete",
".",
"faces_from_nonmanifold_edges",
"(",
"quatrefoil_voronoi_color",
")",
"mlx",
".",
"clean",
".",
"split_vert_on_nonmanifold_face",
"(",
"quatrefoil_voronoi_color",
")",
"mlx",
".",
"clean",
".",
"close_holes",
"(",
"quatrefoil_voronoi_color",
")",
"# Simplify (to improve triangulation quality), refine, & smooth",
"mlx",
".",
"remesh",
".",
"simplify",
"(",
"quatrefoil_voronoi_color",
",",
"texture",
"=",
"False",
",",
"faces",
"=",
"faces_solid",
")",
"mlx",
".",
"subdivide",
".",
"ls3loop",
"(",
"quatrefoil_voronoi_color",
",",
"iterations",
"=",
"1",
")",
"mlx",
".",
"smooth",
".",
"laplacian",
"(",
"quatrefoil_voronoi_color",
",",
"iterations",
"=",
"3",
")",
"# Transfer colors from original curve",
"mlx",
".",
"transfer",
".",
"vert_attr_2_meshes",
"(",
"quatrefoil_voronoi_color",
",",
"source_mesh",
"=",
"0",
",",
"target_mesh",
"=",
"1",
",",
"color",
"=",
"True",
",",
"max_distance",
"=",
"7",
")",
"mlx",
".",
"layers",
".",
"delete_lower",
"(",
"quatrefoil_voronoi_color",
")",
"quatrefoil_voronoi_color",
".",
"run_script",
"(",
"script_file",
"=",
"None",
")",
"print",
"(",
"' done! Took %.1f sec'",
"%",
"(",
"time",
".",
"time",
"(",
")",
"-",
"start_time",
")",
")",
"return",
"None"
] |
177cce21e92baca500f56a932d66bd9a33257af8
|
test
|
flip
|
Invert faces orientation, flipping the normals of the mesh.
If requested, it tries to guess the right orientation; mainly it decides to
flip all the faces if the minimum/maximum vertexes have not outward point
normals for a few directions. Works well for single component watertight
objects.
Args:
script: the FilterScript object or script filename to write
the filter to.
force_flip (bool): If selected, the normals will always be flipped;
otherwise, the filter tries to set them outside.
selected (bool): If selected, only selected faces will be affected.
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA
|
meshlabxml/normals.py
|
def flip(script, force_flip=False, selected=False):
""" Invert faces orientation, flipping the normals of the mesh.
If requested, it tries to guess the right orientation; mainly it decides to
flip all the faces if the minimum/maximum vertexes have not outward point
normals for a few directions. Works well for single component watertight
objects.
Args:
script: the FilterScript object or script filename to write
the filter to.
force_flip (bool): If selected, the normals will always be flipped;
otherwise, the filter tries to set them outside.
selected (bool): If selected, only selected faces will be affected.
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA
"""
filter_xml = ''.join([
' <filter name="Invert Faces Orientation">\n',
' <Param name="forceFlip" ',
'value="{}" '.format(str(force_flip).lower()),
'description="Force Flip" ',
'type="RichBool" ',
'/>\n',
' <Param name="onlySelected" ',
'value="{}" '.format(str(selected).lower()),
'description="Flip only selected faces" ',
'type="RichBool" ',
'/>\n',
' </filter>\n'])
util.write_filter(script, filter_xml)
return None
|
def flip(script, force_flip=False, selected=False):
""" Invert faces orientation, flipping the normals of the mesh.
If requested, it tries to guess the right orientation; mainly it decides to
flip all the faces if the minimum/maximum vertexes have not outward point
normals for a few directions. Works well for single component watertight
objects.
Args:
script: the FilterScript object or script filename to write
the filter to.
force_flip (bool): If selected, the normals will always be flipped;
otherwise, the filter tries to set them outside.
selected (bool): If selected, only selected faces will be affected.
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA
"""
filter_xml = ''.join([
' <filter name="Invert Faces Orientation">\n',
' <Param name="forceFlip" ',
'value="{}" '.format(str(force_flip).lower()),
'description="Force Flip" ',
'type="RichBool" ',
'/>\n',
' <Param name="onlySelected" ',
'value="{}" '.format(str(selected).lower()),
'description="Flip only selected faces" ',
'type="RichBool" ',
'/>\n',
' </filter>\n'])
util.write_filter(script, filter_xml)
return None
|
[
"Invert",
"faces",
"orientation",
"flipping",
"the",
"normals",
"of",
"the",
"mesh",
"."
] |
3DLIRIOUS/MeshLabXML
|
python
|
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/normals.py#L33-L69
|
[
"def",
"flip",
"(",
"script",
",",
"force_flip",
"=",
"False",
",",
"selected",
"=",
"False",
")",
":",
"filter_xml",
"=",
"''",
".",
"join",
"(",
"[",
"' <filter name=\"Invert Faces Orientation\">\\n'",
",",
"' <Param name=\"forceFlip\" '",
",",
"'value=\"{}\" '",
".",
"format",
"(",
"str",
"(",
"force_flip",
")",
".",
"lower",
"(",
")",
")",
",",
"'description=\"Force Flip\" '",
",",
"'type=\"RichBool\" '",
",",
"'/>\\n'",
",",
"' <Param name=\"onlySelected\" '",
",",
"'value=\"{}\" '",
".",
"format",
"(",
"str",
"(",
"selected",
")",
".",
"lower",
"(",
")",
")",
",",
"'description=\"Flip only selected faces\" '",
",",
"'type=\"RichBool\" '",
",",
"'/>\\n'",
",",
"' </filter>\\n'",
"]",
")",
"util",
".",
"write_filter",
"(",
"script",
",",
"filter_xml",
")",
"return",
"None"
] |
177cce21e92baca500f56a932d66bd9a33257af8
|
test
|
point_sets
|
Compute the normals of the vertices of a mesh without exploiting the
triangle connectivity, useful for dataset with no faces.
Args:
script: the FilterScript object or script filename to write
the filter to.
neighbors (int): The number of neighbors used to estimate normals.
smooth_iteration (int): The number of smoothing iteration done on the
p used to estimate and propagate normals.
flip (bool): Flip normals w.r.t. viewpoint. If the 'viewpoint' (i.e.
scanner position) is known, it can be used to disambiguate normals
orientation, so that all the normals will be oriented in the same
direction.
viewpoint_pos (single xyz point, tuple or list): Set the x, y, z
coordinates of the viewpoint position.
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA
|
meshlabxml/normals.py
|
def point_sets(script, neighbors=10, smooth_iteration=0, flip=False,
viewpoint_pos=(0.0, 0.0, 0.0)):
""" Compute the normals of the vertices of a mesh without exploiting the
triangle connectivity, useful for dataset with no faces.
Args:
script: the FilterScript object or script filename to write
the filter to.
neighbors (int): The number of neighbors used to estimate normals.
smooth_iteration (int): The number of smoothing iteration done on the
p used to estimate and propagate normals.
flip (bool): Flip normals w.r.t. viewpoint. If the 'viewpoint' (i.e.
scanner position) is known, it can be used to disambiguate normals
orientation, so that all the normals will be oriented in the same
direction.
viewpoint_pos (single xyz point, tuple or list): Set the x, y, z
coordinates of the viewpoint position.
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA
"""
filter_xml = ''.join([
' <filter name="Compute normals for point sets">\n',
' <Param name="K" ',
'value="{:d}" '.format(neighbors),
'description="Neighbour num" ',
'type="RichInt" ',
'/>\n',
' <Param name="smoothIter" ',
'value="{:d}" '.format(smooth_iteration),
'description="Smooth Iteration" ',
'type="RichInt" ',
'/>\n',
' <Param name="flipFlag" ',
'value="{}" '.format(str(flip).lower()),
'description="Flip normals w.r.t. viewpoint" ',
'type="RichBool" ',
'/>\n',
' <Param name="viewPos" ',
'x="{}" y="{}" z="{}" '.format(viewpoint_pos[0], viewpoint_pos[1],
viewpoint_pos[2],),
'description="Viewpoint Pos." ',
'type="RichPoint3f" ',
'/>\n',
' </filter>\n'])
util.write_filter(script, filter_xml)
return None
|
def point_sets(script, neighbors=10, smooth_iteration=0, flip=False,
viewpoint_pos=(0.0, 0.0, 0.0)):
""" Compute the normals of the vertices of a mesh without exploiting the
triangle connectivity, useful for dataset with no faces.
Args:
script: the FilterScript object or script filename to write
the filter to.
neighbors (int): The number of neighbors used to estimate normals.
smooth_iteration (int): The number of smoothing iteration done on the
p used to estimate and propagate normals.
flip (bool): Flip normals w.r.t. viewpoint. If the 'viewpoint' (i.e.
scanner position) is known, it can be used to disambiguate normals
orientation, so that all the normals will be oriented in the same
direction.
viewpoint_pos (single xyz point, tuple or list): Set the x, y, z
coordinates of the viewpoint position.
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA
"""
filter_xml = ''.join([
' <filter name="Compute normals for point sets">\n',
' <Param name="K" ',
'value="{:d}" '.format(neighbors),
'description="Neighbour num" ',
'type="RichInt" ',
'/>\n',
' <Param name="smoothIter" ',
'value="{:d}" '.format(smooth_iteration),
'description="Smooth Iteration" ',
'type="RichInt" ',
'/>\n',
' <Param name="flipFlag" ',
'value="{}" '.format(str(flip).lower()),
'description="Flip normals w.r.t. viewpoint" ',
'type="RichBool" ',
'/>\n',
' <Param name="viewPos" ',
'x="{}" y="{}" z="{}" '.format(viewpoint_pos[0], viewpoint_pos[1],
viewpoint_pos[2],),
'description="Viewpoint Pos." ',
'type="RichPoint3f" ',
'/>\n',
' </filter>\n'])
util.write_filter(script, filter_xml)
return None
|
[
"Compute",
"the",
"normals",
"of",
"the",
"vertices",
"of",
"a",
"mesh",
"without",
"exploiting",
"the",
"triangle",
"connectivity",
"useful",
"for",
"dataset",
"with",
"no",
"faces",
"."
] |
3DLIRIOUS/MeshLabXML
|
python
|
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/normals.py#L87-L137
|
[
"def",
"point_sets",
"(",
"script",
",",
"neighbors",
"=",
"10",
",",
"smooth_iteration",
"=",
"0",
",",
"flip",
"=",
"False",
",",
"viewpoint_pos",
"=",
"(",
"0.0",
",",
"0.0",
",",
"0.0",
")",
")",
":",
"filter_xml",
"=",
"''",
".",
"join",
"(",
"[",
"' <filter name=\"Compute normals for point sets\">\\n'",
",",
"' <Param name=\"K\" '",
",",
"'value=\"{:d}\" '",
".",
"format",
"(",
"neighbors",
")",
",",
"'description=\"Neighbour num\" '",
",",
"'type=\"RichInt\" '",
",",
"'/>\\n'",
",",
"' <Param name=\"smoothIter\" '",
",",
"'value=\"{:d}\" '",
".",
"format",
"(",
"smooth_iteration",
")",
",",
"'description=\"Smooth Iteration\" '",
",",
"'type=\"RichInt\" '",
",",
"'/>\\n'",
",",
"' <Param name=\"flipFlag\" '",
",",
"'value=\"{}\" '",
".",
"format",
"(",
"str",
"(",
"flip",
")",
".",
"lower",
"(",
")",
")",
",",
"'description=\"Flip normals w.r.t. viewpoint\" '",
",",
"'type=\"RichBool\" '",
",",
"'/>\\n'",
",",
"' <Param name=\"viewPos\" '",
",",
"'x=\"{}\" y=\"{}\" z=\"{}\" '",
".",
"format",
"(",
"viewpoint_pos",
"[",
"0",
"]",
",",
"viewpoint_pos",
"[",
"1",
"]",
",",
"viewpoint_pos",
"[",
"2",
"]",
",",
")",
",",
"'description=\"Viewpoint Pos.\" '",
",",
"'type=\"RichPoint3f\" '",
",",
"'/>\\n'",
",",
"' </filter>\\n'",
"]",
")",
"util",
".",
"write_filter",
"(",
"script",
",",
"filter_xml",
")",
"return",
"None"
] |
177cce21e92baca500f56a932d66bd9a33257af8
|
test
|
laplacian
|
Laplacian smooth of the mesh: for each vertex it calculates the average
position with nearest vertex
Args:
script: the FilterScript object or script filename to write
the filter to.
iterations (int): The number of times that the whole algorithm (normal
smoothing + vertex fitting) is iterated.
boundary (bool): If true the boundary edges are smoothed only by
themselves (e.g. the polyline forming the boundary of the mesh is
independently smoothed). Can reduce the shrinking on the border but
can have strange effects on very small boundaries.
cotangent_weight (bool): If True the cotangent weighting scheme is
computed for the averaging of the position. Otherwise (False) the
simpler umbrella scheme (1 if the edge is present) is used.
selected (bool): If selected the filter is performed only on the
selected faces
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA
|
meshlabxml/smooth.py
|
def laplacian(script, iterations=1, boundary=True, cotangent_weight=True,
selected=False):
""" Laplacian smooth of the mesh: for each vertex it calculates the average
position with nearest vertex
Args:
script: the FilterScript object or script filename to write
the filter to.
iterations (int): The number of times that the whole algorithm (normal
smoothing + vertex fitting) is iterated.
boundary (bool): If true the boundary edges are smoothed only by
themselves (e.g. the polyline forming the boundary of the mesh is
independently smoothed). Can reduce the shrinking on the border but
can have strange effects on very small boundaries.
cotangent_weight (bool): If True the cotangent weighting scheme is
computed for the averaging of the position. Otherwise (False) the
simpler umbrella scheme (1 if the edge is present) is used.
selected (bool): If selected the filter is performed only on the
selected faces
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA
"""
filter_xml = ''.join([
' <filter name="Laplacian Smooth">\n',
' <Param name="stepSmoothNum" ',
'value="{:d}" '.format(iterations),
'description="Smoothing steps" ',
'type="RichInt" ',
'/>\n',
' <Param name="Boundary" ',
'value="{}" '.format(str(boundary).lower()),
'description="1D Boundary Smoothing" ',
'type="RichBool" ',
'/>\n',
' <Param name="cotangentWeight" ',
'value="{}" '.format(str(cotangent_weight).lower()),
'description="Cotangent weighting" ',
'type="RichBool" ',
'/>\n',
' <Param name="Selected" ',
'value="{}" '.format(str(selected).lower()),
'description="Affect only selected faces" ',
'type="RichBool" ',
'/>\n',
' </filter>\n'])
util.write_filter(script, filter_xml)
return None
|
def laplacian(script, iterations=1, boundary=True, cotangent_weight=True,
selected=False):
""" Laplacian smooth of the mesh: for each vertex it calculates the average
position with nearest vertex
Args:
script: the FilterScript object or script filename to write
the filter to.
iterations (int): The number of times that the whole algorithm (normal
smoothing + vertex fitting) is iterated.
boundary (bool): If true the boundary edges are smoothed only by
themselves (e.g. the polyline forming the boundary of the mesh is
independently smoothed). Can reduce the shrinking on the border but
can have strange effects on very small boundaries.
cotangent_weight (bool): If True the cotangent weighting scheme is
computed for the averaging of the position. Otherwise (False) the
simpler umbrella scheme (1 if the edge is present) is used.
selected (bool): If selected the filter is performed only on the
selected faces
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA
"""
filter_xml = ''.join([
' <filter name="Laplacian Smooth">\n',
' <Param name="stepSmoothNum" ',
'value="{:d}" '.format(iterations),
'description="Smoothing steps" ',
'type="RichInt" ',
'/>\n',
' <Param name="Boundary" ',
'value="{}" '.format(str(boundary).lower()),
'description="1D Boundary Smoothing" ',
'type="RichBool" ',
'/>\n',
' <Param name="cotangentWeight" ',
'value="{}" '.format(str(cotangent_weight).lower()),
'description="Cotangent weighting" ',
'type="RichBool" ',
'/>\n',
' <Param name="Selected" ',
'value="{}" '.format(str(selected).lower()),
'description="Affect only selected faces" ',
'type="RichBool" ',
'/>\n',
' </filter>\n'])
util.write_filter(script, filter_xml)
return None
|
[
"Laplacian",
"smooth",
"of",
"the",
"mesh",
":",
"for",
"each",
"vertex",
"it",
"calculates",
"the",
"average",
"position",
"with",
"nearest",
"vertex"
] |
3DLIRIOUS/MeshLabXML
|
python
|
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/smooth.py#L5-L56
|
[
"def",
"laplacian",
"(",
"script",
",",
"iterations",
"=",
"1",
",",
"boundary",
"=",
"True",
",",
"cotangent_weight",
"=",
"True",
",",
"selected",
"=",
"False",
")",
":",
"filter_xml",
"=",
"''",
".",
"join",
"(",
"[",
"' <filter name=\"Laplacian Smooth\">\\n'",
",",
"' <Param name=\"stepSmoothNum\" '",
",",
"'value=\"{:d}\" '",
".",
"format",
"(",
"iterations",
")",
",",
"'description=\"Smoothing steps\" '",
",",
"'type=\"RichInt\" '",
",",
"'/>\\n'",
",",
"' <Param name=\"Boundary\" '",
",",
"'value=\"{}\" '",
".",
"format",
"(",
"str",
"(",
"boundary",
")",
".",
"lower",
"(",
")",
")",
",",
"'description=\"1D Boundary Smoothing\" '",
",",
"'type=\"RichBool\" '",
",",
"'/>\\n'",
",",
"' <Param name=\"cotangentWeight\" '",
",",
"'value=\"{}\" '",
".",
"format",
"(",
"str",
"(",
"cotangent_weight",
")",
".",
"lower",
"(",
")",
")",
",",
"'description=\"Cotangent weighting\" '",
",",
"'type=\"RichBool\" '",
",",
"'/>\\n'",
",",
"' <Param name=\"Selected\" '",
",",
"'value=\"{}\" '",
".",
"format",
"(",
"str",
"(",
"selected",
")",
".",
"lower",
"(",
")",
")",
",",
"'description=\"Affect only selected faces\" '",
",",
"'type=\"RichBool\" '",
",",
"'/>\\n'",
",",
"' </filter>\\n'",
"]",
")",
"util",
".",
"write_filter",
"(",
"script",
",",
"filter_xml",
")",
"return",
"None"
] |
177cce21e92baca500f56a932d66bd9a33257af8
|
test
|
taubin
|
The lambda & mu Taubin smoothing, it make two steps of smoothing, forth
and back, for each iteration.
Based on:
Gabriel Taubin
"A signal processing approach to fair surface design"
Siggraph 1995
Args:
script: the FilterScript object or script filename to write
the filter to.
iterations (int): The number of times that the taubin smoothing is
iterated. Usually it requires a larger number of iteration than the
classical laplacian.
t_lambda (float): The lambda parameter of the Taubin Smoothing algorithm
t_mu (float): The mu parameter of the Taubin Smoothing algorithm
selected (bool): If selected the filter is performed only on the
selected faces
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA
|
meshlabxml/smooth.py
|
def taubin(script, iterations=10, t_lambda=0.5, t_mu=-0.53, selected=False):
""" The lambda & mu Taubin smoothing, it make two steps of smoothing, forth
and back, for each iteration.
Based on:
Gabriel Taubin
"A signal processing approach to fair surface design"
Siggraph 1995
Args:
script: the FilterScript object or script filename to write
the filter to.
iterations (int): The number of times that the taubin smoothing is
iterated. Usually it requires a larger number of iteration than the
classical laplacian.
t_lambda (float): The lambda parameter of the Taubin Smoothing algorithm
t_mu (float): The mu parameter of the Taubin Smoothing algorithm
selected (bool): If selected the filter is performed only on the
selected faces
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA
"""
filter_xml = ''.join([
' <filter name="Taubin Smooth">\n',
' <Param name="lambda" ',
'value="{}" '.format(t_lambda),
'description="Lambda" ',
'type="RichFloat" ',
'/>\n',
' <Param name="mu" ',
'value="{}" '.format(t_mu),
'description="mu" ',
'type="RichFloat" ',
'/>\n',
' <Param name="stepSmoothNum" ',
'value="{:d}" '.format(iterations),
'description="Smoothing steps" ',
'type="RichInt" ',
'/>\n',
' <Param name="Selected" ',
'value="{}" '.format(str(selected).lower()),
'description="Affect only selected faces" ',
'type="RichBool" ',
'/>\n',
' </filter>\n'])
util.write_filter(script, filter_xml)
return None
|
def taubin(script, iterations=10, t_lambda=0.5, t_mu=-0.53, selected=False):
""" The lambda & mu Taubin smoothing, it make two steps of smoothing, forth
and back, for each iteration.
Based on:
Gabriel Taubin
"A signal processing approach to fair surface design"
Siggraph 1995
Args:
script: the FilterScript object or script filename to write
the filter to.
iterations (int): The number of times that the taubin smoothing is
iterated. Usually it requires a larger number of iteration than the
classical laplacian.
t_lambda (float): The lambda parameter of the Taubin Smoothing algorithm
t_mu (float): The mu parameter of the Taubin Smoothing algorithm
selected (bool): If selected the filter is performed only on the
selected faces
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA
"""
filter_xml = ''.join([
' <filter name="Taubin Smooth">\n',
' <Param name="lambda" ',
'value="{}" '.format(t_lambda),
'description="Lambda" ',
'type="RichFloat" ',
'/>\n',
' <Param name="mu" ',
'value="{}" '.format(t_mu),
'description="mu" ',
'type="RichFloat" ',
'/>\n',
' <Param name="stepSmoothNum" ',
'value="{:d}" '.format(iterations),
'description="Smoothing steps" ',
'type="RichInt" ',
'/>\n',
' <Param name="Selected" ',
'value="{}" '.format(str(selected).lower()),
'description="Affect only selected faces" ',
'type="RichBool" ',
'/>\n',
' </filter>\n'])
util.write_filter(script, filter_xml)
return None
|
[
"The",
"lambda",
"&",
"mu",
"Taubin",
"smoothing",
"it",
"make",
"two",
"steps",
"of",
"smoothing",
"forth",
"and",
"back",
"for",
"each",
"iteration",
"."
] |
3DLIRIOUS/MeshLabXML
|
python
|
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/smooth.py#L75-L126
|
[
"def",
"taubin",
"(",
"script",
",",
"iterations",
"=",
"10",
",",
"t_lambda",
"=",
"0.5",
",",
"t_mu",
"=",
"-",
"0.53",
",",
"selected",
"=",
"False",
")",
":",
"filter_xml",
"=",
"''",
".",
"join",
"(",
"[",
"' <filter name=\"Taubin Smooth\">\\n'",
",",
"' <Param name=\"lambda\" '",
",",
"'value=\"{}\" '",
".",
"format",
"(",
"t_lambda",
")",
",",
"'description=\"Lambda\" '",
",",
"'type=\"RichFloat\" '",
",",
"'/>\\n'",
",",
"' <Param name=\"mu\" '",
",",
"'value=\"{}\" '",
".",
"format",
"(",
"t_mu",
")",
",",
"'description=\"mu\" '",
",",
"'type=\"RichFloat\" '",
",",
"'/>\\n'",
",",
"' <Param name=\"stepSmoothNum\" '",
",",
"'value=\"{:d}\" '",
".",
"format",
"(",
"iterations",
")",
",",
"'description=\"Smoothing steps\" '",
",",
"'type=\"RichInt\" '",
",",
"'/>\\n'",
",",
"' <Param name=\"Selected\" '",
",",
"'value=\"{}\" '",
".",
"format",
"(",
"str",
"(",
"selected",
")",
".",
"lower",
"(",
")",
")",
",",
"'description=\"Affect only selected faces\" '",
",",
"'type=\"RichBool\" '",
",",
"'/>\\n'",
",",
"' </filter>\\n'",
"]",
")",
"util",
".",
"write_filter",
"(",
"script",
",",
"filter_xml",
")",
"return",
"None"
] |
177cce21e92baca500f56a932d66bd9a33257af8
|
test
|
twostep
|
Two Step Smoothing, a feature preserving/enhancing fairing filter.
It is based on a Normal Smoothing step where similar normals are averaged
together and a step where the vertexes are fitted on the new normals.
Based on:
A. Belyaev and Y. Ohtake,
"A Comparison of Mesh Smoothing Methods"
Proc. Israel-Korea Bi-National Conf. Geometric Modeling and Computer
Graphics, pp. 83-87, 2003.
Args:
script: the FilterScript object or script filename to write
the filter to.
iterations (int): The number of times that the whole algorithm (normal
smoothing + vertex fitting) is iterated.
angle_threshold (float): Specify a threshold angle (0..90) for features
that you want to be preserved. Features forming angles LARGER than
the specified threshold will be preserved.
0 -> no smoothing
90 -> all faces will be smoothed
normal_steps (int): Number of iterations of normal smoothing step. The
larger the better and (the slower)
fit_steps (int): Number of iterations of the vertex fitting procedure
selected (bool): If selected the filter is performed only on the
selected faces
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA
|
meshlabxml/smooth.py
|
def twostep(script, iterations=3, angle_threshold=60, normal_steps=20, fit_steps=20,
selected=False):
""" Two Step Smoothing, a feature preserving/enhancing fairing filter.
It is based on a Normal Smoothing step where similar normals are averaged
together and a step where the vertexes are fitted on the new normals.
Based on:
A. Belyaev and Y. Ohtake,
"A Comparison of Mesh Smoothing Methods"
Proc. Israel-Korea Bi-National Conf. Geometric Modeling and Computer
Graphics, pp. 83-87, 2003.
Args:
script: the FilterScript object or script filename to write
the filter to.
iterations (int): The number of times that the whole algorithm (normal
smoothing + vertex fitting) is iterated.
angle_threshold (float): Specify a threshold angle (0..90) for features
that you want to be preserved. Features forming angles LARGER than
the specified threshold will be preserved.
0 -> no smoothing
90 -> all faces will be smoothed
normal_steps (int): Number of iterations of normal smoothing step. The
larger the better and (the slower)
fit_steps (int): Number of iterations of the vertex fitting procedure
selected (bool): If selected the filter is performed only on the
selected faces
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA
"""
filter_xml = ''.join([
' <filter name="TwoStep Smooth">\n',
' <Param name="stepSmoothNum" ',
'value="{:d}" '.format(iterations),
'description="Smoothing steps" ',
'type="RichInt" ',
'/>\n',
' <Param name="normalThr" ',
'value="{}" '.format(angle_threshold),
'description="Feature Angle Threshold (deg)" ',
'type="RichFloat" ',
'/>\n',
' <Param name="stepNormalNum" ',
'value="{:d}" '.format(normal_steps),
'description="Normal Smoothing steps" ',
'type="RichInt" ',
'/>\n',
' <Param name="stepFitNum" ',
'value="{:d}" '.format(fit_steps),
'description="Vertex Fitting steps" ',
'type="RichInt" ',
'/>\n',
' <Param name="Selected" ',
'value="{}" '.format(str(selected).lower()),
'description="Affect only selected faces" ',
'type="RichBool" ',
'/>\n',
' </filter>\n'])
util.write_filter(script, filter_xml)
return None
|
def twostep(script, iterations=3, angle_threshold=60, normal_steps=20, fit_steps=20,
selected=False):
""" Two Step Smoothing, a feature preserving/enhancing fairing filter.
It is based on a Normal Smoothing step where similar normals are averaged
together and a step where the vertexes are fitted on the new normals.
Based on:
A. Belyaev and Y. Ohtake,
"A Comparison of Mesh Smoothing Methods"
Proc. Israel-Korea Bi-National Conf. Geometric Modeling and Computer
Graphics, pp. 83-87, 2003.
Args:
script: the FilterScript object or script filename to write
the filter to.
iterations (int): The number of times that the whole algorithm (normal
smoothing + vertex fitting) is iterated.
angle_threshold (float): Specify a threshold angle (0..90) for features
that you want to be preserved. Features forming angles LARGER than
the specified threshold will be preserved.
0 -> no smoothing
90 -> all faces will be smoothed
normal_steps (int): Number of iterations of normal smoothing step. The
larger the better and (the slower)
fit_steps (int): Number of iterations of the vertex fitting procedure
selected (bool): If selected the filter is performed only on the
selected faces
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA
"""
filter_xml = ''.join([
' <filter name="TwoStep Smooth">\n',
' <Param name="stepSmoothNum" ',
'value="{:d}" '.format(iterations),
'description="Smoothing steps" ',
'type="RichInt" ',
'/>\n',
' <Param name="normalThr" ',
'value="{}" '.format(angle_threshold),
'description="Feature Angle Threshold (deg)" ',
'type="RichFloat" ',
'/>\n',
' <Param name="stepNormalNum" ',
'value="{:d}" '.format(normal_steps),
'description="Normal Smoothing steps" ',
'type="RichInt" ',
'/>\n',
' <Param name="stepFitNum" ',
'value="{:d}" '.format(fit_steps),
'description="Vertex Fitting steps" ',
'type="RichInt" ',
'/>\n',
' <Param name="Selected" ',
'value="{}" '.format(str(selected).lower()),
'description="Affect only selected faces" ',
'type="RichBool" ',
'/>\n',
' </filter>\n'])
util.write_filter(script, filter_xml)
return None
|
[
"Two",
"Step",
"Smoothing",
"a",
"feature",
"preserving",
"/",
"enhancing",
"fairing",
"filter",
"."
] |
3DLIRIOUS/MeshLabXML
|
python
|
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/smooth.py#L129-L194
|
[
"def",
"twostep",
"(",
"script",
",",
"iterations",
"=",
"3",
",",
"angle_threshold",
"=",
"60",
",",
"normal_steps",
"=",
"20",
",",
"fit_steps",
"=",
"20",
",",
"selected",
"=",
"False",
")",
":",
"filter_xml",
"=",
"''",
".",
"join",
"(",
"[",
"' <filter name=\"TwoStep Smooth\">\\n'",
",",
"' <Param name=\"stepSmoothNum\" '",
",",
"'value=\"{:d}\" '",
".",
"format",
"(",
"iterations",
")",
",",
"'description=\"Smoothing steps\" '",
",",
"'type=\"RichInt\" '",
",",
"'/>\\n'",
",",
"' <Param name=\"normalThr\" '",
",",
"'value=\"{}\" '",
".",
"format",
"(",
"angle_threshold",
")",
",",
"'description=\"Feature Angle Threshold (deg)\" '",
",",
"'type=\"RichFloat\" '",
",",
"'/>\\n'",
",",
"' <Param name=\"stepNormalNum\" '",
",",
"'value=\"{:d}\" '",
".",
"format",
"(",
"normal_steps",
")",
",",
"'description=\"Normal Smoothing steps\" '",
",",
"'type=\"RichInt\" '",
",",
"'/>\\n'",
",",
"' <Param name=\"stepFitNum\" '",
",",
"'value=\"{:d}\" '",
".",
"format",
"(",
"fit_steps",
")",
",",
"'description=\"Vertex Fitting steps\" '",
",",
"'type=\"RichInt\" '",
",",
"'/>\\n'",
",",
"' <Param name=\"Selected\" '",
",",
"'value=\"{}\" '",
".",
"format",
"(",
"str",
"(",
"selected",
")",
".",
"lower",
"(",
")",
")",
",",
"'description=\"Affect only selected faces\" '",
",",
"'type=\"RichBool\" '",
",",
"'/>\\n'",
",",
"' </filter>\\n'",
"]",
")",
"util",
".",
"write_filter",
"(",
"script",
",",
"filter_xml",
")",
"return",
"None"
] |
177cce21e92baca500f56a932d66bd9a33257af8
|
test
|
depth
|
A laplacian smooth that is constrained to move vertices only along the
view direction.
Args:
script: the FilterScript object or script filename to write
the filter to.
iterations (int): The number of times that the whole algorithm (normal
smoothing + vertex fitting) is iterated.
viewpoint (vector tuple or list): The position of the view point that
is used to get the constraint direction.
selected (bool): If selected the filter is performed only on the
selected faces
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA
|
meshlabxml/smooth.py
|
def depth(script, iterations=3, viewpoint=(0, 0, 0), selected=False):
""" A laplacian smooth that is constrained to move vertices only along the
view direction.
Args:
script: the FilterScript object or script filename to write
the filter to.
iterations (int): The number of times that the whole algorithm (normal
smoothing + vertex fitting) is iterated.
viewpoint (vector tuple or list): The position of the view point that
is used to get the constraint direction.
selected (bool): If selected the filter is performed only on the
selected faces
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA
"""
filter_xml = ''.join([
' <filter name="Depth Smooth">\n',
' <Param name="stepSmoothNum" ',
'value="{:d}" '.format(iterations),
'description="Smoothing steps" ',
'type="RichInt" ',
'/>\n',
' <Param name="viewPoint" ',
'x="{}" '.format(viewpoint[0]),
'y="{}" '.format(viewpoint[1]),
'z="{}" '.format(viewpoint[2]),
'description="Smoothing steps" ',
'type="RichPoint3f" ',
'/>\n',
' <Param name="Selected" ',
'value="{}" '.format(str(selected).lower()),
'description="Affect only selected faces" ',
'type="RichBool" ',
'/>\n',
' </filter>\n'])
util.write_filter(script, filter_xml)
return None
|
def depth(script, iterations=3, viewpoint=(0, 0, 0), selected=False):
""" A laplacian smooth that is constrained to move vertices only along the
view direction.
Args:
script: the FilterScript object or script filename to write
the filter to.
iterations (int): The number of times that the whole algorithm (normal
smoothing + vertex fitting) is iterated.
viewpoint (vector tuple or list): The position of the view point that
is used to get the constraint direction.
selected (bool): If selected the filter is performed only on the
selected faces
Layer stack:
No impacts
MeshLab versions:
2016.12
1.3.4BETA
"""
filter_xml = ''.join([
' <filter name="Depth Smooth">\n',
' <Param name="stepSmoothNum" ',
'value="{:d}" '.format(iterations),
'description="Smoothing steps" ',
'type="RichInt" ',
'/>\n',
' <Param name="viewPoint" ',
'x="{}" '.format(viewpoint[0]),
'y="{}" '.format(viewpoint[1]),
'z="{}" '.format(viewpoint[2]),
'description="Smoothing steps" ',
'type="RichPoint3f" ',
'/>\n',
' <Param name="Selected" ',
'value="{}" '.format(str(selected).lower()),
'description="Affect only selected faces" ',
'type="RichBool" ',
'/>\n',
' </filter>\n'])
util.write_filter(script, filter_xml)
return None
|
[
"A",
"laplacian",
"smooth",
"that",
"is",
"constrained",
"to",
"move",
"vertices",
"only",
"along",
"the",
"view",
"direction",
"."
] |
3DLIRIOUS/MeshLabXML
|
python
|
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/smooth.py#L197-L239
|
[
"def",
"depth",
"(",
"script",
",",
"iterations",
"=",
"3",
",",
"viewpoint",
"=",
"(",
"0",
",",
"0",
",",
"0",
")",
",",
"selected",
"=",
"False",
")",
":",
"filter_xml",
"=",
"''",
".",
"join",
"(",
"[",
"' <filter name=\"Depth Smooth\">\\n'",
",",
"' <Param name=\"stepSmoothNum\" '",
",",
"'value=\"{:d}\" '",
".",
"format",
"(",
"iterations",
")",
",",
"'description=\"Smoothing steps\" '",
",",
"'type=\"RichInt\" '",
",",
"'/>\\n'",
",",
"' <Param name=\"viewPoint\" '",
",",
"'x=\"{}\" '",
".",
"format",
"(",
"viewpoint",
"[",
"0",
"]",
")",
",",
"'y=\"{}\" '",
".",
"format",
"(",
"viewpoint",
"[",
"1",
"]",
")",
",",
"'z=\"{}\" '",
".",
"format",
"(",
"viewpoint",
"[",
"2",
"]",
")",
",",
"'description=\"Smoothing steps\" '",
",",
"'type=\"RichPoint3f\" '",
",",
"'/>\\n'",
",",
"' <Param name=\"Selected\" '",
",",
"'value=\"{}\" '",
".",
"format",
"(",
"str",
"(",
"selected",
")",
".",
"lower",
"(",
")",
")",
",",
"'description=\"Affect only selected faces\" '",
",",
"'type=\"RichBool\" '",
",",
"'/>\\n'",
",",
"' </filter>\\n'",
"]",
")",
"util",
".",
"write_filter",
"(",
"script",
",",
"filter_xml",
")",
"return",
"None"
] |
177cce21e92baca500f56a932d66bd9a33257af8
|
test
|
measure_aabb
|
Measure the axis aligned bounding box (aabb) of a mesh
in multiple coordinate systems.
Args:
fbasename (str): filename of input model
log (str): filename of log file
coord_system (enum in ['CARTESIAN', 'CYLINDRICAL']
Coordinate system to use:
'CARTESIAN': lists contain [x, y, z]
'CYLINDRICAL': lists contain [r, theta, z]
Returns:
dict: dictionary with the following aabb properties
min (3 element list): minimum values
max (3 element list): maximum values
center (3 element list): the center point
size (3 element list): size of the aabb in each coordinate (max-min)
diagonal (float): the diagonal of the aabb
|
meshlabxml/files.py
|
def measure_aabb(fbasename=None, log=None, coord_system='CARTESIAN'):
""" Measure the axis aligned bounding box (aabb) of a mesh
in multiple coordinate systems.
Args:
fbasename (str): filename of input model
log (str): filename of log file
coord_system (enum in ['CARTESIAN', 'CYLINDRICAL']
Coordinate system to use:
'CARTESIAN': lists contain [x, y, z]
'CYLINDRICAL': lists contain [r, theta, z]
Returns:
dict: dictionary with the following aabb properties
min (3 element list): minimum values
max (3 element list): maximum values
center (3 element list): the center point
size (3 element list): size of the aabb in each coordinate (max-min)
diagonal (float): the diagonal of the aabb
"""
# TODO: add center point, spherical coordinate system
fext = os.path.splitext(fbasename)[1][1:].strip().lower()
if fext != 'xyz':
fin = 'TEMP3D_aabb.xyz'
run(log=log, file_in=fbasename, file_out=fin, script=None)
else:
fin = fbasename
fread = open(fin, 'r')
aabb = {'min': [999999.0, 999999.0, 999999.0], 'max': [-999999.0, -999999.0, -999999.0]}
for line in fread:
x_co, y_co, z_co = line.split()
x_co = util.to_float(x_co)
y_co = util.to_float(y_co)
z_co = util.to_float(z_co)
if coord_system == 'CARTESIAN':
if x_co < aabb['min'][0]:
aabb['min'][0] = x_co
if y_co < aabb['min'][1]:
aabb['min'][1] = y_co
if z_co < aabb['min'][2]:
aabb['min'][2] = z_co
if x_co > aabb['max'][0]:
aabb['max'][0] = x_co
if y_co > aabb['max'][1]:
aabb['max'][1] = y_co
if z_co > aabb['max'][2]:
aabb['max'][2] = z_co
elif coord_system == 'CYLINDRICAL':
radius = math.sqrt(x_co**2 + y_co**2)
theta = math.degrees(math.atan2(y_co, x_co))
if radius < aabb['min'][0]:
aabb['min'][0] = radius
if theta < aabb['min'][1]:
aabb['min'][1] = theta
if z_co < aabb['min'][2]:
aabb['min'][2] = z_co
if radius > aabb['max'][0]:
aabb['max'][0] = radius
if theta > aabb['max'][1]:
aabb['max'][1] = theta
if z_co > aabb['max'][2]:
aabb['max'][2] = z_co
fread.close()
try:
aabb['center'] = [(aabb['max'][0] + aabb['min'][0]) / 2,
(aabb['max'][1] + aabb['min'][1]) / 2,
(aabb['max'][2] + aabb['min'][2]) / 2]
aabb['size'] = [aabb['max'][0] - aabb['min'][0], aabb['max'][1] - aabb['min'][1],
aabb['max'][2] - aabb['min'][2]]
aabb['diagonal'] = math.sqrt(
aabb['size'][0]**2 +
aabb['size'][1]**2 +
aabb['size'][2]**2)
except UnboundLocalError:
print('Error: aabb input file does not contain valid data. Exiting ...')
sys.exit(1)
for key, value in aabb.items():
if log is None:
print('{:10} = {}'.format(key, value))
else:
log_file = open(log, 'a')
log_file.write('{:10} = {}\n'.format(key, value))
log_file.close()
"""
if log is not None:
log_file = open(log, 'a')
#log_file.write('***Axis Aligned Bounding Results for file "%s":\n' % fbasename)
log_file.write('min = %s\n' % aabb['min'])
log_file.write('max = %s\n' % aabb['max'])
log_file.write('center = %s\n' % aabb['center'])
log_file.write('size = %s\n' % aabb['size'])
log_file.write('diagonal = %s\n\n' % aabb['diagonal'])
log_file.close()
# print(aabb)
"""
return aabb
|
def measure_aabb(fbasename=None, log=None, coord_system='CARTESIAN'):
""" Measure the axis aligned bounding box (aabb) of a mesh
in multiple coordinate systems.
Args:
fbasename (str): filename of input model
log (str): filename of log file
coord_system (enum in ['CARTESIAN', 'CYLINDRICAL']
Coordinate system to use:
'CARTESIAN': lists contain [x, y, z]
'CYLINDRICAL': lists contain [r, theta, z]
Returns:
dict: dictionary with the following aabb properties
min (3 element list): minimum values
max (3 element list): maximum values
center (3 element list): the center point
size (3 element list): size of the aabb in each coordinate (max-min)
diagonal (float): the diagonal of the aabb
"""
# TODO: add center point, spherical coordinate system
fext = os.path.splitext(fbasename)[1][1:].strip().lower()
if fext != 'xyz':
fin = 'TEMP3D_aabb.xyz'
run(log=log, file_in=fbasename, file_out=fin, script=None)
else:
fin = fbasename
fread = open(fin, 'r')
aabb = {'min': [999999.0, 999999.0, 999999.0], 'max': [-999999.0, -999999.0, -999999.0]}
for line in fread:
x_co, y_co, z_co = line.split()
x_co = util.to_float(x_co)
y_co = util.to_float(y_co)
z_co = util.to_float(z_co)
if coord_system == 'CARTESIAN':
if x_co < aabb['min'][0]:
aabb['min'][0] = x_co
if y_co < aabb['min'][1]:
aabb['min'][1] = y_co
if z_co < aabb['min'][2]:
aabb['min'][2] = z_co
if x_co > aabb['max'][0]:
aabb['max'][0] = x_co
if y_co > aabb['max'][1]:
aabb['max'][1] = y_co
if z_co > aabb['max'][2]:
aabb['max'][2] = z_co
elif coord_system == 'CYLINDRICAL':
radius = math.sqrt(x_co**2 + y_co**2)
theta = math.degrees(math.atan2(y_co, x_co))
if radius < aabb['min'][0]:
aabb['min'][0] = radius
if theta < aabb['min'][1]:
aabb['min'][1] = theta
if z_co < aabb['min'][2]:
aabb['min'][2] = z_co
if radius > aabb['max'][0]:
aabb['max'][0] = radius
if theta > aabb['max'][1]:
aabb['max'][1] = theta
if z_co > aabb['max'][2]:
aabb['max'][2] = z_co
fread.close()
try:
aabb['center'] = [(aabb['max'][0] + aabb['min'][0]) / 2,
(aabb['max'][1] + aabb['min'][1]) / 2,
(aabb['max'][2] + aabb['min'][2]) / 2]
aabb['size'] = [aabb['max'][0] - aabb['min'][0], aabb['max'][1] - aabb['min'][1],
aabb['max'][2] - aabb['min'][2]]
aabb['diagonal'] = math.sqrt(
aabb['size'][0]**2 +
aabb['size'][1]**2 +
aabb['size'][2]**2)
except UnboundLocalError:
print('Error: aabb input file does not contain valid data. Exiting ...')
sys.exit(1)
for key, value in aabb.items():
if log is None:
print('{:10} = {}'.format(key, value))
else:
log_file = open(log, 'a')
log_file.write('{:10} = {}\n'.format(key, value))
log_file.close()
"""
if log is not None:
log_file = open(log, 'a')
#log_file.write('***Axis Aligned Bounding Results for file "%s":\n' % fbasename)
log_file.write('min = %s\n' % aabb['min'])
log_file.write('max = %s\n' % aabb['max'])
log_file.write('center = %s\n' % aabb['center'])
log_file.write('size = %s\n' % aabb['size'])
log_file.write('diagonal = %s\n\n' % aabb['diagonal'])
log_file.close()
# print(aabb)
"""
return aabb
|
[
"Measure",
"the",
"axis",
"aligned",
"bounding",
"box",
"(",
"aabb",
")",
"of",
"a",
"mesh",
"in",
"multiple",
"coordinate",
"systems",
"."
] |
3DLIRIOUS/MeshLabXML
|
python
|
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/files.py#L17-L111
|
[
"def",
"measure_aabb",
"(",
"fbasename",
"=",
"None",
",",
"log",
"=",
"None",
",",
"coord_system",
"=",
"'CARTESIAN'",
")",
":",
"# TODO: add center point, spherical coordinate system",
"fext",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"fbasename",
")",
"[",
"1",
"]",
"[",
"1",
":",
"]",
".",
"strip",
"(",
")",
".",
"lower",
"(",
")",
"if",
"fext",
"!=",
"'xyz'",
":",
"fin",
"=",
"'TEMP3D_aabb.xyz'",
"run",
"(",
"log",
"=",
"log",
",",
"file_in",
"=",
"fbasename",
",",
"file_out",
"=",
"fin",
",",
"script",
"=",
"None",
")",
"else",
":",
"fin",
"=",
"fbasename",
"fread",
"=",
"open",
"(",
"fin",
",",
"'r'",
")",
"aabb",
"=",
"{",
"'min'",
":",
"[",
"999999.0",
",",
"999999.0",
",",
"999999.0",
"]",
",",
"'max'",
":",
"[",
"-",
"999999.0",
",",
"-",
"999999.0",
",",
"-",
"999999.0",
"]",
"}",
"for",
"line",
"in",
"fread",
":",
"x_co",
",",
"y_co",
",",
"z_co",
"=",
"line",
".",
"split",
"(",
")",
"x_co",
"=",
"util",
".",
"to_float",
"(",
"x_co",
")",
"y_co",
"=",
"util",
".",
"to_float",
"(",
"y_co",
")",
"z_co",
"=",
"util",
".",
"to_float",
"(",
"z_co",
")",
"if",
"coord_system",
"==",
"'CARTESIAN'",
":",
"if",
"x_co",
"<",
"aabb",
"[",
"'min'",
"]",
"[",
"0",
"]",
":",
"aabb",
"[",
"'min'",
"]",
"[",
"0",
"]",
"=",
"x_co",
"if",
"y_co",
"<",
"aabb",
"[",
"'min'",
"]",
"[",
"1",
"]",
":",
"aabb",
"[",
"'min'",
"]",
"[",
"1",
"]",
"=",
"y_co",
"if",
"z_co",
"<",
"aabb",
"[",
"'min'",
"]",
"[",
"2",
"]",
":",
"aabb",
"[",
"'min'",
"]",
"[",
"2",
"]",
"=",
"z_co",
"if",
"x_co",
">",
"aabb",
"[",
"'max'",
"]",
"[",
"0",
"]",
":",
"aabb",
"[",
"'max'",
"]",
"[",
"0",
"]",
"=",
"x_co",
"if",
"y_co",
">",
"aabb",
"[",
"'max'",
"]",
"[",
"1",
"]",
":",
"aabb",
"[",
"'max'",
"]",
"[",
"1",
"]",
"=",
"y_co",
"if",
"z_co",
">",
"aabb",
"[",
"'max'",
"]",
"[",
"2",
"]",
":",
"aabb",
"[",
"'max'",
"]",
"[",
"2",
"]",
"=",
"z_co",
"elif",
"coord_system",
"==",
"'CYLINDRICAL'",
":",
"radius",
"=",
"math",
".",
"sqrt",
"(",
"x_co",
"**",
"2",
"+",
"y_co",
"**",
"2",
")",
"theta",
"=",
"math",
".",
"degrees",
"(",
"math",
".",
"atan2",
"(",
"y_co",
",",
"x_co",
")",
")",
"if",
"radius",
"<",
"aabb",
"[",
"'min'",
"]",
"[",
"0",
"]",
":",
"aabb",
"[",
"'min'",
"]",
"[",
"0",
"]",
"=",
"radius",
"if",
"theta",
"<",
"aabb",
"[",
"'min'",
"]",
"[",
"1",
"]",
":",
"aabb",
"[",
"'min'",
"]",
"[",
"1",
"]",
"=",
"theta",
"if",
"z_co",
"<",
"aabb",
"[",
"'min'",
"]",
"[",
"2",
"]",
":",
"aabb",
"[",
"'min'",
"]",
"[",
"2",
"]",
"=",
"z_co",
"if",
"radius",
">",
"aabb",
"[",
"'max'",
"]",
"[",
"0",
"]",
":",
"aabb",
"[",
"'max'",
"]",
"[",
"0",
"]",
"=",
"radius",
"if",
"theta",
">",
"aabb",
"[",
"'max'",
"]",
"[",
"1",
"]",
":",
"aabb",
"[",
"'max'",
"]",
"[",
"1",
"]",
"=",
"theta",
"if",
"z_co",
">",
"aabb",
"[",
"'max'",
"]",
"[",
"2",
"]",
":",
"aabb",
"[",
"'max'",
"]",
"[",
"2",
"]",
"=",
"z_co",
"fread",
".",
"close",
"(",
")",
"try",
":",
"aabb",
"[",
"'center'",
"]",
"=",
"[",
"(",
"aabb",
"[",
"'max'",
"]",
"[",
"0",
"]",
"+",
"aabb",
"[",
"'min'",
"]",
"[",
"0",
"]",
")",
"/",
"2",
",",
"(",
"aabb",
"[",
"'max'",
"]",
"[",
"1",
"]",
"+",
"aabb",
"[",
"'min'",
"]",
"[",
"1",
"]",
")",
"/",
"2",
",",
"(",
"aabb",
"[",
"'max'",
"]",
"[",
"2",
"]",
"+",
"aabb",
"[",
"'min'",
"]",
"[",
"2",
"]",
")",
"/",
"2",
"]",
"aabb",
"[",
"'size'",
"]",
"=",
"[",
"aabb",
"[",
"'max'",
"]",
"[",
"0",
"]",
"-",
"aabb",
"[",
"'min'",
"]",
"[",
"0",
"]",
",",
"aabb",
"[",
"'max'",
"]",
"[",
"1",
"]",
"-",
"aabb",
"[",
"'min'",
"]",
"[",
"1",
"]",
",",
"aabb",
"[",
"'max'",
"]",
"[",
"2",
"]",
"-",
"aabb",
"[",
"'min'",
"]",
"[",
"2",
"]",
"]",
"aabb",
"[",
"'diagonal'",
"]",
"=",
"math",
".",
"sqrt",
"(",
"aabb",
"[",
"'size'",
"]",
"[",
"0",
"]",
"**",
"2",
"+",
"aabb",
"[",
"'size'",
"]",
"[",
"1",
"]",
"**",
"2",
"+",
"aabb",
"[",
"'size'",
"]",
"[",
"2",
"]",
"**",
"2",
")",
"except",
"UnboundLocalError",
":",
"print",
"(",
"'Error: aabb input file does not contain valid data. Exiting ...'",
")",
"sys",
".",
"exit",
"(",
"1",
")",
"for",
"key",
",",
"value",
"in",
"aabb",
".",
"items",
"(",
")",
":",
"if",
"log",
"is",
"None",
":",
"print",
"(",
"'{:10} = {}'",
".",
"format",
"(",
"key",
",",
"value",
")",
")",
"else",
":",
"log_file",
"=",
"open",
"(",
"log",
",",
"'a'",
")",
"log_file",
".",
"write",
"(",
"'{:10} = {}\\n'",
".",
"format",
"(",
"key",
",",
"value",
")",
")",
"log_file",
".",
"close",
"(",
")",
"\"\"\"\n if log is not None:\n log_file = open(log, 'a')\n #log_file.write('***Axis Aligned Bounding Results for file \"%s\":\\n' % fbasename)\n log_file.write('min = %s\\n' % aabb['min'])\n log_file.write('max = %s\\n' % aabb['max'])\n log_file.write('center = %s\\n' % aabb['center'])\n log_file.write('size = %s\\n' % aabb['size'])\n log_file.write('diagonal = %s\\n\\n' % aabb['diagonal'])\n log_file.close()\n # print(aabb)\n \"\"\"",
"return",
"aabb"
] |
177cce21e92baca500f56a932d66bd9a33257af8
|
test
|
measure_section
|
Measure a cross section of a mesh
Perform a plane cut in one of the major axes (X, Y, Z). If you want to cut on
a different plane you will need to rotate the model in place, perform the cut,
and rotate it back.
Args:
fbasename (str): filename of input model
log (str): filename of log file
axis (str): axis perpendicular to the cutting plane, e.g. specify "z" to cut
parallel to the XY plane.
offset (float): amount to offset the cutting plane from the origin
rotate_x_angle (float): degrees to rotate about the X axis. Useful for correcting "Up" direction: 90 to rotate Y to Z, and -90 to rotate Z to Y.
Returns:
dict: dictionary with the following keys for the aabb of the section:
min (list): list of the x, y & z minimum values
max (list): list of the x, y & z maximum values
center (list): the x, y & z coordinates of the center of the aabb
size (list): list of the x, y & z sizes (max - min)
diagonal (float): the diagonal of the aabb
|
meshlabxml/files.py
|
def measure_section(fbasename=None, log=None, axis='z', offset=0.0,
rotate_x_angle=None, ml_version=ml_version):
"""Measure a cross section of a mesh
Perform a plane cut in one of the major axes (X, Y, Z). If you want to cut on
a different plane you will need to rotate the model in place, perform the cut,
and rotate it back.
Args:
fbasename (str): filename of input model
log (str): filename of log file
axis (str): axis perpendicular to the cutting plane, e.g. specify "z" to cut
parallel to the XY plane.
offset (float): amount to offset the cutting plane from the origin
rotate_x_angle (float): degrees to rotate about the X axis. Useful for correcting "Up" direction: 90 to rotate Y to Z, and -90 to rotate Z to Y.
Returns:
dict: dictionary with the following keys for the aabb of the section:
min (list): list of the x, y & z minimum values
max (list): list of the x, y & z maximum values
center (list): the x, y & z coordinates of the center of the aabb
size (list): list of the x, y & z sizes (max - min)
diagonal (float): the diagonal of the aabb
"""
ml_script1_file = 'TEMP3D_measure_section.mlx'
file_out = 'TEMP3D_sect_aabb.xyz'
ml_script1 = mlx.FilterScript(file_in=fbasename, file_out=file_out, ml_version=ml_version)
if rotate_x_angle is not None:
transform.rotate(ml_script1, axis='x', angle=rotate_x_angle)
compute.section(ml_script1, axis=axis, offset=offset)
layers.delete_lower(ml_script1)
ml_script1.save_to_file(ml_script1_file)
ml_script1.run_script(log=log, script_file=ml_script1_file)
aabb = measure_aabb(file_out, log)
return aabb
|
def measure_section(fbasename=None, log=None, axis='z', offset=0.0,
rotate_x_angle=None, ml_version=ml_version):
"""Measure a cross section of a mesh
Perform a plane cut in one of the major axes (X, Y, Z). If you want to cut on
a different plane you will need to rotate the model in place, perform the cut,
and rotate it back.
Args:
fbasename (str): filename of input model
log (str): filename of log file
axis (str): axis perpendicular to the cutting plane, e.g. specify "z" to cut
parallel to the XY plane.
offset (float): amount to offset the cutting plane from the origin
rotate_x_angle (float): degrees to rotate about the X axis. Useful for correcting "Up" direction: 90 to rotate Y to Z, and -90 to rotate Z to Y.
Returns:
dict: dictionary with the following keys for the aabb of the section:
min (list): list of the x, y & z minimum values
max (list): list of the x, y & z maximum values
center (list): the x, y & z coordinates of the center of the aabb
size (list): list of the x, y & z sizes (max - min)
diagonal (float): the diagonal of the aabb
"""
ml_script1_file = 'TEMP3D_measure_section.mlx'
file_out = 'TEMP3D_sect_aabb.xyz'
ml_script1 = mlx.FilterScript(file_in=fbasename, file_out=file_out, ml_version=ml_version)
if rotate_x_angle is not None:
transform.rotate(ml_script1, axis='x', angle=rotate_x_angle)
compute.section(ml_script1, axis=axis, offset=offset)
layers.delete_lower(ml_script1)
ml_script1.save_to_file(ml_script1_file)
ml_script1.run_script(log=log, script_file=ml_script1_file)
aabb = measure_aabb(file_out, log)
return aabb
|
[
"Measure",
"a",
"cross",
"section",
"of",
"a",
"mesh",
"Perform",
"a",
"plane",
"cut",
"in",
"one",
"of",
"the",
"major",
"axes",
"(",
"X",
"Y",
"Z",
")",
".",
"If",
"you",
"want",
"to",
"cut",
"on",
"a",
"different",
"plane",
"you",
"will",
"need",
"to",
"rotate",
"the",
"model",
"in",
"place",
"perform",
"the",
"cut",
"and",
"rotate",
"it",
"back",
".",
"Args",
":",
"fbasename",
"(",
"str",
")",
":",
"filename",
"of",
"input",
"model",
"log",
"(",
"str",
")",
":",
"filename",
"of",
"log",
"file",
"axis",
"(",
"str",
")",
":",
"axis",
"perpendicular",
"to",
"the",
"cutting",
"plane",
"e",
".",
"g",
".",
"specify",
"z",
"to",
"cut",
"parallel",
"to",
"the",
"XY",
"plane",
".",
"offset",
"(",
"float",
")",
":",
"amount",
"to",
"offset",
"the",
"cutting",
"plane",
"from",
"the",
"origin",
"rotate_x_angle",
"(",
"float",
")",
":",
"degrees",
"to",
"rotate",
"about",
"the",
"X",
"axis",
".",
"Useful",
"for",
"correcting",
"Up",
"direction",
":",
"90",
"to",
"rotate",
"Y",
"to",
"Z",
"and",
"-",
"90",
"to",
"rotate",
"Z",
"to",
"Y",
"."
] |
3DLIRIOUS/MeshLabXML
|
python
|
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/files.py#L114-L149
|
[
"def",
"measure_section",
"(",
"fbasename",
"=",
"None",
",",
"log",
"=",
"None",
",",
"axis",
"=",
"'z'",
",",
"offset",
"=",
"0.0",
",",
"rotate_x_angle",
"=",
"None",
",",
"ml_version",
"=",
"ml_version",
")",
":",
"ml_script1_file",
"=",
"'TEMP3D_measure_section.mlx'",
"file_out",
"=",
"'TEMP3D_sect_aabb.xyz'",
"ml_script1",
"=",
"mlx",
".",
"FilterScript",
"(",
"file_in",
"=",
"fbasename",
",",
"file_out",
"=",
"file_out",
",",
"ml_version",
"=",
"ml_version",
")",
"if",
"rotate_x_angle",
"is",
"not",
"None",
":",
"transform",
".",
"rotate",
"(",
"ml_script1",
",",
"axis",
"=",
"'x'",
",",
"angle",
"=",
"rotate_x_angle",
")",
"compute",
".",
"section",
"(",
"ml_script1",
",",
"axis",
"=",
"axis",
",",
"offset",
"=",
"offset",
")",
"layers",
".",
"delete_lower",
"(",
"ml_script1",
")",
"ml_script1",
".",
"save_to_file",
"(",
"ml_script1_file",
")",
"ml_script1",
".",
"run_script",
"(",
"log",
"=",
"log",
",",
"script_file",
"=",
"ml_script1_file",
")",
"aabb",
"=",
"measure_aabb",
"(",
"file_out",
",",
"log",
")",
"return",
"aabb"
] |
177cce21e92baca500f56a932d66bd9a33257af8
|
test
|
polylinesort
|
Sort separate line segments in obj format into a continuous polyline or polylines.
NOT FINISHED; DO NOT USE
Also measures the length of each polyline
Return polyline and polylineMeta (lengths)
|
meshlabxml/files.py
|
def polylinesort(fbasename=None, log=None):
"""Sort separate line segments in obj format into a continuous polyline or polylines.
NOT FINISHED; DO NOT USE
Also measures the length of each polyline
Return polyline and polylineMeta (lengths)
"""
fext = os.path.splitext(fbasename)[1][1:].strip().lower()
if fext != 'obj':
print('Input file must be obj. Exiting ...')
sys.exit(1)
fread = open(fbasename, 'r')
first = True
polyline_vertices = []
line_segments = []
for line in fread:
element, x_co, y_co, z_co = line.split()
if element == 'v':
polyline_vertices.append(
[util.to_float(x_co), util.to_float(y_co), util.to_float(z_co)])
elif element == 'l':
p1 = x_co
p2 = y_co
line_segments.append([int(p1), int(p2)])
fread.close()
if log is not None:
log_file = open(log, 'a')
#log_file.write('***Axis Aligned Bounding Results for file "%s":\n' % fbasename)
"""log_file.write('min = %s\n' % aabb['min'])
log_file.write('max = %s\n' % aabb['max'])
log_file.write('center = %s\n' % aabb['center'])
log_file.write('size = %s\n' % aabb['size'])
log_file.write('diagonal = %s\n' % aabb['diagonal'])"""
log_file.close()
# print(aabb)
return None
|
def polylinesort(fbasename=None, log=None):
"""Sort separate line segments in obj format into a continuous polyline or polylines.
NOT FINISHED; DO NOT USE
Also measures the length of each polyline
Return polyline and polylineMeta (lengths)
"""
fext = os.path.splitext(fbasename)[1][1:].strip().lower()
if fext != 'obj':
print('Input file must be obj. Exiting ...')
sys.exit(1)
fread = open(fbasename, 'r')
first = True
polyline_vertices = []
line_segments = []
for line in fread:
element, x_co, y_co, z_co = line.split()
if element == 'v':
polyline_vertices.append(
[util.to_float(x_co), util.to_float(y_co), util.to_float(z_co)])
elif element == 'l':
p1 = x_co
p2 = y_co
line_segments.append([int(p1), int(p2)])
fread.close()
if log is not None:
log_file = open(log, 'a')
#log_file.write('***Axis Aligned Bounding Results for file "%s":\n' % fbasename)
"""log_file.write('min = %s\n' % aabb['min'])
log_file.write('max = %s\n' % aabb['max'])
log_file.write('center = %s\n' % aabb['center'])
log_file.write('size = %s\n' % aabb['size'])
log_file.write('diagonal = %s\n' % aabb['diagonal'])"""
log_file.close()
# print(aabb)
return None
|
[
"Sort",
"separate",
"line",
"segments",
"in",
"obj",
"format",
"into",
"a",
"continuous",
"polyline",
"or",
"polylines",
".",
"NOT",
"FINISHED",
";",
"DO",
"NOT",
"USE"
] |
3DLIRIOUS/MeshLabXML
|
python
|
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/files.py#L152-L190
|
[
"def",
"polylinesort",
"(",
"fbasename",
"=",
"None",
",",
"log",
"=",
"None",
")",
":",
"fext",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"fbasename",
")",
"[",
"1",
"]",
"[",
"1",
":",
"]",
".",
"strip",
"(",
")",
".",
"lower",
"(",
")",
"if",
"fext",
"!=",
"'obj'",
":",
"print",
"(",
"'Input file must be obj. Exiting ...'",
")",
"sys",
".",
"exit",
"(",
"1",
")",
"fread",
"=",
"open",
"(",
"fbasename",
",",
"'r'",
")",
"first",
"=",
"True",
"polyline_vertices",
"=",
"[",
"]",
"line_segments",
"=",
"[",
"]",
"for",
"line",
"in",
"fread",
":",
"element",
",",
"x_co",
",",
"y_co",
",",
"z_co",
"=",
"line",
".",
"split",
"(",
")",
"if",
"element",
"==",
"'v'",
":",
"polyline_vertices",
".",
"append",
"(",
"[",
"util",
".",
"to_float",
"(",
"x_co",
")",
",",
"util",
".",
"to_float",
"(",
"y_co",
")",
",",
"util",
".",
"to_float",
"(",
"z_co",
")",
"]",
")",
"elif",
"element",
"==",
"'l'",
":",
"p1",
"=",
"x_co",
"p2",
"=",
"y_co",
"line_segments",
".",
"append",
"(",
"[",
"int",
"(",
"p1",
")",
",",
"int",
"(",
"p2",
")",
"]",
")",
"fread",
".",
"close",
"(",
")",
"if",
"log",
"is",
"not",
"None",
":",
"log_file",
"=",
"open",
"(",
"log",
",",
"'a'",
")",
"#log_file.write('***Axis Aligned Bounding Results for file \"%s\":\\n' % fbasename)",
"\"\"\"log_file.write('min = %s\\n' % aabb['min'])\n log_file.write('max = %s\\n' % aabb['max'])\n log_file.write('center = %s\\n' % aabb['center'])\n log_file.write('size = %s\\n' % aabb['size'])\n log_file.write('diagonal = %s\\n' % aabb['diagonal'])\"\"\"",
"log_file",
".",
"close",
"(",
")",
"# print(aabb)",
"return",
"None"
] |
177cce21e92baca500f56a932d66bd9a33257af8
|
test
|
measure_topology
|
Measures mesh topology
Args:
fbasename (str): input filename.
log (str): filename to log output
Returns:
dict: dictionary with the following keys:
vert_num (int): number of vertices
edge_num (int): number of edges
face_num (int): number of faces
unref_vert_num (int): number or unreferenced vertices
boundry_edge_num (int): number of boundary edges
part_num (int): number of parts (components) in the mesh.
manifold (bool): True if mesh is two-manifold, otherwise false.
non_manifold_edge (int): number of non_manifold edges.
non_manifold_vert (int): number of non-manifold verices
genus (int or str): genus of the mesh, either a number or
'undefined' if the mesh is non-manifold.
holes (int or str): number of holes in the mesh, either a number
or 'undefined' if the mesh is non-manifold.
|
meshlabxml/files.py
|
def measure_topology(fbasename=None, log=None, ml_version=ml_version):
"""Measures mesh topology
Args:
fbasename (str): input filename.
log (str): filename to log output
Returns:
dict: dictionary with the following keys:
vert_num (int): number of vertices
edge_num (int): number of edges
face_num (int): number of faces
unref_vert_num (int): number or unreferenced vertices
boundry_edge_num (int): number of boundary edges
part_num (int): number of parts (components) in the mesh.
manifold (bool): True if mesh is two-manifold, otherwise false.
non_manifold_edge (int): number of non_manifold edges.
non_manifold_vert (int): number of non-manifold verices
genus (int or str): genus of the mesh, either a number or
'undefined' if the mesh is non-manifold.
holes (int or str): number of holes in the mesh, either a number
or 'undefined' if the mesh is non-manifold.
"""
ml_script1_file = 'TEMP3D_measure_topology.mlx'
ml_script1 = mlx.FilterScript(file_in=fbasename, ml_version=ml_version)
compute.measure_topology(ml_script1)
ml_script1.save_to_file(ml_script1_file)
ml_script1.run_script(log=log, script_file=ml_script1_file)
topology = ml_script1.topology
return topology
|
def measure_topology(fbasename=None, log=None, ml_version=ml_version):
"""Measures mesh topology
Args:
fbasename (str): input filename.
log (str): filename to log output
Returns:
dict: dictionary with the following keys:
vert_num (int): number of vertices
edge_num (int): number of edges
face_num (int): number of faces
unref_vert_num (int): number or unreferenced vertices
boundry_edge_num (int): number of boundary edges
part_num (int): number of parts (components) in the mesh.
manifold (bool): True if mesh is two-manifold, otherwise false.
non_manifold_edge (int): number of non_manifold edges.
non_manifold_vert (int): number of non-manifold verices
genus (int or str): genus of the mesh, either a number or
'undefined' if the mesh is non-manifold.
holes (int or str): number of holes in the mesh, either a number
or 'undefined' if the mesh is non-manifold.
"""
ml_script1_file = 'TEMP3D_measure_topology.mlx'
ml_script1 = mlx.FilterScript(file_in=fbasename, ml_version=ml_version)
compute.measure_topology(ml_script1)
ml_script1.save_to_file(ml_script1_file)
ml_script1.run_script(log=log, script_file=ml_script1_file)
topology = ml_script1.topology
return topology
|
[
"Measures",
"mesh",
"topology"
] |
3DLIRIOUS/MeshLabXML
|
python
|
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/files.py#L220-L250
|
[
"def",
"measure_topology",
"(",
"fbasename",
"=",
"None",
",",
"log",
"=",
"None",
",",
"ml_version",
"=",
"ml_version",
")",
":",
"ml_script1_file",
"=",
"'TEMP3D_measure_topology.mlx'",
"ml_script1",
"=",
"mlx",
".",
"FilterScript",
"(",
"file_in",
"=",
"fbasename",
",",
"ml_version",
"=",
"ml_version",
")",
"compute",
".",
"measure_topology",
"(",
"ml_script1",
")",
"ml_script1",
".",
"save_to_file",
"(",
"ml_script1_file",
")",
"ml_script1",
".",
"run_script",
"(",
"log",
"=",
"log",
",",
"script_file",
"=",
"ml_script1_file",
")",
"topology",
"=",
"ml_script1",
".",
"topology",
"return",
"topology"
] |
177cce21e92baca500f56a932d66bd9a33257af8
|
test
|
measure_all
|
Measures mesh geometry, aabb and topology.
|
meshlabxml/files.py
|
def measure_all(fbasename=None, log=None, ml_version=ml_version):
"""Measures mesh geometry, aabb and topology."""
ml_script1_file = 'TEMP3D_measure_gAndT.mlx'
if ml_version == '1.3.4BETA':
file_out = 'TEMP3D_aabb.xyz'
else:
file_out = None
ml_script1 = mlx.FilterScript(file_in=fbasename, file_out=file_out, ml_version=ml_version)
compute.measure_geometry(ml_script1)
compute.measure_topology(ml_script1)
ml_script1.save_to_file(ml_script1_file)
ml_script1.run_script(log=log, script_file=ml_script1_file)
geometry = ml_script1.geometry
topology = ml_script1.topology
if ml_version == '1.3.4BETA':
if log is not None:
log_file = open(log, 'a')
log_file.write(
'***Axis Aligned Bounding Results for file "%s":\n' %
fbasename)
log_file.close()
aabb = measure_aabb(file_out, log)
else:
aabb = geometry['aabb']
return aabb, geometry, topology
|
def measure_all(fbasename=None, log=None, ml_version=ml_version):
"""Measures mesh geometry, aabb and topology."""
ml_script1_file = 'TEMP3D_measure_gAndT.mlx'
if ml_version == '1.3.4BETA':
file_out = 'TEMP3D_aabb.xyz'
else:
file_out = None
ml_script1 = mlx.FilterScript(file_in=fbasename, file_out=file_out, ml_version=ml_version)
compute.measure_geometry(ml_script1)
compute.measure_topology(ml_script1)
ml_script1.save_to_file(ml_script1_file)
ml_script1.run_script(log=log, script_file=ml_script1_file)
geometry = ml_script1.geometry
topology = ml_script1.topology
if ml_version == '1.3.4BETA':
if log is not None:
log_file = open(log, 'a')
log_file.write(
'***Axis Aligned Bounding Results for file "%s":\n' %
fbasename)
log_file.close()
aabb = measure_aabb(file_out, log)
else:
aabb = geometry['aabb']
return aabb, geometry, topology
|
[
"Measures",
"mesh",
"geometry",
"aabb",
"and",
"topology",
"."
] |
3DLIRIOUS/MeshLabXML
|
python
|
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/files.py#L253-L279
|
[
"def",
"measure_all",
"(",
"fbasename",
"=",
"None",
",",
"log",
"=",
"None",
",",
"ml_version",
"=",
"ml_version",
")",
":",
"ml_script1_file",
"=",
"'TEMP3D_measure_gAndT.mlx'",
"if",
"ml_version",
"==",
"'1.3.4BETA'",
":",
"file_out",
"=",
"'TEMP3D_aabb.xyz'",
"else",
":",
"file_out",
"=",
"None",
"ml_script1",
"=",
"mlx",
".",
"FilterScript",
"(",
"file_in",
"=",
"fbasename",
",",
"file_out",
"=",
"file_out",
",",
"ml_version",
"=",
"ml_version",
")",
"compute",
".",
"measure_geometry",
"(",
"ml_script1",
")",
"compute",
".",
"measure_topology",
"(",
"ml_script1",
")",
"ml_script1",
".",
"save_to_file",
"(",
"ml_script1_file",
")",
"ml_script1",
".",
"run_script",
"(",
"log",
"=",
"log",
",",
"script_file",
"=",
"ml_script1_file",
")",
"geometry",
"=",
"ml_script1",
".",
"geometry",
"topology",
"=",
"ml_script1",
".",
"topology",
"if",
"ml_version",
"==",
"'1.3.4BETA'",
":",
"if",
"log",
"is",
"not",
"None",
":",
"log_file",
"=",
"open",
"(",
"log",
",",
"'a'",
")",
"log_file",
".",
"write",
"(",
"'***Axis Aligned Bounding Results for file \"%s\":\\n'",
"%",
"fbasename",
")",
"log_file",
".",
"close",
"(",
")",
"aabb",
"=",
"measure_aabb",
"(",
"file_out",
",",
"log",
")",
"else",
":",
"aabb",
"=",
"geometry",
"[",
"'aabb'",
"]",
"return",
"aabb",
",",
"geometry",
",",
"topology"
] |
177cce21e92baca500f56a932d66bd9a33257af8
|
test
|
measure_dimension
|
Measure a dimension of a mesh
|
meshlabxml/files.py
|
def measure_dimension(fbasename=None, log=None, axis1=None, offset1=0.0,
axis2=None, offset2=0.0, ml_version=ml_version):
"""Measure a dimension of a mesh"""
axis1 = axis1.lower()
axis2 = axis2.lower()
ml_script1_file = 'TEMP3D_measure_dimension.mlx'
file_out = 'TEMP3D_measure_dimension.xyz'
ml_script1 = mlx.FilterScript(file_in=fbasename, file_out=file_out, ml_version=ml_version)
compute.section(ml_script1, axis1, offset1, surface=True)
compute.section(ml_script1, axis2, offset2, surface=False)
layers.delete_lower(ml_script1)
ml_script1.save_to_file(ml_script1_file)
ml_script1.run_script(log=log, script_file=ml_script1_file)
for val in ('x', 'y', 'z'):
if val not in (axis1, axis2):
axis = val
# ord: Get number that represents letter in ASCII
# Here we find the offset from 'x' to determine the list reference
# i.e. 0 for x, 1 for y, 2 for z
axis_num = ord(axis) - ord('x')
aabb = measure_aabb(file_out, log)
dimension = {'min': aabb['min'][axis_num], 'max': aabb['max'][axis_num],
'length': aabb['size'][axis_num], 'axis': axis}
if log is None:
print('\nFor file "%s"' % fbasename)
print('Dimension parallel to %s with %s=%s & %s=%s:' % (axis, axis1, offset1,
axis2, offset2))
print(' Min = %s, Max = %s, Total length = %s' % (dimension['min'],
dimension['max'], dimension['length']))
else:
log_file = open(log, 'a')
log_file.write('\nFor file "%s"\n' % fbasename)
log_file.write('Dimension parallel to %s with %s=%s & %s=%s:\n' % (axis, axis1, offset1,
axis2, offset2))
log_file.write('min = %s\n' % dimension['min'])
log_file.write('max = %s\n' % dimension['max'])
log_file.write('Total length = %s\n' % dimension['length'])
log_file.close()
return dimension
|
def measure_dimension(fbasename=None, log=None, axis1=None, offset1=0.0,
axis2=None, offset2=0.0, ml_version=ml_version):
"""Measure a dimension of a mesh"""
axis1 = axis1.lower()
axis2 = axis2.lower()
ml_script1_file = 'TEMP3D_measure_dimension.mlx'
file_out = 'TEMP3D_measure_dimension.xyz'
ml_script1 = mlx.FilterScript(file_in=fbasename, file_out=file_out, ml_version=ml_version)
compute.section(ml_script1, axis1, offset1, surface=True)
compute.section(ml_script1, axis2, offset2, surface=False)
layers.delete_lower(ml_script1)
ml_script1.save_to_file(ml_script1_file)
ml_script1.run_script(log=log, script_file=ml_script1_file)
for val in ('x', 'y', 'z'):
if val not in (axis1, axis2):
axis = val
# ord: Get number that represents letter in ASCII
# Here we find the offset from 'x' to determine the list reference
# i.e. 0 for x, 1 for y, 2 for z
axis_num = ord(axis) - ord('x')
aabb = measure_aabb(file_out, log)
dimension = {'min': aabb['min'][axis_num], 'max': aabb['max'][axis_num],
'length': aabb['size'][axis_num], 'axis': axis}
if log is None:
print('\nFor file "%s"' % fbasename)
print('Dimension parallel to %s with %s=%s & %s=%s:' % (axis, axis1, offset1,
axis2, offset2))
print(' Min = %s, Max = %s, Total length = %s' % (dimension['min'],
dimension['max'], dimension['length']))
else:
log_file = open(log, 'a')
log_file.write('\nFor file "%s"\n' % fbasename)
log_file.write('Dimension parallel to %s with %s=%s & %s=%s:\n' % (axis, axis1, offset1,
axis2, offset2))
log_file.write('min = %s\n' % dimension['min'])
log_file.write('max = %s\n' % dimension['max'])
log_file.write('Total length = %s\n' % dimension['length'])
log_file.close()
return dimension
|
[
"Measure",
"a",
"dimension",
"of",
"a",
"mesh"
] |
3DLIRIOUS/MeshLabXML
|
python
|
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/files.py#L282-L322
|
[
"def",
"measure_dimension",
"(",
"fbasename",
"=",
"None",
",",
"log",
"=",
"None",
",",
"axis1",
"=",
"None",
",",
"offset1",
"=",
"0.0",
",",
"axis2",
"=",
"None",
",",
"offset2",
"=",
"0.0",
",",
"ml_version",
"=",
"ml_version",
")",
":",
"axis1",
"=",
"axis1",
".",
"lower",
"(",
")",
"axis2",
"=",
"axis2",
".",
"lower",
"(",
")",
"ml_script1_file",
"=",
"'TEMP3D_measure_dimension.mlx'",
"file_out",
"=",
"'TEMP3D_measure_dimension.xyz'",
"ml_script1",
"=",
"mlx",
".",
"FilterScript",
"(",
"file_in",
"=",
"fbasename",
",",
"file_out",
"=",
"file_out",
",",
"ml_version",
"=",
"ml_version",
")",
"compute",
".",
"section",
"(",
"ml_script1",
",",
"axis1",
",",
"offset1",
",",
"surface",
"=",
"True",
")",
"compute",
".",
"section",
"(",
"ml_script1",
",",
"axis2",
",",
"offset2",
",",
"surface",
"=",
"False",
")",
"layers",
".",
"delete_lower",
"(",
"ml_script1",
")",
"ml_script1",
".",
"save_to_file",
"(",
"ml_script1_file",
")",
"ml_script1",
".",
"run_script",
"(",
"log",
"=",
"log",
",",
"script_file",
"=",
"ml_script1_file",
")",
"for",
"val",
"in",
"(",
"'x'",
",",
"'y'",
",",
"'z'",
")",
":",
"if",
"val",
"not",
"in",
"(",
"axis1",
",",
"axis2",
")",
":",
"axis",
"=",
"val",
"# ord: Get number that represents letter in ASCII",
"# Here we find the offset from 'x' to determine the list reference",
"# i.e. 0 for x, 1 for y, 2 for z",
"axis_num",
"=",
"ord",
"(",
"axis",
")",
"-",
"ord",
"(",
"'x'",
")",
"aabb",
"=",
"measure_aabb",
"(",
"file_out",
",",
"log",
")",
"dimension",
"=",
"{",
"'min'",
":",
"aabb",
"[",
"'min'",
"]",
"[",
"axis_num",
"]",
",",
"'max'",
":",
"aabb",
"[",
"'max'",
"]",
"[",
"axis_num",
"]",
",",
"'length'",
":",
"aabb",
"[",
"'size'",
"]",
"[",
"axis_num",
"]",
",",
"'axis'",
":",
"axis",
"}",
"if",
"log",
"is",
"None",
":",
"print",
"(",
"'\\nFor file \"%s\"'",
"%",
"fbasename",
")",
"print",
"(",
"'Dimension parallel to %s with %s=%s & %s=%s:'",
"%",
"(",
"axis",
",",
"axis1",
",",
"offset1",
",",
"axis2",
",",
"offset2",
")",
")",
"print",
"(",
"' Min = %s, Max = %s, Total length = %s'",
"%",
"(",
"dimension",
"[",
"'min'",
"]",
",",
"dimension",
"[",
"'max'",
"]",
",",
"dimension",
"[",
"'length'",
"]",
")",
")",
"else",
":",
"log_file",
"=",
"open",
"(",
"log",
",",
"'a'",
")",
"log_file",
".",
"write",
"(",
"'\\nFor file \"%s\"\\n'",
"%",
"fbasename",
")",
"log_file",
".",
"write",
"(",
"'Dimension parallel to %s with %s=%s & %s=%s:\\n'",
"%",
"(",
"axis",
",",
"axis1",
",",
"offset1",
",",
"axis2",
",",
"offset2",
")",
")",
"log_file",
".",
"write",
"(",
"'min = %s\\n'",
"%",
"dimension",
"[",
"'min'",
"]",
")",
"log_file",
".",
"write",
"(",
"'max = %s\\n'",
"%",
"dimension",
"[",
"'max'",
"]",
")",
"log_file",
".",
"write",
"(",
"'Total length = %s\\n'",
"%",
"dimension",
"[",
"'length'",
"]",
")",
"log_file",
".",
"close",
"(",
")",
"return",
"dimension"
] |
177cce21e92baca500f56a932d66bd9a33257af8
|
test
|
lowercase_ext
|
This is a helper used by UploadSet.save to provide lowercase extensions for
all processed files, to compare with configured extensions in the same
case.
.. versionchanged:: 0.1.4
Filenames without extensions are no longer lowercased, only the
extension is returned in lowercase, if an extension exists.
:param filename: The filename to ensure has a lowercase extension.
|
flask_uploads.py
|
def lowercase_ext(filename):
"""
This is a helper used by UploadSet.save to provide lowercase extensions for
all processed files, to compare with configured extensions in the same
case.
.. versionchanged:: 0.1.4
Filenames without extensions are no longer lowercased, only the
extension is returned in lowercase, if an extension exists.
:param filename: The filename to ensure has a lowercase extension.
"""
if '.' in filename:
main, ext = os.path.splitext(filename)
return main + ext.lower()
# For consistency with os.path.splitext,
# do not treat a filename without an extension as an extension.
# That is, do not return filename.lower().
return filename
|
def lowercase_ext(filename):
"""
This is a helper used by UploadSet.save to provide lowercase extensions for
all processed files, to compare with configured extensions in the same
case.
.. versionchanged:: 0.1.4
Filenames without extensions are no longer lowercased, only the
extension is returned in lowercase, if an extension exists.
:param filename: The filename to ensure has a lowercase extension.
"""
if '.' in filename:
main, ext = os.path.splitext(filename)
return main + ext.lower()
# For consistency with os.path.splitext,
# do not treat a filename without an extension as an extension.
# That is, do not return filename.lower().
return filename
|
[
"This",
"is",
"a",
"helper",
"used",
"by",
"UploadSet",
".",
"save",
"to",
"provide",
"lowercase",
"extensions",
"for",
"all",
"processed",
"files",
"to",
"compare",
"with",
"configured",
"extensions",
"in",
"the",
"same",
"case",
"."
] |
maxcountryman/flask-uploads
|
python
|
https://github.com/maxcountryman/flask-uploads/blob/dc24fa0c53d605876e5b4502cadffdf1a4345b1d/flask_uploads.py#L88-L106
|
[
"def",
"lowercase_ext",
"(",
"filename",
")",
":",
"if",
"'.'",
"in",
"filename",
":",
"main",
",",
"ext",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"filename",
")",
"return",
"main",
"+",
"ext",
".",
"lower",
"(",
")",
"# For consistency with os.path.splitext,",
"# do not treat a filename without an extension as an extension.",
"# That is, do not return filename.lower().",
"return",
"filename"
] |
dc24fa0c53d605876e5b4502cadffdf1a4345b1d
|
test
|
patch_request_class
|
By default, Flask will accept uploads to an arbitrary size. While Werkzeug
switches uploads from memory to a temporary file when they hit 500 KiB,
it's still possible for someone to overload your disk space with a
gigantic file.
This patches the app's request class's
`~werkzeug.BaseRequest.max_content_length` attribute so that any upload
larger than the given size is rejected with an HTTP error.
.. note::
In Flask 0.6, you can do this by setting the `MAX_CONTENT_LENGTH`
setting, without patching the request class. To emulate this behavior,
you can pass `None` as the size (you must pass it explicitly). That is
the best way to call this function, as it won't break the Flask 0.6
functionality if it exists.
.. versionchanged:: 0.1.1
:param app: The app to patch the request class of.
:param size: The maximum size to accept, in bytes. The default is 64 MiB.
If it is `None`, the app's `MAX_CONTENT_LENGTH` configuration
setting will be used to patch.
|
flask_uploads.py
|
def patch_request_class(app, size=64 * 1024 * 1024):
"""
By default, Flask will accept uploads to an arbitrary size. While Werkzeug
switches uploads from memory to a temporary file when they hit 500 KiB,
it's still possible for someone to overload your disk space with a
gigantic file.
This patches the app's request class's
`~werkzeug.BaseRequest.max_content_length` attribute so that any upload
larger than the given size is rejected with an HTTP error.
.. note::
In Flask 0.6, you can do this by setting the `MAX_CONTENT_LENGTH`
setting, without patching the request class. To emulate this behavior,
you can pass `None` as the size (you must pass it explicitly). That is
the best way to call this function, as it won't break the Flask 0.6
functionality if it exists.
.. versionchanged:: 0.1.1
:param app: The app to patch the request class of.
:param size: The maximum size to accept, in bytes. The default is 64 MiB.
If it is `None`, the app's `MAX_CONTENT_LENGTH` configuration
setting will be used to patch.
"""
if size is None:
if isinstance(app.request_class.__dict__['max_content_length'],
property):
return
size = app.config.get('MAX_CONTENT_LENGTH')
reqclass = app.request_class
patched = type(reqclass.__name__, (reqclass,),
{'max_content_length': size})
app.request_class = patched
|
def patch_request_class(app, size=64 * 1024 * 1024):
"""
By default, Flask will accept uploads to an arbitrary size. While Werkzeug
switches uploads from memory to a temporary file when they hit 500 KiB,
it's still possible for someone to overload your disk space with a
gigantic file.
This patches the app's request class's
`~werkzeug.BaseRequest.max_content_length` attribute so that any upload
larger than the given size is rejected with an HTTP error.
.. note::
In Flask 0.6, you can do this by setting the `MAX_CONTENT_LENGTH`
setting, without patching the request class. To emulate this behavior,
you can pass `None` as the size (you must pass it explicitly). That is
the best way to call this function, as it won't break the Flask 0.6
functionality if it exists.
.. versionchanged:: 0.1.1
:param app: The app to patch the request class of.
:param size: The maximum size to accept, in bytes. The default is 64 MiB.
If it is `None`, the app's `MAX_CONTENT_LENGTH` configuration
setting will be used to patch.
"""
if size is None:
if isinstance(app.request_class.__dict__['max_content_length'],
property):
return
size = app.config.get('MAX_CONTENT_LENGTH')
reqclass = app.request_class
patched = type(reqclass.__name__, (reqclass,),
{'max_content_length': size})
app.request_class = patched
|
[
"By",
"default",
"Flask",
"will",
"accept",
"uploads",
"to",
"an",
"arbitrary",
"size",
".",
"While",
"Werkzeug",
"switches",
"uploads",
"from",
"memory",
"to",
"a",
"temporary",
"file",
"when",
"they",
"hit",
"500",
"KiB",
"it",
"s",
"still",
"possible",
"for",
"someone",
"to",
"overload",
"your",
"disk",
"space",
"with",
"a",
"gigantic",
"file",
"."
] |
maxcountryman/flask-uploads
|
python
|
https://github.com/maxcountryman/flask-uploads/blob/dc24fa0c53d605876e5b4502cadffdf1a4345b1d/flask_uploads.py#L115-L149
|
[
"def",
"patch_request_class",
"(",
"app",
",",
"size",
"=",
"64",
"*",
"1024",
"*",
"1024",
")",
":",
"if",
"size",
"is",
"None",
":",
"if",
"isinstance",
"(",
"app",
".",
"request_class",
".",
"__dict__",
"[",
"'max_content_length'",
"]",
",",
"property",
")",
":",
"return",
"size",
"=",
"app",
".",
"config",
".",
"get",
"(",
"'MAX_CONTENT_LENGTH'",
")",
"reqclass",
"=",
"app",
".",
"request_class",
"patched",
"=",
"type",
"(",
"reqclass",
".",
"__name__",
",",
"(",
"reqclass",
",",
")",
",",
"{",
"'max_content_length'",
":",
"size",
"}",
")",
"app",
".",
"request_class",
"=",
"patched"
] |
dc24fa0c53d605876e5b4502cadffdf1a4345b1d
|
test
|
config_for_set
|
This is a helper function for `configure_uploads` that extracts the
configuration for a single set.
:param uset: The upload set.
:param app: The app to load the configuration from.
:param defaults: A dict with keys `url` and `dest` from the
`UPLOADS_DEFAULT_DEST` and `DEFAULT_UPLOADS_URL`
settings.
|
flask_uploads.py
|
def config_for_set(uset, app, defaults=None):
"""
This is a helper function for `configure_uploads` that extracts the
configuration for a single set.
:param uset: The upload set.
:param app: The app to load the configuration from.
:param defaults: A dict with keys `url` and `dest` from the
`UPLOADS_DEFAULT_DEST` and `DEFAULT_UPLOADS_URL`
settings.
"""
config = app.config
prefix = 'UPLOADED_%s_' % uset.name.upper()
using_defaults = False
if defaults is None:
defaults = dict(dest=None, url=None)
allow_extns = tuple(config.get(prefix + 'ALLOW', ()))
deny_extns = tuple(config.get(prefix + 'DENY', ()))
destination = config.get(prefix + 'DEST')
base_url = config.get(prefix + 'URL')
if destination is None:
# the upload set's destination wasn't given
if uset.default_dest:
# use the "default_dest" callable
destination = uset.default_dest(app)
if destination is None: # still
# use the default dest from the config
if defaults['dest'] is not None:
using_defaults = True
destination = os.path.join(defaults['dest'], uset.name)
else:
raise RuntimeError("no destination for set %s" % uset.name)
if base_url is None and using_defaults and defaults['url']:
base_url = addslash(defaults['url']) + uset.name + '/'
return UploadConfiguration(destination, base_url, allow_extns, deny_extns)
|
def config_for_set(uset, app, defaults=None):
"""
This is a helper function for `configure_uploads` that extracts the
configuration for a single set.
:param uset: The upload set.
:param app: The app to load the configuration from.
:param defaults: A dict with keys `url` and `dest` from the
`UPLOADS_DEFAULT_DEST` and `DEFAULT_UPLOADS_URL`
settings.
"""
config = app.config
prefix = 'UPLOADED_%s_' % uset.name.upper()
using_defaults = False
if defaults is None:
defaults = dict(dest=None, url=None)
allow_extns = tuple(config.get(prefix + 'ALLOW', ()))
deny_extns = tuple(config.get(prefix + 'DENY', ()))
destination = config.get(prefix + 'DEST')
base_url = config.get(prefix + 'URL')
if destination is None:
# the upload set's destination wasn't given
if uset.default_dest:
# use the "default_dest" callable
destination = uset.default_dest(app)
if destination is None: # still
# use the default dest from the config
if defaults['dest'] is not None:
using_defaults = True
destination = os.path.join(defaults['dest'], uset.name)
else:
raise RuntimeError("no destination for set %s" % uset.name)
if base_url is None and using_defaults and defaults['url']:
base_url = addslash(defaults['url']) + uset.name + '/'
return UploadConfiguration(destination, base_url, allow_extns, deny_extns)
|
[
"This",
"is",
"a",
"helper",
"function",
"for",
"configure_uploads",
"that",
"extracts",
"the",
"configuration",
"for",
"a",
"single",
"set",
"."
] |
maxcountryman/flask-uploads
|
python
|
https://github.com/maxcountryman/flask-uploads/blob/dc24fa0c53d605876e5b4502cadffdf1a4345b1d/flask_uploads.py#L152-L190
|
[
"def",
"config_for_set",
"(",
"uset",
",",
"app",
",",
"defaults",
"=",
"None",
")",
":",
"config",
"=",
"app",
".",
"config",
"prefix",
"=",
"'UPLOADED_%s_'",
"%",
"uset",
".",
"name",
".",
"upper",
"(",
")",
"using_defaults",
"=",
"False",
"if",
"defaults",
"is",
"None",
":",
"defaults",
"=",
"dict",
"(",
"dest",
"=",
"None",
",",
"url",
"=",
"None",
")",
"allow_extns",
"=",
"tuple",
"(",
"config",
".",
"get",
"(",
"prefix",
"+",
"'ALLOW'",
",",
"(",
")",
")",
")",
"deny_extns",
"=",
"tuple",
"(",
"config",
".",
"get",
"(",
"prefix",
"+",
"'DENY'",
",",
"(",
")",
")",
")",
"destination",
"=",
"config",
".",
"get",
"(",
"prefix",
"+",
"'DEST'",
")",
"base_url",
"=",
"config",
".",
"get",
"(",
"prefix",
"+",
"'URL'",
")",
"if",
"destination",
"is",
"None",
":",
"# the upload set's destination wasn't given",
"if",
"uset",
".",
"default_dest",
":",
"# use the \"default_dest\" callable",
"destination",
"=",
"uset",
".",
"default_dest",
"(",
"app",
")",
"if",
"destination",
"is",
"None",
":",
"# still",
"# use the default dest from the config",
"if",
"defaults",
"[",
"'dest'",
"]",
"is",
"not",
"None",
":",
"using_defaults",
"=",
"True",
"destination",
"=",
"os",
".",
"path",
".",
"join",
"(",
"defaults",
"[",
"'dest'",
"]",
",",
"uset",
".",
"name",
")",
"else",
":",
"raise",
"RuntimeError",
"(",
"\"no destination for set %s\"",
"%",
"uset",
".",
"name",
")",
"if",
"base_url",
"is",
"None",
"and",
"using_defaults",
"and",
"defaults",
"[",
"'url'",
"]",
":",
"base_url",
"=",
"addslash",
"(",
"defaults",
"[",
"'url'",
"]",
")",
"+",
"uset",
".",
"name",
"+",
"'/'",
"return",
"UploadConfiguration",
"(",
"destination",
",",
"base_url",
",",
"allow_extns",
",",
"deny_extns",
")"
] |
dc24fa0c53d605876e5b4502cadffdf1a4345b1d
|
test
|
configure_uploads
|
Call this after the app has been configured. It will go through all the
upload sets, get their configuration, and store the configuration on the
app. It will also register the uploads module if it hasn't been set. This
can be called multiple times with different upload sets.
.. versionchanged:: 0.1.3
The uploads module/blueprint will only be registered if it is needed
to serve the upload sets.
:param app: The `~flask.Flask` instance to get the configuration from.
:param upload_sets: The `UploadSet` instances to configure.
|
flask_uploads.py
|
def configure_uploads(app, upload_sets):
"""
Call this after the app has been configured. It will go through all the
upload sets, get their configuration, and store the configuration on the
app. It will also register the uploads module if it hasn't been set. This
can be called multiple times with different upload sets.
.. versionchanged:: 0.1.3
The uploads module/blueprint will only be registered if it is needed
to serve the upload sets.
:param app: The `~flask.Flask` instance to get the configuration from.
:param upload_sets: The `UploadSet` instances to configure.
"""
if isinstance(upload_sets, UploadSet):
upload_sets = (upload_sets,)
if not hasattr(app, 'upload_set_config'):
app.upload_set_config = {}
set_config = app.upload_set_config
defaults = dict(dest=app.config.get('UPLOADS_DEFAULT_DEST'),
url=app.config.get('UPLOADS_DEFAULT_URL'))
for uset in upload_sets:
config = config_for_set(uset, app, defaults)
set_config[uset.name] = config
should_serve = any(s.base_url is None for s in set_config.values())
if '_uploads' not in app.blueprints and should_serve:
app.register_blueprint(uploads_mod)
|
def configure_uploads(app, upload_sets):
"""
Call this after the app has been configured. It will go through all the
upload sets, get their configuration, and store the configuration on the
app. It will also register the uploads module if it hasn't been set. This
can be called multiple times with different upload sets.
.. versionchanged:: 0.1.3
The uploads module/blueprint will only be registered if it is needed
to serve the upload sets.
:param app: The `~flask.Flask` instance to get the configuration from.
:param upload_sets: The `UploadSet` instances to configure.
"""
if isinstance(upload_sets, UploadSet):
upload_sets = (upload_sets,)
if not hasattr(app, 'upload_set_config'):
app.upload_set_config = {}
set_config = app.upload_set_config
defaults = dict(dest=app.config.get('UPLOADS_DEFAULT_DEST'),
url=app.config.get('UPLOADS_DEFAULT_URL'))
for uset in upload_sets:
config = config_for_set(uset, app, defaults)
set_config[uset.name] = config
should_serve = any(s.base_url is None for s in set_config.values())
if '_uploads' not in app.blueprints and should_serve:
app.register_blueprint(uploads_mod)
|
[
"Call",
"this",
"after",
"the",
"app",
"has",
"been",
"configured",
".",
"It",
"will",
"go",
"through",
"all",
"the",
"upload",
"sets",
"get",
"their",
"configuration",
"and",
"store",
"the",
"configuration",
"on",
"the",
"app",
".",
"It",
"will",
"also",
"register",
"the",
"uploads",
"module",
"if",
"it",
"hasn",
"t",
"been",
"set",
".",
"This",
"can",
"be",
"called",
"multiple",
"times",
"with",
"different",
"upload",
"sets",
"."
] |
maxcountryman/flask-uploads
|
python
|
https://github.com/maxcountryman/flask-uploads/blob/dc24fa0c53d605876e5b4502cadffdf1a4345b1d/flask_uploads.py#L193-L222
|
[
"def",
"configure_uploads",
"(",
"app",
",",
"upload_sets",
")",
":",
"if",
"isinstance",
"(",
"upload_sets",
",",
"UploadSet",
")",
":",
"upload_sets",
"=",
"(",
"upload_sets",
",",
")",
"if",
"not",
"hasattr",
"(",
"app",
",",
"'upload_set_config'",
")",
":",
"app",
".",
"upload_set_config",
"=",
"{",
"}",
"set_config",
"=",
"app",
".",
"upload_set_config",
"defaults",
"=",
"dict",
"(",
"dest",
"=",
"app",
".",
"config",
".",
"get",
"(",
"'UPLOADS_DEFAULT_DEST'",
")",
",",
"url",
"=",
"app",
".",
"config",
".",
"get",
"(",
"'UPLOADS_DEFAULT_URL'",
")",
")",
"for",
"uset",
"in",
"upload_sets",
":",
"config",
"=",
"config_for_set",
"(",
"uset",
",",
"app",
",",
"defaults",
")",
"set_config",
"[",
"uset",
".",
"name",
"]",
"=",
"config",
"should_serve",
"=",
"any",
"(",
"s",
".",
"base_url",
"is",
"None",
"for",
"s",
"in",
"set_config",
".",
"values",
"(",
")",
")",
"if",
"'_uploads'",
"not",
"in",
"app",
".",
"blueprints",
"and",
"should_serve",
":",
"app",
".",
"register_blueprint",
"(",
"uploads_mod",
")"
] |
dc24fa0c53d605876e5b4502cadffdf1a4345b1d
|
test
|
UploadSet.config
|
This gets the current configuration. By default, it looks up the
current application and gets the configuration from there. But if you
don't want to go to the full effort of setting an application, or it's
otherwise outside of a request context, set the `_config` attribute to
an `UploadConfiguration` instance, then set it back to `None` when
you're done.
|
flask_uploads.py
|
def config(self):
"""
This gets the current configuration. By default, it looks up the
current application and gets the configuration from there. But if you
don't want to go to the full effort of setting an application, or it's
otherwise outside of a request context, set the `_config` attribute to
an `UploadConfiguration` instance, then set it back to `None` when
you're done.
"""
if self._config is not None:
return self._config
try:
return current_app.upload_set_config[self.name]
except AttributeError:
raise RuntimeError("cannot access configuration outside request")
|
def config(self):
"""
This gets the current configuration. By default, it looks up the
current application and gets the configuration from there. But if you
don't want to go to the full effort of setting an application, or it's
otherwise outside of a request context, set the `_config` attribute to
an `UploadConfiguration` instance, then set it back to `None` when
you're done.
"""
if self._config is not None:
return self._config
try:
return current_app.upload_set_config[self.name]
except AttributeError:
raise RuntimeError("cannot access configuration outside request")
|
[
"This",
"gets",
"the",
"current",
"configuration",
".",
"By",
"default",
"it",
"looks",
"up",
"the",
"current",
"application",
"and",
"gets",
"the",
"configuration",
"from",
"there",
".",
"But",
"if",
"you",
"don",
"t",
"want",
"to",
"go",
"to",
"the",
"full",
"effort",
"of",
"setting",
"an",
"application",
"or",
"it",
"s",
"otherwise",
"outside",
"of",
"a",
"request",
"context",
"set",
"the",
"_config",
"attribute",
"to",
"an",
"UploadConfiguration",
"instance",
"then",
"set",
"it",
"back",
"to",
"None",
"when",
"you",
"re",
"done",
"."
] |
maxcountryman/flask-uploads
|
python
|
https://github.com/maxcountryman/flask-uploads/blob/dc24fa0c53d605876e5b4502cadffdf1a4345b1d/flask_uploads.py#L315-L329
|
[
"def",
"config",
"(",
"self",
")",
":",
"if",
"self",
".",
"_config",
"is",
"not",
"None",
":",
"return",
"self",
".",
"_config",
"try",
":",
"return",
"current_app",
".",
"upload_set_config",
"[",
"self",
".",
"name",
"]",
"except",
"AttributeError",
":",
"raise",
"RuntimeError",
"(",
"\"cannot access configuration outside request\"",
")"
] |
dc24fa0c53d605876e5b4502cadffdf1a4345b1d
|
test
|
UploadSet.url
|
This function gets the URL a file uploaded to this set would be
accessed at. It doesn't check whether said file exists.
:param filename: The filename to return the URL for.
|
flask_uploads.py
|
def url(self, filename):
"""
This function gets the URL a file uploaded to this set would be
accessed at. It doesn't check whether said file exists.
:param filename: The filename to return the URL for.
"""
base = self.config.base_url
if base is None:
return url_for('_uploads.uploaded_file', setname=self.name,
filename=filename, _external=True)
else:
return base + filename
|
def url(self, filename):
"""
This function gets the URL a file uploaded to this set would be
accessed at. It doesn't check whether said file exists.
:param filename: The filename to return the URL for.
"""
base = self.config.base_url
if base is None:
return url_for('_uploads.uploaded_file', setname=self.name,
filename=filename, _external=True)
else:
return base + filename
|
[
"This",
"function",
"gets",
"the",
"URL",
"a",
"file",
"uploaded",
"to",
"this",
"set",
"would",
"be",
"accessed",
"at",
".",
"It",
"doesn",
"t",
"check",
"whether",
"said",
"file",
"exists",
"."
] |
maxcountryman/flask-uploads
|
python
|
https://github.com/maxcountryman/flask-uploads/blob/dc24fa0c53d605876e5b4502cadffdf1a4345b1d/flask_uploads.py#L331-L343
|
[
"def",
"url",
"(",
"self",
",",
"filename",
")",
":",
"base",
"=",
"self",
".",
"config",
".",
"base_url",
"if",
"base",
"is",
"None",
":",
"return",
"url_for",
"(",
"'_uploads.uploaded_file'",
",",
"setname",
"=",
"self",
".",
"name",
",",
"filename",
"=",
"filename",
",",
"_external",
"=",
"True",
")",
"else",
":",
"return",
"base",
"+",
"filename"
] |
dc24fa0c53d605876e5b4502cadffdf1a4345b1d
|
test
|
UploadSet.path
|
This returns the absolute path of a file uploaded to this set. It
doesn't actually check whether said file exists.
:param filename: The filename to return the path for.
:param folder: The subfolder within the upload set previously used
to save to.
|
flask_uploads.py
|
def path(self, filename, folder=None):
"""
This returns the absolute path of a file uploaded to this set. It
doesn't actually check whether said file exists.
:param filename: The filename to return the path for.
:param folder: The subfolder within the upload set previously used
to save to.
"""
if folder is not None:
target_folder = os.path.join(self.config.destination, folder)
else:
target_folder = self.config.destination
return os.path.join(target_folder, filename)
|
def path(self, filename, folder=None):
"""
This returns the absolute path of a file uploaded to this set. It
doesn't actually check whether said file exists.
:param filename: The filename to return the path for.
:param folder: The subfolder within the upload set previously used
to save to.
"""
if folder is not None:
target_folder = os.path.join(self.config.destination, folder)
else:
target_folder = self.config.destination
return os.path.join(target_folder, filename)
|
[
"This",
"returns",
"the",
"absolute",
"path",
"of",
"a",
"file",
"uploaded",
"to",
"this",
"set",
".",
"It",
"doesn",
"t",
"actually",
"check",
"whether",
"said",
"file",
"exists",
"."
] |
maxcountryman/flask-uploads
|
python
|
https://github.com/maxcountryman/flask-uploads/blob/dc24fa0c53d605876e5b4502cadffdf1a4345b1d/flask_uploads.py#L345-L358
|
[
"def",
"path",
"(",
"self",
",",
"filename",
",",
"folder",
"=",
"None",
")",
":",
"if",
"folder",
"is",
"not",
"None",
":",
"target_folder",
"=",
"os",
".",
"path",
".",
"join",
"(",
"self",
".",
"config",
".",
"destination",
",",
"folder",
")",
"else",
":",
"target_folder",
"=",
"self",
".",
"config",
".",
"destination",
"return",
"os",
".",
"path",
".",
"join",
"(",
"target_folder",
",",
"filename",
")"
] |
dc24fa0c53d605876e5b4502cadffdf1a4345b1d
|
test
|
UploadSet.extension_allowed
|
This determines whether a specific extension is allowed. It is called
by `file_allowed`, so if you override that but still want to check
extensions, call back into this.
:param ext: The extension to check, without the dot.
|
flask_uploads.py
|
def extension_allowed(self, ext):
"""
This determines whether a specific extension is allowed. It is called
by `file_allowed`, so if you override that but still want to check
extensions, call back into this.
:param ext: The extension to check, without the dot.
"""
return ((ext in self.config.allow) or
(ext in self.extensions and ext not in self.config.deny))
|
def extension_allowed(self, ext):
"""
This determines whether a specific extension is allowed. It is called
by `file_allowed`, so if you override that but still want to check
extensions, call back into this.
:param ext: The extension to check, without the dot.
"""
return ((ext in self.config.allow) or
(ext in self.extensions and ext not in self.config.deny))
|
[
"This",
"determines",
"whether",
"a",
"specific",
"extension",
"is",
"allowed",
".",
"It",
"is",
"called",
"by",
"file_allowed",
"so",
"if",
"you",
"override",
"that",
"but",
"still",
"want",
"to",
"check",
"extensions",
"call",
"back",
"into",
"this",
"."
] |
maxcountryman/flask-uploads
|
python
|
https://github.com/maxcountryman/flask-uploads/blob/dc24fa0c53d605876e5b4502cadffdf1a4345b1d/flask_uploads.py#L372-L381
|
[
"def",
"extension_allowed",
"(",
"self",
",",
"ext",
")",
":",
"return",
"(",
"(",
"ext",
"in",
"self",
".",
"config",
".",
"allow",
")",
"or",
"(",
"ext",
"in",
"self",
".",
"extensions",
"and",
"ext",
"not",
"in",
"self",
".",
"config",
".",
"deny",
")",
")"
] |
dc24fa0c53d605876e5b4502cadffdf1a4345b1d
|
test
|
UploadSet.save
|
This saves a `werkzeug.FileStorage` into this upload set. If the
upload is not allowed, an `UploadNotAllowed` error will be raised.
Otherwise, the file will be saved and its name (including the folder)
will be returned.
:param storage: The uploaded file to save.
:param folder: The subfolder within the upload set to save to.
:param name: The name to save the file as. If it ends with a dot, the
file's extension will be appended to the end. (If you
are using `name`, you can include the folder in the
`name` instead of explicitly using `folder`, i.e.
``uset.save(file, name="someguy/photo_123.")``
|
flask_uploads.py
|
def save(self, storage, folder=None, name=None):
"""
This saves a `werkzeug.FileStorage` into this upload set. If the
upload is not allowed, an `UploadNotAllowed` error will be raised.
Otherwise, the file will be saved and its name (including the folder)
will be returned.
:param storage: The uploaded file to save.
:param folder: The subfolder within the upload set to save to.
:param name: The name to save the file as. If it ends with a dot, the
file's extension will be appended to the end. (If you
are using `name`, you can include the folder in the
`name` instead of explicitly using `folder`, i.e.
``uset.save(file, name="someguy/photo_123.")``
"""
if not isinstance(storage, FileStorage):
raise TypeError("storage must be a werkzeug.FileStorage")
if folder is None and name is not None and "/" in name:
folder, name = os.path.split(name)
basename = self.get_basename(storage.filename)
if name:
if name.endswith('.'):
basename = name + extension(basename)
else:
basename = name
if not self.file_allowed(storage, basename):
raise UploadNotAllowed()
if folder:
target_folder = os.path.join(self.config.destination, folder)
else:
target_folder = self.config.destination
if not os.path.exists(target_folder):
os.makedirs(target_folder)
if os.path.exists(os.path.join(target_folder, basename)):
basename = self.resolve_conflict(target_folder, basename)
target = os.path.join(target_folder, basename)
storage.save(target)
if folder:
return posixpath.join(folder, basename)
else:
return basename
|
def save(self, storage, folder=None, name=None):
"""
This saves a `werkzeug.FileStorage` into this upload set. If the
upload is not allowed, an `UploadNotAllowed` error will be raised.
Otherwise, the file will be saved and its name (including the folder)
will be returned.
:param storage: The uploaded file to save.
:param folder: The subfolder within the upload set to save to.
:param name: The name to save the file as. If it ends with a dot, the
file's extension will be appended to the end. (If you
are using `name`, you can include the folder in the
`name` instead of explicitly using `folder`, i.e.
``uset.save(file, name="someguy/photo_123.")``
"""
if not isinstance(storage, FileStorage):
raise TypeError("storage must be a werkzeug.FileStorage")
if folder is None and name is not None and "/" in name:
folder, name = os.path.split(name)
basename = self.get_basename(storage.filename)
if name:
if name.endswith('.'):
basename = name + extension(basename)
else:
basename = name
if not self.file_allowed(storage, basename):
raise UploadNotAllowed()
if folder:
target_folder = os.path.join(self.config.destination, folder)
else:
target_folder = self.config.destination
if not os.path.exists(target_folder):
os.makedirs(target_folder)
if os.path.exists(os.path.join(target_folder, basename)):
basename = self.resolve_conflict(target_folder, basename)
target = os.path.join(target_folder, basename)
storage.save(target)
if folder:
return posixpath.join(folder, basename)
else:
return basename
|
[
"This",
"saves",
"a",
"werkzeug",
".",
"FileStorage",
"into",
"this",
"upload",
"set",
".",
"If",
"the",
"upload",
"is",
"not",
"allowed",
"an",
"UploadNotAllowed",
"error",
"will",
"be",
"raised",
".",
"Otherwise",
"the",
"file",
"will",
"be",
"saved",
"and",
"its",
"name",
"(",
"including",
"the",
"folder",
")",
"will",
"be",
"returned",
"."
] |
maxcountryman/flask-uploads
|
python
|
https://github.com/maxcountryman/flask-uploads/blob/dc24fa0c53d605876e5b4502cadffdf1a4345b1d/flask_uploads.py#L386-L431
|
[
"def",
"save",
"(",
"self",
",",
"storage",
",",
"folder",
"=",
"None",
",",
"name",
"=",
"None",
")",
":",
"if",
"not",
"isinstance",
"(",
"storage",
",",
"FileStorage",
")",
":",
"raise",
"TypeError",
"(",
"\"storage must be a werkzeug.FileStorage\"",
")",
"if",
"folder",
"is",
"None",
"and",
"name",
"is",
"not",
"None",
"and",
"\"/\"",
"in",
"name",
":",
"folder",
",",
"name",
"=",
"os",
".",
"path",
".",
"split",
"(",
"name",
")",
"basename",
"=",
"self",
".",
"get_basename",
"(",
"storage",
".",
"filename",
")",
"if",
"name",
":",
"if",
"name",
".",
"endswith",
"(",
"'.'",
")",
":",
"basename",
"=",
"name",
"+",
"extension",
"(",
"basename",
")",
"else",
":",
"basename",
"=",
"name",
"if",
"not",
"self",
".",
"file_allowed",
"(",
"storage",
",",
"basename",
")",
":",
"raise",
"UploadNotAllowed",
"(",
")",
"if",
"folder",
":",
"target_folder",
"=",
"os",
".",
"path",
".",
"join",
"(",
"self",
".",
"config",
".",
"destination",
",",
"folder",
")",
"else",
":",
"target_folder",
"=",
"self",
".",
"config",
".",
"destination",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"target_folder",
")",
":",
"os",
".",
"makedirs",
"(",
"target_folder",
")",
"if",
"os",
".",
"path",
".",
"exists",
"(",
"os",
".",
"path",
".",
"join",
"(",
"target_folder",
",",
"basename",
")",
")",
":",
"basename",
"=",
"self",
".",
"resolve_conflict",
"(",
"target_folder",
",",
"basename",
")",
"target",
"=",
"os",
".",
"path",
".",
"join",
"(",
"target_folder",
",",
"basename",
")",
"storage",
".",
"save",
"(",
"target",
")",
"if",
"folder",
":",
"return",
"posixpath",
".",
"join",
"(",
"folder",
",",
"basename",
")",
"else",
":",
"return",
"basename"
] |
dc24fa0c53d605876e5b4502cadffdf1a4345b1d
|
test
|
UploadSet.resolve_conflict
|
If a file with the selected name already exists in the target folder,
this method is called to resolve the conflict. It should return a new
basename for the file.
The default implementation splits the name and extension and adds a
suffix to the name consisting of an underscore and a number, and tries
that until it finds one that doesn't exist.
:param target_folder: The absolute path to the target.
:param basename: The file's original basename.
|
flask_uploads.py
|
def resolve_conflict(self, target_folder, basename):
"""
If a file with the selected name already exists in the target folder,
this method is called to resolve the conflict. It should return a new
basename for the file.
The default implementation splits the name and extension and adds a
suffix to the name consisting of an underscore and a number, and tries
that until it finds one that doesn't exist.
:param target_folder: The absolute path to the target.
:param basename: The file's original basename.
"""
name, ext = os.path.splitext(basename)
count = 0
while True:
count = count + 1
newname = '%s_%d%s' % (name, count, ext)
if not os.path.exists(os.path.join(target_folder, newname)):
return newname
|
def resolve_conflict(self, target_folder, basename):
"""
If a file with the selected name already exists in the target folder,
this method is called to resolve the conflict. It should return a new
basename for the file.
The default implementation splits the name and extension and adds a
suffix to the name consisting of an underscore and a number, and tries
that until it finds one that doesn't exist.
:param target_folder: The absolute path to the target.
:param basename: The file's original basename.
"""
name, ext = os.path.splitext(basename)
count = 0
while True:
count = count + 1
newname = '%s_%d%s' % (name, count, ext)
if not os.path.exists(os.path.join(target_folder, newname)):
return newname
|
[
"If",
"a",
"file",
"with",
"the",
"selected",
"name",
"already",
"exists",
"in",
"the",
"target",
"folder",
"this",
"method",
"is",
"called",
"to",
"resolve",
"the",
"conflict",
".",
"It",
"should",
"return",
"a",
"new",
"basename",
"for",
"the",
"file",
"."
] |
maxcountryman/flask-uploads
|
python
|
https://github.com/maxcountryman/flask-uploads/blob/dc24fa0c53d605876e5b4502cadffdf1a4345b1d/flask_uploads.py#L433-L452
|
[
"def",
"resolve_conflict",
"(",
"self",
",",
"target_folder",
",",
"basename",
")",
":",
"name",
",",
"ext",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"basename",
")",
"count",
"=",
"0",
"while",
"True",
":",
"count",
"=",
"count",
"+",
"1",
"newname",
"=",
"'%s_%d%s'",
"%",
"(",
"name",
",",
"count",
",",
"ext",
")",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"os",
".",
"path",
".",
"join",
"(",
"target_folder",
",",
"newname",
")",
")",
":",
"return",
"newname"
] |
dc24fa0c53d605876e5b4502cadffdf1a4345b1d
|
test
|
get_vprof_version
|
Returns actual version specified in filename.
|
setup.py
|
def get_vprof_version(filename):
"""Returns actual version specified in filename."""
with open(filename) as src_file:
version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]",
src_file.read(), re.M)
if version_match:
return version_match.group(1)
raise RuntimeError('Unable to find version info.')
|
def get_vprof_version(filename):
"""Returns actual version specified in filename."""
with open(filename) as src_file:
version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]",
src_file.read(), re.M)
if version_match:
return version_match.group(1)
raise RuntimeError('Unable to find version info.')
|
[
"Returns",
"actual",
"version",
"specified",
"in",
"filename",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/setup.py#L112-L119
|
[
"def",
"get_vprof_version",
"(",
"filename",
")",
":",
"with",
"open",
"(",
"filename",
")",
"as",
"src_file",
":",
"version_match",
"=",
"re",
".",
"search",
"(",
"r\"^__version__ = ['\\\"]([^'\\\"]*)['\\\"]\"",
",",
"src_file",
".",
"read",
"(",
")",
",",
"re",
".",
"M",
")",
"if",
"version_match",
":",
"return",
"version_match",
".",
"group",
"(",
"1",
")",
"raise",
"RuntimeError",
"(",
"'Unable to find version info.'",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
_remove_duplicates
|
Removes duplicate objects.
http://www.peterbe.com/plog/uniqifiers-benchmark.
|
vprof/memory_profiler.py
|
def _remove_duplicates(objects):
"""Removes duplicate objects.
http://www.peterbe.com/plog/uniqifiers-benchmark.
"""
seen, uniq = set(), []
for obj in objects:
obj_id = id(obj)
if obj_id in seen:
continue
seen.add(obj_id)
uniq.append(obj)
return uniq
|
def _remove_duplicates(objects):
"""Removes duplicate objects.
http://www.peterbe.com/plog/uniqifiers-benchmark.
"""
seen, uniq = set(), []
for obj in objects:
obj_id = id(obj)
if obj_id in seen:
continue
seen.add(obj_id)
uniq.append(obj)
return uniq
|
[
"Removes",
"duplicate",
"objects",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/memory_profiler.py#L21-L33
|
[
"def",
"_remove_duplicates",
"(",
"objects",
")",
":",
"seen",
",",
"uniq",
"=",
"set",
"(",
")",
",",
"[",
"]",
"for",
"obj",
"in",
"objects",
":",
"obj_id",
"=",
"id",
"(",
"obj",
")",
"if",
"obj_id",
"in",
"seen",
":",
"continue",
"seen",
".",
"add",
"(",
"obj_id",
")",
"uniq",
".",
"append",
"(",
"obj",
")",
"return",
"uniq"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
_get_obj_count_difference
|
Returns count difference in two collections of Python objects.
|
vprof/memory_profiler.py
|
def _get_obj_count_difference(objs1, objs2):
"""Returns count difference in two collections of Python objects."""
clean_obj_list1 = _process_in_memory_objects(objs1)
clean_obj_list2 = _process_in_memory_objects(objs2)
obj_count_1 = _get_object_count_by_type(clean_obj_list1)
obj_count_2 = _get_object_count_by_type(clean_obj_list2)
return obj_count_1 - obj_count_2
|
def _get_obj_count_difference(objs1, objs2):
"""Returns count difference in two collections of Python objects."""
clean_obj_list1 = _process_in_memory_objects(objs1)
clean_obj_list2 = _process_in_memory_objects(objs2)
obj_count_1 = _get_object_count_by_type(clean_obj_list1)
obj_count_2 = _get_object_count_by_type(clean_obj_list2)
return obj_count_1 - obj_count_2
|
[
"Returns",
"count",
"difference",
"in",
"two",
"collections",
"of",
"Python",
"objects",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/memory_profiler.py#L56-L62
|
[
"def",
"_get_obj_count_difference",
"(",
"objs1",
",",
"objs2",
")",
":",
"clean_obj_list1",
"=",
"_process_in_memory_objects",
"(",
"objs1",
")",
"clean_obj_list2",
"=",
"_process_in_memory_objects",
"(",
"objs2",
")",
"obj_count_1",
"=",
"_get_object_count_by_type",
"(",
"clean_obj_list1",
")",
"obj_count_2",
"=",
"_get_object_count_by_type",
"(",
"clean_obj_list2",
")",
"return",
"obj_count_1",
"-",
"obj_count_2"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
_format_obj_count
|
Formats object count.
|
vprof/memory_profiler.py
|
def _format_obj_count(objects):
"""Formats object count."""
result = []
regex = re.compile(r'<(?P<type>\w+) \'(?P<name>\S+)\'>')
for obj_type, obj_count in objects.items():
if obj_count != 0:
match = re.findall(regex, repr(obj_type))
if match:
obj_type, obj_name = match[0]
result.append(("%s %s" % (obj_type, obj_name), obj_count))
return sorted(result, key=operator.itemgetter(1), reverse=True)
|
def _format_obj_count(objects):
"""Formats object count."""
result = []
regex = re.compile(r'<(?P<type>\w+) \'(?P<name>\S+)\'>')
for obj_type, obj_count in objects.items():
if obj_count != 0:
match = re.findall(regex, repr(obj_type))
if match:
obj_type, obj_name = match[0]
result.append(("%s %s" % (obj_type, obj_name), obj_count))
return sorted(result, key=operator.itemgetter(1), reverse=True)
|
[
"Formats",
"object",
"count",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/memory_profiler.py#L65-L75
|
[
"def",
"_format_obj_count",
"(",
"objects",
")",
":",
"result",
"=",
"[",
"]",
"regex",
"=",
"re",
".",
"compile",
"(",
"r'<(?P<type>\\w+) \\'(?P<name>\\S+)\\'>'",
")",
"for",
"obj_type",
",",
"obj_count",
"in",
"objects",
".",
"items",
"(",
")",
":",
"if",
"obj_count",
"!=",
"0",
":",
"match",
"=",
"re",
".",
"findall",
"(",
"regex",
",",
"repr",
"(",
"obj_type",
")",
")",
"if",
"match",
":",
"obj_type",
",",
"obj_name",
"=",
"match",
"[",
"0",
"]",
"result",
".",
"append",
"(",
"(",
"\"%s %s\"",
"%",
"(",
"obj_type",
",",
"obj_name",
")",
",",
"obj_count",
")",
")",
"return",
"sorted",
"(",
"result",
",",
"key",
"=",
"operator",
".",
"itemgetter",
"(",
"1",
")",
",",
"reverse",
"=",
"True",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
_CodeEventsTracker._trace_memory_usage
|
Checks memory usage when 'line' event occur.
|
vprof/memory_profiler.py
|
def _trace_memory_usage(self, frame, event, arg): #pylint: disable=unused-argument
"""Checks memory usage when 'line' event occur."""
if event == 'line' and frame.f_code.co_filename in self.target_modules:
self._events_list.append(
(frame.f_lineno, self._process.memory_info().rss,
frame.f_code.co_name, frame.f_code.co_filename))
return self._trace_memory_usage
|
def _trace_memory_usage(self, frame, event, arg): #pylint: disable=unused-argument
"""Checks memory usage when 'line' event occur."""
if event == 'line' and frame.f_code.co_filename in self.target_modules:
self._events_list.append(
(frame.f_lineno, self._process.memory_info().rss,
frame.f_code.co_name, frame.f_code.co_filename))
return self._trace_memory_usage
|
[
"Checks",
"memory",
"usage",
"when",
"line",
"event",
"occur",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/memory_profiler.py#L101-L107
|
[
"def",
"_trace_memory_usage",
"(",
"self",
",",
"frame",
",",
"event",
",",
"arg",
")",
":",
"#pylint: disable=unused-argument",
"if",
"event",
"==",
"'line'",
"and",
"frame",
".",
"f_code",
".",
"co_filename",
"in",
"self",
".",
"target_modules",
":",
"self",
".",
"_events_list",
".",
"append",
"(",
"(",
"frame",
".",
"f_lineno",
",",
"self",
".",
"_process",
".",
"memory_info",
"(",
")",
".",
"rss",
",",
"frame",
".",
"f_code",
".",
"co_name",
",",
"frame",
".",
"f_code",
".",
"co_filename",
")",
")",
"return",
"self",
".",
"_trace_memory_usage"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
_CodeEventsTracker.code_events
|
Returns processed memory usage.
|
vprof/memory_profiler.py
|
def code_events(self):
"""Returns processed memory usage."""
if self._resulting_events:
return self._resulting_events
for i, (lineno, mem, func, fname) in enumerate(self._events_list):
mem_in_mb = float(mem - self.mem_overhead) / _BYTES_IN_MB
if (self._resulting_events and
self._resulting_events[-1][0] == lineno and
self._resulting_events[-1][2] == func and
self._resulting_events[-1][3] == fname and
self._resulting_events[-1][1] < mem_in_mb):
self._resulting_events[-1][1] = mem_in_mb
else:
self._resulting_events.append(
[i + 1, lineno, mem_in_mb, func, fname])
return self._resulting_events
|
def code_events(self):
"""Returns processed memory usage."""
if self._resulting_events:
return self._resulting_events
for i, (lineno, mem, func, fname) in enumerate(self._events_list):
mem_in_mb = float(mem - self.mem_overhead) / _BYTES_IN_MB
if (self._resulting_events and
self._resulting_events[-1][0] == lineno and
self._resulting_events[-1][2] == func and
self._resulting_events[-1][3] == fname and
self._resulting_events[-1][1] < mem_in_mb):
self._resulting_events[-1][1] = mem_in_mb
else:
self._resulting_events.append(
[i + 1, lineno, mem_in_mb, func, fname])
return self._resulting_events
|
[
"Returns",
"processed",
"memory",
"usage",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/memory_profiler.py#L110-L125
|
[
"def",
"code_events",
"(",
"self",
")",
":",
"if",
"self",
".",
"_resulting_events",
":",
"return",
"self",
".",
"_resulting_events",
"for",
"i",
",",
"(",
"lineno",
",",
"mem",
",",
"func",
",",
"fname",
")",
"in",
"enumerate",
"(",
"self",
".",
"_events_list",
")",
":",
"mem_in_mb",
"=",
"float",
"(",
"mem",
"-",
"self",
".",
"mem_overhead",
")",
"/",
"_BYTES_IN_MB",
"if",
"(",
"self",
".",
"_resulting_events",
"and",
"self",
".",
"_resulting_events",
"[",
"-",
"1",
"]",
"[",
"0",
"]",
"==",
"lineno",
"and",
"self",
".",
"_resulting_events",
"[",
"-",
"1",
"]",
"[",
"2",
"]",
"==",
"func",
"and",
"self",
".",
"_resulting_events",
"[",
"-",
"1",
"]",
"[",
"3",
"]",
"==",
"fname",
"and",
"self",
".",
"_resulting_events",
"[",
"-",
"1",
"]",
"[",
"1",
"]",
"<",
"mem_in_mb",
")",
":",
"self",
".",
"_resulting_events",
"[",
"-",
"1",
"]",
"[",
"1",
"]",
"=",
"mem_in_mb",
"else",
":",
"self",
".",
"_resulting_events",
".",
"append",
"(",
"[",
"i",
"+",
"1",
",",
"lineno",
",",
"mem_in_mb",
",",
"func",
",",
"fname",
"]",
")",
"return",
"self",
".",
"_resulting_events"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
_CodeEventsTracker.obj_overhead
|
Returns all objects that are considered a profiler overhead.
Objects are hardcoded for convenience.
|
vprof/memory_profiler.py
|
def obj_overhead(self):
"""Returns all objects that are considered a profiler overhead.
Objects are hardcoded for convenience.
"""
overhead = [
self,
self._resulting_events,
self._events_list,
self._process
]
overhead_count = _get_object_count_by_type(overhead)
# One for reference to __dict__ and one for reference to
# the current module.
overhead_count[dict] += 2
return overhead_count
|
def obj_overhead(self):
"""Returns all objects that are considered a profiler overhead.
Objects are hardcoded for convenience.
"""
overhead = [
self,
self._resulting_events,
self._events_list,
self._process
]
overhead_count = _get_object_count_by_type(overhead)
# One for reference to __dict__ and one for reference to
# the current module.
overhead_count[dict] += 2
return overhead_count
|
[
"Returns",
"all",
"objects",
"that",
"are",
"considered",
"a",
"profiler",
"overhead",
".",
"Objects",
"are",
"hardcoded",
"for",
"convenience",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/memory_profiler.py#L128-L142
|
[
"def",
"obj_overhead",
"(",
"self",
")",
":",
"overhead",
"=",
"[",
"self",
",",
"self",
".",
"_resulting_events",
",",
"self",
".",
"_events_list",
",",
"self",
".",
"_process",
"]",
"overhead_count",
"=",
"_get_object_count_by_type",
"(",
"overhead",
")",
"# One for reference to __dict__ and one for reference to",
"# the current module.",
"overhead_count",
"[",
"dict",
"]",
"+=",
"2",
"return",
"overhead_count"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
_CodeEventsTracker.compute_mem_overhead
|
Returns memory overhead.
|
vprof/memory_profiler.py
|
def compute_mem_overhead(self):
"""Returns memory overhead."""
self.mem_overhead = (self._process.memory_info().rss -
builtins.initial_rss_size)
|
def compute_mem_overhead(self):
"""Returns memory overhead."""
self.mem_overhead = (self._process.memory_info().rss -
builtins.initial_rss_size)
|
[
"Returns",
"memory",
"overhead",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/memory_profiler.py#L144-L147
|
[
"def",
"compute_mem_overhead",
"(",
"self",
")",
":",
"self",
".",
"mem_overhead",
"=",
"(",
"self",
".",
"_process",
".",
"memory_info",
"(",
")",
".",
"rss",
"-",
"builtins",
".",
"initial_rss_size",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
MemoryProfiler.profile_package
|
Returns memory stats for a package.
|
vprof/memory_profiler.py
|
def profile_package(self):
"""Returns memory stats for a package."""
target_modules = base_profiler.get_pkg_module_names(self._run_object)
try:
with _CodeEventsTracker(target_modules) as prof:
prof.compute_mem_overhead()
runpy.run_path(self._run_object, run_name='__main__')
except SystemExit:
pass
return prof, None
|
def profile_package(self):
"""Returns memory stats for a package."""
target_modules = base_profiler.get_pkg_module_names(self._run_object)
try:
with _CodeEventsTracker(target_modules) as prof:
prof.compute_mem_overhead()
runpy.run_path(self._run_object, run_name='__main__')
except SystemExit:
pass
return prof, None
|
[
"Returns",
"memory",
"stats",
"for",
"a",
"package",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/memory_profiler.py#L156-L165
|
[
"def",
"profile_package",
"(",
"self",
")",
":",
"target_modules",
"=",
"base_profiler",
".",
"get_pkg_module_names",
"(",
"self",
".",
"_run_object",
")",
"try",
":",
"with",
"_CodeEventsTracker",
"(",
"target_modules",
")",
"as",
"prof",
":",
"prof",
".",
"compute_mem_overhead",
"(",
")",
"runpy",
".",
"run_path",
"(",
"self",
".",
"_run_object",
",",
"run_name",
"=",
"'__main__'",
")",
"except",
"SystemExit",
":",
"pass",
"return",
"prof",
",",
"None"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
MemoryProfiler.profile_module
|
Returns memory stats for a module.
|
vprof/memory_profiler.py
|
def profile_module(self):
"""Returns memory stats for a module."""
target_modules = {self._run_object}
try:
with open(self._run_object, 'rb') as srcfile,\
_CodeEventsTracker(target_modules) as prof:
code = compile(srcfile.read(), self._run_object, 'exec')
prof.compute_mem_overhead()
exec(code, self._globs, None)
except SystemExit:
pass
return prof, None
|
def profile_module(self):
"""Returns memory stats for a module."""
target_modules = {self._run_object}
try:
with open(self._run_object, 'rb') as srcfile,\
_CodeEventsTracker(target_modules) as prof:
code = compile(srcfile.read(), self._run_object, 'exec')
prof.compute_mem_overhead()
exec(code, self._globs, None)
except SystemExit:
pass
return prof, None
|
[
"Returns",
"memory",
"stats",
"for",
"a",
"module",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/memory_profiler.py#L167-L178
|
[
"def",
"profile_module",
"(",
"self",
")",
":",
"target_modules",
"=",
"{",
"self",
".",
"_run_object",
"}",
"try",
":",
"with",
"open",
"(",
"self",
".",
"_run_object",
",",
"'rb'",
")",
"as",
"srcfile",
",",
"_CodeEventsTracker",
"(",
"target_modules",
")",
"as",
"prof",
":",
"code",
"=",
"compile",
"(",
"srcfile",
".",
"read",
"(",
")",
",",
"self",
".",
"_run_object",
",",
"'exec'",
")",
"prof",
".",
"compute_mem_overhead",
"(",
")",
"exec",
"(",
"code",
",",
"self",
".",
"_globs",
",",
"None",
")",
"except",
"SystemExit",
":",
"pass",
"return",
"prof",
",",
"None"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
MemoryProfiler.profile_function
|
Returns memory stats for a function.
|
vprof/memory_profiler.py
|
def profile_function(self):
"""Returns memory stats for a function."""
target_modules = {self._run_object.__code__.co_filename}
with _CodeEventsTracker(target_modules) as prof:
prof.compute_mem_overhead()
result = self._run_object(*self._run_args, **self._run_kwargs)
return prof, result
|
def profile_function(self):
"""Returns memory stats for a function."""
target_modules = {self._run_object.__code__.co_filename}
with _CodeEventsTracker(target_modules) as prof:
prof.compute_mem_overhead()
result = self._run_object(*self._run_args, **self._run_kwargs)
return prof, result
|
[
"Returns",
"memory",
"stats",
"for",
"a",
"function",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/memory_profiler.py#L180-L186
|
[
"def",
"profile_function",
"(",
"self",
")",
":",
"target_modules",
"=",
"{",
"self",
".",
"_run_object",
".",
"__code__",
".",
"co_filename",
"}",
"with",
"_CodeEventsTracker",
"(",
"target_modules",
")",
"as",
"prof",
":",
"prof",
".",
"compute_mem_overhead",
"(",
")",
"result",
"=",
"self",
".",
"_run_object",
"(",
"*",
"self",
".",
"_run_args",
",",
"*",
"*",
"self",
".",
"_run_kwargs",
")",
"return",
"prof",
",",
"result"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
MemoryProfiler.run
|
Collects memory stats for specified Python program.
|
vprof/memory_profiler.py
|
def run(self):
"""Collects memory stats for specified Python program."""
existing_objects = _get_in_memory_objects()
prof, result = self.profile()
new_objects = _get_in_memory_objects()
new_obj_count = _get_obj_count_difference(new_objects, existing_objects)
result_obj_count = new_obj_count - prof.obj_overhead
# existing_objects list is also profiler overhead
result_obj_count[list] -= 1
pretty_obj_count = _format_obj_count(result_obj_count)
return {
'objectName': self._object_name,
'codeEvents': prof.code_events,
'totalEvents': len(prof.code_events),
'objectsCount': pretty_obj_count,
'result': result,
'timestamp': int(time.time())
}
|
def run(self):
"""Collects memory stats for specified Python program."""
existing_objects = _get_in_memory_objects()
prof, result = self.profile()
new_objects = _get_in_memory_objects()
new_obj_count = _get_obj_count_difference(new_objects, existing_objects)
result_obj_count = new_obj_count - prof.obj_overhead
# existing_objects list is also profiler overhead
result_obj_count[list] -= 1
pretty_obj_count = _format_obj_count(result_obj_count)
return {
'objectName': self._object_name,
'codeEvents': prof.code_events,
'totalEvents': len(prof.code_events),
'objectsCount': pretty_obj_count,
'result': result,
'timestamp': int(time.time())
}
|
[
"Collects",
"memory",
"stats",
"for",
"specified",
"Python",
"program",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/memory_profiler.py#L188-L207
|
[
"def",
"run",
"(",
"self",
")",
":",
"existing_objects",
"=",
"_get_in_memory_objects",
"(",
")",
"prof",
",",
"result",
"=",
"self",
".",
"profile",
"(",
")",
"new_objects",
"=",
"_get_in_memory_objects",
"(",
")",
"new_obj_count",
"=",
"_get_obj_count_difference",
"(",
"new_objects",
",",
"existing_objects",
")",
"result_obj_count",
"=",
"new_obj_count",
"-",
"prof",
".",
"obj_overhead",
"# existing_objects list is also profiler overhead",
"result_obj_count",
"[",
"list",
"]",
"-=",
"1",
"pretty_obj_count",
"=",
"_format_obj_count",
"(",
"result_obj_count",
")",
"return",
"{",
"'objectName'",
":",
"self",
".",
"_object_name",
",",
"'codeEvents'",
":",
"prof",
".",
"code_events",
",",
"'totalEvents'",
":",
"len",
"(",
"prof",
".",
"code_events",
")",
",",
"'objectsCount'",
":",
"pretty_obj_count",
",",
"'result'",
":",
"result",
",",
"'timestamp'",
":",
"int",
"(",
"time",
".",
"time",
"(",
")",
")",
"}"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
get_pkg_module_names
|
Returns module filenames from package.
Args:
package_path: Path to Python package.
Returns:
A set of module filenames.
|
vprof/base_profiler.py
|
def get_pkg_module_names(package_path):
"""Returns module filenames from package.
Args:
package_path: Path to Python package.
Returns:
A set of module filenames.
"""
module_names = set()
for fobj, modname, _ in pkgutil.iter_modules(path=[package_path]):
filename = os.path.join(fobj.path, '%s.py' % modname)
if os.path.exists(filename):
module_names.add(os.path.abspath(filename))
return module_names
|
def get_pkg_module_names(package_path):
"""Returns module filenames from package.
Args:
package_path: Path to Python package.
Returns:
A set of module filenames.
"""
module_names = set()
for fobj, modname, _ in pkgutil.iter_modules(path=[package_path]):
filename = os.path.join(fobj.path, '%s.py' % modname)
if os.path.exists(filename):
module_names.add(os.path.abspath(filename))
return module_names
|
[
"Returns",
"module",
"filenames",
"from",
"package",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/base_profiler.py#L10-L23
|
[
"def",
"get_pkg_module_names",
"(",
"package_path",
")",
":",
"module_names",
"=",
"set",
"(",
")",
"for",
"fobj",
",",
"modname",
",",
"_",
"in",
"pkgutil",
".",
"iter_modules",
"(",
"path",
"=",
"[",
"package_path",
"]",
")",
":",
"filename",
"=",
"os",
".",
"path",
".",
"join",
"(",
"fobj",
".",
"path",
",",
"'%s.py'",
"%",
"modname",
")",
"if",
"os",
".",
"path",
".",
"exists",
"(",
"filename",
")",
":",
"module_names",
".",
"add",
"(",
"os",
".",
"path",
".",
"abspath",
"(",
"filename",
")",
")",
"return",
"module_names"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
run_in_separate_process
|
Runs function in separate process.
This function is used instead of a decorator, since Python multiprocessing
module can't serialize decorated function on all platforms.
|
vprof/base_profiler.py
|
def run_in_separate_process(func, *args, **kwargs):
"""Runs function in separate process.
This function is used instead of a decorator, since Python multiprocessing
module can't serialize decorated function on all platforms.
"""
manager = multiprocessing.Manager()
manager_dict = manager.dict()
process = ProcessWithException(
manager_dict, target=func, args=args, kwargs=kwargs)
process.start()
process.join()
exc = process.exception
if exc:
raise exc
return process.output
|
def run_in_separate_process(func, *args, **kwargs):
"""Runs function in separate process.
This function is used instead of a decorator, since Python multiprocessing
module can't serialize decorated function on all platforms.
"""
manager = multiprocessing.Manager()
manager_dict = manager.dict()
process = ProcessWithException(
manager_dict, target=func, args=args, kwargs=kwargs)
process.start()
process.join()
exc = process.exception
if exc:
raise exc
return process.output
|
[
"Runs",
"function",
"in",
"separate",
"process",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/base_profiler.py#L65-L80
|
[
"def",
"run_in_separate_process",
"(",
"func",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"manager",
"=",
"multiprocessing",
".",
"Manager",
"(",
")",
"manager_dict",
"=",
"manager",
".",
"dict",
"(",
")",
"process",
"=",
"ProcessWithException",
"(",
"manager_dict",
",",
"target",
"=",
"func",
",",
"args",
"=",
"args",
",",
"kwargs",
"=",
"kwargs",
")",
"process",
".",
"start",
"(",
")",
"process",
".",
"join",
"(",
")",
"exc",
"=",
"process",
".",
"exception",
"if",
"exc",
":",
"raise",
"exc",
"return",
"process",
".",
"output"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
BaseProfiler.get_run_object_type
|
Determines run object type.
|
vprof/base_profiler.py
|
def get_run_object_type(run_object):
"""Determines run object type."""
if isinstance(run_object, tuple):
return 'function'
run_object, _, _ = run_object.partition(' ')
if os.path.isdir(run_object):
return 'package'
return 'module'
|
def get_run_object_type(run_object):
"""Determines run object type."""
if isinstance(run_object, tuple):
return 'function'
run_object, _, _ = run_object.partition(' ')
if os.path.isdir(run_object):
return 'package'
return 'module'
|
[
"Determines",
"run",
"object",
"type",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/base_profiler.py#L101-L108
|
[
"def",
"get_run_object_type",
"(",
"run_object",
")",
":",
"if",
"isinstance",
"(",
"run_object",
",",
"tuple",
")",
":",
"return",
"'function'",
"run_object",
",",
"_",
",",
"_",
"=",
"run_object",
".",
"partition",
"(",
"' '",
")",
"if",
"os",
".",
"path",
".",
"isdir",
"(",
"run_object",
")",
":",
"return",
"'package'",
"return",
"'module'"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
BaseProfiler.init_module
|
Initializes profiler with a module.
|
vprof/base_profiler.py
|
def init_module(self, run_object):
"""Initializes profiler with a module."""
self.profile = self.profile_module
self._run_object, _, self._run_args = run_object.partition(' ')
self._object_name = '%s (module)' % self._run_object
self._globs = {
'__file__': self._run_object,
'__name__': '__main__',
'__package__': None,
}
program_path = os.path.dirname(self._run_object)
if sys.path[0] != program_path:
sys.path.insert(0, program_path)
self._replace_sysargs()
|
def init_module(self, run_object):
"""Initializes profiler with a module."""
self.profile = self.profile_module
self._run_object, _, self._run_args = run_object.partition(' ')
self._object_name = '%s (module)' % self._run_object
self._globs = {
'__file__': self._run_object,
'__name__': '__main__',
'__package__': None,
}
program_path = os.path.dirname(self._run_object)
if sys.path[0] != program_path:
sys.path.insert(0, program_path)
self._replace_sysargs()
|
[
"Initializes",
"profiler",
"with",
"a",
"module",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/base_profiler.py#L110-L123
|
[
"def",
"init_module",
"(",
"self",
",",
"run_object",
")",
":",
"self",
".",
"profile",
"=",
"self",
".",
"profile_module",
"self",
".",
"_run_object",
",",
"_",
",",
"self",
".",
"_run_args",
"=",
"run_object",
".",
"partition",
"(",
"' '",
")",
"self",
".",
"_object_name",
"=",
"'%s (module)'",
"%",
"self",
".",
"_run_object",
"self",
".",
"_globs",
"=",
"{",
"'__file__'",
":",
"self",
".",
"_run_object",
",",
"'__name__'",
":",
"'__main__'",
",",
"'__package__'",
":",
"None",
",",
"}",
"program_path",
"=",
"os",
".",
"path",
".",
"dirname",
"(",
"self",
".",
"_run_object",
")",
"if",
"sys",
".",
"path",
"[",
"0",
"]",
"!=",
"program_path",
":",
"sys",
".",
"path",
".",
"insert",
"(",
"0",
",",
"program_path",
")",
"self",
".",
"_replace_sysargs",
"(",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
BaseProfiler.init_package
|
Initializes profiler with a package.
|
vprof/base_profiler.py
|
def init_package(self, run_object):
"""Initializes profiler with a package."""
self.profile = self.profile_package
self._run_object, _, self._run_args = run_object.partition(' ')
self._object_name = '%s (package)' % self._run_object
self._replace_sysargs()
|
def init_package(self, run_object):
"""Initializes profiler with a package."""
self.profile = self.profile_package
self._run_object, _, self._run_args = run_object.partition(' ')
self._object_name = '%s (package)' % self._run_object
self._replace_sysargs()
|
[
"Initializes",
"profiler",
"with",
"a",
"package",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/base_profiler.py#L125-L130
|
[
"def",
"init_package",
"(",
"self",
",",
"run_object",
")",
":",
"self",
".",
"profile",
"=",
"self",
".",
"profile_package",
"self",
".",
"_run_object",
",",
"_",
",",
"self",
".",
"_run_args",
"=",
"run_object",
".",
"partition",
"(",
"' '",
")",
"self",
".",
"_object_name",
"=",
"'%s (package)'",
"%",
"self",
".",
"_run_object",
"self",
".",
"_replace_sysargs",
"(",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
BaseProfiler.init_function
|
Initializes profiler with a function.
|
vprof/base_profiler.py
|
def init_function(self, run_object):
"""Initializes profiler with a function."""
self.profile = self.profile_function
self._run_object, self._run_args, self._run_kwargs = run_object
filename = inspect.getsourcefile(self._run_object)
self._object_name = '%s @ %s (function)' % (
self._run_object.__name__, filename)
|
def init_function(self, run_object):
"""Initializes profiler with a function."""
self.profile = self.profile_function
self._run_object, self._run_args, self._run_kwargs = run_object
filename = inspect.getsourcefile(self._run_object)
self._object_name = '%s @ %s (function)' % (
self._run_object.__name__, filename)
|
[
"Initializes",
"profiler",
"with",
"a",
"function",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/base_profiler.py#L132-L138
|
[
"def",
"init_function",
"(",
"self",
",",
"run_object",
")",
":",
"self",
".",
"profile",
"=",
"self",
".",
"profile_function",
"self",
".",
"_run_object",
",",
"self",
".",
"_run_args",
",",
"self",
".",
"_run_kwargs",
"=",
"run_object",
"filename",
"=",
"inspect",
".",
"getsourcefile",
"(",
"self",
".",
"_run_object",
")",
"self",
".",
"_object_name",
"=",
"'%s @ %s (function)'",
"%",
"(",
"self",
".",
"_run_object",
".",
"__name__",
",",
"filename",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
BaseProfiler._replace_sysargs
|
Replaces sys.argv with proper args to pass to script.
|
vprof/base_profiler.py
|
def _replace_sysargs(self):
"""Replaces sys.argv with proper args to pass to script."""
sys.argv[:] = [self._run_object]
if self._run_args:
sys.argv += self._run_args.split()
|
def _replace_sysargs(self):
"""Replaces sys.argv with proper args to pass to script."""
sys.argv[:] = [self._run_object]
if self._run_args:
sys.argv += self._run_args.split()
|
[
"Replaces",
"sys",
".",
"argv",
"with",
"proper",
"args",
"to",
"pass",
"to",
"script",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/base_profiler.py#L140-L144
|
[
"def",
"_replace_sysargs",
"(",
"self",
")",
":",
"sys",
".",
"argv",
"[",
":",
"]",
"=",
"[",
"self",
".",
"_run_object",
"]",
"if",
"self",
".",
"_run_args",
":",
"sys",
".",
"argv",
"+=",
"self",
".",
"_run_args",
".",
"split",
"(",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
_StatProfiler.sample
|
Samples current stack and adds result in self._stats.
Args:
signum: Signal that activates handler.
frame: Frame on top of the stack when signal is handled.
|
vprof/flame_graph.py
|
def sample(self, signum, frame): #pylint: disable=unused-argument
"""Samples current stack and adds result in self._stats.
Args:
signum: Signal that activates handler.
frame: Frame on top of the stack when signal is handled.
"""
stack = []
while frame and frame != self.base_frame:
stack.append((
frame.f_code.co_name,
frame.f_code.co_filename,
frame.f_code.co_firstlineno))
frame = frame.f_back
self._stats[tuple(stack)] += 1
signal.setitimer(signal.ITIMER_PROF, _SAMPLE_INTERVAL)
|
def sample(self, signum, frame): #pylint: disable=unused-argument
"""Samples current stack and adds result in self._stats.
Args:
signum: Signal that activates handler.
frame: Frame on top of the stack when signal is handled.
"""
stack = []
while frame and frame != self.base_frame:
stack.append((
frame.f_code.co_name,
frame.f_code.co_filename,
frame.f_code.co_firstlineno))
frame = frame.f_back
self._stats[tuple(stack)] += 1
signal.setitimer(signal.ITIMER_PROF, _SAMPLE_INTERVAL)
|
[
"Samples",
"current",
"stack",
"and",
"adds",
"result",
"in",
"self",
".",
"_stats",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/flame_graph.py#L37-L52
|
[
"def",
"sample",
"(",
"self",
",",
"signum",
",",
"frame",
")",
":",
"#pylint: disable=unused-argument",
"stack",
"=",
"[",
"]",
"while",
"frame",
"and",
"frame",
"!=",
"self",
".",
"base_frame",
":",
"stack",
".",
"append",
"(",
"(",
"frame",
".",
"f_code",
".",
"co_name",
",",
"frame",
".",
"f_code",
".",
"co_filename",
",",
"frame",
".",
"f_code",
".",
"co_firstlineno",
")",
")",
"frame",
"=",
"frame",
".",
"f_back",
"self",
".",
"_stats",
"[",
"tuple",
"(",
"stack",
")",
"]",
"+=",
"1",
"signal",
".",
"setitimer",
"(",
"signal",
".",
"ITIMER_PROF",
",",
"_SAMPLE_INTERVAL",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
_StatProfiler._insert_stack
|
Inserts stack into the call tree.
Args:
stack: Call stack.
sample_count: Sample count of call stack.
call_tree: Call tree.
|
vprof/flame_graph.py
|
def _insert_stack(stack, sample_count, call_tree):
"""Inserts stack into the call tree.
Args:
stack: Call stack.
sample_count: Sample count of call stack.
call_tree: Call tree.
"""
curr_level = call_tree
for func in stack:
next_level_index = {
node['stack']: node for node in curr_level['children']}
if func not in next_level_index:
new_node = {'stack': func, 'children': [], 'sampleCount': 0}
curr_level['children'].append(new_node)
curr_level = new_node
else:
curr_level = next_level_index[func]
curr_level['sampleCount'] = sample_count
|
def _insert_stack(stack, sample_count, call_tree):
"""Inserts stack into the call tree.
Args:
stack: Call stack.
sample_count: Sample count of call stack.
call_tree: Call tree.
"""
curr_level = call_tree
for func in stack:
next_level_index = {
node['stack']: node for node in curr_level['children']}
if func not in next_level_index:
new_node = {'stack': func, 'children': [], 'sampleCount': 0}
curr_level['children'].append(new_node)
curr_level = new_node
else:
curr_level = next_level_index[func]
curr_level['sampleCount'] = sample_count
|
[
"Inserts",
"stack",
"into",
"the",
"call",
"tree",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/flame_graph.py#L55-L73
|
[
"def",
"_insert_stack",
"(",
"stack",
",",
"sample_count",
",",
"call_tree",
")",
":",
"curr_level",
"=",
"call_tree",
"for",
"func",
"in",
"stack",
":",
"next_level_index",
"=",
"{",
"node",
"[",
"'stack'",
"]",
":",
"node",
"for",
"node",
"in",
"curr_level",
"[",
"'children'",
"]",
"}",
"if",
"func",
"not",
"in",
"next_level_index",
":",
"new_node",
"=",
"{",
"'stack'",
":",
"func",
",",
"'children'",
":",
"[",
"]",
",",
"'sampleCount'",
":",
"0",
"}",
"curr_level",
"[",
"'children'",
"]",
".",
"append",
"(",
"new_node",
")",
"curr_level",
"=",
"new_node",
"else",
":",
"curr_level",
"=",
"next_level_index",
"[",
"func",
"]",
"curr_level",
"[",
"'sampleCount'",
"]",
"=",
"sample_count"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
_StatProfiler._fill_sample_count
|
Counts and fills sample counts inside call tree.
|
vprof/flame_graph.py
|
def _fill_sample_count(self, node):
"""Counts and fills sample counts inside call tree."""
node['sampleCount'] += sum(
self._fill_sample_count(child) for child in node['children'])
return node['sampleCount']
|
def _fill_sample_count(self, node):
"""Counts and fills sample counts inside call tree."""
node['sampleCount'] += sum(
self._fill_sample_count(child) for child in node['children'])
return node['sampleCount']
|
[
"Counts",
"and",
"fills",
"sample",
"counts",
"inside",
"call",
"tree",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/flame_graph.py#L75-L79
|
[
"def",
"_fill_sample_count",
"(",
"self",
",",
"node",
")",
":",
"node",
"[",
"'sampleCount'",
"]",
"+=",
"sum",
"(",
"self",
".",
"_fill_sample_count",
"(",
"child",
")",
"for",
"child",
"in",
"node",
"[",
"'children'",
"]",
")",
"return",
"node",
"[",
"'sampleCount'",
"]"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
_StatProfiler._format_tree
|
Reformats call tree for the UI.
|
vprof/flame_graph.py
|
def _format_tree(self, node, total_samples):
"""Reformats call tree for the UI."""
funcname, filename, _ = node['stack']
sample_percent = self._get_percentage(
node['sampleCount'], total_samples)
color_hash = base_profiler.hash_name('%s @ %s' % (funcname, filename))
return {
'stack': node['stack'],
'children': [self._format_tree(child, total_samples)
for child in node['children']],
'sampleCount': node['sampleCount'],
'samplePercentage': sample_percent,
'colorHash': color_hash
}
|
def _format_tree(self, node, total_samples):
"""Reformats call tree for the UI."""
funcname, filename, _ = node['stack']
sample_percent = self._get_percentage(
node['sampleCount'], total_samples)
color_hash = base_profiler.hash_name('%s @ %s' % (funcname, filename))
return {
'stack': node['stack'],
'children': [self._format_tree(child, total_samples)
for child in node['children']],
'sampleCount': node['sampleCount'],
'samplePercentage': sample_percent,
'colorHash': color_hash
}
|
[
"Reformats",
"call",
"tree",
"for",
"the",
"UI",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/flame_graph.py#L88-L101
|
[
"def",
"_format_tree",
"(",
"self",
",",
"node",
",",
"total_samples",
")",
":",
"funcname",
",",
"filename",
",",
"_",
"=",
"node",
"[",
"'stack'",
"]",
"sample_percent",
"=",
"self",
".",
"_get_percentage",
"(",
"node",
"[",
"'sampleCount'",
"]",
",",
"total_samples",
")",
"color_hash",
"=",
"base_profiler",
".",
"hash_name",
"(",
"'%s @ %s'",
"%",
"(",
"funcname",
",",
"filename",
")",
")",
"return",
"{",
"'stack'",
":",
"node",
"[",
"'stack'",
"]",
",",
"'children'",
":",
"[",
"self",
".",
"_format_tree",
"(",
"child",
",",
"total_samples",
")",
"for",
"child",
"in",
"node",
"[",
"'children'",
"]",
"]",
",",
"'sampleCount'",
":",
"node",
"[",
"'sampleCount'",
"]",
",",
"'samplePercentage'",
":",
"sample_percent",
",",
"'colorHash'",
":",
"color_hash",
"}"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
_StatProfiler.call_tree
|
Returns call tree.
|
vprof/flame_graph.py
|
def call_tree(self):
"""Returns call tree."""
call_tree = {'stack': 'base', 'sampleCount': 0, 'children': []}
for stack, sample_count in self._stats.items():
self._insert_stack(reversed(stack), sample_count, call_tree)
self._fill_sample_count(call_tree)
if not call_tree['children']:
return {}
return self._format_tree(
call_tree['children'][0], call_tree['sampleCount'])
|
def call_tree(self):
"""Returns call tree."""
call_tree = {'stack': 'base', 'sampleCount': 0, 'children': []}
for stack, sample_count in self._stats.items():
self._insert_stack(reversed(stack), sample_count, call_tree)
self._fill_sample_count(call_tree)
if not call_tree['children']:
return {}
return self._format_tree(
call_tree['children'][0], call_tree['sampleCount'])
|
[
"Returns",
"call",
"tree",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/flame_graph.py#L104-L113
|
[
"def",
"call_tree",
"(",
"self",
")",
":",
"call_tree",
"=",
"{",
"'stack'",
":",
"'base'",
",",
"'sampleCount'",
":",
"0",
",",
"'children'",
":",
"[",
"]",
"}",
"for",
"stack",
",",
"sample_count",
"in",
"self",
".",
"_stats",
".",
"items",
"(",
")",
":",
"self",
".",
"_insert_stack",
"(",
"reversed",
"(",
"stack",
")",
",",
"sample_count",
",",
"call_tree",
")",
"self",
".",
"_fill_sample_count",
"(",
"call_tree",
")",
"if",
"not",
"call_tree",
"[",
"'children'",
"]",
":",
"return",
"{",
"}",
"return",
"self",
".",
"_format_tree",
"(",
"call_tree",
"[",
"'children'",
"]",
"[",
"0",
"]",
",",
"call_tree",
"[",
"'sampleCount'",
"]",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
FlameGraphProfiler._profile_package
|
Runs statistical profiler on a package.
|
vprof/flame_graph.py
|
def _profile_package(self):
"""Runs statistical profiler on a package."""
with _StatProfiler() as prof:
prof.base_frame = inspect.currentframe()
try:
runpy.run_path(self._run_object, run_name='__main__')
except SystemExit:
pass
call_tree = prof.call_tree
return {
'objectName': self._object_name,
'sampleInterval': _SAMPLE_INTERVAL,
'runTime': prof.run_time,
'callStats': call_tree,
'totalSamples': call_tree.get('sampleCount', 0),
'timestamp': int(time.time())
}
|
def _profile_package(self):
"""Runs statistical profiler on a package."""
with _StatProfiler() as prof:
prof.base_frame = inspect.currentframe()
try:
runpy.run_path(self._run_object, run_name='__main__')
except SystemExit:
pass
call_tree = prof.call_tree
return {
'objectName': self._object_name,
'sampleInterval': _SAMPLE_INTERVAL,
'runTime': prof.run_time,
'callStats': call_tree,
'totalSamples': call_tree.get('sampleCount', 0),
'timestamp': int(time.time())
}
|
[
"Runs",
"statistical",
"profiler",
"on",
"a",
"package",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/flame_graph.py#L122-L139
|
[
"def",
"_profile_package",
"(",
"self",
")",
":",
"with",
"_StatProfiler",
"(",
")",
"as",
"prof",
":",
"prof",
".",
"base_frame",
"=",
"inspect",
".",
"currentframe",
"(",
")",
"try",
":",
"runpy",
".",
"run_path",
"(",
"self",
".",
"_run_object",
",",
"run_name",
"=",
"'__main__'",
")",
"except",
"SystemExit",
":",
"pass",
"call_tree",
"=",
"prof",
".",
"call_tree",
"return",
"{",
"'objectName'",
":",
"self",
".",
"_object_name",
",",
"'sampleInterval'",
":",
"_SAMPLE_INTERVAL",
",",
"'runTime'",
":",
"prof",
".",
"run_time",
",",
"'callStats'",
":",
"call_tree",
",",
"'totalSamples'",
":",
"call_tree",
".",
"get",
"(",
"'sampleCount'",
",",
"0",
")",
",",
"'timestamp'",
":",
"int",
"(",
"time",
".",
"time",
"(",
")",
")",
"}"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
FlameGraphProfiler._profile_module
|
Runs statistical profiler on a module.
|
vprof/flame_graph.py
|
def _profile_module(self):
"""Runs statistical profiler on a module."""
with open(self._run_object, 'rb') as srcfile, _StatProfiler() as prof:
code = compile(srcfile.read(), self._run_object, 'exec')
prof.base_frame = inspect.currentframe()
try:
exec(code, self._globs, None)
except SystemExit:
pass
call_tree = prof.call_tree
return {
'objectName': self._object_name,
'sampleInterval': _SAMPLE_INTERVAL,
'runTime': prof.run_time,
'callStats': call_tree,
'totalSamples': call_tree.get('sampleCount', 0),
'timestamp': int(time.time())
}
|
def _profile_module(self):
"""Runs statistical profiler on a module."""
with open(self._run_object, 'rb') as srcfile, _StatProfiler() as prof:
code = compile(srcfile.read(), self._run_object, 'exec')
prof.base_frame = inspect.currentframe()
try:
exec(code, self._globs, None)
except SystemExit:
pass
call_tree = prof.call_tree
return {
'objectName': self._object_name,
'sampleInterval': _SAMPLE_INTERVAL,
'runTime': prof.run_time,
'callStats': call_tree,
'totalSamples': call_tree.get('sampleCount', 0),
'timestamp': int(time.time())
}
|
[
"Runs",
"statistical",
"profiler",
"on",
"a",
"module",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/flame_graph.py#L145-L163
|
[
"def",
"_profile_module",
"(",
"self",
")",
":",
"with",
"open",
"(",
"self",
".",
"_run_object",
",",
"'rb'",
")",
"as",
"srcfile",
",",
"_StatProfiler",
"(",
")",
"as",
"prof",
":",
"code",
"=",
"compile",
"(",
"srcfile",
".",
"read",
"(",
")",
",",
"self",
".",
"_run_object",
",",
"'exec'",
")",
"prof",
".",
"base_frame",
"=",
"inspect",
".",
"currentframe",
"(",
")",
"try",
":",
"exec",
"(",
"code",
",",
"self",
".",
"_globs",
",",
"None",
")",
"except",
"SystemExit",
":",
"pass",
"call_tree",
"=",
"prof",
".",
"call_tree",
"return",
"{",
"'objectName'",
":",
"self",
".",
"_object_name",
",",
"'sampleInterval'",
":",
"_SAMPLE_INTERVAL",
",",
"'runTime'",
":",
"prof",
".",
"run_time",
",",
"'callStats'",
":",
"call_tree",
",",
"'totalSamples'",
":",
"call_tree",
".",
"get",
"(",
"'sampleCount'",
",",
"0",
")",
",",
"'timestamp'",
":",
"int",
"(",
"time",
".",
"time",
"(",
")",
")",
"}"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
FlameGraphProfiler.profile_function
|
Runs statistical profiler on a function.
|
vprof/flame_graph.py
|
def profile_function(self):
"""Runs statistical profiler on a function."""
with _StatProfiler() as prof:
result = self._run_object(*self._run_args, **self._run_kwargs)
call_tree = prof.call_tree
return {
'objectName': self._object_name,
'sampleInterval': _SAMPLE_INTERVAL,
'runTime': prof.run_time,
'callStats': call_tree,
'totalSamples': call_tree.get('sampleCount', 0),
'result': result,
'timestamp': int(time.time())
}
|
def profile_function(self):
"""Runs statistical profiler on a function."""
with _StatProfiler() as prof:
result = self._run_object(*self._run_args, **self._run_kwargs)
call_tree = prof.call_tree
return {
'objectName': self._object_name,
'sampleInterval': _SAMPLE_INTERVAL,
'runTime': prof.run_time,
'callStats': call_tree,
'totalSamples': call_tree.get('sampleCount', 0),
'result': result,
'timestamp': int(time.time())
}
|
[
"Runs",
"statistical",
"profiler",
"on",
"a",
"function",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/flame_graph.py#L169-L183
|
[
"def",
"profile_function",
"(",
"self",
")",
":",
"with",
"_StatProfiler",
"(",
")",
"as",
"prof",
":",
"result",
"=",
"self",
".",
"_run_object",
"(",
"*",
"self",
".",
"_run_args",
",",
"*",
"*",
"self",
".",
"_run_kwargs",
")",
"call_tree",
"=",
"prof",
".",
"call_tree",
"return",
"{",
"'objectName'",
":",
"self",
".",
"_object_name",
",",
"'sampleInterval'",
":",
"_SAMPLE_INTERVAL",
",",
"'runTime'",
":",
"prof",
".",
"run_time",
",",
"'callStats'",
":",
"call_tree",
",",
"'totalSamples'",
":",
"call_tree",
".",
"get",
"(",
"'sampleCount'",
",",
"0",
")",
",",
"'result'",
":",
"result",
",",
"'timestamp'",
":",
"int",
"(",
"time",
".",
"time",
"(",
")",
")",
"}"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
Profiler._transform_stats
|
Processes collected stats for UI.
|
vprof/profiler.py
|
def _transform_stats(prof):
"""Processes collected stats for UI."""
records = []
for info, params in prof.stats.items():
filename, lineno, funcname = info
cum_calls, num_calls, time_per_call, cum_time, _ = params
if prof.total_tt == 0:
percentage = 0
else:
percentage = round(100 * (cum_time / prof.total_tt), 4)
cum_time = round(cum_time, 4)
func_name = '%s @ %s' % (funcname, filename)
color_hash = base_profiler.hash_name(func_name)
records.append(
(filename, lineno, funcname, cum_time, percentage, num_calls,
cum_calls, time_per_call, filename, color_hash))
return sorted(records, key=operator.itemgetter(4), reverse=True)
|
def _transform_stats(prof):
"""Processes collected stats for UI."""
records = []
for info, params in prof.stats.items():
filename, lineno, funcname = info
cum_calls, num_calls, time_per_call, cum_time, _ = params
if prof.total_tt == 0:
percentage = 0
else:
percentage = round(100 * (cum_time / prof.total_tt), 4)
cum_time = round(cum_time, 4)
func_name = '%s @ %s' % (funcname, filename)
color_hash = base_profiler.hash_name(func_name)
records.append(
(filename, lineno, funcname, cum_time, percentage, num_calls,
cum_calls, time_per_call, filename, color_hash))
return sorted(records, key=operator.itemgetter(4), reverse=True)
|
[
"Processes",
"collected",
"stats",
"for",
"UI",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/profiler.py#L18-L34
|
[
"def",
"_transform_stats",
"(",
"prof",
")",
":",
"records",
"=",
"[",
"]",
"for",
"info",
",",
"params",
"in",
"prof",
".",
"stats",
".",
"items",
"(",
")",
":",
"filename",
",",
"lineno",
",",
"funcname",
"=",
"info",
"cum_calls",
",",
"num_calls",
",",
"time_per_call",
",",
"cum_time",
",",
"_",
"=",
"params",
"if",
"prof",
".",
"total_tt",
"==",
"0",
":",
"percentage",
"=",
"0",
"else",
":",
"percentage",
"=",
"round",
"(",
"100",
"*",
"(",
"cum_time",
"/",
"prof",
".",
"total_tt",
")",
",",
"4",
")",
"cum_time",
"=",
"round",
"(",
"cum_time",
",",
"4",
")",
"func_name",
"=",
"'%s @ %s'",
"%",
"(",
"funcname",
",",
"filename",
")",
"color_hash",
"=",
"base_profiler",
".",
"hash_name",
"(",
"func_name",
")",
"records",
".",
"append",
"(",
"(",
"filename",
",",
"lineno",
",",
"funcname",
",",
"cum_time",
",",
"percentage",
",",
"num_calls",
",",
"cum_calls",
",",
"time_per_call",
",",
"filename",
",",
"color_hash",
")",
")",
"return",
"sorted",
"(",
"records",
",",
"key",
"=",
"operator",
".",
"itemgetter",
"(",
"4",
")",
",",
"reverse",
"=",
"True",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
Profiler._profile_package
|
Runs cProfile on a package.
|
vprof/profiler.py
|
def _profile_package(self):
"""Runs cProfile on a package."""
prof = cProfile.Profile()
prof.enable()
try:
runpy.run_path(self._run_object, run_name='__main__')
except SystemExit:
pass
prof.disable()
prof_stats = pstats.Stats(prof)
prof_stats.calc_callees()
return {
'objectName': self._object_name,
'callStats': self._transform_stats(prof_stats),
'totalTime': prof_stats.total_tt,
'primitiveCalls': prof_stats.prim_calls,
'totalCalls': prof_stats.total_calls,
'timestamp': int(time.time())
}
|
def _profile_package(self):
"""Runs cProfile on a package."""
prof = cProfile.Profile()
prof.enable()
try:
runpy.run_path(self._run_object, run_name='__main__')
except SystemExit:
pass
prof.disable()
prof_stats = pstats.Stats(prof)
prof_stats.calc_callees()
return {
'objectName': self._object_name,
'callStats': self._transform_stats(prof_stats),
'totalTime': prof_stats.total_tt,
'primitiveCalls': prof_stats.prim_calls,
'totalCalls': prof_stats.total_calls,
'timestamp': int(time.time())
}
|
[
"Runs",
"cProfile",
"on",
"a",
"package",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/profiler.py#L36-L54
|
[
"def",
"_profile_package",
"(",
"self",
")",
":",
"prof",
"=",
"cProfile",
".",
"Profile",
"(",
")",
"prof",
".",
"enable",
"(",
")",
"try",
":",
"runpy",
".",
"run_path",
"(",
"self",
".",
"_run_object",
",",
"run_name",
"=",
"'__main__'",
")",
"except",
"SystemExit",
":",
"pass",
"prof",
".",
"disable",
"(",
")",
"prof_stats",
"=",
"pstats",
".",
"Stats",
"(",
"prof",
")",
"prof_stats",
".",
"calc_callees",
"(",
")",
"return",
"{",
"'objectName'",
":",
"self",
".",
"_object_name",
",",
"'callStats'",
":",
"self",
".",
"_transform_stats",
"(",
"prof_stats",
")",
",",
"'totalTime'",
":",
"prof_stats",
".",
"total_tt",
",",
"'primitiveCalls'",
":",
"prof_stats",
".",
"prim_calls",
",",
"'totalCalls'",
":",
"prof_stats",
".",
"total_calls",
",",
"'timestamp'",
":",
"int",
"(",
"time",
".",
"time",
"(",
")",
")",
"}"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
Profiler._profile_module
|
Runs cProfile on a module.
|
vprof/profiler.py
|
def _profile_module(self):
"""Runs cProfile on a module."""
prof = cProfile.Profile()
try:
with open(self._run_object, 'rb') as srcfile:
code = compile(srcfile.read(), self._run_object, 'exec')
prof.runctx(code, self._globs, None)
except SystemExit:
pass
prof_stats = pstats.Stats(prof)
prof_stats.calc_callees()
return {
'objectName': self._object_name,
'callStats': self._transform_stats(prof_stats),
'totalTime': prof_stats.total_tt,
'primitiveCalls': prof_stats.prim_calls,
'totalCalls': prof_stats.total_calls,
'timestamp': int(time.time())
}
|
def _profile_module(self):
"""Runs cProfile on a module."""
prof = cProfile.Profile()
try:
with open(self._run_object, 'rb') as srcfile:
code = compile(srcfile.read(), self._run_object, 'exec')
prof.runctx(code, self._globs, None)
except SystemExit:
pass
prof_stats = pstats.Stats(prof)
prof_stats.calc_callees()
return {
'objectName': self._object_name,
'callStats': self._transform_stats(prof_stats),
'totalTime': prof_stats.total_tt,
'primitiveCalls': prof_stats.prim_calls,
'totalCalls': prof_stats.total_calls,
'timestamp': int(time.time())
}
|
[
"Runs",
"cProfile",
"on",
"a",
"module",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/profiler.py#L60-L78
|
[
"def",
"_profile_module",
"(",
"self",
")",
":",
"prof",
"=",
"cProfile",
".",
"Profile",
"(",
")",
"try",
":",
"with",
"open",
"(",
"self",
".",
"_run_object",
",",
"'rb'",
")",
"as",
"srcfile",
":",
"code",
"=",
"compile",
"(",
"srcfile",
".",
"read",
"(",
")",
",",
"self",
".",
"_run_object",
",",
"'exec'",
")",
"prof",
".",
"runctx",
"(",
"code",
",",
"self",
".",
"_globs",
",",
"None",
")",
"except",
"SystemExit",
":",
"pass",
"prof_stats",
"=",
"pstats",
".",
"Stats",
"(",
"prof",
")",
"prof_stats",
".",
"calc_callees",
"(",
")",
"return",
"{",
"'objectName'",
":",
"self",
".",
"_object_name",
",",
"'callStats'",
":",
"self",
".",
"_transform_stats",
"(",
"prof_stats",
")",
",",
"'totalTime'",
":",
"prof_stats",
".",
"total_tt",
",",
"'primitiveCalls'",
":",
"prof_stats",
".",
"prim_calls",
",",
"'totalCalls'",
":",
"prof_stats",
".",
"total_calls",
",",
"'timestamp'",
":",
"int",
"(",
"time",
".",
"time",
"(",
")",
")",
"}"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
Profiler.profile_function
|
Runs cProfile on a function.
|
vprof/profiler.py
|
def profile_function(self):
"""Runs cProfile on a function."""
prof = cProfile.Profile()
prof.enable()
result = self._run_object(*self._run_args, **self._run_kwargs)
prof.disable()
prof_stats = pstats.Stats(prof)
prof_stats.calc_callees()
return {
'objectName': self._object_name,
'callStats': self._transform_stats(prof_stats),
'totalTime': prof_stats.total_tt,
'primitiveCalls': prof_stats.prim_calls,
'totalCalls': prof_stats.total_calls,
'result': result,
'timestamp': int(time.time())
}
|
def profile_function(self):
"""Runs cProfile on a function."""
prof = cProfile.Profile()
prof.enable()
result = self._run_object(*self._run_args, **self._run_kwargs)
prof.disable()
prof_stats = pstats.Stats(prof)
prof_stats.calc_callees()
return {
'objectName': self._object_name,
'callStats': self._transform_stats(prof_stats),
'totalTime': prof_stats.total_tt,
'primitiveCalls': prof_stats.prim_calls,
'totalCalls': prof_stats.total_calls,
'result': result,
'timestamp': int(time.time())
}
|
[
"Runs",
"cProfile",
"on",
"a",
"function",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/profiler.py#L84-L100
|
[
"def",
"profile_function",
"(",
"self",
")",
":",
"prof",
"=",
"cProfile",
".",
"Profile",
"(",
")",
"prof",
".",
"enable",
"(",
")",
"result",
"=",
"self",
".",
"_run_object",
"(",
"*",
"self",
".",
"_run_args",
",",
"*",
"*",
"self",
".",
"_run_kwargs",
")",
"prof",
".",
"disable",
"(",
")",
"prof_stats",
"=",
"pstats",
".",
"Stats",
"(",
"prof",
")",
"prof_stats",
".",
"calc_callees",
"(",
")",
"return",
"{",
"'objectName'",
":",
"self",
".",
"_object_name",
",",
"'callStats'",
":",
"self",
".",
"_transform_stats",
"(",
"prof_stats",
")",
",",
"'totalTime'",
":",
"prof_stats",
".",
"total_tt",
",",
"'primitiveCalls'",
":",
"prof_stats",
".",
"prim_calls",
",",
"'totalCalls'",
":",
"prof_stats",
".",
"total_calls",
",",
"'result'",
":",
"result",
",",
"'timestamp'",
":",
"int",
"(",
"time",
".",
"time",
"(",
")",
")",
"}"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
init_db
|
Initializes DB.
|
examples/guestbook.py
|
def init_db():
"""Initializes DB."""
with contextlib.closing(connect_to_db()) as db:
db.cursor().executescript(DB_SCHEMA)
db.commit()
|
def init_db():
"""Initializes DB."""
with contextlib.closing(connect_to_db()) as db:
db.cursor().executescript(DB_SCHEMA)
db.commit()
|
[
"Initializes",
"DB",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/examples/guestbook.py#L64-L68
|
[
"def",
"init_db",
"(",
")",
":",
"with",
"contextlib",
".",
"closing",
"(",
"connect_to_db",
"(",
")",
")",
"as",
"db",
":",
"db",
".",
"cursor",
"(",
")",
".",
"executescript",
"(",
"DB_SCHEMA",
")",
"db",
".",
"commit",
"(",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
show_guestbook
|
Returns all existing guestbook records.
|
examples/guestbook.py
|
def show_guestbook():
"""Returns all existing guestbook records."""
cursor = flask.g.db.execute(
'SELECT name, message FROM entry ORDER BY id DESC;')
entries = [{'name': row[0], 'message': row[1]} for row in cursor.fetchall()]
return jinja2.Template(LAYOUT).render(entries=entries)
|
def show_guestbook():
"""Returns all existing guestbook records."""
cursor = flask.g.db.execute(
'SELECT name, message FROM entry ORDER BY id DESC;')
entries = [{'name': row[0], 'message': row[1]} for row in cursor.fetchall()]
return jinja2.Template(LAYOUT).render(entries=entries)
|
[
"Returns",
"all",
"existing",
"guestbook",
"records",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/examples/guestbook.py#L89-L94
|
[
"def",
"show_guestbook",
"(",
")",
":",
"cursor",
"=",
"flask",
".",
"g",
".",
"db",
".",
"execute",
"(",
"'SELECT name, message FROM entry ORDER BY id DESC;'",
")",
"entries",
"=",
"[",
"{",
"'name'",
":",
"row",
"[",
"0",
"]",
",",
"'message'",
":",
"row",
"[",
"1",
"]",
"}",
"for",
"row",
"in",
"cursor",
".",
"fetchall",
"(",
")",
"]",
"return",
"jinja2",
".",
"Template",
"(",
"LAYOUT",
")",
".",
"render",
"(",
"entries",
"=",
"entries",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
add_entry
|
Adds single guestbook record.
|
examples/guestbook.py
|
def add_entry():
"""Adds single guestbook record."""
name, msg = flask.request.form['name'], flask.request.form['message']
flask.g.db.execute(
'INSERT INTO entry (name, message) VALUES (?, ?)', (name, msg))
flask.g.db.commit()
return flask.redirect('/')
|
def add_entry():
"""Adds single guestbook record."""
name, msg = flask.request.form['name'], flask.request.form['message']
flask.g.db.execute(
'INSERT INTO entry (name, message) VALUES (?, ?)', (name, msg))
flask.g.db.commit()
return flask.redirect('/')
|
[
"Adds",
"single",
"guestbook",
"record",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/examples/guestbook.py#L98-L104
|
[
"def",
"add_entry",
"(",
")",
":",
"name",
",",
"msg",
"=",
"flask",
".",
"request",
".",
"form",
"[",
"'name'",
"]",
",",
"flask",
".",
"request",
".",
"form",
"[",
"'message'",
"]",
"flask",
".",
"g",
".",
"db",
".",
"execute",
"(",
"'INSERT INTO entry (name, message) VALUES (?, ?)'",
",",
"(",
"name",
",",
"msg",
")",
")",
"flask",
".",
"g",
".",
"db",
".",
"commit",
"(",
")",
"return",
"flask",
".",
"redirect",
"(",
"'/'",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
profiler_handler
|
Profiler handler.
|
examples/guestbook.py
|
def profiler_handler(uri):
"""Profiler handler."""
# HTTP method should be GET.
if uri == 'main':
runner.run(show_guestbook, 'cmhp')
# In this case HTTP method should be POST singe add_entry uses POST
elif uri == 'add':
runner.run(add_entry, 'cmhp')
return flask.redirect('/')
|
def profiler_handler(uri):
"""Profiler handler."""
# HTTP method should be GET.
if uri == 'main':
runner.run(show_guestbook, 'cmhp')
# In this case HTTP method should be POST singe add_entry uses POST
elif uri == 'add':
runner.run(add_entry, 'cmhp')
return flask.redirect('/')
|
[
"Profiler",
"handler",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/examples/guestbook.py#L108-L116
|
[
"def",
"profiler_handler",
"(",
"uri",
")",
":",
"# HTTP method should be GET.",
"if",
"uri",
"==",
"'main'",
":",
"runner",
".",
"run",
"(",
"show_guestbook",
",",
"'cmhp'",
")",
"# In this case HTTP method should be POST singe add_entry uses POST",
"elif",
"uri",
"==",
"'add'",
":",
"runner",
".",
"run",
"(",
"add_entry",
",",
"'cmhp'",
")",
"return",
"flask",
".",
"redirect",
"(",
"'/'",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
start
|
Starts HTTP server with specified parameters.
Args:
host: Server host name.
port: Server port.
profiler_stats: A dict with collected program stats.
dont_start_browser: Whether to open browser after profiling.
debug_mode: Whether to redirect stderr to /dev/null.
|
vprof/stats_server.py
|
def start(host, port, profiler_stats, dont_start_browser, debug_mode):
"""Starts HTTP server with specified parameters.
Args:
host: Server host name.
port: Server port.
profiler_stats: A dict with collected program stats.
dont_start_browser: Whether to open browser after profiling.
debug_mode: Whether to redirect stderr to /dev/null.
"""
stats_handler = functools.partial(StatsHandler, profiler_stats)
if not debug_mode:
sys.stderr = open(os.devnull, 'w')
print('Starting HTTP server...')
if not dont_start_browser:
webbrowser.open('http://{}:{}/'.format(host, port))
try:
StatsServer((host, port), stats_handler).serve_forever()
except KeyboardInterrupt:
print('Stopping...')
sys.exit(0)
|
def start(host, port, profiler_stats, dont_start_browser, debug_mode):
"""Starts HTTP server with specified parameters.
Args:
host: Server host name.
port: Server port.
profiler_stats: A dict with collected program stats.
dont_start_browser: Whether to open browser after profiling.
debug_mode: Whether to redirect stderr to /dev/null.
"""
stats_handler = functools.partial(StatsHandler, profiler_stats)
if not debug_mode:
sys.stderr = open(os.devnull, 'w')
print('Starting HTTP server...')
if not dont_start_browser:
webbrowser.open('http://{}:{}/'.format(host, port))
try:
StatsServer((host, port), stats_handler).serve_forever()
except KeyboardInterrupt:
print('Stopping...')
sys.exit(0)
|
[
"Starts",
"HTTP",
"server",
"with",
"specified",
"parameters",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/stats_server.py#L87-L107
|
[
"def",
"start",
"(",
"host",
",",
"port",
",",
"profiler_stats",
",",
"dont_start_browser",
",",
"debug_mode",
")",
":",
"stats_handler",
"=",
"functools",
".",
"partial",
"(",
"StatsHandler",
",",
"profiler_stats",
")",
"if",
"not",
"debug_mode",
":",
"sys",
".",
"stderr",
"=",
"open",
"(",
"os",
".",
"devnull",
",",
"'w'",
")",
"print",
"(",
"'Starting HTTP server...'",
")",
"if",
"not",
"dont_start_browser",
":",
"webbrowser",
".",
"open",
"(",
"'http://{}:{}/'",
".",
"format",
"(",
"host",
",",
"port",
")",
")",
"try",
":",
"StatsServer",
"(",
"(",
"host",
",",
"port",
")",
",",
"stats_handler",
")",
".",
"serve_forever",
"(",
")",
"except",
"KeyboardInterrupt",
":",
"print",
"(",
"'Stopping...'",
")",
"sys",
".",
"exit",
"(",
"0",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
StatsHandler._handle_root
|
Handles index.html requests.
|
vprof/stats_server.py
|
def _handle_root():
"""Handles index.html requests."""
res_filename = os.path.join(
os.path.dirname(__file__), _PROFILE_HTML)
with io.open(res_filename, 'rb') as res_file:
content = res_file.read()
return content, 'text/html'
|
def _handle_root():
"""Handles index.html requests."""
res_filename = os.path.join(
os.path.dirname(__file__), _PROFILE_HTML)
with io.open(res_filename, 'rb') as res_file:
content = res_file.read()
return content, 'text/html'
|
[
"Handles",
"index",
".",
"html",
"requests",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/stats_server.py#L36-L42
|
[
"def",
"_handle_root",
"(",
")",
":",
"res_filename",
"=",
"os",
".",
"path",
".",
"join",
"(",
"os",
".",
"path",
".",
"dirname",
"(",
"__file__",
")",
",",
"_PROFILE_HTML",
")",
"with",
"io",
".",
"open",
"(",
"res_filename",
",",
"'rb'",
")",
"as",
"res_file",
":",
"content",
"=",
"res_file",
".",
"read",
"(",
")",
"return",
"content",
",",
"'text/html'"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
StatsHandler._handle_other
|
Handles static files requests.
|
vprof/stats_server.py
|
def _handle_other(self):
"""Handles static files requests."""
res_filename = os.path.join(
os.path.dirname(__file__), _STATIC_DIR, self.path[1:])
with io.open(res_filename, 'rb') as res_file:
content = res_file.read()
_, extension = os.path.splitext(self.path)
return content, 'text/%s' % extension[1:]
|
def _handle_other(self):
"""Handles static files requests."""
res_filename = os.path.join(
os.path.dirname(__file__), _STATIC_DIR, self.path[1:])
with io.open(res_filename, 'rb') as res_file:
content = res_file.read()
_, extension = os.path.splitext(self.path)
return content, 'text/%s' % extension[1:]
|
[
"Handles",
"static",
"files",
"requests",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/stats_server.py#L48-L55
|
[
"def",
"_handle_other",
"(",
"self",
")",
":",
"res_filename",
"=",
"os",
".",
"path",
".",
"join",
"(",
"os",
".",
"path",
".",
"dirname",
"(",
"__file__",
")",
",",
"_STATIC_DIR",
",",
"self",
".",
"path",
"[",
"1",
":",
"]",
")",
"with",
"io",
".",
"open",
"(",
"res_filename",
",",
"'rb'",
")",
"as",
"res_file",
":",
"content",
"=",
"res_file",
".",
"read",
"(",
")",
"_",
",",
"extension",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"self",
".",
"path",
")",
"return",
"content",
",",
"'text/%s'",
"%",
"extension",
"[",
"1",
":",
"]"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
StatsHandler.do_GET
|
Handles HTTP GET requests.
|
vprof/stats_server.py
|
def do_GET(self):
"""Handles HTTP GET requests."""
handler = self.uri_map.get(self.path) or self._handle_other
content, content_type = handler()
compressed_content = gzip.compress(content)
self._send_response(
200, headers=(('Content-type', '%s; charset=utf-8' % content_type),
('Content-Encoding', 'gzip'),
('Content-Length', len(compressed_content))))
self.wfile.write(compressed_content)
|
def do_GET(self):
"""Handles HTTP GET requests."""
handler = self.uri_map.get(self.path) or self._handle_other
content, content_type = handler()
compressed_content = gzip.compress(content)
self._send_response(
200, headers=(('Content-type', '%s; charset=utf-8' % content_type),
('Content-Encoding', 'gzip'),
('Content-Length', len(compressed_content))))
self.wfile.write(compressed_content)
|
[
"Handles",
"HTTP",
"GET",
"requests",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/stats_server.py#L57-L66
|
[
"def",
"do_GET",
"(",
"self",
")",
":",
"handler",
"=",
"self",
".",
"uri_map",
".",
"get",
"(",
"self",
".",
"path",
")",
"or",
"self",
".",
"_handle_other",
"content",
",",
"content_type",
"=",
"handler",
"(",
")",
"compressed_content",
"=",
"gzip",
".",
"compress",
"(",
"content",
")",
"self",
".",
"_send_response",
"(",
"200",
",",
"headers",
"=",
"(",
"(",
"'Content-type'",
",",
"'%s; charset=utf-8'",
"%",
"content_type",
")",
",",
"(",
"'Content-Encoding'",
",",
"'gzip'",
")",
",",
"(",
"'Content-Length'",
",",
"len",
"(",
"compressed_content",
")",
")",
")",
")",
"self",
".",
"wfile",
".",
"write",
"(",
"compressed_content",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
StatsHandler.do_POST
|
Handles HTTP POST requests.
|
vprof/stats_server.py
|
def do_POST(self):
"""Handles HTTP POST requests."""
post_data = self.rfile.read(int(self.headers['Content-Length']))
json_data = gzip.decompress(post_data)
self._profile_json.update(json.loads(json_data.decode('utf-8')))
self._send_response(
200, headers=(('Content-type', '%s; charset=utf-8' % 'text/json'),
('Content-Encoding', 'gzip'),
('Content-Length', len(post_data))))
|
def do_POST(self):
"""Handles HTTP POST requests."""
post_data = self.rfile.read(int(self.headers['Content-Length']))
json_data = gzip.decompress(post_data)
self._profile_json.update(json.loads(json_data.decode('utf-8')))
self._send_response(
200, headers=(('Content-type', '%s; charset=utf-8' % 'text/json'),
('Content-Encoding', 'gzip'),
('Content-Length', len(post_data))))
|
[
"Handles",
"HTTP",
"POST",
"requests",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/stats_server.py#L68-L76
|
[
"def",
"do_POST",
"(",
"self",
")",
":",
"post_data",
"=",
"self",
".",
"rfile",
".",
"read",
"(",
"int",
"(",
"self",
".",
"headers",
"[",
"'Content-Length'",
"]",
")",
")",
"json_data",
"=",
"gzip",
".",
"decompress",
"(",
"post_data",
")",
"self",
".",
"_profile_json",
".",
"update",
"(",
"json",
".",
"loads",
"(",
"json_data",
".",
"decode",
"(",
"'utf-8'",
")",
")",
")",
"self",
".",
"_send_response",
"(",
"200",
",",
"headers",
"=",
"(",
"(",
"'Content-type'",
",",
"'%s; charset=utf-8'",
"%",
"'text/json'",
")",
",",
"(",
"'Content-Encoding'",
",",
"'gzip'",
")",
",",
"(",
"'Content-Length'",
",",
"len",
"(",
"post_data",
")",
")",
")",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
StatsHandler._send_response
|
Sends HTTP response code, message and headers.
|
vprof/stats_server.py
|
def _send_response(self, http_code, message=None, headers=None):
"""Sends HTTP response code, message and headers."""
self.send_response(http_code, message)
if headers:
for header in headers:
self.send_header(*header)
self.end_headers()
|
def _send_response(self, http_code, message=None, headers=None):
"""Sends HTTP response code, message and headers."""
self.send_response(http_code, message)
if headers:
for header in headers:
self.send_header(*header)
self.end_headers()
|
[
"Sends",
"HTTP",
"response",
"code",
"message",
"and",
"headers",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/stats_server.py#L78-L84
|
[
"def",
"_send_response",
"(",
"self",
",",
"http_code",
",",
"message",
"=",
"None",
",",
"headers",
"=",
"None",
")",
":",
"self",
".",
"send_response",
"(",
"http_code",
",",
"message",
")",
"if",
"headers",
":",
"for",
"header",
"in",
"headers",
":",
"self",
".",
"send_header",
"(",
"*",
"header",
")",
"self",
".",
"end_headers",
"(",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
main
|
Main function of the module.
|
vprof/__main__.py
|
def main():
"""Main function of the module."""
parser = argparse.ArgumentParser(
prog=_PROGRAN_NAME, description=_MODULE_DESC,
formatter_class=argparse.RawTextHelpFormatter)
launch_modes = parser.add_mutually_exclusive_group(required=True)
launch_modes.add_argument('-r', '--remote', dest='remote',
action='store_true', default=False,
help='launch in remote mode')
launch_modes.add_argument('-i', '--input-file', dest='input_file',
type=str, default='',
help='render UI from file')
launch_modes.add_argument('-c', '--config', nargs=2, dest='config',
help=_CONFIG_DESC, metavar=('CONFIG', 'SRC'))
parser.add_argument('-H', '--host', dest='host', default=_HOST, type=str,
help='set internal webserver host')
parser.add_argument('-p', '--port', dest='port', default=_PORT, type=int,
help='set internal webserver port')
parser.add_argument('-n', '--no-browser', dest='dont_start_browser',
action='store_true', default=False,
help="don't start browser automatically")
parser.add_argument('-o', '--output-file', dest='output_file',
type=str, default='', help='save profile to file')
parser.add_argument('--debug', dest='debug_mode',
action='store_true', default=False,
help="don't suppress error messages")
parser.add_argument('--version', action='version',
version='vprof %s' % __version__)
args = parser.parse_args()
# Render UI from file.
if args.input_file:
with open(args.input_file) as ifile:
saved_stats = json.loads(ifile.read())
if saved_stats['version'] != __version__:
print('Incorrect profiler version - %s. %s is required.' % (
saved_stats['version'], __version__))
sys.exit(_ERR_CODES['input_file_error'])
stats_server.start(args.host, args.port, saved_stats,
args.dont_start_browser, args.debug_mode)
# Launch in remote mode.
elif args.remote:
stats_server.start(args.host, args.port, {},
args.dont_start_browser, args.debug_mode)
# Profiler mode.
else:
config, source = args.config
try:
program_stats = runner.run_profilers(source, config, verbose=True)
except runner.AmbiguousConfigurationError:
print('Profiler configuration %s is ambiguous. '
'Please, remove duplicates.' % config)
sys.exit(_ERR_CODES['ambiguous_configuration'])
except runner.BadOptionError as exc:
print(exc)
sys.exit(_ERR_CODES['bad_option'])
if args.output_file:
with open(args.output_file, 'w') as outfile:
program_stats['version'] = __version__
outfile.write(json.dumps(program_stats, indent=2))
else:
stats_server.start(
args.host, args.port, program_stats,
args.dont_start_browser, args.debug_mode)
|
def main():
"""Main function of the module."""
parser = argparse.ArgumentParser(
prog=_PROGRAN_NAME, description=_MODULE_DESC,
formatter_class=argparse.RawTextHelpFormatter)
launch_modes = parser.add_mutually_exclusive_group(required=True)
launch_modes.add_argument('-r', '--remote', dest='remote',
action='store_true', default=False,
help='launch in remote mode')
launch_modes.add_argument('-i', '--input-file', dest='input_file',
type=str, default='',
help='render UI from file')
launch_modes.add_argument('-c', '--config', nargs=2, dest='config',
help=_CONFIG_DESC, metavar=('CONFIG', 'SRC'))
parser.add_argument('-H', '--host', dest='host', default=_HOST, type=str,
help='set internal webserver host')
parser.add_argument('-p', '--port', dest='port', default=_PORT, type=int,
help='set internal webserver port')
parser.add_argument('-n', '--no-browser', dest='dont_start_browser',
action='store_true', default=False,
help="don't start browser automatically")
parser.add_argument('-o', '--output-file', dest='output_file',
type=str, default='', help='save profile to file')
parser.add_argument('--debug', dest='debug_mode',
action='store_true', default=False,
help="don't suppress error messages")
parser.add_argument('--version', action='version',
version='vprof %s' % __version__)
args = parser.parse_args()
# Render UI from file.
if args.input_file:
with open(args.input_file) as ifile:
saved_stats = json.loads(ifile.read())
if saved_stats['version'] != __version__:
print('Incorrect profiler version - %s. %s is required.' % (
saved_stats['version'], __version__))
sys.exit(_ERR_CODES['input_file_error'])
stats_server.start(args.host, args.port, saved_stats,
args.dont_start_browser, args.debug_mode)
# Launch in remote mode.
elif args.remote:
stats_server.start(args.host, args.port, {},
args.dont_start_browser, args.debug_mode)
# Profiler mode.
else:
config, source = args.config
try:
program_stats = runner.run_profilers(source, config, verbose=True)
except runner.AmbiguousConfigurationError:
print('Profiler configuration %s is ambiguous. '
'Please, remove duplicates.' % config)
sys.exit(_ERR_CODES['ambiguous_configuration'])
except runner.BadOptionError as exc:
print(exc)
sys.exit(_ERR_CODES['bad_option'])
if args.output_file:
with open(args.output_file, 'w') as outfile:
program_stats['version'] = __version__
outfile.write(json.dumps(program_stats, indent=2))
else:
stats_server.start(
args.host, args.port, program_stats,
args.dont_start_browser, args.debug_mode)
|
[
"Main",
"function",
"of",
"the",
"module",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/__main__.py#L35-L99
|
[
"def",
"main",
"(",
")",
":",
"parser",
"=",
"argparse",
".",
"ArgumentParser",
"(",
"prog",
"=",
"_PROGRAN_NAME",
",",
"description",
"=",
"_MODULE_DESC",
",",
"formatter_class",
"=",
"argparse",
".",
"RawTextHelpFormatter",
")",
"launch_modes",
"=",
"parser",
".",
"add_mutually_exclusive_group",
"(",
"required",
"=",
"True",
")",
"launch_modes",
".",
"add_argument",
"(",
"'-r'",
",",
"'--remote'",
",",
"dest",
"=",
"'remote'",
",",
"action",
"=",
"'store_true'",
",",
"default",
"=",
"False",
",",
"help",
"=",
"'launch in remote mode'",
")",
"launch_modes",
".",
"add_argument",
"(",
"'-i'",
",",
"'--input-file'",
",",
"dest",
"=",
"'input_file'",
",",
"type",
"=",
"str",
",",
"default",
"=",
"''",
",",
"help",
"=",
"'render UI from file'",
")",
"launch_modes",
".",
"add_argument",
"(",
"'-c'",
",",
"'--config'",
",",
"nargs",
"=",
"2",
",",
"dest",
"=",
"'config'",
",",
"help",
"=",
"_CONFIG_DESC",
",",
"metavar",
"=",
"(",
"'CONFIG'",
",",
"'SRC'",
")",
")",
"parser",
".",
"add_argument",
"(",
"'-H'",
",",
"'--host'",
",",
"dest",
"=",
"'host'",
",",
"default",
"=",
"_HOST",
",",
"type",
"=",
"str",
",",
"help",
"=",
"'set internal webserver host'",
")",
"parser",
".",
"add_argument",
"(",
"'-p'",
",",
"'--port'",
",",
"dest",
"=",
"'port'",
",",
"default",
"=",
"_PORT",
",",
"type",
"=",
"int",
",",
"help",
"=",
"'set internal webserver port'",
")",
"parser",
".",
"add_argument",
"(",
"'-n'",
",",
"'--no-browser'",
",",
"dest",
"=",
"'dont_start_browser'",
",",
"action",
"=",
"'store_true'",
",",
"default",
"=",
"False",
",",
"help",
"=",
"\"don't start browser automatically\"",
")",
"parser",
".",
"add_argument",
"(",
"'-o'",
",",
"'--output-file'",
",",
"dest",
"=",
"'output_file'",
",",
"type",
"=",
"str",
",",
"default",
"=",
"''",
",",
"help",
"=",
"'save profile to file'",
")",
"parser",
".",
"add_argument",
"(",
"'--debug'",
",",
"dest",
"=",
"'debug_mode'",
",",
"action",
"=",
"'store_true'",
",",
"default",
"=",
"False",
",",
"help",
"=",
"\"don't suppress error messages\"",
")",
"parser",
".",
"add_argument",
"(",
"'--version'",
",",
"action",
"=",
"'version'",
",",
"version",
"=",
"'vprof %s'",
"%",
"__version__",
")",
"args",
"=",
"parser",
".",
"parse_args",
"(",
")",
"# Render UI from file.",
"if",
"args",
".",
"input_file",
":",
"with",
"open",
"(",
"args",
".",
"input_file",
")",
"as",
"ifile",
":",
"saved_stats",
"=",
"json",
".",
"loads",
"(",
"ifile",
".",
"read",
"(",
")",
")",
"if",
"saved_stats",
"[",
"'version'",
"]",
"!=",
"__version__",
":",
"print",
"(",
"'Incorrect profiler version - %s. %s is required.'",
"%",
"(",
"saved_stats",
"[",
"'version'",
"]",
",",
"__version__",
")",
")",
"sys",
".",
"exit",
"(",
"_ERR_CODES",
"[",
"'input_file_error'",
"]",
")",
"stats_server",
".",
"start",
"(",
"args",
".",
"host",
",",
"args",
".",
"port",
",",
"saved_stats",
",",
"args",
".",
"dont_start_browser",
",",
"args",
".",
"debug_mode",
")",
"# Launch in remote mode.",
"elif",
"args",
".",
"remote",
":",
"stats_server",
".",
"start",
"(",
"args",
".",
"host",
",",
"args",
".",
"port",
",",
"{",
"}",
",",
"args",
".",
"dont_start_browser",
",",
"args",
".",
"debug_mode",
")",
"# Profiler mode.",
"else",
":",
"config",
",",
"source",
"=",
"args",
".",
"config",
"try",
":",
"program_stats",
"=",
"runner",
".",
"run_profilers",
"(",
"source",
",",
"config",
",",
"verbose",
"=",
"True",
")",
"except",
"runner",
".",
"AmbiguousConfigurationError",
":",
"print",
"(",
"'Profiler configuration %s is ambiguous. '",
"'Please, remove duplicates.'",
"%",
"config",
")",
"sys",
".",
"exit",
"(",
"_ERR_CODES",
"[",
"'ambiguous_configuration'",
"]",
")",
"except",
"runner",
".",
"BadOptionError",
"as",
"exc",
":",
"print",
"(",
"exc",
")",
"sys",
".",
"exit",
"(",
"_ERR_CODES",
"[",
"'bad_option'",
"]",
")",
"if",
"args",
".",
"output_file",
":",
"with",
"open",
"(",
"args",
".",
"output_file",
",",
"'w'",
")",
"as",
"outfile",
":",
"program_stats",
"[",
"'version'",
"]",
"=",
"__version__",
"outfile",
".",
"write",
"(",
"json",
".",
"dumps",
"(",
"program_stats",
",",
"indent",
"=",
"2",
")",
")",
"else",
":",
"stats_server",
".",
"start",
"(",
"args",
".",
"host",
",",
"args",
".",
"port",
",",
"program_stats",
",",
"args",
".",
"dont_start_browser",
",",
"args",
".",
"debug_mode",
")"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
check_standard_dir
|
Checks whether path belongs to standard library or installed modules.
|
vprof/code_heatmap.py
|
def check_standard_dir(module_path):
"""Checks whether path belongs to standard library or installed modules."""
if 'site-packages' in module_path:
return True
for stdlib_path in _STDLIB_PATHS:
if fnmatch.fnmatchcase(module_path, stdlib_path + '*'):
return True
return False
|
def check_standard_dir(module_path):
"""Checks whether path belongs to standard library or installed modules."""
if 'site-packages' in module_path:
return True
for stdlib_path in _STDLIB_PATHS:
if fnmatch.fnmatchcase(module_path, stdlib_path + '*'):
return True
return False
|
[
"Checks",
"whether",
"path",
"belongs",
"to",
"standard",
"library",
"or",
"installed",
"modules",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/code_heatmap.py#L18-L25
|
[
"def",
"check_standard_dir",
"(",
"module_path",
")",
":",
"if",
"'site-packages'",
"in",
"module_path",
":",
"return",
"True",
"for",
"stdlib_path",
"in",
"_STDLIB_PATHS",
":",
"if",
"fnmatch",
".",
"fnmatchcase",
"(",
"module_path",
",",
"stdlib_path",
"+",
"'*'",
")",
":",
"return",
"True",
"return",
"False"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
_CodeHeatmapCalculator.record_line
|
Records line execution time.
|
vprof/code_heatmap.py
|
def record_line(self, frame, event, arg): # pylint: disable=unused-argument
"""Records line execution time."""
if event == 'line':
if self.prev_timestamp:
runtime = time.time() - self.prev_timestamp
self.lines.append([self.prev_path, self.prev_lineno, runtime])
self.prev_lineno = frame.f_lineno
self.prev_path = frame.f_code.co_filename
self.prev_timestamp = time.time()
return self.record_line
|
def record_line(self, frame, event, arg): # pylint: disable=unused-argument
"""Records line execution time."""
if event == 'line':
if self.prev_timestamp:
runtime = time.time() - self.prev_timestamp
self.lines.append([self.prev_path, self.prev_lineno, runtime])
self.prev_lineno = frame.f_lineno
self.prev_path = frame.f_code.co_filename
self.prev_timestamp = time.time()
return self.record_line
|
[
"Records",
"line",
"execution",
"time",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/code_heatmap.py#L56-L65
|
[
"def",
"record_line",
"(",
"self",
",",
"frame",
",",
"event",
",",
"arg",
")",
":",
"# pylint: disable=unused-argument",
"if",
"event",
"==",
"'line'",
":",
"if",
"self",
".",
"prev_timestamp",
":",
"runtime",
"=",
"time",
".",
"time",
"(",
")",
"-",
"self",
".",
"prev_timestamp",
"self",
".",
"lines",
".",
"append",
"(",
"[",
"self",
".",
"prev_path",
",",
"self",
".",
"prev_lineno",
",",
"runtime",
"]",
")",
"self",
".",
"prev_lineno",
"=",
"frame",
".",
"f_lineno",
"self",
".",
"prev_path",
"=",
"frame",
".",
"f_code",
".",
"co_filename",
"self",
".",
"prev_timestamp",
"=",
"time",
".",
"time",
"(",
")",
"return",
"self",
".",
"record_line"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
_CodeHeatmapCalculator.lines_without_stdlib
|
Filters code from standard library from self.lines.
|
vprof/code_heatmap.py
|
def lines_without_stdlib(self):
"""Filters code from standard library from self.lines."""
prev_line = None
current_module_path = inspect.getabsfile(inspect.currentframe())
for module_path, lineno, runtime in self.lines:
module_abspath = os.path.abspath(module_path)
if not prev_line:
prev_line = [module_abspath, lineno, runtime]
else:
if (not check_standard_dir(module_path) and
module_abspath != current_module_path):
yield prev_line
prev_line = [module_abspath, lineno, runtime]
else:
prev_line[2] += runtime
yield prev_line
|
def lines_without_stdlib(self):
"""Filters code from standard library from self.lines."""
prev_line = None
current_module_path = inspect.getabsfile(inspect.currentframe())
for module_path, lineno, runtime in self.lines:
module_abspath = os.path.abspath(module_path)
if not prev_line:
prev_line = [module_abspath, lineno, runtime]
else:
if (not check_standard_dir(module_path) and
module_abspath != current_module_path):
yield prev_line
prev_line = [module_abspath, lineno, runtime]
else:
prev_line[2] += runtime
yield prev_line
|
[
"Filters",
"code",
"from",
"standard",
"library",
"from",
"self",
".",
"lines",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/code_heatmap.py#L68-L83
|
[
"def",
"lines_without_stdlib",
"(",
"self",
")",
":",
"prev_line",
"=",
"None",
"current_module_path",
"=",
"inspect",
".",
"getabsfile",
"(",
"inspect",
".",
"currentframe",
"(",
")",
")",
"for",
"module_path",
",",
"lineno",
",",
"runtime",
"in",
"self",
".",
"lines",
":",
"module_abspath",
"=",
"os",
".",
"path",
".",
"abspath",
"(",
"module_path",
")",
"if",
"not",
"prev_line",
":",
"prev_line",
"=",
"[",
"module_abspath",
",",
"lineno",
",",
"runtime",
"]",
"else",
":",
"if",
"(",
"not",
"check_standard_dir",
"(",
"module_path",
")",
"and",
"module_abspath",
"!=",
"current_module_path",
")",
":",
"yield",
"prev_line",
"prev_line",
"=",
"[",
"module_abspath",
",",
"lineno",
",",
"runtime",
"]",
"else",
":",
"prev_line",
"[",
"2",
"]",
"+=",
"runtime",
"yield",
"prev_line"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
_CodeHeatmapCalculator.fill_heatmap
|
Fills code heatmap and execution count dictionaries.
|
vprof/code_heatmap.py
|
def fill_heatmap(self):
"""Fills code heatmap and execution count dictionaries."""
for module_path, lineno, runtime in self.lines_without_stdlib:
self._execution_count[module_path][lineno] += 1
self._heatmap[module_path][lineno] += runtime
|
def fill_heatmap(self):
"""Fills code heatmap and execution count dictionaries."""
for module_path, lineno, runtime in self.lines_without_stdlib:
self._execution_count[module_path][lineno] += 1
self._heatmap[module_path][lineno] += runtime
|
[
"Fills",
"code",
"heatmap",
"and",
"execution",
"count",
"dictionaries",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/code_heatmap.py#L85-L89
|
[
"def",
"fill_heatmap",
"(",
"self",
")",
":",
"for",
"module_path",
",",
"lineno",
",",
"runtime",
"in",
"self",
".",
"lines_without_stdlib",
":",
"self",
".",
"_execution_count",
"[",
"module_path",
"]",
"[",
"lineno",
"]",
"+=",
"1",
"self",
".",
"_heatmap",
"[",
"module_path",
"]",
"[",
"lineno",
"]",
"+=",
"runtime"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
CodeHeatmapProfiler._calc_skips
|
Calculates skip map for large sources.
Skip map is a list of tuples where first element of tuple is line
number and second is length of the skip region:
[(1, 10), (15, 10)] means skipping 10 lines after line 1 and
10 lines after line 15.
|
vprof/code_heatmap.py
|
def _calc_skips(self, heatmap, num_lines):
"""Calculates skip map for large sources.
Skip map is a list of tuples where first element of tuple is line
number and second is length of the skip region:
[(1, 10), (15, 10)] means skipping 10 lines after line 1 and
10 lines after line 15.
"""
if num_lines < self.MIN_SKIP_SIZE:
return []
skips, prev_line = [], 0
for line in sorted(heatmap):
curr_skip = line - prev_line - 1
if curr_skip > self.SKIP_LINES:
skips.append((prev_line, curr_skip))
prev_line = line
if num_lines - prev_line > self.SKIP_LINES:
skips.append((prev_line, num_lines - prev_line))
return skips
|
def _calc_skips(self, heatmap, num_lines):
"""Calculates skip map for large sources.
Skip map is a list of tuples where first element of tuple is line
number and second is length of the skip region:
[(1, 10), (15, 10)] means skipping 10 lines after line 1 and
10 lines after line 15.
"""
if num_lines < self.MIN_SKIP_SIZE:
return []
skips, prev_line = [], 0
for line in sorted(heatmap):
curr_skip = line - prev_line - 1
if curr_skip > self.SKIP_LINES:
skips.append((prev_line, curr_skip))
prev_line = line
if num_lines - prev_line > self.SKIP_LINES:
skips.append((prev_line, num_lines - prev_line))
return skips
|
[
"Calculates",
"skip",
"map",
"for",
"large",
"sources",
".",
"Skip",
"map",
"is",
"a",
"list",
"of",
"tuples",
"where",
"first",
"element",
"of",
"tuple",
"is",
"line",
"number",
"and",
"second",
"is",
"length",
"of",
"the",
"skip",
"region",
":",
"[",
"(",
"1",
"10",
")",
"(",
"15",
"10",
")",
"]",
"means",
"skipping",
"10",
"lines",
"after",
"line",
"1",
"and",
"10",
"lines",
"after",
"line",
"15",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/code_heatmap.py#L112-L129
|
[
"def",
"_calc_skips",
"(",
"self",
",",
"heatmap",
",",
"num_lines",
")",
":",
"if",
"num_lines",
"<",
"self",
".",
"MIN_SKIP_SIZE",
":",
"return",
"[",
"]",
"skips",
",",
"prev_line",
"=",
"[",
"]",
",",
"0",
"for",
"line",
"in",
"sorted",
"(",
"heatmap",
")",
":",
"curr_skip",
"=",
"line",
"-",
"prev_line",
"-",
"1",
"if",
"curr_skip",
">",
"self",
".",
"SKIP_LINES",
":",
"skips",
".",
"append",
"(",
"(",
"prev_line",
",",
"curr_skip",
")",
")",
"prev_line",
"=",
"line",
"if",
"num_lines",
"-",
"prev_line",
">",
"self",
".",
"SKIP_LINES",
":",
"skips",
".",
"append",
"(",
"(",
"prev_line",
",",
"num_lines",
"-",
"prev_line",
")",
")",
"return",
"skips"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
CodeHeatmapProfiler._skip_lines
|
Skips lines in src_code specified by skip map.
|
vprof/code_heatmap.py
|
def _skip_lines(src_code, skip_map):
"""Skips lines in src_code specified by skip map."""
if not skip_map:
return [['line', j + 1, l] for j, l in enumerate(src_code)]
code_with_skips, i = [], 0
for line, length in skip_map:
code_with_skips.extend(
['line', i + j + 1, l] for j, l in enumerate(src_code[i:line]))
if (code_with_skips
and code_with_skips[-1][0] == 'skip'): # Merge skips.
code_with_skips[-1][1] += length
else:
code_with_skips.append(['skip', length])
i = line + length
code_with_skips.extend(
['line', i + j + 1, l] for j, l in enumerate(src_code[i:]))
return code_with_skips
|
def _skip_lines(src_code, skip_map):
"""Skips lines in src_code specified by skip map."""
if not skip_map:
return [['line', j + 1, l] for j, l in enumerate(src_code)]
code_with_skips, i = [], 0
for line, length in skip_map:
code_with_skips.extend(
['line', i + j + 1, l] for j, l in enumerate(src_code[i:line]))
if (code_with_skips
and code_with_skips[-1][0] == 'skip'): # Merge skips.
code_with_skips[-1][1] += length
else:
code_with_skips.append(['skip', length])
i = line + length
code_with_skips.extend(
['line', i + j + 1, l] for j, l in enumerate(src_code[i:]))
return code_with_skips
|
[
"Skips",
"lines",
"in",
"src_code",
"specified",
"by",
"skip",
"map",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/code_heatmap.py#L132-L148
|
[
"def",
"_skip_lines",
"(",
"src_code",
",",
"skip_map",
")",
":",
"if",
"not",
"skip_map",
":",
"return",
"[",
"[",
"'line'",
",",
"j",
"+",
"1",
",",
"l",
"]",
"for",
"j",
",",
"l",
"in",
"enumerate",
"(",
"src_code",
")",
"]",
"code_with_skips",
",",
"i",
"=",
"[",
"]",
",",
"0",
"for",
"line",
",",
"length",
"in",
"skip_map",
":",
"code_with_skips",
".",
"extend",
"(",
"[",
"'line'",
",",
"i",
"+",
"j",
"+",
"1",
",",
"l",
"]",
"for",
"j",
",",
"l",
"in",
"enumerate",
"(",
"src_code",
"[",
"i",
":",
"line",
"]",
")",
")",
"if",
"(",
"code_with_skips",
"and",
"code_with_skips",
"[",
"-",
"1",
"]",
"[",
"0",
"]",
"==",
"'skip'",
")",
":",
"# Merge skips.",
"code_with_skips",
"[",
"-",
"1",
"]",
"[",
"1",
"]",
"+=",
"length",
"else",
":",
"code_with_skips",
".",
"append",
"(",
"[",
"'skip'",
",",
"length",
"]",
")",
"i",
"=",
"line",
"+",
"length",
"code_with_skips",
".",
"extend",
"(",
"[",
"'line'",
",",
"i",
"+",
"j",
"+",
"1",
",",
"l",
"]",
"for",
"j",
",",
"l",
"in",
"enumerate",
"(",
"src_code",
"[",
"i",
":",
"]",
")",
")",
"return",
"code_with_skips"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
CodeHeatmapProfiler._profile_package
|
Calculates heatmap for package.
|
vprof/code_heatmap.py
|
def _profile_package(self):
"""Calculates heatmap for package."""
with _CodeHeatmapCalculator() as prof:
try:
runpy.run_path(self._run_object, run_name='__main__')
except SystemExit:
pass
heatmaps = []
for filename, heatmap in prof.heatmap.items():
if os.path.isfile(filename):
heatmaps.append(
self._format_heatmap(
filename, heatmap, prof.execution_count[filename]))
run_time = sum(heatmap['runTime'] for heatmap in heatmaps)
return {
'objectName': self._run_object,
'runTime': run_time,
'heatmaps': heatmaps
}
|
def _profile_package(self):
"""Calculates heatmap for package."""
with _CodeHeatmapCalculator() as prof:
try:
runpy.run_path(self._run_object, run_name='__main__')
except SystemExit:
pass
heatmaps = []
for filename, heatmap in prof.heatmap.items():
if os.path.isfile(filename):
heatmaps.append(
self._format_heatmap(
filename, heatmap, prof.execution_count[filename]))
run_time = sum(heatmap['runTime'] for heatmap in heatmaps)
return {
'objectName': self._run_object,
'runTime': run_time,
'heatmaps': heatmaps
}
|
[
"Calculates",
"heatmap",
"for",
"package",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/code_heatmap.py#L150-L170
|
[
"def",
"_profile_package",
"(",
"self",
")",
":",
"with",
"_CodeHeatmapCalculator",
"(",
")",
"as",
"prof",
":",
"try",
":",
"runpy",
".",
"run_path",
"(",
"self",
".",
"_run_object",
",",
"run_name",
"=",
"'__main__'",
")",
"except",
"SystemExit",
":",
"pass",
"heatmaps",
"=",
"[",
"]",
"for",
"filename",
",",
"heatmap",
"in",
"prof",
".",
"heatmap",
".",
"items",
"(",
")",
":",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"filename",
")",
":",
"heatmaps",
".",
"append",
"(",
"self",
".",
"_format_heatmap",
"(",
"filename",
",",
"heatmap",
",",
"prof",
".",
"execution_count",
"[",
"filename",
"]",
")",
")",
"run_time",
"=",
"sum",
"(",
"heatmap",
"[",
"'runTime'",
"]",
"for",
"heatmap",
"in",
"heatmaps",
")",
"return",
"{",
"'objectName'",
":",
"self",
".",
"_run_object",
",",
"'runTime'",
":",
"run_time",
",",
"'heatmaps'",
":",
"heatmaps",
"}"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
CodeHeatmapProfiler._format_heatmap
|
Formats heatmap for UI.
|
vprof/code_heatmap.py
|
def _format_heatmap(self, filename, heatmap, execution_count):
"""Formats heatmap for UI."""
with open(filename) as src_file:
file_source = src_file.read().split('\n')
skip_map = self._calc_skips(heatmap, len(file_source))
run_time = sum(time for time in heatmap.values())
return {
'name': filename,
'heatmap': heatmap,
'executionCount': execution_count,
'srcCode': self._skip_lines(file_source, skip_map),
'runTime': run_time
}
|
def _format_heatmap(self, filename, heatmap, execution_count):
"""Formats heatmap for UI."""
with open(filename) as src_file:
file_source = src_file.read().split('\n')
skip_map = self._calc_skips(heatmap, len(file_source))
run_time = sum(time for time in heatmap.values())
return {
'name': filename,
'heatmap': heatmap,
'executionCount': execution_count,
'srcCode': self._skip_lines(file_source, skip_map),
'runTime': run_time
}
|
[
"Formats",
"heatmap",
"for",
"UI",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/code_heatmap.py#L176-L188
|
[
"def",
"_format_heatmap",
"(",
"self",
",",
"filename",
",",
"heatmap",
",",
"execution_count",
")",
":",
"with",
"open",
"(",
"filename",
")",
"as",
"src_file",
":",
"file_source",
"=",
"src_file",
".",
"read",
"(",
")",
".",
"split",
"(",
"'\\n'",
")",
"skip_map",
"=",
"self",
".",
"_calc_skips",
"(",
"heatmap",
",",
"len",
"(",
"file_source",
")",
")",
"run_time",
"=",
"sum",
"(",
"time",
"for",
"time",
"in",
"heatmap",
".",
"values",
"(",
")",
")",
"return",
"{",
"'name'",
":",
"filename",
",",
"'heatmap'",
":",
"heatmap",
",",
"'executionCount'",
":",
"execution_count",
",",
"'srcCode'",
":",
"self",
".",
"_skip_lines",
"(",
"file_source",
",",
"skip_map",
")",
",",
"'runTime'",
":",
"run_time",
"}"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
CodeHeatmapProfiler._profile_module
|
Calculates heatmap for module.
|
vprof/code_heatmap.py
|
def _profile_module(self):
"""Calculates heatmap for module."""
with open(self._run_object, 'r') as srcfile:
src_code = srcfile.read()
code = compile(src_code, self._run_object, 'exec')
try:
with _CodeHeatmapCalculator() as prof:
exec(code, self._globs, None)
except SystemExit:
pass
heatmaps = []
for filename, heatmap in prof.heatmap.items():
if os.path.isfile(filename):
heatmaps.append(
self._format_heatmap(
filename, heatmap, prof.execution_count[filename]))
run_time = sum(heatmap['runTime'] for heatmap in heatmaps)
return {
'objectName': self._run_object,
'runTime': run_time,
'heatmaps': heatmaps
}
|
def _profile_module(self):
"""Calculates heatmap for module."""
with open(self._run_object, 'r') as srcfile:
src_code = srcfile.read()
code = compile(src_code, self._run_object, 'exec')
try:
with _CodeHeatmapCalculator() as prof:
exec(code, self._globs, None)
except SystemExit:
pass
heatmaps = []
for filename, heatmap in prof.heatmap.items():
if os.path.isfile(filename):
heatmaps.append(
self._format_heatmap(
filename, heatmap, prof.execution_count[filename]))
run_time = sum(heatmap['runTime'] for heatmap in heatmaps)
return {
'objectName': self._run_object,
'runTime': run_time,
'heatmaps': heatmaps
}
|
[
"Calculates",
"heatmap",
"for",
"module",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/code_heatmap.py#L190-L213
|
[
"def",
"_profile_module",
"(",
"self",
")",
":",
"with",
"open",
"(",
"self",
".",
"_run_object",
",",
"'r'",
")",
"as",
"srcfile",
":",
"src_code",
"=",
"srcfile",
".",
"read",
"(",
")",
"code",
"=",
"compile",
"(",
"src_code",
",",
"self",
".",
"_run_object",
",",
"'exec'",
")",
"try",
":",
"with",
"_CodeHeatmapCalculator",
"(",
")",
"as",
"prof",
":",
"exec",
"(",
"code",
",",
"self",
".",
"_globs",
",",
"None",
")",
"except",
"SystemExit",
":",
"pass",
"heatmaps",
"=",
"[",
"]",
"for",
"filename",
",",
"heatmap",
"in",
"prof",
".",
"heatmap",
".",
"items",
"(",
")",
":",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"filename",
")",
":",
"heatmaps",
".",
"append",
"(",
"self",
".",
"_format_heatmap",
"(",
"filename",
",",
"heatmap",
",",
"prof",
".",
"execution_count",
"[",
"filename",
"]",
")",
")",
"run_time",
"=",
"sum",
"(",
"heatmap",
"[",
"'runTime'",
"]",
"for",
"heatmap",
"in",
"heatmaps",
")",
"return",
"{",
"'objectName'",
":",
"self",
".",
"_run_object",
",",
"'runTime'",
":",
"run_time",
",",
"'heatmaps'",
":",
"heatmaps",
"}"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
CodeHeatmapProfiler.profile_function
|
Calculates heatmap for function.
|
vprof/code_heatmap.py
|
def profile_function(self):
"""Calculates heatmap for function."""
with _CodeHeatmapCalculator() as prof:
result = self._run_object(*self._run_args, **self._run_kwargs)
code_lines, start_line = inspect.getsourcelines(self._run_object)
source_lines = []
for line in code_lines:
source_lines.append(('line', start_line, line))
start_line += 1
filename = os.path.abspath(inspect.getsourcefile(self._run_object))
heatmap = prof.heatmap[filename]
run_time = sum(time for time in heatmap.values())
return {
'objectName': self._object_name,
'runTime': run_time,
'result': result,
'timestamp': int(time.time()),
'heatmaps': [{
'name': self._object_name,
'heatmap': heatmap,
'executionCount': prof.execution_count[filename],
'srcCode': source_lines,
'runTime': run_time
}]
}
|
def profile_function(self):
"""Calculates heatmap for function."""
with _CodeHeatmapCalculator() as prof:
result = self._run_object(*self._run_args, **self._run_kwargs)
code_lines, start_line = inspect.getsourcelines(self._run_object)
source_lines = []
for line in code_lines:
source_lines.append(('line', start_line, line))
start_line += 1
filename = os.path.abspath(inspect.getsourcefile(self._run_object))
heatmap = prof.heatmap[filename]
run_time = sum(time for time in heatmap.values())
return {
'objectName': self._object_name,
'runTime': run_time,
'result': result,
'timestamp': int(time.time()),
'heatmaps': [{
'name': self._object_name,
'heatmap': heatmap,
'executionCount': prof.execution_count[filename],
'srcCode': source_lines,
'runTime': run_time
}]
}
|
[
"Calculates",
"heatmap",
"for",
"function",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/code_heatmap.py#L219-L245
|
[
"def",
"profile_function",
"(",
"self",
")",
":",
"with",
"_CodeHeatmapCalculator",
"(",
")",
"as",
"prof",
":",
"result",
"=",
"self",
".",
"_run_object",
"(",
"*",
"self",
".",
"_run_args",
",",
"*",
"*",
"self",
".",
"_run_kwargs",
")",
"code_lines",
",",
"start_line",
"=",
"inspect",
".",
"getsourcelines",
"(",
"self",
".",
"_run_object",
")",
"source_lines",
"=",
"[",
"]",
"for",
"line",
"in",
"code_lines",
":",
"source_lines",
".",
"append",
"(",
"(",
"'line'",
",",
"start_line",
",",
"line",
")",
")",
"start_line",
"+=",
"1",
"filename",
"=",
"os",
".",
"path",
".",
"abspath",
"(",
"inspect",
".",
"getsourcefile",
"(",
"self",
".",
"_run_object",
")",
")",
"heatmap",
"=",
"prof",
".",
"heatmap",
"[",
"filename",
"]",
"run_time",
"=",
"sum",
"(",
"time",
"for",
"time",
"in",
"heatmap",
".",
"values",
"(",
")",
")",
"return",
"{",
"'objectName'",
":",
"self",
".",
"_object_name",
",",
"'runTime'",
":",
"run_time",
",",
"'result'",
":",
"result",
",",
"'timestamp'",
":",
"int",
"(",
"time",
".",
"time",
"(",
")",
")",
",",
"'heatmaps'",
":",
"[",
"{",
"'name'",
":",
"self",
".",
"_object_name",
",",
"'heatmap'",
":",
"heatmap",
",",
"'executionCount'",
":",
"prof",
".",
"execution_count",
"[",
"filename",
"]",
",",
"'srcCode'",
":",
"source_lines",
",",
"'runTime'",
":",
"run_time",
"}",
"]",
"}"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
run_profilers
|
Runs profilers on run_object.
Args:
run_object: An object (string or tuple) for profiling.
prof_config: A string with profilers configuration.
verbose: True if info about running profilers should be shown.
Returns:
An ordered dictionary with collected stats.
Raises:
AmbiguousConfigurationError: when prof_config is ambiguous.
BadOptionError: when unknown options are present in configuration.
|
vprof/runner.py
|
def run_profilers(run_object, prof_config, verbose=False):
"""Runs profilers on run_object.
Args:
run_object: An object (string or tuple) for profiling.
prof_config: A string with profilers configuration.
verbose: True if info about running profilers should be shown.
Returns:
An ordered dictionary with collected stats.
Raises:
AmbiguousConfigurationError: when prof_config is ambiguous.
BadOptionError: when unknown options are present in configuration.
"""
if len(prof_config) > len(set(prof_config)):
raise AmbiguousConfigurationError(
'Profiler configuration %s is ambiguous' % prof_config)
available_profilers = {opt for opt, _ in _PROFILERS}
for option in prof_config:
if option not in available_profilers:
raise BadOptionError('Unknown option: %s' % option)
run_stats = OrderedDict()
present_profilers = ((o, p) for o, p in _PROFILERS if o in prof_config)
for option, prof in present_profilers:
curr_profiler = prof(run_object)
if verbose:
print('Running %s...' % curr_profiler.__class__.__name__)
run_stats[option] = curr_profiler.run()
return run_stats
|
def run_profilers(run_object, prof_config, verbose=False):
"""Runs profilers on run_object.
Args:
run_object: An object (string or tuple) for profiling.
prof_config: A string with profilers configuration.
verbose: True if info about running profilers should be shown.
Returns:
An ordered dictionary with collected stats.
Raises:
AmbiguousConfigurationError: when prof_config is ambiguous.
BadOptionError: when unknown options are present in configuration.
"""
if len(prof_config) > len(set(prof_config)):
raise AmbiguousConfigurationError(
'Profiler configuration %s is ambiguous' % prof_config)
available_profilers = {opt for opt, _ in _PROFILERS}
for option in prof_config:
if option not in available_profilers:
raise BadOptionError('Unknown option: %s' % option)
run_stats = OrderedDict()
present_profilers = ((o, p) for o, p in _PROFILERS if o in prof_config)
for option, prof in present_profilers:
curr_profiler = prof(run_object)
if verbose:
print('Running %s...' % curr_profiler.__class__.__name__)
run_stats[option] = curr_profiler.run()
return run_stats
|
[
"Runs",
"profilers",
"on",
"run_object",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/runner.py#L45-L74
|
[
"def",
"run_profilers",
"(",
"run_object",
",",
"prof_config",
",",
"verbose",
"=",
"False",
")",
":",
"if",
"len",
"(",
"prof_config",
")",
">",
"len",
"(",
"set",
"(",
"prof_config",
")",
")",
":",
"raise",
"AmbiguousConfigurationError",
"(",
"'Profiler configuration %s is ambiguous'",
"%",
"prof_config",
")",
"available_profilers",
"=",
"{",
"opt",
"for",
"opt",
",",
"_",
"in",
"_PROFILERS",
"}",
"for",
"option",
"in",
"prof_config",
":",
"if",
"option",
"not",
"in",
"available_profilers",
":",
"raise",
"BadOptionError",
"(",
"'Unknown option: %s'",
"%",
"option",
")",
"run_stats",
"=",
"OrderedDict",
"(",
")",
"present_profilers",
"=",
"(",
"(",
"o",
",",
"p",
")",
"for",
"o",
",",
"p",
"in",
"_PROFILERS",
"if",
"o",
"in",
"prof_config",
")",
"for",
"option",
",",
"prof",
"in",
"present_profilers",
":",
"curr_profiler",
"=",
"prof",
"(",
"run_object",
")",
"if",
"verbose",
":",
"print",
"(",
"'Running %s...'",
"%",
"curr_profiler",
".",
"__class__",
".",
"__name__",
")",
"run_stats",
"[",
"option",
"]",
"=",
"curr_profiler",
".",
"run",
"(",
")",
"return",
"run_stats"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
run
|
Runs profilers on a function.
Args:
func: A Python function.
options: A string with profilers configuration (i.e. 'cmh').
args: func non-keyword arguments.
kwargs: func keyword arguments.
host: Host name to send collected data.
port: Port number to send collected data.
Returns:
A result of func execution.
|
vprof/runner.py
|
def run(func, options, args=(), kwargs={}, host='localhost', port=8000): # pylint: disable=dangerous-default-value
"""Runs profilers on a function.
Args:
func: A Python function.
options: A string with profilers configuration (i.e. 'cmh').
args: func non-keyword arguments.
kwargs: func keyword arguments.
host: Host name to send collected data.
port: Port number to send collected data.
Returns:
A result of func execution.
"""
run_stats = run_profilers((func, args, kwargs), options)
result = None
for prof in run_stats:
if not result:
result = run_stats[prof]['result']
del run_stats[prof]['result'] # Don't send result to remote host
post_data = gzip.compress(
json.dumps(run_stats).encode('utf-8'))
urllib.request.urlopen('http://%s:%s' % (host, port), post_data)
return result
|
def run(func, options, args=(), kwargs={}, host='localhost', port=8000): # pylint: disable=dangerous-default-value
"""Runs profilers on a function.
Args:
func: A Python function.
options: A string with profilers configuration (i.e. 'cmh').
args: func non-keyword arguments.
kwargs: func keyword arguments.
host: Host name to send collected data.
port: Port number to send collected data.
Returns:
A result of func execution.
"""
run_stats = run_profilers((func, args, kwargs), options)
result = None
for prof in run_stats:
if not result:
result = run_stats[prof]['result']
del run_stats[prof]['result'] # Don't send result to remote host
post_data = gzip.compress(
json.dumps(run_stats).encode('utf-8'))
urllib.request.urlopen('http://%s:%s' % (host, port), post_data)
return result
|
[
"Runs",
"profilers",
"on",
"a",
"function",
"."
] |
nvdv/vprof
|
python
|
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/vprof/runner.py#L77-L102
|
[
"def",
"run",
"(",
"func",
",",
"options",
",",
"args",
"=",
"(",
")",
",",
"kwargs",
"=",
"{",
"}",
",",
"host",
"=",
"'localhost'",
",",
"port",
"=",
"8000",
")",
":",
"# pylint: disable=dangerous-default-value",
"run_stats",
"=",
"run_profilers",
"(",
"(",
"func",
",",
"args",
",",
"kwargs",
")",
",",
"options",
")",
"result",
"=",
"None",
"for",
"prof",
"in",
"run_stats",
":",
"if",
"not",
"result",
":",
"result",
"=",
"run_stats",
"[",
"prof",
"]",
"[",
"'result'",
"]",
"del",
"run_stats",
"[",
"prof",
"]",
"[",
"'result'",
"]",
"# Don't send result to remote host",
"post_data",
"=",
"gzip",
".",
"compress",
"(",
"json",
".",
"dumps",
"(",
"run_stats",
")",
".",
"encode",
"(",
"'utf-8'",
")",
")",
"urllib",
".",
"request",
".",
"urlopen",
"(",
"'http://%s:%s'",
"%",
"(",
"host",
",",
"port",
")",
",",
"post_data",
")",
"return",
"result"
] |
4c3ff78f8920ab10cb9c00b14143452aa09ff6bb
|
test
|
SparkBaseNB.predict_proba
|
Return probability estimates for the RDD containing test vector X.
Parameters
----------
X : RDD containing array-like items, shape = [m_samples, n_features]
Returns
-------
C : RDD with array-like items , shape = [n_samples, n_classes]
Returns the probability of the samples for each class in
the models for each RDD block. The columns correspond to the classes
in sorted order, as they appear in the attribute `classes_`.
|
splearn/naive_bayes.py
|
def predict_proba(self, X):
"""
Return probability estimates for the RDD containing test vector X.
Parameters
----------
X : RDD containing array-like items, shape = [m_samples, n_features]
Returns
-------
C : RDD with array-like items , shape = [n_samples, n_classes]
Returns the probability of the samples for each class in
the models for each RDD block. The columns correspond to the classes
in sorted order, as they appear in the attribute `classes_`.
"""
check_rdd(X, (sp.spmatrix, np.ndarray))
return X.map(
lambda X: super(SparkBaseNB, self).predict_proba(X))
|
def predict_proba(self, X):
"""
Return probability estimates for the RDD containing test vector X.
Parameters
----------
X : RDD containing array-like items, shape = [m_samples, n_features]
Returns
-------
C : RDD with array-like items , shape = [n_samples, n_classes]
Returns the probability of the samples for each class in
the models for each RDD block. The columns correspond to the classes
in sorted order, as they appear in the attribute `classes_`.
"""
check_rdd(X, (sp.spmatrix, np.ndarray))
return X.map(
lambda X: super(SparkBaseNB, self).predict_proba(X))
|
[
"Return",
"probability",
"estimates",
"for",
"the",
"RDD",
"containing",
"test",
"vector",
"X",
"."
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/naive_bayes.py#L40-L57
|
[
"def",
"predict_proba",
"(",
"self",
",",
"X",
")",
":",
"check_rdd",
"(",
"X",
",",
"(",
"sp",
".",
"spmatrix",
",",
"np",
".",
"ndarray",
")",
")",
"return",
"X",
".",
"map",
"(",
"lambda",
"X",
":",
"super",
"(",
"SparkBaseNB",
",",
"self",
")",
".",
"predict_proba",
"(",
"X",
")",
")"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkBaseNB.predict_log_proba
|
Return log-probability estimates for the RDD containing the
test vector X.
Parameters
----------
X : RDD containing array-like items, shape = [m_samples, n_features]
Returns
-------
C : RDD with array-like items, shape = [n_samples, n_classes]
Returns the log-probability of the samples for each class in
the model for each RDD block. The columns correspond to the classes
in sorted order, as they appear in the attribute `classes_`.
|
splearn/naive_bayes.py
|
def predict_log_proba(self, X):
"""
Return log-probability estimates for the RDD containing the
test vector X.
Parameters
----------
X : RDD containing array-like items, shape = [m_samples, n_features]
Returns
-------
C : RDD with array-like items, shape = [n_samples, n_classes]
Returns the log-probability of the samples for each class in
the model for each RDD block. The columns correspond to the classes
in sorted order, as they appear in the attribute `classes_`.
"""
# required, scikit call self.predict_log_proba(X) in predict_proba
# and thus this function is call, it must have the same behavior when
# not called by sparkit-learn
if not isinstance(X, BlockRDD):
return super(SparkBaseNB, self).predict_log_proba(X)
check_rdd(X, (sp.spmatrix, np.ndarray))
return X.map(
lambda X: super(SparkBaseNB, self).predict_log_proba(X))
|
def predict_log_proba(self, X):
"""
Return log-probability estimates for the RDD containing the
test vector X.
Parameters
----------
X : RDD containing array-like items, shape = [m_samples, n_features]
Returns
-------
C : RDD with array-like items, shape = [n_samples, n_classes]
Returns the log-probability of the samples for each class in
the model for each RDD block. The columns correspond to the classes
in sorted order, as they appear in the attribute `classes_`.
"""
# required, scikit call self.predict_log_proba(X) in predict_proba
# and thus this function is call, it must have the same behavior when
# not called by sparkit-learn
if not isinstance(X, BlockRDD):
return super(SparkBaseNB, self).predict_log_proba(X)
check_rdd(X, (sp.spmatrix, np.ndarray))
return X.map(
lambda X: super(SparkBaseNB, self).predict_log_proba(X))
|
[
"Return",
"log",
"-",
"probability",
"estimates",
"for",
"the",
"RDD",
"containing",
"the",
"test",
"vector",
"X",
"."
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/naive_bayes.py#L59-L83
|
[
"def",
"predict_log_proba",
"(",
"self",
",",
"X",
")",
":",
"# required, scikit call self.predict_log_proba(X) in predict_proba",
"# and thus this function is call, it must have the same behavior when",
"# not called by sparkit-learn",
"if",
"not",
"isinstance",
"(",
"X",
",",
"BlockRDD",
")",
":",
"return",
"super",
"(",
"SparkBaseNB",
",",
"self",
")",
".",
"predict_log_proba",
"(",
"X",
")",
"check_rdd",
"(",
"X",
",",
"(",
"sp",
".",
"spmatrix",
",",
"np",
".",
"ndarray",
")",
")",
"return",
"X",
".",
"map",
"(",
"lambda",
"X",
":",
"super",
"(",
"SparkBaseNB",
",",
"self",
")",
".",
"predict_log_proba",
"(",
"X",
")",
")"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkGaussianNB.fit
|
Fit Gaussian Naive Bayes according to X, y
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like, shape (n_samples,)
Target values.
Returns
-------
self : object
Returns self.
|
splearn/naive_bayes.py
|
def fit(self, Z, classes=None):
"""Fit Gaussian Naive Bayes according to X, y
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like, shape (n_samples,)
Target values.
Returns
-------
self : object
Returns self.
"""
check_rdd(Z, {'X': (sp.spmatrix, np.ndarray), 'y': (sp.spmatrix, np.ndarray)})
models = Z[:, ['X', 'y']].map(
lambda X_y: self.partial_fit(X_y[0], X_y[1], classes))
avg = models.reduce(operator.add)
self.__dict__.update(avg.__dict__)
return self
|
def fit(self, Z, classes=None):
"""Fit Gaussian Naive Bayes according to X, y
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like, shape (n_samples,)
Target values.
Returns
-------
self : object
Returns self.
"""
check_rdd(Z, {'X': (sp.spmatrix, np.ndarray), 'y': (sp.spmatrix, np.ndarray)})
models = Z[:, ['X', 'y']].map(
lambda X_y: self.partial_fit(X_y[0], X_y[1], classes))
avg = models.reduce(operator.add)
self.__dict__.update(avg.__dict__)
return self
|
[
"Fit",
"Gaussian",
"Naive",
"Bayes",
"according",
"to",
"X",
"y"
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/naive_bayes.py#L120-L142
|
[
"def",
"fit",
"(",
"self",
",",
"Z",
",",
"classes",
"=",
"None",
")",
":",
"check_rdd",
"(",
"Z",
",",
"{",
"'X'",
":",
"(",
"sp",
".",
"spmatrix",
",",
"np",
".",
"ndarray",
")",
",",
"'y'",
":",
"(",
"sp",
".",
"spmatrix",
",",
"np",
".",
"ndarray",
")",
"}",
")",
"models",
"=",
"Z",
"[",
":",
",",
"[",
"'X'",
",",
"'y'",
"]",
"]",
".",
"map",
"(",
"lambda",
"X_y",
":",
"self",
".",
"partial_fit",
"(",
"X_y",
"[",
"0",
"]",
",",
"X_y",
"[",
"1",
"]",
",",
"classes",
")",
")",
"avg",
"=",
"models",
".",
"reduce",
"(",
"operator",
".",
"add",
")",
"self",
".",
"__dict__",
".",
"update",
"(",
"avg",
".",
"__dict__",
")",
"return",
"self"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkBaseDiscreteNB.fit
|
TODO fulibacsi fix docstring
Fit Multinomial Naive Bayes according to (X,y) pair
which is zipped into TupleRDD Z.
Parameters
----------
Z : TupleRDD containing X [array-like, shape (m_samples, n_features)]
and y [array-like, shape (m_samples,)] tuple
Training vectors, where ,_samples is the number of samples in the
block and n_features is the number of features, and y contains
the target values.
Returns
-------
self : object
Returns self.
|
splearn/naive_bayes.py
|
def fit(self, Z, classes=None):
"""
TODO fulibacsi fix docstring
Fit Multinomial Naive Bayes according to (X,y) pair
which is zipped into TupleRDD Z.
Parameters
----------
Z : TupleRDD containing X [array-like, shape (m_samples, n_features)]
and y [array-like, shape (m_samples,)] tuple
Training vectors, where ,_samples is the number of samples in the
block and n_features is the number of features, and y contains
the target values.
Returns
-------
self : object
Returns self.
"""
check_rdd(Z, {'X': (sp.spmatrix, np.ndarray), 'y': (sp.spmatrix, np.ndarray)})
if 'w' in Z.columns:
models = Z[:, ['X', 'y', 'w']].map(
lambda X_y_w: self.partial_fit(
X_y_w[0], X_y_w[1], classes, X_y_w[2]
)
)
else:
models = Z[:, ['X', 'y']].map(
lambda X_y: self.partial_fit(X_y[0], X_y[1], classes))
avg = models.sum()
self.__dict__.update(avg.__dict__)
return self
|
def fit(self, Z, classes=None):
"""
TODO fulibacsi fix docstring
Fit Multinomial Naive Bayes according to (X,y) pair
which is zipped into TupleRDD Z.
Parameters
----------
Z : TupleRDD containing X [array-like, shape (m_samples, n_features)]
and y [array-like, shape (m_samples,)] tuple
Training vectors, where ,_samples is the number of samples in the
block and n_features is the number of features, and y contains
the target values.
Returns
-------
self : object
Returns self.
"""
check_rdd(Z, {'X': (sp.spmatrix, np.ndarray), 'y': (sp.spmatrix, np.ndarray)})
if 'w' in Z.columns:
models = Z[:, ['X', 'y', 'w']].map(
lambda X_y_w: self.partial_fit(
X_y_w[0], X_y_w[1], classes, X_y_w[2]
)
)
else:
models = Z[:, ['X', 'y']].map(
lambda X_y: self.partial_fit(X_y[0], X_y[1], classes))
avg = models.sum()
self.__dict__.update(avg.__dict__)
return self
|
[
"TODO",
"fulibacsi",
"fix",
"docstring",
"Fit",
"Multinomial",
"Naive",
"Bayes",
"according",
"to",
"(",
"X",
"y",
")",
"pair",
"which",
"is",
"zipped",
"into",
"TupleRDD",
"Z",
"."
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/naive_bayes.py#L207-L238
|
[
"def",
"fit",
"(",
"self",
",",
"Z",
",",
"classes",
"=",
"None",
")",
":",
"check_rdd",
"(",
"Z",
",",
"{",
"'X'",
":",
"(",
"sp",
".",
"spmatrix",
",",
"np",
".",
"ndarray",
")",
",",
"'y'",
":",
"(",
"sp",
".",
"spmatrix",
",",
"np",
".",
"ndarray",
")",
"}",
")",
"if",
"'w'",
"in",
"Z",
".",
"columns",
":",
"models",
"=",
"Z",
"[",
":",
",",
"[",
"'X'",
",",
"'y'",
",",
"'w'",
"]",
"]",
".",
"map",
"(",
"lambda",
"X_y_w",
":",
"self",
".",
"partial_fit",
"(",
"X_y_w",
"[",
"0",
"]",
",",
"X_y_w",
"[",
"1",
"]",
",",
"classes",
",",
"X_y_w",
"[",
"2",
"]",
")",
")",
"else",
":",
"models",
"=",
"Z",
"[",
":",
",",
"[",
"'X'",
",",
"'y'",
"]",
"]",
".",
"map",
"(",
"lambda",
"X_y",
":",
"self",
".",
"partial_fit",
"(",
"X_y",
"[",
"0",
"]",
",",
"X_y",
"[",
"1",
"]",
",",
"classes",
")",
")",
"avg",
"=",
"models",
".",
"sum",
"(",
")",
"self",
".",
"__dict__",
".",
"update",
"(",
"avg",
".",
"__dict__",
")",
"return",
"self"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkCountVectorizer._init_vocab
|
Create vocabulary
|
splearn/feature_extraction/text.py
|
def _init_vocab(self, analyzed_docs):
"""Create vocabulary
"""
class SetAccum(AccumulatorParam):
def zero(self, initialValue):
return set(initialValue)
def addInPlace(self, v1, v2):
v1 |= v2
return v1
if not self.fixed_vocabulary_:
accum = analyzed_docs._rdd.context.accumulator(set(), SetAccum())
analyzed_docs.foreach(
lambda x: accum.add(set(chain.from_iterable(x))))
vocabulary = {t: i for i, t in enumerate(accum.value)}
else:
vocabulary = self.vocabulary_
if not vocabulary:
raise ValueError("empty vocabulary; perhaps the documents only"
" contain stop words")
return vocabulary
|
def _init_vocab(self, analyzed_docs):
"""Create vocabulary
"""
class SetAccum(AccumulatorParam):
def zero(self, initialValue):
return set(initialValue)
def addInPlace(self, v1, v2):
v1 |= v2
return v1
if not self.fixed_vocabulary_:
accum = analyzed_docs._rdd.context.accumulator(set(), SetAccum())
analyzed_docs.foreach(
lambda x: accum.add(set(chain.from_iterable(x))))
vocabulary = {t: i for i, t in enumerate(accum.value)}
else:
vocabulary = self.vocabulary_
if not vocabulary:
raise ValueError("empty vocabulary; perhaps the documents only"
" contain stop words")
return vocabulary
|
[
"Create",
"vocabulary"
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/feature_extraction/text.py#L144-L167
|
[
"def",
"_init_vocab",
"(",
"self",
",",
"analyzed_docs",
")",
":",
"class",
"SetAccum",
"(",
"AccumulatorParam",
")",
":",
"def",
"zero",
"(",
"self",
",",
"initialValue",
")",
":",
"return",
"set",
"(",
"initialValue",
")",
"def",
"addInPlace",
"(",
"self",
",",
"v1",
",",
"v2",
")",
":",
"v1",
"|=",
"v2",
"return",
"v1",
"if",
"not",
"self",
".",
"fixed_vocabulary_",
":",
"accum",
"=",
"analyzed_docs",
".",
"_rdd",
".",
"context",
".",
"accumulator",
"(",
"set",
"(",
")",
",",
"SetAccum",
"(",
")",
")",
"analyzed_docs",
".",
"foreach",
"(",
"lambda",
"x",
":",
"accum",
".",
"add",
"(",
"set",
"(",
"chain",
".",
"from_iterable",
"(",
"x",
")",
")",
")",
")",
"vocabulary",
"=",
"{",
"t",
":",
"i",
"for",
"i",
",",
"t",
"in",
"enumerate",
"(",
"accum",
".",
"value",
")",
"}",
"else",
":",
"vocabulary",
"=",
"self",
".",
"vocabulary_",
"if",
"not",
"vocabulary",
":",
"raise",
"ValueError",
"(",
"\"empty vocabulary; perhaps the documents only\"",
"\" contain stop words\"",
")",
"return",
"vocabulary"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkCountVectorizer._count_vocab
|
Create sparse feature matrix, and vocabulary where fixed_vocab=False
|
splearn/feature_extraction/text.py
|
def _count_vocab(self, analyzed_docs):
"""Create sparse feature matrix, and vocabulary where fixed_vocab=False
"""
vocabulary = self.vocabulary_
j_indices = _make_int_array()
indptr = _make_int_array()
indptr.append(0)
for doc in analyzed_docs:
for feature in doc:
try:
j_indices.append(vocabulary[feature])
except KeyError:
# Ignore out-of-vocabulary items for fixed_vocab=True
continue
indptr.append(len(j_indices))
j_indices = frombuffer_empty(j_indices, dtype=np.intc)
indptr = np.frombuffer(indptr, dtype=np.intc)
values = np.ones(len(j_indices))
X = sp.csr_matrix((values, j_indices, indptr),
shape=(len(indptr) - 1, len(vocabulary)),
dtype=self.dtype)
X.sum_duplicates()
if self.binary:
X.data.fill(1)
return X
|
def _count_vocab(self, analyzed_docs):
"""Create sparse feature matrix, and vocabulary where fixed_vocab=False
"""
vocabulary = self.vocabulary_
j_indices = _make_int_array()
indptr = _make_int_array()
indptr.append(0)
for doc in analyzed_docs:
for feature in doc:
try:
j_indices.append(vocabulary[feature])
except KeyError:
# Ignore out-of-vocabulary items for fixed_vocab=True
continue
indptr.append(len(j_indices))
j_indices = frombuffer_empty(j_indices, dtype=np.intc)
indptr = np.frombuffer(indptr, dtype=np.intc)
values = np.ones(len(j_indices))
X = sp.csr_matrix((values, j_indices, indptr),
shape=(len(indptr) - 1, len(vocabulary)),
dtype=self.dtype)
X.sum_duplicates()
if self.binary:
X.data.fill(1)
return X
|
[
"Create",
"sparse",
"feature",
"matrix",
"and",
"vocabulary",
"where",
"fixed_vocab",
"=",
"False"
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/feature_extraction/text.py#L169-L197
|
[
"def",
"_count_vocab",
"(",
"self",
",",
"analyzed_docs",
")",
":",
"vocabulary",
"=",
"self",
".",
"vocabulary_",
"j_indices",
"=",
"_make_int_array",
"(",
")",
"indptr",
"=",
"_make_int_array",
"(",
")",
"indptr",
".",
"append",
"(",
"0",
")",
"for",
"doc",
"in",
"analyzed_docs",
":",
"for",
"feature",
"in",
"doc",
":",
"try",
":",
"j_indices",
".",
"append",
"(",
"vocabulary",
"[",
"feature",
"]",
")",
"except",
"KeyError",
":",
"# Ignore out-of-vocabulary items for fixed_vocab=True",
"continue",
"indptr",
".",
"append",
"(",
"len",
"(",
"j_indices",
")",
")",
"j_indices",
"=",
"frombuffer_empty",
"(",
"j_indices",
",",
"dtype",
"=",
"np",
".",
"intc",
")",
"indptr",
"=",
"np",
".",
"frombuffer",
"(",
"indptr",
",",
"dtype",
"=",
"np",
".",
"intc",
")",
"values",
"=",
"np",
".",
"ones",
"(",
"len",
"(",
"j_indices",
")",
")",
"X",
"=",
"sp",
".",
"csr_matrix",
"(",
"(",
"values",
",",
"j_indices",
",",
"indptr",
")",
",",
"shape",
"=",
"(",
"len",
"(",
"indptr",
")",
"-",
"1",
",",
"len",
"(",
"vocabulary",
")",
")",
",",
"dtype",
"=",
"self",
".",
"dtype",
")",
"X",
".",
"sum_duplicates",
"(",
")",
"if",
"self",
".",
"binary",
":",
"X",
".",
"data",
".",
"fill",
"(",
"1",
")",
"return",
"X"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkCountVectorizer._sort_features
|
Sort features by name
Returns a reordered matrix and modifies the vocabulary in place
|
splearn/feature_extraction/text.py
|
def _sort_features(self, vocabulary):
"""Sort features by name
Returns a reordered matrix and modifies the vocabulary in place
"""
sorted_features = sorted(six.iteritems(vocabulary))
map_index = np.empty(len(sorted_features), dtype=np.int32)
for new_val, (term, old_val) in enumerate(sorted_features):
map_index[new_val] = old_val
vocabulary[term] = new_val
return map_index
|
def _sort_features(self, vocabulary):
"""Sort features by name
Returns a reordered matrix and modifies the vocabulary in place
"""
sorted_features = sorted(six.iteritems(vocabulary))
map_index = np.empty(len(sorted_features), dtype=np.int32)
for new_val, (term, old_val) in enumerate(sorted_features):
map_index[new_val] = old_val
vocabulary[term] = new_val
return map_index
|
[
"Sort",
"features",
"by",
"name"
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/feature_extraction/text.py#L199-L210
|
[
"def",
"_sort_features",
"(",
"self",
",",
"vocabulary",
")",
":",
"sorted_features",
"=",
"sorted",
"(",
"six",
".",
"iteritems",
"(",
"vocabulary",
")",
")",
"map_index",
"=",
"np",
".",
"empty",
"(",
"len",
"(",
"sorted_features",
")",
",",
"dtype",
"=",
"np",
".",
"int32",
")",
"for",
"new_val",
",",
"(",
"term",
",",
"old_val",
")",
"in",
"enumerate",
"(",
"sorted_features",
")",
":",
"map_index",
"[",
"new_val",
"]",
"=",
"old_val",
"vocabulary",
"[",
"term",
"]",
"=",
"new_val",
"return",
"map_index"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkCountVectorizer._limit_features
|
Remove too rare or too common features.
Prune features that are non zero in more samples than high or less
documents than low, modifying the vocabulary, and restricting it to
at most the limit most frequent.
This does not prune samples with zero features.
|
splearn/feature_extraction/text.py
|
def _limit_features(self, X, vocabulary, high=None, low=None,
limit=None):
"""Remove too rare or too common features.
Prune features that are non zero in more samples than high or less
documents than low, modifying the vocabulary, and restricting it to
at most the limit most frequent.
This does not prune samples with zero features.
"""
if high is None and low is None and limit is None:
return X, set()
# Calculate a mask based on document frequencies
dfs = X.map(_document_frequency).sum()
tfs = X.map(lambda x: np.asarray(x.sum(axis=0))).sum().ravel()
mask = np.ones(len(dfs), dtype=bool)
if high is not None:
mask &= dfs <= high
if low is not None:
mask &= dfs >= low
if limit is not None and mask.sum() > limit:
mask_inds = (-tfs[mask]).argsort()[:limit]
new_mask = np.zeros(len(dfs), dtype=bool)
new_mask[np.where(mask)[0][mask_inds]] = True
mask = new_mask
new_indices = np.cumsum(mask) - 1 # maps old indices to new
removed_terms = set()
for term, old_index in list(six.iteritems(vocabulary)):
if mask[old_index]:
vocabulary[term] = new_indices[old_index]
else:
del vocabulary[term]
removed_terms.add(term)
kept_indices = np.where(mask)[0]
if len(kept_indices) == 0:
raise ValueError("After pruning, no terms remain. Try a lower"
" min_df or a higher max_df.")
return kept_indices, removed_terms
|
def _limit_features(self, X, vocabulary, high=None, low=None,
limit=None):
"""Remove too rare or too common features.
Prune features that are non zero in more samples than high or less
documents than low, modifying the vocabulary, and restricting it to
at most the limit most frequent.
This does not prune samples with zero features.
"""
if high is None and low is None and limit is None:
return X, set()
# Calculate a mask based on document frequencies
dfs = X.map(_document_frequency).sum()
tfs = X.map(lambda x: np.asarray(x.sum(axis=0))).sum().ravel()
mask = np.ones(len(dfs), dtype=bool)
if high is not None:
mask &= dfs <= high
if low is not None:
mask &= dfs >= low
if limit is not None and mask.sum() > limit:
mask_inds = (-tfs[mask]).argsort()[:limit]
new_mask = np.zeros(len(dfs), dtype=bool)
new_mask[np.where(mask)[0][mask_inds]] = True
mask = new_mask
new_indices = np.cumsum(mask) - 1 # maps old indices to new
removed_terms = set()
for term, old_index in list(six.iteritems(vocabulary)):
if mask[old_index]:
vocabulary[term] = new_indices[old_index]
else:
del vocabulary[term]
removed_terms.add(term)
kept_indices = np.where(mask)[0]
if len(kept_indices) == 0:
raise ValueError("After pruning, no terms remain. Try a lower"
" min_df or a higher max_df.")
return kept_indices, removed_terms
|
[
"Remove",
"too",
"rare",
"or",
"too",
"common",
"features",
"."
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/feature_extraction/text.py#L212-L253
|
[
"def",
"_limit_features",
"(",
"self",
",",
"X",
",",
"vocabulary",
",",
"high",
"=",
"None",
",",
"low",
"=",
"None",
",",
"limit",
"=",
"None",
")",
":",
"if",
"high",
"is",
"None",
"and",
"low",
"is",
"None",
"and",
"limit",
"is",
"None",
":",
"return",
"X",
",",
"set",
"(",
")",
"# Calculate a mask based on document frequencies",
"dfs",
"=",
"X",
".",
"map",
"(",
"_document_frequency",
")",
".",
"sum",
"(",
")",
"tfs",
"=",
"X",
".",
"map",
"(",
"lambda",
"x",
":",
"np",
".",
"asarray",
"(",
"x",
".",
"sum",
"(",
"axis",
"=",
"0",
")",
")",
")",
".",
"sum",
"(",
")",
".",
"ravel",
"(",
")",
"mask",
"=",
"np",
".",
"ones",
"(",
"len",
"(",
"dfs",
")",
",",
"dtype",
"=",
"bool",
")",
"if",
"high",
"is",
"not",
"None",
":",
"mask",
"&=",
"dfs",
"<=",
"high",
"if",
"low",
"is",
"not",
"None",
":",
"mask",
"&=",
"dfs",
">=",
"low",
"if",
"limit",
"is",
"not",
"None",
"and",
"mask",
".",
"sum",
"(",
")",
">",
"limit",
":",
"mask_inds",
"=",
"(",
"-",
"tfs",
"[",
"mask",
"]",
")",
".",
"argsort",
"(",
")",
"[",
":",
"limit",
"]",
"new_mask",
"=",
"np",
".",
"zeros",
"(",
"len",
"(",
"dfs",
")",
",",
"dtype",
"=",
"bool",
")",
"new_mask",
"[",
"np",
".",
"where",
"(",
"mask",
")",
"[",
"0",
"]",
"[",
"mask_inds",
"]",
"]",
"=",
"True",
"mask",
"=",
"new_mask",
"new_indices",
"=",
"np",
".",
"cumsum",
"(",
"mask",
")",
"-",
"1",
"# maps old indices to new",
"removed_terms",
"=",
"set",
"(",
")",
"for",
"term",
",",
"old_index",
"in",
"list",
"(",
"six",
".",
"iteritems",
"(",
"vocabulary",
")",
")",
":",
"if",
"mask",
"[",
"old_index",
"]",
":",
"vocabulary",
"[",
"term",
"]",
"=",
"new_indices",
"[",
"old_index",
"]",
"else",
":",
"del",
"vocabulary",
"[",
"term",
"]",
"removed_terms",
".",
"add",
"(",
"term",
")",
"kept_indices",
"=",
"np",
".",
"where",
"(",
"mask",
")",
"[",
"0",
"]",
"if",
"len",
"(",
"kept_indices",
")",
"==",
"0",
":",
"raise",
"ValueError",
"(",
"\"After pruning, no terms remain. Try a lower\"",
"\" min_df or a higher max_df.\"",
")",
"return",
"kept_indices",
",",
"removed_terms"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkCountVectorizer.fit_transform
|
Learn the vocabulary dictionary and return term-document matrix.
This is equivalent to fit followed by transform, but more efficiently
implemented.
Parameters
----------
Z : iterable or DictRDD with column 'X'
An iterable of raw_documents which yields either str, unicode or
file objects; or a DictRDD with column 'X' containing such
iterables.
Returns
-------
X : array, [n_samples, n_features] or DictRDD
Document-term matrix.
|
splearn/feature_extraction/text.py
|
def fit_transform(self, Z):
"""Learn the vocabulary dictionary and return term-document matrix.
This is equivalent to fit followed by transform, but more efficiently
implemented.
Parameters
----------
Z : iterable or DictRDD with column 'X'
An iterable of raw_documents which yields either str, unicode or
file objects; or a DictRDD with column 'X' containing such
iterables.
Returns
-------
X : array, [n_samples, n_features] or DictRDD
Document-term matrix.
"""
self._validate_vocabulary()
# map analyzer and cache result
analyze = self.build_analyzer()
A = Z.transform(lambda X: list(map(analyze, X)), column='X').persist()
# create vocabulary
X = A[:, 'X'] if isinstance(A, DictRDD) else A
self.vocabulary_ = self._init_vocab(X)
# transform according to vocabulary
mapper = self.broadcast(self._count_vocab, A.context)
Z = A.transform(mapper, column='X', dtype=sp.spmatrix)
if not self.fixed_vocabulary_:
X = Z[:, 'X'] if isinstance(Z, DictRDD) else Z
max_df = self.max_df
min_df = self.min_df
max_features = self.max_features
# limit features according to min_df, max_df parameters
n_doc = X.shape[0]
max_doc_count = (max_df
if isinstance(max_df, numbers.Integral)
else max_df * n_doc)
min_doc_count = (min_df
if isinstance(min_df, numbers.Integral)
else min_df * n_doc)
if max_doc_count < min_doc_count:
raise ValueError(
"max_df corresponds to < documents than min_df")
kept_indices, self.stop_words_ = self._limit_features(
X, self.vocabulary_, max_doc_count, min_doc_count, max_features)
# sort features
map_index = self._sort_features(self.vocabulary_)
# combined mask
mask = kept_indices[map_index]
Z = Z.transform(lambda x: x[:, mask], column='X', dtype=sp.spmatrix)
A.unpersist()
return Z
|
def fit_transform(self, Z):
"""Learn the vocabulary dictionary and return term-document matrix.
This is equivalent to fit followed by transform, but more efficiently
implemented.
Parameters
----------
Z : iterable or DictRDD with column 'X'
An iterable of raw_documents which yields either str, unicode or
file objects; or a DictRDD with column 'X' containing such
iterables.
Returns
-------
X : array, [n_samples, n_features] or DictRDD
Document-term matrix.
"""
self._validate_vocabulary()
# map analyzer and cache result
analyze = self.build_analyzer()
A = Z.transform(lambda X: list(map(analyze, X)), column='X').persist()
# create vocabulary
X = A[:, 'X'] if isinstance(A, DictRDD) else A
self.vocabulary_ = self._init_vocab(X)
# transform according to vocabulary
mapper = self.broadcast(self._count_vocab, A.context)
Z = A.transform(mapper, column='X', dtype=sp.spmatrix)
if not self.fixed_vocabulary_:
X = Z[:, 'X'] if isinstance(Z, DictRDD) else Z
max_df = self.max_df
min_df = self.min_df
max_features = self.max_features
# limit features according to min_df, max_df parameters
n_doc = X.shape[0]
max_doc_count = (max_df
if isinstance(max_df, numbers.Integral)
else max_df * n_doc)
min_doc_count = (min_df
if isinstance(min_df, numbers.Integral)
else min_df * n_doc)
if max_doc_count < min_doc_count:
raise ValueError(
"max_df corresponds to < documents than min_df")
kept_indices, self.stop_words_ = self._limit_features(
X, self.vocabulary_, max_doc_count, min_doc_count, max_features)
# sort features
map_index = self._sort_features(self.vocabulary_)
# combined mask
mask = kept_indices[map_index]
Z = Z.transform(lambda x: x[:, mask], column='X', dtype=sp.spmatrix)
A.unpersist()
return Z
|
[
"Learn",
"the",
"vocabulary",
"dictionary",
"and",
"return",
"term",
"-",
"document",
"matrix",
"."
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/feature_extraction/text.py#L272-L334
|
[
"def",
"fit_transform",
"(",
"self",
",",
"Z",
")",
":",
"self",
".",
"_validate_vocabulary",
"(",
")",
"# map analyzer and cache result",
"analyze",
"=",
"self",
".",
"build_analyzer",
"(",
")",
"A",
"=",
"Z",
".",
"transform",
"(",
"lambda",
"X",
":",
"list",
"(",
"map",
"(",
"analyze",
",",
"X",
")",
")",
",",
"column",
"=",
"'X'",
")",
".",
"persist",
"(",
")",
"# create vocabulary",
"X",
"=",
"A",
"[",
":",
",",
"'X'",
"]",
"if",
"isinstance",
"(",
"A",
",",
"DictRDD",
")",
"else",
"A",
"self",
".",
"vocabulary_",
"=",
"self",
".",
"_init_vocab",
"(",
"X",
")",
"# transform according to vocabulary",
"mapper",
"=",
"self",
".",
"broadcast",
"(",
"self",
".",
"_count_vocab",
",",
"A",
".",
"context",
")",
"Z",
"=",
"A",
".",
"transform",
"(",
"mapper",
",",
"column",
"=",
"'X'",
",",
"dtype",
"=",
"sp",
".",
"spmatrix",
")",
"if",
"not",
"self",
".",
"fixed_vocabulary_",
":",
"X",
"=",
"Z",
"[",
":",
",",
"'X'",
"]",
"if",
"isinstance",
"(",
"Z",
",",
"DictRDD",
")",
"else",
"Z",
"max_df",
"=",
"self",
".",
"max_df",
"min_df",
"=",
"self",
".",
"min_df",
"max_features",
"=",
"self",
".",
"max_features",
"# limit features according to min_df, max_df parameters",
"n_doc",
"=",
"X",
".",
"shape",
"[",
"0",
"]",
"max_doc_count",
"=",
"(",
"max_df",
"if",
"isinstance",
"(",
"max_df",
",",
"numbers",
".",
"Integral",
")",
"else",
"max_df",
"*",
"n_doc",
")",
"min_doc_count",
"=",
"(",
"min_df",
"if",
"isinstance",
"(",
"min_df",
",",
"numbers",
".",
"Integral",
")",
"else",
"min_df",
"*",
"n_doc",
")",
"if",
"max_doc_count",
"<",
"min_doc_count",
":",
"raise",
"ValueError",
"(",
"\"max_df corresponds to < documents than min_df\"",
")",
"kept_indices",
",",
"self",
".",
"stop_words_",
"=",
"self",
".",
"_limit_features",
"(",
"X",
",",
"self",
".",
"vocabulary_",
",",
"max_doc_count",
",",
"min_doc_count",
",",
"max_features",
")",
"# sort features",
"map_index",
"=",
"self",
".",
"_sort_features",
"(",
"self",
".",
"vocabulary_",
")",
"# combined mask",
"mask",
"=",
"kept_indices",
"[",
"map_index",
"]",
"Z",
"=",
"Z",
".",
"transform",
"(",
"lambda",
"x",
":",
"x",
"[",
":",
",",
"mask",
"]",
",",
"column",
"=",
"'X'",
",",
"dtype",
"=",
"sp",
".",
"spmatrix",
")",
"A",
".",
"unpersist",
"(",
")",
"return",
"Z"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkCountVectorizer.transform
|
Transform documents to document-term matrix.
Extract token counts out of raw text documents using the vocabulary
fitted with fit or the one provided to the constructor.
Parameters
----------
raw_documents : iterable
An iterable which yields either str, unicode or file objects.
Returns
-------
X : sparse matrix, [n_samples, n_features]
Document-term matrix.
|
splearn/feature_extraction/text.py
|
def transform(self, Z):
"""Transform documents to document-term matrix.
Extract token counts out of raw text documents using the vocabulary
fitted with fit or the one provided to the constructor.
Parameters
----------
raw_documents : iterable
An iterable which yields either str, unicode or file objects.
Returns
-------
X : sparse matrix, [n_samples, n_features]
Document-term matrix.
"""
if not hasattr(self, 'vocabulary_'):
self._validate_vocabulary()
self._check_vocabulary()
analyze = self.build_analyzer()
mapper = self.broadcast(self._count_vocab, Z.context)
Z = Z.transform(lambda X: list(map(analyze, X)), column='X') \
.transform(mapper, column='X', dtype=sp.spmatrix)
return Z
|
def transform(self, Z):
"""Transform documents to document-term matrix.
Extract token counts out of raw text documents using the vocabulary
fitted with fit or the one provided to the constructor.
Parameters
----------
raw_documents : iterable
An iterable which yields either str, unicode or file objects.
Returns
-------
X : sparse matrix, [n_samples, n_features]
Document-term matrix.
"""
if not hasattr(self, 'vocabulary_'):
self._validate_vocabulary()
self._check_vocabulary()
analyze = self.build_analyzer()
mapper = self.broadcast(self._count_vocab, Z.context)
Z = Z.transform(lambda X: list(map(analyze, X)), column='X') \
.transform(mapper, column='X', dtype=sp.spmatrix)
return Z
|
[
"Transform",
"documents",
"to",
"document",
"-",
"term",
"matrix",
"."
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/feature_extraction/text.py#L336-L363
|
[
"def",
"transform",
"(",
"self",
",",
"Z",
")",
":",
"if",
"not",
"hasattr",
"(",
"self",
",",
"'vocabulary_'",
")",
":",
"self",
".",
"_validate_vocabulary",
"(",
")",
"self",
".",
"_check_vocabulary",
"(",
")",
"analyze",
"=",
"self",
".",
"build_analyzer",
"(",
")",
"mapper",
"=",
"self",
".",
"broadcast",
"(",
"self",
".",
"_count_vocab",
",",
"Z",
".",
"context",
")",
"Z",
"=",
"Z",
".",
"transform",
"(",
"lambda",
"X",
":",
"list",
"(",
"map",
"(",
"analyze",
",",
"X",
")",
")",
",",
"column",
"=",
"'X'",
")",
".",
"transform",
"(",
"mapper",
",",
"column",
"=",
"'X'",
",",
"dtype",
"=",
"sp",
".",
"spmatrix",
")",
"return",
"Z"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkHashingVectorizer.transform
|
Transform an ArrayRDD (or DictRDD with column 'X') containing
sequence of documents to a document-term matrix.
Parameters
----------
Z : ArrayRDD or DictRDD with raw text documents
Samples. Each sample must be a text document (either bytes or
unicode strings) which will be tokenized and hashed.
Returns
-------
Z : SparseRDD/DictRDD containg scipy.sparse matrix
Document-term matrix.
|
splearn/feature_extraction/text.py
|
def transform(self, Z):
"""Transform an ArrayRDD (or DictRDD with column 'X') containing
sequence of documents to a document-term matrix.
Parameters
----------
Z : ArrayRDD or DictRDD with raw text documents
Samples. Each sample must be a text document (either bytes or
unicode strings) which will be tokenized and hashed.
Returns
-------
Z : SparseRDD/DictRDD containg scipy.sparse matrix
Document-term matrix.
"""
mapper = super(SparkHashingVectorizer, self).transform
return Z.transform(mapper, column='X', dtype=sp.spmatrix)
|
def transform(self, Z):
"""Transform an ArrayRDD (or DictRDD with column 'X') containing
sequence of documents to a document-term matrix.
Parameters
----------
Z : ArrayRDD or DictRDD with raw text documents
Samples. Each sample must be a text document (either bytes or
unicode strings) which will be tokenized and hashed.
Returns
-------
Z : SparseRDD/DictRDD containg scipy.sparse matrix
Document-term matrix.
"""
mapper = super(SparkHashingVectorizer, self).transform
return Z.transform(mapper, column='X', dtype=sp.spmatrix)
|
[
"Transform",
"an",
"ArrayRDD",
"(",
"or",
"DictRDD",
"with",
"column",
"X",
")",
"containing",
"sequence",
"of",
"documents",
"to",
"a",
"document",
"-",
"term",
"matrix",
"."
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/feature_extraction/text.py#L474-L490
|
[
"def",
"transform",
"(",
"self",
",",
"Z",
")",
":",
"mapper",
"=",
"super",
"(",
"SparkHashingVectorizer",
",",
"self",
")",
".",
"transform",
"return",
"Z",
".",
"transform",
"(",
"mapper",
",",
"column",
"=",
"'X'",
",",
"dtype",
"=",
"sp",
".",
"spmatrix",
")"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkTfidfTransformer.fit
|
Learn the idf vector (global term weights)
Parameters
----------
Z : ArrayRDD or DictRDD containing (sparse matrices|ndarray)
a matrix of term/token counts
Returns
-------
self : TfidfVectorizer
|
splearn/feature_extraction/text.py
|
def fit(self, Z):
"""Learn the idf vector (global term weights)
Parameters
----------
Z : ArrayRDD or DictRDD containing (sparse matrices|ndarray)
a matrix of term/token counts
Returns
-------
self : TfidfVectorizer
"""
X = Z[:, 'X'] if isinstance(Z, DictRDD) else Z
check_rdd(X, (sp.spmatrix, np.ndarray))
def mapper(X, use_idf=self.use_idf):
if not sp.issparse(X):
X = sp.csc_matrix(X)
if use_idf:
return _document_frequency(X)
if self.use_idf:
n_samples, n_features = X.shape
df = X.map(mapper).treeReduce(operator.add)
# perform idf smoothing if required
df += int(self.smooth_idf)
n_samples += int(self.smooth_idf)
# log1p instead of log makes sure terms with zero idf don't get
# suppressed entirely
idf = np.log(float(n_samples) / df) + 1.0
self._idf_diag = sp.spdiags(idf,
diags=0, m=n_features, n=n_features)
return self
|
def fit(self, Z):
"""Learn the idf vector (global term weights)
Parameters
----------
Z : ArrayRDD or DictRDD containing (sparse matrices|ndarray)
a matrix of term/token counts
Returns
-------
self : TfidfVectorizer
"""
X = Z[:, 'X'] if isinstance(Z, DictRDD) else Z
check_rdd(X, (sp.spmatrix, np.ndarray))
def mapper(X, use_idf=self.use_idf):
if not sp.issparse(X):
X = sp.csc_matrix(X)
if use_idf:
return _document_frequency(X)
if self.use_idf:
n_samples, n_features = X.shape
df = X.map(mapper).treeReduce(operator.add)
# perform idf smoothing if required
df += int(self.smooth_idf)
n_samples += int(self.smooth_idf)
# log1p instead of log makes sure terms with zero idf don't get
# suppressed entirely
idf = np.log(float(n_samples) / df) + 1.0
self._idf_diag = sp.spdiags(idf,
diags=0, m=n_features, n=n_features)
return self
|
[
"Learn",
"the",
"idf",
"vector",
"(",
"global",
"term",
"weights",
")"
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/feature_extraction/text.py#L550-L585
|
[
"def",
"fit",
"(",
"self",
",",
"Z",
")",
":",
"X",
"=",
"Z",
"[",
":",
",",
"'X'",
"]",
"if",
"isinstance",
"(",
"Z",
",",
"DictRDD",
")",
"else",
"Z",
"check_rdd",
"(",
"X",
",",
"(",
"sp",
".",
"spmatrix",
",",
"np",
".",
"ndarray",
")",
")",
"def",
"mapper",
"(",
"X",
",",
"use_idf",
"=",
"self",
".",
"use_idf",
")",
":",
"if",
"not",
"sp",
".",
"issparse",
"(",
"X",
")",
":",
"X",
"=",
"sp",
".",
"csc_matrix",
"(",
"X",
")",
"if",
"use_idf",
":",
"return",
"_document_frequency",
"(",
"X",
")",
"if",
"self",
".",
"use_idf",
":",
"n_samples",
",",
"n_features",
"=",
"X",
".",
"shape",
"df",
"=",
"X",
".",
"map",
"(",
"mapper",
")",
".",
"treeReduce",
"(",
"operator",
".",
"add",
")",
"# perform idf smoothing if required",
"df",
"+=",
"int",
"(",
"self",
".",
"smooth_idf",
")",
"n_samples",
"+=",
"int",
"(",
"self",
".",
"smooth_idf",
")",
"# log1p instead of log makes sure terms with zero idf don't get",
"# suppressed entirely",
"idf",
"=",
"np",
".",
"log",
"(",
"float",
"(",
"n_samples",
")",
"/",
"df",
")",
"+",
"1.0",
"self",
".",
"_idf_diag",
"=",
"sp",
".",
"spdiags",
"(",
"idf",
",",
"diags",
"=",
"0",
",",
"m",
"=",
"n_features",
",",
"n",
"=",
"n_features",
")",
"return",
"self"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkStandardScaler.fit
|
Compute the mean and std to be used for later scaling.
Parameters
----------
Z : DictRDD containing (X, y) pairs
X - Training vector.
{array-like, sparse matrix}, shape [n_samples, n_features]
The data used to compute the mean and standard deviation
used for later scaling along the features axis.
y - Target labels
Passthrough for ``Pipeline`` compatibility.
|
splearn/preprocessing/data.py
|
def fit(self, Z):
"""Compute the mean and std to be used for later scaling.
Parameters
----------
Z : DictRDD containing (X, y) pairs
X - Training vector.
{array-like, sparse matrix}, shape [n_samples, n_features]
The data used to compute the mean and standard deviation
used for later scaling along the features axis.
y - Target labels
Passthrough for ``Pipeline`` compatibility.
"""
# Reset internal state before fitting
self._reset()
X = Z[:, 'X'] if isinstance(Z, DictRDD) else Z
check_rdd(X, (np.ndarray, sp.spmatrix))
def mapper(X):
"""Calculate statistics for every numpy or scipy blocks."""
X = check_array(X, ('csr', 'csc'), dtype=np.float64)
if hasattr(X, "toarray"): # sparse matrix
mean, var = mean_variance_axis(X, axis=0)
else:
mean, var = np.mean(X, axis=0), np.var(X, axis=0)
return X.shape[0], mean, var
def reducer(a, b):
"""Calculate the combined statistics."""
n_a, mean_a, var_a = a
n_b, mean_b, var_b = b
n_ab = n_a + n_b
mean_ab = ((mean_a * n_a) + (mean_b * n_b)) / n_ab
var_ab = (((n_a * var_a) + (n_b * var_b)) / n_ab) + \
((n_a * n_b) * ((mean_b - mean_a) / n_ab) ** 2)
return (n_ab, mean_ab, var_ab)
if check_rdd_dtype(X, (sp.spmatrix)):
if self.with_mean:
raise ValueError(
"Cannot center sparse matrices: pass `with_mean=False` "
"instead. See docstring for motivation and alternatives.")
self.n_samples_seen_, self.mean_, self.var_ = X.map(mapper).treeReduce(reducer)
if self.with_std:
self.scale_ = _handle_zeros_in_scale(np.sqrt(self.var_))
else:
self.scale_ = None
return self
|
def fit(self, Z):
"""Compute the mean and std to be used for later scaling.
Parameters
----------
Z : DictRDD containing (X, y) pairs
X - Training vector.
{array-like, sparse matrix}, shape [n_samples, n_features]
The data used to compute the mean and standard deviation
used for later scaling along the features axis.
y - Target labels
Passthrough for ``Pipeline`` compatibility.
"""
# Reset internal state before fitting
self._reset()
X = Z[:, 'X'] if isinstance(Z, DictRDD) else Z
check_rdd(X, (np.ndarray, sp.spmatrix))
def mapper(X):
"""Calculate statistics for every numpy or scipy blocks."""
X = check_array(X, ('csr', 'csc'), dtype=np.float64)
if hasattr(X, "toarray"): # sparse matrix
mean, var = mean_variance_axis(X, axis=0)
else:
mean, var = np.mean(X, axis=0), np.var(X, axis=0)
return X.shape[0], mean, var
def reducer(a, b):
"""Calculate the combined statistics."""
n_a, mean_a, var_a = a
n_b, mean_b, var_b = b
n_ab = n_a + n_b
mean_ab = ((mean_a * n_a) + (mean_b * n_b)) / n_ab
var_ab = (((n_a * var_a) + (n_b * var_b)) / n_ab) + \
((n_a * n_b) * ((mean_b - mean_a) / n_ab) ** 2)
return (n_ab, mean_ab, var_ab)
if check_rdd_dtype(X, (sp.spmatrix)):
if self.with_mean:
raise ValueError(
"Cannot center sparse matrices: pass `with_mean=False` "
"instead. See docstring for motivation and alternatives.")
self.n_samples_seen_, self.mean_, self.var_ = X.map(mapper).treeReduce(reducer)
if self.with_std:
self.scale_ = _handle_zeros_in_scale(np.sqrt(self.var_))
else:
self.scale_ = None
return self
|
[
"Compute",
"the",
"mean",
"and",
"std",
"to",
"be",
"used",
"for",
"later",
"scaling",
".",
"Parameters",
"----------",
"Z",
":",
"DictRDD",
"containing",
"(",
"X",
"y",
")",
"pairs",
"X",
"-",
"Training",
"vector",
".",
"{",
"array",
"-",
"like",
"sparse",
"matrix",
"}",
"shape",
"[",
"n_samples",
"n_features",
"]",
"The",
"data",
"used",
"to",
"compute",
"the",
"mean",
"and",
"standard",
"deviation",
"used",
"for",
"later",
"scaling",
"along",
"the",
"features",
"axis",
".",
"y",
"-",
"Target",
"labels",
"Passthrough",
"for",
"Pipeline",
"compatibility",
"."
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/preprocessing/data.py#L76-L125
|
[
"def",
"fit",
"(",
"self",
",",
"Z",
")",
":",
"# Reset internal state before fitting",
"self",
".",
"_reset",
"(",
")",
"X",
"=",
"Z",
"[",
":",
",",
"'X'",
"]",
"if",
"isinstance",
"(",
"Z",
",",
"DictRDD",
")",
"else",
"Z",
"check_rdd",
"(",
"X",
",",
"(",
"np",
".",
"ndarray",
",",
"sp",
".",
"spmatrix",
")",
")",
"def",
"mapper",
"(",
"X",
")",
":",
"\"\"\"Calculate statistics for every numpy or scipy blocks.\"\"\"",
"X",
"=",
"check_array",
"(",
"X",
",",
"(",
"'csr'",
",",
"'csc'",
")",
",",
"dtype",
"=",
"np",
".",
"float64",
")",
"if",
"hasattr",
"(",
"X",
",",
"\"toarray\"",
")",
":",
"# sparse matrix",
"mean",
",",
"var",
"=",
"mean_variance_axis",
"(",
"X",
",",
"axis",
"=",
"0",
")",
"else",
":",
"mean",
",",
"var",
"=",
"np",
".",
"mean",
"(",
"X",
",",
"axis",
"=",
"0",
")",
",",
"np",
".",
"var",
"(",
"X",
",",
"axis",
"=",
"0",
")",
"return",
"X",
".",
"shape",
"[",
"0",
"]",
",",
"mean",
",",
"var",
"def",
"reducer",
"(",
"a",
",",
"b",
")",
":",
"\"\"\"Calculate the combined statistics.\"\"\"",
"n_a",
",",
"mean_a",
",",
"var_a",
"=",
"a",
"n_b",
",",
"mean_b",
",",
"var_b",
"=",
"b",
"n_ab",
"=",
"n_a",
"+",
"n_b",
"mean_ab",
"=",
"(",
"(",
"mean_a",
"*",
"n_a",
")",
"+",
"(",
"mean_b",
"*",
"n_b",
")",
")",
"/",
"n_ab",
"var_ab",
"=",
"(",
"(",
"(",
"n_a",
"*",
"var_a",
")",
"+",
"(",
"n_b",
"*",
"var_b",
")",
")",
"/",
"n_ab",
")",
"+",
"(",
"(",
"n_a",
"*",
"n_b",
")",
"*",
"(",
"(",
"mean_b",
"-",
"mean_a",
")",
"/",
"n_ab",
")",
"**",
"2",
")",
"return",
"(",
"n_ab",
",",
"mean_ab",
",",
"var_ab",
")",
"if",
"check_rdd_dtype",
"(",
"X",
",",
"(",
"sp",
".",
"spmatrix",
")",
")",
":",
"if",
"self",
".",
"with_mean",
":",
"raise",
"ValueError",
"(",
"\"Cannot center sparse matrices: pass `with_mean=False` \"",
"\"instead. See docstring for motivation and alternatives.\"",
")",
"self",
".",
"n_samples_seen_",
",",
"self",
".",
"mean_",
",",
"self",
".",
"var_",
"=",
"X",
".",
"map",
"(",
"mapper",
")",
".",
"treeReduce",
"(",
"reducer",
")",
"if",
"self",
".",
"with_std",
":",
"self",
".",
"scale_",
"=",
"_handle_zeros_in_scale",
"(",
"np",
".",
"sqrt",
"(",
"self",
".",
"var_",
")",
")",
"else",
":",
"self",
".",
"scale_",
"=",
"None",
"return",
"self"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkStandardScaler.transform
|
Perform standardization by centering and scaling
Parameters
----------
Z : DictRDD containing (X, y) pairs
X - Training vector
y - Target labels
Returns
-------
C : DictRDD containing (X, y) pairs
X - Training vector standardized
y - Target labels
|
splearn/preprocessing/data.py
|
def transform(self, Z):
"""Perform standardization by centering and scaling
Parameters
----------
Z : DictRDD containing (X, y) pairs
X - Training vector
y - Target labels
Returns
-------
C : DictRDD containing (X, y) pairs
X - Training vector standardized
y - Target labels
"""
X = Z[:, 'X'] if isinstance(Z, DictRDD) else Z
check_rdd(X, (np.ndarray, sp.spmatrix))
if check_rdd_dtype(X, (sp.spmatrix)):
if self.with_mean:
raise ValueError(
"Cannot center sparse matrices: pass `with_mean=False` "
"instead. See docstring for motivation and alternatives.")
if self.scale_ is not None:
def mapper(X):
inplace_column_scale(X, 1 / self.scale_)
return X
else:
if self.with_mean:
if self.with_std:
def mapper(X):
X -= self.mean_
X /= self.scale_
return X
else:
def mapper(X):
X -= self.mean_
return X
else:
if self.with_std:
def mapper(X):
X /= self.scale_
return X
else:
raise ValueError("Need with_std or with_mean ")
return Z.transform(mapper, column="X")
|
def transform(self, Z):
"""Perform standardization by centering and scaling
Parameters
----------
Z : DictRDD containing (X, y) pairs
X - Training vector
y - Target labels
Returns
-------
C : DictRDD containing (X, y) pairs
X - Training vector standardized
y - Target labels
"""
X = Z[:, 'X'] if isinstance(Z, DictRDD) else Z
check_rdd(X, (np.ndarray, sp.spmatrix))
if check_rdd_dtype(X, (sp.spmatrix)):
if self.with_mean:
raise ValueError(
"Cannot center sparse matrices: pass `with_mean=False` "
"instead. See docstring for motivation and alternatives.")
if self.scale_ is not None:
def mapper(X):
inplace_column_scale(X, 1 / self.scale_)
return X
else:
if self.with_mean:
if self.with_std:
def mapper(X):
X -= self.mean_
X /= self.scale_
return X
else:
def mapper(X):
X -= self.mean_
return X
else:
if self.with_std:
def mapper(X):
X /= self.scale_
return X
else:
raise ValueError("Need with_std or with_mean ")
return Z.transform(mapper, column="X")
|
[
"Perform",
"standardization",
"by",
"centering",
"and",
"scaling",
"Parameters",
"----------",
"Z",
":",
"DictRDD",
"containing",
"(",
"X",
"y",
")",
"pairs",
"X",
"-",
"Training",
"vector",
"y",
"-",
"Target",
"labels",
"Returns",
"-------",
"C",
":",
"DictRDD",
"containing",
"(",
"X",
"y",
")",
"pairs",
"X",
"-",
"Training",
"vector",
"standardized",
"y",
"-",
"Target",
"labels"
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/preprocessing/data.py#L127-L170
|
[
"def",
"transform",
"(",
"self",
",",
"Z",
")",
":",
"X",
"=",
"Z",
"[",
":",
",",
"'X'",
"]",
"if",
"isinstance",
"(",
"Z",
",",
"DictRDD",
")",
"else",
"Z",
"check_rdd",
"(",
"X",
",",
"(",
"np",
".",
"ndarray",
",",
"sp",
".",
"spmatrix",
")",
")",
"if",
"check_rdd_dtype",
"(",
"X",
",",
"(",
"sp",
".",
"spmatrix",
")",
")",
":",
"if",
"self",
".",
"with_mean",
":",
"raise",
"ValueError",
"(",
"\"Cannot center sparse matrices: pass `with_mean=False` \"",
"\"instead. See docstring for motivation and alternatives.\"",
")",
"if",
"self",
".",
"scale_",
"is",
"not",
"None",
":",
"def",
"mapper",
"(",
"X",
")",
":",
"inplace_column_scale",
"(",
"X",
",",
"1",
"/",
"self",
".",
"scale_",
")",
"return",
"X",
"else",
":",
"if",
"self",
".",
"with_mean",
":",
"if",
"self",
".",
"with_std",
":",
"def",
"mapper",
"(",
"X",
")",
":",
"X",
"-=",
"self",
".",
"mean_",
"X",
"/=",
"self",
".",
"scale_",
"return",
"X",
"else",
":",
"def",
"mapper",
"(",
"X",
")",
":",
"X",
"-=",
"self",
".",
"mean_",
"return",
"X",
"else",
":",
"if",
"self",
".",
"with_std",
":",
"def",
"mapper",
"(",
"X",
")",
":",
"X",
"/=",
"self",
".",
"scale_",
"return",
"X",
"else",
":",
"raise",
"ValueError",
"(",
"\"Need with_std or with_mean \"",
")",
"return",
"Z",
".",
"transform",
"(",
"mapper",
",",
"column",
"=",
"\"X\"",
")"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkStandardScaler.to_scikit
|
Convert to equivalent StandardScaler
|
splearn/preprocessing/data.py
|
def to_scikit(self):
"""
Convert to equivalent StandardScaler
"""
scaler = StandardScaler(with_mean=self.with_mean,
with_std=self.with_std,
copy=self.copy)
scaler.__dict__ = self.__dict__
return scaler
|
def to_scikit(self):
"""
Convert to equivalent StandardScaler
"""
scaler = StandardScaler(with_mean=self.with_mean,
with_std=self.with_std,
copy=self.copy)
scaler.__dict__ = self.__dict__
return scaler
|
[
"Convert",
"to",
"equivalent",
"StandardScaler"
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/preprocessing/data.py#L172-L180
|
[
"def",
"to_scikit",
"(",
"self",
")",
":",
"scaler",
"=",
"StandardScaler",
"(",
"with_mean",
"=",
"self",
".",
"with_mean",
",",
"with_std",
"=",
"self",
".",
"with_std",
",",
"copy",
"=",
"self",
".",
"copy",
")",
"scaler",
".",
"__dict__",
"=",
"self",
".",
"__dict__",
"return",
"scaler"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkLinearModelMixin._spark_fit
|
Wraps a Scikit-learn Linear model's fit method to use with RDD
input.
Parameters
----------
cls : class object
The sklearn linear model's class to wrap.
Z : TupleRDD or DictRDD
The distributed train data in a DictRDD.
Returns
-------
self: the wrapped class
|
splearn/linear_model/base.py
|
def _spark_fit(self, cls, Z, *args, **kwargs):
"""Wraps a Scikit-learn Linear model's fit method to use with RDD
input.
Parameters
----------
cls : class object
The sklearn linear model's class to wrap.
Z : TupleRDD or DictRDD
The distributed train data in a DictRDD.
Returns
-------
self: the wrapped class
"""
mapper = lambda X_y: super(cls, self).fit(
X_y[0], X_y[1], *args, **kwargs
)
models = Z.map(mapper)
avg = models.reduce(operator.add) / models.count()
self.__dict__.update(avg.__dict__)
return self
|
def _spark_fit(self, cls, Z, *args, **kwargs):
"""Wraps a Scikit-learn Linear model's fit method to use with RDD
input.
Parameters
----------
cls : class object
The sklearn linear model's class to wrap.
Z : TupleRDD or DictRDD
The distributed train data in a DictRDD.
Returns
-------
self: the wrapped class
"""
mapper = lambda X_y: super(cls, self).fit(
X_y[0], X_y[1], *args, **kwargs
)
models = Z.map(mapper)
avg = models.reduce(operator.add) / models.count()
self.__dict__.update(avg.__dict__)
return self
|
[
"Wraps",
"a",
"Scikit",
"-",
"learn",
"Linear",
"model",
"s",
"fit",
"method",
"to",
"use",
"with",
"RDD",
"input",
"."
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/linear_model/base.py#L67-L88
|
[
"def",
"_spark_fit",
"(",
"self",
",",
"cls",
",",
"Z",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"mapper",
"=",
"lambda",
"X_y",
":",
"super",
"(",
"cls",
",",
"self",
")",
".",
"fit",
"(",
"X_y",
"[",
"0",
"]",
",",
"X_y",
"[",
"1",
"]",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"models",
"=",
"Z",
".",
"map",
"(",
"mapper",
")",
"avg",
"=",
"models",
".",
"reduce",
"(",
"operator",
".",
"add",
")",
"/",
"models",
".",
"count",
"(",
")",
"self",
".",
"__dict__",
".",
"update",
"(",
"avg",
".",
"__dict__",
")",
"return",
"self"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkLinearModelMixin._spark_predict
|
Wraps a Scikit-learn Linear model's predict method to use with RDD
input.
Parameters
----------
cls : class object
The sklearn linear model's class to wrap.
Z : ArrayRDD
The distributed data to predict in a DictRDD.
Returns
-------
self: the wrapped class
|
splearn/linear_model/base.py
|
def _spark_predict(self, cls, X, *args, **kwargs):
"""Wraps a Scikit-learn Linear model's predict method to use with RDD
input.
Parameters
----------
cls : class object
The sklearn linear model's class to wrap.
Z : ArrayRDD
The distributed data to predict in a DictRDD.
Returns
-------
self: the wrapped class
"""
return X.map(lambda X: super(cls, self).predict(X, *args, **kwargs))
|
def _spark_predict(self, cls, X, *args, **kwargs):
"""Wraps a Scikit-learn Linear model's predict method to use with RDD
input.
Parameters
----------
cls : class object
The sklearn linear model's class to wrap.
Z : ArrayRDD
The distributed data to predict in a DictRDD.
Returns
-------
self: the wrapped class
"""
return X.map(lambda X: super(cls, self).predict(X, *args, **kwargs))
|
[
"Wraps",
"a",
"Scikit",
"-",
"learn",
"Linear",
"model",
"s",
"predict",
"method",
"to",
"use",
"with",
"RDD",
"input",
"."
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/linear_model/base.py#L90-L105
|
[
"def",
"_spark_predict",
"(",
"self",
",",
"cls",
",",
"X",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"X",
".",
"map",
"(",
"lambda",
"X",
":",
"super",
"(",
"cls",
",",
"self",
")",
".",
"predict",
"(",
"X",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
")"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkLinearRegression.fit
|
Fit linear model.
Parameters
----------
Z : DictRDD with (X, y) values
X containing numpy array or sparse matrix - The training data
y containing the target values
Returns
-------
self : returns an instance of self.
|
splearn/linear_model/base.py
|
def fit(self, Z):
"""
Fit linear model.
Parameters
----------
Z : DictRDD with (X, y) values
X containing numpy array or sparse matrix - The training data
y containing the target values
Returns
-------
self : returns an instance of self.
"""
check_rdd(Z, {'X': (sp.spmatrix, np.ndarray)})
return self._spark_fit(SparkLinearRegression, Z)
|
def fit(self, Z):
"""
Fit linear model.
Parameters
----------
Z : DictRDD with (X, y) values
X containing numpy array or sparse matrix - The training data
y containing the target values
Returns
-------
self : returns an instance of self.
"""
check_rdd(Z, {'X': (sp.spmatrix, np.ndarray)})
return self._spark_fit(SparkLinearRegression, Z)
|
[
"Fit",
"linear",
"model",
"."
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/linear_model/base.py#L143-L158
|
[
"def",
"fit",
"(",
"self",
",",
"Z",
")",
":",
"check_rdd",
"(",
"Z",
",",
"{",
"'X'",
":",
"(",
"sp",
".",
"spmatrix",
",",
"np",
".",
"ndarray",
")",
"}",
")",
"return",
"self",
".",
"_spark_fit",
"(",
"SparkLinearRegression",
",",
"Z",
")"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkPipeline.fit
|
Fit all the transforms one after the other and transform the
data, then fit the transformed data using the final estimator.
Parameters
----------
Z : ArrayRDD, TupleRDD or DictRDD
Input data in blocked distributed format.
Returns
-------
self : SparkPipeline
|
splearn/pipeline.py
|
def fit(self, Z, **fit_params):
"""Fit all the transforms one after the other and transform the
data, then fit the transformed data using the final estimator.
Parameters
----------
Z : ArrayRDD, TupleRDD or DictRDD
Input data in blocked distributed format.
Returns
-------
self : SparkPipeline
"""
Zt, fit_params = self._pre_transform(Z, **fit_params)
self.steps[-1][-1].fit(Zt, **fit_params)
Zt.unpersist()
return self
|
def fit(self, Z, **fit_params):
"""Fit all the transforms one after the other and transform the
data, then fit the transformed data using the final estimator.
Parameters
----------
Z : ArrayRDD, TupleRDD or DictRDD
Input data in blocked distributed format.
Returns
-------
self : SparkPipeline
"""
Zt, fit_params = self._pre_transform(Z, **fit_params)
self.steps[-1][-1].fit(Zt, **fit_params)
Zt.unpersist()
return self
|
[
"Fit",
"all",
"the",
"transforms",
"one",
"after",
"the",
"other",
"and",
"transform",
"the",
"data",
"then",
"fit",
"the",
"transformed",
"data",
"using",
"the",
"final",
"estimator",
"."
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/pipeline.py#L97-L113
|
[
"def",
"fit",
"(",
"self",
",",
"Z",
",",
"*",
"*",
"fit_params",
")",
":",
"Zt",
",",
"fit_params",
"=",
"self",
".",
"_pre_transform",
"(",
"Z",
",",
"*",
"*",
"fit_params",
")",
"self",
".",
"steps",
"[",
"-",
"1",
"]",
"[",
"-",
"1",
"]",
".",
"fit",
"(",
"Zt",
",",
"*",
"*",
"fit_params",
")",
"Zt",
".",
"unpersist",
"(",
")",
"return",
"self"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkPipeline.fit_transform
|
Fit all the transforms one after the other and transform the
data, then use fit_transform on transformed data using the final
estimator.
|
splearn/pipeline.py
|
def fit_transform(self, Z, **fit_params):
"""Fit all the transforms one after the other and transform the
data, then use fit_transform on transformed data using the final
estimator."""
Zt, fit_params = self._pre_transform(Z, **fit_params)
if hasattr(self.steps[-1][-1], 'fit_transform'):
return self.steps[-1][-1].fit_transform(Zt, **fit_params)
else:
return self.steps[-1][-1].fit(Zt, **fit_params).transform(Zt)
|
def fit_transform(self, Z, **fit_params):
"""Fit all the transforms one after the other and transform the
data, then use fit_transform on transformed data using the final
estimator."""
Zt, fit_params = self._pre_transform(Z, **fit_params)
if hasattr(self.steps[-1][-1], 'fit_transform'):
return self.steps[-1][-1].fit_transform(Zt, **fit_params)
else:
return self.steps[-1][-1].fit(Zt, **fit_params).transform(Zt)
|
[
"Fit",
"all",
"the",
"transforms",
"one",
"after",
"the",
"other",
"and",
"transform",
"the",
"data",
"then",
"use",
"fit_transform",
"on",
"transformed",
"data",
"using",
"the",
"final",
"estimator",
"."
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/pipeline.py#L115-L123
|
[
"def",
"fit_transform",
"(",
"self",
",",
"Z",
",",
"*",
"*",
"fit_params",
")",
":",
"Zt",
",",
"fit_params",
"=",
"self",
".",
"_pre_transform",
"(",
"Z",
",",
"*",
"*",
"fit_params",
")",
"if",
"hasattr",
"(",
"self",
".",
"steps",
"[",
"-",
"1",
"]",
"[",
"-",
"1",
"]",
",",
"'fit_transform'",
")",
":",
"return",
"self",
".",
"steps",
"[",
"-",
"1",
"]",
"[",
"-",
"1",
"]",
".",
"fit_transform",
"(",
"Zt",
",",
"*",
"*",
"fit_params",
")",
"else",
":",
"return",
"self",
".",
"steps",
"[",
"-",
"1",
"]",
"[",
"-",
"1",
"]",
".",
"fit",
"(",
"Zt",
",",
"*",
"*",
"fit_params",
")",
".",
"transform",
"(",
"Zt",
")"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkPipeline.score
|
Applies transforms to the data, and the score method of the
final estimator. Valid only if the final estimator implements
score.
|
splearn/pipeline.py
|
def score(self, Z):
"""Applies transforms to the data, and the score method of the
final estimator. Valid only if the final estimator implements
score."""
Zt = Z
for name, transform in self.steps[:-1]:
Zt = transform.transform(Zt)
return self.steps[-1][-1].score(Zt)
|
def score(self, Z):
"""Applies transforms to the data, and the score method of the
final estimator. Valid only if the final estimator implements
score."""
Zt = Z
for name, transform in self.steps[:-1]:
Zt = transform.transform(Zt)
return self.steps[-1][-1].score(Zt)
|
[
"Applies",
"transforms",
"to",
"the",
"data",
"and",
"the",
"score",
"method",
"of",
"the",
"final",
"estimator",
".",
"Valid",
"only",
"if",
"the",
"final",
"estimator",
"implements",
"score",
"."
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/pipeline.py#L125-L132
|
[
"def",
"score",
"(",
"self",
",",
"Z",
")",
":",
"Zt",
"=",
"Z",
"for",
"name",
",",
"transform",
"in",
"self",
".",
"steps",
"[",
":",
"-",
"1",
"]",
":",
"Zt",
"=",
"transform",
".",
"transform",
"(",
"Zt",
")",
"return",
"self",
".",
"steps",
"[",
"-",
"1",
"]",
"[",
"-",
"1",
"]",
".",
"score",
"(",
"Zt",
")"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
test
|
SparkFeatureUnion.fit
|
TODO: rewrite docstring
Fit all transformers using X.
Parameters
----------
X : array-like or sparse matrix, shape (n_samples, n_features)
Input data, used to fit transformers.
|
splearn/pipeline.py
|
def fit(self, Z, **fit_params):
"""TODO: rewrite docstring
Fit all transformers using X.
Parameters
----------
X : array-like or sparse matrix, shape (n_samples, n_features)
Input data, used to fit transformers.
"""
fit_params_steps = dict((step, {})
for step, _ in self.transformer_list)
for pname, pval in six.iteritems(fit_params):
step, param = pname.split('__', 1)
fit_params_steps[step][param] = pval
transformers = Parallel(n_jobs=self.n_jobs, backend="threading")(
delayed(_fit_one_transformer)(trans, Z, **fit_params_steps[name])
for name, trans in self.transformer_list)
self._update_transformer_list(transformers)
return self
|
def fit(self, Z, **fit_params):
"""TODO: rewrite docstring
Fit all transformers using X.
Parameters
----------
X : array-like or sparse matrix, shape (n_samples, n_features)
Input data, used to fit transformers.
"""
fit_params_steps = dict((step, {})
for step, _ in self.transformer_list)
for pname, pval in six.iteritems(fit_params):
step, param = pname.split('__', 1)
fit_params_steps[step][param] = pval
transformers = Parallel(n_jobs=self.n_jobs, backend="threading")(
delayed(_fit_one_transformer)(trans, Z, **fit_params_steps[name])
for name, trans in self.transformer_list)
self._update_transformer_list(transformers)
return self
|
[
"TODO",
":",
"rewrite",
"docstring",
"Fit",
"all",
"transformers",
"using",
"X",
".",
"Parameters",
"----------",
"X",
":",
"array",
"-",
"like",
"or",
"sparse",
"matrix",
"shape",
"(",
"n_samples",
"n_features",
")",
"Input",
"data",
"used",
"to",
"fit",
"transformers",
"."
] |
lensacom/sparkit-learn
|
python
|
https://github.com/lensacom/sparkit-learn/blob/0498502107c1f7dcf33cda0cdb6f5ba4b42524b7/splearn/pipeline.py#L227-L246
|
[
"def",
"fit",
"(",
"self",
",",
"Z",
",",
"*",
"*",
"fit_params",
")",
":",
"fit_params_steps",
"=",
"dict",
"(",
"(",
"step",
",",
"{",
"}",
")",
"for",
"step",
",",
"_",
"in",
"self",
".",
"transformer_list",
")",
"for",
"pname",
",",
"pval",
"in",
"six",
".",
"iteritems",
"(",
"fit_params",
")",
":",
"step",
",",
"param",
"=",
"pname",
".",
"split",
"(",
"'__'",
",",
"1",
")",
"fit_params_steps",
"[",
"step",
"]",
"[",
"param",
"]",
"=",
"pval",
"transformers",
"=",
"Parallel",
"(",
"n_jobs",
"=",
"self",
".",
"n_jobs",
",",
"backend",
"=",
"\"threading\"",
")",
"(",
"delayed",
"(",
"_fit_one_transformer",
")",
"(",
"trans",
",",
"Z",
",",
"*",
"*",
"fit_params_steps",
"[",
"name",
"]",
")",
"for",
"name",
",",
"trans",
"in",
"self",
".",
"transformer_list",
")",
"self",
".",
"_update_transformer_list",
"(",
"transformers",
")",
"return",
"self"
] |
0498502107c1f7dcf33cda0cdb6f5ba4b42524b7
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.