text
stringlengths
2
999k
async def get_location_count() -> int: return 234 async def get_locations_used() -> int: return 230
from __future__ import annotations import asyncio from datetime import datetime from typing import TYPE_CHECKING, Union, Optional, List, Dict, Any import discord from .base import DatabaseChecker from .punishments import Punisher if TYPE_CHECKING: from .punishments import Punishment from discord.ext import commands __all__ = ("UnbanFailure", "BanManager") class UnbanFailure(Exception): """Raises an exception when the user tries to unban a discord.User without passing the guild.""" class BanManager(DatabaseChecker, Punisher): """ A BanManager that manages guild bans. """ __slots__ = ("bot",) def __init__(self, bot: commands.Bot): super().__init__( [ { "guild": "snowflake", "member": "snowflake", "reason": "string", "timestamp": "snowflake", } ], ["bans"], ) self.bot = bot self.add_event(self._on_database_connect, "on_database_connect") async def _on_database_connect(self): self.bot.loop.create_task(self.__check_bans()) @DatabaseChecker.uses_database async def get_banned_members(self) -> List[Dict[str, Any]]: """ |coro| This function returns all the members that are supposed to be unbanned but are banned. :return: The list of unbanned members. :rtype: List[Dict[str, Any]] """ return [ x for x in await self.database.select(self.tables["bans"], [], fetchall=True) if x["timestamp"] <= datetime.utcnow().timestamp() ] async def __check_bans(self) -> None: """ |coro| A loop that ensures that members are unbanned when they need to. :return: None :rtype: None """ await self.bot.wait_until_ready() while not self.bot.is_closed(): for banned_member in await self.get_banned_members(): guild = self.bot.get_guild(banned_member["guild"]) if guild is None: continue user = await self.bot.fetch_user(banned_member["member"]) if await self.unban(user, guild): await self.call_event("on_unban", user, banned_member["reason"]) await asyncio.sleep(300) async def punish( self, ctx: commands.Context, member: discord.Member, punishment: Punishment ) -> None: try: self.bot.loop.create_task( self.ban( member, punishment.punishment_reason, punishment.punishment_time.total_seconds(), ) ) except discord.errors.Forbidden as e: raise e else: await self.call_event("on_punishment", ctx, member, punishment) @staticmethod async def get_ban( member: Union[discord.Member, discord.User], guild: discord.Guild ) -> Optional[discord.User]: """ |coro| This function returns the user object of the member if he is banned from the guild. :param member: The banned member. :type member: discord.Member :param guild: The guild. :type guild: discord.Guild :return: The user object if found. :rtype: Optional[discord.User] """ banned = await guild.bans() for x in banned: if x.user.id == member.id: return x.user @DatabaseChecker.uses_database async def unban( self, member: Union[discord.Member, discord.User], guild: discord.Guild = None ) -> bool: """ |coro| Unbans the member from the guild. :param Union[discord.Member, discord.User] member: The member or user to unban. :param discord.Guild guild: The guild to unban the member from. :return: A bool representing if the unban was successful. :rtype: bool :raises: UnbanFailure: Cannot unban a discord.User without a guild. """ if isinstance(member, discord.User) and not guild: raise UnbanFailure("Cannot unban a discord.User without a guild.") guild = guild if guild is not None else member.guild await self.database.delete( self.tables["bans"], {"guild": guild.id, "member": member.id} ) if user := await self.get_ban(member, guild): await guild.unban(user) return True async def __handle_unban( self, time_of_ban: Union[int, float], member: discord.Member, reason: str ) -> None: """ |coro| A function that handles the member's unban that runs separately from the ban method so it wont be blocked. :param Union[int, float] time_of_ban: The time until the member's unban timestamp. :param discord.Member member: The member to unban. :param str reason: The reason of the mute. :return: None :rtype: None """ await asyncio.sleep(time_of_ban) if await self.unban(member): await self.call_event("on_unban", member, reason) @DatabaseChecker.uses_database async def ban( self, member: discord.Member, reason: str = "No reason provided.", time_of_ban: Union[int, float] = 0, ) -> None: """ |coro| Bans the member from the guild. :param member: The member to ban. :type member: discord.Member :param reason: The reason of the ban. :type reason: str :param time_of_ban: The time of ban. :type time_of_ban: Union[int, float] :return: None :rtype: None """ await member.ban(reason=reason) if time_of_ban <= 0: return await self.database.insert( self.tables["bans"], { "guild": member.guild.id, "member": member.id, "reason": reason, "timestamp": datetime.utcnow().timestamp() + time_of_ban, }, ) self.bot.loop.create_task(self.__handle_unban(time_of_ban, member, reason))
#!/usr/bin/env python2 # Copyright (c) 2014-2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test re-org scenarios with a mempool that contains transactions # that spend (directly or indirectly) coinbase transactions. # from test_framework.test_framework import JavabitTestFramework from test_framework.util import * # Create one-input, one-output, no-fee transaction: class MempoolCoinbaseTest(JavabitTestFramework): alert_filename = None # Set by setup_network def setup_network(self): args = ["-checkmempool", "-debug=mempool"] self.nodes = [] self.nodes.append(start_node(0, self.options.tmpdir, args)) self.nodes.append(start_node(1, self.options.tmpdir, args)) connect_nodes(self.nodes[1], 0) self.is_network_split = False self.sync_all() def create_tx(self, from_txid, to_address, amount): inputs = [{ "txid" : from_txid, "vout" : 0}] outputs = { to_address : amount } rawtx = self.nodes[0].createrawtransaction(inputs, outputs) signresult = self.nodes[0].signrawtransaction(rawtx) assert_equal(signresult["complete"], True) return signresult["hex"] def run_test(self): start_count = self.nodes[0].getblockcount() # Mine three blocks. After this, nodes[0] blocks # 101, 102, and 103 are spend-able. new_blocks = self.nodes[1].generate(4) self.sync_all() node0_address = self.nodes[0].getnewaddress() node1_address = self.nodes[1].getnewaddress() # Three scenarios for re-orging coinbase spends in the memory pool: # 1. Direct coinbase spend : spend_101 # 2. Indirect (coinbase spend in chain, child in mempool) : spend_102 and spend_102_1 # 3. Indirect (coinbase and child both in chain) : spend_103 and spend_103_1 # Use invalidatblock to make all of the above coinbase spends invalid (immature coinbase), # and make sure the mempool code behaves correctly. b = [ self.nodes[0].getblockhash(n) for n in range(101, 105) ] coinbase_txids = [ self.nodes[0].getblock(h)['tx'][0] for h in b ] spend_101_raw = self.create_tx(coinbase_txids[1], node1_address, 50) spend_102_raw = self.create_tx(coinbase_txids[2], node0_address, 50) spend_103_raw = self.create_tx(coinbase_txids[3], node0_address, 50) # Create a block-height-locked transaction which will be invalid after reorg timelock_tx = self.nodes[0].createrawtransaction([{"txid": coinbase_txids[0], "vout": 0}], {node0_address: 50}) # Set the time lock timelock_tx = timelock_tx.replace("ffffffff", "11111111", 1) timelock_tx = timelock_tx[:-8] + hex(self.nodes[0].getblockcount() + 2)[2:] + "000000" timelock_tx = self.nodes[0].signrawtransaction(timelock_tx)["hex"] assert_raises(JSONRPCException, self.nodes[0].sendrawtransaction, timelock_tx) # Broadcast and mine spend_102 and 103: spend_102_id = self.nodes[0].sendrawtransaction(spend_102_raw) spend_103_id = self.nodes[0].sendrawtransaction(spend_103_raw) self.nodes[0].generate(1) assert_raises(JSONRPCException, self.nodes[0].sendrawtransaction, timelock_tx) # Create 102_1 and 103_1: spend_102_1_raw = self.create_tx(spend_102_id, node1_address, 50) spend_103_1_raw = self.create_tx(spend_103_id, node1_address, 50) # Broadcast and mine 103_1: spend_103_1_id = self.nodes[0].sendrawtransaction(spend_103_1_raw) last_block = self.nodes[0].generate(1) timelock_tx_id = self.nodes[0].sendrawtransaction(timelock_tx) # ... now put spend_101 and spend_102_1 in memory pools: spend_101_id = self.nodes[0].sendrawtransaction(spend_101_raw) spend_102_1_id = self.nodes[0].sendrawtransaction(spend_102_1_raw) self.sync_all() assert_equal(set(self.nodes[0].getrawmempool()), {spend_101_id, spend_102_1_id, timelock_tx_id}) for node in self.nodes: node.invalidateblock(last_block[0]) assert_equal(set(self.nodes[0].getrawmempool()), {spend_101_id, spend_102_1_id, spend_103_1_id}) # Use invalidateblock to re-org back and make all those coinbase spends # immature/invalid: for node in self.nodes: node.invalidateblock(new_blocks[0]) self.sync_all() # mempool should be empty. assert_equal(set(self.nodes[0].getrawmempool()), set()) if __name__ == '__main__': MempoolCoinbaseTest().main()
# coding: utf-8 # In[1]: import numpy as np def get_homograph(u,v): A = np.array([[u[0][0], u[0][1], 1, 0, 0, 0, -1 * u[0][0] * v[0][0], -1 * u[0][1] * v[0][0]], [0, 0, 0, u[0][0], u[0][1], 1, -1 * u[0][0] * v[0][1], -1 * u[0][1] * v[0][1]], [u[1][0], u[1][1], 1, 0, 0, 0, -1 * u[1][0] * v[1][0], -1 * u[1][1] * v[1][0]], [0, 0, 0, u[1][0], u[1][1], 1, -1 * u[1][0] * v[1][1], -1 * u[1][1] * v[1][1]], [u[2][0], u[2][1], 1, 0, 0, 0, -1 * u[2][0] * v[2][0], -1 * u[2][1] * v[2][0]], [0, 0, 0, u[2][0], u[2][1], 1, -1 * u[2][0] * v[2][1], -1 * u[2][1] * v[2][1]], [u[3][0], u[3][1], 1, 0, 0, 0, -1 * u[3][0] * v[3][0], -1 * u[3][1] * v[3][0]], [0, 0, 0, u[3][0], u[3][1], 1, -1 * u[3][0] * v[3][1], -1 * u[3][1] * v[3][1]] ]) b = np.array([[v[0][0]], [v[0][1]], [v[1][0]], [v[1][1]], [v[2][0]], [v[2][1]], [v[3][0]], [v[3][1]] ]) tmp = np.dot(np.linalg.inv(A), b) H = np.array([[tmp[0][0], tmp[1][0], tmp[2][0]], [tmp[3][0], tmp[4][0], tmp[5][0]], [tmp[6][0], tmp[7][0], 1] ]) return H def interpolation(img, new_x, new_y): fx = round(new_x - int(new_x), 2) fy = round(new_y - int(new_y), 2) p = np.zeros((3,)) p += (1 - fx) * (1 - fy) * img[int(new_y), int(new_x)] p += (1 - fx) * fy * img[int(new_y) + 1, int(new_x)] p += fx * (1 - fy) * img[int(new_y), int(new_x) + 1] p += fx * fy * img[int(new_y) + 1, int(new_x) + 1] return p def forward_warping(u,v,input_image,canvas): matrix = get_homograph(u,v) i0_max = u[0:4,0:1].max() i0_min = u[0:4,0:1].min() i1_max = u[0:4,1:2].max() i1_min = u[0:4,1:2].min() i0_range = i0_max-i0_min i1_range = i1_max-i1_min for i in range(i1_range): for j in range(i0_range): tmp2 = np.dot(matrix, np.array([[j+i0_min, i+i1_min, 1]]).T) x, y = int(tmp2[0][0] / tmp2[2][0]), int(tmp2[1][0] / tmp2[2][0]) canvas[y][x] = input_image[i+i1_min][j+i0_min] return canvas def backward_warping(u,v,input_image,canvas): matrix = get_homograph(u,v) # v: output, u: input i0_max = u[0:4,0:1].max() i0_min = u[0:4,0:1].min() i1_max = u[0:4,1:2].max() i1_min = u[0:4,1:2].min() i0_range = i0_max-i0_min i1_range = i1_max-i1_min for j in range(i1_range): for i in range(i0_range): new_pos = np.dot(matrix, np.array([[i+i0_min, j+i1_min, 1]]).T) new_x, new_y = new_pos[0][0] / new_pos[2][0], new_pos[1][0] / new_pos[2][0] res = interpolation(input_image, new_x, new_y) canvas[j+i1_min][i+i0_min] = res return canvas
#!/usr/bin/env pytest # -*- coding: utf-8 -*- ############################################################################### # $Id$ # # Project: GDAL/OGR Test Suite # Purpose: FlatGeobuf driver test suite. # Author: Björn Harrtell <bjorn@wololo.org> # ############################################################################### # Copyright (c) 2018-2019, Björn Harrtell <bjorn@wololo.org> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ############################################################################### import os from osgeo import ogr from osgeo import gdal import gdaltest import ogrtest import pytest ### utils def verify_flatgeobuf_copy(name, fids, names): if gdaltest.features is None: print('Missing features collection') return False fname = os.path.join('tmp', name + '.fgb') ds = ogr.Open(fname) if ds is None: print('Can not open \'' + fname + '\'') return False lyr = ds.GetLayer(0) if lyr is None: print('Missing layer') return False ###################################################### # Test attributes ret = ogrtest.check_features_against_list(lyr, 'FID', fids) if ret != 1: print('Wrong values in \'FID\' field') return False lyr.ResetReading() ret = ogrtest.check_features_against_list(lyr, 'NAME', names) if ret != 1: print('Wrong values in \'NAME\' field') return False ###################################################### # Test geometries lyr.ResetReading() for i in range(len(gdaltest.features)): orig_feat = gdaltest.features[i] feat = lyr.GetNextFeature() if feat is None: print('Failed trying to read feature') return False if ogrtest.check_feature_geometry(feat, orig_feat.GetGeometryRef(), max_error=0.001) != 0: print('Geometry test failed') gdaltest.features = None return False gdaltest.features = None lyr = None return True def copy_shape_to_flatgeobuf(name, wkbType, compress=None, options=[]): if gdaltest.flatgeobuf_drv is None: return False if compress is not None: if compress[0:5] == '/vsig': dst_name = os.path.join('/vsigzip/', 'tmp', name + '.fgb' + '.gz') elif compress[0:4] == '/vsiz': dst_name = os.path.join('/vsizip/', 'tmp', name + '.fgb' + '.zip') elif compress == '/vsistdout/': dst_name = compress else: return False else: dst_name = os.path.join('tmp', name + '.fgb') ds = gdaltest.flatgeobuf_drv.CreateDataSource(dst_name) if ds is None: return False ###################################################### # Create layer lyr = ds.CreateLayer(name, None, wkbType, options) if lyr is None: return False ###################################################### # Setup schema (all test shapefiles use common schmea) ogrtest.quick_create_layer_def(lyr, [('FID', ogr.OFTReal), ('NAME', ogr.OFTString)]) ###################################################### # Copy in shp dst_feat = ogr.Feature(feature_def=lyr.GetLayerDefn()) src_name = os.path.join('data', name + '.shp') shp_ds = ogr.Open(src_name) shp_lyr = shp_ds.GetLayer(0) feat = shp_lyr.GetNextFeature() gdaltest.features = [] while feat is not None: gdaltest.features.append(feat) dst_feat.SetFrom(feat) lyr.CreateFeature(dst_feat) feat = shp_lyr.GetNextFeature() shp_lyr = None lyr = None ds = None return True ### tests def test_ogr_flatgeobuf_1(): gdaltest.flatgeobuf_drv = ogr.GetDriverByName('FlatGeobuf') if gdaltest.flatgeobuf_drv is not None: return pytest.fail() def test_ogr_flatgeobuf_2(): fgb_ds = ogr.Open('data/testfgb/poly.fgb') fgb_lyr = fgb_ds.GetLayer(0) # test expected spatial filter feature count consistency c = fgb_lyr.GetFeatureCount() assert c == 10 c = fgb_lyr.SetSpatialFilterRect(478315.531250, 4762880.500000, 481645.312500, 4765610.500000) c = fgb_lyr.GetFeatureCount() assert c == 10 c = fgb_lyr.SetSpatialFilterRect(878315.531250, 4762880.500000, 881645.312500, 4765610.500000) c = fgb_lyr.GetFeatureCount() assert c == 0 c = fgb_lyr.SetSpatialFilterRect(479586.0,4764618.6,479808.2,4764797.8) c = fgb_lyr.GetFeatureCount() if ogrtest.have_geos(): assert c == 4 else: assert c == 5 # check that ResetReading does not affect subsequent enumeration or filtering num = len(list([x for x in fgb_lyr])) if ogrtest.have_geos(): assert num == 4 else: assert num == 5 fgb_lyr.ResetReading() c = fgb_lyr.GetFeatureCount() if ogrtest.have_geos(): assert c == 4 else: assert c == 5 fgb_lyr.ResetReading() num = len(list([x for x in fgb_lyr])) if ogrtest.have_geos(): assert num == 4 else: assert num == 5 def wktRoundtrip(expected): ds = ogr.GetDriverByName('FlatGeobuf').CreateDataSource('/vsimem/test.fgb') g = ogr.CreateGeometryFromWkt(expected) lyr = ds.CreateLayer('test', None, g.GetGeometryType(), []) f = ogr.Feature(lyr.GetLayerDefn()) f.SetGeometry(g) lyr.CreateFeature(f) ds = None fgb_ds = ogr.Open('/vsimem/test.fgb') fgb_lyr = fgb_ds.GetLayer(0) f = fgb_lyr.GetNextFeature() g = f.GetGeometryRef() actual = g.ExportToWkt() fgb_ds = None ogr.GetDriverByName('FlatGeobuf').DeleteDataSource('/vsimem/test.fgb') assert not gdal.VSIStatL('/vsimem/test.fgb') assert actual == expected def test_ogr_flatgeobuf_3(): if gdaltest.flatgeobuf_drv is None: pytest.skip() wktRoundtrip('POINT (1 1)') wktRoundtrip('POINT (1.1234 1.4321)') wktRoundtrip('POINT (1.12345678901234 1.4321)') # max precision 15 decimals #wktRoundtrip('POINT (1.123456789012341 1.4321)') # 16 decimals, will not pass wktRoundtrip('POINT (1.2 -2.1)') wktRoundtrip('MULTIPOINT (10 40,40 30,20 20,30 10)') wktRoundtrip('LINESTRING (1.2 -2.1,2.4 -4.8)') wktRoundtrip('MULTILINESTRING ((10 10,20 20,10 40),(40 40,30 30,40 20,30 10),(50 50,60 60,50 90))') wktRoundtrip('MULTILINESTRING ((1.2 -2.1,2.4 -4.8))') wktRoundtrip('POLYGON ((30 10,40 40,20 40,10 20,30 10))') wktRoundtrip('POLYGON ((35 10,45 45,15 40,10 20,35 10),(20 30,35 35,30 20,20 30))') wktRoundtrip('MULTIPOLYGON (((30 20,45 40,10 40,30 20)),((15 5,40 10,10 20,5 10,15 5)))') wktRoundtrip('MULTIPOLYGON (((40 40,20 45,45 30,40 40)),((20 35,10 30,10 10,30 5,45 20,20 35),(30 20,20 15,20 25,30 20)))') wktRoundtrip('MULTIPOLYGON (((30 20,45 40,10 40,30 20)))') wktRoundtrip('MULTIPOLYGON (((35 10,45 45,15 40,10 20,35 10),(20 30,35 35,30 20,20 30)))') #wktRoundtrip('POINT ZM (1 2 3 4)') # Run test_ogrsf def test_ogr_flatgeobuf_8(): import test_cli_utilities if test_cli_utilities.get_test_ogrsf_path() is None: pytest.skip() ret = gdaltest.runexternal(test_cli_utilities.get_test_ogrsf_path() + ' -ro data/testfgb/poly.fgb') assert ret.find('INFO') != -1 and ret.find('ERROR') == -1 def test_ogr_flatgeobuf_9(): if gdaltest.flatgeobuf_drv is None: pytest.skip() gdaltest.tests = [ ['gjpoint', [1], ['Point 1'], ogr.wkbPoint], ['gjline', [1], ['Line 1'], ogr.wkbLineString], ['gjpoly', [1], ['Polygon 1'], ogr.wkbPolygon], ['gjmultipoint', [1], ['MultiPoint 1'], ogr.wkbMultiPoint], ['gjmultiline', [2], ['MultiLine 1'], ogr.wkbMultiLineString], ['gjmultipoly', [2], ['MultiPoly 1'], ogr.wkbMultiPolygon] ] for i in range(len(gdaltest.tests)): test = gdaltest.tests[i] rc = copy_shape_to_flatgeobuf(test[0], test[3]) assert rc, ('Failed making copy of ' + test[0] + '.shp') rc = verify_flatgeobuf_copy(test[0], test[1], test[2]) assert rc, ('Verification of copy of ' + test[0] + '.shp failed') for i in range(len(gdaltest.tests)): test = gdaltest.tests[i] rc = copy_shape_to_flatgeobuf(test[0], test[3], None, ['SPATIAL_INDEX=NO']) assert rc, ('Failed making copy of ' + test[0] + '.shp') rc = verify_flatgeobuf_copy(test[0], test[1], test[2]) assert rc, ('Verification of copy of ' + test[0] + '.shp failed') # Test support for multiple layers in a directory def test_ogr_flatgeobuf_directory(): if gdaltest.flatgeobuf_drv is None: pytest.skip() ds = ogr.GetDriverByName('FlatGeobuf').CreateDataSource('/vsimem/multi_layer') with gdaltest.error_handler(): # name will be laundered ds.CreateLayer('foo<', geom_type = ogr.wkbPoint) ds.CreateLayer('bar', geom_type = ogr.wkbPoint) ds = None ds = gdal.OpenEx('/vsimem/multi_layer') assert set(ds.GetFileList()) == set(['/vsimem/multi_layer/bar.fgb', '/vsimem/multi_layer/foo_.fgb']) assert ds.GetLayer('foo<') assert ds.GetLayer('bar') ds = None ogr.GetDriverByName('FlatGeobuf').DeleteDataSource('/vsimem/multi_layer') assert not gdal.VSIStatL('/vsimem/multi_layer')
import re class DisambiguatorPrefixRule7(object): """Disambiguate Prefix Rule 7 Rule 7 : terCerv -> ter-CerV where C != 'r' """ def disambiguate(self, word): """Disambiguate Prefix Rule 7 Rule 7 : terCerv -> ter-CerV where C != 'r' """ matches = re.match(r'^ter([bcdfghjklmnpqrstvwxyz])er([aiueo].*)$', word) if matches: if matches.group(1) == 'r': return return matches.group(1) + 'er' + matches.group(2)
import librosa import soundfile import os, glob, pickle import numpy as np from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score def extract_feature(file_name, mfcc, chroma, mel): with soundfile.SoundFile(file_name) as sound_file: X = sound_file.read(dtype="float32") sample_rate=sound_file.samplerate if chroma: stft=np.abs(librosa.stft(X)) result=np.array([]) if mfcc: mfccs=np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=40).T, axis=0) result=np.hstack((result, mfccs)) if chroma: chroma=np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T,axis=0) result=np.hstack((result, chroma)) if mel: mel=np.mean(librosa.feature.melspectrogram(X, sr=sample_rate).T,axis=0) result=np.hstack((result, mel)) return result emotions={ '01':'neutral', '02':'calm', '03':'happy', '04':'sad', '05':'angry', '06':'fearful', '07':'disgust', '08':'surprised' } #DataFlair - Emotions to observe observed_emotions=['calm', 'happy', 'fearful', 'disgust'] def load_data(ts): tr=abs(1-ts) x,y=[],[] for file in glob.glob("D:\\python\\dl programs\\SP\\DATA\\Actor_*\\*.wav"): file_name=os.path.basename(file) emotion=emotions[file_name.split("-")[2]] print(emotion) if emotion not in observed_emotions: continue feature=extract_feature(file, mfcc=True, chroma=True, mel=True) x.append(feature) y.append(emotion) return train_test_split(np.array(x), y, test_size=ts, train_size=tr ,random_state=9) ts=0.25 load_data(ts) x_train,x_test,y_train,y_test=load_data(ts) print((x_train.shape[0], x_test.shape[0])) print(f'Features extracted: {x_train.shape[1]}') #DataFlair - Initialize the Multi Layer Perceptron Classifier model=MLPClassifier(alpha=0.01, batch_size=256, epsilon=1e-08, hidden_layer_sizes=(300,), learning_rate='adaptive', max_iter=500) model.fit(x_train,y_train) y_pred=model.predict(x_test) accuracy=accuracy_score(y_true=y_test, y_pred=y_pred) #DataFlair - Print the accuracy print("Accuracy: {:.2f}%".format(accuracy*100))
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Auto Model class. """ import logging from collections import OrderedDict from .configuration_auto import ( AlbertConfig, AutoConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, FlaubertConfig, GPT2Config, OpenAIGPTConfig, RobertaConfig, T5Config, TransfoXLConfig, XLMConfig, XLMRobertaConfig, XLNetConfig, ) from .configuration_utils import PretrainedConfig from .tokenization_albert import AlbertTokenizer from .tokenization_bert import BertTokenizer, BertTokenizerFast from .tokenization_bert_japanese import BertJapaneseTokenizer from .tokenization_camembert import CamembertTokenizer from .tokenization_ctrl import CTRLTokenizer from .tokenization_distilbert import DistilBertTokenizer, DistilBertTokenizerFast from .tokenization_flaubert import FlaubertTokenizer from .tokenization_gpt2 import GPT2Tokenizer, GPT2TokenizerFast from .tokenization_openai import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from .tokenization_roberta import RobertaTokenizer, RobertaTokenizerFast from .tokenization_t5 import T5Tokenizer from .tokenization_transfo_xl import TransfoXLTokenizer, TransfoXLTokenizerFast from .tokenization_xlm import XLMTokenizer from .tokenization_xlm_roberta import XLMRobertaTokenizer from .tokenization_xlnet import XLNetTokenizer logger = logging.getLogger(__name__) TOKENIZER_MAPPING = OrderedDict( [ (T5Config, (T5Tokenizer, None)), (DistilBertConfig, (DistilBertTokenizer, DistilBertTokenizerFast)), (AlbertConfig, (AlbertTokenizer, None)), (CamembertConfig, (CamembertTokenizer, None)), (XLMRobertaConfig, (XLMRobertaTokenizer, None)), (RobertaConfig, (RobertaTokenizer, RobertaTokenizerFast)), (BertConfig, (BertTokenizer, BertTokenizerFast)), (OpenAIGPTConfig, (OpenAIGPTTokenizer, OpenAIGPTTokenizerFast)), (GPT2Config, (GPT2Tokenizer, GPT2TokenizerFast)), (TransfoXLConfig, (TransfoXLTokenizer, TransfoXLTokenizerFast)), (XLNetConfig, (XLNetTokenizer, None)), (FlaubertConfig, (FlaubertTokenizer, None)), (XLMConfig, (XLMTokenizer, None)), (CTRLConfig, (CTRLTokenizer, None)), ] ) class AutoTokenizer: r""":class:`~transformers.AutoTokenizer` is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when created with the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` class method. The `from_pretrained()` method take care of returning the correct tokenizer class instance based on the `model_type` property of the config object, or when it's missing, falling back to using pattern matching on the `pretrained_model_name_or_path` string. The tokenizer class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `t5`: T5Tokenizer (T5 model) - contains `distilbert`: DistilBertTokenizer (DistilBert model) - contains `albert`: AlbertTokenizer (ALBERT model) - contains `camembert`: CamembertTokenizer (CamemBERT model) - contains `xlm-roberta`: XLMRobertaTokenizer (XLM-RoBERTa model) - contains `roberta`: RobertaTokenizer (RoBERTa model) - contains `bert`: BertTokenizer (Bert model) - contains `openai-gpt`: OpenAIGPTTokenizer (OpenAI GPT model) - contains `gpt2`: GPT2Tokenizer (OpenAI GPT-2 model) - contains `transfo-xl`: TransfoXLTokenizer (Transformer-XL model) - contains `xlnet`: XLNetTokenizer (XLNet model) - contains `xlm`: XLMTokenizer (XLM model) - contains `ctrl`: CTRLTokenizer (Salesforce CTRL model) This class cannot be instantiated using `__init__()` (throw an error). """ def __init__(self): raise EnvironmentError( "AutoTokenizer is designed to be instantiated " "using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): r""" Instantiate one of the tokenizer classes of the library from a pre-trained model vocabulary. The tokenizer class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `t5`: T5Tokenizer (T5 model) - contains `distilbert`: DistilBertTokenizer (DistilBert model) - contains `albert`: AlbertTokenizer (ALBERT model) - contains `camembert`: CamembertTokenizer (CamemBERT model) - contains `xlm-roberta`: XLMRobertaTokenizer (XLM-RoBERTa model) - contains `roberta`: RobertaTokenizer (RoBERTa model) - contains `bert-base-japanese`: BertJapaneseTokenizer (Bert model) - contains `bert`: BertTokenizer (Bert model) - contains `openai-gpt`: OpenAIGPTTokenizer (OpenAI GPT model) - contains `gpt2`: GPT2Tokenizer (OpenAI GPT-2 model) - contains `transfo-xl`: TransfoXLTokenizer (Transformer-XL model) - contains `xlnet`: XLNetTokenizer (XLNet model) - contains `xlm`: XLMTokenizer (XLM model) - contains `ctrl`: CTRLTokenizer (Salesforce CTRL model) Params: pretrained_model_name_or_path: either: - a string with the `shortcut name` of a predefined tokenizer to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `identifier name` of a predefined tokenizer that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. - a path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :func:`~transformers.PreTrainedTokenizer.save_pretrained` method, e.g.: ``./my_model_directory/``. - (not applicable to all derived classes) a path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (e.g. Bert, XLNet), e.g.: ``./my_model_directory/vocab.txt``. cache_dir: (`optional`) string: Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the standard cache should not be used. force_download: (`optional`) boolean, default False: Force to (re-)download the vocabulary files and override the cached versions if they exists. resume_download: (`optional`) boolean, default False: Do not delete incompletely recieved file. Attempt to resume the download if such a file exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. use_fast: (`optional`) boolean, default True: Indicate if transformers should try to load the fast version of the tokenizer (True) or use the Python one (False). inputs: (`optional`) positional arguments: will be passed to the Tokenizer ``__init__`` method. kwargs: (`optional`) keyword arguments: will be passed to the Tokenizer ``__init__`` method. Can be used to set special tokens like ``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``. See parameters in the doc string of :class:`~transformers.PreTrainedTokenizer` for details. Examples:: # Download vocabulary from S3 and cache. tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') # Download vocabulary from S3 (user-uploaded) and cache. tokenizer = AutoTokenizer.from_pretrained('dbmdz/bert-base-german-cased') # If vocabulary files are in a directory (e.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`) tokenizer = AutoTokenizer.from_pretrained('./test/bert_saved_model/') """ config = kwargs.pop("config", None) if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) if "bert-base-japanese" in pretrained_model_name_or_path: return BertJapaneseTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) use_fast = kwargs.pop("use_fast", True) for config_class, (tokenizer_class_py, tokenizer_class_fast) in TOKENIZER_MAPPING.items(): if isinstance(config, config_class): if tokenizer_class_fast and use_fast: return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) else: return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) raise ValueError( "Unrecognized configuration class {} to build an AutoTokenizer.\n" "Model type should be one of {}.".format( config.__class__, ", ".join(c.__name__ for c in TOKENIZER_MAPPING.keys()) ) )
""" WSGI config for ifollow project. This module contains the WSGI application used by Django's development server and any production WSGI deployments. It should expose a module-level variable named ``application``. Django's ``runserver`` and ``runfcgi`` commands discover this application via the ``WSGI_APPLICATION`` setting. Usually you will have the standard Django WSGI application here, but it also might make sense to replace the whole Django WSGI application with a custom one that later delegates to the Django one. For example, you could introduce WSGI middleware here, or combine a Django application with an application of another framework. """ import os # We defer to a DJANGO_SETTINGS_MODULE already in the environment. This breaks # if running multiple sites in the same mod_wsgi process. To fix this, use # mod_wsgi daemon mode with each site in its own daemon process, or use # os.environ["DJANGO_SETTINGS_MODULE"] = "ifollow.settings" os.environ.setdefault("DJANGO_SETTINGS_MODULE", "ifollow.settings") # This application object is used by any WSGI server configured to use this # file. This includes Django's development server, if the WSGI_APPLICATION # setting points here. from django.core.wsgi import get_wsgi_application application = get_wsgi_application() # Apply WSGI middleware here. # from helloworld.wsgi import HelloWorldApplication # application = HelloWorldApplication(application)
""" ==================================================== Compute LCMV inverse solution in volume source space ==================================================== Compute LCMV beamformers on an auditory evoked dataset in a volume source space, and show activation on ``fsaverage``. """ # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # # License: BSD (3-clause) import mne from mne.datasets import sample, fetch_fsaverage from mne.beamformer import make_lcmv, apply_lcmv print(__doc__) ############################################################################### # Data preprocessing: data_path = sample.data_path() subjects_dir = data_path + '/subjects' raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-vol-7-fwd.fif' fetch_fsaverage(subjects_dir) # ensure fsaverage src exists fname_fs_src = subjects_dir + '/fsaverage/bem/fsaverage-vol-5-src.fif' # Get epochs event_id, tmin, tmax = [1, 2], -0.2, 0.5 # Read forward model forward = mne.read_forward_solution(fname_fwd) # Setup for reading the raw data raw = mne.io.read_raw_fif(raw_fname, preload=True) raw.info['bads'] = ['MEG 2443', 'EEG 053'] # 2 bads channels events = mne.find_events(raw) # Pick the channels of interest raw.pick(['meg', 'eog']) # Read epochs proj = False # already applied epochs = mne.Epochs(raw, events, event_id, tmin, tmax, baseline=(None, 0), preload=True, proj=proj, reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6)) evoked = epochs.average() # Visualize sensor space data evoked.plot_joint() ############################################################################### # Compute covariance matrices # --------------------------- # # These matrices need to be inverted at some point, but since they are rank # deficient, some regularization needs to be done for them to be invertable. # Regularization can be added either by the :func:`mne.compute_covariance` # function or later by the :func:`mne.beamformer.make_lcmv` function. In this # example, we'll go with the latter option, so we specify ``method='empirical`` # here. # Read regularized noise covariance and compute regularized data covariance noise_cov = mne.compute_covariance(epochs, tmin=tmin, tmax=0, method='empirical') data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.15, method='empirical') ############################################################################### # Compute beamformer filters # -------------------------- # # Compute weights of free orientation (vector) beamformer with weight # normalization (neural activity index, NAI). Providing a noise covariance # matrix enables whitening of the data and forward solution. Source orientation # is optimized by setting pick_ori to 'max-power'. # weight_norm can also be set to 'unit-noise-gain'. Source orientation can also # be 'normal' (but only when using a surface-based source space) or None, # which computes a vector beamfomer. Note, however, that not all combinations # of orientation selection and weight normalization are implemented yet. filters = make_lcmv(evoked.info, forward, data_cov, reg=0.05, noise_cov=noise_cov, pick_ori='max-power', weight_norm='nai', rank=None) print(filters) # You can save these with: # filters.save('filters-lcmv.h5') # Apply this spatial filter to the evoked data. stc = apply_lcmv(evoked, filters, max_ori_out='signed') ############################################################################### # Plot source space activity # -------------------------- # You can save result in stc files with: # stc.save('lcmv-vol') lims = [0.3, 0.6, 0.9] stc.plot( src=forward['src'], subject='sample', subjects_dir=subjects_dir, clim=dict(kind='value', pos_lims=lims), mode='stat_map', initial_time=0.1, verbose=True) ############################################################################### # Now let's plot this on a glass brain, which will automatically transform the # data to MNI Talairach space: # sphinx_gallery_thumbnail_number = 4 stc.plot( src=forward['src'], subject='sample', subjects_dir=subjects_dir, mode='glass_brain', clim=dict(kind='value', lims=lims), initial_time=0.1, verbose=True) ############################################################################### # Finally let's get another view, this time plotting again a ``'stat_map'`` # style but using volumetric morphing to get data to fsaverage space, # which we can get by passing a :class:`mne.SourceMorph` as the ``src`` # argument to `mne.VolSourceEstimate.plot`. To save a bit of speed when # applying the morph, we will crop the STC: src_fs = mne.read_source_spaces(fname_fs_src) morph = mne.compute_source_morph( forward['src'], subject_from='sample', src_to=src_fs, subjects_dir=subjects_dir, niter_sdr=[10, 10, 5], niter_affine=[10, 10, 5], # just for speed verbose=True) stc_fs = morph.apply(stc.copy().crop(0.05, 0.18)) stc_fs.plot( src=src_fs, mode='stat_map', initial_time=0.1, subjects_dir=subjects_dir, clim=dict(kind='value', pos_lims=lims), verbose=True)
## -*- coding: utf-8 -*- from .vendor.Qt import QtCore, QtGui, QtWidgets import maya.cmds as cmds import maya.mel as mel import maya.OpenMayaUI as OpenMayaUI import maya.OpenMaya as OpenMaya import json import os def maya_version(): return int(cmds.about(v=True)[:4]) def maya_api_version(): return int(cmds.about(api=True)) if 2017 <= maya_version(): import shiboken2 as shiboken else: import shiboken def get_anim_curve_editor(): return cmds.animCurveEditor('graphEditor1GraphEd', q=True, control=True) def get_play_back_slider(): return mel.eval("$_=$gPlayBackSlider") def get_timeline_wiget(): _pbs = get_play_back_slider() _c = OpenMayaUI.MQtUtil.findControl(_pbs) w = shiboken.wrapInstance(long(_c), QtWidgets.QWidget) return w def get_anim_curve_editor_wiget(): _pbs = get_anim_curve_editor() _c = OpenMayaUI.MQtUtil.findControl(_pbs) if _c is None: return None w = shiboken.wrapInstance(long(_c), QtWidgets.QWidget) return w.children()[1] def get_timeline_highlight_range(): _pbs = get_play_back_slider() _r = cmds.timeControl(_pbs, q=True, ra=True) return _r[0], _r[1] def get_timeline_renge(): r = cmds.timeControl(get_play_back_slider(), query=True, ra=True) return [int(r[0]), int(r[1]) - 1] def draw_data_to_multi_line_data(draw_data): lines = [] for d in draw_data: _dfr = d['fr'] _append = False for line in lines: _overlap = False for l in line: _lfr = l['fr'] # 既存のデータのフレーム範囲に追加分のフレームが被っている if _lfr[0] <= _dfr[0] <= _lfr[1] or _lfr[0] <= _dfr[1] <= _lfr[1]: _overlap = True break # 追加分のフレーム範囲が既存のデータをすっぽり包んでいる if _dfr[0] <= _lfr[0] <= _dfr[1] and _dfr[0] <= _lfr[1] <= _dfr[1]: _overlap = True break if not _overlap: line.append(d) _append = True break # 新しい行追加 if not _append: lines.append([d]) return lines #----------------------------------------------------------------------------- # EOF #-----------------------------------------------------------------------------
# coding=utf-8 # Copyright 2017-2019 The THUMT Authors from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys _ENGINE = None def enable_distributed_training(): global _ENGINE try: import horovod.tensorflow as hvd _ENGINE = hvd hvd.init() except ImportError: sys.stderr.write("Error: You must install horovod first in order to" " enable distributed training.\n") exit() def is_distributed_training_mode(): return _ENGINE is not None def rank(): return _ENGINE.rank() def local_rank(): return _ENGINE.local_rank() def size(): return _ENGINE.size() def all_reduce(tensor): return _ENGINE.allreduce(tensor, compression=_ENGINE.Compression.fp16) def get_broadcast_hook(): return _ENGINE.BroadcastGlobalVariablesHook(0)
from django.urls import reverse from oscar.test.testcases import WebTestCase from oscar.apps.partner import models class TestPartnerDashboard(WebTestCase): is_staff = True def test_allows_a_partner_user_to_be_created(self): partner = models.Partner.objects.create( name="Acme Ltd") url = reverse('dashboard:partner-list') list_page = self.get(url) detail_page = list_page.click("Manage partner and users") user_page = detail_page.click("Link a new user") form = user_page.form form['first_name'] = "Maik" form['last_name'] = "Hoepfel" form['email'] = "maik@gmail.com" form['password1'] = "helloworld" form['password2'] = "helloworld" form.submit() self.assertEqual(1, partner.users.all().count())
default_app_config = 'repeating_tasks.apps.RepeatingTasksConfig'
import external_movie_data import fresh_tomatoes import json import media def validate_movie_info(movie_info): # TODO: Aritmethic Error handling # Convert and round rating range rating = round(movie_info['rating'] * 5 / 10, 1) # TODO: Supply the list to the view and loop through it # Check if genres list is empty genres_list = movie_info['genres'] if movie_info['genres'] else ['Uncategorized'] # Check if genres list is empty overview = movie_info['overview'] if movie_info['overview'] else 'No overview available' # Check if tagline is empty tagline = movie_info['tagline'] if movie_info['tagline'] else '--' return rating, genres_list, overview, tagline def construct_movie(movie_info, movies_list): # Obtain validated movie's info rating, genres_list, overview, tagline = validate_movie_info(movie_info) # Create a custom media 'Movie' object and populate a list of movies movie = media.Movie(movie_info['title'].encode('utf-8'), overview.encode('utf-8'), movie_info['poster_image'], movie_info['video_trailer'], tagline, genres_list, movie_info['release_date'], movie_info['runtime'], rating) movies_list.append(movie) # List of favourite movies, fill in with yours movies_searchlist = ['the third man', 'modern times', 'cinema paradiso', 'the asphalt jungle', '12 angry men', "schindler's list", 'Les quatre cents coups ', 'el angel exterminador', 'midnight cowboy', 'the lady from shanghai', 'double indemnity', 'shadow of a doubt', 'M' , 'citizen kane', 'dr strangelove'] # Empty list to be populated with media 'Movie' objects movies = [] print str(len(movies_searchlist)) + " movies found" print "Connecting 'themoviedb' to get some movie data.." # Loop through movies to grab some cool info for index, movie in enumerate(movies_searchlist): index += 1 movie_id = external_movie_data.get_movie_id(movie) if movie_id != -1: movie_json = external_movie_data.get_movie_info(movie_id) print 'Movie #' + str(index) + ' fetched!' # Create own 'Movie' object and append to list construct_movie(json.loads(movie_json), movies) # Call the helper function to build dynamically an static HTML page fresh_tomatoes.open_movies_page(movies)
import numpy as np from cottonwood.core.activation import Tanh from cottonwood.core.initializers import LSUV from cottonwood.core.layers.generic_layer import GenericLayer from cottonwood.core.optimizers import SGD import cottonwood.core.toolbox as tb class Dense(GenericLayer): def __init__( self, n_outputs, m_inputs=None, activation_function=None, dropout_rate=0, initializer=None, previous_layer=None, optimizer=None, ): self.previous_layer = previous_layer if m_inputs is not None: self.m_inputs = m_inputs else: self.m_inputs = self.previous_layer.y.size self.n_outputs = int(n_outputs) self.activation_function = activation_function self.dropout_rate = dropout_rate if activation_function is None: self.activation_function = Tanh() else: self.activation_function = activation_function if initializer is None: self.initializer = LSUV() else: self.initializer = initializer if optimizer is None: self.optimizer = SGD() else: self.optimizer = optimizer # Choose random weights. # Inputs match to rows. Outputs match to columns. # Add one to m_inputs to account for the bias term. self.weights = self.initializer.initialize( self.m_inputs + 1, self.n_outputs) self.reset() self.regularizers = [] def __str__(self): """ Make a descriptive, human-readable string for this layer. """ str_parts = [ "fully connected", f"number of inputs: {self.m_inputs}", f"number of outputs: {self.n_outputs}", "activation function:" + tb.indent( self.activation_function.__str__()), "initialization:" + tb.indent(self.initializer.__str__()), "optimizer:" + tb.indent(self.optimizer.__str__()), ] for regularizer in self.regularizers: str_parts.append( "regularizer:" + tb.indent(regularizer.__str__())) return "\n".join(str_parts) def add_regularizer(self, new_regularizer): self.regularizers.append(new_regularizer) def reset(self): self.x = np.zeros((1, self.m_inputs)) self.y = np.zeros((1, self.n_outputs)) self.de_dx = np.zeros((1, self.m_inputs)) self.de_dy = np.zeros((1, self.n_outputs)) def forward_pass(self, evaluating=False, **kwargs): """ Propagate the inputs forward through the network. evaluating: boolean Is this part of a training run or an evaluation run? """ if self.previous_layer is not None: self.x += self.previous_layer.y # Apply dropout only during training runs. if evaluating: dropout_rate = 0 else: dropout_rate = self.dropout_rate if dropout_rate > 0: self.i_dropout = np.zeros(self.x.size, dtype=bool) self.i_dropout[np.where( np.random.uniform(size=self.x.size) < dropout_rate)] = True self.x[:, self.i_dropout] = 0 self.x[:, np.logical_not(self.i_dropout)] *= 1 / (1 - dropout_rate) else: self.i_dropout = None bias = np.ones((1, 1)) x_w_bias = np.concatenate((self.x, bias), axis=1) v = x_w_bias @ self.weights self.y = self.activation_function.calc(v) def backward_pass(self): """ Propagate the outputs back through the layer. """ bias = np.ones((1, 1)) x_w_bias = np.concatenate((self.x, bias), axis=1) dy_dv = self.activation_function.calc_d(self.y) # v = self.x @ self.weights dv_dw = x_w_bias.transpose() dv_dx = self.weights.transpose() dy_dw = dv_dw @ dy_dv self.de_dw = self.de_dy * dy_dw for regularizer in self.regularizers: regularizer.pre_optim_update(self) self.optimizer.update(self) for regularizer in self.regularizers: regularizer.post_optim_update(self) self.de_dx = (self.de_dy * dy_dv) @ dv_dx # Remove the dropped-out inputs from this run. de_dx_no_bias = self.de_dx[:, :-1] if self.i_dropout is not None: de_dx_no_bias[:, self.i_dropout] = 0 # Remove the bias node from the gradient vector. self.previous_layer.de_dy += de_dx_no_bias
import math import numpy as np import tensorflow as tf from ..learning.nn.injectors import SkipGramInjector def sensor2vec(num_sensors, sensor_event_list, embedding_size=20, batch_size=128, num_skips=8, skip_window=5, num_neg_samples=64, learning_rate=1.0): """Sensor to Vector """ if num_neg_samples > num_sensors: num_neg_samples = num_sensors # Initialize a SkipGram Injector injector = SkipGramInjector(sensor_event_list, batch_size, num_skips, skip_window) # Build Training Model graph = tf.Graph() with graph.as_default(): # Input Place Holder train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) # As we normally do not have too many sensors - it is OK to use all of them valid_dataset = tf.constant([i for i in range(num_sensors)], dtype=tf.int32) # Only CPU supports NCE loss with tf.device('/cpu:0'): # Look up embeddings for inputs. embeddings = tf.Variable( tf.random_uniform([num_sensors, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) # Construct the variables for the NCE loss nce_weights = tf.Variable( tf.truncated_normal([num_sensors, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([num_sensors])) # Compute the average NCE loss for the batch. # tf.nce_loss automatically draws a new sample of the negative labels each # time we evaluate the loss. loss = tf.reduce_mean( tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_neg_samples, num_classes=num_sensors)) # Construct the Optimizer optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) # Compute the cosine similarity between minibatch examples and all embeddings. norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup( normalized_embeddings, valid_dataset) similarity = tf.matmul( valid_embeddings, normalized_embeddings, transpose_b=True) # Add variable initializer. init = tf.initialize_all_variables() # Begin training. num_steps = 100001 with tf.Session(graph=graph) as session: # We must initialize all variables before we use them. init.run() print("Initialized") average_loss = 0 for step in range(num_steps): batch_inputs, batch_labels = injector.next_batch() feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} # We perform one update step by evaluating the optimizer op (including it # in the list of returned values for session.run() _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict) average_loss += loss_val if step % 2000 == 0: if step > 0: average_loss /= 2000 # The average loss is an estimate of the loss over the last 2000 batches. print("Average loss at step ", step, ": ", average_loss) average_loss = 0 final_embeddings = normalized_embeddings.eval() final_similarity = 1 - similarity.eval() distance_matrix = final_similarity / np.max(final_similarity, axis=1)[:, None] return final_embeddings, distance_matrix def sensor2vec_data(sensor_list, event_list, embedding_size=20, batch_size=128, num_skips=8, skip_window=5, num_neg_samples=64, learning_rate=1.0, ignore_off=True): """Transform sensor to high dimensional space Similar to word embedding used in natural language processing system, we want to represent sensors using in a synthesized vector space as well, instead of using an arbitrary labels for each sensors without any useful information. The methods used to find word embeddings can be classified into two categories: count-based methods (Latent Semantic Analysis) and predictive models. In this implementation for mapping sensor into high dimension vector space, we use skip-gram negative sampling models. Args: sensor_list (:obj:`list` of :obj:`dict`): List of dictionary containing sensor information. event_list (:obj:`list` of :obj:`dict`): List of events. embedding_size (:obj:`int`): The size of embedding vector. batch_size (:obj:`int`): The number of batch used in training num_skips (:obj:`int`): How many times to re-use an input to generate a label in skip-gram model. skip_window (:obj:`int`): How many items to consider left or right in skip-gram model. num_neg_samples (:obj:`int`): Number of negative samples to draw from the vocabulary. ignore_off (:obj:`bool`): Ignore motion-sensor with ``Off`` state in event.rst list. Please refer to :func:`sensor_distance` for an example of ``sensor_list``. Please refer to :func:`sensor_mi_distance` for an example of ``event_list``. """ # Put sensor in hash table for fast fetch of index num_sensors = len(sensor_list) # Negative samples cannot exceed sensor numbers if num_neg_samples > num_sensors: num_neg_samples = num_sensors # Store sensor ID in hash table for faster access sensor_dict = {} for i in range(num_sensors): sensor_dict[sensor_list[i]['name']] = i # Generate event.rst sensor list event_sensor_list = [] for event_entry in event_list: if ignore_off and event_entry['sensor_status'].upper() == "OFF": continue event_sensor_list.append(sensor_dict[event_entry['sensor_id']]) # Initialize a SkipGram Injector injector = SkipGramInjector(event_sensor_list, batch_size, num_skips, skip_window) # Build Training Model graph = tf.Graph() with graph.as_default(): # Input Place Holder train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) # As we normally do not have too many sensors - it is OK to use all of them valid_dataset = tf.constant([i for i in range(num_sensors)], dtype=tf.int32) # Only CPU supports NCE loss with tf.device('/cpu:0'): # Look up embeddings for inputs. embeddings = tf.Variable( tf.random_uniform([num_sensors, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) # Construct the variables for the NCE loss nce_weights = tf.Variable( tf.truncated_normal([num_sensors, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([num_sensors])) # Compute the average NCE loss for the batch. # tf.nce_loss automatically draws a new sample of the negative labels each # time we evaluate the loss. loss = tf.reduce_mean( tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_neg_samples, num_classes=num_sensors)) # Construct the Optimizer optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) # Compute the cosine similarity between minibatch examples and all embeddings. norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup( normalized_embeddings, valid_dataset) similarity = tf.matmul( valid_embeddings, normalized_embeddings, transpose_b=True) # Add variable initializer. init = tf.initialize_all_variables() # Begin training. num_steps = 100001 with tf.Session(graph=graph) as session: # We must initialize all variables before we use them. init.run() print("Initialized") average_loss = 0 for step in range(num_steps): batch_inputs, batch_labels = injector.next_batch() feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} # We perform one update step by evaluating the optimizer op (including it # in the list of returned values for session.run() _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict) average_loss += loss_val if step % 2000 == 0: if step > 0: average_loss /= 2000 # The average loss is an estimate of the loss over the last 2000 batches. print("Average loss at step ", step, ": ", average_loss) average_loss = 0 # Note that this is expensive (~20% slowdown if computed every 500 steps) if step % 10000 == 0: sim = similarity.eval() for i in range(num_sensors): valid_sensor = sensor_list[i]['name'] top_k = 8 # number of nearest neighbors nearest = (-sim[i, :]).argsort()[1:top_k + 1] log_str = "Nearest to %s:" % valid_sensor for k in range(top_k): close_sensor = sensor_list[nearest[k]]['name'] log_str = "%s %s," % (log_str, close_sensor) print(log_str) final_embeddings = normalized_embeddings.eval() final_similarity = 1 - similarity.eval() distance_matrix = final_similarity / np.max(final_similarity, axis=1)[:,None] # try: # from sklearn.manifold import TSNE # import matplotlib.pyplot as plt # # tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) # low_dim_embs = tsne.fit_transform(final_embeddings) # labels = [sensor_list[i]['name'] for i in range(num_sensors)] # # assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings" # plt.figure(figsize=(18, 18)) # in inches # for i, label in enumerate(labels): # x, y = low_dim_embs[i, :] # plt.scatter(x, y) # plt.annotate(label, # xy=(x, y), # xytext=(5, 2), # textcoords='offset points', # ha='right', # va='bottom') # plt.show() # except ImportError: # print("Please install sklearn, matplotlib, and scipy to visualize embeddings.") return final_embeddings, distance_matrix
# Uses python3 import sys """ def get_majority_element(a, left, right): if left == right: return -1 if left + 1 == right: return a[left] #write your code here return -1 """ def get_majority_element_hash_approach(a, n): new = {} for e in a: if e not in new: new[e] = 1 else: new[e] += 1 for keys, val in new.items(): if val > n / 2: return 1 return 0 if __name__ == '__main__': n = int(input()) a = list(map(int, input().split())) # if get_majority_element(a, 0, n) != -1: if get_majority_element_hash_approach(a, n): print(1) else: print(0)
from kivy.uix.button import Button from kivy.properties import StringProperty, BooleanProperty, NumericProperty, ObjectProperty from kivy.graphics import Color, Rectangle, RoundedRectangle, Ellipse from kivy.lang import Builder Builder.load_string(''' <FlatButton>: background_normal: '' background_color: [0,0,0,0] text_size: self.size valign: 'middle' halign: 'center' markup: True ''') class RoundedButton(FlatButton): radius = NumericProperty(10) def update_back(self): with self.canvas.before: self.color = Color(rgba=self.background_color) self.rect = RoundedRectangle( pos=self.pos, size=self.size, radius=self.radius) def on_radius(self, _, value): """When the radius is set/changed, this function is called to update the radius of the button on the canvas Parameters ---------- _ : widget This is usually the instance calling the function, we dont care about this value : number The value of the radius property Returns ------- None """ self.rect.radius = value class FlatButton(Button): """A normal ::class `kivy.uix.button.Button` with all the visual representations removed, this button basically just looks like a label, but ofcourse, unlike a label, its clickable. Since this inherits from a normal Button, it supports all of its properties. Usage --------- from ukivy.button import FlatButton ... btn = FlatButton(text='myButton') some_widget.add_widget(btn) ... """ pass
""" ASGI config for reportsmanagement project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'reportsmanagement.settings') application = get_asgi_application()
""" Django settings for app project. Generated by 'django-admin startproject' using Django 3.2.9. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-nao&q&bu0i4@-&!nep#b%6x=-_f@-4hu)tb!09w8nujq5nwma*' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'app.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 8 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from isi_sdk_8_2_1.models.node_driveconfig_node_alert import NodeDriveconfigNodeAlert # noqa: F401,E501 from isi_sdk_8_2_1.models.node_driveconfig_node_allow import NodeDriveconfigNodeAllow # noqa: F401,E501 from isi_sdk_8_2_1.models.node_driveconfig_node_automatic_replacement_recognition import NodeDriveconfigNodeAutomaticReplacementRecognition # noqa: F401,E501 from isi_sdk_8_2_1.models.node_driveconfig_node_instant_secure_erase import NodeDriveconfigNodeInstantSecureErase # noqa: F401,E501 from isi_sdk_8_2_1.models.node_driveconfig_node_log import NodeDriveconfigNodeLog # noqa: F401,E501 from isi_sdk_8_2_1.models.node_driveconfig_node_reboot import NodeDriveconfigNodeReboot # noqa: F401,E501 from isi_sdk_8_2_1.models.node_driveconfig_node_spin_wait import NodeDriveconfigNodeSpinWait # noqa: F401,E501 from isi_sdk_8_2_1.models.node_driveconfig_node_stall import NodeDriveconfigNodeStall # noqa: F401,E501 class ClusterNodeDriveDConfig(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'alert': 'NodeDriveconfigNodeAlert', 'allow': 'NodeDriveconfigNodeAllow', 'automatic_replacement_recognition': 'NodeDriveconfigNodeAutomaticReplacementRecognition', 'instant_secure_erase': 'NodeDriveconfigNodeInstantSecureErase', 'log': 'NodeDriveconfigNodeLog', 'reboot': 'NodeDriveconfigNodeReboot', 'spin_wait': 'NodeDriveconfigNodeSpinWait', 'stall': 'NodeDriveconfigNodeStall' } attribute_map = { 'alert': 'alert', 'allow': 'allow', 'automatic_replacement_recognition': 'automatic_replacement_recognition', 'instant_secure_erase': 'instant_secure_erase', 'log': 'log', 'reboot': 'reboot', 'spin_wait': 'spin_wait', 'stall': 'stall' } def __init__(self, alert=None, allow=None, automatic_replacement_recognition=None, instant_secure_erase=None, log=None, reboot=None, spin_wait=None, stall=None): # noqa: E501 """ClusterNodeDriveDConfig - a model defined in Swagger""" # noqa: E501 self._alert = None self._allow = None self._automatic_replacement_recognition = None self._instant_secure_erase = None self._log = None self._reboot = None self._spin_wait = None self._stall = None self.discriminator = None if alert is not None: self.alert = alert if allow is not None: self.allow = allow if automatic_replacement_recognition is not None: self.automatic_replacement_recognition = automatic_replacement_recognition if instant_secure_erase is not None: self.instant_secure_erase = instant_secure_erase if log is not None: self.log = log if reboot is not None: self.reboot = reboot if spin_wait is not None: self.spin_wait = spin_wait if stall is not None: self.stall = stall @property def alert(self): """Gets the alert of this ClusterNodeDriveDConfig. # noqa: E501 Configuration setting for drive alerts. # noqa: E501 :return: The alert of this ClusterNodeDriveDConfig. # noqa: E501 :rtype: NodeDriveconfigNodeAlert """ return self._alert @alert.setter def alert(self, alert): """Sets the alert of this ClusterNodeDriveDConfig. Configuration setting for drive alerts. # noqa: E501 :param alert: The alert of this ClusterNodeDriveDConfig. # noqa: E501 :type: NodeDriveconfigNodeAlert """ self._alert = alert @property def allow(self): """Gets the allow of this ClusterNodeDriveDConfig. # noqa: E501 Configuration settings for drive formatting. # noqa: E501 :return: The allow of this ClusterNodeDriveDConfig. # noqa: E501 :rtype: NodeDriveconfigNodeAllow """ return self._allow @allow.setter def allow(self, allow): """Sets the allow of this ClusterNodeDriveDConfig. Configuration settings for drive formatting. # noqa: E501 :param allow: The allow of this ClusterNodeDriveDConfig. # noqa: E501 :type: NodeDriveconfigNodeAllow """ self._allow = allow @property def automatic_replacement_recognition(self): """Gets the automatic_replacement_recognition of this ClusterNodeDriveDConfig. # noqa: E501 Configuration settings for Automatic Replacement Recognition (ARR). # noqa: E501 :return: The automatic_replacement_recognition of this ClusterNodeDriveDConfig. # noqa: E501 :rtype: NodeDriveconfigNodeAutomaticReplacementRecognition """ return self._automatic_replacement_recognition @automatic_replacement_recognition.setter def automatic_replacement_recognition(self, automatic_replacement_recognition): """Sets the automatic_replacement_recognition of this ClusterNodeDriveDConfig. Configuration settings for Automatic Replacement Recognition (ARR). # noqa: E501 :param automatic_replacement_recognition: The automatic_replacement_recognition of this ClusterNodeDriveDConfig. # noqa: E501 :type: NodeDriveconfigNodeAutomaticReplacementRecognition """ self._automatic_replacement_recognition = automatic_replacement_recognition @property def instant_secure_erase(self): """Gets the instant_secure_erase of this ClusterNodeDriveDConfig. # noqa: E501 Configuration settings for instant secure erase (ISE). # noqa: E501 :return: The instant_secure_erase of this ClusterNodeDriveDConfig. # noqa: E501 :rtype: NodeDriveconfigNodeInstantSecureErase """ return self._instant_secure_erase @instant_secure_erase.setter def instant_secure_erase(self, instant_secure_erase): """Sets the instant_secure_erase of this ClusterNodeDriveDConfig. Configuration settings for instant secure erase (ISE). # noqa: E501 :param instant_secure_erase: The instant_secure_erase of this ClusterNodeDriveDConfig. # noqa: E501 :type: NodeDriveconfigNodeInstantSecureErase """ self._instant_secure_erase = instant_secure_erase @property def log(self): """Gets the log of this ClusterNodeDriveDConfig. # noqa: E501 Configuration settings for drive statistics logs. # noqa: E501 :return: The log of this ClusterNodeDriveDConfig. # noqa: E501 :rtype: NodeDriveconfigNodeLog """ return self._log @log.setter def log(self, log): """Sets the log of this ClusterNodeDriveDConfig. Configuration settings for drive statistics logs. # noqa: E501 :param log: The log of this ClusterNodeDriveDConfig. # noqa: E501 :type: NodeDriveconfigNodeLog """ self._log = log @property def reboot(self): """Gets the reboot of this ClusterNodeDriveDConfig. # noqa: E501 Configuration settings for a node reboot due to a drive error. # noqa: E501 :return: The reboot of this ClusterNodeDriveDConfig. # noqa: E501 :rtype: NodeDriveconfigNodeReboot """ return self._reboot @reboot.setter def reboot(self, reboot): """Sets the reboot of this ClusterNodeDriveDConfig. Configuration settings for a node reboot due to a drive error. # noqa: E501 :param reboot: The reboot of this ClusterNodeDriveDConfig. # noqa: E501 :type: NodeDriveconfigNodeReboot """ self._reboot = reboot @property def spin_wait(self): """Gets the spin_wait of this ClusterNodeDriveDConfig. # noqa: E501 Configuration settings for sleeping the drive daemon before node is rescanned. # noqa: E501 :return: The spin_wait of this ClusterNodeDriveDConfig. # noqa: E501 :rtype: NodeDriveconfigNodeSpinWait """ return self._spin_wait @spin_wait.setter def spin_wait(self, spin_wait): """Sets the spin_wait of this ClusterNodeDriveDConfig. Configuration settings for sleeping the drive daemon before node is rescanned. # noqa: E501 :param spin_wait: The spin_wait of this ClusterNodeDriveDConfig. # noqa: E501 :type: NodeDriveconfigNodeSpinWait """ self._spin_wait = spin_wait @property def stall(self): """Gets the stall of this ClusterNodeDriveDConfig. # noqa: E501 Configuration settings to evaluate a drive stall. # noqa: E501 :return: The stall of this ClusterNodeDriveDConfig. # noqa: E501 :rtype: NodeDriveconfigNodeStall """ return self._stall @stall.setter def stall(self, stall): """Sets the stall of this ClusterNodeDriveDConfig. Configuration settings to evaluate a drive stall. # noqa: E501 :param stall: The stall of this ClusterNodeDriveDConfig. # noqa: E501 :type: NodeDriveconfigNodeStall """ self._stall = stall def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ClusterNodeDriveDConfig): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
# ******************* BLOG MODULE ****************************** # # ** Created by Yossep # ** github: https://github.com/j2B237/ # ** Project : Joblogueur # ** Description: # # Within this module we have many functions designed to help display posts # Methods such as : # display all posts # display posts per category # display individual post # register email user for the newsletter # ************************************************************************ # # Third party import from flask import Blueprint, render_template, flash, request, redirect, url_for from flask_mail import Message # Local import from FlaskApp.models import Post, Category, Moderator, Comment from FlaskApp.forms import CommentForm from . import db, ext, mail bp = Blueprint('blog', __name__) # Fake data to seed the website view fake_Category = [ { 'id': 1, 'category_name': "10 bonnes raisons", 'color': 'primary' }, { 'id': 2, 'category_name': "Comment réussir ?", 'color': 'success', }, { 'id': 3, 'category_name': "Offres et formations", 'color': 'warning' } ] fake_moderators = [ { 'id': 1, 'username': 'admin', 'email': 'admin@exemple.com', 'password': 'admin237', 'address1': 'address1', 'address2': 'address2', 'city': 'city', 'state': 'state', 'country': 'country', 'zipcode': 'zipcode', 'is_admin': True, 'image_file': 'default.jpg', 'created_on': '21/02/2021', 'posts': [] } ] fake_posts = [ { 'id': 1, 'title': 'Comment réussir à gagner de l\'argent sur internet', 'introduction': 'Qu\’ils soient aujourd\’hui milliardaires ou non, reconnus à l\’international ou en France.', 'p_intro': 'Ils ont tous commencer simplement. Pour toi modeste citoyen qui voudrait gagner de l\'argent pour arrondir tes fins du mois, nous avons sélectionner une liste de sites et bonnes astuces à essayer', 'h1': "", 'p_h1': "", 'h2': "", 'p_h2': "", 'h3': "", 'p_h3': "", 'h4': "", 'p_h4': "", 'h5': "", 'p_h5': "", 'conclusion': "", 'p_conclusion': "", 'date_posted': '10/02/2021', 'display_or_not': True, 'moderator_id': 1, 'category_id': 1, 'comments': [], } ] fake_comments = [ { 'id': 1, 'author_name': 'admin', 'email_author': 'admin@exemple.com', 'content': 'C\'est bon tout ca.', 'date_posted': '12/02/2021', 'approved_or_not': True, 'post_id': 1 } ] # Create a sitemap @ext.register_generator def index(): yield 'index', {} # Home blog view @bp.route('/') def index(): global fake_moderators, fake_comments, fake_posts, fake_Category categories = Category.query.all() moderators = Moderator.query.all() posts_to_display = Post.query.all() post_banner = Post.query.join(Category).filter(Category.category_name == "BUSINESS").\ order_by(Post.date_posted.desc()).first() last_post = Post.query.join(Category).filter(Category.category_name == "TUTORIELS").order_by( Post.date_posted.desc()).first() posts_for_cards = Post.query.filter_by(display_or_not=True).order_by(Post.date_posted.desc())[:4] post_business = Post.query.join(Category).filter(Category.category_name == "BUSINESS").\ order_by(Post.date_posted.desc()).first() post_formation = Post.query.join(Category).filter(Category.category_name == "FORMATIONS"). \ order_by(Post.date_posted.desc()).first() post_tutoriel = Post.query.join(Category).filter(Category.category_name == "TUTORIELS"). \ order_by(Post.date_posted.desc()).first() post_ressource = Post.query.join(Category).filter(Category.category_name == "RESSOURCES"). \ order_by(Post.date_posted.desc()).first() image_posts = [] for post in posts_for_cards: image = post.img_title image_posts.append(image) return render_template('blog/blog.html', title="Accueil - Joblogueur", categories=categories, last_post=last_post,moderators=moderators, images=image_posts, posts_to_display=posts_to_display, post_banner=post_banner, post_business=post_business, post_formation=post_formation, post_tutoriel=post_tutoriel, post_ressource=post_ressource) # Display individual post @bp.route('/publication/<post_title>', methods=['POST', 'GET']) def post(post_title): form = CommentForm() titre = post_title.replace('-', ' ') # Recherche la publication par son titre post = Post.query.filter_by(title=titre).first() moderators = Moderator.query.all() # Recherche tous les commentaires liés à cette publication comments_to_display = Comment.query.join(Post).filter(Comment.post_id == post.id).\ order_by(Comment.date_posted.desc()).all() # Liste toutes les categories categories = Category.query.all() nbr_comments = 0 # Calcul le nbre de commentaires par publication for comment in post.comments: if comment.approved_or_not: nbr_comments += 1 if form.validate_on_submit(): search_comments = Comment.query.filter_by(email_author=form.author_email.data).all() ids = [] for comment in search_comments: ids.append(comment.post_id) if post.id in ids: flash("Vous avez deja commenté cet article", "info") # Création d'un commentaire else: new_comment = Comment(name_author=form.author.data, email_author=form.author_email.data, content=form.content.data, post_id=post.id, approved_or_not=False) db.session.add(new_comment) db.session.commit() form.author.data = "" form.author_email.data = "" form.content.data = "" flash("Votre commentaire est en cours de validation", "success") return render_template('blog/blog_post.html', title=titre + " | Joblogueur", post=post, form=form, nbr_comments=int(nbr_comments), categories=categories, comments=comments_to_display, titre=post_title) form.author.data = "" form.author_email.data = "" form.content.data = "" image_file = url_for('static', filename='upload/'+str(post.img_title)) return render_template("blog/blog_post.html", title=titre + " | Joblogueur", post=post, form=form, nbr_comments=int(nbr_comments), categories=categories, comments=comments_to_display, image=image_file, moderators=moderators, titre=post_title) # Display post per category @bp.route('/publications/<category_name>') def post_per_category(category_name): page = request.args.get('page', 1, type=int) search_category = category_name.replace('-', ' ') categories = Category.query.all() posts = Post.query.join(Category).filter(Category.category_name == search_category).\ order_by(Post.date_posted.desc()).paginate(per_page=7, page=page) image_posts = [] for post in posts.items: image = post.img_title image_posts.append(image) return render_template("blog/posts_per_category.html", title=search_category + " | Joblogueur", posts=posts, categories=categories, search_category=search_category, images=image_posts) # Register user for daily news @bp.route('/newsletter-invitation', methods=['POST','GET']) def newsletter_invitation(): categories = Category.query.all() posts_per_category = [] for category in categories: last_post = Post.query.join(Category).filter(Post.category_id == category.id).first() posts_per_category.append(last_post) if request.method == 'POST': usermail = request.form['usermail'] content = """ Salut très cher(e), Comment vas-tu ? Il y'a du nouveau sur ton blog préféré www.digitalschools.sn/blog Ci-dessous une liste des publications que tu as surement manqués: 1- https://3df5e7df0cdb.ngrok.io/blog/publication/10-raisons-pourquoi-toute-entreprise-doit-cr%C3%A9er-ou-avoir-un-site-Web 2- https://3df5e7df0cdb.ngrok.io/blog/publication/10-bonnes-raisons-d%27apprendre-%C3%A0-son-enfant-%C3%A0-coder 3- https://3df5e7df0cdb.ngrok.io/blog/publication/FLASK-1.0.0 Merci pour ton temps et ta perséverance dans la lecture quotidienne. Youssouf BINYOUM (digitalschools.sn) """ msg = Message("Nouvelle publication sur digitalschools.sn/blog", recipients=[usermail], sender='contact@digitalschools.sn') msg.body = content mail.send(msg) print(request.args) return redirect(url_for('blog.index'))
#!/usr/bin/env python # -*- coding: utf-8 -*- try: from urllib.parse import urlparse except ImportError: from urlparse import urlparse import logging from sites import foolSlide from sites import readcomicOnlineto from sites import comicNaver from sites import mangaHere from sites import rawSenManga from sites import mangaFox from sites import omgBeauPeep from sites import mangaReader from sites import mangaEden from sites import acQQ from sites import stripUtopia from sites import readComicBooksOnline from sites import readComicsWebsite from sites import batoto from sites import hqbr from sites import comicextra from sites import readComicsIO from sites import japscan from sites import manganelo import globalFunctions class Honcho(object): def comic_language_resolver(self, language_code): # Will return the Language Name corresponding to the language code. language_dict = { '0': 'English', '1': 'Italian', '2': 'Spanish', '3': 'French', '4': 'German', '5': 'Portuguese', '6': 'Turkish', '7': 'Indonesian', '8': 'Greek', '9': 'Filipino', '10': 'Polish', '11': 'Thai', '12': 'Malay', '13 ': 'Hungarian', '14': 'Romanian', '15': ' Arabic', '16': 'Hebrew', '17': 'Russian', '18': 'Vietnamese', '19': 'Dutch', '20': 'Bengali', '21': 'Persian', '22': 'Czech', '23': 'Brazilian', '24': 'Bulgarian', '25': 'Danish', '26': 'Esperanto', '27': 'Swedish', '28': 'Lithuanian', '29': 'Other' } return language_dict[language_code] def checker(self, comic_url, download_directory, chapter_range, **kwargs): user_name = kwargs.get("username") password = kwargs.get("password") current_directory = kwargs.get("current_directory") log_flag = kwargs.get("logger") sorting = kwargs.get("sorting_order") comic_language = kwargs.get("comic_language") print_index = kwargs.get("print_index") if log_flag is True: logging.basicConfig(format='%(levelname)s: %(message)s', filename="Error Log.log", level=logging.DEBUG) logging.debug("Comic Url : %s" % comic_url) domain = urlparse(comic_url).netloc logging.debug("Selected Domain : %s" % domain) # Remove the "/" from ending to make checking URL for Full Series or Single Chapter easier. if comic_url[-1] == "/": comic_url = comic_url[:-1] if domain in ["yomanga.co", "gomanga.co"]: foolSlide.FoolSlide(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, conversion=kwargs.get("conversion"), keep_files=kwargs.get("keep_files")) return 0 elif domain in ["www.readcomiconline.to", "readcomiconline.to"]: readcomicOnlineto.ReadComicOnlineTo(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, conversion=kwargs.get("conversion"), keep_files=kwargs.get("keep_files"), image_quality=kwargs.get("image_quality"), print_index=print_index) return 0 elif domain in ["www.comic.naver.com", "comic.naver.com"]: comicNaver.ComicNaver(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, conversion=kwargs.get("conversion"), keep_files=kwargs.get("keep_files"), print_index=print_index) return 0 elif domain in ["www.mangahere.co", "mangahere.co", "www.mangahere.cc", "mangahere.cc"]: mangaHere.MangaHere(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, conversion=kwargs.get("conversion"), keep_files=kwargs.get("keep_files"), print_index=print_index) return 0 elif domain in ["www.raw.senmanga.com", "raw.senmanga.com"]: rawSenManga.RawSenaManga(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, conversion=kwargs.get("conversion"), keep_files=kwargs.get("keep_files"), print_index=print_index) return 0 elif domain in ["www.mangafox.me", "mangafox.me", "www.mangafox.la", "mangafox.la", "www.fanfox.net", "fanfox.net"]: mangaFox.MangaFox(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, conversion=kwargs.get("conversion"), keep_files=kwargs.get("keep_files"), print_index=print_index) return 0 elif domain in ["www.omgbeaupeep.com", "omgbeaupeep.com", "www.otakusmash.com", "otakusmash.com"]: omgBeauPeep.OmgBeauPeep(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, conversion=kwargs.get("conversion"), keep_files=kwargs.get("keep_files"), print_index=print_index) return 0 # TODO KO --print-index -i http://ac.qq.com/Comic/comicInfo/id/547059?trace_id=907_27.156.162.231_1539265645 broken? elif domain in ["www.ac.qq.com", "ac.qq.com"]: acQQ.AcQq(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, print_index=print_index) return 0 elif domain in ["www.striputopija.blogspot.in", "striputopija.blogspot.in", "www.striputopija.blogspot.com", "striputopija.blogspot.com"]: stripUtopia.StripUtopia(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, print_index=print_index) return 0 elif domain in ["www.mangareader.net", "mangareader.net"]: mangaReader.MangaReader(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, conversion=kwargs.get("conversion"), keep_files=kwargs.get("keep_files"), print_index=print_index) return 0 elif domain in ["www.readcomicbooksonline.net", "readcomicbooksonline.net", "www.readcomicbooksonline.org", "readcomicbooksonline.org"]: readComicBooksOnline.ReadComicBooksOnline(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, conversion=kwargs.get("conversion"), keep_files=kwargs.get("keep_files"), print_index=print_index) return 0 # TODO KO seems broken elif domain in ["www.readcomics.website", "readcomics.website"]: readComicsWebsite.ReadComicsWebsite(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, conversion=kwargs.get("conversion"), keep_files=kwargs.get("keep_files"), print_index=print_index) return 0 elif domain in ["www.japscan.to"]: japscan.Japscan(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, conversion=kwargs.get("conversion"), keep_files=kwargs.get("keep_files"), print_index=print_index) return 0 elif domain in ["www.hqbr.com.br", "hqbr.com.br"]: hqbr.Hqbr(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, conversion=kwargs.get("conversion"), keep_files=kwargs.get("keep_files"), print_index=print_index) return 0 elif domain in ["www.comicextra.com", "comicextra.com"]: comicextra.ComicExtra(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, conversion=kwargs.get("conversion"), keep_files=kwargs.get("keep_files"), print_index=print_index) return 0 # TODO KO seems broken elif domain in ["www.readcomics.io", "readcomics.io"]: readComicsIO.ReadComicsIO(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, conversion=kwargs.get("conversion"), keep_files=kwargs.get("keep_files"), print_index=print_index) return 0 elif domain in ["www.kissmanga.com", "kissmanga.com"]: # kissManga.KissManga(manga_url = comic_url, logger = logging, # current_directory = current_directory, sorting_order = sorting) print("Under Development!") return 0 elif domain in ["www.bato.to", "bato.to"]: batoto.Batoto(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, conversion=kwargs.get("conversion"), keep_files=kwargs.get("keep_files"), username=user_name, password=password, comic_language=self.comic_language_resolver(comic_language), print_index=print_index) return 0 elif domain in ["manganelo.com", "mangakakalot.com"]: manganelo.Manganelo(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, conversion=kwargs.get("conversion"), keep_files=kwargs.get("keep_files"), print_index=print_index) return 0 elif domain in ["www.mangaeden.com"]: if print_index: print("please use -find and -cid instead!") return -1 mangaEden.MangaEden(manga_url=comic_url, logger=logging, current_directory=current_directory, sorting_order=sorting, log_flag=log_flag, download_directory=download_directory, chapter_range=chapter_range, conversion=kwargs.get("conversion"), keep_files=kwargs.get("keep_files")) return 0 else: print("%s is not supported at the moment. You can request it on the Github repository." % domain)
from django.urls import path from . import views app_name = 'subscribers' urlpatterns = [ path('', views.IndexView.as_view(), name='index'), path('manage/', views.manage, name='manage'), path('goodbye/<uuid:mailing_list_uuid>/', views.goodbye, name='goodbye'), path('subscribe/<uuid:mailing_list_uuid>/', views.subscribe, name='subscribe'), path('subscribe/<uuid:mailing_list_uuid>/confirm/', views.confirm_subscription, name='confirm_subscription'), path('subscribe/<uuid:mailing_list_uuid>/confirm/<str:token>/', views.confirm_double_optin_token, name='confirm_double_optin_token'), # noqa path('unsubscribe/<uuid:mailing_list_uuid>/', views.unsubscribe_manual, name='unsubscribe_manual'), path('unsubscribe/<uuid:mailing_list_uuid>/<uuid:subscriber_uuid>/<uuid:campaign_uuid>/', views.unsubscribe, name='unsubscribe'), # noqa path('track/open/<uuid:email_uuid>/<uuid:subscriber_uuid>/', views.track_open, name='open'), path('track/click/<uuid:link_uuid>/<uuid:subscriber_uuid>/', views.track_click, name='click'), ]
#!/usr/bin/env python import random import argparse import cv2 import torch import torch.nn as nn import torch.optim as optim from tensorboardX import SummaryWriter import torchvision.utils as vutils import gym import gym.spaces import numpy as np log = gym.logger log.set_level(gym.logger.INFO) LATENT_VECTOR_SIZE = 100 DISCR_FILTERS = 64 GENER_FILTERS = 64 BATCH_SIZE = 16 # dimension input image will be rescaled IMAGE_SIZE = 64 LEARNING_RATE = 0.0001 REPORT_EVERY_ITER = 25 SAVE_IMAGE_EVERY_ITER = 1000 class InputWrapper(gym.ObservationWrapper): """ Preprocessing of input numpy array: 1. resize image into predefined size 2. move color channel axis to a first place """ def __init__(self, *args): super(InputWrapper, self).__init__(*args) assert isinstance(self.observation_space, gym.spaces.Box) old_space = self.observation_space self.observation_space = gym.spaces.Box(self.observation(old_space.low), self.observation(old_space.high), dtype=np.float32) def observation(self, observation): # resize image new_obs = cv2.resize(observation, (IMAGE_SIZE, IMAGE_SIZE)) # transform (210, 160, 3) -> (3, 210, 160) new_obs = np.moveaxis(new_obs, 2, 0) return new_obs.astype(np.float32) class Discriminator(nn.Module): def __init__(self, input_shape): super(Discriminator, self).__init__() # this pipe converges image into the single number self.conv_pipe = nn.Sequential( nn.Conv2d(in_channels=input_shape[0], out_channels=DISCR_FILTERS, kernel_size=4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(in_channels=DISCR_FILTERS, out_channels=DISCR_FILTERS*2, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(DISCR_FILTERS*2), nn.ReLU(), nn.Conv2d(in_channels=DISCR_FILTERS * 2, out_channels=DISCR_FILTERS * 4, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(DISCR_FILTERS * 4), nn.ReLU(), nn.Conv2d(in_channels=DISCR_FILTERS * 4, out_channels=DISCR_FILTERS * 8, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(DISCR_FILTERS * 8), nn.ReLU(), nn.Conv2d(in_channels=DISCR_FILTERS * 8, out_channels=1, kernel_size=4, stride=1, padding=0), nn.Sigmoid() ) def forward(self, x): conv_out = self.conv_pipe(x) return conv_out.view(-1, 1).squeeze(dim=1) class Generator(nn.Module): def __init__(self, output_shape): super(Generator, self).__init__() # pipe deconvolves input vector into (3, 64, 64) image self.pipe = nn.Sequential( nn.ConvTranspose2d(in_channels=LATENT_VECTOR_SIZE, out_channels=GENER_FILTERS * 8, kernel_size=4, stride=1, padding=0), nn.BatchNorm2d(GENER_FILTERS * 8), nn.ReLU(), nn.ConvTranspose2d(in_channels=GENER_FILTERS * 8, out_channels=GENER_FILTERS * 4, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(GENER_FILTERS * 4), nn.ReLU(), nn.ConvTranspose2d(in_channels=GENER_FILTERS * 4, out_channels=GENER_FILTERS * 2, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(GENER_FILTERS * 2), nn.ReLU(), nn.ConvTranspose2d(in_channels=GENER_FILTERS * 2, out_channels=GENER_FILTERS, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(GENER_FILTERS), nn.ReLU(), nn.ConvTranspose2d(in_channels=GENER_FILTERS, out_channels=output_shape[0], kernel_size=4, stride=2, padding=1), nn.Tanh() ) def forward(self, x): return self.pipe(x) def iterate_batches(envs, batch_size=BATCH_SIZE): batch = [e.reset() for e in envs] env_gen = iter(lambda: random.choice(envs), None) while True: e = next(env_gen) obs, reward, is_done, _ = e.step(e.action_space.sample()) if np.mean(obs) > 0.01: batch.append(obs) if len(batch) == batch_size: # Normalising input between -1 to 1 batch_np = np.array(batch, dtype=np.float32) * 2.0 / 255.0 - 1.0 yield torch.tensor(batch_np) batch.clear() if is_done: e.reset() if __name__ == "__main__": parser = argparse.ArgumentParser() # parser.add_argument("--cuda", default=False, action='store_true', help="Enable cuda computation") parser.add_argument("--cuda", default=True, action='store_true', help="Enable cuda computation") args = parser.parse_args() device = torch.device("cuda" if args.cuda else "cpu") envs = [InputWrapper(gym.make(name)) for name in ('Breakout-v0', 'AirRaid-v0', 'Pong-v0')] input_shape = envs[0].observation_space.shape net_discr = Discriminator(input_shape=input_shape).to(device) net_gener = Generator(output_shape=input_shape).to(device) objective = nn.BCELoss() gen_optimizer = optim.Adam(params=net_gener.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999)) dis_optimizer = optim.Adam(params=net_discr.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999)) writer = SummaryWriter() gen_losses = [] dis_losses = [] iter_no = 0 true_labels_v = torch.ones(BATCH_SIZE, dtype=torch.float32, device=device) fake_labels_v = torch.zeros(BATCH_SIZE, dtype=torch.float32, device=device) for batch_v in iterate_batches(envs): # generate extra fake samples, input is 4D: batch, filters, x, y gen_input_v = torch.FloatTensor(BATCH_SIZE, LATENT_VECTOR_SIZE, 1, 1).normal_(0, 1).to(device) batch_v = batch_v.to(device) gen_output_v = net_gener(gen_input_v) # train discriminator dis_optimizer.zero_grad() dis_output_true_v = net_discr(batch_v) dis_output_fake_v = net_discr(gen_output_v.detach()) dis_loss = objective(dis_output_true_v, true_labels_v) + objective(dis_output_fake_v, fake_labels_v) dis_loss.backward() dis_optimizer.step() dis_losses.append(dis_loss.item()) # train generator gen_optimizer.zero_grad() dis_output_v = net_discr(gen_output_v) gen_loss_v = objective(dis_output_v, true_labels_v) gen_loss_v.backward() gen_optimizer.step() gen_losses.append(gen_loss_v.item()) iter_no += 1 if iter_no % REPORT_EVERY_ITER == 0: log.info("Iter %d: gen_loss=%.3e, dis_loss=%.3e", iter_no, np.mean(gen_losses), np.mean(dis_losses)) writer.add_scalar("gen_loss", np.mean(gen_losses), iter_no) writer.add_scalar("dis_loss", np.mean(dis_losses), iter_no) gen_losses = [] dis_losses = [] if iter_no % SAVE_IMAGE_EVERY_ITER == 0: writer.add_image("fake", vutils.make_grid(gen_output_v.data[:64], normalize=True), iter_no) writer.add_image("real", vutils.make_grid(batch_v.data[:64], normalize=True), iter_no)
#!/usr/bin/python # -*- coding: utf-8 -*- import time import MySQLdb import datetime import random brand_data = {} today = datetime.date.today() report_tittle = "milk/milk_{}.html".format(today.strftime("%Y_%m")) first = today.replace(day=1) last_year = first - datetime.timedelta(days=365) rang_low = today.strftime("%Y-01-01") rang_high = today.strftime("%Y-12-31") this_year = today.year conn= MySQLdb.connect( host='localhost', port = 3306, user='br', passwd='123456', db ='brandrank', ) cur = conn.cursor() query = ["select", "name,", "id", "from rankx_brand" ] sql_query = " ".join(query) print sql_query results = cur.execute(sql_query) info = cur.fetchmany(results) sql_template = "insert into rankx_milk (rank, pv,taobao_sales,jd_sales,tmall_sales,vip_sales,amazon_sales,weibo_fans,weibo_forward, weixin_fans,pub_date, brand_name_id, brand_record) values" pub_dates = [] for d in ['01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12']: for y in ['2013', '2014', '2015']: pub_dates.append('{}-{}-02'.format(y, d)) for name, bid in info: for d in pub_dates: pv = 10000 + random.randint(1, 10000) taobao_sales = 20000 + random.randint(1, 10000) jd_sales = 20000 + random.randint(1, 10000) tmall_sales = 20000 + random.randint(1, 10000) vip_sales = 20000 + random.randint(1, 10000) amazon_sales = 20000 + random.randint(1, 10000) weibo_fans = 20000 + random.randint(1, 10000) weibo_forward = 20000 + random.randint(1, 10000) weixin_fans = 20000 + random.randint(1, 10000) brand_record = name.replace(' ', '_').replace('-', '_') + '_' + d.replace('-', '_') sql = sql_template + "(0, {}, {}, {}, {}, {}, {}, {}, {}, {}, '{}', {}, '{}');".format( pv, taobao_sales, jd_sales, tmall_sales, vip_sales, amazon_sales, weibo_fans, weibo_forward, weixin_fans, d, bid, brand_record ) print sql cur.execute(sql) cur.close() conn.commit() conn.close()
_base_ = './gfl_r50_fpn_1x_coco.py' # learning policy lr_config = dict(step=[16, 22]) runner = dict(type='EpochBasedRunner', max_epochs=24) work_dir = 'work_dirs/coco/gfl/gfl_r50_fpn_2x_coco'
import timeit class timer(object): def __init__(self, repeats=3, loops=1, gc=False): self.repeats = repeats self.loops = loops self.gc = gc def __enter__(self): return self def __exit__(self, type, value, traceback): if type is not None: return False else: return True def results(self): return self.func() def time(self, func, *args, **kargs): if self.gc is True: self.gbcol="gc.enable()" else: self.gbcol="gc.disable()" self.funcname = func.__name__ pfunc = lambda: func(*args, **kargs) self.elapsed = timeit.repeat(pfunc, self.gbcol, repeat=self.repeats, number=self.loops) self.runtime = min(self.elapsed) return [self.runtime, self.funcname] def printTime(self): result = "%s finished in %.5fs (%s loops, repeated %s times): %.5fs per loop (with %s)" % (self.funcname, self.runtime, self.loops, self.repeats, self.runtime/self.loops, self.gbcol) print result
# -*- coding: utf8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import re CAMEL_RE = re.compile(r'([A-Z][a-z]+|[A-Z]+(?=[A-Z\s]|$))') def de_camel_case(text): """Convert CamelCase names to human-readable format.""" return ' '.join(w.strip() for w in CAMEL_RE.split(text) if w.strip()) def list_to_dict(object_list, key_attribute='id'): """Converts an object list to a dict :param object_list: list of objects to be put into a dict :type object_list: list :param key_attribute: object attribute used as index by dict :type key_attribute: str :return: dict containing the objects in the list :rtype: dict """ return dict((getattr(o, key_attribute), o) for o in object_list) def length(iterator): """A length function for iterators Returns the number of items in the specified iterator. Note that this function consumes the iterator in the process. """ return sum(1 for _item in iterator) def check_image_type(image, image_type): """Check if image 'type' property matches passed-in image_type. If image has no 'type' property' return True, as we cannot be sure what type of image it is. """ return (image.properties.get('type', image_type) == image_type) def filter_items(items, **kwargs): """Filters the list of items and returns the filtered list. Example usage: >>> class Item(object): ... def __init__(self, index): ... self.index = index ... def __repr__(self): ... return '<Item index=%d>' % self.index >>> items = [Item(i) for i in range(7)] >>> list(filter_items(items, index=1)) [<Item index=1>] >>> list(filter_items(items, index__in=(1, 2, 3))) [<Item index=1>, <Item index=2>, <Item index=3>] >>> list(filter_items(items, index__not_in=(1, 2, 3))) [<Item index=0>, <Item index=4>, <Item index=5>, <Item index=6>] """ for item in items: for name, value in kwargs.items(): if name.endswith('__in'): if getattr(item, name[:-len('__in')]) not in value: break elif name.endswith('__not_in'): if getattr(item, name[:-len('__not_in')]) in value: break else: if getattr(item, name) != value: break else: yield item def safe_int_cast(value): try: return int(value) except (TypeError, ValueError): return 0
""" Harness for visualising a neural network. -- kandasamy@cs.cmu.edu """ # pylint: disable=invalid-name import functools import graphviz as gv import os import networkx as nx import numpy as np # Parameters for plotting _SAVE_FORMAT = 'eps' # _SAVE_FORMAT = 'png' _LAYER_SHAPE = 'rectangle' _IPOP_SHAPE = 'circle' _LAYER_FONT = 'DejaVuSans' _IPOP_FONT = 'Helvetica' _LAYER_FONTSIZE = '16' _FILLCOLOR = 'transparent' _IPOP_FONTSIZE = '12' _IPOP_FILLCOLOR = '#ffc0cb' _DECISION_FILLCOLOR = '#98fb98' _GRAPH_STYLES = { 'graph': { 'fontsize': _LAYER_FONTSIZE, 'rankdir': 'TB', 'label': None, }, 'nodes': { }, 'edges': { 'arrowhead': 'open', 'fontsize': '12', } } GV_GRAPH = functools.partial(gv.Graph, format=_SAVE_FORMAT) GV_DIGRAPH = functools.partial(gv.Digraph, format=_SAVE_FORMAT) # Utilities for adding nodes, edges and styles ------------------------------------------- def add_nodes(graph, nodes): """ Adds nodes to the graph. """ for n in nodes: if isinstance(n, tuple): graph.node(n[0], **n[1]) else: graph.node(n) return graph def add_edges(graph, edges): """ Adds edges to the graph. """ # pylint: disable=star-args for e in edges: if isinstance(e[0], tuple): graph.edge(*e[0], **e[1]) else: graph.edge(*e) return graph def apply_styles(graph, styles): """ Applies styles to the graph. """ graph.graph_attr.update( ('graph' in styles and styles['graph']) or {} ) graph.node_attr.update( ('nodes' in styles and styles['nodes']) or {} ) graph.edge_attr.update( ('edges' in styles and styles['edges']) or {} ) return graph # Wrappers for tedious routines ---------------------------------------------------------- def _get_ip_layer(layer_idx): """ Returns a tuple representing the input layer. """ return (str(layer_idx), {'label': 'i/p', 'shape': 'circle', 'style': 'filled', 'fillcolor': _IPOP_FILLCOLOR, 'fontsize': _IPOP_FONTSIZE, 'fontname': _IPOP_FONT}) def _get_op_layer(layer_idx): """ Returns a tuple representing the output layer. """ return (str(layer_idx), {'label': 'o/p', 'shape': 'circle', 'style': 'filled', 'fillcolor': _IPOP_FILLCOLOR, 'fontsize': _IPOP_FONTSIZE, 'fontname': _IPOP_FONT}) def _get_layer(layer_idx, nn, for_pres): """ Returns a tuple representing the layer label. """ if nn.layer_labels[layer_idx] in ['ip', 'op']: fill_colour = _IPOP_FILLCOLOR elif nn.layer_labels[layer_idx] in ['softmax', 'linear']: fill_colour = _DECISION_FILLCOLOR else: fill_colour = _FILLCOLOR label = nn.get_layer_descr(layer_idx, for_pres) return (str(layer_idx), {'label': label, 'shape': 'rectangle', 'fillcolor': fill_colour, 'style': 'filled', 'fontname': _LAYER_FONT}),((layer_idx), nn.layer_labels[layer_idx],(nn.num_units_in_each_layer[layer_idx])) def _get_edge(layer_idx_start, layer_idx_end): """ Returns a tuple which is an edge. """ return (str(layer_idx_start), str(layer_idx_end)) def _get_edges(conn_mat): """ Returns all edges. """ starts, ends = conn_mat.nonzero() return [_get_edge(starts[i], ends[i]) for i in range(len(starts))] # Main API ------------------------------------------------------------------------------ def visualise_nn(nn, save_file_prefix, fig_label=None, for_pres=True): """ The main API which will be used to visualise the network. """ # First create nodes in the order nodes = [_get_layer(i, nn, for_pres)[0] for i in range(nn.num_layers)] nodes_my = [_get_layer(i, nn, for_pres)[1] for i in range(nn.num_layers)] #print("nodes_my=",nodes_my) edges = _get_edges(nn.conn_mat) edges_my = [(int(s),int(t)) for s,t in edges] #print("edges_my=",edges_my) nn_graph = GV_DIGRAPH() add_nodes(nn_graph, nodes) add_edges(nn_graph, edges) graph_styles = _GRAPH_STYLES graph_styles['graph']['label'] = fig_label apply_styles(nn_graph, graph_styles) nn_graph.render(save_file_prefix) if os.path.exists(save_file_prefix): # graphviz also creates another file in the name of the prefix. delete it. os.remove(save_file_prefix) return tonxgraph(nodes_my,edges_my) NODE_TYPES = ['ip', 'op', 'linear'] hidden_list = [8,16,32,64,128,256,512,1024] for i in hidden_list: NODE_TYPES.append("relu-%s"%i) NODE_TYPES.append("crelu-%s"%i) NODE_TYPES.append("leaky-relu-%s"%i) NODE_TYPES.append("softplus-%s"%i) NODE_TYPES.append("elu-%s"%i) NODE_TYPES.append("logistic-%s"%i) NODE_TYPES.append("tanh-%s"%i) def tonxgraph(nodes_my,edges_my): g = {"x":[],"edge_index":[],"edge_attr":[]} for n_idx, type, num_hidden in nodes_my: n_idx = int(n_idx) if type=='ip' or type=='op' or type=='linear': g["x"].append(np.eye(len(NODE_TYPES))[NODE_TYPES.index(type)]) else: num_hidden = np.random.choice(hidden_list) g["x"].append(np.eye(len(NODE_TYPES))[NODE_TYPES.index("%s-%s"%(type,num_hidden))]) row = [] col = [] for s, t in edges_my: row.append(s) col.append(t) g["edge_attr"].append(np.ones(1)) g["edge_index"].append(row) g["edge_index"].append(col) g["x"]=np.array(g["x"]) g["edge_attr"]=np.array(g["edge_attr"]) print("+",g["x"].shape) assert g["x"].shape[0] <= 20 return g #g_nx = nx.nx_agraph.from_agraph(nn_graph) #A = nx.nx_agraph.to_agraph(g_nx) # convert to a graphviz graph #A.layout() # neato layout #A.draw("a.ps") def visualise_list_of_nns(list_of_nns, save_dir, fig_labels=None, fig_file_names=None, for_pres=False): """ Visualises a list of neural networks. """ g_list = [] if fig_labels is None: fig_labels = [None] * len(list_of_nns) if fig_file_names is None: fig_file_names = [str(idx) for idx in range(len(list_of_nns))] for idx, nn in enumerate(list_of_nns): save_file_prefix = os.path.join(save_dir, fig_file_names[idx]) g = visualise_nn(nn, save_file_prefix, fig_labels[idx], for_pres) g_list.append(g) return g_list
from django.contrib.auth.models import User, Group from rest_framework import serializers from .models import * class UserSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = User fields = ['url', 'username', 'email', 'groups'] class GroupSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Group fields = ['url', 'name'] class ItemListSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = ItemList fields = ['id', 'status', 'type', 'name', 'city'] class ExampleModelLessSerializer(serializers.Serializer): project_name = serializers.CharField() total_head_count = serializers.IntegerField() start_date = serializers.DateTimeField() location = serializers.CharField()
import functools import os from contextlib import contextmanager from .platforms.basepath import BasePath, Root, InstallRoot, DestDir # noqa from .platforms.host import platform_info Path = platform_info().Path def abspath(path, type=Path, **kwargs): return type.abspath(path, **kwargs) def commonprefix(paths): if not paths or any(i.root != paths[0].root for i in paths): return None cls = type(paths[0]) split = [i.split() for i in paths] lo, hi = min(split), max(split) for i, bit in enumerate(lo): if bit != hi[i]: return cls(cls.sep.join(lo[:i]), paths[0].root, directory=True) return cls(cls.sep.join(lo), paths[0].root, directory=(lo != hi)) def uniquetrees(paths): def ischild(a, b): for i, j in zip(a, b): if i != j: return False return True if not paths: return [] paths = [(i, [i.root.value] + i.split()) for i in paths] paths.sort(key=lambda i: i[1]) piter = iter(paths) p, last = next(piter) uniques = [p] for p, bits in piter: if not ischild(last, bits): last = bits uniques.append(p) return uniques def _wrap_ospath(fn): @functools.wraps(fn) def wrapper(path, variables=None): return fn(path.string(variables)) return wrapper exists = _wrap_ospath(os.path.exists) isdir = _wrap_ospath(os.path.isdir) isfile = _wrap_ospath(os.path.isfile) islink = _wrap_ospath(os.path.islink) def samefile(path1, path2, variables=None): return os.path.samefile(path1.string(variables), path2.string(variables)) def listdir(path, variables=None): dirs, nondirs = [], [] try: names = os.listdir(path.string(variables)) for name in names: curpath = path.append(name) if isdir(curpath, variables): dirs.append(curpath.as_directory()) else: nondirs.append(curpath) except OSError: pass return dirs, nondirs def walk(top, variables=None): if not exists(top, variables): return dirs, nondirs = listdir(top, variables) yield top, dirs, nondirs for d in dirs: if not islink(d, variables): for i in walk(d, variables): yield i @contextmanager def pushd(dirname, makedirs=False, mode=0o777, exist_ok=False): old = os.getcwd() if makedirs: os.makedirs(dirname, mode, exist_ok) os.chdir(dirname) try: yield finally: os.chdir(old)
import pytest from tests.helpers.run_command import run_command from tests.helpers.runif import RunIf """ A couple of sanity checks to make sure the model doesn't crash with different running options. """ def test_fast_dev_run(): """Test running for 1 train, val and test batch.""" command = ["train.py", "++trainer.fast_dev_run=true"] run_command(command) @pytest.mark.slow def test_cpu(): """Test running 1 epoch on CPU.""" command = ["train.py", "++trainer.max_epochs=1", "++trainer.gpus=0"] run_command(command) # use RunIf to skip execution of some tests, e.g. when no gpus are available @RunIf(min_gpus=1) @pytest.mark.slow def test_gpu(): """Test running 1 epoch on GPU.""" command = [ "train.py", "++trainer.max_epochs=1", "++trainer.gpus=1", ] run_command(command) @RunIf(min_gpus=1) @pytest.mark.slow def test_mixed_precision(): """Test running 1 epoch with pytorch native automatic mixed precision (AMP).""" command = [ "train.py", "++trainer.max_epochs=1", "++trainer.gpus=1", "++trainer.precision=16", ] run_command(command) @pytest.mark.slow def test_double_validation_loop(): """Test running 1 epoch with validation loop twice per epoch.""" command = [ "train.py", "++trainer.max_epochs=1", "++trainer.val_check_interval=0.5", ] run_command(command)
import argparse import binascii import sys import time from inkfish.proof_of_time import (create_proof_of_time_wesolowski, create_proof_of_time_nwesolowski, create_proof_of_time_pietrzak, check_proof_of_time_wesolowski, check_proof_of_time_nwesolowski, check_proof_of_time_pietrzak) from .classgroup import ClassGroup from .create_discriminant import create_discriminant def create_pot_parser(): parser = argparse.ArgumentParser( description='Generate or verify a proof of time using the Chia ' + 'Verfiable Delay Function (VDF)', ) parser.add_argument("-t", "--type", default="wesolowski", choices=["wesolowski", "n-wesolowski", "pietrzak"], help="the type of proof, wesolowski, n-wesolowski, or pietrzak") parser.add_argument("-l", "--length", type=int, default=2048, help="the number of bits of the discriminant") parser.add_argument("-d", "--depth", type=int, default=2, help="depth of n-wesolowski (n) default is 2") parser.add_argument("-v", "--verbose", action="store_true", help="print a bunch of extra stuff about the proof") parser.add_argument("discriminant_challenge", type=binascii.unhexlify, help="a hex-encoded challenge used to derive the discriminant") parser.add_argument("iterations", type=int, help="number of iterations") parser.add_argument("proof", type=binascii.unhexlify, help="the hex-encoded proof", nargs="?") return parser def pot(args=sys.argv): parser = create_pot_parser() args = parser.parse_args(args=args[1:]) discriminant = create_discriminant(args.discriminant_challenge, args.length) if args.verbose: print("proof type: %s" % args.type) print("discriminant: %s" % discriminant) print("discriminant size: %s" % args.length) # Generator element is created as a=2, b=1. x = ClassGroup.from_ab_discriminant(2, 1, discriminant) if args.verbose: print("x: %s" % str(x)) if args.proof: if args.type == "wesolowski": ok = check_proof_of_time_wesolowski( discriminant, x, args.proof, args.iterations, args.length) elif args.type == "n-wesolowski": ok = check_proof_of_time_nwesolowski( discriminant, x, args.proof, args.iterations, args.length) elif args.type == "pietrzak": ok = check_proof_of_time_pietrzak( discriminant, x, args.proof, args.iterations, args.length) if ok: print("Proof is valid") else: print("** INVALID PROOF") return -1 else: start_t = time.time() * 1000 if args.type == "wesolowski": result, proof = create_proof_of_time_wesolowski( discriminant, x, args.iterations, args.length) elif args.type == "n-wesolowski": result, proof = create_proof_of_time_nwesolowski( discriminant, x, args.iterations, args.length, args.depth, 0) elif args.type == "pietrzak": result, proof = create_proof_of_time_pietrzak( discriminant, x, args.iterations, args.length) if args.verbose: print("Finished in ", round(((time.time() * 1000) - start_t), 2), "ms") hex_result = binascii.hexlify(result).decode("utf8") hex_proof = binascii.hexlify(proof).decode("utf8") print(hex_result + hex_proof) """ Copyright 2018 Chia Network Inc Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """
import pathlib from ruamel import yaml from qhub.schema import verify from qhub.provider.cicd.linter import comment_on_pr def create_validate_subcommand(subparser): subparser = subparser.add_parser("validate") subparser.add_argument( "configdeprecated", help="qhub configuration yaml file (deprecated - please pass in as -c/--config flag)", nargs="?", ) subparser.add_argument( "-c", "--config", help="qhub configuration yaml file", required=False ) subparser.add_argument( "--enable-commenting", help="Turn on PR commenting", action="store_true" ) subparser.set_defaults(func=handle_validate) def handle_validate(args): if args.configdeprecated and args.config: raise ValueError( "Please pass in -c/--config flag specifying your qhub-config.yaml file, and do NOT pass it as a standalone argument" ) config_filename = args.config or args.configdeprecated if not config_filename: raise ValueError( "Please pass in a qhub-config.yaml filename using the -c/--config argument" ) config_filename = pathlib.Path(args.config or args.configdeprecated) if not config_filename.is_file(): raise ValueError( f"passed in configuration filename={config_filename} must exist" ) with config_filename.open() as f: config = yaml.safe_load(f.read()) if args.enable_commenting: # for PR's only comment_on_pr(config) else: verify(config)
# -*- coding: utf-8 -*- from __future__ import absolute_import import datetime import decimal import io import uuid from flask import current_app from flask import json as _json from flask import request from sqlalchemy import types import arrow text_type = str def _wrap_reader_for_text(fp, encoding): if isinstance(fp.read(0), bytes): fp = io.TextIOWrapper(io.BufferedReader(fp), encoding) return fp def _wrap_writer_for_text(fp, encoding): try: fp.write('') except TypeError: fp = io.TextIOWrapper(fp, encoding) return fp class JSONEncoder(_json.JSONEncoder): """Custom JSON encoder that will serialize more complex datatypes. This class adds support for the following datatypes: - ``phonenumbers.phonenumber.PhoneNumber``: This will be serialized to a E.164 phonenumber. This will only be run if ``phonenumbers`` is installed. - ``decimal.Decimal``: This will serialize to a pretty decimal number with no trailing zeros and no unnecessary values. For example: - 2.01 -> 2.01 - 2.0 -> 2 - 2.010 -> 2.01 - 2.000 -> 2 - ``arrow.Arrow``: This will be serialized to an ISO8601 datetime string with the offset included. - ``datetime.datetime``: This will be serialized to an ISO8601 datetime string with the offset included. - ``datetime.date``: This will be serialized to an ISO8601 date string. Extended from http://flask.pocoo.org/snippets/119. """ def __init__(self, *args, **kwargs): super(JSONEncoder, self).__init__(*args, **kwargs) self.use_decimal = False def default(self, obj): """ Encode individual objects into their JSON representation. This method is used by :class:`flask.json.JSONEncoder` to encode individual items in the JSON object. Args: obj (object): Any Python object we wish to convert to JSON. Returns: str: The stringified, valid JSON representation of our provided object. """ if isinstance(obj, decimal.Decimal): obj = format(obj, 'f') str_digit = str(obj) return (str_digit.rstrip('0').rstrip('.') if '.' in str_digit else str_digit) elif isinstance(obj, types.TypeEngine): return str(obj) elif isinstance(obj, arrow.Arrow): return str(obj) if isinstance(obj, datetime.datetime): if obj.tzinfo: # eg: '2015-09-25T23:14:42.588601+00:00' return obj.isoformat('T') else: # No timezone present - assume UTC. # eg: '2015-09-25T23:14:42.588601Z' return obj.isoformat('T') + 'Z' if isinstance(obj, datetime.date): return obj.isoformat() elif isinstance(obj, uuid.UUID): return str(obj) try: return list(iter(obj)) except TypeError: pass return super(JSONEncoder, self).default(obj) def _dump_arg_defaults(kwargs): """Inject default arguments for dump functions.""" if current_app: kwargs.setdefault('cls', current_app.json_encoder) if not current_app.config['JSON_AS_ASCII']: kwargs.setdefault('ensure_ascii', False) kwargs.setdefault('sort_keys', current_app.config['JSON_SORT_KEYS']) else: kwargs.setdefault('sort_keys', True) kwargs.setdefault('cls', JSONEncoder) def dumps(obj, **kwargs): """Serialize ``obj`` to a JSON formatted ``str`` by using the application's configured encoder (:attr:`~flask.Flask.json_encoder`) if there is an application on the stack. This function can return ``unicode`` strings or ascii-only bytestrings by default which coerce into unicode strings automatically. That behavior by default is controlled by the ``JSON_AS_ASCII`` configuration variable and can be overridden by the simplejson ``ensure_ascii`` parameter. """ _dump_arg_defaults(kwargs) encoding = kwargs.pop('encoding', None) rv = _json.dumps(obj, **kwargs) if encoding is not None and isinstance(rv, text_type): rv = rv.encode(encoding) return rv def dump(obj, fp, **kwargs): """Like :func:`dumps` but writes into a file object.""" _dump_arg_defaults(kwargs) encoding = kwargs.pop('encoding', None) if encoding is not None: fp = _wrap_writer_for_text(fp, encoding) _json.dump(obj, fp, **kwargs) def jsonify(*args, **kwargs): """ copied from the flask jsonify function with modifcations added """ indent = None separators = (',', ':') if current_app.config['JSONIFY_PRETTYPRINT_REGULAR']\ and not request.is_xhr: indent = 2 separators = (', ', ': ') if args and kwargs: raise TypeError( 'jsonify() behavior undefined when passed both args and kwargs') elif len(args) == 1: # single args are passed directly to dumps() data = args[0] else: data = args or kwargs return current_app.response_class( (dumps(data, indent=indent, separators=separators), '\n'), mimetype=current_app.config['JSONIFY_MIMETYPE'] )
"""An implementation of Matching Layer.""" import typing import tensorflow as tf from tensorflow.keras import layers class MatchingLayer(layers.Layer): """ Layer that computes a matching matrix between samples in two tensors. :param normalize: Whether to L2-normalize samples along the dot product axis before taking the dot product. If set to True, then the output of the dot product is the cosine proximity between the two samples. :param matching_type: the similarity function for matching :param kwargs: Standard layer keyword arguments. Examples: >>> import matchzoo as mz >>> layer = mz.layers.MatchingLayer(matching_type='dot', ... normalize=True) >>> num_batch, left_len, right_len, num_dim = 5, 3, 2, 10 >>> layer.build([[num_batch, left_len, num_dim], ... [num_batch, right_len, num_dim]]) """ def __init__(self, normalize: bool = False, matching_type: str = 'dot', **kwargs): """:class:`MatchingLayer` constructor.""" super().__init__(**kwargs) self._normalize = normalize self._validate_matching_type(matching_type) self._matching_type = matching_type self._shape1 = None self._shape2 = None @classmethod def _validate_matching_type(cls, matching_type: str = 'dot'): valid_matching_type = ['dot', 'mul', 'plus', 'minus', 'concat'] if matching_type not in valid_matching_type: raise ValueError(f"{matching_type} is not a valid matching type, " f"{valid_matching_type} expected.") def build(self, input_shape: list): """ Build the layer. :param input_shape: the shapes of the input tensors, for MatchingLayer we need tow input tensors. """ # Used purely for shape validation. if not isinstance(input_shape, list) or len(input_shape) != 2: raise ValueError('A `MatchingLayer` layer should be called ' 'on a list of 2 inputs.') self._shape1 = input_shape[0] self._shape2 = input_shape[1] for idx in 0, 2: if self._shape1[idx] != self._shape2[idx]: raise ValueError( 'Incompatible dimensions: ' f'{self._shape1[idx]} != {self._shape2[idx]}.' f'Layer shapes: {self._shape1}, {self._shape2}.' ) def call(self, inputs: list, **kwargs) -> typing.Any: """ The computation logic of MatchingLayer. :param inputs: two input tensors. """ x1 = inputs[0] x2 = inputs[1] if self._matching_type == 'dot': if self._normalize: x1 = tf.math.l2_normalize(x1, axis=2) x2 = tf.math.l2_normalize(x2, axis=2) return tf.expand_dims(tf.einsum('abd,acd->abc', x1, x2), 3) else: if self._matching_type == 'mul': def func(x, y): return x * y elif self._matching_type == 'plus': def func(x, y): return x + y elif self._matching_type == 'minus': def func(x, y): return x - y elif self._matching_type == 'concat': def func(x, y): return tf.concat([x, y], axis=3) else: raise ValueError(f"Invalid matching type." f"{self._matching_type} received." f"Mut be in `dot`, `mul`, `plus`, " f"`minus` and `concat`.") x1_exp = tf.stack([x1] * self._shape2[1], 2) x2_exp = tf.stack([x2] * self._shape1[1], 1) return func(x1_exp, x2_exp) def compute_output_shape(self, input_shape: list) -> tuple: """ Calculate the layer output shape. :param input_shape: the shapes of the input tensors, for MatchingLayer we need tow input tensors. """ if not isinstance(input_shape, list) or len(input_shape) != 2: raise ValueError('A `MatchingLayer` layer should be called ' 'on a list of 2 inputs.') shape1 = list(input_shape[0]) shape2 = list(input_shape[1]) if len(shape1) != 3 or len(shape2) != 3: raise ValueError('A `MatchingLayer` layer should be called ' 'on 2 inputs with 3 dimensions.') if shape1[0] != shape2[0] or shape1[2] != shape2[2]: raise ValueError('A `MatchingLayer` layer should be called ' 'on 2 inputs with same 0,2 dimensions.') if self._matching_type in ['mul', 'plus', 'minus']: return shape1[0], shape1[1], shape2[1], shape1[2] elif self._matching_type == 'dot': return shape1[0], shape1[1], shape2[1], 1 elif self._matching_type == 'concat': return shape1[0], shape1[1], shape2[1], shape1[2] + shape2[2] else: raise ValueError(f"Invalid `matching_type`." f"{self._matching_type} received." f"Must be in `mul`, `plus`, `minus` " f"`dot` and `concat`.") def get_config(self) -> dict: """Get the config dict of MatchingLayer.""" config = { 'normalize': self._normalize, 'matching_type': self._matching_type, } base_config = super(MatchingLayer, self).get_config() return dict(list(base_config.items()) + list(config.items()))
# python 2.7, pytorch 0.3.1 import os, sys sys.path.insert(1, '../') import torch import cv2 import shutil import torchvision import numpy as np import itertools import subprocess import random import matplotlib.pyplot as plt import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms import torch.nn.functional as F from torch.autograd import Variable from torch.utils.data import DataLoader from PIL import Image from pietorch import data_convertors from pietorch.DuRN_P import cleaner as cleaner from pietorch.DuRN_P_no_norm import cleaner as cleaner_no_norm from pietorch.pytorch_ssim import ssim as ssim from skimage.measure import compare_psnr as psnr from skimage.measure import compare_ssim as ski_ssim #------ Options ------- tag = 'DuRN_P_no_norm' # 'DuRN_P' or 'DuRN_P_no_norm' for gaussion or real-world noise removal data_name = 'RealNoiseHKPoly' # 'BSD_gray' or 'RealNoiseHKPoly' # Gaussian noise level. Comment it if you set data_name = 'RealNoiseHKPoly'. #noise_level = 70 # choose one from [30, 50, 70] #---------------------- if data_name == 'BSD_gray': testroot = "../data/"+data_name+"/test/" test_list_pth = '../lists/'+data_name+'/testlist.txt' else: testroot = "../data/"+data_name+"/test1/" test_list_pth = '../lists/'+data_name+'/test1_list.txt' Pretrained = '../trainedmodels/'+data_name+'/'+tag+'_model.pt' show_dst = '../cleaned_images/'+data_name+'/'+tag+'/' subprocess.check_output(['mkdir', '-p', show_dst]) # Make the transformer and the network if data_name == 'BSD_gray': transform = [transforms.ToTensor(), noise_level] cleaner = cleaner().cuda() else: transform = transforms.ToTensor() cleaner = cleaner_no_norm().cuda() cleaner.load_state_dict(torch.load(Pretrained)) cleaner.eval() # Make the dataloader convertor = data_convertors.ConvertImageSet(testroot, test_list_pth, data_name, transform=transform) dataloader = DataLoader(convertor, batch_size=1, shuffle=False, num_workers=1) ave_psnr = 0 ave_ssim = 0 ct_num = 0 for i, data in enumerate(dataloader): ct_num+= 1.0 im_input, label, im_name = data im_input = Variable(im_input, requires_grad=False).cuda() res = cleaner(im_input) res = res.data.cpu().numpy() res[res>1] = 1 res[res<0] = 0 res*= 255 if data_name == 'BSD_gray': res = res.astype(np.uint8)[0,0] label = label.numpy()[0,0] label*= 255 label = label.astype(np.uint8) cv2.imwrite(show_dst+im_name[0].split('.')[0]+'_'+str(noise_level)+'.png', res) ave_psnr+= psnr(res, label, data_range=255) ave_ssim+= ski_ssim(res, label, data_range=255, multichannel=False) elif data_name == 'RealNoiseHKPoly': res = res.astype(np.uint8)[0] res = res.transpose((1,2,0)) label = label.numpy()[0].transpose((1,2,0)) label*= 255 label = label.astype(np.uint8) Image.fromarray(res).save(show_dst+im_name[0].split('real')[0]+'.png') ave_psnr+= psnr(res, label, data_range=255) ave_ssim+= ski_ssim(res, label, data_range=255, multichannel=True) else: print('Unknown dataset name.') print('psnr: '+str(ave_psnr/ct_num)) print('ssim: '+str(ave_ssim/ct_num)) print('Test done.')
# Simple image recommender # # required: # data/images: a folder containing your images dataset # data/users: can be empty, but the folder needs to exist (for now ?) # # optional: # data/tags.csv: a comma-separated list containing the names of your # images and the corresponding semicolon-separated tags # (eg. "37.png,sky;blue;cliff") # Libraries import from PIL import Image from sklearn.cluster import MiniBatchKMeans from operator import itemgetter import pandas from sklearn.ensemble import RandomForestClassifier import numpy as np import pandas as pd import json import math import os import json import csv # User data gathering def user_data_gathering(): name = input("Please enter your username: ") user_favs = [] user_dislikes = [] try: with open("data/users/" + name + ".txt", "r") as userfile: user_favs = userfile.readline().rstrip().split(",") user_dislikes = userfile.readline().rstrip().split(",") except FileNotFoundError: print("This user doesn't exist. Creating it...") if not user_favs: print("No favourite images defined!") if not user_dislikes: print("No disliked images defined!") do_fav = input("Would you like to define your favourite images? ([y]es/[n]o/[a]dd): ") if do_fav == "y": user_favs = input("Please enter your favourite images, separated by a comma: ").split(",") elif do_fav == "a": user_favs += input("Please enter the images you want to add, separated by a comma: ").split(",") elif do_fav == "n": pass else: print("Incorrect choice. Exiting") exit() do_dislike = input("Would you like to define your disliked images? ([y]es/[n]o/[a]dd): ") if do_dislike == "y": user_dislikes = input("Please enter your disliked images, separated by a comma: ").split(",") elif do_dislike == "a": user_dislikes += input("Please enter the images you want to add, separated by a comma: ").split(",") elif do_dislike == "n": pass else: print("Incorrect choice. Exiting") exit() userfile = open("data/users/" + name + ".txt", "w+") userfile.write(",".join(user_favs) + "\n") userfile.write(",".join(user_dislikes) + "\n") userfile.close() return user_favs,user_dislikes # Get all images filenames in data/images/ def get_image_list(): imagelist = [] for file in os.listdir("data/images"): if file.endswith(".png") or file.endswith(".jpg") or file.endswith(".gif") or file.endswith(".tif") or file.endswith(".bmp"): imagelist.append(file) return imagelist # Get color clusters per image def get_clusters(filename, n_clusters): imgfile = Image.open("data/images/" + filename).convert('RGBA') numarray = np.array(imgfile.getdata(), np.uint8) clusters = MiniBatchKMeans(n_clusters=n_clusters) clusters.fit(numarray) npbins = np.arange(0, n_clusters + 1) histogram = np.histogram(clusters.labels_, bins=npbins) # Sort histogram pairs = sorted(zip(histogram[0], histogram[1]), key=itemgetter(0)) histogram = (np.array([v for v, i in pairs]), np.array([i for v, i in pairs])) colors = [] for i in range(n_clusters): j = histogram[1][i] colors.append( ( math.ceil(clusters.cluster_centers_[j][0]), math.ceil(clusters.cluster_centers_[j][1]), math.ceil(clusters.cluster_centers_[j][2]) ) ) return colors # Returns a pandas dataframe with the tags info def get_tags(filename): try: tags_df = pd.read_csv(filename) except FileNotFoundError: print("No tags have been defined. Ignoring tags.") tags_df["tags"] = tags_df.tags.str.split(";") return tags_df # Clean the clusters data def clean_data(clusters): for image in clusters: tmp = [] for color in image["colors"]: tmp.append(((color[0])<<16)|((color[1])<<8)|(color[2])) image["colors"] = tmp tmp = [] return clusters # The actual prediction algorithm def predict(clusters, user_fav, user_dislikes): images = sorted(clusters, key=lambda x: x['name']) color_clusters = [image["colors"] for image in images] # Build training data training_data = color_clusters result_data = [(image['name'] in user_fav) for image in images] # Build dataframes training_df = pandas.DataFrame(training_data, columns=['color1', 'color2', 'color3']) result_df = pandas.DataFrame(result_data, columns=['favorite']) # Train decision tree classifier = RandomForestClassifier(n_estimators=10, max_depth=10) classifier = classifier.fit(training_df, result_df.values.ravel()) predicted = classifier.predict(list(map(lambda x: x['colors'], images))) print("# Predicted as favorites") for index, favorite in enumerate(predicted): name = images[index]['name'] # Only print new images if favorite and name not in user_fav and name not in user_dislikes: print(name) # Main function def main(): print("Loading...") print(" -- Looking up images...") imagelist = get_image_list() print(" -- Calculating color clusters (this can take some time if it has never been done before)...") n_clusters = 3 try: clustersData = open("data/clusters.json", "r") clusters = json.load(clustersData) except: clusters = [{"name":filename, "colors":get_clusters(filename, n_clusters)} for filename in imagelist] r = json.dumps(clusters) clusersfile = open("data/clusters.json", "w") clusersfile.write(r) clusersfile.close() print(" -- Extracting tags...") tags = get_tags("data/tags.csv") print("Loading done!") # Gathering user data print("Gathering user data...") (user_favs, user_dislikes) = user_data_gathering() # Recommendation system print("Computing recommendation...") cleanedclusters = clean_data(clusters) predict(cleanedclusters, user_favs, user_dislikes) if __name__ == "__main__": main()
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """A Python wrapper that loads _pywrap_tensorflow_internal.so.""" import ctypes import sys import traceback from tensorflow.python.platform import self_check # TODO(mdan): Cleanup antipattern: import for side effects. # Perform pre-load sanity checks in order to produce a more actionable error. self_check.preload_check() # pylint: disable=wildcard-import,g-import-not-at-top,unused-import,line-too-long try: # This import is expected to fail if there is an explicit shared object # dependency (with_framework_lib=true), since we do not need RTLD_GLOBAL. from tensorflow.python import pywrap_dlopen_global_flags _use_dlopen_global_flags = True except ImportError: _use_dlopen_global_flags = False # On UNIX-based platforms, pywrap_tensorflow is a python library that # dynamically loads _pywrap_tensorflow.so. _can_set_rtld_local = ( hasattr(sys, 'getdlopenflags') and hasattr(sys, 'setdlopenflags')) if _can_set_rtld_local: _default_dlopen_flags = sys.getdlopenflags() try: if _use_dlopen_global_flags: pywrap_dlopen_global_flags.set_dlopen_flags() elif _can_set_rtld_local: # Ensure RTLD_LOCAL behavior for platforms where it isn't the default # (macOS). On Linux RTLD_LOCAL is 0, so this does nothing (and would not # override an RTLD_GLOBAL in _default_dlopen_flags). sys.setdlopenflags(_default_dlopen_flags | ctypes.RTLD_LOCAL) # Python2.7 does not have a ModuleNotFoundError. try: ModuleNotFoundError except NameError: ModuleNotFoundError = ImportError # pylint: disable=redefined-builtin # pylint: disable=wildcard-import,g-import-not-at-top,line-too-long,undefined-variable try: from tensorflow.python._pywrap_tensorflow_internal import * # This try catch logic is because there is no bazel equivalent for py_extension. # Externally in opensource we must enable exceptions to load the shared object # by exposing the PyInit symbols with pybind. This error will only be # caught internally or if someone changes the name of the target _pywrap_tensorflow_internal. # This logic is used in other internal projects using py_extension. except ModuleNotFoundError: pass if _use_dlopen_global_flags: pywrap_dlopen_global_flags.reset_dlopen_flags() elif _can_set_rtld_local: sys.setdlopenflags(_default_dlopen_flags) except ImportError: raise ImportError( f'{traceback.format_exc()}' f'\n\nFailed to load the native TensorFlow runtime.\n' f'See https://www.tensorflow.org/install/errors ' f'for some common causes and solutions.\n' f'If you need help, create an issue ' f'at https://github.com/tensorflow/tensorflow/issues ' f'and include the entire stack trace above this error message.') # pylint: enable=wildcard-import,g-import-not-at-top,unused-import,line-too-long
# SPDX-License-Identifier: BSD-3-Clause # Copyright (c) 2021 Scipp contributors (https://github.com/scipp) # @author Neil Vaytet from .. import config from ..core import concatenate, values, dtype, units, nanmin, nanmax, histogram, \ full_like from ..core import Variable, DataArray from ..core import abs as abs_ import numpy as np from copy import copy import io def get_line_param(name=None, index=None): """ Get the default line parameter from the config. If an index is supplied, return the i-th item in the list. """ param = getattr(config.plot, name) return param[index % len(param)] def to_bin_centers(x, dim): """ Convert array edges to centers """ return 0.5 * (x[dim, 1:] + x[dim, :-1]) def to_bin_edges(x, dim): """ Convert array centers to edges """ idim = x.dims.index(dim) if x.shape[idim] < 2: one = 1.0 * x.unit return concatenate(x[dim, 0:1] - one, x[dim, 0:1] + one, dim) else: center = to_bin_centers(x, dim) # Note: use range of 0:1 to keep dimension dim in the slice to avoid # switching round dimension order in concatenate step. left = center[dim, 0:1] - (x[dim, 1] - x[dim, 0]) right = center[dim, -1] + (x[dim, -1] - x[dim, -2]) return concatenate(concatenate(left, center, dim), right, dim) def parse_params(params=None, defaults=None, globs=None, array=None): """ Construct the colorbar settings using default and input values """ from matplotlib.colors import Normalize, LogNorm, LinearSegmentedColormap from matplotlib import cm parsed = dict(config.plot.params) if defaults is not None: for key, val in defaults.items(): parsed[key] = val if globs is not None: for key, val in globs.items(): # Global parameters need special treatment because by default they # are set to None, and we don't want to overwrite the defaults. if val is not None: parsed[key] = val if params is not None: if isinstance(params, bool): params = {"show": params} for key, val in params.items(): parsed[key] = val if parsed["norm"] == "log": norm = LogNorm elif parsed["norm"] == "linear": norm = Normalize else: raise RuntimeError("Unknown norm. Expected 'linear' or 'log', " "got {}.".format(parsed["norm"])) vmin = parsed["vmin"] vmax = parsed["vmax"] parsed["norm"] = norm(vmin=vmin.value if vmin is not None else None, vmax=vmax.value if vmax is not None else None) # Convert color into custom colormap if parsed["color"] is not None: parsed["cmap"] = LinearSegmentedColormap.from_list( "tmp", [parsed["color"], parsed["color"]]) else: parsed["cmap"] = copy(cm.get_cmap(parsed["cmap"])) if parsed["under_color"] is None: parsed["cmap"].set_under(parsed["cmap"](0.0)) else: parsed["cmap"].set_under(parsed["under_color"]) if parsed["over_color"] is None: parsed["cmap"].set_over(parsed["cmap"](1.0)) else: parsed["cmap"].set_over(parsed["over_color"]) return parsed def vars_to_err(v): """ Convert variances to errors. """ with np.errstate(invalid="ignore"): v = np.sqrt(v) np.nan_to_num(v, copy=False) return v def find_log_limits(x): """ To find log scale limits, we histogram the data between 1.0-30 and 1.0e+30 and include only bins that are non-zero. """ from .. import flatten, ones volume = np.product(x.shape) pixel = flatten(values(x.astype(dtype.float64)), to='pixel') weights = ones(dims=['pixel'], shape=[volume], unit='counts') hist = histogram(DataArray(data=weights, coords={'order': pixel}), bins=Variable(dims=['order'], values=np.geomspace(1e-30, 1e30, num=61), unit=x.unit)) # Find the first and the last non-zero bins inds = np.nonzero((hist.data > 0.0 * units.counts).values) ar = np.arange(hist.data.shape[0])[inds] # Safety check in case there are no values in range 1.0e-30:1.0e+30: # fall back to the linear method and replace with arbitrary values if the # limits are negative. if len(ar) == 0: [vmin, vmax] = find_linear_limits(x) if vmin.value <= 0.0: if vmax.value <= 0.0: vmin = full_like(vmin, 0.1) vmax = full_like(vmax, 1.0) else: vmin = 1.0e-3 * vmax else: vmin = hist.coords['order']['order', ar.min()] vmax = hist.coords['order']['order', ar.max() + 1] return [vmin, vmax] def find_linear_limits(x): """ Find variable min and max. """ return [ values(nanmin(x).astype(dtype.float64)), values(nanmax(x).astype(dtype.float64)) ] def find_limits(x, scale=None, flip=False): """ Find sensible limits, depending on linear or log scale. """ if scale is not None: if scale == "log": lims = {"log": find_log_limits(x)} else: lims = {"linear": find_linear_limits(x)} else: lims = {"log": find_log_limits(x), "linear": find_linear_limits(x)} if flip: for key in lims: lims[key] = np.flip(lims[key]).copy() return lims def fix_empty_range(lims, replacement=None): """ Range correction in case xmin == xmax """ dx = 0.0 * lims[0].unit if lims[0].value == lims[1].value: if replacement is not None: dx = 0.5 * replacement elif lims[0].value == 0.0: dx = 0.5 * lims[0].unit else: dx = 0.5 * abs_(lims[0]) return [lims[0] - dx, lims[1] + dx] def fig_to_pngbytes(fig): """ Convert figure to png image bytes. We also close the figure to prevent it from showing up again in cells further down the notebook. """ import matplotlib.pyplot as plt buf = io.BytesIO() fig.savefig(buf, format='png') plt.close(fig) buf.seek(0) return buf.getvalue() def to_dict(meta): """ Convert a coords, meta, attrs or masks object to a python dict. """ return {name: var for name, var in meta.items()}
# -*- Python -*- # Return the options to use for a C++ library or binary build. # Uses the ":optmode" config_setting to pick the options. load( "//tensorflow/core/platform:default/build_config_root.bzl", "if_dynamic_kernels", "if_static", "tf_additional_grpc_deps_py", "tf_additional_xla_deps_py", "tf_cuda_tests_tags", "tf_exec_compatible_with", "tf_gpu_tests_tags", "tf_sycl_tests_tags", ) load( "@local_config_tensorrt//:build_defs.bzl", "if_tensorrt", ) load( "//tensorflow/core/platform:default/cuda_build_defs.bzl", "if_cuda_is_configured", ) load( "@local_config_cuda//cuda:build_defs.bzl", "cuda_default_copts", "if_cuda", ) load( "@local_config_rocm//rocm:build_defs.bzl", "if_rocm", "if_rocm_is_configured", "rocm_copts", "rocm_default_copts", ) load( "//third_party/mkl:build_defs.bzl", "if_enable_mkl", "if_mkl", "if_mkl_lnx_x64", "if_mkl_ml", "mkl_deps", ) load( "//third_party/mkl_dnn:build_defs.bzl", "if_mkl_open_source_only", "if_mkldnn_threadpool", ) load( "//third_party/ngraph:build_defs.bzl", "if_ngraph", ) def register_extension_info(**kwargs): pass # version for the shared libraries, can # not contain rc or alpha, only numbers. # Also update tensorflow/core/public/version.h # and tensorflow/tools/pip_package/setup.py VERSION = "1.15.5" VERSION_MAJOR = VERSION.split(".")[0] def if_v2(a): return select({ clean_dep("//tensorflow:api_version_2"): a, "//conditions:default": [], }) def if_not_v2(a): return select({ clean_dep("//tensorflow:api_version_2"): [], "//conditions:default": a, }) def if_cuda_is_configured_compat(x): return if_cuda_is_configured(x) # Given a source file, generate a test name. # i.e. "common_runtime/direct_session_test.cc" becomes # "common_runtime_direct_session_test" def src_to_test_name(src): return src.replace("/", "_").replace(":", "_").split(".")[0] def full_path(relative_paths): return [native.package_name() + "/" + relative for relative in relative_paths] def _add_tfcore_prefix(src): if src.startswith("//"): return src return "//tensorflow/core:" + src # List of proto files for android builds def tf_android_core_proto_sources(core_proto_sources_relative): return [ _add_tfcore_prefix(p) for p in core_proto_sources_relative ] # Returns the list of pb.h and proto.h headers that are generated for # tf_android_core_proto_sources(). def tf_android_core_proto_headers(core_proto_sources_relative): return ([ _add_tfcore_prefix(p).replace(":", "/").replace(".proto", ".pb.h") for p in core_proto_sources_relative ] + [ _add_tfcore_prefix(p).replace(":", "/").replace(".proto", ".proto.h") for p in core_proto_sources_relative ]) # Wrapper for portable protos which currently just creates an empty rule. def tf_portable_proto_library(name, proto_deps, **kwargs): _ignore = [kwargs] native.cc_library(name = name, deps = proto_deps) # Sanitize a dependency so that it works correctly from code that includes # TensorFlow as a submodule. def clean_dep(dep): return str(Label(dep)) def if_android_x86(a): return select({ clean_dep("//tensorflow:android_x86"): a, clean_dep("//tensorflow:android_x86_64"): a, "//conditions:default": [], }) def if_android_arm(a): return select({ clean_dep("//tensorflow:android_arm"): a, "//conditions:default": [], }) def if_android_arm64(a): return select({ clean_dep("//tensorflow:android_arm64"): a, "//conditions:default": [], }) def if_android_mips(a): return select({ clean_dep("//tensorflow:android_mips"): a, "//conditions:default": [], }) def if_not_android(a): return select({ clean_dep("//tensorflow:android"): [], "//conditions:default": a, }) def if_not_android_mips_and_mips64(a): return select({ clean_dep("//tensorflow:android_mips"): [], clean_dep("//tensorflow:android_mips64"): [], "//conditions:default": a, }) def if_android(a): return select({ clean_dep("//tensorflow:android"): a, "//conditions:default": [], }) def if_emscripten(a): return select({ clean_dep("//tensorflow:emscripten"): a, "//conditions:default": [], }) def if_macos(a, otherwise = []): return select({ clean_dep("//tensorflow:macos"): a, "//conditions:default": otherwise, }) def if_ios(a): return select({ clean_dep("//tensorflow:ios"): a, "//conditions:default": [], }) def if_ios_x86_64(a): return select({ clean_dep("//tensorflow:ios_x86_64"): a, "//conditions:default": [], }) def if_mobile(a): return select({ clean_dep("//tensorflow:android"): a, clean_dep("//tensorflow:ios"): a, "//conditions:default": [], }) def if_not_mobile(a): return select({ clean_dep("//tensorflow:android"): [], clean_dep("//tensorflow:ios"): [], "//conditions:default": a, }) # Config setting selector used when building for products # which requires restricted licenses to be avoided. def if_not_lgpl_restricted(a): _ = (a,) return select({ "//conditions:default": [], }) def if_not_windows(a): return select({ clean_dep("//tensorflow:windows"): [], "//conditions:default": a, }) def if_windows(a, otherwise = []): return select({ clean_dep("//tensorflow:windows"): a, "//conditions:default": otherwise, }) def if_windows_cuda(a, otherwise = []): return select({ clean_dep("//tensorflow:with_cuda_support_windows_override"): a, "//conditions:default": otherwise, }) def if_linux_x86_64(a): return select({ clean_dep("//tensorflow:linux_x86_64"): a, "//conditions:default": [], }) def if_override_eigen_strong_inline(a): return select({ clean_dep("//tensorflow:override_eigen_strong_inline"): a, "//conditions:default": [], }) def if_nccl(if_true, if_false = []): return select({ "//tensorflow:no_nccl_support": if_false, "//tensorflow:windows": if_false, "//conditions:default": if_true, }) def get_win_copts(is_external = False): WINDOWS_COPTS = [ "/DPLATFORM_WINDOWS", "/DEIGEN_HAS_C99_MATH", "/DTENSORFLOW_USE_EIGEN_THREADPOOL", "/DEIGEN_AVOID_STL_ARRAY", "/Iexternal/gemmlowp", "/wd4018", # -Wno-sign-compare # Bazel's CROSSTOOL currently pass /EHsc to enable exception by # default. We can't pass /EHs-c- to disable exception, otherwise # we will get a waterfall of flag conflict warnings. Wait for # Bazel to fix this. # "/D_HAS_EXCEPTIONS=0", # "/EHs-c-", "/wd4577", "/DNOGDI", ] if is_external: return WINDOWS_COPTS + ["/UTF_COMPILE_LIBRARY"] else: return WINDOWS_COPTS + ["/DTF_COMPILE_LIBRARY"] # LINT.IfChange def tf_copts( android_optimization_level_override = "-O2", is_external = False, allow_exceptions = False): # For compatibility reasons, android_optimization_level_override # is currently only being set for Android. # To clear this value, and allow the CROSSTOOL default # to be used, pass android_optimization_level_override=None android_copts = [ "-DTF_LEAN_BINARY", "-Wno-narrowing", "-fomit-frame-pointer", ] if android_optimization_level_override: android_copts.append(android_optimization_level_override) return ( if_not_windows([ "-DEIGEN_AVOID_STL_ARRAY", "-Iexternal/gemmlowp", "-Wno-sign-compare", "-ftemplate-depth=900", ]) + (if_not_windows(["-fno-exceptions"]) if not allow_exceptions else []) + if_cuda(["-DGOOGLE_CUDA=1"]) + if_tensorrt(["-DGOOGLE_TENSORRT=1"]) + if_nccl(["-DGOOGLE_NCCL=1"]) + if_mkl(["-DINTEL_MKL=1", "-DENABLE_MKLDNN_V1", "-DENABLE_INTEL_MKL_BFLOAT16"]) + if_mkl_open_source_only(["-DINTEL_MKL_DNN_ONLY"]) + if_mkldnn_threadpool(["-DENABLE_MKLDNN_THREADPOOL"]) + if_enable_mkl(["-DENABLE_MKL"]) + if_ngraph(["-DINTEL_NGRAPH=1"]) + if_android_arm(["-mfpu=neon"]) + if_linux_x86_64(["-msse3"]) + if_ios_x86_64(["-msse4.1"]) + select({ clean_dep("//tensorflow:framework_shared_object"): [], "//conditions:default": ["-DTENSORFLOW_MONOLITHIC_BUILD"], }) + select({ clean_dep("//tensorflow:android"): android_copts, clean_dep("//tensorflow:macos"): [], clean_dep("//tensorflow:windows"): get_win_copts(is_external), clean_dep("//tensorflow:ios"): [], clean_dep("//tensorflow:no_lgpl_deps"): ["-D__TENSORFLOW_NO_LGPL_DEPS__", "-pthread"], "//conditions:default": ["-pthread"], }) ) def tf_openmp_copts(): return (if_mkl_lnx_x64(["-fopenmp"]) + if_mkldnn_threadpool(["-fno-openmp"])) def tfe_xla_copts(): return select({ "//tensorflow:with_xla_support": ["-DTENSORFLOW_EAGER_USE_XLA"], "//conditions:default": [], }) def tf_opts_nortti_if_android(): return if_android([ "-fno-rtti", "-DGOOGLE_PROTOBUF_NO_RTTI", "-DGOOGLE_PROTOBUF_NO_STATIC_INITIALIZER", ]) # LINT.ThenChange(//tensorflow/contrib/android/cmake/CMakeLists.txt) def tf_opts_nortti_if_emscripten(): return if_emscripten([ "-fno-rtti", "-DGOOGLE_PROTOBUF_NO_RTTI", "-DGOOGLE_PROTOBUF_NO_STATIC_INITIALIZER", ]) def tf_features_nomodules_if_android(): return if_android(["-use_header_modules"]) def tf_features_nomodules_if_emscripten(): return if_emscripten(["-use_header_modules"]) # Given a list of "op_lib_names" (a list of files in the ops directory # without their .cc extensions), generate a library for that file. def tf_gen_op_libs(op_lib_names, deps = None, is_external = True): # Make library out of each op so it can also be used to generate wrappers # for various languages. if not deps: deps = [] for n in op_lib_names: native.cc_library( name = n + "_op_lib", copts = tf_copts(is_external = is_external), srcs = ["ops/" + n + ".cc"], deps = deps + [clean_dep("//tensorflow/core:framework")], visibility = ["//visibility:public"], alwayslink = 1, linkstatic = 1, ) def _make_search_paths(prefix, levels_to_root): return ",".join( [ "-rpath,%s/%s" % (prefix, "/".join([".."] * search_level)) for search_level in range(levels_to_root + 1) ], ) def _rpath_linkopts(name): # Search parent directories up to the TensorFlow root directory for shared # object dependencies, even if this op shared object is deeply nested # (e.g. tensorflow/contrib/package:python/ops/_op_lib.so). tensorflow/ is then # the root and tensorflow/libtensorflow_framework.so should exist when # deployed. Other shared object dependencies (e.g. shared between contrib/ # ops) are picked up as long as they are in either the same or a parent # directory in the tensorflow/ tree. levels_to_root = native.package_name().count("/") + name.count("/") return select({ clean_dep("//tensorflow:macos"): [ "-Wl,%s" % (_make_search_paths("@loader_path", levels_to_root),), ], clean_dep("//tensorflow:windows"): [], "//conditions:default": [ "-Wl,%s" % (_make_search_paths("$$ORIGIN", levels_to_root),), ], }) # Bazel-generated shared objects which must be linked into TensorFlow binaries # to define symbols from //tensorflow/core:framework and //tensorflow/core:lib. def tf_binary_additional_srcs(fullversion = False): if fullversion: suffix = "." + VERSION else: suffix = "." + VERSION_MAJOR return if_static( extra_deps = [], macos = [ clean_dep("//tensorflow:libtensorflow_framework%s.dylib" % suffix), ], otherwise = [ clean_dep("//tensorflow:libtensorflow_framework.so%s" % suffix), ], ) def tf_binary_additional_data_deps(): return if_static( extra_deps = [], macos = [ clean_dep("//tensorflow:libtensorflow_framework.dylib"), clean_dep("//tensorflow:libtensorflow_framework.%s.dylib" % VERSION_MAJOR), clean_dep("//tensorflow:libtensorflow_framework.%s.dylib" % VERSION), ], otherwise = [ clean_dep("//tensorflow:libtensorflow_framework.so"), clean_dep("//tensorflow:libtensorflow_framework.so.%s" % VERSION_MAJOR), clean_dep("//tensorflow:libtensorflow_framework.so.%s" % VERSION), ], ) def tf_binary_pybind_deps(): return select({ clean_dep("//tensorflow:macos"): [ clean_dep( "//tensorflow/python:_pywrap_tensorflow_internal_macos", ), ], clean_dep("//tensorflow:windows"): [ clean_dep( "//tensorflow/python:_pywrap_tensorflow_internal_windows", ), ], "//conditions:default": [ clean_dep( "//tensorflow/python:_pywrap_tensorflow_internal_linux", ), ], }) # Helper function for the per-OS tensorflow libraries and their version symlinks def tf_shared_library_deps(): return select({ clean_dep("//tensorflow:macos_with_framework_shared_object"): [ clean_dep("//tensorflow:libtensorflow.dylib"), clean_dep("//tensorflow:libtensorflow.%s.dylib" % VERSION_MAJOR), clean_dep("//tensorflow:libtensorflow.%s.dylib" % VERSION), ], clean_dep("//tensorflow:macos"): [], clean_dep("//tensorflow:windows"): [ clean_dep("//tensorflow:tensorflow.dll"), clean_dep("//tensorflow:tensorflow_dll_import_lib"), ], clean_dep("//tensorflow:framework_shared_object"): [ clean_dep("//tensorflow:libtensorflow.so"), clean_dep("//tensorflow:libtensorflow.so.%s" % VERSION_MAJOR), clean_dep("//tensorflow:libtensorflow.so.%s" % VERSION), ], "//conditions:default": [], }) + tf_binary_additional_srcs() # Helper functions to add kernel dependencies to tf binaries when using dynamic # kernel linking. def tf_binary_dynamic_kernel_dsos(): return if_dynamic_kernels( extra_deps = [ "//tensorflow/core/kernels:libtfkernel_all_kernels.so", ], otherwise = [], ) # Helper functions to add kernel dependencies to tf binaries when using static # kernel linking. def tf_binary_dynamic_kernel_deps(kernels): return if_dynamic_kernels( extra_deps = [], otherwise = kernels, ) # Shared libraries have different name pattern on different platforms, # but cc_binary cannot output correct artifact name yet, # so we generate multiple cc_binary targets with all name patterns when necessary. # TODO(pcloudy): Remove this workaround when https://github.com/bazelbuild/bazel/issues/4570 # is done and cc_shared_library is available. SHARED_LIBRARY_NAME_PATTERNS = [ "lib%s.so%s", # On Linux, shared libraries are usually named as libfoo.so "lib%s%s.dylib", # On macos, shared libraries are usually named as libfoo.dylib "%s%s.dll", # On Windows, shared libraries are usually named as foo.dll ] def tf_cc_shared_object( name, srcs = [], deps = [], data = [], linkopts = [], framework_so = tf_binary_additional_srcs(), soversion = None, kernels = [], per_os_targets = False, # Generate targets with SHARED_LIBRARY_NAME_PATTERNS visibility = None, **kwargs): """Configure the shared object (.so) file for TensorFlow.""" if soversion != None: suffix = "." + str(soversion).split(".")[0] longsuffix = "." + str(soversion) else: suffix = "" longsuffix = "" if per_os_targets: names = [ ( pattern % (name, ""), pattern % (name, suffix), pattern % (name, longsuffix), ) for pattern in SHARED_LIBRARY_NAME_PATTERNS ] else: names = [( name, name + suffix, name + longsuffix, )] for name_os, name_os_major, name_os_full in names: # Windows DLLs cant be versioned if name_os.endswith(".dll"): name_os_major = name_os name_os_full = name_os if name_os != name_os_major: native.genrule( name = name_os + "_sym", outs = [name_os], srcs = [name_os_major], output_to_bindir = 1, cmd = "ln -sf $$(basename $<) $@", ) native.genrule( name = name_os_major + "_sym", outs = [name_os_major], srcs = [name_os_full], output_to_bindir = 1, cmd = "ln -sf $$(basename $<) $@", ) soname = name_os_major.split("/")[-1] data_extra = [] if framework_so != []: data_extra = tf_binary_additional_data_deps() native.cc_binary( name = name_os_full, srcs = srcs + framework_so, deps = deps, linkshared = 1, data = data + data_extra, linkopts = linkopts + _rpath_linkopts(name_os_full) + select({ clean_dep("//tensorflow:macos"): [ "-Wl,-install_name,@rpath/" + soname, ], clean_dep("//tensorflow:windows"): [], "//conditions:default": [ "-Wl,-soname," + soname, ], }), visibility = visibility, **kwargs ) flat_names = [item for sublist in names for item in sublist] if name not in flat_names: native.filegroup( name = name, srcs = select({ "//tensorflow:windows": [":%s.dll" % (name)], "//tensorflow:macos": [":lib%s%s.dylib" % (name, longsuffix)], "//conditions:default": [":lib%s.so%s" % (name, longsuffix)], }), visibility = visibility, ) register_extension_info( extension_name = "tf_cc_shared_object", label_regex_for_dep = "{extension_name}", ) # Links in the framework shared object # (//third_party/tensorflow:libtensorflow_framework.so) when not building # statically. Also adds linker options (rpaths) so that the framework shared # object can be found. def tf_cc_binary( name, srcs = [], deps = [], data = [], linkopts = [], copts = tf_copts(), kernels = [], per_os_targets = False, # Generate targets with SHARED_LIBRARY_NAME_PATTERNS visibility = None, **kwargs): if kernels: added_data_deps = tf_binary_dynamic_kernel_dsos() else: added_data_deps = [] if per_os_targets: names = [pattern % (name, "") for pattern in SHARED_LIBRARY_NAME_PATTERNS] else: names = [name] for name_os in names: native.cc_binary( name = name_os, copts = copts, srcs = srcs + tf_binary_additional_srcs(), deps = deps + tf_binary_dynamic_kernel_deps(kernels) + if_mkl_ml( [ clean_dep("//third_party/mkl:intel_binary_blob"), ], ), data = depset(data + added_data_deps), linkopts = linkopts + _rpath_linkopts(name_os), visibility = visibility, **kwargs ) if name not in names: native.filegroup( name = name, srcs = select({ "//tensorflow:windows": [":%s.dll" % name], "//tensorflow:macos": [":lib%s.dylib" % name], "//conditions:default": [":lib%s.so" % name], }), visibility = visibility, ) register_extension_info( extension_name = "tf_cc_binary", label_regex_for_dep = "{extension_name}.*", ) # A simple wrap around native.cc_binary rule. # When using this rule, you should realize it doesn't link to any tensorflow # dependencies by default. def tf_native_cc_binary( name, copts = tf_copts(), linkopts = [], **kwargs): native.cc_binary( name = name, copts = copts, linkopts = select({ clean_dep("//tensorflow:windows"): [], clean_dep("//tensorflow:macos"): [ "-lm", ], "//conditions:default": [ "-lpthread", "-lm", ], }) + linkopts + _rpath_linkopts(name), **kwargs ) register_extension_info( extension_name = "tf_native_cc_binary", label_regex_for_dep = "{extension_name}.*", ) def tf_gen_op_wrapper_cc( name, out_ops_file, pkg = "", op_gen = clean_dep("//tensorflow/cc:cc_op_gen_main"), deps = None, include_internal_ops = 0, # ApiDefs will be loaded in the order specified in this list. api_def_srcs = []): # Construct an op generator binary for these ops. tool = out_ops_file + "_gen_cc" if deps == None: deps = [pkg + ":" + name + "_op_lib"] tf_cc_binary( name = tool, copts = tf_copts(), linkopts = if_not_windows(["-lm", "-Wl,-ldl"]), linkstatic = 1, # Faster to link this one-time-use binary dynamically deps = [op_gen] + deps, ) srcs = api_def_srcs[:] if not api_def_srcs: api_def_args_str = "," else: api_def_args = [] for api_def_src in api_def_srcs: # Add directory of the first ApiDef source to args. # We are assuming all ApiDefs in a single api_def_src are in the # same directory. api_def_args.append( " $$(dirname $$(echo $(locations " + api_def_src + ") | cut -d\" \" -f1))", ) api_def_args_str = ",".join(api_def_args) native.genrule( name = name + "_genrule", outs = [ out_ops_file + ".h", out_ops_file + ".cc", out_ops_file + "_internal.h", out_ops_file + "_internal.cc", ], srcs = srcs, tools = [":" + tool] + tf_binary_additional_srcs(), cmd = ("$(location :" + tool + ") $(location :" + out_ops_file + ".h) " + "$(location :" + out_ops_file + ".cc) " + str(include_internal_ops) + " " + api_def_args_str), ) # Given a list of "op_lib_names" (a list of files in the ops directory # without their .cc extensions), generate individual C++ .cc and .h # files for each of the ops files mentioned, and then generate a # single cc_library called "name" that combines all the # generated C++ code. # # For example, for: # tf_gen_op_wrappers_cc("tf_ops_lib", [ "array_ops", "math_ops" ]) # # # This will ultimately generate ops/* files and a library like: # # cc_library(name = "tf_ops_lib", # srcs = [ "ops/array_ops.cc", # "ops/math_ops.cc" ], # hdrs = [ "ops/array_ops.h", # "ops/math_ops.h" ], # deps = [ ... ]) # # Plus a private library for the "hidden" ops. # cc_library(name = "tf_ops_lib_internal", # srcs = [ "ops/array_ops_internal.cc", # "ops/math_ops_internal.cc" ], # hdrs = [ "ops/array_ops_internal.h", # "ops/math_ops_internal.h" ], # deps = [ ... ]) # TODO(joshl): Cleaner approach for hidden ops. def tf_gen_op_wrappers_cc( name, op_lib_names = [], other_srcs = [], other_hdrs = [], other_srcs_internal = [], other_hdrs_internal = [], pkg = "", deps = [ clean_dep("//tensorflow/cc:ops"), clean_dep("//tensorflow/cc:scope"), clean_dep("//tensorflow/cc:const_op"), ], deps_internal = [], op_gen = clean_dep("//tensorflow/cc:cc_op_gen_main"), include_internal_ops = 0, visibility = None, # ApiDefs will be loaded in the order specified in this list. api_def_srcs = [], # Any extra dependencies that the wrapper generator might need. extra_gen_deps = []): subsrcs = other_srcs[:] subhdrs = other_hdrs[:] internalsrcs = other_srcs_internal[:] internalhdrs = other_hdrs_internal[:] for n in op_lib_names: tf_gen_op_wrapper_cc( n, "ops/" + n, api_def_srcs = api_def_srcs, include_internal_ops = include_internal_ops, op_gen = op_gen, pkg = pkg, deps = [pkg + ":" + n + "_op_lib"] + extra_gen_deps, ) subsrcs += ["ops/" + n + ".cc"] subhdrs += ["ops/" + n + ".h"] internalsrcs += ["ops/" + n + "_internal.cc"] internalhdrs += ["ops/" + n + "_internal.h"] native.cc_library( name = name, srcs = subsrcs, hdrs = subhdrs, deps = deps + if_not_android([ clean_dep("//tensorflow/core:core_cpu"), clean_dep("//tensorflow/core:framework"), clean_dep("//tensorflow/core:lib"), clean_dep("//tensorflow/core:ops"), clean_dep("//tensorflow/core:protos_all_cc"), ]) + if_android([ clean_dep("//tensorflow/core:android_tensorflow_lib"), ]), copts = tf_copts(), alwayslink = 1, visibility = visibility, ) native.cc_library( name = name + "_internal", srcs = internalsrcs, hdrs = internalhdrs, deps = deps + deps_internal + if_not_android([ clean_dep("//tensorflow/core:core_cpu"), clean_dep("//tensorflow/core:framework"), clean_dep("//tensorflow/core:lib"), clean_dep("//tensorflow/core:ops"), clean_dep("//tensorflow/core:protos_all_cc"), ]) + if_android([ clean_dep("//tensorflow/core:android_tensorflow_lib"), ]), copts = tf_copts(), alwayslink = 1, visibility = [clean_dep("//tensorflow:internal")], ) # Generates a Python library target wrapping the ops registered in "deps". # # Args: # name: used as the name of the generated target and as a name component of # the intermediate files. # out: name of the python file created by this rule. If None, then # "ops/gen_{name}.py" is used. # hidden: Optional list of ops names to make private in the Python module. # It is invalid to specify both "hidden" and "op_whitelist". # visibility: passed to py_library. # deps: list of dependencies for the intermediate tool used to generate the # python target. NOTE these `deps` are not applied to the final python # library target itself. # require_shape_functions: leave this as False. # hidden_file: optional file that contains a list of op names to make private # in the generated Python module. Each op name should be on a line by # itself. Lines that start with characters that are invalid op name # starting characters are treated as comments and ignored. # generated_target_name: name of the generated target (overrides the # "name" arg) # op_whitelist: if not empty, only op names in this list will be wrapped. It # is invalid to specify both "hidden" and "op_whitelist". # cc_linkopts: Optional linkopts to be added to tf_cc_binary that contains the # specified ops. def tf_gen_op_wrapper_py( name, out = None, hidden = None, visibility = None, deps = [], require_shape_functions = False, hidden_file = None, generated_target_name = None, op_whitelist = [], cc_linkopts = [], api_def_srcs = []): if (hidden or hidden_file) and op_whitelist: fail("Cannot pass specify both hidden and op_whitelist.") # Construct a cc_binary containing the specified ops. tool_name = "gen_" + name + "_py_wrappers_cc" if not deps: deps = [str(Label("//tensorflow/core:" + name + "_op_lib"))] tf_cc_binary( name = tool_name, copts = tf_copts(), linkopts = if_not_windows(["-lm", "-Wl,-ldl"]) + cc_linkopts, linkstatic = 1, # Faster to link this one-time-use binary dynamically visibility = [clean_dep("//tensorflow:internal")], deps = ([ clean_dep("//tensorflow/core:framework"), clean_dep("//tensorflow/python:python_op_gen_main"), ] + deps), ) # Invoke the previous cc_binary to generate a python file. if not out: out = "ops/gen_" + name + ".py" if hidden: op_list_arg = ",".join(hidden) op_list_is_whitelist = False elif op_whitelist: op_list_arg = ",".join(op_whitelist) op_list_is_whitelist = True else: op_list_arg = "''" op_list_is_whitelist = False # Prepare ApiDef directories to pass to the genrule. if not api_def_srcs: api_def_args_str = "," else: api_def_args = [] for api_def_src in api_def_srcs: # Add directory of the first ApiDef source to args. # We are assuming all ApiDefs in a single api_def_src are in the # same directory. api_def_args.append( "$$(dirname $$(echo $(locations " + api_def_src + ") | cut -d\" \" -f1))", ) api_def_args_str = ",".join(api_def_args) if hidden_file: # `hidden_file` is file containing a list of op names to be hidden in the # generated module. native.genrule( name = name + "_pygenrule", outs = [out], srcs = api_def_srcs + [hidden_file], tools = [tool_name] + tf_binary_additional_srcs(), cmd = ("$(location " + tool_name + ") " + api_def_args_str + " @$(location " + hidden_file + ") " + ("1" if require_shape_functions else "0") + " > $@"), ) else: native.genrule( name = name + "_pygenrule", outs = [out], srcs = api_def_srcs, tools = [tool_name] + tf_binary_additional_srcs(), cmd = ("$(location " + tool_name + ") " + api_def_args_str + " " + op_list_arg + " " + ("1" if require_shape_functions else "0") + " " + ("1" if op_list_is_whitelist else "0") + " > $@"), ) # Make a py_library out of the generated python file. if not generated_target_name: generated_target_name = name native.py_library( name = generated_target_name, srcs = [out], srcs_version = "PY2AND3", visibility = visibility, deps = [ clean_dep("//tensorflow/python:framework_for_generated_wrappers_v2"), ], # Instruct build_cleaner to try to avoid using this rule; typically ops # creators will provide their own tf_custom_op_py_library based target # that wraps this one. tags = ["avoid_dep"], ) # Define a bazel macro that creates cc_test for tensorflow. # # Links in the framework shared object # (//third_party/tensorflow:libtensorflow_framework.so) when not building # statically. Also adds linker options (rpaths) so that the framework shared # object can be found. # # TODO(opensource): we need to enable this to work around the hidden symbol # __cudaRegisterFatBinary error. Need more investigations. def tf_cc_test( name, srcs, deps, data = [], linkstatic = 0, extra_copts = [], suffix = "", linkopts = [], kernels = [], **kwargs): native.cc_test( name = "%s%s" % (name, suffix), srcs = srcs + tf_binary_additional_srcs(), copts = tf_copts() + extra_copts, linkopts = select({ clean_dep("//tensorflow:android"): [ "-pie", ], clean_dep("//tensorflow:windows"): [], clean_dep("//tensorflow:macos"): [ "-lm", ], "//conditions:default": [ "-lpthread", "-lm", ], }) + linkopts + _rpath_linkopts(name), deps = deps + tf_binary_dynamic_kernel_deps(kernels) + if_mkl_ml( [ clean_dep("//third_party/mkl:intel_binary_blob"), ], ), data = data + tf_binary_dynamic_kernel_dsos() + tf_binary_additional_srcs(), exec_compatible_with = tf_exec_compatible_with(kwargs), # Nested select() statements seem not to be supported when passed to # linkstatic, and we already have a cuda select() passed in to this # function. linkstatic = linkstatic or select({ # cc_tests with ".so"s in srcs incorrectly link on Darwin unless # linkstatic=1 (https://github.com/bazelbuild/bazel/issues/3450). # TODO(allenl): Remove Mac static linking when Bazel 0.6 is out. clean_dep("//tensorflow:macos"): 1, "//conditions:default": 0, }), **kwargs ) register_extension_info( extension_name = "tf_cc_test", label_regex_for_dep = "{extension_name}.*", ) # Part of the testing workflow requires a distinguishable name for the build # rules that involve a GPU, even if otherwise identical to the base rule. def tf_cc_test_gpu( name, srcs, deps, linkstatic = 0, tags = [], data = [], size = "medium", suffix = "", args = None): tf_cc_test( name, srcs, deps, size = size, args = args, data = data, linkstatic = linkstatic, suffix = suffix, tags = tags, ) register_extension_info( extension_name = "tf_cc_test_gpu", label_regex_for_dep = "{extension_name}", ) def tf_gpu_cc_test( name, srcs = [], deps = [], tags = [], data = [], size = "medium", extra_copts = [], linkstatic = 0, args = [], kernels = [], linkopts = []): tf_cc_test( name = name, size = size, srcs = srcs, args = args, data = data, extra_copts = extra_copts + if_cuda(["-DNV_CUDNN_DISABLE_EXCEPTION"]), kernels = kernels, linkopts = linkopts, linkstatic = linkstatic, tags = tags + ["manual"], deps = deps, ) tf_cc_test( name = name, size = size, srcs = srcs, args = args, data = data, extra_copts = extra_copts + if_cuda(["-DNV_CUDNN_DISABLE_EXCEPTION"]), kernels = kernels, linkopts = linkopts, linkstatic = select({ # TODO(allenl): Remove Mac static linking when Bazel 0.6 is out. clean_dep("//tensorflow:macos"): 1, "@local_config_cuda//cuda:using_nvcc": 1, "@local_config_cuda//cuda:using_clang": 1, "//conditions:default": 0, }), suffix = "_gpu", tags = tags + tf_gpu_tests_tags(), deps = deps + if_cuda_is_configured([ clean_dep("//tensorflow/core:gpu_runtime"), ]) + if_rocm_is_configured([ clean_dep("//tensorflow/core:gpu_runtime"), ]), ) register_extension_info( extension_name = "tf_gpu_cc_test", label_regex_for_dep = "{extension_name}", ) # terminology changes: saving tf_cuda_* definition for compatibility def tf_cuda_cc_test(*args, **kwargs): tf_gpu_cc_test(*args, **kwargs) register_extension_info( extension_name = "tf_cuda_cc_test", label_regex_for_dep = "{extension_name}", ) def tf_gpu_only_cc_test( name, srcs = [], deps = [], tags = [], data = [], size = "medium", linkstatic = 0, args = [], kernels = [], linkopts = []): tags = tags + tf_gpu_tests_tags() native.cc_test( name = "%s%s" % (name, "_gpu"), srcs = srcs + tf_binary_additional_srcs(), size = size, args = args, copts = _cuda_copts() + rocm_copts() + tf_copts(), features = if_cuda(["-use_header_modules"]), data = data + tf_binary_dynamic_kernel_dsos(), deps = deps + tf_binary_dynamic_kernel_deps(kernels) + if_cuda_is_configured([ clean_dep("//tensorflow/core:cuda"), clean_dep("//tensorflow/core:gpu_lib"), ]) + if_rocm_is_configured([ clean_dep("//tensorflow/core:gpu_lib"), ]), linkopts = if_not_windows(["-lpthread", "-lm"]) + linkopts + _rpath_linkopts(name), linkstatic = linkstatic or select({ # cc_tests with ".so"s in srcs incorrectly link on Darwin # unless linkstatic=1. # TODO(allenl): Remove Mac static linking when Bazel 0.6 is out. clean_dep("//tensorflow:macos"): 1, "//conditions:default": 0, }), tags = tags, exec_compatible_with = tf_exec_compatible_with({"tags": tags}), ) register_extension_info( extension_name = "tf_gpu_only_cc_test", label_regex_for_dep = "{extension_name}_gpu", ) # terminology changes: saving tf_cuda_* definition for compatibility def tf_cuda_only_cc_test(*args, **kwargs): tf_gpu_only_cc_test(*args, **kwargs) register_extension_info( extension_name = "tf_cuda_only_cc_test", label_regex_for_dep = "{extension_name}_gpu", ) # Create a cc_test for each of the tensorflow tests listed in "tests" def tf_cc_tests( srcs, deps, name = "", linkstatic = 0, tags = [], size = "medium", args = None, linkopts = [], kernels = []): for src in srcs: tf_cc_test( name = src_to_test_name(src), size = size, srcs = [src], args = args, kernels = kernels, linkopts = linkopts, linkstatic = linkstatic, tags = tags, deps = deps, ) def tf_cc_test_mkl( srcs, deps, name = "", data = [], linkstatic = 0, tags = [], size = "medium", kernels = [], args = None): # -fno-exceptions in nocopts breaks compilation if header modules are enabled. disable_header_modules = ["-use_header_modules"] for src in srcs: native.cc_test( name = src_to_test_name(src), srcs = if_mkl([src]) + tf_binary_additional_srcs(), copts = tf_copts(allow_exceptions = True) + tf_openmp_copts(), linkopts = select({ clean_dep("//tensorflow:android"): [ "-pie", ], clean_dep("//tensorflow:windows"): [], "//conditions:default": [ "-lpthread", "-lm", ], }) + _rpath_linkopts(src_to_test_name(src)), deps = deps + tf_binary_dynamic_kernel_deps(kernels) + if_mkl_ml(["//third_party/mkl:intel_binary_blob"]), data = data + tf_binary_dynamic_kernel_dsos(), exec_compatible_with = tf_exec_compatible_with({"tags": tags}), linkstatic = linkstatic, tags = tags, size = size, args = args, features = disable_header_modules, ) def tf_cc_tests_gpu( srcs, deps, name = "", linkstatic = 0, tags = [], size = "medium", kernels = [], args = None): tf_cc_tests(srcs, deps, linkstatic, size = size, args = args, kernels = kernels, tags = tags) def tf_gpu_cc_tests( srcs, deps, name = "", tags = [], size = "medium", linkstatic = 0, args = None, kernels = [], linkopts = []): for src in srcs: tf_gpu_cc_test( name = src_to_test_name(src), size = size, srcs = [src], args = args, kernels = kernels, linkopts = linkopts, linkstatic = linkstatic, tags = tags, deps = deps, ) # terminology changes: saving tf_cuda_* definition for compatibility def tf_cuda_cc_tests(*args, **kwargs): tf_gpu_cc_tests(*args, **kwargs) def tf_java_test( name, srcs = [], deps = [], kernels = [], *args, **kwargs): native.java_test( name = name, srcs = srcs, deps = deps + tf_binary_additional_srcs(fullversion = True) + tf_binary_dynamic_kernel_dsos() + tf_binary_dynamic_kernel_deps(kernels), *args, **kwargs ) register_extension_info( extension_name = "tf_java_test", label_regex_for_dep = "{extension_name}", ) def _cuda_copts(opts = []): """Gets the appropriate set of copts for (maybe) CUDA compilation. If we're doing CUDA compilation, returns copts for our particular CUDA compiler. If we're not doing CUDA compilation, returns an empty list. """ return cuda_default_copts() + select({ "//conditions:default": [], "@local_config_cuda//cuda:using_nvcc": ([ "-nvcc_options=relaxed-constexpr", "-nvcc_options=ftz=true", ]), "@local_config_cuda//cuda:using_clang": ([ "-fcuda-flush-denormals-to-zero", ]), }) + if_cuda_is_configured_compat(opts) # Build defs for TensorFlow kernels # When this target is built using --config=cuda, a cc_library is built # that passes -DGOOGLE_CUDA=1 and '-x cuda', linking in additional # libraries needed by GPU kernels. # # When this target is built using --config=rocm, a cc_library is built # that passes -DTENSORFLOW_USE_ROCM and '-x rocm', linking in additional # libraries needed by GPU kernels. def tf_gpu_kernel_library( srcs, copts = [], cuda_copts = [], deps = [], hdrs = [], **kwargs): copts = copts + tf_copts() + _cuda_copts(opts = cuda_copts) + rocm_copts(opts = cuda_copts) kwargs["features"] = kwargs.get("features", []) + ["-use_header_modules"] native.cc_library( srcs = srcs, hdrs = hdrs, copts = copts, deps = deps + if_cuda_is_configured_compat([ clean_dep("//tensorflow/stream_executor/cuda:cudart_stub"), clean_dep("//tensorflow/core:gpu_lib"), ]) + if_rocm_is_configured([ clean_dep("//tensorflow/core:gpu_lib"), ]), alwayslink = 1, **kwargs ) register_extension_info( extension_name = "tf_gpu_kernel_library", label_regex_for_dep = "{extension_name}", ) def tf_gpu_library(deps = None, cuda_deps = None, copts = tf_copts(), **kwargs): """Generate a cc_library with a conditional set of CUDA dependencies. When the library is built with --config=cuda: - Both deps and cuda_deps are used as dependencies. - The cuda runtime is added as a dependency (if necessary). - The library additionally passes -DGOOGLE_CUDA=1 to the list of copts. - In addition, when the library is also built with TensorRT enabled, it additionally passes -DGOOGLE_TENSORRT=1 to the list of copts. Likewise for NCCL and -DGOOGLE_NCCL=1. Args: - cuda_deps: BUILD dependencies which will be linked if and only if: '--config=cuda' is passed to the bazel command line. - deps: dependencies which will always be linked. - copts: copts always passed to the cc_library. - kwargs: Any other argument to cc_library. """ if not deps: deps = [] if not cuda_deps: cuda_deps = [] kwargs["features"] = kwargs.get("features", []) + ["-use_header_modules"] native.cc_library( deps = deps + if_cuda_is_configured_compat(cuda_deps + [ clean_dep("//tensorflow/stream_executor/cuda:cudart_stub"), "@local_config_cuda//cuda:cuda_headers", ]) + if_rocm_is_configured(cuda_deps + [ "@local_config_rocm//rocm:rocm_headers", ]), copts = (copts + if_cuda(["-DGOOGLE_CUDA=1", "-DNV_CUDNN_DISABLE_EXCEPTION"]) + if_rocm(["-DTENSORFLOW_USE_ROCM=1"]) + if_mkl(["-DINTEL_MKL=1"]) + if_mkl_open_source_only(["-DINTEL_MKL_DNN_ONLY"]) + if_enable_mkl(["-DENABLE_MKL"]) + if_tensorrt(["-DGOOGLE_TENSORRT=1"]) + if_nccl(["-DGOOGLE_NCCL=1"])), **kwargs ) register_extension_info( extension_name = "tf_gpu_library", label_regex_for_dep = "{extension_name}", ) # terminology changes: saving tf_cuda_* definition for compatibility def tf_cuda_library(*args, **kwargs): tf_gpu_library(*args, **kwargs) register_extension_info( extension_name = "tf_cuda_library", label_regex_for_dep = "{extension_name}", ) def tf_kernel_library( name, prefix = None, srcs = None, gpu_srcs = None, hdrs = None, deps = None, alwayslink = 1, copts = None, gpu_copts = None, is_external = False, **kwargs): """A rule to build a TensorFlow OpKernel. May either specify srcs/hdrs or prefix. Similar to tf_gpu_library, but with alwayslink=1 by default. If prefix is specified: * prefix*.cc (except *.cu.cc) is added to srcs * prefix*.h (except *.cu.h) is added to hdrs * prefix*.cu.cc and prefix*.h (including *.cu.h) are added to gpu_srcs. With the exception that test files are excluded. For example, with prefix = "cast_op", * srcs = ["cast_op.cc"] * hdrs = ["cast_op.h"] * gpu_srcs = ["cast_op_gpu.cu.cc", "cast_op.h"] * "cast_op_test.cc" is excluded With prefix = "cwise_op" * srcs = ["cwise_op_abs.cc", ..., "cwise_op_tanh.cc"], * hdrs = ["cwise_ops.h", "cwise_ops_common.h"], * gpu_srcs = ["cwise_op_gpu_abs.cu.cc", ..., "cwise_op_gpu_tanh.cu.cc", "cwise_ops.h", "cwise_ops_common.h", "cwise_ops_gpu_common.cu.h"] * "cwise_ops_test.cc" is excluded """ if not srcs: srcs = [] if not hdrs: hdrs = [] if not deps: deps = [] if not copts: copts = [] if not gpu_copts: gpu_copts = [] textual_hdrs = [] copts = copts + tf_copts(is_external = is_external) + if_cuda(["-DNV_CUDNN_DISABLE_EXCEPTION"]) # Override EIGEN_STRONG_INLINE to inline when # --define=override_eigen_strong_inline=true to avoid long compiling time. # See https://github.com/tensorflow/tensorflow/issues/10521 copts = copts + if_override_eigen_strong_inline(["/DEIGEN_STRONG_INLINE=inline"]) if prefix: if native.glob([prefix + "*.cu.cc"], exclude = ["*test*"]): if not gpu_srcs: gpu_srcs = [] gpu_srcs = gpu_srcs + native.glob( [prefix + "*.cu.cc", prefix + "*.h"], exclude = [prefix + "*test*"], ) srcs = srcs + native.glob( [prefix + "*.cc"], exclude = [prefix + "*test*", prefix + "*.cu.cc"], ) hdrs = hdrs + native.glob( [prefix + "*.h"], exclude = [prefix + "*test*", prefix + "*.cu.h", prefix + "*impl.h"], ) textual_hdrs = native.glob( [prefix + "*impl.h"], exclude = [prefix + "*test*", prefix + "*.cu.h"], ) cuda_deps = [clean_dep("//tensorflow/core:gpu_lib")] if gpu_srcs: for gpu_src in gpu_srcs: if gpu_src.endswith(".cc") and not gpu_src.endswith(".cu.cc"): fail("{} not allowed in gpu_srcs. .cc sources must end with .cu.cc" .format(gpu_src)) tf_gpu_kernel_library( name = name + "_gpu", srcs = gpu_srcs, deps = deps, copts = gpu_copts, **kwargs ) cuda_deps.extend([":" + name + "_gpu"]) kwargs["tags"] = kwargs.get("tags", []) + [ "req_dep=%s" % clean_dep("//tensorflow/core:gpu_lib"), "req_dep=@local_config_cuda//cuda:cuda_headers", ] tf_gpu_library( name = name, srcs = srcs, hdrs = hdrs, textual_hdrs = textual_hdrs, copts = copts, cuda_deps = cuda_deps, linkstatic = 1, # Needed since alwayslink is broken in bazel b/27630669 alwayslink = alwayslink, deps = deps, **kwargs ) # TODO(gunan): CUDA dependency not clear here. Fix it. tf_cc_shared_object( name = "libtfkernel_%s.so" % name, srcs = srcs + hdrs, copts = copts, tags = ["manual", "notap"], deps = deps, ) register_extension_info( extension_name = "tf_kernel_library", label_regex_for_dep = "{extension_name}(_gpu)?", ) def tf_mkl_kernel_library( name, prefix = None, srcs = None, hdrs = None, deps = None, alwayslink = 1, copts = tf_copts(allow_exceptions = True) + tf_openmp_copts()): """A rule to build MKL-based TensorFlow kernel libraries.""" if not bool(srcs): srcs = [] if not bool(hdrs): hdrs = [] if prefix: srcs = srcs + native.glob( [prefix + "*.cc"], exclude = [prefix + "*test*"], ) hdrs = hdrs + native.glob( [prefix + "*.h"], exclude = [prefix + "*test*"], ) # -fno-exceptions in nocopts breaks compilation if header modules are enabled. disable_header_modules = ["-use_header_modules"] native.cc_library( name = name, srcs = if_mkl(srcs), hdrs = hdrs, deps = deps, alwayslink = alwayslink, copts = copts, features = disable_header_modules, ) register_extension_info( extension_name = "tf_mkl_kernel_library", label_regex_for_dep = "{extension_name}", ) def _get_transitive_headers(hdrs, deps): """Obtain the header files for a target and its transitive dependencies. Args: hdrs: a list of header files deps: a list of targets that are direct dependencies Returns: a collection of the transitive headers """ return depset( hdrs, transitive = [dep[CcInfo].compilation_context.headers for dep in deps], ) # Bazel rules for building swig files. def _py_wrap_cc_impl(ctx): srcs = ctx.files.srcs if len(srcs) != 1: fail("Exactly one SWIG source file label must be specified.", "srcs") module_name = ctx.attr.module_name src = ctx.files.srcs[0] inputs = _get_transitive_headers([src] + ctx.files.swig_includes, ctx.attr.deps) inputs = depset(ctx.files._swiglib, transitive = [inputs]) inputs = depset(ctx.files.toolchain_deps, transitive = [inputs]) swig_include_dirs = depset(_get_repository_roots(ctx, inputs)) swig_include_dirs = depset(sorted([f.dirname for f in ctx.files._swiglib]), transitive = [swig_include_dirs]) args = [ "-c++", "-python", "-module", module_name, "-o", ctx.outputs.cc_out.path, "-outdir", ctx.outputs.py_out.dirname, ] args += ["-l" + f.path for f in ctx.files.swig_includes] args += ["-I" + i for i in swig_include_dirs.to_list()] args += [src.path] outputs = [ctx.outputs.cc_out, ctx.outputs.py_out] ctx.actions.run( executable = ctx.executable._swig, arguments = args, inputs = inputs.to_list(), outputs = outputs, mnemonic = "PythonSwig", progress_message = "SWIGing " + src.path, ) return struct(files = depset(outputs)) _py_wrap_cc = rule( attrs = { "srcs": attr.label_list( mandatory = True, allow_files = True, ), "swig_includes": attr.label_list( allow_files = True, ), "deps": attr.label_list( allow_files = True, providers = [CcInfo], ), "toolchain_deps": attr.label_list( allow_files = True, ), "module_name": attr.string(mandatory = True), "py_module_name": attr.string(mandatory = True), "_swig": attr.label( default = Label("@swig//:swig"), executable = True, cfg = "host", ), "_swiglib": attr.label( default = Label("@swig//:templates"), allow_files = True, ), }, outputs = { "cc_out": "%{module_name}.cc", "py_out": "%{py_module_name}.py", }, implementation = _py_wrap_cc_impl, ) def _get_repository_roots(ctx, files): """Returns abnormal root directories under which files reside. When running a ctx.action, source files within the main repository are all relative to the current directory; however, files that are generated or exist in remote repositories will have their root directory be a subdirectory, e.g. bazel-out/local-fastbuild/genfiles/external/jpeg_archive. This function returns the set of these devious directories, ranked and sorted by popularity in order to hopefully minimize the number of I/O system calls within the compiler, because includes have quadratic complexity. """ result = {} for f in files.to_list(): root = f.root.path if root: if root not in result: result[root] = 0 result[root] -= 1 work = f.owner.workspace_root if work: if root: root += "/" root += work if root: if root not in result: result[root] = 0 result[root] -= 1 return [k for v, k in sorted([(v, k) for k, v in result.items()])] # Bazel rule for collecting the header files that a target depends on. def _transitive_hdrs_impl(ctx): outputs = _get_transitive_headers([], ctx.attr.deps) return struct(files = outputs) _transitive_hdrs = rule( attrs = { "deps": attr.label_list( allow_files = True, providers = [CcInfo], ), }, implementation = _transitive_hdrs_impl, ) def transitive_hdrs(name, deps = [], **kwargs): _transitive_hdrs(name = name + "_gather", deps = deps) native.filegroup(name = name, srcs = [":" + name + "_gather"]) # Create a header only library that includes all the headers exported by # the libraries in deps. def cc_header_only_library(name, deps = [], includes = [], extra_deps = [], **kwargs): _transitive_hdrs(name = name + "_gather", deps = deps) native.cc_library( name = name, hdrs = [":" + name + "_gather"], includes = includes, deps = extra_deps, **kwargs ) def tf_custom_op_library_additional_deps(): return [ "@com_google_protobuf//:protobuf_headers", clean_dep("//third_party/eigen3"), clean_dep("//tensorflow/core:framework_headers_lib"), ] + if_windows(["//tensorflow/python:pywrap_tensorflow_import_lib"]) # A list of targets that contains the implemenation of # tf_custom_op_library_additional_deps. It's used to generate a DEF file for # exporting symbols from _pywrap_tensorflow.dll on Windows. def tf_custom_op_library_additional_deps_impl(): return [ "@com_google_protobuf//:protobuf", "@nsync//:nsync_cpp", # for //third_party/eigen3 clean_dep("//third_party/eigen3"), # for //tensorflow/core:framework_headers_lib clean_dep("//tensorflow/core:framework"), clean_dep("//tensorflow/core:reader_base"), ] # Traverse the dependency graph along the "deps" attribute of the # target and return a struct with one field called 'tf_collected_deps'. # tf_collected_deps will be the union of the deps of the current target # and the tf_collected_deps of the dependencies of this target. def _collect_deps_aspect_impl(target, ctx): alldeps = depset() if hasattr(ctx.rule.attr, "deps"): for dep in ctx.rule.attr.deps: alldeps = depset([dep.label], transitive = [alldeps]) if hasattr(dep, "tf_collected_deps"): alldeps = depset(transitive = [alldeps, dep.tf_collected_deps]) return struct(tf_collected_deps = alldeps) collect_deps_aspect = aspect( attr_aspects = ["deps"], implementation = _collect_deps_aspect_impl, ) def _dep_label(dep): label = dep.label return label.package + ":" + label.name # This rule checks that the transitive dependencies of targets listed # in the 'deps' attribute don't depend on the targets listed in # the 'disallowed_deps' attribute. def _check_deps_impl(ctx): disallowed_deps = ctx.attr.disallowed_deps for input_dep in ctx.attr.deps: if not hasattr(input_dep, "tf_collected_deps"): continue for dep in input_dep.tf_collected_deps.to_list(): for disallowed_dep in disallowed_deps: if dep == disallowed_dep.label: fail( _dep_label(input_dep) + " cannot depend on " + _dep_label( disallowed_dep, ), ) return struct() check_deps = rule( _check_deps_impl, attrs = { "deps": attr.label_list( aspects = [collect_deps_aspect], mandatory = True, allow_files = True, ), "disallowed_deps": attr.label_list( mandatory = True, allow_files = True, ), }, ) def tf_custom_op_library(name, srcs = [], gpu_srcs = [], deps = [], linkopts = [], copts = [], **kwargs): """Helper to build a dynamic library (.so) from the sources containing implementations of custom ops and kernels. """ cuda_deps = [ clean_dep("//tensorflow/core:stream_executor_headers_lib"), "@local_config_cuda//cuda:cuda_headers", "@local_config_cuda//cuda:cudart_static", ] rocm_deps = [ clean_dep("//tensorflow/core:stream_executor_headers_lib"), ] deps = deps + tf_custom_op_library_additional_deps() # Override EIGEN_STRONG_INLINE to inline when # --define=override_eigen_strong_inline=true to avoid long compiling time. # See https://github.com/tensorflow/tensorflow/issues/10521 copts = copts + if_override_eigen_strong_inline(["/DEIGEN_STRONG_INLINE=inline"]) + if_cuda(["-DNV_CUDNN_DISABLE_EXCEPTION"]) if gpu_srcs: basename = name.split(".")[0] native.cc_library( name = basename + "_gpu", srcs = gpu_srcs, copts = copts + _cuda_copts() + if_tensorrt(["-DGOOGLE_TENSORRT=1"]) + if_nccl(["-DGOOGLE_NCCL=1"]), features = if_cuda(["-use_header_modules"]), deps = deps + if_cuda_is_configured_compat(cuda_deps) + if_rocm_is_configured(rocm_deps), **kwargs ) cuda_deps.extend([":" + basename + "_gpu"]) rocm_deps.extend([":" + basename + "_gpu"]) check_deps( name = name + "_check_deps", disallowed_deps = [ clean_dep("//tensorflow/core:framework"), clean_dep("//tensorflow/core:lib"), ], deps = deps + if_cuda_is_configured_compat(cuda_deps) + if_rocm_is_configured(rocm_deps), ) tf_cc_shared_object( name = name, srcs = srcs, deps = deps + if_cuda_is_configured_compat(cuda_deps) + if_rocm_is_configured(rocm_deps), data = if_static([name + "_check_deps"]), copts = copts + tf_copts(is_external = True), features = ["windows_export_all_symbols"], linkopts = linkopts + select({ "//conditions:default": [ "-lm", ], clean_dep("//tensorflow:windows"): [], clean_dep("//tensorflow:macos"): [], }), **kwargs ) register_extension_info( extension_name = "tf_custom_op_library", label_regex_for_dep = "{extension_name}", ) def tf_custom_op_py_library( name, srcs = [], dso = [], kernels = [], srcs_version = "PY2AND3", visibility = None, deps = []): _ignore = [kernels] native.py_library( name = name, data = dso, srcs = srcs, srcs_version = srcs_version, visibility = visibility, deps = deps, ) register_extension_info( extension_name = "tf_custom_op_py_library", label_regex_for_dep = "{extension_name}", ) # In tf_py_wrap_cc generated libraries # module init functions are not exported unless # they contain one of the keywords in the version file # this prevents custom python modules. # This function attempts to append init_module_name to list of # exported functions in version script def _append_init_to_versionscript_impl(ctx): mod_name = ctx.attr.module_name if ctx.attr.is_version_script: ctx.actions.expand_template( template = ctx.file.template_file, output = ctx.outputs.versionscript, substitutions = { "global:": "global:\n init_%s;\n _init_%s;\n PyInit_*;\n _PyInit_*;" % (mod_name, mod_name), }, is_executable = False, ) else: ctx.actions.expand_template( template = ctx.file.template_file, output = ctx.outputs.versionscript, substitutions = { "*tensorflow*": "*tensorflow*\ninit_%s\n_init_%s\nPyInit_*\n_PyInit_*\n" % (mod_name, mod_name), }, is_executable = False, ) _append_init_to_versionscript = rule( attrs = { "module_name": attr.string(mandatory = True), "template_file": attr.label( allow_single_file = True, mandatory = True, ), "is_version_script": attr.bool( default = True, doc = "whether target is a ld version script or exported symbol list", mandatory = False, ), }, outputs = {"versionscript": "%{name}.lds"}, implementation = _append_init_to_versionscript_impl, ) def tf_py_wrap_cc( name, srcs, swig_includes = [], deps = [], copts = [], version_script = None, **kwargs): """Builds a Python extension module.""" module_name = name.split("/")[-1] # Convert a rule name such as foo/bar/baz to foo/bar/_baz.so # and use that as the name for the rule producing the .so file. cc_library_base = "/".join(name.split("/")[:-1] + ["_" + module_name]) # TODO(b/137885063): tf_cc_shared_object needs to be cleaned up; we really # shouldn't be passing a name qualified with .so here. cc_library_name = cc_library_base + ".so" cc_library_pyd_name = "/".join( name.split("/")[:-1] + ["_" + module_name + ".pyd"], ) extra_deps = [] _py_wrap_cc( name = name + "_py_wrap", srcs = srcs, module_name = module_name, py_module_name = name, swig_includes = swig_includes, toolchain_deps = ["@bazel_tools//tools/cpp:current_cc_toolchain"], deps = deps + extra_deps, ) if not version_script: version_script = select({ "@local_config_cuda//cuda:darwin": clean_dep("//tensorflow:tf_exported_symbols.lds"), "//conditions:default": clean_dep("//tensorflow:tf_version_script.lds"), }) vscriptname = name + "_versionscript" _append_init_to_versionscript( name = vscriptname, is_version_script = select({ "@local_config_cuda//cuda:darwin": False, "//conditions:default": True, }), module_name = module_name, template_file = version_script, ) extra_linkopts = select({ "@local_config_cuda//cuda:darwin": [ "-Wl,-exported_symbols_list,$(location %s.lds)" % vscriptname, ], clean_dep("//tensorflow:windows"): [], "//conditions:default": [ "-Wl,--version-script", "$(location %s.lds)" % vscriptname, ], }) extra_deps += select({ "@local_config_cuda//cuda:darwin": [ "%s.lds" % vscriptname, ], clean_dep("//tensorflow:windows"): [], "//conditions:default": [ "%s.lds" % vscriptname, ], }) tf_cc_shared_object( name = cc_library_name, srcs = [module_name + ".cc"], copts = copts + if_not_windows([ "-Wno-self-assign", "-Wno-sign-compare", "-Wno-write-strings", ]), linkopts = extra_linkopts, linkstatic = 1, deps = deps + extra_deps, **kwargs ) # When a non-versioned .so is added as a 'src' to a bazel target, it uses # -l%(so_name) instead of -l:%(so_file) during linking. When -l%(so_name) # is passed to ld, it will look for an associated file with the schema # lib%(so_name).so. Since pywrap_tensorflow is not explicitly versioned # and is not prefixed with lib_, we add a rule for the creation of an .so # file with the canonical lib schema (e.g. libNAME.so), so that # -l%(so_name) is resolved during linking. # # See: https://github.com/bazelbuild/bazel/blob/7a6808260a733d50983c1adf0cf5a7493472267f/src/main/java/com/google/devtools/build/lib/rules/cpp/LibrariesToLinkCollector.java#L319 for pattern in SHARED_LIBRARY_NAME_PATTERNS: name_os = pattern % (cc_library_base, "") native.genrule( name = name_os + "_rule", srcs = [":" + cc_library_name], outs = [name_os], cmd = "cp $< $@", ) native.genrule( name = "gen_" + cc_library_pyd_name, srcs = [":" + cc_library_name], outs = [cc_library_pyd_name], cmd = "cp $< $@", ) native.py_library( name = name, srcs = [":" + name + ".py"], srcs_version = "PY2AND3", data = select({ clean_dep("//tensorflow:windows"): [":" + cc_library_pyd_name], "//conditions:default": [":" + cc_library_name], }), ) # This macro is for running python tests against system installed pip package # on Windows. # # py_test is built as an executable python zip file on Windows, which contains all # dependencies of the target. Because of the C++ extensions, it would be very # inefficient if the py_test zips all runfiles, plus we don't need them when running # tests against system installed pip package. So we'd like to get rid of the deps # of py_test in this case. # # In order to trigger the tests without bazel clean after getting rid of deps, # we introduce the following : # 1. When --define=no_tensorflow_py_deps=true, the py_test depends on a marker # file of the pip package, the test gets to rerun when the pip package change. # Note that this only works on Windows. See the definition of # //third_party/tensorflow/tools/pip_package:win_pip_package_marker for specific reasons. # 2. When --define=no_tensorflow_py_deps=false (by default), it's a normal py_test. def py_test(deps = [], data = [], kernels = [], **kwargs): # Python version placeholder native.py_test( # TODO(jlebar): Ideally we'd use tcmalloc here., deps = select({ "//conditions:default": deps, clean_dep("//tensorflow:no_tensorflow_py_deps"): [], }), data = data + select({ "//conditions:default": [], clean_dep("//tensorflow:no_tensorflow_py_deps"): ["//tensorflow/tools/pip_package:win_pip_package_marker"], }) + tf_binary_dynamic_kernel_dsos(), exec_compatible_with = tf_exec_compatible_with(kwargs), **kwargs ) register_extension_info( extension_name = "py_test", label_regex_for_dep = "{extension_name}", ) # Similar to py_test above, this macro is used to exclude dependencies for some py_binary # targets in order to reduce the size of //tensorflow/tools/pip_package:simple_console_windows. # See https://github.com/tensorflow/tensorflow/issues/22390 def py_binary(name, deps = [], **kwargs): # Add an extra target for dependencies to avoid nested select statement. native.py_library( name = name + "_deps", deps = deps, ) # Python version placeholder native.py_binary( name = name, deps = select({ "//conditions:default": [":" + name + "_deps"], clean_dep("//tensorflow:no_tensorflow_py_deps"): [], }), **kwargs ) register_extension_info( extension_name = "py_binary", label_regex_for_dep = "{extension_name}", ) def tf_py_test( name, srcs, size = "medium", data = [], main = None, args = [], tags = [], shard_count = 1, additional_deps = [], additional_visibility = [], kernels = [], flaky = 0, xla_enable_strict_auto_jit = False, xla_enabled = False, grpc_enabled = False, **kwargs): """Create one or more python tests with extra tensorflow dependencies.""" xla_test_true_list = [] # xla_enable_strict_auto_jit is used to run Tensorflow unit tests with all XLA compilable # kernels compiled with XLA. if xla_enable_strict_auto_jit: xla_enabled = True xla_test_true_list += ["//tensorflow/python:is_xla_test_true"] if xla_enabled: additional_deps = additional_deps + tf_additional_xla_deps_py() if grpc_enabled: additional_deps = additional_deps + tf_additional_grpc_deps_py() # Python version placeholder py_test( name = name, size = size, srcs = srcs, args = args, data = data, flaky = flaky, kernels = kernels, main = main, shard_count = shard_count, srcs_version = "PY2AND3", tags = tags, visibility = [clean_dep("//tensorflow:internal")] + additional_visibility, deps = depset([ clean_dep("//tensorflow/python:extra_py_tests_deps"), clean_dep("//tensorflow/python:gradient_checker"), ] + additional_deps + xla_test_true_list), **kwargs ) register_extension_info( extension_name = "tf_py_test", label_regex_map = {"additional_deps": "deps:{extension_name}"}, ) def gpu_py_test( name, srcs, size = "medium", data = [], main = None, args = [], shard_count = 1, additional_deps = [], kernels = [], tags = [], flaky = 0, xla_enable_strict_auto_jit = False, xla_enabled = False, grpc_enabled = False): # TODO(b/122522101): Don't ignore xla_enable_strict_auto_jit and enable additional # XLA tests once enough compute resources are available. _ignored = [xla_enable_strict_auto_jit] if main == None: main = name + ".py" for config in ["cpu", "gpu"]: test_name = name test_tags = tags if config == "gpu": test_name += "_gpu" test_tags = test_tags + tf_gpu_tests_tags() tf_py_test( name = test_name, size = size, srcs = srcs, additional_deps = additional_deps, args = args, data = data, flaky = flaky, grpc_enabled = grpc_enabled, kernels = kernels, main = main, shard_count = shard_count, tags = test_tags, xla_enabled = xla_enabled, xla_enable_strict_auto_jit = False, ) register_extension_info( extension_name = "gpu_py_test", label_regex_map = {"additional_deps": "additional_deps:{extension_name}"}, ) # terminology changes: saving cuda_* definition for compatibility def cuda_py_test(*args, **kwargs): gpu_py_test(*args, **kwargs) register_extension_info( extension_name = "cuda_py_test", label_regex_map = {"additional_deps": "additional_deps:{extension_name}"}, ) def sycl_py_test( name, srcs, size = "medium", data = [], main = None, args = [], shard_count = 1, additional_deps = [], kernels = [], tags = [], flaky = 0, xla_enabled = False, grpc_enabled = False): test_tags = tags + tf_sycl_tests_tags() tf_py_test( name = name, size = size, srcs = srcs, additional_deps = additional_deps, args = args, data = data, flaky = flaky, grpc_enabled = grpc_enabled, kernels = kernels, main = main, shard_count = shard_count, tags = test_tags, xla_enabled = xla_enabled, ) register_extension_info( extension_name = "sycl_py_test", label_regex_map = {"additional_deps": "additional_deps:{extension_name}"}, ) def py_tests( name, srcs, size = "medium", additional_deps = [], kernels = [], data = [], tags = [], shard_count = 1, prefix = "", xla_enable_strict_auto_jit = False, xla_enabled = False, grpc_enabled = False): for src in srcs: test_name = src.split("/")[-1].split(".")[0] if prefix: test_name = "%s_%s" % (prefix, test_name) tf_py_test( name = test_name, size = size, srcs = [src], additional_deps = additional_deps, data = data, grpc_enabled = grpc_enabled, kernels = kernels, main = src, shard_count = shard_count, tags = tags, xla_enabled = xla_enabled, xla_enable_strict_auto_jit = xla_enable_strict_auto_jit, ) def gpu_py_tests( name, srcs, size = "medium", additional_deps = [], kernels = [], data = [], shard_count = 1, tags = [], prefix = "", xla_enable_strict_auto_jit = False, xla_enabled = False, grpc_enabled = False): # TODO(b/122522101): Don't ignore xla_enable_strict_auto_jit and enable additional # XLA tests once enough compute resources are available. _ignored = [xla_enable_strict_auto_jit] test_tags = tags + tf_gpu_tests_tags() py_tests( name = name, size = size, srcs = srcs, additional_deps = additional_deps, data = data, grpc_enabled = grpc_enabled, kernels = kernels, prefix = prefix, shard_count = shard_count, tags = test_tags, xla_enabled = xla_enabled, xla_enable_strict_auto_jit = False, ) # terminology changes: saving cuda_* definition for compatibility def cuda_py_tests(*args, **kwargs): gpu_py_tests(*args, **kwargs) # Creates a genrule named <name> for running tools/proto_text's generator to # make the proto_text functions, for the protos passed in <srcs>. # # Return a struct with fields (hdrs, srcs) containing the names of the # generated files. def tf_generate_proto_text_sources(name, srcs_relative_dir, srcs, protodeps = [], deps = [], visibility = None): out_hdrs = ( [ p.replace(".proto", ".pb_text.h") for p in srcs ] + [p.replace(".proto", ".pb_text-impl.h") for p in srcs] ) out_srcs = [p.replace(".proto", ".pb_text.cc") for p in srcs] native.genrule( name = name + "_srcs", srcs = srcs + protodeps + [clean_dep("//tensorflow/tools/proto_text:placeholder.txt")], outs = out_hdrs + out_srcs, visibility = visibility, cmd = "$(location //tensorflow/tools/proto_text:gen_proto_text_functions) " + "$(@D) " + srcs_relative_dir + " $(SRCS)", tools = [ clean_dep("//tensorflow/tools/proto_text:gen_proto_text_functions"), ], ) native.filegroup( name = name + "_hdrs", srcs = out_hdrs, visibility = visibility, ) native.cc_library( name = name, srcs = out_srcs, hdrs = out_hdrs, visibility = visibility, deps = deps, ) def tf_genrule_cmd_append_to_srcs(to_append): return ("cat $(SRCS) > $(@) && " + "echo >> $(@) && " + "echo " + to_append + " >> $(@)") def tf_version_info_genrule(): native.genrule( name = "version_info_gen", srcs = [ clean_dep("@local_config_git//:gen/spec.json"), clean_dep("@local_config_git//:gen/head"), clean_dep("@local_config_git//:gen/branch_ref"), ], outs = ["util/version_info.cc"], cmd = "$(location //tensorflow/tools/git:gen_git_source) --generate $(SRCS) \"$@\" --git_tag_override=$${GIT_TAG_OVERRIDE:-}", local = 1, tools = [clean_dep("//tensorflow/tools/git:gen_git_source")], ) def tf_py_build_info_genrule(): native.genrule( name = "py_build_info_gen", outs = ["platform/build_info.py"], cmd = "$(location //tensorflow/tools/build_info:gen_build_info) --raw_generate \"$@\" " + " --is_config_cuda " + if_cuda("True", "False") + " --is_config_rocm " + if_rocm("True", "False") + " --key_value " + if_cuda(" cuda_version_number=$${TF_CUDA_VERSION:-} cudnn_version_number=$${TF_CUDNN_VERSION:-} ", "") + if_windows(" msvcp_dll_name=msvcp140.dll ", "") + if_windows_cuda(" ".join([ "nvcuda_dll_name=nvcuda.dll", "cudart_dll_name=cudart64_$$(echo $${TF_CUDA_VERSION:-} | sed \"s/\\.//\").dll", "cudnn_dll_name=cudnn64_$${TF_CUDNN_VERSION:-}.dll", ]), ""), local = 1, tools = [clean_dep("//tensorflow/tools/build_info:gen_build_info")], ) def cc_library_with_android_deps( deps, android_deps = [], common_deps = [], copts = tf_copts(), **kwargs): deps = if_not_android(deps) + if_android(android_deps) + common_deps native.cc_library(deps = deps, copts = copts, **kwargs) register_extension_info( extension_name = "cc_library_with_android_deps", label_regex_for_dep = "{extension_name}", ) def tensorflow_opensource_extra_deps(): return [] # buildozer: disable=function-docstring-args def pybind_extension( name, srcs, module_name, hdrs = [], features = [], srcs_version = "PY2AND3", data = [], copts = None, linkopts = [], deps = [], visibility = None, testonly = None, licenses = None, compatible_with = None, restricted_to = None, deprecation = None): """Builds a generic Python extension module.""" _ignore = [module_name] p = name.rfind("/") if p == -1: sname = name prefix = "" else: sname = name[p + 1:] prefix = name[:p + 1] so_file = "%s%s.so" % (prefix, sname) pyd_file = "%s%s.pyd" % (prefix, sname) symbol = "init%s" % sname symbol2 = "init_%s" % sname symbol3 = "PyInit_%s" % sname exported_symbols_file = "%s-exported-symbols.lds" % name version_script_file = "%s-version-script.lds" % name native.genrule( name = name + "_exported_symbols", outs = [exported_symbols_file], cmd = "echo '_%s\n_%s\n_%s' >$@" % (symbol, symbol2, symbol3), output_licenses = ["unencumbered"], visibility = ["//visibility:private"], testonly = testonly, ) native.genrule( name = name + "_version_script", outs = [version_script_file], cmd = "echo '{global:\n %s;\n %s;\n %s;\n local: *;};' >$@" % (symbol, symbol2, symbol3), output_licenses = ["unencumbered"], visibility = ["//visibility:private"], testonly = testonly, ) native.cc_binary( name = so_file, srcs = srcs + hdrs, data = data, copts = copts, linkopts = linkopts + _rpath_linkopts(name) + select({ "@local_config_cuda//cuda:darwin": [ "-Wl,-exported_symbols_list,$(location %s)" % exported_symbols_file, ], clean_dep("//tensorflow:windows"): [], "//conditions:default": [ "-Wl,--version-script", "$(location %s)" % version_script_file, ], }), deps = deps + [ exported_symbols_file, version_script_file, ], features = features, linkshared = 1, testonly = testonly, licenses = licenses, visibility = visibility, deprecation = deprecation, restricted_to = restricted_to, compatible_with = compatible_with, ) native.genrule( name = name + "_pyd_copy", srcs = [so_file], outs = [pyd_file], cmd = "cp $< $@", output_to_bindir = True, visibility = visibility, deprecation = deprecation, restricted_to = restricted_to, compatible_with = compatible_with, ) native.py_library( name = name, data = select({ "@org_tensorflow//tensorflow:windows": [pyd_file], "//conditions:default": [so_file], }), srcs_version = srcs_version, licenses = licenses, testonly = testonly, visibility = visibility, deprecation = deprecation, restricted_to = restricted_to, compatible_with = compatible_with, ) # buildozer: enable=function-docstring-args def tf_python_pybind_extension( name, srcs, module_name, hdrs = [], features = [], copts = None, deps = []): """A wrapper macro for pybind_extension that is used in tensorflow/python/BUILD. It is used for targets under //third_party/tensorflow/python that link against libtensorflow_framework.so and pywrap_tensorflow_internal.so. """ pybind_extension( name, srcs + tf_binary_additional_srcs(), module_name, hdrs = hdrs, features = features, copts = copts, deps = deps + tf_binary_pybind_deps() + if_mkl_ml(["//third_party/mkl:intel_binary_blob"]), ) def if_cuda_or_rocm(if_true, if_false = []): """Shorthand for select()'ing whether to build for either CUDA or ROCm. Returns a select statement which evaluates to if_true if we're building with either CUDA or ROCm enabled. if_false, otherwise. Sometimes a target has additional CUDa or ROCm specific dependencies. The `if_cuda` / `if_rocm` functions are used to specify these additional dependencies. For eg, see the `//tensorflow/core/kernels:bias_op` target If the same additional dependency is needed for both CUDA and ROCm (for eg. `reduction_ops` dependency for the `bias_op` target above), then specifying that dependency in both both `if_cuda` and `if_rocm` will result in both those functions returning a select statement, which contains the same dependency, which then leads to a duplicate dependency bazel error. In order to work around this error, any additional dependency that is common to both the CUDA and ROCm platforms, should be specified using this function. Doing so will eliminate the cause of the bazel error (i.e. the same dependency showing up in two different select statements) """ return select({ "@local_config_cuda//cuda:using_nvcc": if_true, "@local_config_cuda//cuda:using_clang": if_true, "@local_config_rocm//rocm:using_hipcc": if_true, "//conditions:default": if_false, }) def tf_jit_compilation_passes_extra_deps(): return [] def if_mlir(if_true, if_false = []): return select({ "//conditions:default": if_false, "//tensorflow:with_mlir_support": if_true, }) # TODO(b/138724071): Remove when build is stable. def if_mlir_tflite(if_true, if_false = []): return if_true # Internally we always build with MLIR. def tfcompile_extra_flags(): return "" def tf_grpc_dependency(): return "//tensorflow:grpc" def tf_grpc_cc_dependency(): return "//tensorflow:grpc++"
# Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Classes and methods to manage all aspects of student assessments.""" __author__ = 'pgbovine@google.com (Philip Guo)' import datetime import json from models import models from models import utils from models.models import Student from models.models import StudentAnswersEntity from utils import BaseHandler from google.appengine.ext import db def store_score(student, assessment_type, score): """Stores a student's score on a particular assessment. Args: student: the student whose data is stored. assessment_type: the type of the assessment. score: the student's score on this assessment. Returns: the (possibly modified) assessment_type, which the caller can use to render an appropriate response page. """ # FIXME: Course creators can edit this code to implement custom # assessment scoring and storage behavior # TODO(pgbovine): Note that the latest version of answers are always saved, # but scores are only saved if they're higher than the previous attempt. # This can lead to unexpected analytics behavior. Resolve this. existing_score = utils.get_score(student, assessment_type) # remember to cast to int for comparison if (existing_score is None) or (score > int(existing_score)): utils.set_score(student, assessment_type, score) # special handling for computing final score: if assessment_type == 'postcourse': midcourse_score = utils.get_score(student, 'midcourse') if midcourse_score is None: midcourse_score = 0 else: midcourse_score = int(midcourse_score) if existing_score is None: postcourse_score = score else: postcourse_score = int(existing_score) if score > postcourse_score: postcourse_score = score # Calculate overall score based on a formula overall_score = int((0.3 * midcourse_score) + (0.7 * postcourse_score)) # TODO(pgbovine): this changing of assessment_type is ugly ... if overall_score >= 70: assessment_type = 'postcourse_pass' else: assessment_type = 'postcourse_fail' utils.set_score(student, 'overall_score', overall_score) return assessment_type class AnswerHandler(BaseHandler): """Handler for saving assessment answers.""" # Find student entity and save answers @db.transactional(xg=True) def update_assessment_transaction( self, email, assessment_type, new_answers, score): """Stores answer and updates user scores.""" student = Student.get_by_email(email) # It may be that old Student entities don't have user_id set; fix it. if not student.user_id: student.user_id = self.get_user().user_id() answers = StudentAnswersEntity.get_by_key_name(student.user_id) if not answers: answers = StudentAnswersEntity(key_name=student.user_id) answers.updated_on = datetime.datetime.now() utils.set_answer(answers, assessment_type, new_answers) assessment_type = store_score(student, assessment_type, score) student.put() answers.put() # Also record the event, which is useful for tracking multiple # submissions and history. models.EventEntity.record( 'submit-assessment', self.get_user(), json.dumps({ 'type': 'assessment-%s' % assessment_type, 'values': new_answers, 'location': 'AnswerHandler'})) return (student, assessment_type) def post(self): """Handles POST requests.""" student = self.personalize_page_and_get_enrolled() if not student: return if not self.assert_xsrf_token_or_fail(self.request, 'assessment-post'): return assessment_type = self.request.get('assessment_type') # Convert answers from JSON to dict. answers = self.request.get('answers') if answers: answers = json.loads(answers) else: answers = [] # TODO(pgbovine): consider storing as float for better precision score = int(round(float(self.request.get('score')))) # Record score. (student, assessment_type) = self.update_assessment_transaction( student.key().name(), assessment_type, answers, score) self.template_value['navbar'] = {'course': True} self.template_value['assessment'] = assessment_type self.template_value['student_score'] = utils.get_score( student, 'overall_score') self.render('test_confirmation.html')
# # Copyright (c) 2015 Juniper Networks, Inc. All rights reserved. # #!/usr/bin/python doc = """\ Node manager listens to process state change events and other flag value change events to provide advanced service management functionality. Rules files looks like following: ==================== { "Rules": [ {"process_name": "contrail-query-engine", "process_state": "PROCESS_STATE_FATAL", "action": "supervisorctl -s http://localhost:9002 """ + \ """\stop contrail-analytics-api"}, {"process_name": "contrail-query-engine", "process_state": "PROCESS_STATE_STOPPED", "action": "supervisorctl -s http://localhost:9002 """ + \ """\stop contrail-analytics-api"}, {"processname": "contrail-collector", "process_state": "PROCESS_STATE_RUNNING", "action": "/usr/bin/echo collector is starting >> /tmp/log"}, {"flag_name": "test", "flag_value":"true", "action": "/usr/bin/echo flag test is set true >> /tmp/log.1"} ] } ==================== """ from gevent import monkey monkey.patch_all() import os import os.path import sys import argparse import socket import gevent import ConfigParser import signal import random import hashlib from nodemgr.analytics_nodemgr.analytics_event_manager import AnalyticsEventManager from nodemgr.control_nodemgr.control_event_manager import ControlEventManager from nodemgr.config_nodemgr.config_event_manager import ConfigEventManager from nodemgr.vrouter_nodemgr.vrouter_event_manager import VrouterEventManager from nodemgr.database_nodemgr.database_event_manager import DatabaseEventManager from pysandesh.sandesh_base import Sandesh, SandeshSystem, SandeshConfig from pysandesh.gen_py.sandesh.ttypes import SandeshLevel def usage(): print doc sys.exit(255) def main(args_str=' '.join(sys.argv[1:])): # Parse Arguments node_parser = argparse.ArgumentParser(add_help=False) node_parser.add_argument("--nodetype", default='contrail-analytics', help='Type of node which nodemgr is managing') try: args, remaining_argv = node_parser.parse_known_args(args_str.split()) except: usage() default = {'rules': '', 'collectors': [], 'hostip': '127.0.0.1', 'db_port': '9042', 'minimum_diskgb': 256, 'contrail_databases': 'config analytics', 'cassandra_repair_interval': 24, 'cassandra_repair_logdir': '/var/log/contrail/', 'log_local': False, 'log_level': SandeshLevel.SYS_DEBUG, 'log_category': '', 'log_file': Sandesh._DEFAULT_LOG_FILE, 'use_syslog': False, 'syslog_facility': Sandesh._DEFAULT_SYSLOG_FACILITY } default.update(SandeshConfig.get_default_options(['DEFAULTS'])) sandesh_opts = SandeshConfig.get_default_options() node_type = args.nodetype if (node_type == 'contrail-analytics'): config_file = '/etc/contrail/contrail-analytics-nodemgr.conf' elif (node_type == 'contrail-config'): config_file = '/etc/contrail/contrail-config-nodemgr.conf' elif (node_type == 'contrail-control'): config_file = '/etc/contrail/contrail-control-nodemgr.conf' elif (node_type == 'contrail-vrouter'): config_file = '/etc/contrail/contrail-vrouter-nodemgr.conf' elif (node_type == 'contrail-database'): config_file = '/etc/contrail/contrail-database-nodemgr.conf' else: sys.stderr.write("Node type" + str(node_type) + "is incorrect" + "\n") return if (os.path.exists(config_file) == False): sys.stderr.write("config file " + config_file + " is not present" + "\n") return config = ConfigParser.SafeConfigParser() config.read([config_file]) if 'DEFAULTS' in config.sections(): default.update(dict(config.items('DEFAULTS'))) if 'COLLECTOR' in config.sections(): try: collector = config.get('COLLECTOR', 'server_list') default['collectors'] = collector.split() except ConfigParser.NoOptionError as e: pass SandeshConfig.update_options(sandesh_opts, config) parser = argparse.ArgumentParser(parents=[node_parser], formatter_class=argparse.ArgumentDefaultsHelpFormatter) default.update(sandesh_opts) parser.set_defaults(**default) parser.add_argument("--rules", help='Rules file to use for processing events') parser.add_argument("--collectors", nargs='+', help='Collector addresses in format' + 'ip1:port1 ip2:port2') parser.add_argument("--log_local", action="store_true", help="Enable local logging of sandesh messages") parser.add_argument("--log_level", help="Severity level for local logging of sandesh messages") parser.add_argument("--log_category", help="Category filter for local logging of sandesh messages") parser.add_argument("--log_file", help="Filename for the logs to be written to") parser.add_argument("--use_syslog", action="store_true", help="Use syslog for logging") parser.add_argument("--syslog_facility", help="Syslog facility to receive log lines") SandeshConfig.add_parser_arguments(parser, add_dscp=True) if (node_type == 'contrail-database' or node_type == 'contrail-config'): parser.add_argument("--minimum_diskGB", type=int, dest='minimum_diskgb', help="Minimum disk space in GB's") parser.add_argument("--contrail_databases", nargs='+', help='Contrail databases on this node' + 'in format: config analytics' ) parser.add_argument("--hostip", help="IP address of host") parser.add_argument("--db_port", help="Cassandra DB cql port") parser.add_argument("--cassandra_repair_interval", type=int, help="Time in hours to periodically run " "nodetool repair for cassandra maintenance") parser.add_argument("--cassandra_repair_logdir", help="Directory for storing repair logs") try: _args = parser.parse_args(remaining_argv) except: usage() rule_file = _args.rules # randomize collector list _args.chksum = "" if _args.collectors: _args.chksum = hashlib.md5("".join(_args.collectors)).hexdigest() _args.random_collectors = random.sample(_args.collectors, len(_args.collectors)) _args.collectors = _args.random_collectors # done parsing arguments prog = None if (node_type == 'contrail-analytics'): if not rule_file: rule_file = "/etc/contrail/supervisord_analytics_files/" + \ "contrail-analytics.rules" unit_names = ['contrail-collector.service', 'contrail-analytics-api.service', 'contrail-snmp-collector.service', 'contrail-query-engine.service', 'contrail-alarm-gen.service', 'contrail-topology.service', 'contrail-analytics-nodemgr.service', ] prog = AnalyticsEventManager(_args, rule_file, unit_names) elif (node_type == 'contrail-config'): if not rule_file: rule_file = "/etc/contrail/supervisord_config_files/" + \ "contrail-config.rules" unit_names = ['contrail-api.service', 'contrail-schema.service', 'contrail-svc-monitor.service', 'contrail-device-manager.service', 'contrail-config-nodemgr.service', ] prog = ConfigEventManager(_args, rule_file, unit_names) elif (node_type == 'contrail-control'): if not rule_file: rule_file = "/etc/contrail/supervisord_control_files/" + \ "contrail-control.rules" unit_names = ['contrail-control.service', 'contrail-dns.service', 'contrail-named.service', 'contrail-control-nodemgr.service', ] prog = ControlEventManager(_args, rule_file, unit_names) elif (node_type == 'contrail-vrouter'): if not rule_file: rule_file = "/etc/contrail/supervisord_vrouter_files/" + \ "contrail-vrouter.rules" unit_names = ['contrail-vrouter-agent.service', 'contrail-vrouter-nodemgr.service', ] prog = VrouterEventManager(_args, rule_file, unit_names) elif (node_type == 'contrail-database'): if not rule_file: rule_file = "/etc/contrail/supervisord_database_files/" + \ "contrail-database.rules" unit_names = ['contrail-database.service', 'kafka.service', 'contrail-database-nodemgr.service', ] prog = DatabaseEventManager(_args, rule_file, unit_names) else: sys.stderr.write("Node type" + str(node_type) + "is incorrect" + "\n") return prog.process() prog.send_nodemgr_process_status() prog.send_process_state_db(prog.group_names) prog.config_file = config_file prog.collector_chksum = _args.chksum if _args.collectors: prog.random_collectors = _args.random_collectors """ @sighup Reconfig of collector list """ gevent.signal(signal.SIGHUP, prog.nodemgr_sighup_handler) gevent.joinall([gevent.spawn(prog.runforever), gevent.spawn(prog.run_periodically(prog.do_periodic_events, 60))]) if __name__ == '__main__': main()
from django import forms from django.forms.widgets import PasswordInput from modules.common.id_choicefield import IdentificationField class PartyForm(forms.Form): error_messages = { 'password_mismatch': ( 'The confirmation was different from that you chose.' ), } party_name = forms.CharField(label="Name of the contesting party") cname = forms.CharField(label="Candidate's Name") age = forms.IntegerField(min_value=0, label="Candidate's Age") citype = IdentificationField(label="Identity Proof of the Candidate") cidno = forms.CharField(label="Passport / ID Number") party_manifesto = forms.CharField( widget=forms.Textarea, required=False ) party_symbol = forms.ImageField( required=False, help_text="The maximum size permitted is 2.5 MB" ) cpd1 = forms.CharField( widget=PasswordInput, label="Enter your password", strip=False, ) cpd2 = forms.CharField( widget=PasswordInput, label="Confirm Password", strip=False, help_text=("Enter the same password as before, for verification") ) show_profile = forms.ChoiceField( choices=[ (True, "Show Profile to public"), (False, "Hide profile from public") ], help_text="The Election Commission can override this setting." ) class PartyEditForm(forms.Form): party_name = forms.CharField() cpass = forms.CharField( widget=PasswordInput, label="Enter your password", strip=False, )
# Copyright 2012 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy import json from django import forms from django import http from django import shortcuts from django.views import generic import six from horizon import exceptions from horizon.forms import views as hz_views from horizon.forms.views import ADD_TO_FIELD_HEADER # noqa from horizon import messages class WorkflowView(hz_views.ModalBackdropMixin, generic.TemplateView): """A generic class-based view which handles the intricacies of workflow processing with minimal user configuration. .. attribute:: workflow_class The :class:`~horizon.workflows.Workflow` class which this view handles. Required. .. attribute:: template_name The template to use when rendering this view via standard HTTP requests. Required. .. attribute:: ajax_template_name The template to use when rendering the workflow for AJAX requests. In general the default common template should be used. Defaults to ``"horizon/common/_workflow.html"``. .. attribute:: context_object_name The key which should be used for the workflow object in the template context. Defaults to ``"workflow"``. """ workflow_class = None template_name = 'horizon/common/_workflow_base.html' context_object_name = "workflow" ajax_template_name = 'horizon/common/_workflow.html' step_errors = {} def __init__(self): super(WorkflowView, self).__init__() if not self.workflow_class: raise AttributeError("You must set the workflow_class attribute " "on %s." % self.__class__.__name__) def get_initial(self): """Returns initial data for the workflow. Defaults to using the GET parameters to allow pre-seeding of the workflow context values. """ return copy.copy(self.request.GET) def get_workflow(self): """Returns the instantiated workflow class.""" extra_context = self.get_initial() entry_point = self.request.GET.get("step", None) workflow = self.workflow_class(self.request, context_seed=extra_context, entry_point=entry_point) return workflow def get_context_data(self, **kwargs): """Returns the template context, including the workflow class. This method should be overridden in subclasses to provide additional context data to the template. """ context = super(WorkflowView, self).get_context_data(**kwargs) workflow = self.get_workflow() context[self.context_object_name] = workflow next = self.request.REQUEST.get(workflow.redirect_param_name, None) context['REDIRECT_URL'] = next context['layout'] = self.get_layout() # For consistency with Workflow class context['modal'] = 'modal' in context['layout'] if ADD_TO_FIELD_HEADER in self.request.META: context['add_to_field'] = self.request.META[ADD_TO_FIELD_HEADER] return context def get_layout(self): """returns classes for the workflow element in template based on the workflow characteristics """ if self.request.is_ajax(): layout = ['modal', ] if self.workflow_class.fullscreen: layout += ['fullscreen', ] else: layout = ['static_page', ] if self.workflow_class.wizard: layout += ['wizard', ] return layout def get_template_names(self): """Returns the template name to use for this request.""" if self.request.is_ajax(): template = self.ajax_template_name else: template = self.template_name return template def get_object_id(self, obj): return getattr(obj, "id", None) def get_object_display(self, obj): return getattr(obj, "name", None) def add_error_to_step(self, error_msg, step): self.step_errors[step] = error_msg def set_workflow_step_errors(self, context): workflow = context['workflow'] for step in self.step_errors: error_msg = self.step_errors[step] workflow.add_error_to_step(error_msg, step) def get(self, request, *args, **kwargs): """Handler for HTTP GET requests.""" context = self.get_context_data(**kwargs) self.set_workflow_step_errors(context) return self.render_to_response(context) def validate_steps(self, request, workflow, start, end): """Validates the workflow steps from ``start`` to ``end``, inclusive. Returns a dict describing the validation state of the workflow. """ errors = {} for step in workflow.steps[start:end + 1]: if not step.action.is_valid(): errors[step.slug] = dict( (field, [unicode(error) for error in errors]) for (field, errors) in six.iteritems(step.action.errors)) return { 'has_errors': bool(errors), 'workflow_slug': workflow.slug, 'errors': errors, } def post(self, request, *args, **kwargs): """Handler for HTTP POST requests.""" context = self.get_context_data(**kwargs) workflow = context[self.context_object_name] try: # Check for the VALIDATE_STEP* headers, if they are present # and valid integers, return validation results as JSON, # otherwise proceed normally. validate_step_start = int(self.request.META.get( 'HTTP_X_HORIZON_VALIDATE_STEP_START', '')) validate_step_end = int(self.request.META.get( 'HTTP_X_HORIZON_VALIDATE_STEP_END', '')) except ValueError: # No VALIDATE_STEP* headers, or invalid values. Just proceed # with normal workflow handling for POSTs. pass else: # There are valid VALIDATE_STEP* headers, so only do validation # for the specified steps and return results. data = self.validate_steps(request, workflow, validate_step_start, validate_step_end) return http.HttpResponse(json.dumps(data), content_type="application/json") if not workflow.is_valid(): return self.render_to_response(context) try: success = workflow.finalize() except forms.ValidationError: return self.render_to_response(context) except Exception: success = False exceptions.handle(request) if success: msg = workflow.format_status_message(workflow.success_message) messages.success(request, msg) else: msg = workflow.format_status_message(workflow.failure_message) messages.error(request, msg) if "HTTP_X_HORIZON_ADD_TO_FIELD" in self.request.META: field_id = self.request.META["HTTP_X_HORIZON_ADD_TO_FIELD"] response = http.HttpResponse() if workflow.object: data = [self.get_object_id(workflow.object), self.get_object_display(workflow.object)] response.content = json.dumps(data) response["X-Horizon-Add-To-Field"] = field_id return response next_url = self.request.REQUEST.get(workflow.redirect_param_name, None) return shortcuts.redirect(next_url or workflow.get_success_url())
from PygFW import Event import pygame class EntityClickEvent(Event): def __init__(self, scene_surface): Event.__init__(self, scene_surface, pygame.MOUSEBUTTONDOWN) def executor(self, scene, event): for entity in scene.entities._list_: if entity.clickable: if entity.collides_with([event.pos]): entity.click(scene, event) class EntityUnclickEvent(Event): def __init__(self, scene_surface): Event.__init__(self, scene_surface, pygame.MOUSEBUTTONUP) def executor(self, scene, event): for entity in scene.entities._list_: if entity.un_clickable: entity.un_click(scene, event)
#!/usr/bin/env python # ___INFO__MARK_BEGIN__ ####################################################################################### # Copyright 2008-2021 Univa Corporation (acquired and owned by Altair Engineering Inc.) # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. # # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. ####################################################################################### # ___INFO__MARK_END__ import time from drmaa2 import JobSession from drmaa2 import JobInfo from drmaa2 import Time if __name__ == '__main__': js = JobSession('js-01') print('Created job session: %s' % js.name) j = js.run_job({'remote_command': '/bin/sleep', 'args': ['100']}) print('Submitted job: %s, waiting on start' % j) t1 = time.time() j.wait_started(10) t2 = time.time() print('Wait on job start is over after %s seconds' % (t2 - t1)) ji = j.get_info() print('Retrieved job info: %s' % ji) print('Waiting on job %s termination' % j.id) t1 = time.time() j.wait_terminated(Time.INFINITE_TIME.value) t2 = time.time() print('Job terminated, wait is over after %s seconds' % (t2 - t1)) ji = j.get_info() print('Retrieved job info after termination: %s' % ji)
import argparse import os import numpy as np import tensorflow as tf from matplotlib import pyplot as plt from PIL import Image import models def predict(model_data_path, image_path): # Default input size height = 228 width = 304 channels = 3 batch_size = 1 # Read image img = Image.open(image_path) img = img.resize([width,height], Image.ANTIALIAS) img = np.array(img).astype('float32') img = np.expand_dims(np.asarray(img), axis = 0) # Create a placeholder for the input image input_node = tf.placeholder(tf.float32, shape=(None, height, width, channels)) # Construct the network net = models.ResNet50UpProj({'data': input_node}, batch_size) with tf.Session() as sess: # Load the converted parameters print('Loading the model') net.load(model_data_path, sess) uninitialized_vars = [] for var in tf.global_variables(): try: sess.run(var) except tf.errors.FailedPreconditionError: uninitialized_vars.append(var) init_new_vars_op = tf.variables_initializer(uninitialized_vars) sess.run(init_new_vars_op) # Evalute the network for the given image pred = sess.run(net.get_output(), feed_dict={input_node: img}) # Plot result fig = plt.figure() ii = plt.imshow(pred[0,:,:,0], interpolation='nearest') fig.colorbar(ii) plt.show() return pred def main(): # Parse arguments parser = argparse.ArgumentParser() parser.add_argument('model_path', help='Converted parameters for the model') parser.add_argument('image_paths', help='Directory of images to predict') args = parser.parse_args() # Predict the image pred = predict(args.model_path, args.image_paths) os._exit(0) if __name__ == '__main__': main()
import pyaf.tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['Logit'] , ['MovingAverage'] , ['Seasonal_DayOfMonth'] , ['LSTM'] );
import inspect import io import json import logging as logginglib import sys from datetime import datetime from typing import Any, Callable, Dict, List, Optional, Set, TextIO, Tuple from typing_extensions import Literal from hpc.autoscale import hpclogging as logging from hpc.autoscale.codeanalysis import hpcwrapclass from hpc.autoscale.hpctypes import Hostname from hpc.autoscale.job.demand import DemandResult from hpc.autoscale.node.node import Node OutputFormat = Literal["json", "table", "table_headerless"] @hpcwrapclass class DemandPrinter: def __init__( self, column_names: Optional[List[str]] = None, stream: Optional[TextIO] = None, output_format: OutputFormat = "table", long: bool = False, ) -> None: column_names_list: List[str] = [] if column_names: column_names_list = column_names self.__defaults = {} for n in range(len(column_names_list)): expr = column_names_list[n] if ":" in expr and "[" not in expr: column, default_value = expr.split(":", 1) column_names_list[n] = column self.__defaults[column] = default_value self.column_names = [x.lower() for x in column_names_list] self.stream = stream or sys.stdout self.output_format = output_format self.long = long def _calc_width(self, columns: List[str], rows: List[List[str]]) -> Tuple[int, ...]: maxes = [len(c) for c in columns] for row in rows: for n in range(len(row)): maxes[n] = max(len(row[n]), maxes[n]) return tuple(maxes) def _get_all_columns(self, compute_nodes: List[Node]) -> List[str]: columns = [] for attr_name in dir(Node): if not attr_name[0].isalpha(): continue attr = getattr(Node, attr_name) if hasattr(attr, "__call__"): continue columns.append(attr_name) if compute_nodes: all_available: Set[str] = set() for n in compute_nodes: all_available.update(n.available.keys()) columns += list(all_available) assert None not in columns columns = sorted(columns) return columns def print_columns(self, demand_result: DemandResult = None) -> None: columns = self.column_names if not columns: columns = self._get_all_columns( demand_result.compute_nodes if demand_result else [] ) columns = [c for c in columns if c != "hostname_required"] widths = self._calc_width(columns, []) formats = " ".join(["{:%d}" % x for x in widths]) assert len(widths) == len(columns), "{} != {}".format(len(widths), len(columns)) print(formats.format(*columns), file=self.stream) self.stream.flush() def print_demand(self, demand_result: DemandResult) -> None: rows = [] columns = self.column_names if not columns: columns = self._get_all_columns(demand_result.compute_nodes) if self.output_format == "json": columns = [c for c in columns if c not in ["hostname_required"]] else: columns = [ c for c in columns if c not in ["available", "node", "hostname_required"] ] columns = ["job_ids" if c == "assigned_job_ids" else c for c in columns] if "name" in columns: columns.remove("name") columns.insert(0, "name") short_columns = [c.split("@")[0] for c in columns] long_columns = [c.split("@")[-1] for c in columns] # sort by private ip or the node name def sort_by_ip_or_name(node: Node) -> Any: if node.private_ip: return tuple(map(int, node.private_ip.split("."))) name_toks = node.name.split("-") if name_toks[-1].isdigit(): node_index = int(name_toks[-1]) nodearray_ord = [ord(x) for x in node.nodearray] # 2**31 to make these come after private ips # then nodearray name, then index return tuple([2 ** 31] + nodearray_ord + [node_index]) return tuple([-1] + name_toks) ordered_nodes = sorted(demand_result.compute_nodes, key=sort_by_ip_or_name) for node in ordered_nodes: row: List[str] = [] rows.append(row) for column in long_columns: # TODO justify - this is a printing function, so this value could be lots of things etc. value: Any = None is_from_available = column.startswith("*") is_ratio = column.startswith("/") is_slice = "[" in column if is_from_available or is_ratio: column = column[1:] def _slice(v: str) -> str: return v slice = _slice if is_slice: slice_expr = column[column.index("[") :] column = column.split("[")[0] # TODO maybe parse this instead of eval-ing a lambda if self.long: slice = lambda v: v # noqa: E731 else: slice = eval( "lambda v: v%s if v is not None else v" % slice_expr ) if column == "hostname": hostname = node.hostname if not node.exists or not hostname: if node.private_ip: hostname = Hostname(str(node.private_ip)) else: hostname = Hostname("tbd") value = hostname elif column == "hostname_required": continue elif column == "job_ids": value = node.assignments elif hasattr(node, column): value = getattr(node, column) else: if is_from_available: value = node.available.get(column) elif is_ratio: value = "{}/{}".format( node.available.get(column), node.resources.get(column) ) elif column in node.resources: value = node.resources.get(column) else: value = node.metadata.get(column) if value is None: value = self.__defaults.get(column) # convert sets to lists, as sets are not json serializable if isinstance(value, set): value = list(value) elif isinstance(value, datetime): value = value.isoformat() # for json, we support lists, null, numbers etc. # for table* we will output a string for every value. if self.output_format != "json": if isinstance(value, list): value = ",".join(sorted(value)) elif isinstance(value, set): value = ",".join(sorted(list(value))) elif value is None: value = "" elif isinstance(value, float): value = "{:.1f}".format(value) elif not isinstance(value, str): value = str(value) else: if hasattr(value, "to_json"): value = value.to_json() elif hasattr(value, "keys"): value = dict(value) row.append(slice(value)) # remove / and slice expressions stripped_short_names = [c.lstrip("/").split("[")[0] for c in short_columns] if self.output_format != "json": stripped_short_names = [x.upper() for x in stripped_short_names] print_rows(stripped_short_names, rows, self.stream, self.output_format) def __str__(self) -> str: return "DemandPrinter(columns={}, output_format={}, stream={})".format( str(self.column_names), self.output_format, self.stream ) def __repr__(self) -> str: return str(self) def print_columns( demand_result: DemandResult, stream: Optional[TextIO] = None, output_format: OutputFormat = "table", long: bool = False, ) -> None: printer = DemandPrinter(None, stream=stream, output_format=output_format, long=long) printer.print_columns(demand_result) def print_demand( columns: List[str], demand_result: DemandResult, stream: Optional[TextIO] = None, output_format: OutputFormat = "table", log: bool = False, long: bool = False, ) -> None: if log: stream = logging_stream(stream or sys.stdout) printer = DemandPrinter( columns, stream=stream, output_format=output_format, long=long ) printer.print_demand(demand_result) def wrap_text_io(clz: Any) -> Callable[[TextIO, Optional[str]], TextIO]: members: Dict[str, Any] = {} for attr in dir(TextIO): if not attr[0].islower() and attr not in [ "__enter__", "__exit__", "__iter__", "__next__", ]: continue if attr in dir(clz): continue def make_member(mem_name: str) -> Any: is_function = inspect.isfunction(getattr(TextIO, mem_name)) if is_function: return lambda *args: getattr(args[0].wrapped, mem_name)(*args[1:]) else: return property(lambda *args: getattr(args[0].wrapped, mem_name)) members[attr] = make_member(attr) return type("LoggingStream", (clz,), members) class _LoggingStream: def __init__(self, wrapped: TextIO, logger_name: Optional[str] = None) -> None: self.line_buffer = io.StringIO() self.wrapped = wrapped self.logger_name = logger_name def write(self, s: str) -> int: self.line_buffer.write(s) return self.wrapped.write(s) def flush(self) -> None: buf = self.line_buffer.getvalue() if not buf: return fact = logginglib.getLogRecordFactory() logger = logging.getLogger(self.logger_name) created = None for line in buf.splitlines(keepends=False): record = fact( name="demandprinter", level=logging.INFO, pathname=__file__, lineno=1, msg=line, args=(), exc_info=None, created=created, ) created = created or record.created logger.handle(record) self.line_buffer = io.StringIO() def close(self) -> None: self.flush() self.wrapped.close() LoggingStream = wrap_text_io(_LoggingStream) def logging_stream(wrapped: TextIO, logger_name: Optional[str] = None) -> TextIO: logger_name = logger_name or "demand" return LoggingStream(wrapped, logger_name) class ExcludeDemandPrinterFilter(logginglib.Filter): def __init__(self, name: str = "") -> None: super().__init__(name) def filter(self, record: logginglib.LogRecord) -> bool: return record.name != "demandprinter" def calculate_column_widths( columns: List[str], rows: List[List[str]] ) -> Tuple[int, ...]: maxes = [len(c.split("@")[0]) for c in columns] for row in rows: for n in range(len(row)): maxes[n] = max(len(row[n]), maxes[n]) return tuple(maxes) def print_rows( columns: List[str], rows: List[List[str]], stream: Optional[TextIO] = None, output_format: str = "table", ) -> None: output_format = output_format or "table" stream = stream or sys.stdout short_names = [c.split("@")[0] for c in columns] if output_format.lower() == "json": json.dump( [dict(zip(short_names, row)) for row in rows], stream, indent=2, ) else: widths = calculate_column_widths(short_names, rows) formats = " ".join(["{:%d}" % x for x in widths]) if output_format == "table": print(formats.format(*short_names), file=stream) for row in rows: print(formats.format(*[str(r) for r in row]), file=stream) stream.flush()
# -*- coding: utf-8 -*- from setuptools import setup, find_packages with open('LICENSE') as f: license = f.read() setup( name='borg_hydro', version='0.1.0', author='Stefan Lüdtke', url='https://git.gfz-potsdam.de:sluedtke/borg_hydro.git', packages=find_packages(), license=license, include_package_data=True, tests_require=['pytest'], install_requires=['pandas', 'numpy'] )
""" This module defines the basic `DefaultObject` and its children `DefaultCharacter`, `DefaultAccount`, `DefaultRoom` and `DefaultExit`. These are the (default) starting points for all in-game visible entities. """ import time import inflect from builtins import object from future.utils import with_metaclass from collections import defaultdict from django.conf import settings from evennia.typeclasses.models import TypeclassBase from evennia.typeclasses.attributes import NickHandler from evennia.objects.manager import ObjectManager from evennia.objects.models import ObjectDB from evennia.scripts.scripthandler import ScriptHandler from evennia.commands import cmdset, command from evennia.commands.cmdsethandler import CmdSetHandler from evennia.commands import cmdhandler from evennia.utils import search from evennia.utils import logger from evennia.utils import ansi from evennia.utils.utils import (variable_from_module, lazy_property, make_iter, to_unicode, is_iter, list_to_string, to_str) from django.utils.translation import ugettext as _ _INFLECT = inflect.engine() _MULTISESSION_MODE = settings.MULTISESSION_MODE _ScriptDB = None _SESSIONS = None _AT_SEARCH_RESULT = variable_from_module(*settings.SEARCH_AT_RESULT.rsplit('.', 1)) # the sessid_max is based on the length of the db_sessid csv field (excluding commas) _SESSID_MAX = 16 if _MULTISESSION_MODE in (1, 3) else 1 class ObjectSessionHandler(object): """ Handles the get/setting of the sessid comma-separated integer field """ def __init__(self, obj): """ Initializes the handler. Args: obj (Object): The object on which the handler is defined. """ self.obj = obj self._sessid_cache = [] self._recache() def _recache(self): global _SESSIONS if not _SESSIONS: from evennia.server.sessionhandler import SESSIONS as _SESSIONS self._sessid_cache = list(set(int(val) for val in (self.obj.db_sessid or "").split(",") if val)) if any(sessid for sessid in self._sessid_cache if sessid not in _SESSIONS): # cache is out of sync with sessionhandler! Only retain the ones in the handler. self._sessid_cache = [sessid for sessid in self._sessid_cache if sessid in _SESSIONS] self.obj.db_sessid = ",".join(str(val) for val in self._sessid_cache) self.obj.save(update_fields=["db_sessid"]) def get(self, sessid=None): """ Get the sessions linked to this Object. Args: sessid (int, optional): A specific session id. Returns: sessions (list): The sessions connected to this object. If `sessid` is given, this is a list of one (or zero) elements. Notes: Aliased to `self.all()`. """ global _SESSIONS if not _SESSIONS: from evennia.server.sessionhandler import SESSIONS as _SESSIONS if sessid: sessions = [_SESSIONS[sessid] if sessid in _SESSIONS else None] if sessid in self._sessid_cache else [] else: sessions = [_SESSIONS[ssid] if ssid in _SESSIONS else None for ssid in self._sessid_cache] if None in sessions: # this happens only if our cache has gone out of sync with the SessionHandler. self._recache() return self.get(sessid=sessid) return sessions def all(self): """ Alias to get(), returning all sessions. Returns: sessions (list): All sessions. """ return self.get() def add(self, session): """ Add session to handler. Args: session (Session or int): Session or session id to add. Notes: We will only add a session/sessid if this actually also exists in the the core sessionhandler. """ global _SESSIONS if not _SESSIONS: from evennia.server.sessionhandler import SESSIONS as _SESSIONS try: sessid = session.sessid except AttributeError: sessid = session sessid_cache = self._sessid_cache if sessid in _SESSIONS and sessid not in sessid_cache: if len(sessid_cache) >= _SESSID_MAX: return sessid_cache.append(sessid) self.obj.db_sessid = ",".join(str(val) for val in sessid_cache) self.obj.save(update_fields=["db_sessid"]) def remove(self, session): """ Remove session from handler. Args: session (Session or int): Session or session id to remove. """ try: sessid = session.sessid except AttributeError: sessid = session sessid_cache = self._sessid_cache if sessid in sessid_cache: sessid_cache.remove(sessid) self.obj.db_sessid = ",".join(str(val) for val in sessid_cache) self.obj.save(update_fields=["db_sessid"]) def clear(self): """ Clear all handled sessids. """ self._sessid_cache = [] self.obj.db_sessid = None self.obj.save(update_fields=["db_sessid"]) def count(self): """ Get amount of sessions connected. Returns: sesslen (int): Number of sessions handled. """ return len(self._sessid_cache) # # Base class to inherit from. class DefaultObject(with_metaclass(TypeclassBase, ObjectDB)): """ This is the root typeclass object, representing all entities that have an actual presence in-game. DefaultObjects generally have a location. They can also be manipulated and looked at. Game entities you define should inherit from DefaultObject at some distance. It is recommended to create children of this class using the `evennia.create_object()` function rather than to initialize the class directly - this will both set things up and efficiently save the object without `obj.save()` having to be called explicitly. """ objects = ObjectManager() # on-object properties @lazy_property def cmdset(self): return CmdSetHandler(self, True) @lazy_property def scripts(self): return ScriptHandler(self) @lazy_property def nicks(self): return NickHandler(self) @lazy_property def sessions(self): return ObjectSessionHandler(self) @property def is_connected(self): # we get an error for objects subscribed to channels without this if self.account: # seems sane to pass on the account return self.account.is_connected else: return False @property def has_account(self): """ Convenience property for checking if an active account is currently connected to this object. """ return self.sessions.count() @property def is_superuser(self): """ Check if user has an account, and if so, if it is a superuser. """ return self.db_account and self.db_account.is_superuser \ and not self.db_account.attributes.get("_quell") def contents_get(self, exclude=None): """ Returns the contents of this object, i.e. all objects that has this object set as its location. This should be publically available. Args: exclude (Object): Object to exclude from returned contents list Returns: contents (list): List of contents of this Object. Notes: Also available as the `contents` property. """ con = self.contents_cache.get(exclude=exclude) # print "contents_get:", self, con, id(self), calledby() # DEBUG return con contents = property(contents_get) @property def exits(self): """ Returns all exits from this object, i.e. all objects at this location having the property destination != `None`. """ return [exi for exi in self.contents if exi.destination] # main methods def get_display_name(self, looker, **kwargs): """ Displays the name of the object in a viewer-aware manner. Args: looker (TypedObject): The object or account that is looking at/getting inforamtion for this object. Returns: name (str): A string containing the name of the object, including the DBREF if this user is privileged to control said object. Notes: This function could be extended to change how object names appear to users in character, but be wary. This function does not change an object's keys or aliases when searching, and is expected to produce something useful for builders. """ if self.locks.check_lockstring(looker, "perm(Builder)"): return "{}(#{})".format(self.name, self.id) return self.name def get_numbered_name(self, count, looker, **kwargs): """ Return the numbered (singular, plural) forms of this object's key. This is by default called by return_appearance and is used for grouping multiple same-named of this object. Note that this will be called on *every* member of a group even though the plural name will be only shown once. Also the singular display version, such as 'an apple', 'a tree' is determined from this method. Args: count (int): Number of objects of this type looker (Object): Onlooker. Not used by default. Kwargs: key (str): Optional key to pluralize, if given, use this instead of the object's key. Returns: singular (str): The singular form to display. plural (str): The determined plural form of the key, including the count. """ key = kwargs.get("key", self.key) key = ansi.ANSIString(key) # this is needed to allow inflection of colored names plural = _INFLECT.plural(key, 2) plural = "%s %s" % (_INFLECT.number_to_words(count, threshold=12), plural) singular = _INFLECT.an(key) if not self.aliases.get(plural, category="plural_key"): # we need to wipe any old plurals/an/a in case key changed in the interrim self.aliases.clear(category="plural_key") self.aliases.add(plural, category="plural_key") # save the singular form as an alias here too so we can display "an egg" and also # look at 'an egg'. self.aliases.add(singular, category="plural_key") return singular, plural def search(self, searchdata, global_search=False, use_nicks=True, typeclass=None, location=None, attribute_name=None, quiet=False, exact=False, candidates=None, nofound_string=None, multimatch_string=None, use_dbref=None): """ Returns an Object matching a search string/condition Perform a standard object search in the database, handling multiple results and lack thereof gracefully. By default, only objects in the current `location` of `self` or its inventory are searched for. Args: searchdata (str or obj): Primary search criterion. Will be matched against `object.key` (with `object.aliases` second) unless the keyword attribute_name specifies otherwise. **Special strings:** - `#<num>`: search by unique dbref. This is always a global search. - `me,self`: self-reference to this object - `<num>-<string>` - can be used to differentiate between multiple same-named matches global_search (bool): Search all objects globally. This is overruled by `location` keyword. use_nicks (bool): Use nickname-replace (nicktype "object") on `searchdata`. typeclass (str or Typeclass, or list of either): Limit search only to `Objects` with this typeclass. May be a list of typeclasses for a broader search. location (Object or list): Specify a location or multiple locations to search. Note that this is used to query the *contents* of a location and will not match for the location itself - if you want that, don't set this or use `candidates` to specify exactly which objects should be searched. attribute_name (str): Define which property to search. If set, no key+alias search will be performed. This can be used to search database fields (db_ will be automatically prepended), and if that fails, it will try to return objects having Attributes with this name and value equal to searchdata. A special use is to search for "key" here if you want to do a key-search without including aliases. quiet (bool): don't display default error messages - this tells the search method that the user wants to handle all errors themselves. It also changes the return value type, see below. exact (bool): if unset (default) - prefers to match to beginning of string rather than not matching at all. If set, requires exact matching of entire string. candidates (list of objects): this is an optional custom list of objects to search (filter) between. It is ignored if `global_search` is given. If not set, this list will automatically be defined to include the location, the contents of location and the caller's contents (inventory). nofound_string (str): optional custom string for not-found error message. multimatch_string (str): optional custom string for multimatch error header. use_dbref (bool or None, optional): If `True`, allow to enter e.g. a query "#123" to find an object (globally) by its database-id 123. If `False`, the string "#123" will be treated like a normal string. If `None` (default), the ability to query by #dbref is turned on if `self` has the permission 'Builder' and is turned off otherwise. Returns: match (Object, None or list): will return an Object/None if `quiet=False`, otherwise it will return a list of 0, 1 or more matches. Notes: To find Accounts, use eg. `evennia.account_search`. If `quiet=False`, error messages will be handled by `settings.SEARCH_AT_RESULT` and echoed automatically (on error, return will be `None`). If `quiet=True`, the error messaging is assumed to be handled by the caller. """ is_string = isinstance(searchdata, basestring) if is_string: # searchdata is a string; wrap some common self-references if searchdata.lower() in ("here", ): return [self.location] if quiet else self.location if searchdata.lower() in ("me", "self",): return [self] if quiet else self if use_dbref is None: use_dbref = self.locks.check_lockstring(self, "_dummy:perm(Builder)") if use_nicks: # do nick-replacement on search searchdata = self.nicks.nickreplace(searchdata, categories=("object", "account"), include_account=True) if (global_search or (is_string and searchdata.startswith("#") and len(searchdata) > 1 and searchdata[1:].isdigit())): # only allow exact matching if searching the entire database # or unique #dbrefs exact = True candidates = None elif candidates is None: # no custom candidates given - get them automatically if location: # location(s) were given candidates = [] for obj in make_iter(location): candidates.extend(obj.contents) else: # local search. Candidates are taken from # self.contents, self.location and # self.location.contents location = self.location candidates = self.contents if location: candidates = candidates + [location] + location.contents else: # normally we don't need this since we are # included in location.contents candidates.append(self) results = ObjectDB.objects.object_search(searchdata, attribute_name=attribute_name, typeclass=typeclass, candidates=candidates, exact=exact, use_dbref=use_dbref) if quiet: return results return _AT_SEARCH_RESULT(results, self, query=searchdata, nofound_string=nofound_string, multimatch_string=multimatch_string) def search_account(self, searchdata, quiet=False): """ Simple shortcut wrapper to search for accounts, not characters. Args: searchdata (str): Search criterion - the key or dbref of the account to search for. If this is "here" or "me", search for the account connected to this object. quiet (bool): Returns the results as a list rather than echo eventual standard error messages. Default `False`. Returns: result (Account, None or list): Just what is returned depends on the `quiet` setting: - `quiet=True`: No match or multumatch auto-echoes errors to self.msg, then returns `None`. The esults are passed through `settings.SEARCH_AT_RESULT` and `settings.SEARCH_AT_MULTIMATCH_INPUT`. If there is a unique match, this will be returned. - `quiet=True`: No automatic error messaging is done, and what is returned is always a list with 0, 1 or more matching Accounts. """ if isinstance(searchdata, basestring): # searchdata is a string; wrap some common self-references if searchdata.lower() in ("me", "self",): return [self.account] if quiet else self.account results = search.search_account(searchdata) if quiet: return results return _AT_SEARCH_RESULT(results, self, query=searchdata) def execute_cmd(self, raw_string, session=None, **kwargs): """ Do something as this object. This is never called normally, it's only used when wanting specifically to let an object be the caller of a command. It makes use of nicks of eventual connected accounts as well. Args: raw_string (string): Raw command input session (Session, optional): Session to return results to Kwargs: Other keyword arguments will be added to the found command object instace as variables before it executes. This is unused by default Evennia but may be used to set flags and change operating paramaters for commands at run-time. Returns: defer (Deferred): This is an asynchronous Twisted object that will not fire until the command has actually finished executing. To overload this one needs to attach callback functions to it, with addCallback(function). This function will be called with an eventual return value from the command execution. This return is not used at all by Evennia by default, but might be useful for coders intending to implement some sort of nested command structure. """ # nick replacement - we require full-word matching. # do text encoding conversion raw_string = to_unicode(raw_string) raw_string = self.nicks.nickreplace(raw_string, categories=("inputline", "channel"), include_account=True) return cmdhandler.cmdhandler(self, raw_string, callertype="object", session=session, **kwargs) def msg(self, text=None, from_obj=None, session=None, options=None, **kwargs): """ Emits something to a session attached to the object. Args: text (str or tuple, optional): The message to send. This is treated internally like any send-command, so its value can be a tuple if sending multiple arguments to the `text` oob command. from_obj (obj or list, optional): object that is sending. If given, at_msg_send will be called. This value will be passed on to the protocol. If iterable, will execute hook on all entities in it. session (Session or list, optional): Session or list of Sessions to relay data to, if any. If set, will force send to these sessions. If unset, who receives the message depends on the MULTISESSION_MODE. options (dict, optional): Message-specific option-value pairs. These will be applied at the protocol level. Kwargs: any (string or tuples): All kwarg keys not listed above will be treated as send-command names and their arguments (which can be a string or a tuple). Notes: `at_msg_receive` will be called on this Object. All extra kwargs will be passed on to the protocol. """ # try send hooks if from_obj: for obj in make_iter(from_obj): try: obj.at_msg_send(text=text, to_obj=self, **kwargs) except Exception: logger.log_trace() kwargs["options"] = options try: if not self.at_msg_receive(text=text, **kwargs): # if at_msg_receive returns false, we abort message to this object return except Exception: logger.log_trace() if text is not None: if not (isinstance(text, basestring) or isinstance(text, tuple)): # sanitize text before sending across the wire try: text = to_str(text, force_string=True) except Exception: text = repr(text) kwargs['text'] = text # relay to session(s) sessions = make_iter(session) if session else self.sessions.all() for session in sessions: session.data_out(**kwargs) def for_contents(self, func, exclude=None, **kwargs): """ Runs a function on every object contained within this one. Args: func (callable): Function to call. This must have the formal call sign func(obj, **kwargs), where obj is the object currently being processed and `**kwargs` are passed on from the call to `for_contents`. exclude (list, optional): A list of object not to call the function on. Kwargs: Keyword arguments will be passed to the function for all objects. """ contents = self.contents if exclude: exclude = make_iter(exclude) contents = [obj for obj in contents if obj not in exclude] for obj in contents: func(obj, **kwargs) def msg_contents(self, text=None, exclude=None, from_obj=None, mapping=None, **kwargs): """ Emits a message to all objects inside this object. Args: text (str or tuple): Message to send. If a tuple, this should be on the valid OOB outmessage form `(message, {kwargs})`, where kwargs are optional data passed to the `text` outputfunc. exclude (list, optional): A list of objects not to send to. from_obj (Object, optional): An object designated as the "sender" of the message. See `DefaultObject.msg()` for more info. mapping (dict, optional): A mapping of formatting keys `{"key":<object>, "key2":<object2>,...}. The keys must match `{key}` markers in the `text` if this is a string or in the internal `message` if `text` is a tuple. These formatting statements will be replaced by the return of `<object>.get_display_name(looker)` for every looker in contents that receives the message. This allows for every object to potentially get its own customized string. Kwargs: Keyword arguments will be passed on to `obj.msg()` for all messaged objects. Notes: The `mapping` argument is required if `message` contains {}-style format syntax. The keys of `mapping` should match named format tokens, and its values will have their `get_display_name()` function called for each object in the room before substitution. If an item in the mapping does not have `get_display_name()`, its string value will be used. Example: Say Char is a Character object and Npc is an NPC object: char.location.msg_contents( "{attacker} kicks {defender}", mapping=dict(attacker=char, defender=npc), exclude=(char, npc)) This will result in everyone in the room seeing 'Char kicks NPC' where everyone may potentially see different results for Char and Npc depending on the results of `char.get_display_name(looker)` and `npc.get_display_name(looker)` for each particular onlooker """ # we also accept an outcommand on the form (message, {kwargs}) is_outcmd = text and is_iter(text) inmessage = text[0] if is_outcmd else text outkwargs = text[1] if is_outcmd and len(text) > 1 else {} contents = self.contents if exclude: exclude = make_iter(exclude) contents = [obj for obj in contents if obj not in exclude] for obj in contents: if mapping: substitutions = {t: sub.get_display_name(obj) if hasattr(sub, 'get_display_name') else str(sub) for t, sub in mapping.items()} outmessage = inmessage.format(**substitutions) else: outmessage = inmessage obj.msg(text=(outmessage, outkwargs), from_obj=from_obj, **kwargs) def move_to(self, destination, quiet=False, emit_to_obj=None, use_destination=True, to_none=False, move_hooks=True, **kwargs): """ Moves this object to a new location. Args: destination (Object): Reference to the object to move to. This can also be an exit object, in which case the destination property is used as destination. quiet (bool): If true, turn off the calling of the emit hooks (announce_move_to/from etc) emit_to_obj (Object): object to receive error messages use_destination (bool): Default is for objects to use the "destination" property of destinations as the target to move to. Turning off this keyword allows objects to move "inside" exit objects. to_none (bool): Allow destination to be None. Note that no hooks are run when moving to a None location. If you want to run hooks, run them manually (and make sure they can manage None locations). move_hooks (bool): If False, turn off the calling of move-related hooks (at_before/after_move etc) with quiet=True, this is as quiet a move as can be done. Kwargs: Passed on to announce_move_to and announce_move_from hooks. Returns: result (bool): True/False depending on if there were problems with the move. This method may also return various error messages to the `emit_to_obj`. Notes: No access checks are done in this method, these should be handled before calling `move_to`. The `DefaultObject` hooks called (if `move_hooks=True`) are, in order: 1. `self.at_before_move(destination)` (if this returns False, move is aborted) 2. `source_location.at_object_leave(self, destination)` 3. `self.announce_move_from(destination)` 4. (move happens here) 5. `self.announce_move_to(source_location)` 6. `destination.at_object_receive(self, source_location)` 7. `self.at_after_move(source_location)` """ def logerr(string="", err=None): """Simple log helper method""" logger.log_trace() self.msg("%s%s" % (string, "" if err is None else " (%s)" % err)) return errtxt = _("Couldn't perform move ('%s'). Contact an admin.") if not emit_to_obj: emit_to_obj = self if not destination: if to_none: # immediately move to None. There can be no hooks called since # there is no destination to call them with. self.location = None return True emit_to_obj.msg(_("The destination doesn't exist.")) return False if destination.destination and use_destination: # traverse exits destination = destination.destination # Before the move, call eventual pre-commands. if move_hooks: try: if not self.at_before_move(destination): return False except Exception as err: logerr(errtxt % "at_before_move()", err) return False # Save the old location source_location = self.location # Call hook on source location if move_hooks and source_location: try: source_location.at_object_leave(self, destination) except Exception as err: logerr(errtxt % "at_object_leave()", err) return False if not quiet: # tell the old room we are leaving try: self.announce_move_from(destination, **kwargs) except Exception as err: logerr(errtxt % "at_announce_move()", err) return False # Perform move try: self.location = destination except Exception as err: logerr(errtxt % "location change", err) return False if not quiet: # Tell the new room we are there. try: self.announce_move_to(source_location, **kwargs) except Exception as err: logerr(errtxt % "announce_move_to()", err) return False if move_hooks: # Perform eventual extra commands on the receiving location # (the object has already arrived at this point) try: destination.at_object_receive(self, source_location) except Exception as err: logerr(errtxt % "at_object_receive()", err) return False # Execute eventual extra commands on this object after moving it # (usually calling 'look') if move_hooks: try: self.at_after_move(source_location) except Exception as err: logerr(errtxt % "at_after_move", err) return False return True def clear_exits(self): """ Destroys all of the exits and any exits pointing to this object as a destination. """ for out_exit in [exi for exi in ObjectDB.objects.get_contents(self) if exi.db_destination]: out_exit.delete() for in_exit in ObjectDB.objects.filter(db_destination=self): in_exit.delete() def clear_contents(self): """ Moves all objects (accounts/things) to their home location or to default home. """ # Gather up everything that thinks this is its location. default_home_id = int(settings.DEFAULT_HOME.lstrip("#")) try: default_home = ObjectDB.objects.get(id=default_home_id) if default_home.dbid == self.dbid: # we are deleting default home! default_home = None except Exception: string = _("Could not find default home '(#%d)'.") logger.log_err(string % default_home_id) default_home = None for obj in self.contents: home = obj.home # Obviously, we can't send it back to here. if not home or (home and home.dbid == self.dbid): obj.home = default_home home = default_home # If for some reason it's still None... if not home: string = "Missing default home, '%s(#%d)' " string += "now has a null location." obj.location = None obj.msg(_("Something went wrong! You are dumped into nowhere. Contact an admin.")) logger.log_err(string % (obj.name, obj.dbid)) return if obj.has_account: if home: string = "Your current location has ceased to exist," string += " moving you to %s(#%d)." obj.msg(_(string) % (home.name, home.dbid)) else: # Famous last words: The account should never see this. string = "This place should not exist ... contact an admin." obj.msg(_(string)) obj.move_to(home) def copy(self, new_key=None): """ Makes an identical copy of this object, identical except for a new dbref in the database. If you want to customize the copy by changing some settings, use ObjectDB.object.copy_object() directly. Args: new_key (string): New key/name of copied object. If new_key is not specified, the copy will be named <old_key>_copy by default. Returns: copy (Object): A copy of this object. """ def find_clone_key(): """ Append 01, 02 etc to obj.key. Checks next higher number in the same location, then adds the next number available returns the new clone name on the form keyXX """ key = self.key num = sum(1 for obj in self.location.contents if obj.key.startswith(key) and obj.key.lstrip(key).isdigit()) return "%s%03i" % (key, num) new_key = new_key or find_clone_key() return ObjectDB.objects.copy_object(self, new_key=new_key) def delete(self): """ Deletes this object. Before deletion, this method makes sure to move all contained objects to their respective home locations, as well as clean up all exits to/from the object. Returns: noerror (bool): Returns whether or not the delete completed successfully or not. """ global _ScriptDB if not _ScriptDB: from evennia.scripts.models import ScriptDB as _ScriptDB if not self.pk or not self.at_object_delete(): # This object has already been deleted, # or the pre-delete check return False return False # See if we need to kick the account off. for session in self.sessions.all(): session.msg(_("Your character %s has been destroyed.") % self.key) # no need to disconnect, Account just jumps to OOC mode. # sever the connection (important!) if self.account: for session in self.sessions.all(): self.account.unpuppet_object(session) self.account = None for script in _ScriptDB.objects.get_all_scripts_on_obj(self): script.stop() # Destroy any exits to and from this room, if any self.clear_exits() # Clear out any non-exit objects located within the object self.clear_contents() self.attributes.clear() self.nicks.clear() self.aliases.clear() self.location = None # this updates contents_cache for our location # Perform the deletion of the object super(DefaultObject, self).delete() return True def access(self, accessing_obj, access_type='read', default=False, no_superuser_bypass=False, **kwargs): """ Determines if another object has permission to access this object in whatever way. Args: accessing_obj (Object): Object trying to access this one. access_type (str, optional): Type of access sought. default (bool, optional): What to return if no lock of access_type was found. no_superuser_bypass (bool, optional): If `True`, don't skip lock check for superuser (be careful with this one). Kwargs: Passed on to the at_access hook along with the result of the access check. """ result = super(DefaultObject, self).access(accessing_obj, access_type=access_type, default=default, no_superuser_bypass=no_superuser_bypass) self.at_access(result, accessing_obj, access_type, **kwargs) return result # # Hook methods # def at_first_save(self): """ This is called by the typeclass system whenever an instance of this class is saved for the first time. It is a generic hook for calling the startup hooks for the various game entities. When overloading you generally don't overload this but overload the hooks called by this method. """ self.basetype_setup() self.at_object_creation() if hasattr(self, "_createdict"): # this will only be set if the utils.create function # was used to create the object. We want the create # call's kwargs to override the values set by hooks. cdict = self._createdict updates = [] if not cdict.get("key"): if not self.db_key: self.db_key = "#%i" % self.dbid updates.append("db_key") elif self.key != cdict.get("key"): updates.append("db_key") self.db_key = cdict["key"] if cdict.get("location") and self.location != cdict["location"]: self.db_location = cdict["location"] updates.append("db_location") if cdict.get("home") and self.home != cdict["home"]: self.home = cdict["home"] updates.append("db_home") if cdict.get("destination") and self.destination != cdict["destination"]: self.destination = cdict["destination"] updates.append("db_destination") if updates: self.save(update_fields=updates) if cdict.get("permissions"): self.permissions.batch_add(*cdict["permissions"]) if cdict.get("locks"): self.locks.add(cdict["locks"]) if cdict.get("aliases"): self.aliases.batch_add(*cdict["aliases"]) if cdict.get("location"): cdict["location"].at_object_receive(self, None) self.at_after_move(None) if cdict.get("tags"): # this should be a list of tags, tuples (key, category) or (key, category, data) self.tags.batch_add(*cdict["tags"]) if cdict.get("attributes"): # this should be tuples (key, val, ...) self.attributes.batch_add(*cdict["attributes"]) if cdict.get("nattributes"): # this should be a dict of nattrname:value for key, value in cdict["nattributes"]: self.nattributes.add(key, value) del self._createdict self.basetype_posthook_setup() # hooks called by the game engine # def basetype_setup(self): """ This sets up the default properties of an Object, just before the more general at_object_creation. You normally don't need to change this unless you change some fundamental things like names of permission groups. """ # the default security setup fallback for a generic # object. Overload in child for a custom setup. Also creation # commands may set this (create an item and you should be its # controller, for example) self.locks.add(";".join([ "control:perm(Developer)", # edit locks/permissions, delete "examine:perm(Builder)", # examine properties "view:all()", # look at object (visibility) "edit:perm(Admin)", # edit properties/attributes "delete:perm(Admin)", # delete object "get:all()", # pick up object "call:true()", # allow to call commands on this object "tell:perm(Admin)", # allow emits to this object "puppet:pperm(Developer)"])) # lock down puppeting only to staff by default def basetype_posthook_setup(self): """ Called once, after basetype_setup and at_object_creation. This should generally not be overloaded unless you are redefining how a room/exit/object works. It allows for basetype-like setup after the object is created. An example of this is EXITs, who need to know keys, aliases, locks etc to set up their exit-cmdsets. """ pass def at_object_creation(self): """ Called once, when this object is first created. This is the normal hook to overload for most object types. """ pass def at_object_delete(self): """ Called just before the database object is permanently delete()d from the database. If this method returns False, deletion is aborted. """ return True def at_init(self): """ This is always called whenever this object is initiated -- that is, whenever it its typeclass is cached from memory. This happens on-demand first time the object is used or activated in some way after being created but also after each server restart or reload. """ pass def at_cmdset_get(self, **kwargs): """ Called just before cmdsets on this object are requested by the command handler. If changes need to be done on the fly to the cmdset before passing them on to the cmdhandler, this is the place to do it. This is called also if the object currently have no cmdsets. Kwargs: caller (Session, Object or Account): The caller requesting this cmdset. """ pass def at_pre_puppet(self, account, session=None, **kwargs): """ Called just before an Account connects to this object to puppet it. Args: account (Account): This is the connecting account. session (Session): Session controlling the connection. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). """ pass def at_post_puppet(self, **kwargs): """ Called just after puppeting has been completed and all Account<->Object links have been established. Args: **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). Note: You can use `self.account` and `self.sessions.get()` to get account and sessions at this point; the last entry in the list from `self.sessions.get()` is the latest Session puppeting this Object. """ self.account.db._last_puppet = self def at_pre_unpuppet(self, **kwargs): """ Called just before beginning to un-connect a puppeting from this Account. Args: **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). Note: You can use `self.account` and `self.sessions.get()` to get account and sessions at this point; the last entry in the list from `self.sessions.get()` is the latest Session puppeting this Object. """ pass def at_post_unpuppet(self, account, session=None, **kwargs): """ Called just after the Account successfully disconnected from this object, severing all connections. Args: account (Account): The account object that just disconnected from this object. session (Session): Session id controlling the connection that just disconnected. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). """ pass def at_server_reload(self): """ This hook is called whenever the server is shutting down for restart/reboot. If you want to, for example, save non-persistent properties across a restart, this is the place to do it. """ pass def at_server_shutdown(self): """ This hook is called whenever the server is shutting down fully (i.e. not for a restart). """ pass def at_access(self, result, accessing_obj, access_type, **kwargs): """ This is called with the result of an access call, along with any kwargs used for that call. The return of this method does not affect the result of the lock check. It can be used e.g. to customize error messages in a central location or other effects based on the access result. Args: result (bool): The outcome of the access call. accessing_obj (Object or Account): The entity trying to gain access. access_type (str): The type of access that was requested. Kwargs: Not used by default, added for possible expandability in a game. """ pass # hooks called when moving the object def at_before_move(self, destination, **kwargs): """ Called just before starting to move this object to destination. Args: destination (Object): The object we are moving to **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). Returns: shouldmove (bool): If we should move or not. Notes: If this method returns False/None, the move is cancelled before it is even started. """ # return has_perm(self, destination, "can_move") return True def announce_move_from(self, destination, msg=None, mapping=None, **kwargs): """ Called if the move is to be announced. This is called while we are still standing in the old location. Args: destination (Object): The place we are going to. msg (str, optional): a replacement message. mapping (dict, optional): additional mapping objects. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). You can override this method and call its parent with a message to simply change the default message. In the string, you can use the following as mappings (between braces): object: the object which is moving. exit: the exit from which the object is moving (if found). origin: the location of the object before the move. destination: the location of the object after moving. """ if not self.location: return if msg: string = msg else: string = "{object} is leaving {origin}, heading for {destination}." location = self.location exits = [o for o in location.contents if o.location is location and o.destination is destination] if not mapping: mapping = {} mapping.update({ "object": self, "exit": exits[0] if exits else "somewhere", "origin": location or "nowhere", "destination": destination or "nowhere", }) location.msg_contents(string, exclude=(self, ), mapping=mapping) def announce_move_to(self, source_location, msg=None, mapping=None, **kwargs): """ Called after the move if the move was not quiet. At this point we are standing in the new location. Args: source_location (Object): The place we came from msg (str, optional): the replacement message if location. mapping (dict, optional): additional mapping objects. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). Notes: You can override this method and call its parent with a message to simply change the default message. In the string, you can use the following as mappings (between braces): object: the object which is moving. exit: the exit from which the object is moving (if found). origin: the location of the object before the move. destination: the location of the object after moving. """ if not source_location and self.location.has_account: # This was created from nowhere and added to an account's # inventory; it's probably the result of a create command. string = "You now have %s in your possession." % self.get_display_name(self.location) self.location.msg(string) return if source_location: if msg: string = msg else: string = "{object} arrives to {destination} from {origin}." else: string = "{object} arrives to {destination}." origin = source_location destination = self.location exits = [] if origin: exits = [o for o in destination.contents if o.location is destination and o.destination is origin] if not mapping: mapping = {} mapping.update({ "object": self, "exit": exits[0] if exits else "somewhere", "origin": origin or "nowhere", "destination": destination or "nowhere", }) destination.msg_contents(string, exclude=(self, ), mapping=mapping) def at_after_move(self, source_location, **kwargs): """ Called after move has completed, regardless of quiet mode or not. Allows changes to the object due to the location it is now in. Args: source_location (Object): Wwhere we came from. This may be `None`. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). """ pass def at_object_leave(self, moved_obj, target_location, **kwargs): """ Called just before an object leaves from inside this object Args: moved_obj (Object): The object leaving target_location (Object): Where `moved_obj` is going. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). """ pass def at_object_receive(self, moved_obj, source_location, **kwargs): """ Called after an object has been moved into this object. Args: moved_obj (Object): The object moved into this one source_location (Object): Where `moved_object` came from. Note that this could be `None`. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). """ pass def at_traverse(self, traversing_object, target_location, **kwargs): """ This hook is responsible for handling the actual traversal, normally by calling `traversing_object.move_to(target_location)`. It is normally only implemented by Exit objects. If it returns False (usually because `move_to` returned False), `at_after_traverse` below should not be called and instead `at_failed_traverse` should be called. Args: traversing_object (Object): Object traversing us. target_location (Object): Where target is going. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). """ pass def at_after_traverse(self, traversing_object, source_location, **kwargs): """ Called just after an object successfully used this object to traverse to another object (i.e. this object is a type of Exit) Args: traversing_object (Object): The object traversing us. source_location (Object): Where `traversing_object` came from. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). Notes: The target location should normally be available as `self.destination`. """ pass def at_failed_traverse(self, traversing_object, **kwargs): """ This is called if an object fails to traverse this object for some reason. Args: traversing_object (Object): The object that failed traversing us. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). Notes: Using the default exits, this hook will not be called if an Attribute `err_traverse` is defined - this will in that case be read for an error string instead. """ pass def at_msg_receive(self, text=None, from_obj=None, **kwargs): """ This hook is called whenever someone sends a message to this object using the `msg` method. Note that from_obj may be None if the sender did not include itself as an argument to the obj.msg() call - so you have to check for this. . Consider this a pre-processing method before msg is passed on to the user session. If this method returns False, the msg will not be passed on. Args: text (str, optional): The message received. from_obj (any, optional): The object sending the message. Kwargs: This includes any keywords sent to the `msg` method. Returns: receive (bool): If this message should be received. Notes: If this method returns False, the `msg` operation will abort without sending the message. """ return True def at_msg_send(self, text=None, to_obj=None, **kwargs): """ This is a hook that is called when *this* object sends a message to another object with `obj.msg(text, to_obj=obj)`. Args: text (str, optional): Text to send. to_obj (any, optional): The object to send to. Kwargs: Keywords passed from msg() Notes: Since this method is executed by `from_obj`, if no `from_obj` was passed to `DefaultCharacter.msg` this hook will never get called. """ pass # hooks called by the default cmdset. def return_appearance(self, looker, **kwargs): """ This formats a description. It is the hook a 'look' command should call. Args: looker (Object): Object doing the looking. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). """ if not looker: return "" # get and identify all objects visible = (con for con in self.contents if con != looker and con.access(looker, "view")) exits, users, things = [], [], defaultdict(list) for con in visible: key = con.get_display_name(looker) if con.destination: exits.append(key) elif con.has_account: users.append("|c%s|n" % key) else: # things can be pluralized things[key].append(con) # get description, build string string = "|c%s|n\n" % self.get_display_name(looker) desc = self.db.desc if desc: string += "%s" % desc if exits: string += "\n|wExits:|n " + list_to_string(exits) if users or things: # handle pluralization of things (never pluralize users) thing_strings = [] for key, itemlist in sorted(things.iteritems()): nitem = len(itemlist) if nitem == 1: key, _ = itemlist[0].get_numbered_name(nitem, looker, key=key) else: key = [item.get_numbered_name(nitem, looker, key=key)[1] for item in itemlist][0] thing_strings.append(key) string += "\n|wYou see:|n " + list_to_string(users + thing_strings) return string def at_look(self, target, **kwargs): """ Called when this object performs a look. It allows to customize just what this means. It will not itself send any data. Args: target (Object): The target being looked at. This is commonly an object or the current location. It will be checked for the "view" type access. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). Returns: lookstring (str): A ready-processed look string potentially ready to return to the looker. """ if not target.access(self, "view"): try: return "Could not view '%s'." % target.get_display_name(self) except AttributeError: return "Could not view '%s'." % target.key description = target.return_appearance(self) # the target's at_desc() method. # this must be the last reference to target so it may delete itself when acted on. target.at_desc(looker=self) return description def at_desc(self, looker=None, **kwargs): """ This is called whenever someone looks at this object. Args: looker (Object, optional): The object requesting the description. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). """ pass def at_before_get(self, getter, **kwargs): """ Called by the default `get` command before this object has been picked up. Args: getter (Object): The object about to get this object. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). Returns: shouldget (bool): If the object should be gotten or not. Notes: If this method returns False/None, the getting is cancelled before it is even started. """ return True def at_get(self, getter, **kwargs): """ Called by the default `get` command when this object has been picked up. Args: getter (Object): The object getting this object. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). Notes: This hook cannot stop the pickup from happening. Use permissions or the at_before_get() hook for that. """ pass def at_before_give(self, giver, getter, **kwargs): """ Called by the default `give` command before this object has been given. Args: giver (Object): The object about to give this object. getter (Object): The object about to get this object. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). Returns: shouldgive (bool): If the object should be given or not. Notes: If this method returns False/None, the giving is cancelled before it is even started. """ return True def at_give(self, giver, getter, **kwargs): """ Called by the default `give` command when this object has been given. Args: giver (Object): The object giving this object. getter (Object): The object getting this object. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). Notes: This hook cannot stop the give from happening. Use permissions or the at_before_give() hook for that. """ pass def at_before_drop(self, dropper, **kwargs): """ Called by the default `drop` command before this object has been dropped. Args: dropper (Object): The object which will drop this object. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). Returns: shoulddrop (bool): If the object should be dropped or not. Notes: If this method returns False/None, the dropping is cancelled before it is even started. """ return True def at_drop(self, dropper, **kwargs): """ Called by the default `drop` command when this object has been dropped. Args: dropper (Object): The object which just dropped this object. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). Notes: This hook cannot stop the drop from happening. Use permissions or the at_before_drop() hook for that. """ pass def at_before_say(self, message, **kwargs): """ Before the object says something. This hook is by default used by the 'say' and 'whisper' commands as used by this command it is called before the text is said/whispered and can be used to customize the outgoing text from the object. Returning `None` aborts the command. Args: message (str): The suggested say/whisper text spoken by self. Kwargs: whisper (bool): If True, this is a whisper rather than a say. This is sent by the whisper command by default. Other verbal commands could use this hook in similar ways. receivers (Object or iterable): If set, this is the target or targets for the say/whisper. Returns: message (str): The (possibly modified) text to be spoken. """ return message def at_say(self, message, msg_self=None, msg_location=None, receivers=None, msg_receivers=None, **kwargs): """ Display the actual say (or whisper) of self. This hook should display the actual say/whisper of the object in its location. It should both alert the object (self) and its location that some text is spoken. The overriding of messages or `mapping` allows for simple customization of the hook without re-writing it completely. Args: message (str): The message to convey. msg_self (bool or str, optional): If boolean True, echo `message` to self. If a string, return that message. If False or unset, don't echo to self. msg_location (str, optional): The message to echo to self's location. receivers (Object or iterable, optional): An eventual receiver or receivers of the message (by default only used by whispers). msg_receivers(str): Specific message to pass to the receiver(s). This will parsed with the {receiver} placeholder replaced with the given receiver. Kwargs: whisper (bool): If this is a whisper rather than a say. Kwargs can be used by other verbal commands in a similar way. mapping (dict): Pass an additional mapping to the message. Notes: Messages can contain {} markers. These are substituted against the values passed in the `mapping` argument. msg_self = 'You say: "{speech}"' msg_location = '{object} says: "{speech}"' msg_receivers = '{object} whispers: "{speech}"' Supported markers by default: {self}: text to self-reference with (default 'You') {speech}: the text spoken/whispered by self. {object}: the object speaking. {receiver}: replaced with a single receiver only for strings meant for a specific receiver (otherwise 'None'). {all_receivers}: comma-separated list of all receivers, if more than one, otherwise same as receiver {location}: the location where object is. """ msg_type = 'say' if kwargs.get("whisper", False): # whisper mode msg_type = 'whisper' msg_self = '{self} whisper to {all_receivers}, "{speech}"' if msg_self is True else msg_self msg_receivers = '{object} whispers: "{speech}"' msg_receivers = msg_receivers or '{object} whispers: "{speech}"' msg_location = None else: msg_self = '{self} say, "{speech}"' if msg_self is True else msg_self msg_location = msg_location or '{object} says, "{speech}"' msg_receivers = msg_receivers or message custom_mapping = kwargs.get('mapping', {}) receivers = make_iter(receivers) if receivers else None location = self.location if msg_self: self_mapping = {"self": "You", "object": self.get_display_name(self), "location": location.get_display_name(self) if location else None, "receiver": None, "all_receivers": ", ".join( recv.get_display_name(self) for recv in receivers) if receivers else None, "speech": message} self_mapping.update(custom_mapping) self.msg(text=(msg_self.format(**self_mapping), {"type": msg_type}), from_obj=self) if receivers and msg_receivers: receiver_mapping = {"self": "You", "object": None, "location": None, "receiver": None, "all_receivers": None, "speech": message} for receiver in make_iter(receivers): individual_mapping = {"object": self.get_display_name(receiver), "location": location.get_display_name(receiver), "receiver": receiver.get_display_name(receiver), "all_receivers": ", ".join( recv.get_display_name(recv) for recv in receivers) if receivers else None} receiver_mapping.update(individual_mapping) receiver_mapping.update(custom_mapping) receiver.msg(text=(msg_receivers.format(**receiver_mapping), {"type": msg_type}), from_obj=self) if self.location and msg_location: location_mapping = {"self": "You", "object": self, "location": location, "all_receivers": ", ".join(str(recv) for recv in receivers) if receivers else None, "receiver": None, "speech": message} location_mapping.update(custom_mapping) exclude = [] if msg_self: exclude.append(self) if receivers: exclude.extend(receivers) self.location.msg_contents(text=(msg_location, {"type": msg_type}), from_obj=self, exclude=exclude, mapping=location_mapping) # # Base Character object # class DefaultCharacter(DefaultObject): """ This implements an Object puppeted by a Session - that is, a character avatar controlled by an account. """ def basetype_setup(self): """ Setup character-specific security. You should normally not need to overload this, but if you do, make sure to reproduce at least the two last commands in this method (unless you want to fundamentally change how a Character object works). """ super(DefaultCharacter, self).basetype_setup() self.locks.add(";".join(["get:false()", # noone can pick up the character "call:false()"])) # no commands can be called on character from outside # add the default cmdset self.cmdset.add_default(settings.CMDSET_CHARACTER, permanent=True) def at_after_move(self, source_location, **kwargs): """ We make sure to look around after a move. """ if self.location.access(self, "view"): self.msg(self.at_look(self.location)) def at_pre_puppet(self, account, session=None, **kwargs): """ Return the character from storage in None location in `at_post_unpuppet`. Args: account (Account): This is the connecting account. session (Session): Session controlling the connection. """ if self.location is None: # Make sure character's location is never None before being puppeted. # Return to last location (or home, which should always exist), self.location = self.db.prelogout_location if self.db.prelogout_location else self.home self.location.at_object_receive(self, None) # and trigger the location's reception hook. if self.location: # If the character is verified to be somewhere, self.db.prelogout_location = self.location # save location again to be sure. else: account.msg("|r%s has no location and no home is set.|n" % self, session=session) # Note to set home. def at_post_puppet(self, **kwargs): """ Called just after puppeting has been completed and all Account<->Object links have been established. Args: **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). Note: You can use `self.account` and `self.sessions.get()` to get account and sessions at this point; the last entry in the list from `self.sessions.get()` is the latest Session puppeting this Object. """ # NOTE: commenting out extraneous info #self.msg("\nYou become |c%s|n.\n" % self.name) self.msg((self.at_look(self.location), {'type':'look'}), options = None) def message(obj, from_obj): obj.msg("%s has entered the game." % self.get_display_name(obj), from_obj=from_obj) self.location.for_contents(message, exclude=[self], from_obj=self) def at_post_unpuppet(self, account, session=None, **kwargs): """ We stove away the character when the account goes ooc/logs off, otherwise the character object will remain in the room also after the account logged off ("headless", so to say). Args: account (Account): The account object that just disconnected from this object. session (Session): Session controlling the connection that just disconnected. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). """ if not self.sessions.count(): # only remove this char from grid if no sessions control it anymore. if self.location: def message(obj, from_obj): obj.msg("%s has left the game." % self.get_display_name(obj), from_obj=from_obj) self.location.for_contents(message, exclude=[self], from_obj=self) self.db.prelogout_location = self.location self.location = None @property def idle_time(self): """ Returns the idle time of the least idle session in seconds. If no sessions are connected it returns nothing. """ idle = [session.cmd_last_visible for session in self.sessions.all()] if idle: return time.time() - float(max(idle)) return None @property def connection_time(self): """ Returns the maximum connection time of all connected sessions in seconds. Returns nothing if there are no sessions. """ conn = [session.conn_time for session in self.sessions.all()] if conn: return time.time() - float(min(conn)) return None # # Base Room object class DefaultRoom(DefaultObject): """ This is the base room object. It's just like any Object except its location is always `None`. """ def basetype_setup(self): """ Simple room setup setting locks to make sure the room cannot be picked up. """ super(DefaultRoom, self).basetype_setup() self.locks.add(";".join(["get:false()", "puppet:false()"])) # would be weird to puppet a room ... self.location = None # # Default Exit command, used by the base exit object # class ExitCommand(command.Command): """ This is a command that simply cause the caller to traverse the object it is attached to. """ obj = None def func(self): """ Default exit traverse if no syscommand is defined. """ if self.obj.access(self.caller, 'traverse'): # we may traverse the exit. self.obj.at_traverse(self.caller, self.obj.destination) else: # exit is locked if self.obj.db.err_traverse: # if exit has a better error message, let's use it. self.caller.msg(self.obj.db.err_traverse) else: # No shorthand error message. Call hook. self.obj.at_failed_traverse(self.caller) def get_extra_info(self, caller, **kwargs): """ Shows a bit of information on where the exit leads. Args: caller (Object): The object (usually a character) that entered an ambiguous command. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). Returns: A string with identifying information to disambiguate the command, conventionally with a preceding space. """ if self.obj.destination: return " (exit to %s)" % self.obj.destination.get_display_name(caller) else: return " (%s)" % self.obj.get_display_name(caller) # # Base Exit object class DefaultExit(DefaultObject): """ This is the base exit object - it connects a location to another. This is done by the exit assigning a "command" on itself with the same name as the exit object (to do this we need to remember to re-create the command when the object is cached since it must be created dynamically depending on what the exit is called). This command (which has a high priority) will thus allow us to traverse exits simply by giving the exit-object's name on its own. """ exit_command = ExitCommand priority = 101 # Helper classes and methods to implement the Exit. These need not # be overloaded unless one want to change the foundation for how # Exits work. See the end of the class for hook methods to overload. def create_exit_cmdset(self, exidbobj): """ Helper function for creating an exit command set + command. The command of this cmdset has the same name as the Exit object and allows the exit to react when the account enter the exit's name, triggering the movement between rooms. Args: exidbobj (Object): The DefaultExit object to base the command on. """ # create an exit command. We give the properties here, # to always trigger metaclass preparations cmd = self.exit_command(key=exidbobj.db_key.strip().lower(), aliases=exidbobj.aliases.all(), locks=str(exidbobj.locks), auto_help=False, destination=exidbobj.db_destination, arg_regex=r"^$", is_exit=True, obj=exidbobj) # create a cmdset exit_cmdset = cmdset.CmdSet(None) exit_cmdset.key = 'ExitCmdSet' exit_cmdset.priority = self.priority exit_cmdset.duplicates = True # add command to cmdset exit_cmdset.add(cmd) return exit_cmdset # Command hooks def basetype_setup(self): """ Setup exit-security You should normally not need to overload this - if you do make sure you include all the functionality in this method. """ super(DefaultExit, self).basetype_setup() # setting default locks (overload these in at_object_creation() self.locks.add(";".join(["puppet:false()", # would be weird to puppet an exit ... "traverse:all()", # who can pass through exit by default "get:false()"])) # noone can pick up the exit # an exit should have a destination (this is replaced at creation time) if self.location: self.destination = self.location def at_cmdset_get(self, **kwargs): """ Called just before cmdsets on this object are requested by the command handler. If changes need to be done on the fly to the cmdset before passing them on to the cmdhandler, this is the place to do it. This is called also if the object currently has no cmdsets. Kwargs: force_init (bool): If `True`, force a re-build of the cmdset (for example to update aliases). """ if "force_init" in kwargs or not self.cmdset.has_cmdset("ExitCmdSet", must_be_default=True): # we are resetting, or no exit-cmdset was set. Create one dynamically. self.cmdset.add_default(self.create_exit_cmdset(self), permanent=False) def at_init(self): """ This is called when this objects is re-loaded from cache. When that happens, we make sure to remove any old ExitCmdSet cmdset (this most commonly occurs when renaming an existing exit) """ self.cmdset.remove_default() def at_traverse(self, traversing_object, target_location, **kwargs): """ This implements the actual traversal. The traverse lock has already been checked (in the Exit command) at this point. Args: traversing_object (Object): Object traversing us. target_location (Object): Where target is going. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). """ source_location = traversing_object.location if traversing_object.move_to(target_location): self.at_after_traverse(traversing_object, source_location) else: if self.db.err_traverse: # if exit has a better error message, let's use it. self.caller.msg(self.db.err_traverse) else: # No shorthand error message. Call hook. self.at_failed_traverse(traversing_object) def at_failed_traverse(self, traversing_object, **kwargs): """ Overloads the default hook to implement a simple default error message. Args: traversing_object (Object): The object that failed traversing us. **kwargs (dict): Arbitrary, optional arguments for users overriding the call (unused by default). Notes: Using the default exits, this hook will not be called if an Attribute `err_traverse` is defined - this will in that case be read for an error string instead. """ traversing_object.msg("You cannot go there.")
from django.contrib import admin from .models import Preference, Profile, Allergy, Goal admin.site.register(Preference) admin.site.register(Profile) admin.site.register(Allergy) admin.site.register(Goal)
from rest_framework import serializers import markdown2 from .models import Content from omaralbeik import server_variables as sv class ContentSerializer(serializers.ModelSerializer): tags = serializers.SerializerMethodField() html_text = serializers.SerializerMethodField() website_url = serializers.SerializerMethodField() meta = serializers.SerializerMethodField() class Meta: model = Content fields = ( "id", "title", "slug", "image_url", "summary", "text", "html_text", "website_url", "tags", "meta", ) # return content's web URL. def get_website_url(self, content): return "{}/{}".format(sv.CLIENT_PROD_URL, content.slug) # return content's text as HTML def get_html_text(self, content): return markdown2.markdown( content.text, extras=["target-blank-links", "fenced-code-blocks"] ) # return content's tags. def get_tags(self, content): return content.tags.all().values("name", "slug") # return content's meta fields. def get_meta(self, content): return { "title": content.title, "description": content.summary, "keywords": ", ".join([tag.name for tag in content.tags.all()]), "canonical": self.get_website_url(content), }
#!/usr/bin/env python # coding: utf-8 # # GenCode Explore # # Explore the human RNA sequences from GenCode. # # Assume user downloaded files from GenCode 38 [FTP](http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_38/) # to a subdirectory called data. # # Move the GenCodeLoader class to its own python module. Compare to 105. # In[1]: import time def show_time(): t = time.time() s = time.strftime('%Y-%m-%d %H:%M:%S %Z', time.localtime(t)) print(s) show_time() # In[2]: import numpy as np import pandas as pd import sys try: from google.colab import drive IN_COLAB = True print("On Google CoLab, mount cloud-local file, get our code from GitHub.") PATH='/content/drive/' #drive.mount(PATH,force_remount=True) # hardly ever need this drive.mount(PATH) # Google will require login credentials DATAPATH=PATH+'My Drive/data/' # must end in "/" import requests s = requests.get('https://raw.githubusercontent.com/ShepherdCode/Soars2021/master/SimTools/RNA_describe.py') with open('RNA_describe.py', 'w') as f: f.write(s.text) # writes to cloud local, delete the file later? from RNA_describe import ORF_counter from RNA_describe import assert_imported_RNA_describe from GenCodeTools import GenCodeLoader except: print("CoLab not working. On my PC, use relative paths.") IN_COLAB = False DATAPATH='../data/' # must end in "/" sys.path.append("..") # append parent dir in order to use sibling dirs from SimTools.RNA_describe import ORF_counter from SimTools.RNA_describe import assert_imported_RNA_describe from SimTools.GenCodeTools import GenCodeLoader MODELPATH="BestModel" # saved on cloud instance and lost after logout #MODELPATH=DATAPATH+MODELPATH # saved on Google Drive but requires login if not assert_imported_RNA_describe(): print("ERROR: Cannot use RNA_describe.") # In[3]: PC_FILENAME='gencode.v38.pc_transcripts.fa.gz' NC_FILENAME='gencode.v38.lncRNA_transcripts.fa.gz' # ## Load the GenCode data. # Warning: GenCode has # over 100K protein-coding RNA (mRNA) # and almost 50K non-coding RNA (lncRNA). # In[4]: # Full GenCode ver 38 human is 106143 pc + 48752 nc and loads in 7 sec. # Expect fewer transcripts if special filtering is used. PC_FULLPATH=DATAPATH+PC_FILENAME NC_FULLPATH=DATAPATH+NC_FILENAME loader=GenCodeLoader() show_time() loader.set_label(1) loader.set_check_list(None) loader.set_check_utr(True) pcdf=loader.load_file(PC_FULLPATH) print("PC seqs loaded:",len(pcdf)) show_time() loader.set_label(0) loader.set_check_list(None) loader.set_check_utr(False) ncdf=loader.load_file(NC_FULLPATH) print("NC seqs loaded:",len(ncdf)) show_time() # In[5]: print("Sorting PC...") pcdf.sort_values('seqlen', ascending=True, inplace=True) print("Sorting NC...") ncdf.sort_values('seqlen', ascending=True, inplace=True) # In[6]: ncdf # ## Look for short ORFs # In[7]: def show_short(df,too_short): oc = ORF_counter() count=len(df) shorties=0 for pos in range(0,count): sequence=df.iloc[pos]['sequence'] seqlen=df.iloc[pos]['seqlen'] oc.set_sequence(sequence) orflen=oc.get_max_orf_len() seqlen=df.iloc[pos]['seqlen'] if seqlen>200 and orflen<=TOO_SHORT: seqid=df.iloc[pos]['tid'] #print("%s len=%d orf=%d"%(seqid,seqlen,orflen)) shorties += 1 if pos%10000==0: print("Up to position %d, we have %d shorter than %d"%(pos,shorties,too_short)) print("After all %d, we have %d shorter than %d"%(count,shorties,too_short)) TOO_SHORT=60 show_short(pcdf,TOO_SHORT) # In[8]: show_short(ncdf,TOO_SHORT) # ## Conclusion # With TOO_SHORT=30 # NON-CODING # We have 589 shorter than 30, with most of them (504) shorter than 10000 # # CODING # Using check_utr and check_list on pcdf, we have 0 shorter than 30. # Using check_utr only, we have 0 shorter than 30. #
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # coding: utf-8 """Contrib neural network module.""" from . import nn from . import rnn from . import data
from __future__ import absolute_import import numpy as np from scipy.spatial import Delaunay from spektral.utils import label_to_one_hot, numpy_to_nx RETURN_TYPES = {'numpy', 'networkx'} MAX_K = 7 # Maximum number of nodes in a graph def generate_data(return_type='networkx', classes=0, n_samples_in_class=1000, n_nodes=7, support_low=0., support_high=10., drift_amount=1.0, one_hot_labels=True, support=None, seed=None): """ Generates a dataset of Delaunay triangulations as described by [Zambon et al. (2017)](https://arxiv.org/abs/1706.06941). Note that this function is basically deprecated and will change soon. :param return_type: `'networkx'` or `'numpy'`, data format to return; :param classes: indices of the classes to load (integer, or list of integers between 0 and 20); :param n_samples_in_class: number of generated samples per class; :param n_nodes: number of nodes in a graph; :param support_low: lower bound of the uniform distribution from which the support is generated; :param support_high: upper bound of the uniform distribution from which the support is generated; :param drift_amount: coefficient to control the amount of change between classes; :param one_hot_labels: one-hot encode dataset labels; :param support: custom support to use instead of generating it randomly; :param seed: random numpy seed; :return: if `return_type='networkx'`, a list of graphs in Networkx format, and an array containing labels; if `return_type='numpy'`, the adjacency matrix, node features, and an array containing labels. """ if return_type not in RETURN_TYPES: raise ValueError('Possible return_type: {}'.format(RETURN_TYPES)) if isinstance(classes, int): classes = [classes] if max(classes) > 20 or min(classes) < 0: raise ValueError('Class indices must be between 0 and 20') r_classes = list(reversed(classes)) if r_classes[-1] == 0: r_classes.insert(0, r_classes.pop(-1)) # Support points np.random.seed(seed) if support is None: support = np.random.uniform(support_low, support_high, (1, n_nodes, 2)) else: try: assert support.shape == (1, n_nodes, 2) except AssertionError: print('The given support doesn\'t have shape (1, n_nodes, 2) as' 'expected. Attempting to reshape.') support = support.reshape(1, n_nodes, 2) # Compute node features node_features = [] # Other node features for idx, i in enumerate(r_classes): if i == 0: concept_0 = np.repeat(support, n_samples_in_class, 0) noise_0 = np.random.normal(0, 1, (n_samples_in_class, n_nodes, 2)) class_0 = concept_0 + noise_0 node_features.append(class_0) else: radius = 10. * ((2./3.) ** (drift_amount * (i - 1))) phase = np.random.uniform(0, 2 * np.pi, (n_nodes, 1)) perturb_i_x = radius * np.cos(phase) perturb_i_y = radius * np.sin(phase) perturb_i = np.concatenate((perturb_i_x, perturb_i_y), axis=-1) support_i = support + perturb_i concept_i = np.repeat(support_i, n_samples_in_class, 0) noise_i = np.random.normal(0, 1, (n_samples_in_class, n_nodes, 2)) class_i = concept_i + noise_i node_features.append(class_i) node_features = np.array(node_features).reshape((-1, n_nodes, 2)) # Compute adjacency matrices adjacency = [] for nf in node_features: adj = compute_adj(nf) adjacency.append(adj) adjacency = np.array(adjacency) # Compute labels labels = np.repeat(classes, n_samples_in_class) if one_hot_labels: labels = label_to_one_hot(labels, labels=classes) if return_type is 'numpy': return adjacency, node_features, labels elif return_type is 'networkx': graphs = numpy_to_nx(adjacency, node_features=node_features, nf_name='coords') return graphs, labels else: raise NotImplementedError def compute_adj(x): """ Computes the Delaunay triangulation of the given points :param x: array of shape (num_nodes, 2) :return: the computed adjacency matrix """ tri = Delaunay(x) edges_explicit = np.concatenate((tri.vertices[:, :2], tri.vertices[:, 1:], tri.vertices[:, ::2]), axis=0) adj = np.zeros((x.shape[0], x.shape[0])) adj[edges_explicit[:, 0], edges_explicit[:, 1]] = 1. return np.clip(adj + adj.T, 0, 1)
# # Copyright (c) 2009 Testrepository Contributors # # Licensed under either the Apache License, Version 2.0 or the BSD 3-clause # license at the users choice. A copy of both licenses are available in the # project source as Apache-2.0 and BSD. You may not use this file except in # compliance with one of these two licences. # # Unless required by applicable law or agreed to in writing, software # distributed under these licenses is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # license you chose for the specific language governing permissions and # limitations under that license. """A command line UI for testrepository.""" import io import os import signal import subunit import sys from extras import try_import v2_avail = try_import('subunit.ByteStreamToStreamResult') import testtools from testtools import ExtendedToStreamDecorator, StreamToExtendedDecorator from testtools.compat import unicode_output_stream, _u from testrepository import ui from testrepository.commands import get_command_parser class CLITestResult(ui.BaseUITestResult): """A TestResult for the CLI.""" def __init__(self, ui, get_id, stream, previous_run=None, filter_tags=None): """Construct a CLITestResult writing to stream. :param filter_tags: Tags that should be used to filter tests out. When a tag in this set is present on a test outcome, the test is not counted towards the test run count. If the test errors, then it is still counted and the error is still shown. """ super(CLITestResult, self).__init__(ui, get_id, previous_run) self.stream = unicode_output_stream(stream) self.sep1 = _u('=' * 70 + '\n') self.sep2 = _u('-' * 70 + '\n') self.filter_tags = filter_tags or frozenset() self.filterable_states = set(['success', 'uxsuccess', 'xfail', 'skip']) def _format_error(self, label, test, error_text, test_tags=None): test_tags = test_tags or () tags = _u(' ').join(test_tags) if tags: tags = _u('tags: %s\n') % tags return _u('').join([ self.sep1, _u('%s: %s\n') % (label, test.id()), tags, self.sep2, error_text, ]) def status(self, test_id=None, test_status=None, test_tags=None, runnable=True, file_name=None, file_bytes=None, eof=False, mime_type=None, route_code=None, timestamp=None): super(CLITestResult, self).status(test_id=test_id, test_status=test_status, test_tags=test_tags, runnable=runnable, file_name=file_name, file_bytes=file_bytes, eof=eof, mime_type=mime_type, route_code=route_code, timestamp=timestamp) if test_status == 'fail': self.stream.write( self._format_error(_u('FAIL'), *(self._summary.errors[-1]), test_tags=test_tags)) if test_status not in self.filterable_states: return if test_tags and test_tags.intersection(self.filter_tags): self._summary.testsRun -= 1 class UI(ui.AbstractUI): """A command line user interface.""" def __init__(self, argv, stdin, stdout, stderr): """Create a command line UI. :param argv: Arguments from the process invocation. :param stdin: The stream for stdin. :param stdout: The stream for stdout. :param stderr: The stream for stderr. """ self._argv = argv self._stdin = stdin self._stdout = stdout self._stderr = stderr self._binary_stdout = None def _iter_streams(self, stream_type): # Only the first stream declared in a command can be accepted at the # moment - as there is only one stdin and alternate streams are not yet # configurable in the CLI. first_stream_type = self.cmd.input_streams[0] if (stream_type != first_stream_type and stream_type != first_stream_type[:-1]): return yield subunit.make_stream_binary(self._stdin) def make_result(self, get_id, test_command, previous_run=None): if getattr(self.options, 'subunit', False): if v2_avail: serializer = subunit.StreamResultToBytes(self._stdout) else: serializer = StreamToExtendedDecorator( subunit.TestProtocolClient(self._stdout)) # By pass user transforms - just forward it all, result = serializer # and interpret everything as success. summary = testtools.StreamSummary() summary.startTestRun() summary.stopTestRun() return result, summary else: # Apply user defined transforms. filter_tags = test_command.get_filter_tags() output = CLITestResult(self, get_id, self._stdout, previous_run, filter_tags=filter_tags) summary = output._summary return output, summary def output_error(self, error_tuple): if 'TESTR_PDB' in os.environ: import traceback self._stderr.write(_u('').join(traceback.format_tb(error_tuple[2]))) self._stderr.write(_u('\n')) # This is terrible: it is because on Python2.x pdb writes bytes to # its pipes, and the test suite uses io.StringIO that refuse bytes. import pdb; if sys.version_info[0]==2: if isinstance(self._stdout, io.StringIO): write = self._stdout.write def _write(text): return write(text.decode('utf8')) self._stdout.write = _write p = pdb.Pdb(stdin=self._stdin, stdout=self._stdout) p.reset() p.interaction(None, error_tuple[2]) error_type = str(error_tuple[1]) # XX: Python2. if type(error_type) is bytes: error_type = error_type.decode('utf8') self._stderr.write(error_type + _u('\n')) def output_rest(self, rest_string): self._stdout.write(rest_string) if not rest_string.endswith('\n'): self._stdout.write(_u('\n')) def output_stream(self, stream): if not self._binary_stdout: self._binary_stdout = subunit.make_stream_binary(self._stdout) contents = stream.read(65536) assert type(contents) is bytes, \ "Bad stream contents %r" % type(contents) # If there are unflushed bytes in the text wrapper, we need to sync.. self._stdout.flush() while contents: self._binary_stdout.write(contents) contents = stream.read(65536) self._binary_stdout.flush() def output_table(self, table): # stringify contents = [] for row in table: new_row = [] for column in row: new_row.append(str(column)) contents.append(new_row) if not contents: return widths = [0] * len(contents[0]) for row in contents: for idx, column in enumerate(row): if widths[idx] < len(column): widths[idx] = len(column) # Show a row outputs = [] def show_row(row): for idx, column in enumerate(row): outputs.append(column) if idx == len(row) - 1: outputs.append('\n') return # spacers for the next column outputs.append(' '*(widths[idx]-len(column))) outputs.append(' ') show_row(contents[0]) # title spacer for idx, width in enumerate(widths): outputs.append('-'*width) if idx == len(widths) - 1: outputs.append('\n') continue outputs.append(' ') for row in contents[1:]: show_row(row) self._stdout.write(_u('').join(outputs)) def output_tests(self, tests): for test in tests: # On Python 2.6 id() returns bytes. id_str = test.id() if type(id_str) is bytes: id_str = id_str.decode('utf8') self._stdout.write(id_str) self._stdout.write(_u('\n')) def output_values(self, values): outputs = [] for label, value in values: outputs.append('%s=%s' % (label, value)) self._stdout.write(_u('%s\n' % ', '.join(outputs))) def _format_summary(self, successful, tests, tests_delta, time, time_delta, values): # We build the string by appending to a list of strings and then # joining trivially at the end. Avoids expensive string concatenation. summary = [] a = summary.append if tests: a("Ran %s" % (tests,)) if tests_delta: a(" (%+d)" % (tests_delta,)) a(" tests") if time: if not summary: a("Ran tests") a(" in %0.3fs" % (time,)) if time_delta: a(" (%+0.3fs)" % (time_delta,)) if summary: a("\n") if successful: a('PASSED') else: a('FAILED') if values: a(' (') values_strings = [] for name, value, delta in values: value_str = '%s=%s' % (name, value) if delta: value_str += ' (%+d)' % (delta,) values_strings.append(value_str) a(', '.join(values_strings)) a(')') return _u('').join(summary) def output_summary(self, successful, tests, tests_delta, time, time_delta, values): self._stdout.write( self._format_summary( successful, tests, tests_delta, time, time_delta, values)) self._stdout.write(_u('\n')) def _check_cmd(self): parser = get_command_parser(self.cmd) parser.add_option("-d", "--here", dest="here", help="Set the directory or url that a command should run from. " "This affects all default path lookups but does not affect paths " "supplied to the command.", default=os.getcwd(), type=str) parser.add_option("-q", "--quiet", action="store_true", default=False, help="Turn off output other than the primary output for a command " "and any errors.") # yank out --, as optparse makes it silly hard to just preserve it. try: where_dashdash = self._argv.index('--') opt_argv = self._argv[:where_dashdash] other_args = self._argv[where_dashdash:] except ValueError: opt_argv = self._argv other_args = [] if '-h' in opt_argv or '--help' in opt_argv or '-?' in opt_argv: self.output_rest(parser.format_help()) # Fugly, but its what optparse does: we're just overriding the # output path. raise SystemExit(0) options, args = parser.parse_args(opt_argv) args += other_args self.here = options.here self.options = options parsed_args = {} failed = False for arg in self.cmd.args: try: parsed_args[arg.name] = arg.parse(args) except ValueError: exc_info = sys.exc_info() failed = True self._stderr.write(_u("%s\n") % str(exc_info[1])) break if not failed: self.arguments = parsed_args if args != []: self._stderr.write(_u("Unexpected arguments: %r\n") % args) return not failed and args == [] def _clear_SIGPIPE(self): """Clear SIGPIPE : child processes expect the default handler.""" signal.signal(signal.SIGPIPE, signal.SIG_DFL) def subprocess_Popen(self, *args, **kwargs): import subprocess if os.name == "posix": # GZ 2010-12-04: Should perhaps check for existing preexec_fn and # combine so both will get called. kwargs['preexec_fn'] = self._clear_SIGPIPE return subprocess.Popen(*args, **kwargs)
# Generated by Django 3.1.12 on 2021-06-24 10:15 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("users", "0075_auto_20210607_1312"), ] operations = [ migrations.AlterField( model_name="userprofile", name="lang", field=models.CharField( blank=True, choices=[ ("ar", "العربية"), ("as", "অসমীয়া"), ("bcl", "Bikol Central"), ("br", "brezhoneg"), ("da", "dansk"), ("dag", "dagbanli"), ("de", "Deutsch"), ("diq", "Zazaki"), ("en", "English"), ("en-gb", "British English"), ("eo", "Esperanto"), ("es", "español"), ("fa", "فارسی"), ("fi", "suomi"), ("fr", "français"), ("gu", "ગુજરાતી"), ("guw", "gungbe"), ("he", "עברית"), ("hi", "हिन्दी"), ("hy", "հայերեն"), ("id", "Bahasa Indonesia"), ("io", "Ido"), ("it", "italiano"), ("ja", "日本語"), ("ko", "한국어"), ("lv", "latviešu"), ("mk", "македонски"), ("mnw", "ဘာသာ မန်"), ("mr", "मराठी"), ("ms", "Bahasa Melayu"), ("my", "မြန်မာဘာသာ"), ("pl", "polski"), ("pt", "português"), ("pt-br", "português do Brasil"), ("ro", "română"), ("ru", "русский"), ("scn", "sicilianu"), ("sr-ec", "sr-cyrl"), ("sv", "svenska"), ("ta", "தமிழ்"), ("tr", "Türkçe"), ("uk", "українська"), ("vi", "Tiếng Việt"), ("zh-hans", "中文(简体)"), ("zh-hant", "中文(繁體)"), ], help_text="Language", max_length=128, null=True, ), ), ]
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import os import random import uuid from google.api_core import client_options import google.api_core.exceptions import google.auth from google.cloud import bigquery from google.cloud import bigquery_datatransfer from google.cloud import pubsub_v1 import pytest RESOURCE_PREFIX = "python_bigquery_datatransfer_samples_snippets" RESOURCE_DATE_FORMAT = "%Y%m%d%H%M%S" RESOURCE_DATE_LENGTH = 4 + 2 + 2 + 2 + 2 + 2 def resource_prefix() -> str: timestamp = datetime.datetime.utcnow().strftime(RESOURCE_DATE_FORMAT) random_string = hex(random.randrange(1000000))[2:] return f"{RESOURCE_PREFIX}_{timestamp}_{random_string}" def resource_name_to_date(resource_name: str): start_date = len(RESOURCE_PREFIX) + 1 date_string = resource_name[start_date : start_date + RESOURCE_DATE_LENGTH] parsed_date = datetime.datetime.strptime(date_string, RESOURCE_DATE_FORMAT) return parsed_date @pytest.fixture(scope="session", autouse=True) def cleanup_pubsub_topics(pubsub_client: pubsub_v1.PublisherClient, project_id): yesterday = datetime.datetime.utcnow() - datetime.timedelta(days=1) for topic in pubsub_client.list_topics(project=f"projects/{project_id}"): topic_id = topic.name.split("/")[-1] if ( topic_id.startswith(RESOURCE_PREFIX) and resource_name_to_date(topic_id) < yesterday ): pubsub_client.delete_topic(topic=topic.name) def temp_suffix(): now = datetime.datetime.now() return f"{now.strftime('%Y%m%d%H%M%S')}_{uuid.uuid4().hex[:8]}" @pytest.fixture(scope="session") def bigquery_client(default_credentials): credentials, project_id = default_credentials return bigquery.Client(credentials=credentials, project=project_id) @pytest.fixture(scope="session") def pubsub_client(default_credentials): credentials, _ = default_credentials return pubsub_v1.PublisherClient(credentials=credentials) @pytest.fixture(scope="session") def pubsub_topic(pubsub_client: pubsub_v1.PublisherClient, project_id): topic_id = resource_prefix() topic_path = pubsub_v1.PublisherClient.topic_path(project_id, topic_id) pubsub_client.create_topic(name=topic_path) yield topic_path pubsub_client.delete_topic(topic=topic_path) @pytest.fixture(scope="session") def dataset_id(bigquery_client, project_id): dataset_id = f"bqdts_{temp_suffix()}" bigquery_client.create_dataset(f"{project_id}.{dataset_id}") yield dataset_id bigquery_client.delete_dataset(dataset_id, delete_contents=True) @pytest.fixture(scope="session") def default_credentials(): return google.auth.default(["https://www.googleapis.com/auth/cloud-platform"]) @pytest.fixture(scope="session") def project_id(): return os.environ["GOOGLE_CLOUD_PROJECT"] @pytest.fixture(scope="session") def service_account_name(default_credentials): credentials, _ = default_credentials # The service_account_email attribute is not available when running with # user account credentials, but should be available when running from our # continuous integration tests. return getattr(credentials, "service_account_email", None) @pytest.fixture(scope="session") def transfer_client(default_credentials, project_id): credentials, _ = default_credentials options = client_options.ClientOptions(quota_project_id=project_id) transfer_client = bigquery_datatransfer.DataTransferServiceClient( credentials=credentials, client_options=options ) # Ensure quota is always attributed to the correct project. bigquery_datatransfer.DataTransferServiceClient = lambda: transfer_client return transfer_client @pytest.fixture(scope="session") def transfer_config_name(transfer_client, project_id, dataset_id, service_account_name): from . import manage_transfer_configs, scheduled_query # Use the transfer_client fixture so we know quota is attributed to the # correct project. assert transfer_client is not None # To conserve limited BQ-DTS quota, this fixture creates only one transfer # config for a whole session and is used to test the scheduled_query.py and # the delete operation in manage_transfer_configs.py. transfer_config = scheduled_query.create_scheduled_query( { "project_id": project_id, "dataset_id": dataset_id, "service_account_name": service_account_name, } ) yield transfer_config.name manage_transfer_configs.delete_config( {"transfer_config_name": transfer_config.name} ) @pytest.fixture def to_delete_configs(transfer_client): to_delete = [] yield to_delete for config_name in to_delete: try: transfer_client.delete_transfer_config(name=config_name) except google.api_core.exceptions.GoogleAPICallError: pass
#!/usr/bin/env python import argparse import os,time import numpy as np from astropy.io import fits from astropy.table import Table from pypeit import msgs from pypeit.par.util import make_pypeit_file class SmartFormatter(argparse.HelpFormatter): def _split_lines(self, text, width): if text.startswith('R|'): return text[2:].splitlines() # this is the RawTextHelpFormatter._split_lines return argparse.HelpFormatter._split_lines(self, text, width) def parser(options=None): parser = argparse.ArgumentParser(description='Parse', formatter_class=SmartFormatter) parser.add_argument("sci_path", type=str, help="Path for Science folder") parser.add_argument("--objmodel", type=str, default='qso', choices=['qso', 'star', 'poly'], help="R|Science object model used in the telluric fitting.\n" "The options are:\n" "\n" " qso = For quasars. You might need to set redshift, bal_wv_min_mx in the tell file.\n" "\n" " star = For stars. You need to set star_type, star_ra, star_dec, and star_mag in the tell_file.\n" "\n" " poly = For other type object, You might need to set fit_wv_min_mx, \n" " and norder in the tell_file." ) if options is None: args = parser.parse_args() else: args = parser.parse_args(options) return args def main(args): """ This setups PypeIt files for fluxing, coadding and telluric corrections. It will produce three files named as your_spectragraph.flux, your_spectragraph.coadd1d, and your_spectragraph.tell """ allfiles = os.listdir(args.sci_path) allfiles = np.sort(allfiles) spec1dfiles = [] spec2dfiles = [] spec1dinfos = [] for ifile in allfiles: if ('spec1d' in ifile) and ('.fits' in ifile): spec1dfiles.append(ifile) elif ('spec2d' in ifile) and ('.fits' in ifile): spec2dfiles.append(ifile) elif ('spec1d' in ifile) and ('.txt' in ifile): spec1dinfos.append(ifile) else: msgs.warn('{:} is not a standard PypeIt output.'.format(ifile)) if len(spec2dfiles) > len(spec1dfiles): msgs.warn('The following exposures do not have 1D extractions:') for ii in range(len(spec2dfiles)): if not os.path.exists(os.path.join(args.sci_path, spec2dfiles[ii].replace('spec2d','spec1d'))): msgs.info('\t {:}'.format(spec2dfiles[ii])) if len(spec1dfiles) > 0: par = fits.open(os.path.join(args.sci_path, spec1dfiles[0])) ## fluxing pypeit file spectrograph = par[0].header['PYP_SPEC'] pypeline = par[0].header['PYPELINE'] flux_file = '{:}.flux'.format(spectrograph) cfg_lines = ['[fluxcalib]'] cfg_lines += [' extinct_correct = False # Set to True if your SENSFUNC derived with the UVIS algorithm\n'] cfg_lines += ['# Please add your SENSFUNC file name below before running pypeit_flux_calib'] make_pypeit_file(flux_file, spectrograph, spec1dfiles, cfg_lines=cfg_lines, setup_mode=True) fin = open(flux_file, "rt") data = fin.read() data = data.replace('spec1d_', os.path.join(args.sci_path,'spec1d_')) data = data.replace('data', 'flux') fin.close() fin = open(flux_file, "wt") fin.write(data) fin.close() ## coadd1d pypeit file coadd1d_file = '{:}.coadd1d'.format(spectrograph) cfg_lines = ['[coadd1d]'] cfg_lines += [' coaddfile = YOUR_OUTPUT_FILE_NAME # Please set your output file name'] cfg_lines += [' sensfuncfile = YOUR_SENSFUNC_FILE # Please set your SENSFUNC file name'] if pypeline == 'Echelle': cfg_lines += [' wave_method = velocity # creates a uniformly space grid in log10(lambda)\n'] else: cfg_lines += [' wave_method = linear # creates a uniformly space grid in lambda\n'] cfg_lines += ['# This file includes all extracted objects. You need to figure out which object you want to \n'+\ '# coadd before running pypeit_coadd_1dspec!!!'] spec1d_info = [] for ii in range(len(spec1dfiles)): meta_tbl = Table.read(os.path.join(args.sci_path, spec1dfiles[ii]).replace('.fits', '.txt'), format='ascii.fixed_width') _, indx = np.unique(meta_tbl['name'],return_index=True) objects = meta_tbl[indx] for jj in range(len(objects)): spec1d_info.append(spec1dfiles[ii] + ' '+ objects['name'][jj]) make_pypeit_file(coadd1d_file, spectrograph, spec1d_info, cfg_lines=cfg_lines, setup_mode=True) fin = open(coadd1d_file, "rt") data = fin.read() data = data.replace('spec1d_', os.path.join(args.sci_path,'spec1d_')) data = data.replace('data', 'coadd1d') fin.close() fin = open(coadd1d_file, "wt") fin.write(data) fin.close() ## tellfit pypeit file tellfit_file = '{:}.tell'.format(spectrograph) cfg_lines = ['[tellfit]'] if args.objmodel == 'qso': cfg_lines += [' objmodel = qso'] cfg_lines += [' redshift = 0.0'] cfg_lines += [' bal_wv_min_max = 10000.,11000.'] elif args.objmodel == 'star': cfg_lines += [' objmodel = star'] cfg_lines += [' star_type = A0'] cfg_lines += [' star_mag = 0.0'] elif args.objmodel == 'poly': cfg_lines += [' objmodel = poly'] cfg_lines += [' polyorder = 5'] cfg_lines += [' fit_wv_min_max = 17000.0,22000.0'] with open(tellfit_file, 'w') as f: f.write('# Auto-generated PypeIt file\n') f.write('# {0}\n'.format(time.strftime("%a %d %b %Y %H:%M:%S", time.localtime()))) f.write("\n") f.write("# User-defined execution parameters\n") f.write("# This is only an example. Make sure to change the following parameters accordingly.\n") f.write('\n'.join(cfg_lines)) f.write('\n') f.write('\n') msgs.info('PypeIt file written to: {0}'.format(tellfit_file))
# cinder documentation build configuration file, created by # sphinx-quickstart on Sat May 1 15:17:47 2010. # # This file is execfile()d with the current directory set # to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import subprocess import sys import warnings # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../../')) sys.path.insert(0, os.path.abspath('../')) sys.path.insert(0, os.path.abspath('./')) # -- General configuration ---------------------------------------------------- # Add any Sphinx extension module names here, as strings. # They can be extensions coming with Sphinx (named 'sphinx.ext.*') # or your custom ones. extensions = ['sphinx.ext.autodoc', 'ext.cinder_todo', 'sphinx.ext.coverage', 'sphinx.ext.ifconfig', 'sphinx.ext.graphviz', 'oslosphinx', 'stevedore.sphinxext', 'oslo_config.sphinxconfiggen', ] config_generator_config_file = '../../cinder/config/cinder-config-generator.conf' sample_config_basename = '_static/cinder' # autodoc generation is a bit aggressive and a nuisance # when doing heavy text edit cycles. Execute "export SPHINX_DEBUG=1" # in your terminal to disable if not os.getenv('SPHINX_DEBUG'): extensions += ['ext.cinder_autodoc'] todo_include_todos = True # Add any paths that contain templates here, relative to this directory. # Changing the path so that the Hudson build output contains GA code # and the source docs do not contain the code so local, offline sphinx builds # are "clean." templates_path = [] if os.getenv('HUDSON_PUBLISH_DOCS'): templates_path = ['_ga', '_templates'] else: templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = u'cinder' copyright = u'2010-present, OpenStack Foundation' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # from cinder.version import version_info # The full version, including alpha/beta/rc tags. release = version_info.release_string() # The short X.Y version. version = version_info.version_string() # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. unused_docs = [ 'api_ext/rst_extension_template', 'installer', ] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = [] # The reST default role (used for this markup: `text`) to use # for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = False # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. modindex_common_prefix = ['cinder.'] # -- Options for man page output ---------------------------------------------- # Grouping the document tree for man pages. # List of tuples 'sourcefile', 'target', u'title', u'Authors name', 'manual' man_pages = [ ('man/cinder-manage', 'cinder-manage', u'Cloud controller fabric', [u'OpenStack'], 1) ] # -- Options for HTML output -------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. # html_theme_path = ["."] # html_theme = '_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' git_cmd = ["git", "log", "--pretty=format:'%ad, commit %h'", "--date=local", "-n1"] try: html_last_updated_fmt = subprocess.Popen( git_cmd, stdout=subprocess.PIPE).communicate()[0] except Exception: warnings.warn('Cannot get last updated time from git repository. ' 'Not setting "html_last_updated_fmt".') # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_use_modindex = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'cinderdoc' # -- Options for LaTeX output ------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [ ('index', 'Cinder.tex', u'Cinder Documentation', u'Anso Labs, LLC', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_use_modindex = True
# -*- coding: utf-8 -*- """ Django settings for Agrus project. Generated by 'django-admin startproject' using Django 1.11.1. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ from pytz import timezone import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'gz6=&2*879yuym!pf(d8kch*30ow*eh=ybb-f0qsg+%c4+$@3c' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'Agrus', 'kurs', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django_extensions', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'Agrus.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'Agrus.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.oracle', 'NAME': 'xe', 'USER': 'django', 'PASSWORD': 'djangooracle', 'HOST': 'localhost', 'PORT': '1521' } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' LOGIN_URL = '/login/' LOGOUT_URL = '/logout'
"""awards URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url,include from django.contrib import admin from django.contrib.auth import views urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^',include('award.urls')), url(r'^accounts/', include('registration.backends.simple.urls')), url(r'^logout/$', views.logout, {"next_page": '/'}), ]
__version__ = '1.0.5' # Deprecated, keep it here for a while for backward compatibility. import multidict # noqa # This relies on each of the submodules having an __all__ variable. from multidict import * # noqa from . import hdrs # noqa from .protocol import * # noqa from .connector import * # noqa from .client import * # noqa from .client_reqrep import * # noqa from .errors import * # noqa from .helpers import * # noqa from .parsers import * # noqa from .streams import * # noqa from .multipart import * # noqa from .client_ws import ClientWebSocketResponse # noqa from ._ws_impl import WSMsgType, WSCloseCode, WSMessage, WebSocketError # noqa from .file_sender import FileSender # noqa from .cookiejar import CookieJar # noqa from .resolver import * # noqa MsgType = WSMsgType # backward compatibility __all__ = (client.__all__ + # noqa client_reqrep.__all__ + # noqa errors.__all__ + # noqa helpers.__all__ + # noqa parsers.__all__ + # noqa protocol.__all__ + # noqa connector.__all__ + # noqa streams.__all__ + # noqa multidict.__all__ + # noqa multipart.__all__ + # noqa ('hdrs', 'FileSender', 'WSMsgType', 'MsgType', 'WSCloseCode', 'WebSocketError', 'WSMessage', 'ClientWebSocketResponse', 'CookieJar'))
class Solution: def findMin(self, nums: List[int]) -> int: l = 0 r = len(nums) - 1 while r - l > 3: m = (l + r) // 2 if nums[m] > nums[l] and nums[m] > nums[r]: l = m + 1 else: r = m return min(nums[l:r+1])
from django.contrib.admin import ModelAdmin from django.contrib.gis.admin.widgets import OpenLayersWidget from django.contrib.gis.gdal import OGRGeomType from django.contrib.gis.db import models class GeoModelAdmin(ModelAdmin): """ The administration options class for Geographic models. Map settings may be overloaded from their defaults to create custom maps. """ # The default map settings that may be overloaded -- still subject # to API changes. default_lon = 0 default_lat = 0 default_zoom = 4 display_wkt = False display_srid = False extra_js = [] num_zoom = 18 max_zoom = False min_zoom = False units = False max_resolution = False max_extent = False modifiable = True mouse_position = True scale_text = True layerswitcher = True scrollable = True map_width = 600 map_height = 400 map_srid = 4326 map_template = 'gis/admin/openlayers.html' openlayers_url = 'http://openlayers.org/api/2.11/OpenLayers.js' point_zoom = num_zoom - 6 wms_url = 'http://vmap0.tiles.osgeo.org/wms/vmap0' wms_layer = 'basic' wms_name = 'OpenLayers WMS' debug = False widget = OpenLayersWidget @property def media(self): "Injects OpenLayers JavaScript into the admin." media = super(GeoModelAdmin, self).media media.add_js([self.openlayers_url]) media.add_js(self.extra_js) return media def formfield_for_dbfield(self, db_field, **kwargs): """ Overloaded from ModelAdmin so that an OpenLayersWidget is used for viewing/editing GeometryFields. """ if isinstance(db_field, models.GeometryField): request = kwargs.pop('request', None) # Setting the widget with the newly defined widget. kwargs['widget'] = self.get_map_widget(db_field) return db_field.formfield(**kwargs) else: return super(GeoModelAdmin, self).formfield_for_dbfield(db_field, **kwargs) def get_map_widget(self, db_field): """ Returns a subclass of the OpenLayersWidget (or whatever was specified in the `widget` attribute) using the settings from the attributes set in this class. """ is_collection = db_field.geom_type in ('MULTIPOINT', 'MULTILINESTRING', 'MULTIPOLYGON', 'GEOMETRYCOLLECTION') if is_collection: if db_field.geom_type == 'GEOMETRYCOLLECTION': collection_type = 'Any' else: collection_type = OGRGeomType(db_field.geom_type.replace('MULTI', '')) else: collection_type = 'None' class OLMap(self.widget): template = self.map_template geom_type = db_field.geom_type params = {'default_lon' : self.default_lon, 'default_lat' : self.default_lat, 'default_zoom' : self.default_zoom, 'display_wkt' : self.debug or self.display_wkt, 'geom_type' : OGRGeomType(db_field.geom_type), 'field_name' : db_field.name, 'is_collection' : is_collection, 'scrollable' : self.scrollable, 'layerswitcher' : self.layerswitcher, 'collection_type' : collection_type, 'is_linestring' : db_field.geom_type in ('LINESTRING', 'MULTILINESTRING'), 'is_polygon' : db_field.geom_type in ('POLYGON', 'MULTIPOLYGON'), 'is_point' : db_field.geom_type in ('POINT', 'MULTIPOINT'), 'num_zoom' : self.num_zoom, 'max_zoom' : self.max_zoom, 'min_zoom' : self.min_zoom, 'units' : self.units, #likely shoud get from object 'max_resolution' : self.max_resolution, 'max_extent' : self.max_extent, 'modifiable' : self.modifiable, 'mouse_position' : self.mouse_position, 'scale_text' : self.scale_text, 'map_width' : self.map_width, 'map_height' : self.map_height, 'point_zoom' : self.point_zoom, 'srid' : self.map_srid, 'display_srid' : self.display_srid, 'wms_url' : self.wms_url, 'wms_layer' : self.wms_layer, 'wms_name' : self.wms_name, 'debug' : self.debug, } return OLMap from django.contrib.gis import gdal if gdal.HAS_GDAL: # Use the official spherical mercator projection SRID on versions # of GDAL that support it; otherwise, fallback to 900913. if gdal.GDAL_VERSION >= (1, 7): spherical_mercator_srid = 3857 else: spherical_mercator_srid = 900913 class OSMGeoAdmin(GeoModelAdmin): map_template = 'gis/admin/osm.html' num_zoom = 20 map_srid = spherical_mercator_srid max_extent = '-20037508,-20037508,20037508,20037508' max_resolution = '156543.0339' point_zoom = num_zoom - 6 units = 'm'
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._inputs import * __all__ = ['DistributionConfigurationArgs', 'DistributionConfiguration'] @pulumi.input_type class DistributionConfigurationArgs: def __init__(__self__, *, distributions: pulumi.Input[Sequence[pulumi.Input['DistributionConfigurationDistributionArgs']]], description: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a DistributionConfiguration resource. :param pulumi.Input[Sequence[pulumi.Input['DistributionConfigurationDistributionArgs']]] distributions: One or more configuration blocks with distribution settings. Detailed below. :param pulumi.Input[str] description: Description to apply to the distributed AMI. :param pulumi.Input[str] name: Name to apply to the distributed AMI. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Key-value map of resource tags for the distribution configuration. .If configured with a provider `default_tags` configuration block present, tags with matching keys will overwrite those defined at the provider-level. """ pulumi.set(__self__, "distributions", distributions) if description is not None: pulumi.set(__self__, "description", description) if name is not None: pulumi.set(__self__, "name", name) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter def distributions(self) -> pulumi.Input[Sequence[pulumi.Input['DistributionConfigurationDistributionArgs']]]: """ One or more configuration blocks with distribution settings. Detailed below. """ return pulumi.get(self, "distributions") @distributions.setter def distributions(self, value: pulumi.Input[Sequence[pulumi.Input['DistributionConfigurationDistributionArgs']]]): pulumi.set(self, "distributions", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ Description to apply to the distributed AMI. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Name to apply to the distributed AMI. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Key-value map of resource tags for the distribution configuration. .If configured with a provider `default_tags` configuration block present, tags with matching keys will overwrite those defined at the provider-level. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @pulumi.input_type class _DistributionConfigurationState: def __init__(__self__, *, arn: Optional[pulumi.Input[str]] = None, date_created: Optional[pulumi.Input[str]] = None, date_updated: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, distributions: Optional[pulumi.Input[Sequence[pulumi.Input['DistributionConfigurationDistributionArgs']]]] = None, name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tags_all: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ Input properties used for looking up and filtering DistributionConfiguration resources. :param pulumi.Input[str] arn: (Required) Amazon Resource Name (ARN) of the distribution configuration. :param pulumi.Input[str] date_created: Date the distribution configuration was created. :param pulumi.Input[str] date_updated: Date the distribution configuration was updated. :param pulumi.Input[str] description: Description to apply to the distributed AMI. :param pulumi.Input[Sequence[pulumi.Input['DistributionConfigurationDistributionArgs']]] distributions: One or more configuration blocks with distribution settings. Detailed below. :param pulumi.Input[str] name: Name to apply to the distributed AMI. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Key-value map of resource tags for the distribution configuration. .If configured with a provider `default_tags` configuration block present, tags with matching keys will overwrite those defined at the provider-level. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags_all: A map of tags assigned to the resource, including those inherited from the provider . """ if arn is not None: pulumi.set(__self__, "arn", arn) if date_created is not None: pulumi.set(__self__, "date_created", date_created) if date_updated is not None: pulumi.set(__self__, "date_updated", date_updated) if description is not None: pulumi.set(__self__, "description", description) if distributions is not None: pulumi.set(__self__, "distributions", distributions) if name is not None: pulumi.set(__self__, "name", name) if tags is not None: pulumi.set(__self__, "tags", tags) if tags_all is not None: pulumi.set(__self__, "tags_all", tags_all) @property @pulumi.getter def arn(self) -> Optional[pulumi.Input[str]]: """ (Required) Amazon Resource Name (ARN) of the distribution configuration. """ return pulumi.get(self, "arn") @arn.setter def arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "arn", value) @property @pulumi.getter(name="dateCreated") def date_created(self) -> Optional[pulumi.Input[str]]: """ Date the distribution configuration was created. """ return pulumi.get(self, "date_created") @date_created.setter def date_created(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "date_created", value) @property @pulumi.getter(name="dateUpdated") def date_updated(self) -> Optional[pulumi.Input[str]]: """ Date the distribution configuration was updated. """ return pulumi.get(self, "date_updated") @date_updated.setter def date_updated(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "date_updated", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ Description to apply to the distributed AMI. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def distributions(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['DistributionConfigurationDistributionArgs']]]]: """ One or more configuration blocks with distribution settings. Detailed below. """ return pulumi.get(self, "distributions") @distributions.setter def distributions(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['DistributionConfigurationDistributionArgs']]]]): pulumi.set(self, "distributions", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Name to apply to the distributed AMI. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Key-value map of resource tags for the distribution configuration. .If configured with a provider `default_tags` configuration block present, tags with matching keys will overwrite those defined at the provider-level. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter(name="tagsAll") def tags_all(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A map of tags assigned to the resource, including those inherited from the provider . """ return pulumi.get(self, "tags_all") @tags_all.setter def tags_all(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags_all", value) class DistributionConfiguration(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, distributions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DistributionConfigurationDistributionArgs']]]]] = None, name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): """ Manages an Image Builder Distribution Configuration. ## Example Usage ```python import pulumi import pulumi_aws as aws example = aws.imagebuilder.DistributionConfiguration("example", distributions=[aws.imagebuilder.DistributionConfigurationDistributionArgs( ami_distribution_configuration=aws.imagebuilder.DistributionConfigurationDistributionAmiDistributionConfigurationArgs( ami_tags={ "CostCenter": "IT", }, launch_permission=aws.imagebuilder.DistributionConfigurationDistributionAmiDistributionConfigurationLaunchPermissionArgs( user_ids=["123456789012"], ), name="example-{{ imagebuilder:buildDate }}", ), region="us-east-1", )]) ``` ## Import `aws_imagebuilder_distribution_configurations` resources can be imported by using the Amazon Resource Name (ARN), e.g., ```sh $ pulumi import aws:imagebuilder/distributionConfiguration:DistributionConfiguration example arn:aws:imagebuilder:us-east-1:123456789012:distribution-configuration/example ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] description: Description to apply to the distributed AMI. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DistributionConfigurationDistributionArgs']]]] distributions: One or more configuration blocks with distribution settings. Detailed below. :param pulumi.Input[str] name: Name to apply to the distributed AMI. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Key-value map of resource tags for the distribution configuration. .If configured with a provider `default_tags` configuration block present, tags with matching keys will overwrite those defined at the provider-level. """ ... @overload def __init__(__self__, resource_name: str, args: DistributionConfigurationArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Manages an Image Builder Distribution Configuration. ## Example Usage ```python import pulumi import pulumi_aws as aws example = aws.imagebuilder.DistributionConfiguration("example", distributions=[aws.imagebuilder.DistributionConfigurationDistributionArgs( ami_distribution_configuration=aws.imagebuilder.DistributionConfigurationDistributionAmiDistributionConfigurationArgs( ami_tags={ "CostCenter": "IT", }, launch_permission=aws.imagebuilder.DistributionConfigurationDistributionAmiDistributionConfigurationLaunchPermissionArgs( user_ids=["123456789012"], ), name="example-{{ imagebuilder:buildDate }}", ), region="us-east-1", )]) ``` ## Import `aws_imagebuilder_distribution_configurations` resources can be imported by using the Amazon Resource Name (ARN), e.g., ```sh $ pulumi import aws:imagebuilder/distributionConfiguration:DistributionConfiguration example arn:aws:imagebuilder:us-east-1:123456789012:distribution-configuration/example ``` :param str resource_name: The name of the resource. :param DistributionConfigurationArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(DistributionConfigurationArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, distributions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DistributionConfigurationDistributionArgs']]]]] = None, name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = DistributionConfigurationArgs.__new__(DistributionConfigurationArgs) __props__.__dict__["description"] = description if distributions is None and not opts.urn: raise TypeError("Missing required property 'distributions'") __props__.__dict__["distributions"] = distributions __props__.__dict__["name"] = name __props__.__dict__["tags"] = tags __props__.__dict__["arn"] = None __props__.__dict__["date_created"] = None __props__.__dict__["date_updated"] = None __props__.__dict__["tags_all"] = None super(DistributionConfiguration, __self__).__init__( 'aws:imagebuilder/distributionConfiguration:DistributionConfiguration', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, arn: Optional[pulumi.Input[str]] = None, date_created: Optional[pulumi.Input[str]] = None, date_updated: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, distributions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DistributionConfigurationDistributionArgs']]]]] = None, name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tags_all: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None) -> 'DistributionConfiguration': """ Get an existing DistributionConfiguration resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] arn: (Required) Amazon Resource Name (ARN) of the distribution configuration. :param pulumi.Input[str] date_created: Date the distribution configuration was created. :param pulumi.Input[str] date_updated: Date the distribution configuration was updated. :param pulumi.Input[str] description: Description to apply to the distributed AMI. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DistributionConfigurationDistributionArgs']]]] distributions: One or more configuration blocks with distribution settings. Detailed below. :param pulumi.Input[str] name: Name to apply to the distributed AMI. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Key-value map of resource tags for the distribution configuration. .If configured with a provider `default_tags` configuration block present, tags with matching keys will overwrite those defined at the provider-level. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags_all: A map of tags assigned to the resource, including those inherited from the provider . """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _DistributionConfigurationState.__new__(_DistributionConfigurationState) __props__.__dict__["arn"] = arn __props__.__dict__["date_created"] = date_created __props__.__dict__["date_updated"] = date_updated __props__.__dict__["description"] = description __props__.__dict__["distributions"] = distributions __props__.__dict__["name"] = name __props__.__dict__["tags"] = tags __props__.__dict__["tags_all"] = tags_all return DistributionConfiguration(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def arn(self) -> pulumi.Output[str]: """ (Required) Amazon Resource Name (ARN) of the distribution configuration. """ return pulumi.get(self, "arn") @property @pulumi.getter(name="dateCreated") def date_created(self) -> pulumi.Output[str]: """ Date the distribution configuration was created. """ return pulumi.get(self, "date_created") @property @pulumi.getter(name="dateUpdated") def date_updated(self) -> pulumi.Output[str]: """ Date the distribution configuration was updated. """ return pulumi.get(self, "date_updated") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ Description to apply to the distributed AMI. """ return pulumi.get(self, "description") @property @pulumi.getter def distributions(self) -> pulumi.Output[Sequence['outputs.DistributionConfigurationDistribution']]: """ One or more configuration blocks with distribution settings. Detailed below. """ return pulumi.get(self, "distributions") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Name to apply to the distributed AMI. """ return pulumi.get(self, "name") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Key-value map of resource tags for the distribution configuration. .If configured with a provider `default_tags` configuration block present, tags with matching keys will overwrite those defined at the provider-level. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="tagsAll") def tags_all(self) -> pulumi.Output[Mapping[str, str]]: """ A map of tags assigned to the resource, including those inherited from the provider . """ return pulumi.get(self, "tags_all")
###################################################################### # Copyright # John Holland <john@zoner.org> # All rights reserved. # # This software is licensed as described in the file LICENSE.txt, which # you should have received as part of this distribution. # ###################################################################### """ Apply local overrides to the current map. Overrides defined in a xml document. NOT IMPLEMENTED """ class map_override(object): """ Apply local overrides to the current map. Overrides defined in a xml document. """ def __init__(self, map_root, override_file, icvn, vriic, fic): pass def _set_value(self, map_root, path, variable, value): pass def _append_value(self, map_root, path, variable, value): pass def _reset_list(self, map_root, path, variable, value): pass
load( "//haskell:providers.bzl", "HaskellInfo", "HaskellLibraryInfo", ) load(":private/set.bzl", "set") def gather_dep_info(ctx, deps): """Collapse dependencies into a single `HaskellInfo`. Args: ctx: Rule context. deps: deps attribute. Returns: HaskellInfo: Unified information about all dependencies. """ package_databases = depset(transitive = [ dep[HaskellInfo].package_databases for dep in deps if HaskellInfo in dep ]) static_libraries = depset(transitive = [ dep[HaskellInfo].static_libraries for dep in deps if HaskellInfo in dep ]) dynamic_libraries = depset(transitive = [ dep[HaskellInfo].dynamic_libraries for dep in deps if HaskellInfo in dep ]) interface_dirs = depset(transitive = [ dep[HaskellInfo].interface_dirs for dep in deps if HaskellInfo in dep ]) source_files = depset(transitive = [ dep[HaskellInfo].source_files for dep in deps if HaskellInfo in dep ]) import_dirs = set.empty() for dep in deps: if HaskellInfo in dep: import_dirs = set.mutable_union(import_dirs, dep[HaskellInfo].import_dirs) extra_source_files = depset(transitive = [ dep[HaskellInfo].extra_source_files for dep in deps if HaskellInfo in dep ]) compile_flags = [] for dep in deps: if HaskellInfo in dep: compile_flags.extend(dep[HaskellInfo].compile_flags) acc = HaskellInfo( package_databases = package_databases, version_macros = set.empty(), static_libraries = static_libraries, dynamic_libraries = dynamic_libraries, interface_dirs = interface_dirs, source_files = source_files, import_dirs = import_dirs, extra_source_files = extra_source_files, compile_flags = compile_flags, ) for dep in deps: if HaskellInfo in dep: binfo = dep[HaskellInfo] if HaskellLibraryInfo not in dep: fail("Target {0} cannot depend on binary".format(ctx.attr.name)) acc = HaskellInfo( package_databases = acc.package_databases, version_macros = set.mutable_union(acc.version_macros, binfo.version_macros), static_libraries = depset(transitive = [acc.static_libraries, binfo.static_libraries]), dynamic_libraries = acc.dynamic_libraries, interface_dirs = acc.interface_dirs, import_dirs = import_dirs, compile_flags = compile_flags, extra_source_files = extra_source_files, source_files = source_files, ) elif CcInfo in dep and HaskellInfo not in dep: # The final link of a binary must include all static libraries we # depend on, including transitives ones. Theses libs are provided # in the `CcInfo` provider. acc = HaskellInfo( package_databases = acc.package_databases, version_macros = acc.version_macros, import_dirs = acc.import_dirs, source_files = acc.source_files, compile_flags = acc.compile_flags, static_libraries = acc.static_libraries, dynamic_libraries = acc.dynamic_libraries, extra_source_files = acc.extra_source_files, interface_dirs = acc.interface_dirs, ) return acc
# Copyright (C) 2018 Intel Corporation # # SPDX-License-Identifier: MIT from django.contrib import admin from .models import Task, Segment, Job, Label, AttributeSpec class JobInline(admin.TabularInline): model = Job can_delete = False # Don't show extra lines to add an object def has_add_permission(self, request, object=None): return False class SegmentInline(admin.TabularInline): model = Segment show_change_link = True readonly_fields = ('start_frame', 'stop_frame') can_delete = False # Don't show extra lines to add an object def has_add_permission(self, request, object=None): return False class AttributeSpecInline(admin.TabularInline): model = AttributeSpec extra = 0 max_num = None class LabelInline(admin.TabularInline): model = Label show_change_link = True extra = 0 max_num = None class LabelAdmin(admin.ModelAdmin): # Don't show on admin index page def has_module_permission(self, request): return False inlines = [ AttributeSpecInline ] class SegmentAdmin(admin.ModelAdmin): # Don't show on admin index page def has_module_permission(self, request): return False inlines = [ JobInline ] class TaskAdmin(admin.ModelAdmin): date_hierarchy = 'updated_date' readonly_fields = ('size', 'path', 'created_date', 'updated_date', 'overlap', 'flipped') list_display = ('name', 'mode', 'owner', 'assignee', 'created_date', 'updated_date') search_fields = ('name', 'mode', 'owner__username', 'owner__first_name', 'owner__last_name', 'owner__email', 'assignee__username', 'assignee__first_name', 'assignee__last_name') inlines = [ SegmentInline, LabelInline ] # Don't allow to add a task because it isn't trivial operation def has_add_permission(self, request): return False admin.site.register(Task, TaskAdmin) admin.site.register(Segment, SegmentAdmin) admin.site.register(Label, LabelAdmin)
__all__ = ['ZoneMapper']
# Copyright (c) 2017-2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. # SPDX-License-Identifier: Apache-2.0 """ This module has been relocated to ``dazl.client``, ``dazl.damlast``, ``dazl.protocols``, or ``dazl.query``. """ from typing import TYPE_CHECKING, TypeVar, Union import warnings from ..client.errors import ConfigurationError, DazlPartyMissingError, UnknownTemplateWarning from ..client.state import ( ContractContextualData, ContractContextualDataCollection, ContractsHistoricalState, ContractsState, ) from ..damlast.daml_lf_1 import TypeConName from ..damlast.pkgfile import Dar from ..prim import ContractData, ContractId as ContractId_, DazlError, DazlWarning, Party from ..prim.errors import DazlImportError from ..protocols.errors import ConnectionTimeoutError, UserTerminateRequest from ..query import ContractMatch from ..util.proc_util import ProcessDiedException if TYPE_CHECKING: from .types import Type, TypeReference T = TypeVar("T") __all__ = [ "ConfigurationError", "ConnectionTimeoutError", "ContractContextualData", "ContractContextualDataCollection", "ContractData", "ContractId", "ContractMatch", "ContractsHistoricalState", "ContractsState", "Dar", "DazlError", "DazlImportError", "DazlPartyMissingError", "DazlWarning", "Party", "ProcessDiedException", "UnknownTemplateWarning", "UserTerminateRequest", ] class ContractId(ContractId_): __slots__ = ("_value_type_deprecated",) _value_type_deprecated: "TypeReference" def __init__(self, contract_id: str, template_id: "Union[str, Type, TypeConName]"): warnings.warn( "dazl.model.core.ContractId is deprecated; use dazl.prim.ContractId instead.", DeprecationWarning, stacklevel=2, ) from ..damlast.compat import parse_template if not isinstance(contract_id, str): raise ValueError("contract_id must be a string") value = contract_id value_type, value_type_deprecated = parse_template(template_id) super().__init__(value_type, value) object.__setattr__(self, "_value_type_deprecated", value_type_deprecated) @property def contract_id(self) -> str: """ Get the raw contract ID value (for example, ``"#4:1"``). """ warnings.warn( "ContractId.contract_id is deprecated; use ContractId.value instead.", DeprecationWarning, stacklevel=2, ) return self.value @property def template_id(self) -> "TypeReference": """ Get the type of template that is pointed to by this :class:`ContractId` as a :class:`TypeReference`. Note that usage of :class:`Type` and :class:`TypeReference` are deprecated, and :meth:`value_type` should be used instead. As of dazl 7.3.0, the :class:`TemplateId` is always normalized to a :class:`TypeReference`, regardless of what the :class:`ContractId` was constructed with. """ warnings.warn( "ContractId.template_id is deprecated; use ContractId.value_type instead.", DeprecationWarning, stacklevel=2, ) return self._value_type_deprecated def exercise(self, choice_name, arguments=None): """ Create an :class:`ExerciseCommand` that represents the result of exercising a choice on this contract with the specified choice. :param choice_name: The name of the choice to exercise. :param arguments: (optional) A ``dict`` of named values to send as parameters to the choice exercise. """ warnings.warn( "ContractId.exercise is deprecated; prefer calling dazl.ledger.Connection.exercise or " "dazl.client.PartyClient.submit_exercise, or use dazl.ledger.ExerciseCommand instead.", DeprecationWarning, stacklevel=2, ) from .writing import ExerciseCommand with warnings.catch_warnings(): warnings.simplefilter("ignore", DeprecationWarning) return ExerciseCommand(self, choice_name, arguments=arguments) def replace(self, contract_id=None, template_id=None): """ Return a new :class:`ContractId` instance replacing specified fields with values. """ warnings.warn( "ContractId.replace is deprecated; simply construct a ContractId with the desired " "values instead.", DeprecationWarning, stacklevel=2, ) with warnings.catch_warnings(): warnings.simplefilter("ignore", DeprecationWarning) return ContractId( contract_id if contract_id is not None else self.value, template_id if template_id is not None else self.value_type, ) def for_json(self): """ Return the JSON representation of this contract. This is currently just the contract ID string itself. """ return self.value class CommandTimeoutError(DazlError): """ Raised when a corresponding event for a command was not seen in the appropriate time window. """ def __init__(self): warnings.warn( "This error is never raised; this symbol will be removed in dazl v9", DeprecationWarning, stacklevel=2, ) class ConnectionClosedError(DazlError): """ Raised when trying to do something that requires a connection after connection pools have been closed. """ def __init__(self): warnings.warn( "This error is never raised; this symbol will be removed in dazl v9", DeprecationWarning, stacklevel=2, )
# full assembly of the sub-parts to form the complete net import torch.nn.functional as F from .unet_parts import * class UNet(nn.Module): def __init__(self, n_channels, n_classes): super(UNet, self).__init__() self.inc = inconv(n_channels, 64) self.down1 = down(64, 128) self.down2 = down(128, 256) self.down3 = down(256, 512) self.down4 = down(512, 512) self.up1 = up(1024, 256) self.up2 = up(512, 128) self.up3 = up(256, 64) self.up4 = up(128, 64) self.outc = outconv(64, n_classes) self.sig = nn.Sigmoid() def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) x = self.outc(x) x = self.sig(x) return x
# The MIT License (MIT) # # Copyright (c) 2016 Adafruit Industries # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # pylint: disable=too-few-public-methods """ `adafruit_register.i2c_struct` ==================================================== Generic structured registers based on `struct` * Author(s): Scott Shawcroft """ try: import struct except ImportError: import ustruct as struct __version__ = "0.0.0-auto.0" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_Register.git" class Struct: """ Arbitrary structure register that is readable and writeable. Values are tuples that map to the values in the defined struct. See struct module documentation for struct format string and its possible value types. :param int register_address: The register address to read the bit from :param type struct_format: The struct format string for this register. """ def __init__(self, register_address, struct_format): self.format = struct_format self.buffer = bytearray(1 + struct.calcsize(self.format)) self.buffer[0] = register_address def __get__(self, obj, objtype=None): with obj.i2c_device as i2c: i2c.write_then_readinto(self.buffer, self.buffer, out_end=1, in_start=1) return struct.unpack_from(self.format, memoryview(self.buffer)[1:]) def __set__(self, obj, value): struct.pack_into(self.format, self.buffer, 1, *value) with obj.i2c_device as i2c: i2c.write(self.buffer) class UnaryStruct: """ Arbitrary single value structure register that is readable and writeable. Values map to the first value in the defined struct. See struct module documentation for struct format string and its possible value types. :param int register_address: The register address to read the bit from :param type struct_format: The struct format string for this register. """ def __init__(self, register_address, struct_format): self.format = struct_format self.address = register_address def __get__(self, obj, objtype=None): buf = bytearray(1 + struct.calcsize(self.format)) buf[0] = self.address with obj.i2c_device as i2c: i2c.write_then_readinto(buf, buf, out_end=1, in_start=1) return struct.unpack_from(self.format, buf, 1)[0] def __set__(self, obj, value): buf = bytearray(1 + struct.calcsize(self.format)) buf[0] = self.address struct.pack_into(self.format, buf, 1, value) with obj.i2c_device as i2c: i2c.write(buf) class ROUnaryStruct(UnaryStruct): """ Arbitrary single value structure register that is read-only. Values map to the first value in the defined struct. See struct module documentation for struct format string and its possible value types. :param int register_address: The register address to read the bit from :param type struct_format: The struct format string for this register. """ def __set__(self, obj, value): raise AttributeError()
from unittest import TestCase from model_mommy import mommy from physical.commands import HostCommandOL6, HostCommandOL7 class CommandsBaseTestCase(object): OS_VERSION = '' HOST_COMMAND_CLASS = None EXPECTED_CMD_TMPL = '' def setUp(self): self.host = mommy.make( 'Host', os_description='OL {}'.format(self.OS_VERSION) ) self.instance = mommy.make('Instance', hostname=self.host) def test_is_instance(self): self.assertTrue( isinstance(self.host.commands, self.HOST_COMMAND_CLASS) ) def test_start(self): cmd = self.host.commands.exec_service_command( service_name='fake_service_name', action='fake_start' ) self.assertEqual( cmd, self.EXPECTED_CMD_TMPL.format( service_name='fake_service_name', action='fake_start' ) ) def test_stop(self): cmd = self.host.commands.exec_service_command( service_name='fake_service_name', action='fake_stop' ) self.assertEqual( cmd, self.EXPECTED_CMD_TMPL.format( service_name='fake_service_name', action='fake_stop' ) ) def test_start_no_output(self): cmd = self.host.commands.exec_service_command( service_name='fake_service_name', action='fake_start', no_output=True ) expected_cmd = '{} > /dev/null'.format( self.EXPECTED_CMD_TMPL.format( service_name='fake_service_name', action='fake_start' ) ) self.assertEqual( cmd, expected_cmd ) def test_stop_no_output(self): cmd = self.host.commands.exec_service_command( service_name='fake_service_name', action='fake_stop', no_output=True ) expected_cmd = '{} > /dev/null'.format( self.EXPECTED_CMD_TMPL.format( service_name='fake_service_name', action='fake_stop' ) ) self.assertEqual( cmd, expected_cmd ) class CustomCommandOL6TestCase(CommandsBaseTestCase, TestCase): OS_VERSION = '6.10' HOST_COMMAND_CLASS = HostCommandOL6 EXPECTED_CMD_TMPL = '/etc/init.d/{service_name} {action}' class CustomCommandOL7TestCase(CommandsBaseTestCase, TestCase): OS_VERSION = '7.10' HOST_COMMAND_CLASS = HostCommandOL7 EXPECTED_CMD_TMPL = 'sudo systemctl {action} {service_name}.service'
# -*- coding: utf-8 -*- # This file is part of beets. # Copyright 2020, David Swarbrick. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. """Tests for image resizing based on filesize.""" from __future__ import division, absolute_import, print_function import unittest import os from test import _common from test.helper import TestHelper from beets.util import syspath from beets.util.artresizer import ( pil_resize, im_resize, get_im_version, get_pil_version, ) class ArtResizerFileSizeTest(_common.TestCase, TestHelper): """Unittest test case for Art Resizer to a specific filesize.""" IMG_225x225 = os.path.join(_common.RSRC, b"abbey.jpg") IMG_225x225_SIZE = os.stat(syspath(IMG_225x225)).st_size def setUp(self): """Called before each test, setting up beets.""" self.setup_beets() def tearDown(self): """Called after each test, unloading all plugins.""" self.teardown_beets() def _test_img_resize(self, resize_func): """Test resizing based on file size, given a resize_func.""" # Check quality setting unaffected by new parameter im_95_qual = resize_func( 225, self.IMG_225x225, quality=95, max_filesize=0, ) # check valid path returned - max_filesize hasn't broken resize command self.assertExists(im_95_qual) # Attempt a lower filesize with same quality im_a = resize_func( 225, self.IMG_225x225, quality=95, max_filesize=0.9 * os.stat(syspath(im_95_qual)).st_size, ) self.assertExists(im_a) # target size was achieved self.assertLess(os.stat(syspath(im_a)).st_size, os.stat(syspath(im_95_qual)).st_size) # Attempt with lower initial quality im_75_qual = resize_func( 225, self.IMG_225x225, quality=75, max_filesize=0, ) self.assertExists(im_75_qual) im_b = resize_func( 225, self.IMG_225x225, quality=95, max_filesize=0.9 * os.stat(syspath(im_75_qual)).st_size, ) self.assertExists(im_b) # Check high (initial) quality still gives a smaller filesize self.assertLess(os.stat(syspath(im_b)).st_size, os.stat(syspath(im_75_qual)).st_size) @unittest.skipUnless(get_pil_version(), "PIL not available") def test_pil_file_resize(self): """Test PIL resize function is lowering file size.""" self._test_img_resize(pil_resize) @unittest.skipUnless(get_im_version(), "ImageMagick not available") def test_im_file_resize(self): """Test IM resize function is lowering file size.""" self._test_img_resize(im_resize) def suite(): """Run this suite of tests.""" return unittest.TestLoader().loadTestsFromName(__name__) if __name__ == "__main__": unittest.main(defaultTest="suite")
# Copyright (C) 2019-2020, Therapixel SA. # All rights reserved. # This file is subject to the terms and conditions described in the # LICENSE file distributed in this package. """The dcm2model module provides methods that can be used to convert pydicom.Dataset instances to sqlalchemy instances. """ from typing import Tuple, Union from pydicom import Dataset, dcmread from pacsanini.convert import agestr2years, dcm2dict, str2datetime from pacsanini.db.models import Image, Patient, Series, Study, StudyFind from pacsanini.parse import DicomTagGroup def dcm2patient(dcm: Dataset, institution: str = None) -> Patient: """Convert a DICOM file to a Patient instance that can be inserted in the database. Parameters ---------- dcm : Dataset The DICOM data to convert to a Patient instance. institution : str If set, add a specified institution name to the Patient model. The default is None. Returns ------- Patient The Patient model. """ tag_grp = DicomTagGroup( tags=[ {"tag_name": "PatientID", "tag_alias": "patient_id"}, {"tag_name": "PatientName", "tag_alias": "patient_name", "callback": str}, { "tag_name": "PatientBirthDate", "tag_alias": "patient_birth_date", "callback": str2datetime, }, ] ) data = tag_grp.parse_dicom(dcm) data["institution"] = institution return Patient(**data) def dcm2study(dcm: Dataset) -> Study: """Convert a DICOM file to a Study instance that can be inserted in the database. Parameters ---------- dcm : Dataset The DICOM data to convert to a Study instance. Returns ------- Study The Study model. """ tag_grp = DicomTagGroup( tags=[ {"tag_name": "StudyInstanceUID", "tag_alias": "study_uid"}, { "tag_name": "StudyDate", "tag_alias": "study_date", "callback": str2datetime, }, { "tag_name": "PatientAge", "tag_alias": "patient_age", "callback": agestr2years, "default": -1, }, {"tag_name": "AccessionNumber", "tag_alias": "accession_number"}, ] ) data = tag_grp.parse_dicom(dcm) return Study(**data) def dcm2study_finding(dcm: Dataset) -> StudyFind: """Convert a DICOM file to a StudyFind instance that can be inserted in the database. Parameters ---------- dcm : Dataset The DICOM data to convert to a StudyFind instance. Returns ------- StudyFind The StudyFind model. """ tag_grp = DicomTagGroup( tags=[ {"tag_name": "PatientName", "tag_alias": "patient_name", "callback": str}, {"tag_name": "PatientID", "tag_alias": "patient_id"}, {"tag_name": "StudyInstanceUID", "tag_alias": "study_uid"}, { "tag_name": "StudyDate", "tag_alias": "study_date", "callback": str2datetime, }, {"tag_name": "AccessionNumber", "tag_alias": "accession_number"}, ] ) data = tag_grp.parse_dicom(dcm) return StudyFind(**data) def dcm2series(dcm: Dataset) -> Series: """Convert a DICOM file to a Series instance that can be inserted in the database. Parameters ---------- dcm : Dataset The DICOM data to convert to a Series instance. Returns ------- Series The Series model. """ tag_grp = DicomTagGroup( tags=[ {"tag_name": "SeriesInstanceUID", "tag_alias": "series_uid"}, {"tag_name": "Modality", "tag_alias": "modality"}, ] ) data = tag_grp.parse_dicom(dcm) return Series(**data) def dcm2image(dcm: Dataset, institution: str = None, filepath: str = None) -> Image: """Convert a DICOM file to a Image instance that can be inserted in the database. Parameters ---------- dcm : Dataset The DICOM data to convert to a Image instance. institution : str If set, add a specified institution name to the Image model. The default is None. filepath : str If set, add the DICOM's filepath to the database. The default is None. Returns ------- Image The Image model. """ tag_grp = DicomTagGroup( tags=[ {"tag_name": "PatientID", "tag_alias": "patient_id"}, {"tag_name": "StudyInstanceUID", "tag_alias": "study_uid"}, { "tag_name": "StudyDate", "tag_alias": "study_date", "callback": str2datetime, }, {"tag_name": "SeriesInstanceUID", "tag_alias": "series_uid"}, {"tag_name": "Modality", "tag_alias": "modality"}, {"tag_name": "SOPClassUID", "tag_alias": "sop_class_uid"}, {"tag_name": "SOPInstanceUID", "tag_alias": "image_uid"}, {"tag_name": "AcquisitionTime", "tag_alias": "acquisition_time"}, {"tag_name": "Manufacturer", "tag_alias": "manufacturer"}, { "tag_name": "ManufacturerModelName", "tag_alias": "manufacturer_model_name", }, ] ) data = tag_grp.parse_dicom(dcm) data["meta"] = dcm2dict(dcm, include_pixels=False) data["institution"] = institution data["filepath"] = filepath return Image(**data) def dcm2dbmodels( dcm: Union[str, Dataset], institution: str = None, filepath: str = None ) -> Tuple[Patient, Study, Series, Image]: """Convert a DICOM file into the different database models that will be used to insert the DICOM data into the database. Parameters ---------- dcm : Union[str, Dataset] The DICOM data to convert to a Patient, Study, Series, and Image instance. institution : str If set, add a specified institution name to the Patient model. The default is None. filepath : str If set, add the DICOM's filepath to the database. The default is None. If the input dcm parameter value is a string, filepath will be set to this. Returns ------- Tuple[Patient, Study, Series, Image] A 4-tuple corresponding to the image's """ if isinstance(dcm, str): filepath = dcm dcm = dcmread(dcm, stop_before_pixels=True) pat = dcm2patient(dcm, institution=institution) study = dcm2study(dcm) series = dcm2series(dcm) image = dcm2image(dcm, institution=institution, filepath=filepath) return pat, study, series, image
from typing import Callable, Optional import gin import gym from interact.agents.ddpg.ddpg import DDPGAgent from interact.agents.utils import register @gin.configurable(name_or_fn="td3", denylist=["env_fn"]) @register("td3") class TD3Agent(DDPGAgent): """The Twin Delayed DDPG (TD3) algorithm. This algorithm is a minor modification of DDPG. This class is merely a wrapper around DDPG with the TD3 features enabled by default. Namely, TD3 uses twin critic networks, delayed policy updates, and target policy smoothing. Args: env_fn: A function that, when called, returns an instance of the agent's environment. network: Base network type to be used by the policy and Q-functions. actor_lr: Learning rate to use for updating the actor. critic_lr: Learning rate to use for updating the critics. tau: Parameter for the polyak averaging used to update the target networks. target_update_interval: Frequency with which the target Q-networks are updated. gamma: The discount factor. buffer_size: The maximum size of the replay buffer. train_freq: The frequency with which training updates are performed. target_update_interval: The frequency with which the target network is updated. learning_starts: The number of timesteps after which learning starts. random_steps: Actions will be sampled completely at random for this many timesteps at the beginning of training. batch_size: The size of batches sampled from the replay buffer over which updates are performed. num_workers: The number of parallel workers to use for experience collection. num_envs_per_worker: The number of synchronous environments to be executed in each worker. prioritized_replay: If True, a prioritized experience replay will be used. prioritized_replay_alpha: Alpha parameter for prioritized replay. prioritized_replay_beta: Initial beta parameter for prioritized replay. final_prioritized_replay_beta: The final value of the prioritized replay beta parameter. prioritized_replay_beta_steps: Number of steps over which the prioritized replay beta parameter will be annealed. If None, this will be set to the total number of training steps. prioritized_replay_epsilon: Epsilon to add to td-errors when updating priorities. initial_noise_scale: The initial scale of the Gaussian noise that is added to actions for exploration. final_noise_scale: The final scale of the Gaussian noise that is added to actions for exploration. noise_scale_steps: The number of timesteps over which the amount of exploration noise is annealed from `initial_noise_scale` to `final_noise_scale`. If None, the total duration of training is used. use_huber: If True, the Huber loss is used in favor of MSE for critic updates. use_twin_critic: If True, twin critic networks are used. policy_delay: The policy is updated once for every `policy_delay` critic updates. smooth_target_policy: If true, target policy smoothing is used in the critic updates. target_noise: The amount of target noise that is used for smoothing. target_noise_clip: The value at which target noise is clipped. """ def __init__( self, env_fn: Callable[[], gym.Env], network: str = "mlp", critic_lr: float = 1e-3, actor_lr: float = 1e-3, learning_starts: int = 10000, random_steps: int = 10000, target_update_interval: int = 1, tau: float = 0.005, gamma: float = 0.95, buffer_size: int = 100000, train_freq: int = 1, batch_size: int = 100, num_workers: int = 1, num_envs_per_worker: int = 1, prioritized_replay: bool = False, prioritized_replay_alpha: float = 0.6, prioritized_replay_beta: float = 0.4, final_prioritized_replay_beta: float = 4.0, prioritized_replay_beta_steps: Optional[int] = None, prioritized_replay_epsilon: float = 1e-6, initial_noise_scale: float = 0.1, final_noise_scale: float = 0.1, noise_scale_steps: Optional[int] = None, use_huber: bool = False, use_twin_critic: bool = True, policy_delay: int = 2, smooth_target_policy: bool = True, target_noise: float = 0.2, target_noise_clip: float = 0.5, ): super().__init__( env_fn, network, critic_lr, actor_lr, learning_starts, random_steps, target_update_interval, tau, gamma, buffer_size, train_freq, batch_size, num_workers, num_envs_per_worker, prioritized_replay, prioritized_replay_alpha, prioritized_replay_beta, final_prioritized_replay_beta, prioritized_replay_beta_steps, prioritized_replay_epsilon, initial_noise_scale, final_noise_scale, noise_scale_steps, use_huber, use_twin_critic, policy_delay, smooth_target_policy, target_noise, target_noise_clip, )
# Copyright (c) 2022, Leonardo Lamanna # All rights reserved. # This source code is licensed under the MIT-style license found in the # LICENSE file in the root directory of this source tree. import pandas as pd import os pd.options.display.max_colwidth = 100 def generate_latex_table(data_file, labels, tab_name, caption, header): with open(tab_name + ".tex", "w") as f: df = pd.read_excel(data_file, sheet_name="Summary") df_restricted = df[labels] f.write(df_restricted.to_latex(index=False, escape=False, label="tab:{}".format(tab_name), caption= caption, header = header)) def generate_comparison_latex_table(): labels = ["Domain", "Neg precision A", "Neg recall A", "Overall precision A", "Overall recall A", "Neg precision B", "Neg recall B", "Overall precision B", "Overall recall B"] header = ["Domain", "$P_{\\eff^{-}}$", "$R_{\\eff^{-}}$", "$P$", "$R$", "$P_{\\eff^{-}}$", "$R_{\\eff^{-}}$", "$P$", "$R$"] caption = "For each domain:statistics on final metrics of the last instance grouped by " \ "negative effects." tab_name = "comparison_summary_uncertain" file_path = os.path.join("comparison_summary_uncertain.xlsx") generate_latex_table(file_path, labels, tab_name, caption, header) def generate_comparison_latex_table_fama(): labels = ["Domain", "Tot time", "Overall precision", "Overall recall", "FAMA tot time", "FAMA precision", "FAMA recall", "Delta act"] header = ["Domain", "$t$", "$P$", "$R$", "$t$", "$P$", "$R$", "$\delta_{A}$"] caption = "Comparison among OLAM and FAMA with full observability. FAMA is run with all plan traces " \ "provided in \protect\cite{aineto_AIJ2019}. MODEL WITH UNCERTAIN NEGATIVE EFFECTS AND STRIPS ASSUMPTION." tab_name = "comparison_fama" file_path = os.path.join("comparison_fama.xlsx") generate_latex_table(file_path, labels, tab_name, caption, header) def generate_summary_latex_table(): # labels = ["Domain", "Instances", "Precs precision", "Precs recall","Pos precision", "Pos recall", # "Neg precision", "Neg recall", "Overall precision", "Overall recall"] labels = ["Domain", "Instances", "Precs precision", "Precs recall","Pos precision", "Pos recall", "Neg precision", "Neg recall", "Average precision", "Average recall"] header = ["Domain", "$I$", "$P_{\\prec}$", "$R_{\\prec}$", "$P_{\\eff^{+}}$", "$R_{\\eff^{+}}$", "$P_{\\eff^{-}}$", "$R_{\\eff^{-}}$", "$P$", "$R$"] caption = "For each domain:statistics on final metrics of the last instance grouped by " \ "preconditions, positive effects and negative ones." tab_name = "overall_summary_certain_nostripsass" folder = "../Analysis/IJCAI_Results/Results_certain_NOnegeff_assumption" file_path = os.path.join(folder, "overall_summary.xlsx") generate_latex_table(file_path, labels, tab_name, caption, header) def generate_domain_objects_table(): header = ["Domain", "Objects"] caption = "For each domain, problem objects of all problems in the generated set." tab_name = "all_problem_objects" df = pd.DataFrame({ "Domain":[], "Objects":[] }) # df.set_index('Domain', inplace=True) domain_dataframes = [name for name in os.listdir(os.path.join("..", "Analysis", "Results_cert")) if not name.startswith("overall")] for domain_dataframe in domain_dataframes: domain = domain_dataframe.split("_")[0] df_domain = pd.read_excel(os.path.join("..", "Analysis", "Results_cert", domain_dataframe), sheet_name="Objects") domain_obj_types = [key.strip().lower() for key in list(df_domain) if key.strip().lower() != "total objs"] for i, row in df_domain.iterrows(): problem_objs = [] for k in domain_obj_types: problem_objs.append("{} {}".format(k,row["\t" + k])) eval = { "Domain":domain, "Objects":", ".join(problem_objs) } df = df.append(eval, ignore_index=True) with open(tab_name + ".tex", "w") as f: f.write(df.to_latex(index=False, label="tab:{}".format(tab_name), caption= caption, header = header)) if __name__ == "__main__": generate_summary_latex_table() # # generate_domain_objects_table()
#!/usr/bin/env python import torch import torch.nn as nn from colossalai.nn import CheckpointModule from .utils.dummy_data_generator import DummyDataGenerator from .registry import non_distributed_component_funcs class NetWithRepeatedlyComputedLayers(CheckpointModule): """ This model is to test with layers which go through forward pass multiple times. In this model, the fc1 and fc2 call forward twice """ def __init__(self, checkpoint=False) -> None: super().__init__(checkpoint=checkpoint) self.fc1 = nn.Linear(5, 5) self.fc2 = nn.Linear(5, 5) self.fc3 = nn.Linear(5, 2) self.layers = [self.fc1, self.fc2, self.fc1, self.fc2, self.fc3] def forward(self, x): for layer in self.layers: x = layer(x) return x class DummyDataLoader(DummyDataGenerator): def generate(self): data = torch.rand(16, 5) label = torch.randint(low=0, high=2, size=(16,)) return data, label @non_distributed_component_funcs.register(name='repeated_computed_layers') def get_training_components(): def model_builder(checkpoint=True): return NetWithRepeatedlyComputedLayers(checkpoint) trainloader = DummyDataLoader() testloader = DummyDataLoader() criterion = torch.nn.CrossEntropyLoss() return model_builder, trainloader, testloader, torch.optim.Adam, criterion
import math import torch from ..abstract import ExtendedTorchModule from ..functional import sparsity_error from ._abstract_recurrent_cell import AbstractRecurrentCell class HardSoftmaxNACLayer(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features # Define the target weights. Also, put 0 last such that p1 = p2 = 0 # corresponds to p3 = 1 => w = 0. self.register_buffer('target_weights', torch.tensor([1, -1, 0], dtype=torch.float32)) # Initialize a tensor, that will be the placeholder for the hard samples self.register_buffer('sample', torch.LongTensor(out_features, in_features)) # We will only two parameters per weight, this is to prevent the redundancy # there would otherwise exist. This also makes it much more comparable with # NAC. self.W_hat = torch.nn.Parameter(torch.Tensor(out_features, in_features, 2)) self.register_buffer('W_hat_k', torch.Tensor(out_features, in_features, 1)) self.register_parameter('bias', None) def reset_parameters(self): # Use a gain of sqrt(0.5). Lets assume that softmax'(0) ~ 1, because this # holds for sigmoid. Then: # Var[W] = 1 * Var[S_1] - 1 * Var[S_2] + 0 * Var[S_3] = 2 / (fan[in] + fan[out]) # Var[W] = 2 * Var[S_i] = 2 / (fan[in] + fan[out]) # Var[S_i] = 1/2 * 2 / (fan[in] + fan[out]) # sqrt(Var[S_i]) = sqrt(1/2) * sqrt(2 / (fan[in] + fan[out])) # This is not exactly true, because S_1, S_2, and S_3 are not enterily uncorrelated. torch.nn.init.xavier_uniform_(self.W_hat, gain=math.sqrt(0.5)) torch.nn.init.constant_(self.W_hat_k, 0) def forward(self, input, reuse=False): # Concat trainable and non-trainable weights W_hat_full = torch.cat((self.W_hat, self.W_hat_k), dim=-1) # size = [out, in, 3] # Compute W_soft pi = torch.nn.functional.softmax(W_hat_full, dim=-1) W_soft = pi @ self.target_weights # Compute W_hard if not reuse: torch.multinomial(pi.view(-1, 3), 1, True, out=self.sample.view(-1)) W_hard = self.target_weights[self.sample] # Use W_hard in the forward pass, but use W_soft for the gradients. # This implementation trick comes from torch.nn.functional.gumble_softmax(hard=True) W = W_hard - W_soft.detach() + W_soft # Compute the linear multiplication as usual self.writer.add_histogram('W', W) self.writer.add_tensor('W', W) self.writer.add_scalar('W/sparsity_error', sparsity_error(W), verbose_only=False) return torch.nn.functional.linear(input, W, self.bias) def extra_repr(self): return 'in_features={}, out_features={}'.format( self.in_features, self.out_features ) class HardSoftmaxNACCell(AbstractRecurrentCell): """Implements the Gumbel NAC (Gumbel Neural Accumulator) as a recurrent cell Arguments: input_size: number of ingoing features hidden_size: number of outgoing features """ def __init__(self, input_size, hidden_size, **kwargs): super().__init__(HardSoftmaxNACLayer, input_size, hidden_size, **kwargs)
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from .task_agent_reference import TaskAgentReference class TaskAgent(TaskAgentReference): """TaskAgent. :param _links: :type _links: :class:`ReferenceLinks <task-agent.v4_1.models.ReferenceLinks>` :param enabled: Gets or sets a value indicating whether or not this agent should be enabled for job execution. :type enabled: bool :param id: Gets the identifier of the agent. :type id: int :param name: Gets the name of the agent. :type name: str :param oSDescription: Gets the OS of the agent. :type oSDescription: str :param status: Gets the current connectivity status of the agent. :type status: object :param version: Gets the version of the agent. :type version: str :param assigned_request: Gets the request which is currently assigned to this agent. :type assigned_request: :class:`TaskAgentJobRequest <task-agent.v4_1.models.TaskAgentJobRequest>` :param authorization: Gets or sets the authorization information for this agent. :type authorization: :class:`TaskAgentAuthorization <task-agent.v4_1.models.TaskAgentAuthorization>` :param created_on: Gets the date on which this agent was created. :type created_on: datetime :param last_completed_request: Gets the last request which was completed by this agent. :type last_completed_request: :class:`TaskAgentJobRequest <task-agent.v4_1.models.TaskAgentJobRequest>` :param max_parallelism: Gets or sets the maximum job parallelism allowed on this host. :type max_parallelism: int :param pending_update: Gets the pending update for this agent. :type pending_update: :class:`TaskAgentUpdate <task-agent.v4_1.models.TaskAgentUpdate>` :param properties: :type properties: :class:`object <task-agent.v4_1.models.object>` :param status_changed_on: Gets the date on which the last connectivity status change occurred. :type status_changed_on: datetime :param system_capabilities: :type system_capabilities: dict :param user_capabilities: :type user_capabilities: dict """ _attribute_map = { '_links': {'key': '_links', 'type': 'ReferenceLinks'}, 'enabled': {'key': 'enabled', 'type': 'bool'}, 'id': {'key': 'id', 'type': 'int'}, 'name': {'key': 'name', 'type': 'str'}, 'oSDescription': {'key': 'oSDescription', 'type': 'str'}, 'status': {'key': 'status', 'type': 'object'}, 'version': {'key': 'version', 'type': 'str'}, 'assigned_request': {'key': 'assignedRequest', 'type': 'TaskAgentJobRequest'}, 'authorization': {'key': 'authorization', 'type': 'TaskAgentAuthorization'}, 'created_on': {'key': 'createdOn', 'type': 'iso-8601'}, 'last_completed_request': {'key': 'lastCompletedRequest', 'type': 'TaskAgentJobRequest'}, 'max_parallelism': {'key': 'maxParallelism', 'type': 'int'}, 'pending_update': {'key': 'pendingUpdate', 'type': 'TaskAgentUpdate'}, 'properties': {'key': 'properties', 'type': 'object'}, 'status_changed_on': {'key': 'statusChangedOn', 'type': 'iso-8601'}, 'system_capabilities': {'key': 'systemCapabilities', 'type': '{str}'}, 'user_capabilities': {'key': 'userCapabilities', 'type': '{str}'} } def __init__(self, _links=None, enabled=None, id=None, name=None, oSDescription=None, status=None, version=None, assigned_request=None, authorization=None, created_on=None, last_completed_request=None, max_parallelism=None, pending_update=None, properties=None, status_changed_on=None, system_capabilities=None, user_capabilities=None): super(TaskAgent, self).__init__(_links=_links, enabled=enabled, id=id, name=name, oSDescription=oSDescription, status=status, version=version) self.assigned_request = assigned_request self.authorization = authorization self.created_on = created_on self.last_completed_request = last_completed_request self.max_parallelism = max_parallelism self.pending_update = pending_update self.properties = properties self.status_changed_on = status_changed_on self.system_capabilities = system_capabilities self.user_capabilities = user_capabilities
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # pylint: disable=too-many-lines # pylint: disable=line-too-long from __future__ import print_function from collections import OrderedDict import codecs import json import os import platform import re import ssl import sys import uuid import base64 from six.moves.urllib.request import urlopen # pylint: disable=import-error from six.moves.urllib.parse import urlparse # pylint: disable=import-error from msrestazure.tools import is_valid_resource_id, parse_resource_id from azure.mgmt.resource.resources.models import GenericResource, DeploymentMode from azure.cli.core.parser import IncorrectUsageError from azure.cli.core.util import get_file_json, read_file_content, shell_safe_json_parse, sdk_no_wait from azure.cli.core.commands import LongRunningOperation from azure.cli.core.commands.client_factory import get_mgmt_service_client from azure.cli.core.profiles import ResourceType, get_sdk, get_api_version, AZURE_API_PROFILES from azure.cli.command_modules.resource._client_factory import ( _resource_client_factory, _resource_policy_client_factory, _resource_lock_client_factory, _resource_links_client_factory, _resource_deploymentscripts_client_factory, _authorization_management_client, _resource_managedapps_client_factory, _resource_templatespecs_client_factory) from azure.cli.command_modules.resource._validators import _parse_lock_id from knack.log import get_logger from knack.prompting import prompt, prompt_pass, prompt_t_f, prompt_choice_list, prompt_int, NoTTYException from knack.util import CLIError from msrest.serialization import Serializer from msrest.pipeline import SansIOHTTPPolicy from ._validators import MSI_LOCAL_ID from ._formatters import format_what_if_operation_result logger = get_logger(__name__) def _build_resource_id(**kwargs): from msrestazure.tools import resource_id as resource_id_from_dict try: return resource_id_from_dict(**kwargs) except KeyError: return None def _process_parameters(template_param_defs, parameter_lists): # pylint: disable=too-many-statements def _try_parse_json_object(value): try: parsed = _remove_comments_from_json(value, False) return parsed.get('parameters', parsed) except Exception: # pylint: disable=broad-except return None def _try_load_file_object(file_path): try: is_file = os.path.isfile(file_path) except ValueError: return None if is_file is True: try: content = read_file_content(file_path) if not content: return None parsed = _remove_comments_from_json(content, False, file_path) return parsed.get('parameters', parsed) except Exception as ex: raise CLIError("Failed to parse {} with exception:\n {}".format(file_path, ex)) return None def _try_load_uri(uri): if "://" in uri: try: value = _urlretrieve(uri).decode('utf-8') parsed = _remove_comments_from_json(value, False) return parsed.get('parameters', parsed) except Exception: # pylint: disable=broad-except pass return None def _try_parse_key_value_object(template_param_defs, parameters, value): # support situation where empty JSON "{}" is provided if value == '{}' and not parameters: return True try: key, value = value.split('=', 1) except ValueError: return False param = template_param_defs.get(key, None) if param is None: raise CLIError("unrecognized template parameter '{}'. Allowed parameters: {}" .format(key, ', '.join(sorted(template_param_defs.keys())))) param_type = param.get('type', None) if param_type: param_type = param_type.lower() if param_type in ['object', 'array', 'secureobject']: parameters[key] = {'value': shell_safe_json_parse(value)} elif param_type in ['string', 'securestring']: parameters[key] = {'value': value} elif param_type == 'bool': parameters[key] = {'value': value.lower() == 'true'} elif param_type == 'int': parameters[key] = {'value': int(value)} else: logger.warning("Unrecognized type '%s' for parameter '%s'. Interpretting as string.", param_type, key) parameters[key] = {'value': value} return True parameters = {} for params in parameter_lists or []: for item in params: param_obj = _try_load_file_object(item) if param_obj is None: param_obj = _try_parse_json_object(item) if param_obj is None: param_obj = _try_load_uri(item) if param_obj is not None: parameters.update(param_obj) elif not _try_parse_key_value_object(template_param_defs, parameters, item): raise CLIError('Unable to parse parameter: {}'.format(item)) return parameters # pylint: disable=redefined-outer-name def _find_missing_parameters(parameters, template): if template is None: return {} template_parameters = template.get('parameters', None) if template_parameters is None: return {} missing = OrderedDict() for parameter_name in template_parameters: parameter = template_parameters[parameter_name] if 'defaultValue' in parameter: continue if parameters is not None and parameters.get(parameter_name, None) is not None: continue missing[parameter_name] = parameter return missing def _prompt_for_parameters(missing_parameters, fail_on_no_tty=True): # pylint: disable=too-many-statements prompt_list = missing_parameters.keys() if isinstance(missing_parameters, OrderedDict) \ else sorted(missing_parameters) result = OrderedDict() no_tty = False for param_name in prompt_list: param = missing_parameters[param_name] param_type = param.get('type', 'string').lower() description = 'Missing description' metadata = param.get('metadata', None) if metadata is not None: description = metadata.get('description', description) allowed_values = param.get('allowedValues', None) prompt_str = "Please provide {} value for '{}' (? for help): ".format(param_type, param_name) while True: if allowed_values is not None: try: ix = prompt_choice_list(prompt_str, allowed_values, help_string=description) result[param_name] = allowed_values[ix] except NoTTYException: result[param_name] = None no_tty = True break elif param_type == 'securestring': try: value = prompt_pass(prompt_str, help_string=description) except NoTTYException: value = None no_tty = True result[param_name] = value break elif param_type == 'int': try: int_value = prompt_int(prompt_str, help_string=description) result[param_name] = int_value except NoTTYException: result[param_name] = 0 no_tty = True break elif param_type == 'bool': try: value = prompt_t_f(prompt_str, help_string=description) result[param_name] = value except NoTTYException: result[param_name] = False no_tty = True break elif param_type in ['object', 'array']: try: value = prompt(prompt_str, help_string=description) except NoTTYException: value = '' no_tty = True if value == '': value = {} if param_type == 'object' else [] else: try: value = shell_safe_json_parse(value) except Exception as ex: # pylint: disable=broad-except logger.error(ex) continue result[param_name] = value break else: try: result[param_name] = prompt(prompt_str, help_string=description) except NoTTYException: result[param_name] = None no_tty = True break if no_tty and fail_on_no_tty: raise NoTTYException return result # pylint: disable=redefined-outer-name def _get_missing_parameters(parameters, template, prompt_fn, no_prompt=False): missing = _find_missing_parameters(parameters, template) if missing: if no_prompt is True: logger.warning("Missing input parameters: %s ", ', '.join(sorted(missing.keys()))) else: try: prompt_parameters = prompt_fn(missing) for param_name in prompt_parameters: parameters[param_name] = { "value": prompt_parameters[param_name] } except NoTTYException: raise CLIError("Missing input parameters: {}".format(', '.join(sorted(missing.keys())))) return parameters def _ssl_context(): if sys.version_info < (3, 4): return ssl.SSLContext(ssl.PROTOCOL_TLSv1) return ssl.create_default_context() def _urlretrieve(url): req = urlopen(url, context=_ssl_context()) return req.read() # pylint: disable=redefined-outer-name def _remove_comments_from_json(template, preserve_order=True, file_path=None): from jsmin import jsmin # When commenting at the bottom of all elements in a JSON object, jsmin has a bug that will wrap lines. # It will affect the subsequent multi-line processing logic, so deal with this situation in advance here. template = re.sub(r'(^[\t ]*//[\s\S]*?\n)|(^[\t ]*/\*{1,2}[\s\S]*?\*/)', '', template, flags=re.M) minified = jsmin(template) # Get rid of multi-line strings. Note, we are not sending it on the wire rather just extract parameters to prompt for values result = re.sub(r'"[^"]*?\n[^"]*?(?<!\\)"', '"#Azure Cli#"', minified, re.DOTALL) try: return shell_safe_json_parse(result, preserve_order) except CLIError: # Because the processing of removing comments and compression will lead to misplacement of error location, # so the error message should be wrapped. if file_path: raise CLIError("Failed to parse '{}', please check whether it is a valid JSON format".format(file_path)) raise CLIError("Failed to parse the JSON data, please check whether it is a valid JSON format") # pylint: disable=too-many-locals, too-many-statements, too-few-public-methods def _deploy_arm_template_core_unmodified(cmd, resource_group_name, template_file=None, template_uri=None, deployment_name=None, parameters=None, mode=None, rollback_on_error=None, validate_only=False, no_wait=False, aux_subscriptions=None, aux_tenants=None, no_prompt=False): DeploymentProperties, TemplateLink, OnErrorDeployment = cmd.get_models('DeploymentProperties', 'TemplateLink', 'OnErrorDeployment') template_link = None template_obj = None on_error_deployment = None template_content = None if template_uri: template_link = TemplateLink(uri=template_uri) template_obj = _remove_comments_from_json(_urlretrieve(template_uri).decode('utf-8'), file_path=template_uri) else: template_content = read_file_content(template_file) template_obj = _remove_comments_from_json(template_content, file_path=template_file) if rollback_on_error == '': on_error_deployment = OnErrorDeployment(type='LastSuccessful') elif rollback_on_error: on_error_deployment = OnErrorDeployment(type='SpecificDeployment', deployment_name=rollback_on_error) template_param_defs = template_obj.get('parameters', {}) template_obj['resources'] = template_obj.get('resources', []) parameters = _process_parameters(template_param_defs, parameters) or {} parameters = _get_missing_parameters(parameters, template_obj, _prompt_for_parameters, no_prompt) parameters = json.loads(json.dumps(parameters)) properties = DeploymentProperties(template=template_content, template_link=template_link, parameters=parameters, mode=mode, on_error_deployment=on_error_deployment) smc = get_mgmt_service_client(cmd.cli_ctx, ResourceType.MGMT_RESOURCE_RESOURCES, aux_subscriptions=aux_subscriptions, aux_tenants=aux_tenants) deployment_client = smc.deployments # This solves the multi-api for you if not template_uri: # pylint: disable=protected-access deployment_client._serialize = JSONSerializer( deployment_client._serialize.dependencies ) # Plug this as default HTTP pipeline from msrest.pipeline import Pipeline from msrest.pipeline.requests import ( RequestsCredentialsPolicy, RequestsPatchSession, PipelineRequestsHTTPSender ) from msrest.universal_http.requests import RequestsHTTPSender smc.config.pipeline = Pipeline( policies=[ JsonCTemplatePolicy(), smc.config.user_agent_policy, RequestsPatchSession(), smc.config.http_logger_policy, RequestsCredentialsPolicy(smc.config.credentials) ], sender=PipelineRequestsHTTPSender(RequestsHTTPSender(smc.config)) ) if cmd.supported_api_version(min_api='2019-10-01', resource_type=ResourceType.MGMT_RESOURCE_RESOURCES): Deployment = cmd.get_models('Deployment') deployment = Deployment(properties=properties) validation_poller = deployment_client.validate(resource_group_name, deployment_name, deployment) validation_result = LongRunningOperation(cmd.cli_ctx)(validation_poller) else: validation_result = deployment_client.validate(resource_group_name, deployment_name, properties) if validation_result and validation_result.error: err_message = _build_preflight_error_message(validation_result.error) raise CLIError(err_message) if validate_only: return validation_result if cmd.supported_api_version(min_api='2019-10-01', resource_type=ResourceType.MGMT_RESOURCE_RESOURCES): return sdk_no_wait(no_wait, deployment_client.create_or_update, resource_group_name, deployment_name, deployment) return sdk_no_wait(no_wait, deployment_client.create_or_update, resource_group_name, deployment_name, properties) class JsonCTemplate: def __init__(self, template_as_bytes): self.template_as_bytes = template_as_bytes class JSONSerializer(Serializer): def body(self, data, data_type, **kwargs): if data_type in ('Deployment', 'ScopedDeployment', 'DeploymentWhatIf', 'ScopedDeploymentWhatIf'): # Be sure to pass a DeploymentProperties template = data.properties.template if template: data_as_dict = data.serialize() data_as_dict["properties"]["template"] = JsonCTemplate(template) return data_as_dict return super(JSONSerializer, self).body(data, data_type, **kwargs) class JsonCTemplatePolicy(SansIOHTTPPolicy): def on_request(self, request, **kwargs): http_request = request.http_request logger.info(http_request.data) if (getattr(http_request, 'data', {}) or {}).get('properties', {}).get('template'): template = http_request.data["properties"]["template"] if not isinstance(template, JsonCTemplate): raise ValueError() del http_request.data["properties"]["template"] # templateLink nad template cannot exist at the same time in deployment_dry_run mode if "templateLink" in http_request.data["properties"].keys(): del http_request.data["properties"]["templateLink"] partial_request = json.dumps(http_request.data) http_request.data = partial_request[:-2] + ", template:" + template.template_as_bytes + r"}}" http_request.data = http_request.data.encode('utf-8') # pylint: disable=unused-argument def deploy_arm_template_at_subscription_scope(cmd, template_file=None, template_uri=None, parameters=None, deployment_name=None, deployment_location=None, no_wait=False, handle_extended_json_format=None, no_prompt=False, confirm_with_what_if=None, what_if_result_format=None, what_if_exclude_change_types=None, template_spec=None): if confirm_with_what_if: what_if_deploy_arm_template_at_subscription_scope(cmd, template_file=template_file, template_uri=template_uri, parameters=parameters, deployment_name=deployment_name, deployment_location=deployment_location, result_format=what_if_result_format, exclude_change_types=what_if_exclude_change_types, no_prompt=no_prompt, template_spec=template_spec) from knack.prompting import prompt_y_n if not prompt_y_n("\nAre you sure you want to execute the deployment?"): return None return _deploy_arm_template_at_subscription_scope(cmd=cmd, template_file=template_file, template_uri=template_uri, parameters=parameters, deployment_name=deployment_name, deployment_location=deployment_location, validate_only=False, no_wait=no_wait, no_prompt=no_prompt, template_spec=template_spec) # pylint: disable=unused-argument def validate_arm_template_at_subscription_scope(cmd, template_file=None, template_uri=None, parameters=None, deployment_name=None, deployment_location=None, no_wait=False, handle_extended_json_format=None, no_prompt=False, template_spec=None): return _deploy_arm_template_at_subscription_scope(cmd=cmd, template_file=template_file, template_uri=template_uri, parameters=parameters, deployment_name=deployment_name, deployment_location=deployment_location, validate_only=True, no_wait=no_wait, no_prompt=no_prompt, template_spec=template_spec,) def _deploy_arm_template_at_subscription_scope(cmd, template_file=None, template_uri=None, parameters=None, deployment_name=None, deployment_location=None, validate_only=False, no_wait=False, no_prompt=False, template_spec=None): deployment_properties = _prepare_deployment_properties_unmodified(cmd, template_file=template_file, template_uri=template_uri, parameters=parameters, mode='Incremental', no_prompt=no_prompt, template_spec=template_spec) mgmt_client = _get_deployment_management_client(cmd.cli_ctx, plug_pipeline=(template_uri is None and template_spec is None)) if cmd.supported_api_version(min_api='2019-10-01', resource_type=ResourceType.MGMT_RESOURCE_RESOURCES): Deployment = cmd.get_models('Deployment') deployment = Deployment(properties=deployment_properties, location=deployment_location) validation_poller = mgmt_client.validate_at_subscription_scope(deployment_name, deployment) validation_result = LongRunningOperation(cmd.cli_ctx)(validation_poller) else: validation_result = mgmt_client.validate_at_subscription_scope(deployment_name, deployment_properties, deployment_location) if validation_result and validation_result.error: err_message = _build_preflight_error_message(validation_result.error) raise CLIError(err_message) if validate_only: return validation_result if cmd.supported_api_version(min_api='2019-10-01', resource_type=ResourceType.MGMT_RESOURCE_RESOURCES): return sdk_no_wait(no_wait, mgmt_client.create_or_update_at_subscription_scope, deployment_name, deployment) return sdk_no_wait(no_wait, mgmt_client.create_or_update_at_subscription_scope, deployment_name, deployment_properties, deployment_location) # pylint: disable=unused-argument def deploy_arm_template_at_resource_group(cmd, resource_group_name=None, template_file=None, template_uri=None, parameters=None, deployment_name=None, mode=None, rollback_on_error=None, no_wait=False, handle_extended_json_format=None, aux_subscriptions=None, aux_tenants=None, no_prompt=False, confirm_with_what_if=None, what_if_result_format=None, what_if_exclude_change_types=None, template_spec=None): if confirm_with_what_if: what_if_deploy_arm_template_at_resource_group(cmd, resource_group_name=resource_group_name, template_file=template_file, template_uri=template_uri, parameters=parameters, deployment_name=deployment_name, mode=mode, aux_tenants=aux_tenants, result_format=what_if_result_format, exclude_change_types=what_if_exclude_change_types, no_prompt=no_prompt, template_spec=template_spec) from knack.prompting import prompt_y_n if not prompt_y_n("\nAre you sure you want to execute the deployment?"): return None return _deploy_arm_template_at_resource_group(cmd=cmd, resource_group_name=resource_group_name, template_file=template_file, template_uri=template_uri, parameters=parameters, deployment_name=deployment_name, mode=mode, rollback_on_error=rollback_on_error, validate_only=False, no_wait=no_wait, aux_subscriptions=aux_subscriptions, aux_tenants=aux_tenants, no_prompt=no_prompt, template_spec=template_spec) # pylint: disable=unused-argument def validate_arm_template_at_resource_group(cmd, resource_group_name=None, template_file=None, template_uri=None, parameters=None, deployment_name=None, mode=None, rollback_on_error=None, no_wait=False, handle_extended_json_format=None, no_prompt=False, template_spec=None): return _deploy_arm_template_at_resource_group(cmd, resource_group_name=resource_group_name, template_file=template_file, template_uri=template_uri, parameters=parameters, deployment_name=deployment_name, mode=mode, rollback_on_error=rollback_on_error, validate_only=True, no_wait=no_wait, no_prompt=no_prompt, template_spec=template_spec) def _deploy_arm_template_at_resource_group(cmd, resource_group_name=None, template_file=None, template_uri=None, parameters=None, deployment_name=None, mode=None, rollback_on_error=None, validate_only=False, no_wait=False, aux_subscriptions=None, aux_tenants=None, no_prompt=False, template_spec=None): deployment_properties = _prepare_deployment_properties_unmodified(cmd, template_file=template_file, template_uri=template_uri, parameters=parameters, mode=mode, rollback_on_error=rollback_on_error, no_prompt=no_prompt, template_spec=template_spec) mgmt_client = _get_deployment_management_client(cmd.cli_ctx, aux_subscriptions=aux_subscriptions, aux_tenants=aux_tenants, plug_pipeline=(template_uri is None and template_spec is None)) if cmd.supported_api_version(min_api='2019-10-01', resource_type=ResourceType.MGMT_RESOURCE_RESOURCES): Deployment = cmd.get_models('Deployment') deployment = Deployment(properties=deployment_properties) validation_poller = mgmt_client.validate(resource_group_name, deployment_name, deployment) validation_result = LongRunningOperation(cmd.cli_ctx)(validation_poller) else: validation_result = mgmt_client.validate(resource_group_name, deployment_name, deployment_properties) if validation_result and validation_result.error: err_message = _build_preflight_error_message(validation_result.error) raise CLIError(err_message) if validate_only: return validation_result if cmd.supported_api_version(min_api='2019-10-01', resource_type=ResourceType.MGMT_RESOURCE_RESOURCES): return sdk_no_wait(no_wait, mgmt_client.create_or_update, resource_group_name, deployment_name, deployment) return sdk_no_wait(no_wait, mgmt_client.create_or_update, resource_group_name, deployment_name, deployment_properties) # pylint: disable=unused-argument def deploy_arm_template_at_management_group(cmd, management_group_id=None, template_file=None, template_uri=None, parameters=None, deployment_name=None, deployment_location=None, no_wait=False, handle_extended_json_format=None, no_prompt=False, confirm_with_what_if=None, what_if_result_format=None, what_if_exclude_change_types=None, template_spec=None): if confirm_with_what_if: what_if_deploy_arm_template_at_management_group(cmd, management_group_id=management_group_id, template_file=template_file, template_uri=template_uri, parameters=parameters, deployment_name=deployment_name, deployment_location=deployment_location, result_format=what_if_result_format, exclude_change_types=what_if_exclude_change_types, no_prompt=no_prompt, template_spec=template_spec) from knack.prompting import prompt_y_n if not prompt_y_n("\nAre you sure you want to execute the deployment?"): return None return _deploy_arm_template_at_management_group(cmd=cmd, management_group_id=management_group_id, template_file=template_file, template_uri=template_uri, parameters=parameters, deployment_name=deployment_name, deployment_location=deployment_location, validate_only=False, no_wait=no_wait, no_prompt=no_prompt, template_spec=template_spec) # pylint: disable=unused-argument def validate_arm_template_at_management_group(cmd, management_group_id=None, template_file=None, template_uri=None, parameters=None, deployment_name=None, deployment_location=None, no_wait=False, handle_extended_json_format=None, no_prompt=False, template_spec=None): return _deploy_arm_template_at_management_group(cmd=cmd, management_group_id=management_group_id, template_file=template_file, template_uri=template_uri, parameters=parameters, deployment_name=deployment_name, deployment_location=deployment_location, validate_only=True, no_wait=no_wait, no_prompt=no_prompt, template_spec=template_spec) def _deploy_arm_template_at_management_group(cmd, management_group_id=None, template_file=None, template_uri=None, parameters=None, deployment_name=None, deployment_location=None, validate_only=False, no_wait=False, no_prompt=False, template_spec=None): deployment_properties = _prepare_deployment_properties_unmodified(cmd, template_file=template_file, template_uri=template_uri, parameters=parameters, mode='Incremental', no_prompt=no_prompt, template_spec=template_spec) mgmt_client = _get_deployment_management_client(cmd.cli_ctx, plug_pipeline=(template_uri is None and template_spec is None)) if cmd.supported_api_version(min_api='2019-10-01', resource_type=ResourceType.MGMT_RESOURCE_RESOURCES): ScopedDeployment = cmd.get_models('ScopedDeployment') deployment = ScopedDeployment(properties=deployment_properties, location=deployment_location) validation_poller = mgmt_client.validate_at_management_group_scope(management_group_id, deployment_name, deployment) validation_result = LongRunningOperation(cmd.cli_ctx)(validation_poller) else: validation_result = mgmt_client.validate_at_management_group_scope(management_group_id, deployment_name, deployment_properties, deployment_location) if validation_result and validation_result.error: err_message = _build_preflight_error_message(validation_result.error) raise CLIError(err_message) if validate_only: return validation_result if cmd.supported_api_version(min_api='2019-10-01', resource_type=ResourceType.MGMT_RESOURCE_RESOURCES): return sdk_no_wait(no_wait, mgmt_client.create_or_update_at_management_group_scope, management_group_id, deployment_name, deployment) return sdk_no_wait(no_wait, mgmt_client.create_or_update_at_management_group_scope, management_group_id, deployment_name, deployment_properties, deployment_location) # pylint: disable=unused-argument def deploy_arm_template_at_tenant_scope(cmd, template_file=None, template_uri=None, parameters=None, deployment_name=None, deployment_location=None, no_wait=False, handle_extended_json_format=None, no_prompt=False, confirm_with_what_if=None, what_if_result_format=None, what_if_exclude_change_types=None, template_spec=None): if confirm_with_what_if: what_if_deploy_arm_template_at_tenant_scope(cmd, template_file=template_file, template_uri=template_uri, parameters=parameters, deployment_name=deployment_name, deployment_location=deployment_location, result_format=what_if_result_format, exclude_change_types=what_if_exclude_change_types, no_prompt=no_prompt, template_spec=template_spec) from knack.prompting import prompt_y_n if not prompt_y_n("\nAre you sure you want to execute the deployment?"): return None return _deploy_arm_template_at_tenant_scope(cmd=cmd, template_file=template_file, template_uri=template_uri, parameters=parameters, deployment_name=deployment_name, deployment_location=deployment_location, validate_only=False, no_wait=no_wait, no_prompt=no_prompt, template_spec=template_spec) # pylint: disable=unused-argument def validate_arm_template_at_tenant_scope(cmd, template_file=None, template_uri=None, parameters=None, deployment_name=None, deployment_location=None, no_wait=False, handle_extended_json_format=None, no_prompt=False, template_spec=None): return _deploy_arm_template_at_tenant_scope(cmd=cmd, template_file=template_file, template_uri=template_uri, parameters=parameters, deployment_name=deployment_name, deployment_location=deployment_location, validate_only=True, no_wait=no_wait, no_prompt=no_prompt, template_spec=template_spec) def _deploy_arm_template_at_tenant_scope(cmd, template_file=None, template_uri=None, parameters=None, deployment_name=None, deployment_location=None, validate_only=False, no_wait=False, no_prompt=False, template_spec=None): deployment_properties = _prepare_deployment_properties_unmodified(cmd, template_file=template_file, template_uri=template_uri, parameters=parameters, mode='Incremental', no_prompt=no_prompt, template_spec=template_spec,) mgmt_client = _get_deployment_management_client(cmd.cli_ctx, plug_pipeline=(template_uri is None and template_spec is None)) if cmd.supported_api_version(min_api='2019-10-01', resource_type=ResourceType.MGMT_RESOURCE_RESOURCES): ScopedDeployment = cmd.get_models('ScopedDeployment') deployment = ScopedDeployment(properties=deployment_properties, location=deployment_location) validation_poller = mgmt_client.validate_at_tenant_scope(deployment_name=deployment_name, parameters=deployment) validation_result = LongRunningOperation(cmd.cli_ctx)(validation_poller) else: validation_result = mgmt_client.validate_at_tenant_scope(deployment_name=deployment_name, properties=deployment_properties, location=deployment_location) if validation_result and validation_result.error: err_message = _build_preflight_error_message(validation_result.error) raise CLIError(err_message) if validate_only: return validation_result if cmd.supported_api_version(min_api='2019-10-01', resource_type=ResourceType.MGMT_RESOURCE_RESOURCES): return sdk_no_wait(no_wait, mgmt_client.create_or_update_at_tenant_scope, deployment_name, deployment) return sdk_no_wait(no_wait, mgmt_client.create_or_update_at_tenant_scope, deployment_name, deployment_properties, deployment_location) def what_if_deploy_arm_template_at_resource_group(cmd, resource_group_name, template_file=None, template_uri=None, parameters=None, deployment_name=None, mode=DeploymentMode.incremental, aux_tenants=None, result_format=None, no_pretty_print=None, no_prompt=False, exclude_change_types=None, template_spec=None): what_if_properties = _prepare_deployment_what_if_properties(cmd, template_file, template_uri, parameters, mode, result_format, no_prompt, template_spec) mgmt_client = _get_deployment_management_client(cmd.cli_ctx, aux_tenants=aux_tenants, plug_pipeline=(template_uri is None and template_spec is None)) what_if_poller = mgmt_client.what_if(resource_group_name, deployment_name, what_if_properties) return _what_if_deploy_arm_template_core(cmd.cli_ctx, what_if_poller, no_pretty_print, exclude_change_types) def what_if_deploy_arm_template_at_subscription_scope(cmd, template_file=None, template_uri=None, parameters=None, deployment_name=None, deployment_location=None, result_format=None, no_pretty_print=None, no_prompt=False, exclude_change_types=None, template_spec=None): what_if_properties = _prepare_deployment_what_if_properties(cmd, template_file, template_uri, parameters, DeploymentMode.incremental, result_format, no_prompt, template_spec) mgmt_client = _get_deployment_management_client(cmd.cli_ctx, plug_pipeline=(template_uri is None and template_spec is None)) what_if_poller = mgmt_client.what_if_at_subscription_scope(deployment_name, what_if_properties, deployment_location) return _what_if_deploy_arm_template_core(cmd.cli_ctx, what_if_poller, no_pretty_print, exclude_change_types) def what_if_deploy_arm_template_at_management_group(cmd, management_group_id=None, template_file=None, template_uri=None, parameters=None, deployment_name=None, deployment_location=None, result_format=None, no_pretty_print=None, no_prompt=False, exclude_change_types=None, template_spec=None): what_if_properties = _prepare_deployment_what_if_properties(cmd, template_file, template_uri, parameters, DeploymentMode.incremental, result_format, no_prompt, template_spec=template_spec) mgmt_client = _get_deployment_management_client(cmd.cli_ctx, plug_pipeline=(template_uri is None and template_spec is None)) what_if_poller = mgmt_client.what_if_at_management_group_scope(management_group_id, deployment_name, deployment_location, what_if_properties) return _what_if_deploy_arm_template_core(cmd.cli_ctx, what_if_poller, no_pretty_print, exclude_change_types) def what_if_deploy_arm_template_at_tenant_scope(cmd, template_file=None, template_uri=None, parameters=None, deployment_name=None, deployment_location=None, result_format=None, no_pretty_print=None, no_prompt=False, exclude_change_types=None, template_spec=None): what_if_properties = _prepare_deployment_what_if_properties(cmd, template_file, template_uri, parameters, DeploymentMode.incremental, result_format, no_prompt, template_spec) mgmt_client = _get_deployment_management_client(cmd.cli_ctx, plug_pipeline=(template_uri is None and template_spec is None)) what_if_poller = mgmt_client.what_if_at_tenant_scope(deployment_name, deployment_location, what_if_properties) return _what_if_deploy_arm_template_core(cmd.cli_ctx, what_if_poller, no_pretty_print, exclude_change_types) def _what_if_deploy_arm_template_core(cli_ctx, what_if_poller, no_pretty_print, exclude_change_types): what_if_result = LongRunningOperation(cli_ctx)(what_if_poller) if what_if_result.error: # The status code is 200 even when there's an error, because # it is technically a successful What-If operation. The error # is on the ARM template but not the operation. err_message = _build_preflight_error_message(what_if_result.error) raise CLIError(err_message) if exclude_change_types: exclude_change_types = set(map(lambda x: x.lower(), exclude_change_types)) what_if_result.changes = list( filter(lambda x: x.change_type.lower() not in exclude_change_types, what_if_result.changes) ) if no_pretty_print: return what_if_result try: if cli_ctx.enable_color: # Diabling colorama since it will silently strip out the Xterm 256 color codes the What-If formatter # is using. Unfortuanately, the colors that colorama supports are very limited, which doesn't meet our needs. from colorama import deinit deinit() # Enable virtual terminal mode for Windows console so it processes color codes. if platform.system() == "Windows": from ._win_vt import enable_vt_mode enable_vt_mode() print(format_what_if_operation_result(what_if_result, cli_ctx.enable_color)) finally: if cli_ctx.enable_color: from colorama import init init() return None def _build_preflight_error_message(preflight_error): err_messages = [f'{preflight_error.code} - {preflight_error.message}'] for detail in preflight_error.details or []: err_messages.append(_build_preflight_error_message(detail)) return '\n'.join(err_messages) def _prepare_deployment_properties_unmodified(cmd, template_file=None, template_uri=None, parameters=None, mode=None, rollback_on_error=None, no_prompt=False, template_spec=None): cli_ctx = cmd.cli_ctx DeploymentProperties, TemplateLink, OnErrorDeployment = get_sdk(cli_ctx, ResourceType.MGMT_RESOURCE_RESOURCES, 'DeploymentProperties', 'TemplateLink', 'OnErrorDeployment', mod='models') template_link = None template_obj = None on_error_deployment = None template_content = None if template_uri: template_link = TemplateLink(uri=template_uri) template_obj = _remove_comments_from_json(_urlretrieve(template_uri).decode('utf-8'), file_path=template_uri) elif template_spec: template_link = TemplateLink(id=template_spec, mode="Incremental") template_obj = show_resource(cmd=cmd, resource_ids=[template_spec]).properties['template'] else: template_content = read_file_content(template_file) template_obj = _remove_comments_from_json(template_content, file_path=template_file) if rollback_on_error == '': on_error_deployment = OnErrorDeployment(type='LastSuccessful') elif rollback_on_error: on_error_deployment = OnErrorDeployment(type='SpecificDeployment', deployment_name=rollback_on_error) template_param_defs = template_obj.get('parameters', {}) template_obj['resources'] = template_obj.get('resources', []) parameters = _process_parameters(template_param_defs, parameters) or {} parameters = _get_missing_parameters(parameters, template_obj, _prompt_for_parameters, no_prompt) parameters = json.loads(json.dumps(parameters)) properties = DeploymentProperties(template=template_content, template_link=template_link, parameters=parameters, mode=mode, on_error_deployment=on_error_deployment) return properties def _prepare_deployment_what_if_properties(cmd, template_file, template_uri, parameters, mode, result_format, no_prompt, template_spec): DeploymentWhatIfProperties, DeploymentWhatIfSettings = get_sdk(cmd.cli_ctx, ResourceType.MGMT_RESOURCE_RESOURCES, 'DeploymentWhatIfProperties', 'DeploymentWhatIfSettings', mod='models') deployment_properties = _prepare_deployment_properties_unmodified(cmd=cmd, template_file=template_file, template_uri=template_uri, parameters=parameters, mode=mode, no_prompt=no_prompt, template_spec=template_spec) deployment_what_if_properties = DeploymentWhatIfProperties(template=deployment_properties.template, template_link=deployment_properties.template_link, parameters=deployment_properties.parameters, mode=deployment_properties.mode, what_if_settings=DeploymentWhatIfSettings(result_format=result_format)) return deployment_what_if_properties def _get_deployment_management_client(cli_ctx, aux_subscriptions=None, aux_tenants=None, plug_pipeline=True): smc = get_mgmt_service_client(cli_ctx, ResourceType.MGMT_RESOURCE_RESOURCES, aux_subscriptions=aux_subscriptions, aux_tenants=aux_tenants) deployment_client = smc.deployments # This solves the multi-api for you if plug_pipeline: # pylint: disable=protected-access deployment_client._serialize = JSONSerializer( deployment_client._serialize.dependencies ) # Plug this as default HTTP pipeline from msrest.pipeline import Pipeline from msrest.pipeline.requests import ( RequestsCredentialsPolicy, RequestsPatchSession, PipelineRequestsHTTPSender ) from msrest.universal_http.requests import RequestsHTTPSender smc.config.pipeline = Pipeline( policies=[ JsonCTemplatePolicy(), smc.config.user_agent_policy, RequestsPatchSession(), smc.config.http_logger_policy, RequestsCredentialsPolicy(smc.config.credentials) ], sender=PipelineRequestsHTTPSender(RequestsHTTPSender(smc.config)) ) return deployment_client def _list_resources_odata_filter_builder(resource_group_name=None, resource_provider_namespace=None, resource_type=None, name=None, tag=None, location=None): """Build up OData filter string from parameters """ if tag is not None: if resource_group_name: raise IncorrectUsageError('you cannot use \'--tag\' with \'--resource-group\'' '(If the default value for resource group is set, please use \'az configure --defaults group=""\' command to clear it first)') if resource_provider_namespace: raise IncorrectUsageError('you cannot use \'--tag\' with \'--namespace\'') if resource_type: raise IncorrectUsageError('you cannot use \'--tag\' with \'--resource-type\'') if name: raise IncorrectUsageError('you cannot use \'--tag\' with \'--name\'') if location: raise IncorrectUsageError('you cannot use \'--tag\' with \'--location\'' '(If the default value for location is set, please use \'az configure --defaults location=""\' command to clear it first)') filters = [] if resource_group_name: filters.append("resourceGroup eq '{}'".format(resource_group_name)) if name: filters.append("name eq '{}'".format(name)) if location: filters.append("location eq '{}'".format(location)) if resource_type: if resource_provider_namespace: f = "'{}/{}'".format(resource_provider_namespace, resource_type) else: if not re.match('[^/]+/[^/]+', resource_type): raise CLIError( 'Malformed resource-type: ' '--resource-type=<namespace>/<resource-type> expected.') # assume resource_type is <namespace>/<type>. The worst is to get a server error f = "'{}'".format(resource_type) filters.append("resourceType eq " + f) else: if resource_provider_namespace: raise CLIError('--namespace also requires --resource-type') if tag: tag_name = list(tag.keys())[0] if isinstance(tag, dict) else tag tag_value = tag[tag_name] if isinstance(tag, dict) else '' if tag_name: if tag_name[-1] == '*': filters.append("startswith(tagname, '%s')" % tag_name[0:-1]) else: filters.append("tagname eq '%s'" % tag_name) if tag_value != '': filters.append("tagvalue eq '%s'" % tag_value) return ' and '.join(filters) def _get_auth_provider_latest_api_version(cli_ctx): rcf = _resource_client_factory(cli_ctx) api_version = _ResourceUtils.resolve_api_version(rcf, 'Microsoft.Authorization', None, 'providerOperations') return api_version def _update_provider(cli_ctx, namespace, registering, wait): import time target_state = 'Registered' if registering else 'Unregistered' rcf = _resource_client_factory(cli_ctx) if registering: r = rcf.providers.register(namespace) else: r = rcf.providers.unregister(namespace) if r.registration_state == target_state: return if wait: while True: time.sleep(10) rp_info = rcf.providers.get(namespace) if rp_info.registration_state == target_state: break else: action = 'Registering' if registering else 'Unregistering' msg_template = '%s is still on-going. You can monitor using \'az provider show -n %s\'' logger.warning(msg_template, action, namespace) def _build_policy_scope(subscription_id, resource_group_name, scope): subscription_scope = '/subscriptions/' + subscription_id if scope: if resource_group_name: err = "Resource group '{}' is redundant because 'scope' is supplied" raise CLIError(err.format(resource_group_name)) elif resource_group_name: scope = subscription_scope + '/resourceGroups/' + resource_group_name else: scope = subscription_scope return scope def _resolve_policy_id(cmd, policy, policy_set_definition, client): policy_id = policy or policy_set_definition if not is_valid_resource_id(policy_id): if policy: policy_def = _get_custom_or_builtin_policy(cmd, client, policy) policy_id = policy_def.id else: policy_set_def = _get_custom_or_builtin_policy(cmd, client, policy_set_definition, None, None, True) policy_id = policy_set_def.id return policy_id def _parse_management_group_reference(name): if _is_management_group_scope(name): parts = name.split('/') if len(parts) >= 9: return parts[4], parts[8] return None, name def _parse_management_group_id(scope): if _is_management_group_scope(scope): parts = scope.split('/') if len(parts) >= 5: return parts[4] return None def _get_custom_or_builtin_policy(cmd, client, name, subscription=None, management_group=None, for_policy_set=False): from msrest.exceptions import HttpOperationError from msrestazure.azure_exceptions import CloudError policy_operations = client.policy_set_definitions if for_policy_set else client.policy_definitions if cmd.supported_api_version(min_api='2018-03-01'): enforce_mutually_exclusive(subscription, management_group) if subscription: subscription_id = _get_subscription_id_from_subscription(cmd.cli_ctx, subscription) client.config.subscription_id = subscription_id try: if cmd.supported_api_version(min_api='2018-03-01'): if not management_group: management_group, name = _parse_management_group_reference(name) if management_group: return policy_operations.get_at_management_group(name, management_group) return policy_operations.get(name) except (CloudError, HttpOperationError) as ex: status_code = ex.status_code if isinstance(ex, CloudError) else ex.response.status_code if status_code == 404: try: return policy_operations.get_built_in(name) except CloudError as ex2: # When the `--policy` parameter is neither a valid policy definition name nor conforms to the policy definition id format, # an exception of "AuthorizationFailed" will be reported to mislead customers. # So we need to modify the exception information thrown here. if ex2.status_code == 403 and ex2.error and ex2.error.error == 'AuthorizationFailed': raise IncorrectUsageError('\'--policy\' should be a valid name or id of the policy definition') raise ex2 raise def _load_file_string_or_uri(file_or_string_or_uri, name, required=True): if file_or_string_or_uri is None: if required: raise CLIError('--{} is required'.format(name)) return None url = urlparse(file_or_string_or_uri) if url.scheme == 'http' or url.scheme == 'https' or url.scheme == 'file': response = urlopen(file_or_string_or_uri) reader = codecs.getreader('utf-8') result = json.load(reader(response)) response.close() return result if os.path.exists(file_or_string_or_uri): return get_file_json(file_or_string_or_uri) return shell_safe_json_parse(file_or_string_or_uri) def _call_subscription_get(cmd, lock_client, *args): if cmd.supported_api_version(max_api='2015-01-01'): return lock_client.management_locks.get(*args) return lock_client.management_locks.get_at_subscription_level(*args) def _extract_lock_params(resource_group_name, resource_provider_namespace, resource_type, resource_name): if resource_group_name is None: return (None, None, None, None) if resource_name is None: return (resource_group_name, None, None, None) parts = resource_type.split('/', 2) if resource_provider_namespace is None and len(parts) == 2: resource_provider_namespace = parts[0] resource_type = parts[1] return (resource_group_name, resource_name, resource_provider_namespace, resource_type) def _update_lock_parameters(parameters, level, notes): if level is not None: parameters.level = level if notes is not None: parameters.notes = notes def _validate_resource_inputs(resource_group_name, resource_provider_namespace, resource_type, resource_name): if resource_group_name is None: raise CLIError('--resource-group/-g is required.') if resource_type is None: raise CLIError('--resource-type is required') if resource_name is None: raise CLIError('--name/-n is required') if resource_provider_namespace is None: raise CLIError('--namespace is required') # region Custom Commands def list_resource_groups(cmd, tag=None): # pylint: disable=no-self-use """ List resource groups, optionally filtered by a tag. :param str tag:tag to filter by in 'key[=value]' format """ rcf = _resource_client_factory(cmd.cli_ctx) filters = [] if tag: key = list(tag.keys())[0] filters.append("tagname eq '{}'".format(key)) filters.append("tagvalue eq '{}'".format(tag[key])) filter_text = ' and '.join(filters) if filters else None groups = rcf.resource_groups.list(filter=filter_text) return list(groups) def create_resource_group(cmd, rg_name, location, tags=None, managed_by=None): """ Create a new resource group. :param str resource_group_name:the desired resource group name :param str location:the resource group location :param str tags:tags in 'a=b c' format """ rcf = _resource_client_factory(cmd.cli_ctx) ResourceGroup = cmd.get_models('ResourceGroup') parameters = ResourceGroup( location=location, tags=tags ) if cmd.supported_api_version(min_api='2016-09-01'): parameters.managed_by = managed_by return rcf.resource_groups.create_or_update(rg_name, parameters) def update_resource_group(instance, tags=None): if tags is not None: instance.tags = tags return instance def export_group_as_template( cmd, resource_group_name, include_comments=False, include_parameter_default_value=False, resource_ids=None, skip_resource_name_params=False, skip_all_params=False): """Captures a resource group as a template. :param str resource_group_name: the name of the resource group. :param resource_ids: space-separated resource ids to filter the export by. To export all resources, do not specify this argument or supply "*". :param bool include_comments: export template with comments. :param bool include_parameter_default_value: export template parameter with default value. :param bool skip_resource_name_params: export template and skip resource name parameterization. :param bool skip_all_params: export template parameter and skip all parameterization. """ rcf = _resource_client_factory(cmd.cli_ctx) export_options = [] if include_comments: export_options.append('IncludeComments') if include_parameter_default_value: export_options.append('IncludeParameterDefaultValue') if skip_resource_name_params: export_options.append('SkipResourceNameParameterization') if skip_all_params: export_options.append('SkipAllParameterization') resources = [] if resource_ids is None or resource_ids[0] == "*": resources = ["*"] else: for i in resource_ids: if is_valid_resource_id(i): resources.append(i) else: raise CLIError('az resource: error: argument --resource-ids: invalid ResourceId value: \'%s\'' % i) options = ','.join(export_options) if export_options else None # Exporting a resource group as a template is async since API version 2019-08-01. if cmd.supported_api_version(min_api='2019-08-01'): result_poller = rcf.resource_groups.export_template(resource_group_name, resources, options=options) result = LongRunningOperation(cmd.cli_ctx)(result_poller) else: result = rcf.resource_groups.export_template(resource_group_name, resources, options=options) # pylint: disable=no-member # On error, server still returns 200, with details in the error attribute if result.error: error = result.error try: logger.warning(error.message) except AttributeError: logger.warning(str(error)) for detail in getattr(error, 'details', None) or []: logger.error(detail.message) return result.template def create_application(cmd, resource_group_name, application_name, managedby_resource_group_id, kind, managedapp_definition_id=None, location=None, plan_name=None, plan_publisher=None, plan_product=None, plan_version=None, tags=None, parameters=None): """ Create a new managed application. :param str resource_group_name:the desired resource group name :param str application_name:the managed application name :param str kind:the managed application kind. can be marketplace or servicecatalog :param str plan_name:the managed application package plan name :param str plan_publisher:the managed application package plan publisher :param str plan_product:the managed application package plan product :param str plan_version:the managed application package plan version :param str tags:tags in 'a=b c' format """ from azure.mgmt.resource.managedapplications.models import Application, Plan racf = _resource_managedapps_client_factory(cmd.cli_ctx) rcf = _resource_client_factory(cmd.cli_ctx) if not location: location = rcf.resource_groups.get(resource_group_name).location application = Application( location=location, managed_resource_group_id=managedby_resource_group_id, kind=kind, tags=tags ) if kind.lower() == 'servicecatalog': if managedapp_definition_id: application.application_definition_id = managedapp_definition_id else: raise CLIError('--managedapp-definition-id is required if kind is ServiceCatalog') elif kind.lower() == 'marketplace': if (plan_name is None and plan_product is None and plan_publisher is None and plan_version is None): raise CLIError('--plan-name, --plan-product, --plan-publisher and \ --plan-version are all required if kind is MarketPlace') application.plan = Plan(name=plan_name, publisher=plan_publisher, product=plan_product, version=plan_version) applicationParameters = None if parameters: if os.path.exists(parameters): applicationParameters = get_file_json(parameters) else: applicationParameters = shell_safe_json_parse(parameters) application.parameters = applicationParameters return racf.applications.create_or_update(resource_group_name, application_name, application) def show_application(cmd, resource_group_name=None, application_name=None): """ Gets a managed application. :param str resource_group_name:the resource group name :param str application_name:the managed application name """ racf = _resource_managedapps_client_factory(cmd.cli_ctx) return racf.applications.get(resource_group_name, application_name) def show_applicationdefinition(cmd, resource_group_name=None, application_definition_name=None): """ Gets a managed application definition. :param str resource_group_name:the resource group name :param str application_definition_name:the managed application definition name """ racf = _resource_managedapps_client_factory(cmd.cli_ctx) return racf.application_definitions.get(resource_group_name, application_definition_name) def create_applicationdefinition(cmd, resource_group_name, application_definition_name, lock_level, authorizations, description, display_name, package_file_uri=None, create_ui_definition=None, main_template=None, location=None, tags=None): """ Create a new managed application definition. :param str resource_group_name:the desired resource group name :param str application_definition_name:the managed application definition name :param str description:the managed application definition description :param str display_name:the managed application definition display name :param str package_file_uri:the managed application definition package file uri :param str create_ui_definition:the managed application definition create ui definition :param str main_template:the managed application definition main template :param str tags:tags in 'a=b c' format """ from azure.mgmt.resource.managedapplications.models import ApplicationDefinition, ApplicationProviderAuthorization if not package_file_uri and not create_ui_definition and not main_template: raise CLIError('usage error: --package-file-uri <url> | --create-ui-definition --main-template') if package_file_uri: if create_ui_definition or main_template: raise CLIError('usage error: must not specify --create-ui-definition --main-template') if not package_file_uri: if not create_ui_definition or not main_template: raise CLIError('usage error: must specify --create-ui-definition --main-template') racf = _resource_managedapps_client_factory(cmd.cli_ctx) rcf = _resource_client_factory(cmd.cli_ctx) if not location: location = rcf.resource_groups.get(resource_group_name).location authorizations = authorizations or [] applicationAuthList = [] for name_value in authorizations: # split at the first ':', neither principalId nor roldeDefinitionId should have a ':' principalId, roleDefinitionId = name_value.split(':', 1) applicationAuth = ApplicationProviderAuthorization( principal_id=principalId, role_definition_id=roleDefinitionId) applicationAuthList.append(applicationAuth) applicationDef = ApplicationDefinition(lock_level=lock_level, authorizations=applicationAuthList, package_file_uri=package_file_uri) applicationDef.display_name = display_name applicationDef.description = description applicationDef.location = location applicationDef.package_file_uri = package_file_uri applicationDef.create_ui_definition = create_ui_definition applicationDef.main_template = main_template applicationDef.tags = tags return racf.application_definitions.create_or_update(resource_group_name, application_definition_name, applicationDef) def list_applications(cmd, resource_group_name=None): racf = _resource_managedapps_client_factory(cmd.cli_ctx) if resource_group_name: applications = racf.applications.list_by_resource_group(resource_group_name) else: applications = racf.applications.list_by_subscription() return list(applications) def list_deployments_at_subscription_scope(cmd, filter_string=None): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployments.list_at_subscription_scope(filter=filter_string) def list_deployments_at_resource_group(cmd, resource_group_name, filter_string=None): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployments.list_by_resource_group(resource_group_name, filter=filter_string) def list_deployments_at_management_group(cmd, management_group_id, filter_string=None): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployments.list_at_management_group_scope(management_group_id, filter=filter_string) def list_deployments_at_tenant_scope(cmd, filter_string=None): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployments.list_at_tenant_scope(filter=filter_string) def get_deployment_at_subscription_scope(cmd, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployments.get_at_subscription_scope(deployment_name) def get_deployment_at_resource_group(cmd, resource_group_name, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployments.get(resource_group_name, deployment_name) def get_deployment_at_management_group(cmd, management_group_id, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployments.get_at_management_group_scope(management_group_id, deployment_name) def get_deployment_at_tenant_scope(cmd, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployments.get_at_tenant_scope(deployment_name) def delete_deployment_at_subscription_scope(cmd, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployments.delete_at_subscription_scope(deployment_name) def delete_deployment_at_resource_group(cmd, resource_group_name, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployments.delete(resource_group_name, deployment_name) def delete_deployment_at_management_group(cmd, management_group_id, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployments.delete_at_management_group_scope(management_group_id, deployment_name) def delete_deployment_at_tenant_scope(cmd, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployments.delete_at_tenant_scope(deployment_name) def cancel_deployment_at_subscription_scope(cmd, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployments.cancel_at_subscription_scope(deployment_name) def cancel_deployment_at_resource_group(cmd, resource_group_name, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployments.cancel(resource_group_name, deployment_name) def cancel_deployment_at_management_group(cmd, management_group_id, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployments.cancel_at_management_group_scope(management_group_id, deployment_name) def cancel_deployment_at_tenant_scope(cmd, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployments.cancel_at_tenant_scope(deployment_name) # pylint: disable=unused-argument def deploy_arm_template(cmd, resource_group_name, template_file=None, template_uri=None, deployment_name=None, parameters=None, mode=None, rollback_on_error=None, no_wait=False, handle_extended_json_format=None, aux_subscriptions=None, aux_tenants=None, no_prompt=False): return _deploy_arm_template_core_unmodified(cmd, resource_group_name=resource_group_name, template_file=template_file, template_uri=template_uri, deployment_name=deployment_name, parameters=parameters, mode=mode, rollback_on_error=rollback_on_error, no_wait=no_wait, aux_subscriptions=aux_subscriptions, aux_tenants=aux_tenants, no_prompt=no_prompt) # pylint: disable=unused-argument def validate_arm_template(cmd, resource_group_name, template_file=None, template_uri=None, parameters=None, mode=None, rollback_on_error=None, handle_extended_json_format=None, no_prompt=False): return _deploy_arm_template_core_unmodified(cmd, resource_group_name, template_file, template_uri, 'deployment_dry_run', parameters, mode, rollback_on_error, validate_only=True, no_prompt=no_prompt) def export_template_at_subscription_scope(cmd, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) result = rcf.deployments.export_template_at_subscription_scope(deployment_name) print(json.dumps(result.template, indent=2)) # pylint: disable=no-member def export_template_at_resource_group(cmd, resource_group_name, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) result = rcf.deployments.export_template(resource_group_name, deployment_name) print(json.dumps(result.template, indent=2)) # pylint: disable=no-member def export_template_at_management_group(cmd, management_group_id, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) result = rcf.deployments.export_template_at_management_group_scope(management_group_id, deployment_name) print(json.dumps(result.template, indent=2)) # pylint: disable=no-member def export_template_at_tenant_scope(cmd, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) result = rcf.deployments.export_template_at_tenant_scope(deployment_name) print(json.dumps(result.template, indent=2)) # pylint: disable=no-member def export_deployment_as_template(cmd, resource_group_name, deployment_name): smc = _resource_client_factory(cmd.cli_ctx) result = smc.deployments.export_template(resource_group_name, deployment_name) print(json.dumps(result.template, indent=2)) # pylint: disable=no-member def create_resource(cmd, properties, resource_group_name=None, resource_provider_namespace=None, parent_resource_path=None, resource_type=None, resource_name=None, resource_id=None, api_version=None, location=None, is_full_object=False, latest_include_preview=False): res = _ResourceUtils(cmd.cli_ctx, resource_group_name, resource_provider_namespace, parent_resource_path, resource_type, resource_name, resource_id, api_version, latest_include_preview=latest_include_preview) return res.create_resource(properties, location, is_full_object) def _get_parsed_resource_ids(resource_ids): """ Returns a generator of parsed resource ids. Raise when there is invalid resource id. """ if not resource_ids: return None for rid in resource_ids: if not is_valid_resource_id(rid): raise CLIError('az resource: error: argument --ids: invalid ResourceId value: \'%s\'' % rid) return ({'resource_id': rid} for rid in resource_ids) def _get_rsrc_util_from_parsed_id(cli_ctx, parsed_id, api_version, latest_include_preview=False): return _ResourceUtils(cli_ctx, parsed_id.get('resource_group', None), parsed_id.get('resource_namespace', None), parsed_id.get('resource_parent', None), parsed_id.get('resource_type', None), parsed_id.get('resource_name', None), parsed_id.get('resource_id', None), api_version, latest_include_preview=latest_include_preview) def _create_parsed_id(cli_ctx, resource_group_name=None, resource_provider_namespace=None, parent_resource_path=None, resource_type=None, resource_name=None): from azure.cli.core.commands.client_factory import get_subscription_id subscription = get_subscription_id(cli_ctx) return { 'resource_group': resource_group_name, 'resource_namespace': resource_provider_namespace, 'resource_parent': parent_resource_path, 'resource_type': resource_type, 'resource_name': resource_name, 'subscription': subscription } def _single_or_collection(obj, default=None): if not obj: return default if isinstance(obj, list) and len(obj) == 1: return obj[0] return obj # pylint: unused-argument def show_resource(cmd, resource_ids=None, resource_group_name=None, resource_provider_namespace=None, parent_resource_path=None, resource_type=None, resource_name=None, api_version=None, include_response_body=False, latest_include_preview=False): parsed_ids = _get_parsed_resource_ids(resource_ids) or [_create_parsed_id(cmd.cli_ctx, resource_group_name, resource_provider_namespace, parent_resource_path, resource_type, resource_name)] return _single_or_collection( [_get_rsrc_util_from_parsed_id(cmd.cli_ctx, id_dict, api_version, latest_include_preview).get_resource( include_response_body) for id_dict in parsed_ids]) # pylint: disable=unused-argument def delete_resource(cmd, resource_ids=None, resource_group_name=None, resource_provider_namespace=None, parent_resource_path=None, resource_type=None, resource_name=None, api_version=None, latest_include_preview=False): """ Deletes the given resource(s). This function allows deletion of ids with dependencies on one another. This is done with multiple passes through the given ids. """ parsed_ids = _get_parsed_resource_ids(resource_ids) or [_create_parsed_id(cmd.cli_ctx, resource_group_name, resource_provider_namespace, parent_resource_path, resource_type, resource_name)] to_be_deleted = [(_get_rsrc_util_from_parsed_id(cmd.cli_ctx, id_dict, api_version, latest_include_preview), id_dict) for id_dict in parsed_ids] results = [] from msrestazure.azure_exceptions import CloudError while to_be_deleted: logger.debug("Start new loop to delete resources.") operations = [] failed_to_delete = [] for rsrc_utils, id_dict in to_be_deleted: try: operations.append(rsrc_utils.delete()) resource = _build_resource_id(**id_dict) or resource_name logger.debug("deleting %s", resource) except CloudError as e: # request to delete failed, add parsed id dict back to queue id_dict['exception'] = str(e) failed_to_delete.append((rsrc_utils, id_dict)) to_be_deleted = failed_to_delete # stop deleting if none deletable if not operations: break # all operations return result before next pass for operation in operations: results.append(operation.result()) if to_be_deleted: error_msg_builder = ['Some resources failed to be deleted (run with `--verbose` for more information):'] for _, id_dict in to_be_deleted: logger.info(id_dict['exception']) resource_id = _build_resource_id(**id_dict) or id_dict['resource_id'] error_msg_builder.append(resource_id) raise CLIError(os.linesep.join(error_msg_builder)) return _single_or_collection(results) # pylint: unused-argument def update_resource(cmd, parameters, resource_ids=None, resource_group_name=None, resource_provider_namespace=None, parent_resource_path=None, resource_type=None, resource_name=None, api_version=None, latest_include_preview=False): parsed_ids = _get_parsed_resource_ids(resource_ids) or [_create_parsed_id(cmd.cli_ctx, resource_group_name, resource_provider_namespace, parent_resource_path, resource_type, resource_name)] return _single_or_collection( [_get_rsrc_util_from_parsed_id(cmd.cli_ctx, id_dict, api_version, latest_include_preview).update(parameters) for id_dict in parsed_ids]) # pylint: unused-argument def tag_resource(cmd, tags, resource_ids=None, resource_group_name=None, resource_provider_namespace=None, parent_resource_path=None, resource_type=None, resource_name=None, api_version=None, is_incremental=None, latest_include_preview=False): """ Updates the tags on an existing resource. To clear tags, specify the --tag option without anything else. """ parsed_ids = _get_parsed_resource_ids(resource_ids) or [_create_parsed_id(cmd.cli_ctx, resource_group_name, resource_provider_namespace, parent_resource_path, resource_type, resource_name)] return _single_or_collection( [_get_rsrc_util_from_parsed_id(cmd.cli_ctx, id_dict, api_version, latest_include_preview).tag( tags, is_incremental) for id_dict in parsed_ids]) # pylint: unused-argument def invoke_resource_action(cmd, action, request_body=None, resource_ids=None, resource_group_name=None, resource_provider_namespace=None, parent_resource_path=None, resource_type=None, resource_name=None, api_version=None, latest_include_preview=False): """ Invokes the provided action on an existing resource.""" parsed_ids = _get_parsed_resource_ids(resource_ids) or [_create_parsed_id(cmd.cli_ctx, resource_group_name, resource_provider_namespace, parent_resource_path, resource_type, resource_name)] return _single_or_collection( [_get_rsrc_util_from_parsed_id(cmd.cli_ctx, id_dict, api_version, latest_include_preview).invoke_action( action, request_body) for id_dict in parsed_ids]) def get_deployment_operations(client, resource_group_name, deployment_name, operation_ids): """get a deployment's operation.""" result = [] for op_id in operation_ids: dep = client.get(resource_group_name, deployment_name, op_id) result.append(dep) return result def get_deployment_operations_at_subscription_scope(client, deployment_name, operation_ids): result = [] for op_id in operation_ids: deployment = client.get_at_subscription_scope(deployment_name, op_id) result.append(deployment) return result def get_deployment_operations_at_resource_group(client, resource_group_name, deployment_name, operation_ids): result = [] for op_id in operation_ids: dep = client.get(resource_group_name, deployment_name, op_id) result.append(dep) return result def get_deployment_operations_at_management_group(client, management_group_id, deployment_name, operation_ids): result = [] for op_id in operation_ids: dep = client.get_at_management_group_scope(management_group_id, deployment_name, op_id) result.append(dep) return result def get_deployment_operations_at_tenant_scope(client, deployment_name, operation_ids): result = [] for op_id in operation_ids: dep = client.get_at_tenant_scope(deployment_name, op_id) result.append(dep) return result def list_deployment_scripts(cmd, resource_group_name=None): rcf = _resource_deploymentscripts_client_factory(cmd.cli_ctx) if resource_group_name is not None: return rcf.deployment_scripts.list_by_resource_group(resource_group_name) return rcf.deployment_scripts.list_by_subscription() def get_deployment_script(cmd, resource_group_name, name): rcf = _resource_deploymentscripts_client_factory(cmd.cli_ctx) return rcf.deployment_scripts.get(resource_group_name, name) def get_deployment_script_logs(cmd, resource_group_name, name): rcf = _resource_deploymentscripts_client_factory(cmd.cli_ctx) return rcf.deployment_scripts.get_logs(resource_group_name, name) def delete_deployment_script(cmd, resource_group_name, name): rcf = _resource_deploymentscripts_client_factory(cmd.cli_ctx) rcf.deployment_scripts.delete(resource_group_name, name) def get_template_spec(cmd, resource_group_name=None, name=None, version=None, template_spec=None): if template_spec: id_parts = parse_resource_id(template_spec) resource_group_name = id_parts.get('resource_group') name = id_parts.get('name') version = id_parts.get('resource_name') if version == name: version = None rcf = _resource_templatespecs_client_factory(cmd.cli_ctx) if version: return rcf.template_spec_versions.get(resource_group_name, name, version) return rcf.template_specs.get(resource_group_name, name) def create_template_spec(cmd, resource_group_name, name, template_file=None, location=None, display_name=None, description=None, version=None, version_description=None): artifacts = None input_template = None if location is None: rcf = _resource_client_factory(cmd.cli_ctx) location = rcf.resource_groups.get(resource_group_name).location rcf = _resource_templatespecs_client_factory(cmd.cli_ctx) if version: if template_file: from azure.cli.command_modules.resource._packing_engine import (pack) packed_template = pack(cmd, template_file) input_template = getattr(packed_template, 'RootTemplate') artifacts = getattr(packed_template, 'Artifacts') try: # Check if parent template spec already exists. rcf.template_specs.get(resource_group_name=resource_group_name, template_spec_name=name) except Exception: # pylint: disable=broad-except TemplateSpec = get_sdk(cmd.cli_ctx, ResourceType.MGMT_RESOURCE_TEMPLATESPECS, 'TemplateSpec', mod='models') template_spec_parent = TemplateSpec(location=location, description=description, display_name=display_name, tags=None) rcf.template_specs.create_or_update(resource_group_name, name, template_spec_parent) TemplateSpecVersion = get_sdk(cmd.cli_ctx, ResourceType.MGMT_RESOURCE_TEMPLATESPECS, 'TemplateSpecVersion', mod='models') template_spec_child = TemplateSpecVersion(location=location, artifacts=artifacts, description=version_description, template=input_template, tags=None) return rcf.template_spec_versions.create_or_update(resource_group_name, name, version, template_spec_child) TemplateSpec = get_sdk(cmd.cli_ctx, ResourceType.MGMT_RESOURCE_TEMPLATESPECS, 'TemplateSpec', mod='models') template_spec_parent = TemplateSpec(location=location, description=description, display_name=display_name, tags=None) return rcf.template_specs.create_or_update(resource_group_name, name, template_spec_parent) def update_template_spec(cmd, resource_group_name=None, name=None, template_spec=None, template_file=None, display_name=None, description=None, version=None, version_description=None): rcf = _resource_templatespecs_client_factory(cmd.cli_ctx) if template_spec: id_parts = parse_resource_id(template_spec) resource_group_name = id_parts.get('resource_group') name = id_parts.get('name') version = id_parts.get('resource_name') if version == name: version = None existing_template = None artifacts = None if template_file: from azure.cli.command_modules.resource._packing_engine import (pack) packed_template = pack(cmd, template_file) input_template = getattr(packed_template, 'RootTemplate') artifacts = getattr(packed_template, 'Artifacts') if version: existing_template = rcf.template_spec_versions.get(resource_group_name=resource_group_name, template_spec_name=name, template_spec_version=version) location = getattr(existing_template, 'location') version_tags = getattr(existing_template, 'tags') if version_description is None: version_description = getattr(existing_template, 'description') if template_file is None: input_template = getattr(existing_template, 'template') TemplateSpecVersion = get_sdk(cmd.cli_ctx, ResourceType.MGMT_RESOURCE_TEMPLATESPECS, 'TemplateSpecVersion', mod='models') updated_template_spec = TemplateSpecVersion(location=location, artifacts=artifacts, description=version_description, template=input_template, tags=version_tags) return rcf.template_spec_versions.create_or_update(resource_group_name, name, version, updated_template_spec) existing_template = rcf.template_specs.get(resource_group_name=resource_group_name, template_spec_name=name) location = getattr(existing_template, 'location') tags = getattr(existing_template, 'tags') if display_name is None: display_name = getattr(existing_template, 'display_name') if description is None: description = getattr(existing_template, 'description') TemplateSpec = get_sdk(cmd.cli_ctx, ResourceType.MGMT_RESOURCE_TEMPLATESPECS, 'TemplateSpec', mod='models') root_template = TemplateSpec(location=location, description=description, display_name=display_name, tags=tags) return rcf.template_specs.create_or_update(resource_group_name, name, root_template) def export_template_spec(cmd, output_folder, resource_group_name=None, name=None, version=None, template_spec=None): rcf = _resource_templatespecs_client_factory(cmd.cli_ctx) if template_spec: id_parts = parse_resource_id(template_spec) resource_group_name = id_parts.get('resource_group') name = id_parts.get('name') version = id_parts.get('resource_name') if version == name: version = None exported_template = rcf.template_spec_versions.get(resource_group_name, name, version) if version else rcf.template_specs.get(resource_group_name, name) from azure.cli.command_modules.resource._packing_engine import (unpack) return unpack(cmd, exported_template, output_folder, (str(name) + '.JSON')) def delete_template_spec(cmd, resource_group_name=None, name=None, version=None, template_spec=None): rcf = _resource_templatespecs_client_factory(cmd.cli_ctx) if template_spec: id_parts = parse_resource_id(template_spec) resource_group_name = id_parts.get('resource_group') name = id_parts.get('name') version = id_parts.get('resource_name') if version == name: version = None if version: return rcf.template_specs.delete(resource_group_name=resource_group_name, template_spec_name=name, template_spec_version=version) return rcf.template_specs.delete(resource_group_name=resource_group_name, template_spec_name=name) def list_template_specs(cmd, resource_group_name=None, name=None): rcf = _resource_templatespecs_client_factory(cmd.cli_ctx) if resource_group_name is not None: if name is not None: return rcf.template_spec_versions.list(resource_group_name=resource_group_name, template_spec_name=name) return rcf.template_specs.list_by_resource_group(resource_group_name) return rcf.template_specs.list_by_subscription() def list_deployment_operations_at_subscription_scope(cmd, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployment_operations.list_at_subscription_scope(deployment_name) def list_deployment_operations_at_resource_group(cmd, resource_group_name, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployment_operations.list(resource_group_name, deployment_name) def list_deployment_operations_at_management_group(cmd, management_group_id, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployment_operations.list_at_management_group_scope(management_group_id, deployment_name) def list_deployment_operations_at_tenant_scope(cmd, deployment_name): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployment_operations.list_at_tenant_scope(deployment_name) def get_deployment_operation_at_subscription_scope(cmd, deployment_name, op_id): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployment_operations.get_at_subscription_scope(deployment_name, op_id) def get_deployment_operation_at_resource_group(cmd, resource_group_name, deployment_name, op_id): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployment_operations.get(resource_group_name, deployment_name, op_id) def get_deployment_operation_at_management_group(cmd, management_group_id, deployment_name, op_id): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployment_operations.get_at_management_group_scope(management_group_id, deployment_name, op_id) def get_deployment_operation_at_tenant_scope(cmd, deployment_name, op_id): rcf = _resource_client_factory(cmd.cli_ctx) return rcf.deployment_operations.get_at_tenant_scope(deployment_name, op_id) def list_resources(cmd, resource_group_name=None, resource_provider_namespace=None, resource_type=None, name=None, tag=None, location=None): rcf = _resource_client_factory(cmd.cli_ctx) if resource_group_name is not None: rcf.resource_groups.get(resource_group_name) odata_filter = _list_resources_odata_filter_builder(resource_group_name, resource_provider_namespace, resource_type, name, tag, location) expand = "createdTime,changedTime,provisioningState" resources = rcf.resources.list(filter=odata_filter, expand=expand) return list(resources) def register_provider(cmd, resource_provider_namespace, wait=False): _update_provider(cmd.cli_ctx, resource_provider_namespace, registering=True, wait=wait) def unregister_provider(cmd, resource_provider_namespace, wait=False): _update_provider(cmd.cli_ctx, resource_provider_namespace, registering=False, wait=wait) def list_provider_operations(cmd): auth_client = _authorization_management_client(cmd.cli_ctx) return auth_client.provider_operations_metadata.list() def show_provider_operations(cmd, resource_provider_namespace): version = getattr(get_api_version(cmd.cli_ctx, ResourceType.MGMT_AUTHORIZATION), 'provider_operations_metadata') auth_client = _authorization_management_client(cmd.cli_ctx) if version == '2015-07-01': return auth_client.provider_operations_metadata.get(resource_provider_namespace, version) return auth_client.provider_operations_metadata.get(resource_provider_namespace) def move_resource(cmd, ids, destination_group, destination_subscription_id=None): """Moves resources from one resource group to another(can be under different subscription) :param ids: the space-separated resource ids to be moved :param destination_group: the destination resource group name :param destination_subscription_id: the destination subscription identifier """ # verify all resource ids are valid and under the same group resources = [] for i in ids: if is_valid_resource_id(i): resources.append(parse_resource_id(i)) else: raise CLIError('Invalid id "{}", as it has no group or subscription field'.format(i)) if len({r['subscription'] for r in resources}) > 1: raise CLIError('All resources should be under the same subscription') if len({r['resource_group'] for r in resources}) > 1: raise CLIError('All resources should be under the same group') rcf = _resource_client_factory(cmd.cli_ctx) target = _build_resource_id(subscription=(destination_subscription_id or rcf.config.subscription_id), resource_group=destination_group) return rcf.resources.move_resources(resources[0]['resource_group'], ids, target) def list_features(client, resource_provider_namespace=None): if resource_provider_namespace: return client.list(resource_provider_namespace=resource_provider_namespace) return client.list_all() def register_feature(client, resource_provider_namespace, feature_name): logger.warning("Once the feature '%s' is registered, invoking 'az provider register -n %s' is required " "to get the change propagated", feature_name, resource_provider_namespace) return client.register(resource_provider_namespace, feature_name) def unregister_feature(client, resource_provider_namespace, feature_name): logger.warning("Once the feature '%s' is unregistered, invoking 'az provider register -n %s' is required " "to get the change propagated", feature_name, resource_provider_namespace) return client.unregister(resource_provider_namespace, feature_name) # pylint: disable=inconsistent-return-statements,too-many-locals def create_policy_assignment(cmd, policy=None, policy_set_definition=None, name=None, display_name=None, params=None, resource_group_name=None, scope=None, sku=None, not_scopes=None, location=None, assign_identity=None, identity_scope=None, identity_role='Contributor', enforcement_mode='Default'): """Creates a policy assignment :param not_scopes: Space-separated scopes where the policy assignment does not apply. """ if bool(policy) == bool(policy_set_definition): raise CLIError('usage error: --policy NAME_OR_ID | ' '--policy-set-definition NAME_OR_ID') policy_client = _resource_policy_client_factory(cmd.cli_ctx) scope = _build_policy_scope(policy_client.config.subscription_id, resource_group_name, scope) policy_id = _resolve_policy_id(cmd, policy, policy_set_definition, policy_client) params = _load_file_string_or_uri(params, 'params', False) PolicyAssignment = cmd.get_models('PolicyAssignment') assignment = PolicyAssignment(display_name=display_name, policy_definition_id=policy_id, scope=scope, enforcement_mode=enforcement_mode) assignment.parameters = params if params else None if cmd.supported_api_version(min_api='2017-06-01-preview'): if not_scopes: kwargs_list = [] for id_arg in not_scopes.split(' '): if parse_resource_id(id_arg): kwargs_list.append(id_arg) else: logger.error('az policy assignment create error: argument --not-scopes: \ invalid notscopes value: \'%s\'', id_arg) return assignment.not_scopes = kwargs_list PolicySku = cmd.get_models('PolicySku') policySku = PolicySku(name='A0', tier='Free') if sku: policySku = policySku if sku.lower() == 'free' else PolicySku(name='A1', tier='Standard') assignment.sku = policySku if cmd.supported_api_version(min_api='2018-05-01'): if location: assignment.location = location identity = None if assign_identity is not None: identity = _build_identities_info(cmd, assign_identity) assignment.identity = identity if name is None: name = (base64.urlsafe_b64encode(uuid.uuid4().bytes).decode())[:-2] createdAssignment = policy_client.policy_assignments.create(scope, name, assignment) # Create the identity's role assignment if requested if assign_identity is not None and identity_scope: from azure.cli.core.commands.arm import assign_identity as _assign_identity_helper _assign_identity_helper(cmd.cli_ctx, lambda: createdAssignment, lambda resource: createdAssignment, identity_role, identity_scope) return createdAssignment def _build_identities_info(cmd, identities): identities = identities or [] ResourceIdentityType = cmd.get_models('ResourceIdentityType') identity_type = ResourceIdentityType.none if not identities or MSI_LOCAL_ID in identities: identity_type = ResourceIdentityType.system_assigned ResourceIdentity = cmd.get_models('Identity') return ResourceIdentity(type=identity_type) def delete_policy_assignment(cmd, name, resource_group_name=None, scope=None): policy_client = _resource_policy_client_factory(cmd.cli_ctx) scope = _build_policy_scope(policy_client.config.subscription_id, resource_group_name, scope) policy_client.policy_assignments.delete(scope, name) def show_policy_assignment(cmd, name, resource_group_name=None, scope=None): policy_client = _resource_policy_client_factory(cmd.cli_ctx) scope = _build_policy_scope(policy_client.config.subscription_id, resource_group_name, scope) return policy_client.policy_assignments.get(scope, name) def list_policy_assignment(cmd, disable_scope_strict_match=None, resource_group_name=None, scope=None): from azure.cli.core.commands.client_factory import get_subscription_id policy_client = _resource_policy_client_factory(cmd.cli_ctx) _scope = _build_policy_scope(get_subscription_id(cmd.cli_ctx), resource_group_name, scope) id_parts = parse_resource_id(_scope) subscription = id_parts.get('subscription') resource_group = id_parts.get('resource_group') resource_type = id_parts.get('child_type_1') or id_parts.get('type') resource_name = id_parts.get('child_name_1') or id_parts.get('name') management_group = _parse_management_group_id(scope) if management_group: result = policy_client.policy_assignments.list_for_management_group(management_group_id=management_group, filter='atScope()') elif all([resource_type, resource_group, subscription]): namespace = id_parts.get('namespace') parent_resource_path = '' if not id_parts.get('child_name_1') else (id_parts['type'] + '/' + id_parts['name']) result = policy_client.policy_assignments.list_for_resource( resource_group, namespace, parent_resource_path, resource_type, resource_name) elif resource_group: result = policy_client.policy_assignments.list_for_resource_group(resource_group) elif subscription: result = policy_client.policy_assignments.list() elif scope: raise CLIError('usage error `--scope`: must be a fully qualified ARM ID.') else: raise CLIError('usage error: --scope ARM_ID | --resource-group NAME') if not disable_scope_strict_match: result = [i for i in result if _scope.lower().strip('/') == i.scope.lower().strip('/')] return result def set_identity(cmd, name, scope=None, resource_group_name=None, identity_role='Contributor', identity_scope=None): policy_client = _resource_policy_client_factory(cmd.cli_ctx) scope = _build_policy_scope(policy_client.config.subscription_id, resource_group_name, scope) def getter(): return policy_client.policy_assignments.get(scope, name) def setter(policyAssignment): policyAssignment.identity = _build_identities_info(cmd, [MSI_LOCAL_ID]) return policy_client.policy_assignments.create(scope, name, policyAssignment) from azure.cli.core.commands.arm import assign_identity as _assign_identity_helper updatedAssignment = _assign_identity_helper(cmd.cli_ctx, getter, setter, identity_role, identity_scope) return updatedAssignment.identity def show_identity(cmd, name, scope=None, resource_group_name=None): policy_client = _resource_policy_client_factory(cmd.cli_ctx) scope = _build_policy_scope(policy_client.config.subscription_id, resource_group_name, scope) return policy_client.policy_assignments.get(scope, name).identity def remove_identity(cmd, name, scope=None, resource_group_name=None): policy_client = _resource_policy_client_factory(cmd.cli_ctx) scope = _build_policy_scope(policy_client.config.subscription_id, resource_group_name, scope) policyAssignment = policy_client.policy_assignments.get(scope, name) ResourceIdentityType = cmd.get_models('ResourceIdentityType') ResourceIdentity = cmd.get_models('Identity') policyAssignment.identity = ResourceIdentity(type=ResourceIdentityType.none) policyAssignment = policy_client.policy_assignments.create(scope, name, policyAssignment) return policyAssignment.identity def enforce_mutually_exclusive(subscription, management_group): if subscription and management_group: raise IncorrectUsageError('cannot provide both --subscription and --management-group') def create_policy_definition(cmd, name, rules=None, params=None, display_name=None, description=None, mode=None, metadata=None, subscription=None, management_group=None): rules = _load_file_string_or_uri(rules, 'rules') params = _load_file_string_or_uri(params, 'params', False) policy_client = _resource_policy_client_factory(cmd.cli_ctx) PolicyDefinition = cmd.get_models('PolicyDefinition') parameters = PolicyDefinition(policy_rule=rules, parameters=params, description=description, display_name=display_name) if cmd.supported_api_version(min_api='2016-12-01'): parameters.mode = mode if cmd.supported_api_version(min_api='2017-06-01-preview'): parameters.metadata = metadata if cmd.supported_api_version(min_api='2018-03-01'): enforce_mutually_exclusive(subscription, management_group) if management_group: return policy_client.policy_definitions.create_or_update_at_management_group(name, parameters, management_group) if subscription: subscription_id = _get_subscription_id_from_subscription(cmd.cli_ctx, subscription) policy_client.config.subscription_id = subscription_id return policy_client.policy_definitions.create_or_update(name, parameters) def create_policy_setdefinition(cmd, name, definitions, params=None, display_name=None, description=None, subscription=None, management_group=None, definition_groups=None, metadata=None): definitions = _load_file_string_or_uri(definitions, 'definitions') params = _load_file_string_or_uri(params, 'params', False) definition_groups = _load_file_string_or_uri(definition_groups, 'definition_groups', False) policy_client = _resource_policy_client_factory(cmd.cli_ctx) PolicySetDefinition = cmd.get_models('PolicySetDefinition') parameters = PolicySetDefinition(policy_definitions=definitions, parameters=params, description=description, display_name=display_name, policy_definition_groups=definition_groups) if cmd.supported_api_version(min_api='2017-06-01-preview'): parameters.metadata = metadata if cmd.supported_api_version(min_api='2018-03-01'): enforce_mutually_exclusive(subscription, management_group) if management_group: return policy_client.policy_set_definitions.create_or_update_at_management_group(name, parameters, management_group) if subscription: subscription_id = _get_subscription_id_from_subscription(cmd.cli_ctx, subscription) policy_client.config.subscription_id = subscription_id return policy_client.policy_set_definitions.create_or_update(name, parameters) def get_policy_definition(cmd, policy_definition_name, subscription=None, management_group=None): policy_client = _resource_policy_client_factory(cmd.cli_ctx) return _get_custom_or_builtin_policy(cmd, policy_client, policy_definition_name, subscription, management_group) def get_policy_setdefinition(cmd, policy_set_definition_name, subscription=None, management_group=None): policy_client = _resource_policy_client_factory(cmd.cli_ctx) return _get_custom_or_builtin_policy(cmd, policy_client, policy_set_definition_name, subscription, management_group, True) def list_policy_definition(cmd, subscription=None, management_group=None): policy_client = _resource_policy_client_factory(cmd.cli_ctx) if cmd.supported_api_version(min_api='2018-03-01'): enforce_mutually_exclusive(subscription, management_group) if management_group: return policy_client.policy_definitions.list_by_management_group(management_group) if subscription: subscription_id = _get_subscription_id_from_subscription(cmd.cli_ctx, subscription) policy_client.config.subscription_id = subscription_id return policy_client.policy_definitions.list() def list_policy_setdefinition(cmd, subscription=None, management_group=None): policy_client = _resource_policy_client_factory(cmd.cli_ctx) if cmd.supported_api_version(min_api='2018-03-01'): enforce_mutually_exclusive(subscription, management_group) if management_group: return policy_client.policy_set_definitions.list_by_management_group(management_group) if subscription: subscription_id = _get_subscription_id_from_subscription(cmd.cli_ctx, subscription) policy_client.config.subscription_id = subscription_id return policy_client.policy_set_definitions.list() def delete_policy_definition(cmd, policy_definition_name, subscription=None, management_group=None): policy_client = _resource_policy_client_factory(cmd.cli_ctx) if cmd.supported_api_version(min_api='2018-03-01'): enforce_mutually_exclusive(subscription, management_group) if management_group: return policy_client.policy_definitions.delete_at_management_group(policy_definition_name, management_group) if subscription: subscription_id = _get_subscription_id_from_subscription(cmd.cli_ctx, subscription) policy_client.config.subscription_id = subscription_id return policy_client.policy_definitions.delete(policy_definition_name) def delete_policy_setdefinition(cmd, policy_set_definition_name, subscription=None, management_group=None): policy_client = _resource_policy_client_factory(cmd.cli_ctx) if cmd.supported_api_version(min_api='2018-03-01'): enforce_mutually_exclusive(subscription, management_group) if management_group: return policy_client.policy_set_definitions.delete_at_management_group(policy_set_definition_name, management_group) if subscription: subscription_id = _get_subscription_id_from_subscription(cmd.cli_ctx, subscription) policy_client.config.subscription_id = subscription_id return policy_client.policy_set_definitions.delete(policy_set_definition_name) def update_policy_definition(cmd, policy_definition_name, rules=None, params=None, display_name=None, description=None, metadata=None, mode=None, subscription=None, management_group=None): rules = _load_file_string_or_uri(rules, 'rules', False) params = _load_file_string_or_uri(params, 'params', False) policy_client = _resource_policy_client_factory(cmd.cli_ctx) definition = _get_custom_or_builtin_policy(cmd, policy_client, policy_definition_name, subscription, management_group) # pylint: disable=line-too-long,no-member PolicyDefinition = cmd.get_models('PolicyDefinition') parameters = PolicyDefinition( policy_rule=rules if rules is not None else definition.policy_rule, parameters=params if params is not None else definition.parameters, display_name=display_name if display_name is not None else definition.display_name, description=description if description is not None else definition.description, metadata=metadata if metadata is not None else definition.metadata) if cmd.supported_api_version(min_api='2016-12-01'): parameters.mode = mode if cmd.supported_api_version(min_api='2018-03-01'): enforce_mutually_exclusive(subscription, management_group) if management_group: return policy_client.policy_definitions.create_or_update_at_management_group(policy_definition_name, parameters, management_group) if subscription: subscription_id = _get_subscription_id_from_subscription(cmd.cli_ctx, subscription) policy_client.config.subscription_id = subscription_id return policy_client.policy_definitions.create_or_update(policy_definition_name, parameters) def update_policy_setdefinition(cmd, policy_set_definition_name, definitions=None, params=None, display_name=None, description=None, subscription=None, management_group=None, definition_groups=None, metadata=None): definitions = _load_file_string_or_uri(definitions, 'definitions', False) params = _load_file_string_or_uri(params, 'params', False) definition_groups = _load_file_string_or_uri(definition_groups, 'definition_groups', False) policy_client = _resource_policy_client_factory(cmd.cli_ctx) definition = _get_custom_or_builtin_policy(cmd, policy_client, policy_set_definition_name, subscription, management_group, True) # pylint: disable=line-too-long,no-member PolicySetDefinition = cmd.get_models('PolicySetDefinition') parameters = PolicySetDefinition( policy_definitions=definitions if definitions is not None else definition.policy_definitions, description=description if description is not None else definition.description, display_name=display_name if display_name is not None else definition.display_name, parameters=params if params is not None else definition.parameters, policy_definition_groups=definition_groups if definition_groups is not None else definition.policy_definition_groups, metadata=metadata if metadata is not None else definition.metadata) if cmd.supported_api_version(min_api='2018-03-01'): enforce_mutually_exclusive(subscription, management_group) if management_group: return policy_client.policy_set_definitions.create_or_update_at_management_group(policy_set_definition_name, parameters, management_group) if subscription: subscription_id = _get_subscription_id_from_subscription(cmd.cli_ctx, subscription) policy_client.config.subscription_id = subscription_id return policy_client.policy_set_definitions.create_or_update(policy_set_definition_name, parameters) def _register_rp(cli_ctx, subscription_id=None): rp = "Microsoft.Management" import time rcf = get_mgmt_service_client( cli_ctx, ResourceType.MGMT_RESOURCE_RESOURCES, subscription_id) rcf.providers.register(rp) while True: time.sleep(10) rp_info = rcf.providers.get(rp) if rp_info.registration_state == 'Registered': break def _get_subscription_id_from_subscription(cli_ctx, subscription): # pylint: disable=inconsistent-return-statements from azure.cli.core._profile import Profile profile = Profile(cli_ctx=cli_ctx) subscriptions_list = profile.load_cached_subscriptions() for sub in subscriptions_list: if subscription in (sub['id'], sub['name']): return sub['id'] raise CLIError("Subscription not found in the current context.") def _get_parent_id_from_parent(parent): if parent is None or _is_management_group_scope(parent): return parent return "/providers/Microsoft.Management/managementGroups/" + parent def _is_management_group_scope(scope): return scope is not None and scope.lower().startswith("/providers/microsoft.management/managementgroups") def cli_managementgroups_group_list(cmd, client): _register_rp(cmd.cli_ctx) return client.list() def cli_managementgroups_group_show( cmd, client, group_name, expand=False, recurse=False): _register_rp(cmd.cli_ctx) if expand: return client.get(group_name, "children", recurse) return client.get(group_name) def cli_managementgroups_group_create( cmd, client, group_name, display_name=None, parent=None): _register_rp(cmd.cli_ctx) parent_id = _get_parent_id_from_parent(parent) from azure.mgmt.managementgroups.models import ( CreateManagementGroupRequest, CreateManagementGroupDetails, CreateParentGroupInfo) create_parent_grp_info = CreateParentGroupInfo(id=parent_id) create_mgmt_grp_details = CreateManagementGroupDetails(parent=create_parent_grp_info) create_mgmt_grp_request = CreateManagementGroupRequest( name=group_name, display_name=display_name, details=create_mgmt_grp_details) return client.create_or_update(group_name, create_mgmt_grp_request) def cli_managementgroups_group_update_custom_func( instance, display_name=None, parent_id=None): parent_id = _get_parent_id_from_parent(parent_id) instance.display_name = display_name instance.parent_id = parent_id return instance def cli_managementgroups_group_update_get(): from azure.mgmt.managementgroups.models import PatchManagementGroupRequest update_parameters = PatchManagementGroupRequest(display_name=None, parent_id=None) return update_parameters def cli_managementgroups_group_update_set( cmd, client, group_name, parameters=None): return client.update(group_name, parameters) def cli_managementgroups_group_delete(cmd, client, group_name): _register_rp(cmd.cli_ctx) return client.delete(group_name) def cli_managementgroups_subscription_add( cmd, client, group_name, subscription): subscription_id = _get_subscription_id_from_subscription( cmd.cli_ctx, subscription) return client.create(group_name, subscription_id) def cli_managementgroups_subscription_remove( cmd, client, group_name, subscription): subscription_id = _get_subscription_id_from_subscription( cmd.cli_ctx, subscription) return client.delete(group_name, subscription_id) # region Locks def _validate_lock_params_match_lock( lock_client, name, resource_group, resource_provider_namespace, parent_resource_path, resource_type, resource_name): """ Locks are scoped to subscription, resource group or resource. However, the az list command returns all locks for the current scopes and all lower scopes (e.g. resource group level also includes resource locks). This can lead to a confusing user experience where the user specifies a lock name and assumes that it will work, even if they haven't given the right scope. This function attempts to validate the parameters and help the user find the right scope, by first finding the lock, and then infering what it's parameters should be. """ locks = lock_client.management_locks.list_at_subscription_level() found_count = 0 # locks at different levels can have the same name lock_resource_id = None for lock in locks: if lock.name == name: found_count = found_count + 1 lock_resource_id = lock.id if found_count == 1: # If we only found one lock, let's validate that the parameters are correct, # if we found more than one, we'll assume the user knows what they're doing # TODO: Add validation for that case too? resource = parse_resource_id(lock_resource_id) _resource_group = resource.get('resource_group', None) _resource_namespace = resource.get('namespace', None) if _resource_group is None: return if resource_group != _resource_group: raise CLIError( 'Unexpected --resource-group for lock {}, expected {}'.format( name, _resource_group)) if _resource_namespace is None or _resource_namespace == 'Microsoft.Authorization': return if resource_provider_namespace != _resource_namespace: raise CLIError( 'Unexpected --namespace for lock {}, expected {}'.format(name, _resource_namespace)) if resource.get('child_type_2', None) is None: _resource_type = resource.get('type', None) _resource_name = resource.get('name', None) else: if resource.get('child_type_3', None) is None: _resource_type = resource.get('child_type_1', None) _resource_name = resource.get('child_name_1', None) parent = (resource['type'] + '/' + resource['name']) else: _resource_type = resource.get('child_type_2', None) _resource_name = resource.get('child_name_2', None) parent = (resource['type'] + '/' + resource['name'] + '/' + resource['child_type_1'] + '/' + resource['child_name_1']) if parent != parent_resource_path: raise CLIError( 'Unexpected --parent for lock {}, expected {}'.format( name, parent)) if resource_type != _resource_type: raise CLIError('Unexpected --resource-type for lock {}, expected {}'.format( name, _resource_type)) if resource_name != _resource_name: raise CLIError('Unexpected --resource-name for lock {}, expected {}'.format( name, _resource_name)) def list_locks(cmd, resource_group=None, resource_provider_namespace=None, parent_resource_path=None, resource_type=None, resource_name=None, filter_string=None): """ :param resource_provider_namespace: Name of a resource provider. :type resource_provider_namespace: str :param parent_resource_path: Path to a parent resource :type parent_resource_path: str :param resource_type: The type for the resource with the lock. :type resource_type: str :param resource_name: Name of a resource that has a lock. :type resource_name: str :param filter_string: A query filter to use to restrict the results. :type filter_string: str """ lock_client = _resource_lock_client_factory(cmd.cli_ctx) lock_resource = _extract_lock_params(resource_group, resource_provider_namespace, resource_type, resource_name) resource_group = lock_resource[0] resource_name = lock_resource[1] resource_provider_namespace = lock_resource[2] resource_type = lock_resource[3] if resource_group is None: return lock_client.management_locks.list_at_subscription_level(filter=filter_string) if resource_name is None: return lock_client.management_locks.list_at_resource_group_level( resource_group, filter=filter_string) return lock_client.management_locks.list_at_resource_level( resource_group, resource_provider_namespace, parent_resource_path or '', resource_type, resource_name, filter=filter_string) # pylint: disable=inconsistent-return-statements def get_lock(cmd, lock_name=None, resource_group=None, resource_provider_namespace=None, parent_resource_path=None, resource_type=None, resource_name=None, ids=None): """ :param name: The name of the lock. :type name: str """ if ids: kwargs_list = [] for id_arg in ids: try: kwargs_list.append(_parse_lock_id(id_arg)) except AttributeError: logger.error('az lock show: error: argument --ids: invalid ResourceId value: \'%s\'', id_arg) return results = [get_lock(cmd, **kwargs) for kwargs in kwargs_list] return results[0] if len(results) == 1 else results lock_client = _resource_lock_client_factory(cmd.cli_ctx) lock_resource = _extract_lock_params(resource_group, resource_provider_namespace, resource_type, resource_name) resource_group = lock_resource[0] resource_name = lock_resource[1] resource_provider_namespace = lock_resource[2] resource_type = lock_resource[3] _validate_lock_params_match_lock(lock_client, lock_name, resource_group, resource_provider_namespace, parent_resource_path, resource_type, resource_name) if resource_group is None: return _call_subscription_get(cmd, lock_client, lock_name) if resource_name is None: return lock_client.management_locks.get_at_resource_group_level(resource_group, lock_name) if cmd.supported_api_version(max_api='2015-01-01'): lock_list = list_locks(resource_group, resource_provider_namespace, parent_resource_path, resource_type, resource_name) return next((lock for lock in lock_list if lock.name == lock_name), None) return lock_client.management_locks.get_at_resource_level( resource_group, resource_provider_namespace, parent_resource_path or '', resource_type, resource_name, lock_name) # pylint: disable=inconsistent-return-statements def delete_lock(cmd, lock_name=None, resource_group=None, resource_provider_namespace=None, parent_resource_path=None, resource_type=None, resource_name=None, ids=None): """ :param name: The name of the lock. :type name: str :param resource_provider_namespace: Name of a resource provider. :type resource_provider_namespace: str :param parent_resource_path: Path to a parent resource :type parent_resource_path: str :param resource_type: The type for the resource with the lock. :type resource_type: str :param resource_name: Name of a resource that has a lock. :type resource_name: str """ if ids: kwargs_list = [] for id_arg in ids: try: kwargs_list.append(_parse_lock_id(id_arg)) except AttributeError: logger.error('az lock delete: error: argument --ids: invalid ResourceId value: \'%s\'', id_arg) return results = [delete_lock(cmd, **kwargs) for kwargs in kwargs_list] return results[0] if len(results) == 1 else results lock_client = _resource_lock_client_factory(cmd.cli_ctx) lock_resource = _extract_lock_params(resource_group, resource_provider_namespace, resource_type, resource_name) resource_group = lock_resource[0] resource_name = lock_resource[1] resource_provider_namespace = lock_resource[2] resource_type = lock_resource[3] _validate_lock_params_match_lock(lock_client, lock_name, resource_group, resource_provider_namespace, parent_resource_path, resource_type, resource_name) if resource_group is None: return lock_client.management_locks.delete_at_subscription_level(lock_name) if resource_name is None: return lock_client.management_locks.delete_at_resource_group_level( resource_group, lock_name) return lock_client.management_locks.delete_at_resource_level( resource_group, resource_provider_namespace, parent_resource_path or '', resource_type, resource_name, lock_name) def create_lock(cmd, lock_name, level, resource_group=None, resource_provider_namespace=None, notes=None, parent_resource_path=None, resource_type=None, resource_name=None): """ :param name: The name of the lock. :type name: str :param resource_provider_namespace: Name of a resource provider. :type resource_provider_namespace: str :param parent_resource_path: Path to a parent resource :type parent_resource_path: str :param resource_type: The type for the resource with the lock. :type resource_type: str :param resource_name: Name of a resource that has a lock. :type resource_name: str :param notes: Notes about this lock. :type notes: str """ ManagementLockObject = get_sdk(cmd.cli_ctx, ResourceType.MGMT_RESOURCE_LOCKS, 'ManagementLockObject', mod='models') parameters = ManagementLockObject(level=level, notes=notes, name=lock_name) lock_client = _resource_lock_client_factory(cmd.cli_ctx) lock_resource = _extract_lock_params(resource_group, resource_provider_namespace, resource_type, resource_name) resource_group = lock_resource[0] resource_name = lock_resource[1] resource_provider_namespace = lock_resource[2] resource_type = lock_resource[3] if resource_group is None: return lock_client.management_locks.create_or_update_at_subscription_level(lock_name, parameters) if resource_name is None: return lock_client.management_locks.create_or_update_at_resource_group_level( resource_group, lock_name, parameters) return lock_client.management_locks.create_or_update_at_resource_level( resource_group, resource_provider_namespace, parent_resource_path or '', resource_type, resource_name, lock_name, parameters) # pylint: disable=inconsistent-return-statements def update_lock(cmd, lock_name=None, resource_group=None, resource_provider_namespace=None, notes=None, parent_resource_path=None, resource_type=None, resource_name=None, level=None, ids=None): """ Allows updates to the lock-type(level) and the notes of the lock """ if ids: kwargs_list = [] for id_arg in ids: try: kwargs_list.append(_parse_lock_id(id_arg)) except AttributeError: logger.error('az lock update: error: argument --ids: invalid ResourceId value: \'%s\'', id_arg) return results = [update_lock(cmd, level=level, notes=notes, **kwargs) for kwargs in kwargs_list] return results[0] if len(results) == 1 else results lock_client = _resource_lock_client_factory(cmd.cli_ctx) lock_resource = _extract_lock_params(resource_group, resource_provider_namespace, resource_type, resource_name) resource_group = lock_resource[0] resource_name = lock_resource[1] resource_provider_namespace = lock_resource[2] resource_type = lock_resource[3] _validate_lock_params_match_lock(lock_client, lock_name, resource_group, resource_provider_namespace, parent_resource_path, resource_type, resource_name) if resource_group is None: params = _call_subscription_get(cmd, lock_client, lock_name) _update_lock_parameters(params, level, notes) return lock_client.management_locks.create_or_update_at_subscription_level(lock_name, params) if resource_name is None: params = lock_client.management_locks.get_at_resource_group_level(resource_group, lock_name) _update_lock_parameters(params, level, notes) return lock_client.management_locks.create_or_update_at_resource_group_level( resource_group, lock_name, params) if cmd.supported_api_version(max_api='2015-01-01'): lock_list = list_locks(resource_group, resource_provider_namespace, parent_resource_path, resource_type, resource_name) return next((lock for lock in lock_list if lock.name == lock_name), None) params = lock_client.management_locks.get_at_resource_level( resource_group, resource_provider_namespace, parent_resource_path or '', resource_type, resource_name, lock_name) _update_lock_parameters(params, level, notes) return lock_client.management_locks.create_or_update_at_resource_level( resource_group, resource_provider_namespace, parent_resource_path or '', resource_type, resource_name, lock_name, params) # endregion # region ResourceLinks def create_resource_link(cmd, link_id, target_id, notes=None): links_client = _resource_links_client_factory(cmd.cli_ctx).resource_links ResourceLinkProperties = get_sdk(cmd.cli_ctx, ResourceType.MGMT_RESOURCE_LINKS, 'ResourceLinkProperties', mod='models') properties = ResourceLinkProperties(target_id=target_id, notes=notes) links_client.create_or_update(link_id, properties) def update_resource_link(cmd, link_id, target_id=None, notes=None): links_client = _resource_links_client_factory(cmd.cli_ctx).resource_links params = links_client.get(link_id) ResourceLinkProperties = get_sdk(cmd.cli_ctx, ResourceType.MGMT_RESOURCE_LINKS, 'ResourceLinkProperties', mod='models') properties = ResourceLinkProperties( target_id=target_id if target_id is not None else params.properties.target_id, # pylint: disable=no-member notes=notes if notes is not None else params.properties.notes) # pylint: disable=no-member links_client.create_or_update(link_id, properties) def list_resource_links(cmd, scope=None, filter_string=None): links_client = _resource_links_client_factory(cmd.cli_ctx).resource_links if scope is not None: return links_client.list_at_source_scope(scope, filter=filter_string) return links_client.list_at_subscription(filter=filter_string) # endregion # region tags def get_tag_at_scope(cmd, resource_id=None): rcf = _resource_client_factory(cmd.cli_ctx) if resource_id is not None: return rcf.tags.get_at_scope(scope=resource_id) return rcf.tags.list() def create_or_update_tag_at_scope(cmd, resource_id=None, tags=None, tag_name=None): rcf = _resource_client_factory(cmd.cli_ctx) if resource_id is not None: if not tags: raise IncorrectUsageError("Tags could not be empty.") Tags = cmd.get_models('Tags') tag_obj = Tags(tags=tags) return rcf.tags.create_or_update_at_scope(scope=resource_id, properties=tag_obj) return rcf.tags.create_or_update(tag_name=tag_name) def delete_tag_at_scope(cmd, resource_id=None, tag_name=None): rcf = _resource_client_factory(cmd.cli_ctx) if resource_id is not None: return rcf.tags.delete_at_scope(scope=resource_id) return rcf.tags.delete(tag_name=tag_name) def update_tag_at_scope(cmd, resource_id, tags, operation): rcf = _resource_client_factory(cmd.cli_ctx) if not tags: raise IncorrectUsageError("Tags could not be empty.") Tags = cmd.get_models('Tags') tag_obj = Tags(tags=tags) return rcf.tags.update_at_scope(scope=resource_id, properties=tag_obj, operation=operation) # endregion class _ResourceUtils: # pylint: disable=too-many-instance-attributes def __init__(self, cli_ctx, resource_group_name=None, resource_provider_namespace=None, parent_resource_path=None, resource_type=None, resource_name=None, resource_id=None, api_version=None, rcf=None, latest_include_preview=False): # if the resouce_type is in format 'namespace/type' split it. # (we don't have to do this, but commands like 'vm show' returns such values) if resource_type and not resource_provider_namespace and not parent_resource_path: parts = resource_type.split('/') if len(parts) > 1: resource_provider_namespace = parts[0] resource_type = parts[1] self.rcf = rcf or _resource_client_factory(cli_ctx) if api_version is None: if resource_id: api_version = _ResourceUtils._resolve_api_version_by_id(self.rcf, resource_id, latest_include_preview=latest_include_preview) else: _validate_resource_inputs(resource_group_name, resource_provider_namespace, resource_type, resource_name) api_version = _ResourceUtils.resolve_api_version(self.rcf, resource_provider_namespace, parent_resource_path, resource_type, latest_include_preview=latest_include_preview) self.resource_group_name = resource_group_name self.resource_provider_namespace = resource_provider_namespace self.parent_resource_path = parent_resource_path if parent_resource_path else '' self.resource_type = resource_type self.resource_name = resource_name self.resource_id = resource_id self.api_version = api_version def create_resource(self, properties, location, is_full_object): try: res = json.loads(properties) except json.decoder.JSONDecodeError as ex: raise CLIError('Error parsing JSON.\n{}\n{}'.format(properties, ex)) if not is_full_object: if not location: if self.resource_id: rg_name = parse_resource_id(self.resource_id)['resource_group'] else: rg_name = self.resource_group_name location = self.rcf.resource_groups.get(rg_name).location res = GenericResource(location=location, properties=res) elif res.get('location', None) is None: raise IncorrectUsageError("location of the resource is required") if self.resource_id: resource = self.rcf.resources.create_or_update_by_id(self.resource_id, self.api_version, res) else: resource = self.rcf.resources.create_or_update(self.resource_group_name, self.resource_provider_namespace, self.parent_resource_path, self.resource_type, self.resource_name, self.api_version, res) return resource def get_resource(self, include_response_body=False): if self.resource_id: resource = self.rcf.resources.get_by_id(self.resource_id, self.api_version, raw=include_response_body) else: resource = self.rcf.resources.get(self.resource_group_name, self.resource_provider_namespace, self.parent_resource_path, self.resource_type, self.resource_name, self.api_version, raw=include_response_body) if include_response_body: temp = resource.output setattr(temp, 'response_body', json.loads(resource.response.content.decode())) resource = temp return resource def delete(self): if self.resource_id: return self.rcf.resources.delete_by_id(self.resource_id, self.api_version) return self.rcf.resources.delete(self.resource_group_name, self.resource_provider_namespace, self.parent_resource_path, self.resource_type, self.resource_name, self.api_version) def update(self, parameters): if self.resource_id: return self.rcf.resources.create_or_update_by_id(self.resource_id, self.api_version, parameters) return self.rcf.resources.create_or_update(self.resource_group_name, self.resource_provider_namespace, self.parent_resource_path, self.resource_type, self.resource_name, self.api_version, parameters) def tag(self, tags, is_incremental=False): resource = self.get_resource() if is_incremental is True: if not tags: raise CLIError("When modifying tag incrementally, the parameters of tag must have specific values.") if resource.tags: resource.tags.update(tags) tags = resource.tags # please add the service type that needs to be requested with PATCH type here # for example: the properties of RecoveryServices/vaults must be filled, and a PUT request that passes back # to properties will fail due to the lack of properties, so the PATCH type should be used need_patch_service = ['Microsoft.RecoveryServices/vaults', 'Microsoft.Resources/resourceGroups', 'Microsoft.ContainerRegistry/registries/webhooks', 'Microsoft.ContainerInstance/containerGroups'] if resource is not None and resource.type in need_patch_service: parameters = GenericResource(tags=tags) if self.resource_id: return self.rcf.resources.update_by_id(self.resource_id, self.api_version, parameters) return self.rcf.resources.update(self.resource_group_name, self.resource_provider_namespace, self.parent_resource_path, self.resource_type, self.resource_name, self.api_version, parameters) # pylint: disable=no-member parameters = GenericResource( location=resource.location, tags=tags, plan=resource.plan, properties=resource.properties, kind=resource.kind, managed_by=resource.managed_by, sku=resource.sku, identity=resource.identity) if self.resource_id: return self.rcf.resources.create_or_update_by_id(self.resource_id, self.api_version, parameters) return self.rcf.resources.create_or_update(self.resource_group_name, self.resource_provider_namespace, self.parent_resource_path, self.resource_type, self.resource_name, self.api_version, parameters) def invoke_action(self, action, request_body): """ Formats Url if none provided and sends the POST request with the url and request-body. """ from msrestazure.azure_operation import AzureOperationPoller query_parameters = {} serialize = self.rcf.resources._serialize # pylint: disable=protected-access client = self.rcf.resources._client # pylint: disable=protected-access url = '/subscriptions/{subscriptionId}/resourcegroups/{resourceGroupName}/providers/' \ '{resourceProviderNamespace}/{parentResourcePath}/{resourceType}/{resourceName}/{action}' if self.resource_id: url = client.format_url( '{resource_id}/{action}', resource_id=self.resource_id, action=serialize.url("action", action, 'str')) else: url = client.format_url( url, resourceGroupName=serialize.url( "resource_group_name", self.resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), resourceProviderNamespace=serialize.url( "resource_provider_namespace", self.resource_provider_namespace, 'str'), parentResourcePath=serialize.url( "parent_resource_path", self.parent_resource_path, 'str', skip_quote=True), resourceType=serialize.url("resource_type", self.resource_type, 'str', skip_quote=True), resourceName=serialize.url("resource_name", self.resource_name, 'str'), subscriptionId=serialize.url( "self.config.subscription_id", self.rcf.resources.config.subscription_id, 'str'), action=serialize.url("action", action, 'str')) # Construct parameters query_parameters['api-version'] = serialize.query("api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.rcf.resources.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid4()) if self.rcf.resources.config.accept_language is not None: header_parameters['accept-language'] = serialize.header( "self.config.accept_language", self.rcf.resources.config.accept_language, 'str') # Construct and send request def long_running_send(): request = client.post(url, query_parameters) return client.send( request, header_parameters, json.loads(request_body) if request_body else None) def get_long_running_status(status_link, headers=None): request = client.get(status_link) if headers: request.headers.update(headers) return client.send(request, header_parameters) def get_long_running_output(response): from msrestazure.azure_exceptions import CloudError if response.status_code not in [200, 202, 204]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response.text return AzureOperationPoller(long_running_send, get_long_running_output, get_long_running_status, self.rcf.resources.config.long_running_operation_timeout) @staticmethod def resolve_api_version(rcf, resource_provider_namespace, parent_resource_path, resource_type, latest_include_preview=False): provider = rcf.providers.get(resource_provider_namespace) # If available, we will use parent resource's api-version resource_type_str = (parent_resource_path.split('/')[0] if parent_resource_path else resource_type) rt = [t for t in provider.resource_types if t.resource_type.lower() == resource_type_str.lower()] if not rt: raise IncorrectUsageError('Resource type {} not found.'.format(resource_type_str)) if len(rt) == 1 and rt[0].api_versions: # If latest_include_preview is true, # the last api-version will be taken regardless of whether it is preview version or not if latest_include_preview: return rt[0].api_versions[0] # Take the latest stable version first. # if there is no stable version, the latest preview version will be taken. npv = [v for v in rt[0].api_versions if 'preview' not in v.lower()] return npv[0] if npv else rt[0].api_versions[0] raise IncorrectUsageError( 'API version is required and could not be resolved for resource {}' .format(resource_type)) @staticmethod def _resolve_api_version_by_id(rcf, resource_id, latest_include_preview=False): parts = parse_resource_id(resource_id) if len(parts) == 2 and parts['subscription'] is not None and parts['resource_group'] is not None: return AZURE_API_PROFILES['latest'][ResourceType.MGMT_RESOURCE_RESOURCES] if 'namespace' not in parts: raise CLIError('The type of value entered by --ids parameter is not supported.') namespace = parts.get('child_namespace_1', parts['namespace']) if parts.get('child_type_2'): parent = (parts['type'] + '/' + parts['name'] + '/' + parts['child_type_1'] + '/' + parts['child_name_1']) resource_type = parts['child_type_2'] elif parts.get('child_type_1'): # if the child resource has a provider namespace it is independent of the # parent, so set the parent to empty if parts.get('child_namespace_1') is not None: parent = '' else: parent = parts['type'] + '/' + parts['name'] resource_type = parts['child_type_1'] else: parent = None resource_type = parts['type'] return _ResourceUtils.resolve_api_version(rcf, namespace, parent, resource_type, latest_include_preview=latest_include_preview)
from django.http import HttpResponse from django.shortcuts import render # Create your views here. def index(request): return HttpResponse('{"response": "Synth is running!"}') def test(request): return HttpResponse('ANOTHER RESPONSE YO')
import py import sys, shutil, os from rpython.tool.udir import udir from pypy.interpreter.gateway import interp2app from pypy.module._cffi_backend.newtype import _clean_cache if sys.platform == 'win32': WIN32 = True else: WIN32 = False class AppTestRecompilerPython: spaceconfig = dict(usemodules=['_cffi_backend']) def setup_class(cls): try: from cffi import FFI # <== the system one, which from cffi import recompiler # needs to be at least cffi 1.0.0 from cffi import ffiplatform except ImportError: py.test.skip("system cffi module not found or older than 1.0.0") space = cls.space SRC = """ #define FOOBAR (-42) static const int FOOBAZ = -43; #define BIGPOS 420000000000L #define BIGNEG -420000000000L int add42(int x) { return x + 42; } int globalvar42 = 1234; const int globalconst42 = 4321; const char *const globalconsthello = "hello"; struct foo_s; typedef struct bar_s { int x; signed char a[]; } bar_t; enum foo_e { AA, BB, CC }; void init_test_re_python(void) { } /* windows hack */ void PyInit__test_re_python(void) { } /* windows hack */ """ tmpdir = udir.join('test_re_python') tmpdir.ensure(dir=1) c_file = tmpdir.join('_test_re_python.c') c_file.write(SRC) ext = ffiplatform.get_extension(str(c_file), '_test_re_python', export_symbols=['add42', 'globalvar42', 'globalconst42', 'globalconsthello']) outputfilename = ffiplatform.compile(str(tmpdir), ext) cls.w_extmod = space.wrap(outputfilename) if WIN32: unicode_name = u'load\u03betest.dll' else: unicode_name = u'load_caf\xe9' + os.path.splitext(outputfilename)[1] try: unicode_name.encode(sys.getfilesystemencoding()) except UnicodeEncodeError: unicode_name = None # skip test_dlopen_unicode if unicode_name is not None: outputfileUname = os.path.join(unicode(udir), unicode_name) shutil.copyfile(outputfilename, outputfileUname) cls.w_extmodU = space.wrap(outputfileUname) #mod.tmpdir = tmpdir # ffi = FFI() ffi.cdef(""" #define FOOBAR -42 static const int FOOBAZ = -43; #define BIGPOS 420000000000L #define BIGNEG -420000000000L int add42(int); int globalvar42; const int globalconst42; const char *const globalconsthello = "hello"; int no_such_function(int); int no_such_globalvar; struct foo_s; typedef struct bar_s { int x; signed char a[]; } bar_t; enum foo_e { AA, BB, CC }; typedef struct selfref { struct selfref *next; } *selfref_ptr_t; void *dlopen(const char *filename, int flags); int dlclose(void *handle); """) ffi.set_source('re_python_pysrc', None) ffi.emit_python_code(str(tmpdir.join('re_python_pysrc.py'))) # sub_ffi = FFI() sub_ffi.cdef("static const int k2 = 121212;") sub_ffi.include(ffi) assert 'macro FOOBAR' in ffi._parser._declarations assert 'macro FOOBAZ' in ffi._parser._declarations sub_ffi.set_source('re_py_subsrc', None) sub_ffi.emit_python_code(str(tmpdir.join('re_py_subsrc.py'))) # cls.w_fix_path = space.appexec([space.wrap(str(tmpdir))], """(path): def fix_path(ignored=None): import _cffi_backend # force it to be initialized import sys if path not in sys.path: sys.path.insert(0, path) return fix_path """) cls.w_dl_libpath = space.w_None if sys.platform != 'win32': import ctypes.util cls.w_dl_libpath = space.wrap(ctypes.util.find_library('dl')) def teardown_method(self, meth): self.space.appexec([], """(): import sys for name in ['re_py_subsrc', 're_python_pysrc']: if name in sys.modules: del sys.modules[name] """) _clean_cache(self.space) def test_constant_1(self): self.fix_path() from re_python_pysrc import ffi assert ffi.integer_const('FOOBAR') == -42 assert ffi.integer_const('FOOBAZ') == -43 def test_large_constant(self): self.fix_path() from re_python_pysrc import ffi assert ffi.integer_const('BIGPOS') == 420000000000 assert ffi.integer_const('BIGNEG') == -420000000000 def test_function(self): import _cffi_backend self.fix_path() from re_python_pysrc import ffi lib = ffi.dlopen(self.extmod) assert lib.add42(-10) == 32 assert type(lib.add42) is _cffi_backend.FFI.CData def test_dlopen_unicode(self): if not getattr(self, 'extmodU', None): skip("no unicode file name") import _cffi_backend self.fix_path() from re_python_pysrc import ffi lib = ffi.dlopen(self.extmodU) assert lib.add42(-10) == 32 def test_dlclose(self): import _cffi_backend self.fix_path() from re_python_pysrc import ffi lib = ffi.dlopen(self.extmod) ffi.dlclose(lib) e = raises(ffi.error, getattr, lib, 'add42') assert str(e.value) == ( "library '%s' has been closed" % (self.extmod,)) ffi.dlclose(lib) # does not raise def test_constant_via_lib(self): self.fix_path() from re_python_pysrc import ffi lib = ffi.dlopen(self.extmod) assert lib.FOOBAR == -42 assert lib.FOOBAZ == -43 def test_opaque_struct(self): self.fix_path() from re_python_pysrc import ffi ffi.cast("struct foo_s *", 0) raises(TypeError, ffi.new, "struct foo_s *") def test_nonopaque_struct(self): self.fix_path() from re_python_pysrc import ffi for p in [ffi.new("struct bar_s *", [5, b"foobar"]), ffi.new("bar_t *", [5, b"foobar"])]: assert p.x == 5 assert p.a[0] == ord('f') assert p.a[5] == ord('r') def test_enum(self): self.fix_path() from re_python_pysrc import ffi assert ffi.integer_const("BB") == 1 e = ffi.cast("enum foo_e", 2) assert ffi.string(e) == "CC" def test_include_1(self): self.fix_path() from re_py_subsrc import ffi assert ffi.integer_const('FOOBAR') == -42 assert ffi.integer_const('FOOBAZ') == -43 assert ffi.integer_const('k2') == 121212 lib = ffi.dlopen(self.extmod) # <- a random unrelated library would be fine assert lib.FOOBAR == -42 assert lib.FOOBAZ == -43 assert lib.k2 == 121212 # p = ffi.new("bar_t *", [5, b"foobar"]) assert p.a[4] == ord('a') def test_global_var(self): self.fix_path() from re_python_pysrc import ffi lib = ffi.dlopen(self.extmod) assert lib.globalvar42 == 1234 p = ffi.addressof(lib, 'globalvar42') lib.globalvar42 += 5 assert p[0] == 1239 p[0] -= 1 assert lib.globalvar42 == 1238 def test_global_const_int(self): self.fix_path() from re_python_pysrc import ffi lib = ffi.dlopen(self.extmod) assert lib.globalconst42 == 4321 raises(AttributeError, ffi.addressof, lib, 'globalconst42') def test_global_const_nonint(self): self.fix_path() from re_python_pysrc import ffi lib = ffi.dlopen(self.extmod) assert ffi.string(lib.globalconsthello, 8) == "hello" raises(AttributeError, ffi.addressof, lib, 'globalconsthello') def test_rtld_constants(self): self.fix_path() from re_python_pysrc import ffi ffi.RTLD_NOW # check that we have the attributes ffi.RTLD_LAZY ffi.RTLD_GLOBAL def test_no_such_function_or_global_var(self): self.fix_path() from re_python_pysrc import ffi lib = ffi.dlopen(self.extmod) e = raises(ffi.error, getattr, lib, 'no_such_function') assert str(e.value).startswith( "symbol 'no_such_function' not found in library '") e = raises(ffi.error, getattr, lib, 'no_such_globalvar') assert str(e.value).startswith( "symbol 'no_such_globalvar' not found in library '") def test_check_version(self): import _cffi_backend e = raises(ImportError, _cffi_backend.FFI, "foobar", _version=0x2594) assert str(e.value).startswith( "cffi out-of-line Python module 'foobar' has unknown version") def test_selfref(self): # based on cffi issue #429 self.fix_path() from re_python_pysrc import ffi ffi.new("selfref_ptr_t") def test_dlopen_handle(self): import _cffi_backend, sys self.fix_path() from re_python_pysrc import ffi if self.dl_libpath is None: py.test.skip("uses 'dl' explicitly") lib1 = ffi.dlopen(self.dl_libpath) handle = lib1.dlopen(self.extmod.encode(sys.getfilesystemencoding()), _cffi_backend.RTLD_LAZY) assert ffi.typeof(handle) == ffi.typeof("void *") assert handle lib = ffi.dlopen(handle) assert lib.add42(-10) == 32 assert type(lib.add42) is _cffi_backend.FFI.CData err = lib1.dlclose(handle) assert err == 0
""" Django settings for app project. Generated by 'django-admin startproject' using Django 2.1.15. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'h26q@cw!pa#7*jjx$sda&0*c0&u&alf4^a)hwoh4j+6)j5y*&_' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'app.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/'
#!/usr/bin/python3 """ Defines a class TestFileStorage. """ from models.engine.file_storage import FileStorage import unittest import models import os class TestFileStorage(unittest.TestCase): """Represent a TestFileStorage.""" def setUp(self): """SetUp method""" self.file_storage = FileStorage() def TearDown(self): """TearDown method.""" del self.file_storage def test_docstring(self): """Test docstring for the module and the class""" self.assertIsNotNone( models.engine.file_storage.__doc__, "No docstring in the module" ) self.assertIsNotNone(FileStorage.__doc__, "No docstring in the class") def test_permissions_file(self): """Test File file_storage.py permissions""" test_file = os.access("models/engine/file_storage.py", os.R_OK) self.assertTrue(test_file, "Read permissions") test_file = os.access("models/engine/file_storage.py", os.W_OK) self.assertTrue(test_file, "Write Permissions") test_file = os.access("models/engine/file_storage.py", os.X_OK) self.assertTrue(test_file, "Execute permissions") def test_type_object(self): """Test type object of FileStorage""" self.assertEqual( str(type(self.file_storage)), "<class 'models.engine.file_storage.FileStorage'>") self.assertIsInstance(self.file_storage, FileStorage)
# Rework of model.py # https://github.com/ddddwee1/sul # This wrap-up is targeted for better touching low-level implementations import layers2 as L import tensorflow as tf config = tf.ConfigProto() config.gpu_options.allow_growth=True tf.enable_eager_execution(config=config) import numpy as np import os import random import time PARAM_RELU = 0 PARAM_LRELU = 1 PARAM_ELU = 2 PARAM_TANH = 3 PARAM_MFM = 4 PARAM_MFM_FC = 5 PARAM_SIGMOID = 6 ######## util functions ########### def accuracy(pred,y,name='acc', one_hot=True): with tf.variable_scope(name): if one_hot: correct = tf.equal(tf.cast(tf.argmax(pred,-1),tf.int64),tf.cast(tf.argmax(y,-1),tf.int64)) else: correct = tf.equal(tf.cast(tf.argmax(pred,-1),tf.int64),tf.cast(y,tf.int64)) acc = tf.reduce_mean(tf.cast(correct,tf.float32)) return acc ########################## # ETA class. I want to see the ETA. It's too boring to wait here. class ETA(): def __init__(self,max_value): self.start_time = time.time() self.max_value = max_value self.current = 0 def start(self): self.start_time = time.time() self.current = 0 def sec2hms(self,sec): hm = sec//60 s = sec%60 h = hm//60 m = hm%60 return h,m,s def get_ETA(self,current,is_string=True): self.current = current time_div = time.time() - self.start_time time_remain = time_div * float(self.max_value - self.current) / float(self.current + 1) h,m,s = self.sec2hms(int(time_remain)) if is_string: return '%d:%d:%d'%(h,m,s) else: return h,m,s ########### universal model class ########## class Model(tf.contrib.checkpoint.Checkpointable): def __init__(self,*args,**kwargs): self.initialized = False self.variables = [] self.initialize(*args,**kwargs) def initialize(self,*args,**kwargs): pass def _gather_variables(self): self.variables = [] atrs = dir(self) for i in atrs: if i[0] == '_': continue obj = getattr(self, i) self.variables += self._gather_variables_recursive(obj) def _gather_variables_recursive(self, obj): result = [] if isinstance(obj, list) or isinstance(obj, tuple): for sub_obj in obj: result += self._gather_variables_recursive(sub_obj) elif isinstance(obj, Model) or isinstance(obj, L.Layer): result += obj.variables return result def get_variables(self, layers=None): if layers is None: return self.variables else: res = [] for l in layers: res += l.variables return res def set_bn_training(self, is_training): atrs = dir(self) # print(atrs) for i in atrs: if i[0] == '_': continue obj = getattr(self, i) self._set_bn_training_recursive(obj, is_training) def _set_bn_training_recursive(self, obj, is_training): if isinstance(obj, list): for sub_obj in obj: self._set_bn_training_recursive(sub_obj, is_training) if isinstance(obj, Model) and obj!=self: obj.set_bn_training(is_training) if isinstance(obj, L.batch_norm): obj.is_training = is_training def set_bn_epsilon(self, epsilon): atrs = dir(self) # print(atrs) for i in atrs: if i[0] == '_': continue obj = getattr(self, i) self._set_bn_epsilon_recursive(obj, epsilon) def _set_bn_epsilon_recursive(self, obj, epsilon): if isinstance(obj, list): for sub_obj in obj: self._set_bn_training_recursive(sub_obj, epsilon) if isinstance(obj, Model) and obj!=self: obj.set_bn_training(epsilon) if isinstance(obj, L.batch_norm): obj.epsilon = epsilon def __call__(self, x, *args, **kwargs): x = tf.convert_to_tensor(x, preferred_dtype=tf.float32) res = self.forward(x, *args, **kwargs) if not self.initialized: self._gather_variables() self.initialized = True return res ########### universal layer classes ########## class ConvLayer(Model): def initialize(self, size, outchn, dilation_rate=1, stride=1,pad='SAME',activation=-1,batch_norm=False, usebias=True,kernel_data=None,bias_data=None,weight_norm=False): self.conv = L.conv2D(size,outchn,stride=stride,pad=pad,usebias=usebias,kernel_data=kernel_data,bias_data=bias_data,dilation_rate=dilation_rate,weight_norm=weight_norm) self.batch_norm = batch_norm self.activation_ = activation if batch_norm: self.bn = L.batch_norm() if activation!=-1: self.activation = L.activation(activation) def forward(self,x): x = self.conv(x) if self.batch_norm: x = self.bn(x) if self.activation_!=-1: x = self.activation(x) return x class ConvLayer1D(Model): def initialize(self, size, outchn, dilation_rate=1, stride=1,pad='SAME',activation=-1,batch_norm=False, usebias=True,kernel_data=None,bias_data=None,weight_norm=False): self.conv = L.conv1D(size,outchn,stride=stride,pad=pad,usebias=usebias,kernel_data=kernel_data,bias_data=bias_data,dilation_rate=dilation_rate,weight_norm=weight_norm) self.batch_norm = batch_norm self.activation_ = activation if batch_norm: self.bn = L.batch_norm() if activation!=-1: self.activation = L.activation(activation) def forward(self,x): x = self.conv(x) if self.batch_norm: x = self.bn(x) if self.activation_!=-1: x = self.activation(x) return x class ConvLayer3D(Model): def initialize(self, size, outchn, dilation_rate=1, stride=1,pad='SAME',activation=-1,batch_norm=False, usebias=True,kernel_data=None,bias_data=None,weight_norm=False): self.conv = L.conv3D(size,outchn,stride=stride,pad=pad,usebias=usebias,kernel_data=kernel_data,bias_data=bias_data,dilation_rate=dilation_rate,weight_norm=weight_norm) self.batch_norm = batch_norm self.activation_ = activation if batch_norm: self.bn = L.batch_norm() if activation!=-1: self.activation = L.activation(activation) def forward(self,x): x = self.conv(x) if self.batch_norm: x = self.bn(x) if self.activation_!=-1: x = self.activation(x) return x class DeconvLayer(Model): def initialize(self, size, outchn, activation=-1, stride=1, usebias=True, pad='SAME', batch_norm=False): self.deconv = L.deconv2D(size,outchn,stride=stride,usebias=usebias,pad=pad, name=None) self.batch_norm = batch_norm self.activation_ = activation if batch_norm: self.bn = L.batch_norm() if activation!=-1: self.activation = L.activation(activation) def forward(self,x): x = self.deconv(x) if self.batch_norm: x = self.bn(x) if self.activation_!=-1: x = self.activation(x) return x class DeconvLayer3D(Model): def initialize(self, size, outchn, activation=-1, stride=1, usebias=True, pad='SAME', batch_norm=False): self.deconv = L.deconv3D(size,outchn,stride=stride,usebias=usebias,pad=pad, name=None) self.batch_norm = batch_norm self.activation_ = activation if batch_norm: self.bn = L.batch_norm() if activation!=-1: self.activation = L.activation(activation) def forward(self,x): x = self.deconv(x) if self.batch_norm: x = self.bn(x) if self.activation_!=-1: x = self.activation(x) return x class Dense(Model): def initialize(self, outsize, usebias=True, batch_norm=False, activation=-1): self.fclayer = L.fcLayer(outsize,usebias=usebias) self.batch_norm = batch_norm self.activation_ = activation if batch_norm: self.bn = L.batch_norm() if activation!=-1: self.activation = L.activation(activation) def forward(self,x): x = self.fclayer(x) if self.batch_norm: x = self.bn(x) if self.activation_!=-1: x = self.activation(x) return x class GraphConvLayer(Model): def initialize(self, outsize, adj_mtx=None, adj_fn=None, usebias=True, activation=-1, batch_norm=False): self.GCL = L.graphConvLayer(outsize, adj_mtx=adj_mtx, adj_fn=adj_fn, usebias=usebias) self.batch_norm = batch_norm self.activation_ = activation if batch_norm: self.bn = L.batch_norm() if activation!=-1: self.activation = L.activation(activation) def forward(self, x): x = self.GCL(x) if self.batch_norm: x = self.bn(x) if self.activation_!=-1: x = self.activation(x) return x flatten = L.flatten() maxPool = L.maxpoolLayer avgPool = L.avgpoolLayer ########### higher wrapped block ########## class ResBlock(Model): def initialize(self, outchn, stride=1, ratio=4, activation=PARAM_RELU): self.outchn = outchn # self.stride = stride self.activ = L.activation(activation) self.bn = L.batch_norm() self.l1 = ConvLayer(1, outchn//ratio, activation=PARAM_RELU, batch_norm=True) self.l2 = ConvLayer(3, outchn//ratio, activation=PARAM_RELU, batch_norm=True, stride=stride) self.l3 = ConvLayer(1, outchn) self.shortcut_conv = ConvLayer(1, outchn, activation=PARAM_RELU, stride=stride) self.shortcut_pool = L.maxpoolLayer(stride) def forward(self, x): inshape = x.get_shape().as_list()[-1] if inshape==self.outchn: short = self.shortcut_pool(x) else: short = self.shortcut_conv(x) branch = self.bn(x) branch = self.activ(branch) branch = self.l1(branch) branch = self.l2(branch) branch = self.l3(branch) return branch + short class Sequential(Model): def initialize(self, modules): self.modules = modules def forward(self, x): for m in self.modules: x = m(x) return x ########### saver ########## class Saver(): def __init__(self, model, optim=None): self.mod = model self.obj = tf.contrib.checkpoint.Checkpointable() self.obj.m = self.mod self.optim = optim if optim is None: self.ckpt = tf.train.Checkpoint(model=self.obj, optimizer_step=tf.train.get_or_create_global_step()) else: self.ckpt = tf.train.Checkpoint(optimizer=optim, model=self.obj, optimizer_step=tf.train.get_or_create_global_step()) def save(self, path): print('Saving model to path:',path) head, tail = os.path.split(path) if not os.path.exists(head): os.makedirs(head) self.ckpt.save(path) print('Model saved to path:',path) def restore(self, path, ptype='folder'): print('Load from:', path) try: if ptype=='folder': last_ckpt = tf.train.latest_checkpoint(path) print('Checkpoint:', last_ckpt) if last_ckpt is None: print('No model found in checkpoint.') print('Model will auto-initialize after first iteration.') self.ckpt.restore(last_ckpt) else: self.ckpt.restore(path) print('Finish loading.') except Exception as e: print('Model restore failed, Exception:',e) print('Model will auto-initialize after first iteration.') ######### Gradient accumulator ######### class GradAccumulator(): def __init__(self): self.steps = 0 self.grads = [] def accumulate(self, grads): if len(grads) == 0: self.grads = grads else: for old_g, new_g in zip(self.grads, grads): old_g.assign_add(new_g) self.steps += 1 def get_gradient(self): res = [i/self.steps for i in self.grads] self.grads = [] self.steps = 0 return res def get_step(self): return self.steps ######### Data Reader Template (serial) ########## class DataReaderSerial(): def __init__(self, one_hot=None): self.data_pos = 0 self.val_pos = 0 self.data = [] self.val = [] self.one_hot = False if one_hot is not None: self.one_hot = True self.eye = np.eye(one_hot) self.load_data() def get_next_batch(self,BSIZE): if self.data_pos + BSIZE > len(self.data): random.shuffle(self.data) self.data_pos = 0 batch = self.data[self.data_pos : self.data_pos+BSIZE] x = [i[0] for i in batch] y = [i[1] for i in batch] if self.one_hot: y = self.eye[np.array(y)] self.data_pos += BSIZE return x,y def get_val_next_batch(self, BSIZE): if self.val_pos + BSIZE >= len(self.val): batch = self.val[self.val_pos:] random.shuffle(self.val) self.val_pos = 0 is_end = True else: batch = self.data[self.data_pos : self.data_pos+BSIZE] is_end = False x = [i[0] for i in batch] y = [i[1] for i in batch] if self.one_hot: y = self.eye[np.array(y)] self.val_pos += BSIZE return x,y, is_end def get_train_iter(self, BSIZE): return len(self.data)//BSIZE def get_val_iter(self, BSIZE): return len(self.val)//BSIZE + 1 class ListReader(): def __init__(self, one_hot=None): self.data_pos = 0 self.val_pos = 0 self.data = [] self.val = [] self.one_hot = False if one_hot is not None: self.one_hot = True self.eye = np.eye(one_hot) self.load_data() def get_next_batch(self,BSIZE): if self.data_pos + BSIZE > len(self.data): random.shuffle(self.data) self.data_pos = 0 batch = self.data[self.data_pos : self.data_pos+BSIZE] x = [i[0] for i in batch] y = [i[1] for i in batch] if self.one_hot: y = self.eye[np.array(y)] self.data_pos += BSIZE x = [self.process_img(i) for i in x] return x,y def get_val_next_batch(self, BSIZE): if self.val_pos + BSIZE >= len(self.val): batch = self.val[self.val_pos:] random.shuffle(self.val) self.val_pos = 0 is_end = True else: batch = self.data[self.data_pos : self.data_pos+BSIZE] is_end = False x = [i[0] for i in batch] y = [i[1] for i in batch] if self.one_hot: y = self.eye[np.array(y)] self.val_pos += BSIZE x = [self.process_img(i) for i in x] return x,y, is_end def get_train_iter(self, BSIZE): return len(self.data)//BSIZE def get_val_iter(self, BSIZE): return len(self.val)//BSIZE + 1 ######### Data Reader Template (parallel) ########## # multi-process to read data class DataReader(): def __init__(self, data, fn, batch_size, shuffle=False, random_sample=False, processes=2, post_fn=None): from multiprocessing import Pool self.pool = Pool(processes) print('Starting parallel data loader...') self.process_fn = fn self.data = data self.batch_size = batch_size self.position = batch_size self.post_fn = post_fn self.random_sample = random_sample self.shuffle = shuffle if shuffle: random.shuffle(self.data) self._start_p(self.data[:batch_size]) def _start_p(self, data): self.ps = [] for i in data: self.ps.append(self.pool.apply_async(self.process_fn, [i])) def get_next_batch(self): # print('call') # fetch data res = [i.get() for i in self.ps] # start new pre-fetch if self.random_sample: batch = random.sample(self.data, self.batch_size) else: if self.position + self.batch_size > len(self.data): self.position = 0 if self.shuffle: random.shuffle(self.data) batch = self.data[self.position:self.position+self.batch_size] self.position += self.batch_size self._start_p(batch) # post_process the data if self.post_fn is not None: res = self.post_fn(res) return res ######### short-cut functions ######### gradient_reverse = L.gradient_reverse def pad(x, pad): if isinstance(pad, list): x = tf.pad(x, [[0,0],[pad[0],pad[1]], [pad[2],pad[3]], [0,0]]) else: x = tf.pad(x, [[0,0],[pad,pad],[pad,pad],[0,0]]) return x def pad3D(x, pad): if isinstance(pad, list): x = tf.pad(x, [[0,0],[pad[0],pad[1]], [pad[2],pad[3]], [pad[4], pad[5]], [0,0]]) else: x = tf.pad(x, [[0,0],[pad,pad],[pad,pad],[pad,pad],[0,0]]) return x def image_transform(x, H, out_shape=None, interpolation='NEAREST'): # Will produce error if not specify 'output_shape' in eager mode shape = x.get_shape().as_list() if out_shape is None: if len(shape)==4: out_shape = shape[1:3] else: out_shape = shape[:2] return tf.contrib.image.transform(x, H, interpolation=interpolation, output_shape=out_shape) def zip_grad(grads, vars): assert len(grads)==len(vars) grads_1 = [] vars_1 = [] for i in range(len(grads)): if not grads[i] is None: grads_1.append(grads[i]) vars_1.append(vars[i]) assert len(grads_1)!=0 return zip(grads_1, vars_1)
""" Tests the continuous link flap in SONiC. Parameters: --orch_cpu_threshold <port> (int): Which port you want the test to send traffic to. Default is 3. """ import logging import time import pytest from tests.common.helpers.assertions import pytest_assert, pytest_require from tests.common import port_toggle from tests.platform_tests.link_flap.link_flap_utils import build_test_candidates, toggle_one_link, check_orch_cpu_utilization, check_bgp_routes, check_portchannel_status from tests.common.utilities import wait_until from tests.common.devices.eos import EosHost from tests.common.devices.sonic import SonicHost pytestmark = [ pytest.mark.disable_loganalyzer, pytest.mark.topology('any') ] class TestContLinkFlap(object): """ TestContLinkFlap class for continuous link flap """ def test_cont_link_flap(self, request, duthosts, nbrhosts, enum_rand_one_per_hwsku_frontend_hostname, fanouthosts, bring_up_dut_interfaces, tbinfo): """ Validates that continuous link flap works as expected Test steps: 1.) Flap all interfaces one by one in 1-3 iteration to cause BGP Flaps. 2.) Flap all interfaces on peer (FanOutLeaf) one by one 1-3 iteration to cause BGP Flaps. 3.) Watch for memory (show system-memory) ,orchagent CPU Utilization and Redis_memory. Pass Criteria: All routes must be re-learned with < 5% increase in Redis and ORCH agent CPU consumption below threshold after 3 mins after stopping flaps. """ duthost = duthosts[enum_rand_one_per_hwsku_frontend_hostname] orch_cpu_threshold = request.config.getoption("--orch_cpu_threshold") # Record memory status at start memory_output = duthost.shell("show system-memory")["stdout"] logging.info("Memory Status at start: %s", memory_output) # Record Redis Memory at start start_time_redis_memory = duthost.shell("redis-cli info memory | grep used_memory_human | sed -e 's/.*:\(.*\)M/\\1/'")["stdout"] logging.info("Redis Memory: %s M", start_time_redis_memory) # Record ipv4 route counts at start sumv4, sumv6 = duthost.get_ip_route_summary() totalsv4 = sumv4.get('Totals', {}) totalsv6 = sumv6.get('Totals', {}) start_time_ipv4_route_counts = totalsv4.get('routes', 0) start_time_ipv6_route_counts = totalsv6.get('routes', 0) logging.info("IPv4 routes: start {}, summary {}".format(start_time_ipv4_route_counts, sumv4)) logging.info("IPv6 routes: start {}, summary {}".format(start_time_ipv6_route_counts, sumv6)) # Make Sure Orch CPU < orch_cpu_threshold before starting test. logging.info("Make Sure orchagent CPU utilization is less that %d before link flap", orch_cpu_threshold) pytest_assert(wait_until(100, 2, 0, check_orch_cpu_utilization, duthost, orch_cpu_threshold), "Orch CPU utilization {} > orch cpu threshold {} before link flap" .format(duthost.shell("show processes cpu | grep orchagent | awk '{print $9}'")["stdout"], orch_cpu_threshold)) # Flap all interfaces one by one on DUT for iteration in range(3): logging.info("%d Iteration flap all interfaces one by one on DUT", iteration + 1) port_toggle(duthost, tbinfo, watch=True) # Flap all interfaces one by one on Peer Device for iteration in range(3): logging.info("%d Iteration flap all interfaces one by one on Peer Device", iteration + 1) candidates = build_test_candidates(duthost, fanouthosts, 'all_ports') pytest_require(candidates, "Didn't find any port that is admin up and present in the connection graph") for dut_port, fanout, fanout_port in candidates: toggle_one_link(duthost, dut_port, fanout, fanout_port, watch=True) config_facts = duthost.get_running_config_facts() for portchannel in config_facts['PORTCHANNEL'].keys(): pytest_assert(check_portchannel_status(duthost, portchannel, "up", verbose=True), "Fail: dut interface {}: link operational down".format(portchannel)) # Make Sure all ipv4/ipv6 routes are relearned with jitter of ~5 if not wait_until(120, 2, 0, check_bgp_routes, duthost, start_time_ipv4_route_counts, start_time_ipv6_route_counts): endv4, endv6 = duthost.get_ip_route_summary() failmsg = [] failmsg.append( "IP routes are not equal after link flap: before ipv4 {} ipv6 {}, after ipv4 {} ipv6 {}".format(sumv4, sumv6, endv4, endv6)) nei_meta = config_facts.get('DEVICE_NEIGHBOR_METADATA', {}) for k in nei_meta.keys(): nbrhost = nbrhosts[k]['host'] if isinstance(nbrhost, EosHost): res = nbrhost.eos_command(commands=['show ip bgp sum']) elif isinstance(nbrhost, SonicHost): res = nbrhost.command('vtysh -c "show ip bgp sum"') else: res = "" failmsg.append(res['stdout']) pytest.fail(str(failmsg)) # Record memory status at end memory_output = duthost.shell("show system-memory")["stdout"] logging.info("Memory Status at end: %s", memory_output) # Record orchagent CPU utilization at end orch_cpu = duthost.shell("show processes cpu | grep orchagent | awk '{print $9}'")["stdout"] logging.info("Orchagent CPU Util at end: %s", orch_cpu) # Record Redis Memory at end end_time_redis_memory = duthost.shell("redis-cli info memory | grep used_memory_human | sed -e 's/.*:\(.*\)M/\\1/'")["stdout"] logging.info("Redis Memory at start: %s M", start_time_redis_memory) logging.info("Redis Memory at end: %s M", end_time_redis_memory) # Calculate diff in Redis memory incr_redis_memory = float(end_time_redis_memory) - float(start_time_redis_memory) logging.info("Redis absolute difference: %d", incr_redis_memory) # Check redis memory only if it is increased else default to pass if incr_redis_memory > 0.0: percent_incr_redis_memory = (incr_redis_memory / float(start_time_redis_memory)) * 100 logging.info("Redis Memory percentage Increase: %d", percent_incr_redis_memory) pytest_assert(percent_incr_redis_memory < 5, "Redis Memory Increase more than expected: {}".format(percent_incr_redis_memory)) # Orchagent CPU should consume < orch_cpu_threshold at last. logging.info("watch orchagent CPU utilization when it goes below %d", orch_cpu_threshold) pytest_assert(wait_until(45, 2, 0, check_orch_cpu_utilization, duthost, orch_cpu_threshold), "Orch CPU utilization {} > orch cpu threshold {} before link flap" .format(duthost.shell("show processes cpu | grep orchagent | awk '{print $9}'")["stdout"], orch_cpu_threshold))
# -*- coding: utf-8 -*- import os import sys from news_crawler.spiders import BaseSpider from scrapy.spiders import Rule from scrapy.linkextractors import LinkExtractor from datetime import datetime sys.path.insert(0, os.path.join(os.getcwd(), "..",)) from news_crawler.items import NewsCrawlerItem from news_crawler.utils import remove_empty_paragraphs class Sputniknews(BaseSpider): """Spider for Sputniknews""" name = 'sputniknews' rotate_user_agent = True allowed_domains = ['snanews.de'] start_urls = ['https://snanews.de'] # Exclude pages without relevant articles rules = ( Rule( LinkExtractor( allow=(r'snanews\.de\/\d+\/\w.*\.html$'), deny=(r'snanews\.de\/category\_multimedia\/', r'snanews\.de\/location\_oesterreich\/', r'snanews\.de\/\?modal\=feedback', r'snanews\.de\/docs\/impressum\.html', r'snanews\.de\/docs\/cookie\.html', r'snanews\.de\/docs\/nutzungsrichtlinien\.html', r'snanews\.de\/docs\/ueber\_uns\.html', r'snanews\.de\/docs\/privacy\_policy\.html' ) ), callback='parse_item', follow=True ), ) def parse_item(self, response): """ Checks article validity. If valid, it parses it. """ # Check date validity creation_date = response.xpath('//div[@itemprop="datePublished"]/text()').get() if not creation_date: return creation_date = datetime.fromisoformat(creation_date.split('T')[0]) if self.is_out_of_date(creation_date): return # Extract the article's paragraphs paragraphs = [node.xpath('string()').get().strip() for node in response.xpath('//div[@class="article__text"] | //div[@class="article__quote-text"]')] paragraphs = remove_empty_paragraphs(paragraphs) text = ' '.join([para for para in paragraphs]) # Check article's length validity if not self.has_min_length(text): return # Check keywords validity if not self.has_valid_keywords(text): return # Parse the valid article item = NewsCrawlerItem() item['news_outlet'] = 'sputniknews' item['provenance'] = response.url item['query_keywords'] = self.get_query_keywords() # Get creation, modification, and crawling dates item['creation_date'] = creation_date.strftime('%d.%m.%Y') last_modified = response.xpath('//div[@itemprop="dateModified"]/text()').get() item['last_modified'] = datetime.fromisoformat(last_modified.split('T')[0]).strftime('%d.%m.%Y') item['crawl_date'] = datetime.now().strftime('%d.%m.%Y') # Get authors authors = response.xpath('//div[@itemprop="creator"]/div[@itemprop="name"]/text()').getall() item['author_person'] = authors if authors else list() item['author_organization'] = list() # Extract keywords, if available news_keywords = response.xpath('//meta[@name="keywords"]/@content').get() item['news_keywords'] = news_keywords.split(', ') if news_keywords else list() # Get title, description, and body of article title = response.xpath('//meta[@property="og:title"]/@content').get() description = response.xpath('//meta[@property="og:description"]/@content').get() # Body as dictionary: key = headline (if available, otherwise empty string), values = list of corresponding paragraphs body = dict() if response.xpath('//h3[@class="article__h2"] | //h2[@class="article__h2"]'): # Extract headlines headlines = [h2.xpath('string()').get().strip() for h2 in response.xpath('//h3[@class="article__h2"] | //h2[@class="article__h2"]')] # Extract the paragraphs and headlines together text = [node.xpath('string()').get().strip() for node in response.xpath('//div[@class="article__text"] | //div[@class="article__quote-text"] | //h3[@class="article__h2"] | //h2[@class="article__h2"]')] # Extract paragraphs between the abstract and the first headline body[''] = remove_empty_paragraphs(text[:text.index(headlines[0])]) # Extract paragraphs corresponding to each headline, except the last one for i in range(len(headlines)-1): body[headlines[i]] = remove_empty_paragraphs(text[text.index(headlines[i])+1:text.index(headlines[i+1])]) # Extract the paragraphs belonging to the last headline body[headlines[-1]] = remove_empty_paragraphs(text[text.index(headlines[-1])+1:]) else: # The article has no headlines, just paragraphs body[''] = paragraphs item['content'] = {'title': title, 'description': description, 'body':body} # Extract first 5 recommendations towards articles from the same news outlet, if available item['recommendations'] = list() item['response_body'] = response.body yield item
#!/usr/bin/env python3 # -*- coding: utf-8 -*- if __name__ == "__main__": def midlgeom(a): if len(a) != 0: res = 0 for i in range(len(a)): res += 1/a[i] return len(a) / res else: return None raw = input('Введите последовательность чисел через пробел: ') mas = [int(i) for i in raw.split(' ') if i.isdigit()] print(midlgeom(mas))
import sys import yaml try: from yaml import CSafeLoader as SafeLoader, CSafeDumper as SafeDumper except ImportError: print("Failed to load fast LibYAML bindings. You should install them to speed up kluctl.", file=sys.stderr) from yaml import SafeLoader as SafeLoader, SafeDumper as SafeDumper def construct_value(load, node): if not isinstance(node, yaml.ScalarNode): raise yaml.constructor.ConstructorError( "while constructing a value", node.start_mark, "expected a scalar, but found %s" % node.id, node.start_mark ) yield str(node.value) # See https://github.com/yaml/pyyaml/issues/89 SafeLoader.add_constructor(u'tag:yaml.org,2002:value', construct_value) def multiline_str_representer(dumper, data): if len(data.splitlines()) > 1: # check for multiline string return dumper.represent_scalar('tag:yaml.org,2002:str', data, style='|') return dumper.represent_scalar('tag:yaml.org,2002:str', data) class MultilineStrDumper(SafeDumper): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.add_representer(str, multiline_str_representer) def yaml_load(s): return yaml.load(s, Loader=SafeLoader) def yaml_load_all(s): return list(yaml.load_all(s, Loader=SafeLoader)) def yaml_load_file(path, all=False): with open(path) as f: if all: y = yaml_load_all(f) else: y = yaml_load(f) return y def yaml_dump(y, stream=None): return yaml.dump(y, stream=stream, Dumper=MultilineStrDumper, sort_keys=False) def yaml_dump_all(y, stream=None): return yaml.dump_all(y, stream=stream, Dumper=MultilineStrDumper, sort_keys=False) def yaml_save_file(y, path): with open(path, mode='w') as f: yaml_dump(y, f)
""" Plotting data points -------------------- GMT shines when it comes to plotting data on a map. We can use some sample data that is packaged with GMT to try this out. PyGMT provides access to these datasets through the :mod:`pygmt.datasets` package. If you don't have the data files already, they are automatically downloaded and saved to a cache directory the first time you use them (usually ``~/.gmt/cache``). """ import pygmt ######################################################################################## # For example, let's load the sample dataset of tsunami generating earthquakes around # Japan (:func:`pygmt.datasets.load_japan_quakes`). The data is loaded as a # :class:`pandas.DataFrame`. data = pygmt.datasets.load_japan_quakes() # Set the region for the plot to be slightly larger than the data bounds. region = [ data.longitude.min() - 1, data.longitude.max() + 1, data.latitude.min() - 1, data.latitude.max() + 1, ] print(region) print(data.head()) ######################################################################################## # We'll use :meth:`pygmt.Figure.plot` method to plot circles on the locations of the # hypocenters of the earthquakes. fig = pygmt.Figure() fig.basemap(region=region, projection="M8i", frame=True) fig.coast(land="black", water="skyblue") fig.plot(x=data.longitude, y=data.latitude, style="c0.3c", color="white", pen="black") fig.show() ######################################################################################## # We used the style ``c0.3c`` which means "circles of 0.3 centimeter size". The ``pen`` # attribute controls the outline of the symbols and the ``color`` controls the fill. # # We can map the size of the circles to the earthquake magnitude by passing an array to # the ``sizes`` argument. Because the magnitude is on a logarithmic scale, it helps to # show the differences by scaling the values using a power law. fig = pygmt.Figure() fig.basemap(region=region, projection="M8i", frame=True) fig.coast(land="black", water="skyblue") fig.plot( x=data.longitude, y=data.latitude, sizes=0.02 * (2 ** data.magnitude), style="cc", color="white", pen="black", ) fig.show() ######################################################################################## # Notice that we didn't include the size in the ``style`` argument this time, just the # symbol ``c`` (circles) and the unit ``c`` (centimeter). So in this case, the sizes # will be interpreted as being in centimeters. # # We can also map the colors of the markers to the depths by passing an array to the # ``color`` argument and providing a colormap name (``cmap``). We can even use the new # matplotlib colormap "viridis". Here, we first create a continuous colormap # ranging from the minimum depth to the maximum depth of the earthquakes # using :func:`pygmt.makecpt`, then set ``cmap=True`` in :func:`pygmt.Figure.plot` # to use the colormap. At the end of the plot, we also plot a colorbar showing # the colormap used in the plot. # fig = pygmt.Figure() fig.basemap(region=region, projection="M8i", frame=True) fig.coast(land="black", water="skyblue") pygmt.makecpt(cmap="viridis", series=[data.depth_km.min(), data.depth_km.max()]) fig.plot( x=data.longitude, y=data.latitude, sizes=0.02 * 2 ** data.magnitude, color=data.depth_km, cmap=True, style="cc", pen="black", ) fig.colorbar(frame='af+l"Depth (km)"') fig.show()
#!/usr/bin/env python """Copyright (c) 2005-2019, University of Oxford. All rights reserved. University of Oxford means the Chancellor, Masters and Scholars of the University of Oxford, having an administrative office at Wellington Square, Oxford OX1 2JD, UK. This file is part of Chaste. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the University of Oxford nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ # Script to run gcov on source files after a Coverage build has been done, # and summarise the results. # The script takes arguments: # <output_dir> The directory in which to generate summary files and # an index page. # <build_type> The build type used; defaults to Coverage. import itertools import glob import os import sys parent_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path[0:0] = [parent_path] import BuildTypes # Arguments to gcov # -l Create long file names for included source files. # -p Preserve complete path information in the names of generated .gcov files. gcov_flags = ' -lp ' # Get output dir and build type object if len(sys.argv) < 2: print "Syntax error." print "Usage:", sys.argv[0], "<test output dir> [<build type> [<project> ...]]" sys.exit(1) output_dir = sys.argv[1] if len(sys.argv) > 2: build_type = sys.argv[2] projects = sys.argv[3:] else: build_type = 'Coverage' projects = [] build = BuildTypes.GetBuildType(build_type) # Remove any old output files/test results from output_dir for filename in os.listdir(output_dir): os.remove(os.path.join(output_dir, filename)) # Find .gcda files to determine which source files to run gcov on # First, find appropriate build directories build_dirs = glob.glob('*/build/' + build.build_dir) build_dirs.extend(map(lambda p: os.path.join(p, 'build', build.build_dir), projects)) # Now find .gcda files within there gcda_files = [] for build_dir in build_dirs: for dirpath, dirnames, filenames in os.walk(build_dir): for filename in filenames: if filename[-5:] == '.gcda': gcda_files.append({'dir': dirpath, 'file': filename}) # Run gcov on all the .cpp files which have .gcda files. for gcda_file in gcda_files: # For added interest, the source file to process is in different locations # depending on whether it is a test or not. if gcda_file['file'][:4] == 'Test' or \ gcda_file['dir'][-5:] == '/test': #gcda_file['dir'].find('/test/') != -1: # .cpp file is in the same folder os.system('gcov -o ' + gcda_file['dir'] + gcov_flags + os.path.join(gcda_file['dir'], gcda_file['file'][:-4] + 'cpp')) else: # .cpp file is contained within the Chaste source tree # gcda_file['dir'] should look something like mesh/build/coverage/src/reader # We then want to look in mesh/src/reader try: toplevel, rest = gcda_file['dir'].split('build') except: print gcda_file raise # Get rid of slashes (or system equivalent) toplevel = os.path.dirname(toplevel) # Drop the '/coverage/' rest = rest.split(os.path.sep, 2)[-1] # Run gcov os.system('gcov -o ' + gcda_file['dir'] + gcov_flags + os.path.join(toplevel, rest, gcda_file['file'][:-4] + 'cpp')) # Now find all our source files src_dirs = glob.glob('*/src') src_dirs.remove('apps/src') src_dirs.extend(map(lambda p: os.path.join(p, 'src'), projects)) src_files = [] for src_dir in src_dirs: for dirpath, dirnames, filenames in os.walk(src_dir): for filename in filenames: if filename[-4:] in ['.cpp', '.hpp']: src_files.append({'dir': dirpath, 'file': filename}) def coverage_ignore(src_file): """Whether to ignore the fact that a source file is not used. If a file contains only typedefs, for example, this is not an error. For .hpp files we check this by looking for the presence of either 'template' or 'class' at the start of a line. If neither are found, we assume the file contains no real code. This will only work if header files don't contain non-template function definitions, which should be the case if we're being good programmers. Unfortunately the boost serialization tweaking file "SerializationExportWrapper.hpp" has some templated definitions which are not code, for this reason we only scrape the file for "template" or "class" definitions that are not surrounded by COVERAGE_IGNORE. """ ignore = False if src_file['dir'].endswith('fortests'): # 'Source' code that is only used for tests, and hence coverage doesn't # matter. ignore = True elif src_file['file'] == 'triangle.cpp' or src_file['file'] == 'tetgen.cpp' or src_file['file'] == 'predicates.cpp': # We don't try to cover other people's code ignore = True elif src_file['file'] in ['HeartRegionCodes.cpp', 'Version.hpp']: # Special cases ignore = True elif src_file['file'][-4:] == '.hpp': ignore = True fp = open(os.path.join(src_file['dir'], src_file['file'])) code = True for line in fp: if line.find('// LCOV_EXCL_START') != -1: code = False elif line.find('// LCOV_EXCL_STOP') != -1: code = True if code and (line.startswith('template') or line.startswith('class ')): ignore = False break fp.close() return ignore for src_file in src_files: # Mangle the name like gcov does mangled_dir = src_file['dir'].replace(os.path.sep, '#') # Find .gcov files relating to this source file gcov_files = glob.glob('*' + mangled_dir + '#' + src_file['file'] + '.gcov') # Open all the files, and an output file gcov_fps = [open(gcov_file) for gcov_file in gcov_files] out_file_name = os.path.join(output_dir, mangled_dir + '#' + src_file['file']) out_file_name = out_file_name.replace('#', '-') out_file = open(out_file_name, 'w') # Now go through them line by line in lock-step, # aggregating line execution counts covered_line_count, missed_line_count, warn, ignore = 0, 0, True, False for lines in itertools.izip(*gcov_fps): aggregated_count = 0 maybe_not_code, really_uncovered = False, False for line in lines: count, line_no, src_line = line.split(':', 2) count, line_no = count.strip(), line_no.strip() if src_line.find('// LCOV_EXCL_START') != -1: ignore = True out_file.write("%9s:%5s:%s" % ('ignored', line_no, src_line)) break elif src_line.find('// LCOV_EXCL_STOP') != -1: ignore = False out_file.write("%9s:%5s:%s" % ('ignored', line_no, src_line)) break if line_no == 0: # This is a gcov header line; what it is doesn't matter out_file.write(line) break if count == '-': # This line "isn't code". This may be because it's blank, a comment, or # similar. Or it may be because it's within a templated method that hasn't # been instantiated in this particular execution, but it might be in another. maybe_not_code = True elif count == '#####' or count == '=====': # The line was really uncovered here, so it must be code. # From gcov documentation, # indicates reachable by non-exceptional paths; # = only by an exceptional path (e.g. catch block). really_uncovered = True else: aggregated_count += int(count) else: if aggregated_count == 0: if maybe_not_code and not really_uncovered: # This really wasn't a code line (or the template is *never* instantiated). # Would be nice to differentiate these cases, but doing so is decidedly # non-trivial. aggregated_count = '-' else: src_line_stripped = src_line.strip() # gcov is buggy: it claims some non-code lines are uncovered. # There are some other cases it gets wrong for better reasons too. if not (ignore or src_line_stripped in ['{', '}', 'NEVER_REACHED;'] or (src_line_stripped.startswith('return') and src_line_stripped[6] in [';', ' ']) or src_line_stripped.startswith('TERMINATE(') or src_line_stripped.startswith('assert(DIM') or src_line_stripped.startswith('assert(ELEM_DIM') or src_line_stripped.startswith('assert(SPACE_DIM') or src_line_stripped.startswith('assert(ELEMENT_DIM') or src_line_stripped.startswith('EXCEPT_IF_NOT(ELEMENT_DIM') or src_line_stripped.startswith('#') or src_line_stripped.startswith('EXPORT_TEMPLATE') or src_line_stripped.startswith('template class ') or (src_line_stripped.startswith('virtual ') and src_line_stripped.endswith('(')) or (src_line_stripped.startswith('catch ') and #Line is catch (...) src_line_stripped[-1] == ')') or src_line_stripped.startswith('class ') or #Method definition (possibly). Currently overlaps with previous 'catch' ignore (len(src_line_stripped) > 0 and (src_line_stripped[-1] == ')' or src_line_stripped.endswith(') const'))) ): warn = False aggregated_count = '#####' #print 'Full details of coverage: ', src_line_stripped,'\t',src_file,'\t',aggregated_count,'\t', line_no,'\t', src_line else: aggregated_count = 'ignored' missed_line_count += 1 else: covered_line_count += 1 out_file.write("%9s:%5s:%s" % (aggregated_count, line_no, src_line)) # Output a summary if not gcov_files: # No gcov files found for this source file. # This may not be an error, if the source file in question is an .hpp file with # an associated .cpp file containing all the code for the class. ##print src_file if src_file['file'][-4:] == '.hpp' and \ os.path.exists(os.path.join(src_file['dir'], src_file['file'][:-3]+'cpp')): status = '' # So output file will be deleted else: out_file.write("This source file wasn't used at all!\n\nFailed 1 of 1 test\n") status = "1_1" elif not ignore and missed_line_count == 0: out_file.write('\nOK!\n\n') status = 'OK' else: counts = (missed_line_count, missed_line_count+covered_line_count) out_file.write('\nFailed %d of %d tests\n\n' % counts) status = "%d_%d" % counts if warn: status = 'warn_' + status if ignore: status = 'ignore_' + status if coverage_ignore(src_file): # All special case ignorable files (not just ones with partial coverage) status = '' # Close all files [fp.close() for fp in gcov_fps] out_file.close() # Alter file name to indicate summary if status: os.rename(out_file_name, out_file_name + '.' + status + '.0') else: os.remove(out_file_name) # Now remove .gcov files from the Chaste root directory for filename in os.listdir('.'): if filename[-5:] == '.gcov': os.remove(filename) # And generate a summary page os.system('python python/DisplayTests.py '+output_dir+' '+build_type)
#!/usr/bin/env python3 """ Health authority back end REST and static content server """ __copyright__ = """ Copyright 2020 Diomidis Spinellis Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ __license__ = "Apache 2.0" import argparse from dp3t.protocols.server_database import ServerDatabase from epidose.common.daemon import Daemon from flask import Flask, abort, jsonify, request, send_from_directory import logging from os.path import basename, dirname API_VERSION = "1" app = Flask("ha-server") db = None FILTER_LOCATION = "/var/lib/epidose/filter.bin" DATABASE_LOCATION = "/var/lib/epidose/server-database.db" UPDATE_LOCATION = "/var/lib/epidose/update.sh" def shutdown_server(): func = request.environ.get("werkzeug.server.shutdown") if func is None: raise RuntimeError("Not running with the Werkzeug Server") func() @app.before_request def before_request(): global db if not db: db = ServerDatabase(DATABASE_LOCATION) db.connect(reuse_if_open=True) @app.after_request def after_request(response): global db if not app.config["TESTING"]: db.close() return response @app.route("/filter", methods=["GET"]) def filter(): """Send the Cuckoo filter as a static file. In a production deployment this should be handled by the front-end server, such as nginx. """ return send_from_directory(dirname(FILTER_LOCATION), basename(FILTER_LOCATION)) @app.route("/update", methods=["GET"]) def update(): """Send the update shell script as a static file.""" return send_from_directory(dirname(UPDATE_LOCATION), basename(UPDATE_LOCATION)) @app.route("/shutdown") def shutdown(): if app.debug: shutdown_server() return "Server shutting down..." else: abort(405) @app.route("/version", methods=["GET"]) def version(): return jsonify({"version": API_VERSION}) @app.route("/add_contagious", methods=["POST"]) def add_contagious(): content = request.json with db.atomic(): logger.debug(f"Add new data with authorization {content['authorization']}") # TODO: Check authorization for rec in content["data"]: epoch = rec["epoch"] seed = bytes.fromhex(rec["seed"]) db.add_epoch_seed(epoch, seed) logger.debug(f"Add {epoch} {seed.hex()}") # TODO: Delete authorization return "OK" def initialize(args): """Initialize the server's database and logger. """ global daemon daemon = Daemon("ha_server", args) # Setup logging global logger logger = daemon.get_logger() # Connect to the database global db db = ServerDatabase(args.database) def main(): parser = argparse.ArgumentParser( description="Health authority back end REST and static content server " ) parser.add_argument( "-d", "--debug", help="Run in debug mode logging to stderr", action="store_true" ) global DATABASE_LOCATION parser.add_argument( "-D", "--database", help="Specify the database location", default=DATABASE_LOCATION, ) global FILTER_LOCATION parser.add_argument( "-f", "--filter", help="Specify the location of the Cuckoo filter", default=FILTER_LOCATION, ) parser.add_argument( "-s", "--server-name", help="Specify the server name (0.0.0.0 for externally visible)", default="127.0.0.1", ) parser.add_argument("-p", "--port", help="Set TCP port to listen", type=int) parser.add_argument( "-v", "--verbose", help="Set verbose logging", action="store_true" ) args = parser.parse_args() initialize(args) FILTER_LOCATION = args.filter DATABASE_LOCATION = args.database # Daemonize with gunicorn or other means, because the daemonize # module has trouble dealing with the lock files when the app # reloads itself. app.run(debug=args.debug, host=args.server_name, port=args.port) if __name__ == "__main__": main() else: global logger logger = logging.getLogger("gunicorn.error")
import numpy as np from sklearn.metrics import roc_auc_score from numba import jit def array2str(tmp_array, sep = " "): str_list = ["{:.3f}".format(tmp_item) for tmp_item in tmp_array] return sep.join(str_list) def generate_sorted_groups(pred, y, a): a_idx = np.where(a == 0) b_idx = np.where(a == 1) b_score = pred[b_idx].reshape(-1) b_index = np.argsort(-b_score) b_score_sort = b_score[b_index] b_label = y[b_idx] b_label_sort = b_label[b_index] a_score = pred[a_idx].reshape(-1) a_index = np.argsort(-a_score) a_score_sort = a_score[a_index] a_label = y[a_idx] a_label_sort = a_label[a_index] return a_score_sort,b_score_sort,a_label_sort,b_label_sort def cal_fairness_metric_by_groups(a_score, b_score, a_label, b_label, metric = "xauc"): if metric == "xauc": metric_ab, metric_ba, _ = xAUC_fast(a_score, b_score, a_label, b_label) else: metric_ab, metric_ba = pairwise_fast(a_score, b_score, a_label, b_label) return abs(metric_ab - metric_ba),metric_ab,metric_ba def cal_fairness_metric(pred, y, a, metric = "xauc"): a_idx, b_idx = np.where(a == 0), np.where(a == 1) a_score, b_score = pred[a_idx].reshape(-1), pred[b_idx].reshape(-1) a_label, b_label = y[a_idx].reshape(-1), y[b_idx].reshape(-1) if metric == "xauc": metric_ab, metric_ba, _ = xAUC_fast(a_score, b_score, a_label, b_label) else: metric_ab, metric_ba = pairwise_fast(a_score, b_score, a_label, b_label) return abs(metric_ab - metric_ba),metric_ab,metric_ba def AUC(score, label): ###[from big to small] sum_ = 0 num = len(label) for i in range(num): for j in range(num): if label[i]==1 and label[j]==0: if score[i]>score[j]: sum_ += 1 return sum_/(np.sum(label)*(num-np.sum(label))), sum_ def xAUC(a_score, b_score, a_label, b_label): sum_ab = 0 sum_ba = 0 numa = len(a_label) numb = len(b_label) a_num1 = np.sum(a_label) a_num0 = len(a_label) - a_num1 b_num1 = np.sum(b_label) b_num0 = len(b_label) - b_num1 for i in range(numa): for j in range(numb): if a_label[i] ==1 and b_label[j] ==0: if a_score[i]>b_score[j]: sum_ab+=1 elif a_label[i]==0 and b_label[j]==1: if b_score[j]>a_score[i]: sum_ba+=1 return sum_ab/(a_num1*b_num0), sum_ba/(b_num1*a_num0), sum_ab+sum_ba def xAUC_fast(a_score, b_score, a_label, b_label): a_num1 = np.sum(a_label) a_num0 = len(a_label) - a_num1 b_num1 = np.sum(b_label) b_num0 = len(b_label) - b_num1 a_score1,a_score0 = a_score[a_label == 1],a_score[a_label == 0] b_score1,b_score0 = b_score[b_label == 1],b_score[b_label == 0] ab_label = np.concatenate((np.ones(int(a_num1)),np.zeros(int(b_num0)))) ab_score = np.concatenate((a_score1,b_score0)) xauc_ab = roc_auc_score(ab_label,ab_score) ba_label = np.concatenate((np.ones(int(b_num1)),np.zeros(int(a_num0)))) ba_score = np.concatenate((b_score1,a_score0)) xauc_ba = roc_auc_score(ba_label,ba_score) return xauc_ab, xauc_ba, xauc_ab * a_num1 * b_num0 + xauc_ba * b_num1 * a_num0 def post_score(train_score, train_score_post, test_score): tep_id = 0 bins = [[] for i in range(len(train_score)+1)] for i in range(len(test_score)): s = test_score[i] if s>train_score[0]: bins[0].append(s) elif s<=train_score[-1]: bins[-1].append(s) else: for j in range(tep_id,len(train_score)): if train_score[j-1]>=s and train_score[j]<s: bins[j].append(s) tep_id = j break changed_b_score = [] for bin_ in range(len(bins)): for item in range(len(bins[bin_])): num = (len(bins[bin_])) if bin_==0: changed_b_score.append((item)*train_score_post[bin_]/num+(num-item)/num) elif bin_==len(train_score_post): changed_b_score.append((num -item)*train_score_post[bin_-1]/num) else: changed_b_score.append((item)*train_score_post[bin_]/num + (num-item)*train_score_post[bin_-1]/num) return np.array(changed_b_score) @jit(nopython=True) def maxAUC(a_label, b_label): M = len(a_label)-1 N = len(b_label)-1 a_1 = np.sum(a_label) b_1 = np.sum(b_label) path = np.zeros((M+1, N+1,2,2)) cost = np.zeros((M+1, N+1)) for i in range(1,M+1): if a_label[i]==1: cost[i,0] = N-b_1 + cost[i-1, 0] else: cost[i,0] = cost[i-1,0] path[i,0,:,:] = np.array([[i-1, 0], [ i, 0]]) for i in range(1,N+1): if b_label[i]==1: cost[0, i] = cost[0,i-1]+ M - a_1 else: cost[0, i] = cost[0,i-1] path[0,i,:,:] = np.array([[0, i-1],[0, i]]) for i in range(2, M+1+N+1): for j in range(max(1, i-N), min(i, M+1)): # j[1, i-1] if i-j+1>N or a_label[j]==0: tep_b = 0 else: tep_b = N - (i-j) - np.sum(b_label[i-j+1:]) if j+1>M or b_label[i-j]==0: tep_a = 0 else: tep_a = M - j -np.sum(a_label[j+1:]) if cost[j-1, i-j] + tep_b > cost[j, i-j-1] + tep_a: cost[j, i-j] = cost[j-1, i-j] + tep_b path[j, i-j,:,:] = np.array([[j-1, i-j], [j, i-j]]) else: cost[j, i-j] = cost[j, i-j-1] + tep_a path[j, i-j,:,:] = np.array([[j, i-j-1], [j, i-j]]) return cost[M,N], path @jit(nopython=True) def xAUC_post(a_label, b_label, lamb): M = len(a_label)-1 N = len(b_label)-1 a_1 = np.sum(a_label) b_1 = np.sum(b_label) a_1_b_0 = a_1*(N-b_1) b_1_a_0 = b_1*(M - a_1) path = np.zeros((M+1, N+1,2,2)) cost_unfair = np.zeros((M+1, N+1)) cost = np.zeros((M+1, N+1)) for i in range(1,M+1): if a_label[i]==1: cost_unfair[i, 0] = (N-b_1)/a_1_b_0*lamb + cost_unfair[i-1,0] cost[i,0] = N-b_1 + cost[i-1, 0] else: cost_unfair[i, 0] = cost_unfair[i-1,0] cost[i,0] = cost[i-1,0] path[i,0,:,:] = np.array([[i-1, 0], [ i, 0]]) for i in range(1,N+1): if b_label[i]==1: cost_unfair[0,i] = -(M-a_1)/b_1_a_0*lamb + cost_unfair[0, i-1] cost[0, i] = cost[0,i-1] + M - a_1 else: cost[0, i] = cost[0,i-1] cost_unfair[0, i] = cost_unfair[0,i-1] path[0,i,:,:] = np.array([[0, i-1],[0, i]]) for i in range(2, M+1+N+1): for j in range(max(1, i-N), min(i, M+1)): # j[1, i-1] if i-j+1>N or a_label[j]==0: tep_b = 0 tep_unfair_b = 0 else: tep_b = N - (i-j) - np.sum(b_label[i-j+1:]) tep_unfair_b = tep_b/a_1_b_0*lamb if j+1>M or b_label[i-j]==0: tep_a = 0 tep_unfair_a = 0 else: tep_a = M - j -np.sum(a_label[j+1:]) tep_unfair_a = -tep_a/b_1_a_0*lamb if cost[j-1, i-j] + tep_b - abs(tep_unfair_b + cost_unfair[j-1, i-j]) > cost[j, i-j-1] + tep_a - abs(tep_unfair_a + cost_unfair[j, i-j-1]): cost_unfair[j, i-j] = tep_unfair_b + cost_unfair[j-1, i-j] cost[j, i-j] = cost[j-1, i-j] + tep_b path[j, i-j,:,:] = np.array([[j-1, i-j], [j, i-j]]) else: cost_unfair[j, i-j] = tep_unfair_a + cost_unfair[j, i-j-1] cost[j, i-j] = cost[j, i-j-1] + tep_a path[j, i-j,:,:] = np.array([[j, i-j-1], [j, i-j]]) return cost, path, cost_unfair @jit(nopython=True) def xAUC_post_(a_label, b_label, lamb): M = len(a_label)-1 N = len(b_label)-1 a_1 = np.sum(a_label) b_1 = np.sum(b_label) a_1_b_0 = a_1*(N-b_1) b_1_a_0 = b_1*(M - a_1) path = np.zeros((M+1, N+1,2,2)) cost_unfair = np.zeros((M+1, N+1)) cost = np.zeros((M+1, N+1)) for i in range(1,M+1): if a_label[i]==1: cost_unfair[i, 0] = (N-b_1)/a_1_b_0 * lamb + cost_unfair[i-1,0] cost[i,0] = N-b_1 + cost[i-1, 0] else: cost_unfair[i, 0] = cost_unfair[i-1,0] cost[i,0] = cost[i-1,0] path[i,0,:,:] = np.array([[i-1, 0], [ i, 0]]) for i in range(1,N+1): if b_label[i]==1: cost_unfair[0,i] = -(M - a_1) / b_1_a_0 * lamb + cost_unfair[0, i-1] cost[0, i] = cost[0,i-1] + M - a_1 else: cost[0, i] = cost[0,i-1] cost_unfair[0, i] = cost_unfair[0,i-1] path[0,i,:,:] = np.array([[0, i-1],[0, i]]) for i in range(2, M+1+N+1): # print(i) for j in range(max(1, i-N), min(i, M+1)): # j[1, i-1] if a_label[j]==0: tep_b = 0 tep_unfair_b = 0 else: tep_b = N - (i-j) - np.sum(b_label[i-j+1:]) tep_unfair_b = tep_b/a_1_b_0*lamb if b_label[i-j]==0: tep_a = 0 tep_unfair_a = 0 else: tep_a = M - j -np.sum(a_label[j+1:]) tep_unfair_a = -tep_a/b_1_a_0*lamb if cost[j-1, i-j] + tep_b - abs(tep_unfair_b + cost_unfair[j-1, i-j]) > cost[j, i-j-1] + tep_a - abs(tep_unfair_a + cost_unfair[j, i-j-1]): cost_unfair[j, i-j] = tep_unfair_b + cost_unfair[j-1, i-j] cost[j, i-j] = cost[j-1, i-j] + tep_b path[j, i-j,:,:] = np.array([[j-1, i-j], [j, i-j]]) else: cost_unfair[j, i-j] = tep_unfair_a + cost_unfair[j, i-j-1] cost[j, i-j] = cost[j, i-j-1] + tep_a path[j, i-j,:,:] = np.array([[j, i-j-1], [j, i-j]]) return cost, path, cost_unfair @jit(nopython=True) def pairwise_post(a_label, b_label, lamb): ###a, b has been sorted decreasing sort. M = len(a_label)-1 N = len(b_label)-1 a_1 = np.sum(a_label) b_1 = np.sum(b_label) a_1_0 = a_1*((N-b_1)+(M - a_1)) b_1_0 = b_1*((M - a_1)+(N-b_1)) path = np.zeros((M+1, N+1,2,2)) cost_unfair = np.zeros((M+1, N+1)) cost = np.zeros((M+1, N+1)) zeros_mat = np.zeros((M+1, N+1)) zeros_mat[0,0] = ((N-b_1)+(M - a_1)) for i in range(1,N+1): if b_label[i]==1: zeros_mat[0,i] = zeros_mat[0,i-1] else: zeros_mat[0,i] = zeros_mat[0,i-1]-1 for i in range(1,M+1): if a_label[i]==0: zeros_mat[i,0] = zeros_mat[i-1,0]-1 else: zeros_mat[i,0] = zeros_mat[i-1,0] for j in range(1,N+1): if b_label[j]==0: zeros_mat[i,j] = zeros_mat[i,j-1]-1 else: zeros_mat[i,j] = zeros_mat[i,j-1] for i in range(1,M+1): if a_label[i]==1: cost_unfair[i, 0] = zeros_mat[i,0]/a_1_0*lamb + cost_unfair[i-1,0] cost[i,0] = N-b_1 + cost[i-1, 0] else: cost_unfair[i, 0] = cost_unfair[i-1,0] cost[i,0] = cost[i-1,0] path[i,0,:,:] = np.array([[i-1, 0], [ i, 0]]) for i in range(1,N+1): if b_label[i]==1: cost_unfair[0,i] = -zeros_mat[0,i]/b_1_0*lamb + cost_unfair[0, i-1] cost[0, i] = cost[0,i-1] + M - a_1 else: cost[0, i] = cost[0,i-1] cost_unfair[0, i] = cost_unfair[0, i-1] path[0,i,:,:] = np.array([[0, i-1],[0, i]]) for i in range(2, M+1+N+1): for j in range(max(1, i-N), min(i, M+1)): # j[1, i-1] if a_label[j]==0: tep_b = 0 tep_unfair_b = 0 else: tep_b = N - (i-j) - np.sum(b_label[i-j+1:]) tep_unfair_b = zeros_mat[j,i-j]/a_1_0*lamb if b_label[i-j]==0: tep_a = 0 tep_unfair_a = 0 else: tep_a = M - j -np.sum(a_label[j+1:]) tep_unfair_a = -zeros_mat[j,i-j]/b_1_0*lamb if cost[j-1, i-j] + tep_b - abs(tep_unfair_b + cost_unfair[j-1, i-j]) > cost[j, i-j-1] + tep_a - abs(tep_unfair_a + cost_unfair[j, i-j-1]): cost_unfair[j, i-j] = tep_unfair_b + cost_unfair[j-1, i-j] cost[j, i-j] = cost[j-1, i-j] + tep_b path[j, i-j,:,:] = np.array([[j-1, i-j], [j, i-j]]) else: cost_unfair[j, i-j] = tep_unfair_a + cost_unfair[j, i-j-1] cost[j, i-j] = cost[j, i-j-1] + tep_a path[j, i-j,:,:] = np.array([[j, i-j-1], [j, i-j]]) return cost, path, cost_unfair def post_b_score(a_score, b_score, a_label, b_label, lamb = 0, _type="xauc"): ## score has to be decreasing. M = len(a_score) N = len(b_score) if _type == "xauc": cost, path_ , cost_unfair = xAUC_post(a_label, b_label, lamb = lamb) elif _type=="AUC": cost, path_ = maxAUC(a_label, b_label) elif _type=="prf": cost, path_ , cost_unfair = pairwise_post(a_label, b_label, lamb = lamb) else: print("Unknown type") exit() @jit(nopython=True) def pathTrace(path): trace = [] tep = path[M,N,:,:] trace.append(tep[-1,:]) trace.append(tep[0,:]) for i in range(M+N-1): tep = path[int(tep[0][0]), int(tep[0][1]), :,:] trace.append(tep[0,:]) trace.reverse() return trace path = pathTrace(path_) gap_a = [[] for i in range(M+1)] for i in range(1,len(path)): if int(path[i][0])==int(path[i-1][0]): gap_a[int(path[i][0])].append(int(path[i][1])) changed_b_score = [] for bin_ in range(len(gap_a)): for item in range(len(gap_a[bin_])): num = (len(gap_a[bin_])+1) if bin_==0: changed_b_score.append((item+1)*a_score[bin_]/num+(num-item-1)/num) elif bin_==len(a_score): changed_b_score.append((num -item-1)*a_score[bin_-1]/num) else: changed_b_score.append((item+1)*a_score[bin_]/num + (num-item-1)*a_score[bin_-1]/num) if _type=="AUC": return np.array(changed_b_score), 0 else: return np.array(changed_b_score), cost_unfair[-1, -1] def pairwise(a_score, b_score, a_label, b_label): sum_ab = 0 sum_ba = 0 numa = len(a_label) numb = len(b_label) a_num1 = np.sum(a_label) a_num0 = len(a_label) - a_num1 b_num1 = np.sum(b_label) b_num0 = len(b_label) - b_num1 i_AUCa = roc_auc_score(a_label, a_score) i_AUCb = roc_auc_score(b_label, b_score) for i in range(numa): for j in range(numb): if a_label[i] ==1 and b_label[j] ==0: if a_score[i]>b_score[j]: sum_ab+=1 elif a_label[i]==0 and b_label[j]==1: if b_score[j]>a_score[i]: sum_ba+=1 return (sum_ab+i_AUCa*a_num0*a_num1)/(a_num1*(b_num0+a_num0)), (sum_ba+i_AUCb*b_num0*b_num1)/(b_num1*(a_num0+b_num0)) def pairwise_fast(a_score, b_score, a_label, b_label): a_num1 = np.sum(a_label) a_num0 = len(a_label) - a_num1 b_num1 = np.sum(b_label) b_num0 = len(b_label) - b_num1 a_score1,a_score0 = a_score[a_label == 1],a_score[a_label == 0] b_score1,b_score0 = b_score[b_label == 1],b_score[b_label == 0] ab_label = np.concatenate((np.ones(int(a_num1)),np.zeros(int(b_num0+a_num0)))) ab_score = np.concatenate((a_score1,a_score0,b_score0)) pair_ab = roc_auc_score(ab_label,ab_score) #[a=1, 0] ba_label = np.concatenate((np.ones(int(b_num1)),np.zeros(int(a_num0+b_num0)))) ba_score = np.concatenate((b_score1,b_score0, a_score0)) pair_ba = roc_auc_score(ba_label,ba_score) #[b=1, 0] return pair_ab, pair_ba def zeros_mat(a, b): a_label = [0] + a b_label = [0] + b M = len(a_label)-1 N = len(b_label)-1 a_1 = np.sum(a) b_1 = np.sum(b) zeros_mat = np.zeros((M+1, N+1)) zeros_mat[0,0] = ((N-b_1)+(M - a_1)) for i in range(1,N+1): if b_label[i]==1: zeros_mat[0,i] = zeros_mat[0,i-1] else: zeros_mat[0,i] = zeros_mat[0,i-1]-1 for i in range(1,M+1): if a_label[i]==0: zeros_mat[i,0] = zeros_mat[i-1,0]-1 else: zeros_mat[i,0] = zeros_mat[i-1,0] for j in range(1,N+1): if b_label[j]==0: zeros_mat[i,j] = zeros_mat[i,j-1]-1 else: zeros_mat[i,j] = zeros_mat[i,j-1] return zeros_mat
from model.contact import Contact from random import randrange def test_contacts_on_homepage(app, db): contacts_from_homepage = sorted(app.contact.get_contact_list(), key = Contact.id_or_max) contacts_from_db = sorted(db.get_contact_list(), key = Contact.id_or_max) assert len(contacts_from_homepage) == len(contacts_from_db) for i in range(len(contacts_from_homepage)): assert contacts_from_homepage[i].firstname == contacts_from_db[i].firstname assert contacts_from_homepage[i].lastname == contacts_from_db[i].lastname assert contacts_from_homepage[i].address == contacts_from_db[i].address assert contacts_from_homepage[i].all_phones_from_home_page == contacts_from_db[i].all_phones_from_home_page assert contacts_from_homepage[i].all_emails_from_home_page == contacts_from_db[i].all_emails_from_home_page # def test_phones_on_contact_view_page(app): # contact_from_viewpage = app.contact.get_contact_info_from_view_page(0) #контакт из viewpage контакта # contact_from_editpage = app.contact.get_contact_info_from_edit_page(0) #контакт из формы редактирования # assert contact_from_viewpage.phone_home == contact_from_editpage.phone_home # assert contact_from_viewpage.phone_mobile == contact_from_editpage.phone_mobile # assert contact_from_viewpage.phone_work == contact_from_editpage.phone_work # assert contact_from_viewpage.phone2 == contact_from_editpage.phone2