text
stringlengths
2
999k
def correct_ini_file(config_file): with open(config_file, mode='r') as raw_open: raw_open.seek(0) temp_api_details = raw_open.readlines(0) # print(type(temp_api_details[0])) with open(config_file, mode='w') as rewrite_config: if temp_api_details[0] != '[TELEGRAM]\n': rewrite_config.write('[TELEGRAM]\n') for i in temp_api_details: rewrite_config.write(i)
import json import unittest2 from normalize import from_json from normalize import JsonProperty from normalize import JsonRecord from normalize import Property from normalize import Record from normalize import to_json from unique.encoding import JSONRecordIO from testclasses import MultiLevelKeyValue from testclasses import SimpleKeyValue def jdump(obj): return json.dumps( obj, indent=4, separators=(',', ': '), sort_keys=True, ) class CustomMarshalled(JsonRecord): key = Property(json_name="id") value = Property() def json_data(self, **args): jd = super(CustomMarshalled, self).json_data(**args) jd['oid'] = "1234567" return jd @classmethod def json_to_initkwargs(cls, json_data, kwargs): return super(CustomMarshalled, cls).json_to_initkwargs( dict((k, v) for k, v in json_data.items() if k != 'oid'), kwargs, ) class SanityTest(unittest2.TestCase): def test_simple_key(self): sk = SimpleKeyValue(key="Bob", value="bill") encoded = JSONRecordIO.encode_str(sk) self.assertEqual( encoded, '{\n "key": "Bob",\n "value": "bill"\n}', ) decoded = JSONRecordIO.decode_str(SimpleKeyValue, encoded)[0] self.assertEqual(sk, decoded) def test_multi_level_key(self): mlkv = MultiLevelKeyValue( key="Casper", items=[{"key": "toast", "value": "Charlie_Brown"}, {"key": "ham", "value": "Lucy"}, {"key": "spam", "value": "Franklin"}], custom_val="Minotaur", ) # IO using regular normalize default_json = jdump(to_json(mlkv)) default_decoded = from_json(MultiLevelKeyValue, json.loads(default_json)) self.assertEqual(mlkv, default_decoded) encoded = JSONRecordIO.encode_str(mlkv) decoded = JSONRecordIO.decode_str(MultiLevelKeyValue, encoded)[0] # FIXME: visitor should either respect all JsonRecord hints or none. decoded.custom_val = 'Minotaur' self.assertEqual(mlkv, decoded)
#!/usr/bin/env python # -*- coding: utf-8 -*- """sc2autosave is a utility for reorganizing and renaming Starcraft II files. Overview ============== sc2autosave provides a simple mechanism for renaming replay files as they are copied or moved from a source directory to a destination directory. In between runs the state is stored in the sc2autosave.dat file saved to the destination folder. In this way, multiple destination folders with different organizations and formats can be maintained independently. General Operation ------------------- When first run for a given destination directory, sc2autosave scans for all files since the epoch. Each subsequent run scans only for files new files since the previous scan time. This behavior can be modified on a run by run basis by with the --since DATETIME option. By default the source directory is scanned recursively. The --depth DEPTH option can limit and/or eliminate this is recursion. Files identified as new are then copied to the destination directory. The --move option can override this behavior. The default behavior is a good idea because it ensures that there is a backup copy and allows for several different file structures to be constructed with different sc2autosave configurations for easy replay navigation. You might keep your replay files redundantly stored sorted by format, by map, and by matchup for easy lookup later on. While normally run as a batch process, the --period SECONDS option can be used to run sc2autosave as a background process, scanning the directory for changes every SECONDS seconds. This is useful for creating background processes on operating system start up. Renaming Replays -------------------- The --rename option allows you to specify a renaming format string. The string is constructed the pythonic (3.0) way with {:field} indicating the substitution of a field. The forward slash (/) is a special character here which terminates a folder name and allows for organization into subdirectories. All other string characters form the template into which the fields are inserted. Fields related to dates and times (:date, :datetime, :length fields) can be formatted through their respective directives (--date, --datetime, --length) according to python date formatting conventions. Additionally, the player display format can be refined with the --player-format FORMAT directive which is interpreted similarly to the --rename FORMAT directive detailed above. Once content has been defined to your tastes you may wish to get specific about the ordering of the teams and players on those teams in the replay name. The --team-order-by and --player-order-by directives can be used for this purpose. A common preference is to favor specific players (like yourself and friends) and their teams in the ordering by placing them first in the listing. The --favor PLAYER1 [PLAYER2] directive supports this preference. Filtering Replays --------------------- Once a replay has been scanned and parsed you have an opportunity to filter it for inclusion in the destination directory. This is useful when constructing various different types of replay packs for distribution and review. Replays are small and Battle.net has a terrible filesystem based replay locator; why not make your life easier with a little duplication. --filter-players PLAYER [PLAYER ...] --filter-matchup MATCHUP [MATCHUP ...] --filter-map NAME [NAME ...] --filter-length LOW HIGH --filter-date START END Example Configurations ------------------------ This first basic configuration sets up a background process to copy new replays without renaming to a 'Saved' subdirectory every 10 seconds. The depth 0 option keeps the script from looking into the 'Saved' subdirectory. sc2autosave \ --source ~/My\ Documents/Starcraft\ II/Accounts/.../Mutliplayer \ --dest ~/My\ Documents/Starcraft\ II/Accounts/.../Multiplater/Saved \ --period 10 \ --depth 0 This next configuration runs in batch mode using the default renaming format. sc2autosave \ --source ~/My\ Documents/Starcraft\ II/Accounts/.../Mutliplayer \ --dest ~/My\ Documents/Starcraft\ II/Accounts/.../Multiplater/Saved \ --rename (ZvP) Lost Temple: ShadesofGray(Z) vs Trisfall(P).SC2Replay (ZZvPP) Shattered Temple: ShadesofGray(Z), Remedy(Z) vs ProfProbe(P), Trisfall(P).SC2Replay Here is a heavily customized format that organizes replays into subdirectories by replay format and favors ShadesofGray in the player and team orderings. sc2autosave \ --source ~/My\ Documents/Starcraft\ II/Accounts/.../Mutliplayer \ --dest ~/My\ Documents/Starcraft\ II/Accounts/.../Multiplater/Saved \ --rename "{:format}/{:matchup} on {:map}: {:teams}" \ --player-format "{:name}({:play_race})" \ --team-order-by number \ --player-order-by name \ --favored ShadesofGray 1v1/ZvP on Lost Temple: ShadesofGray(Z) vs Trisfall(P).SC2Replay 2v2/ZZvPP on Shattered Temple: ShadesofGray(Z), Remedy(Z) vs ProfProbe(P), Trisfall(P).SC2Replay Next is another customized format which organizes replays by matchup. It uses strict player and team ordering by number with no exceptions and formats game length to show both minutes and seconds. sc2autosave \ --source ~/My\ Documents/Starcraft\ II/Accounts/.../Mutliplayer \ --dest ~/My\ Documents/Starcraft\ II/Accounts/.../Multiplater/Saved \ --rename "{:matchup}/({:length}) {:map}: {:teams}" \ --player-format "{:name}({:play_race})" \ --team-order-by number \ --player-order-by number \ --length "%M:%S" PvZ/(20:14) Lost Temple: Trisfall(P) vs ShadesofGray(Z).SC2Replay ZZvPP/(35:40) Shattered Temple: Remedy(Z), ShadesofGray(Z) vs Trisfall(P), ProfProbe(P).SC2Replay Complete Reference Guide --------------------------- --source SOURCE_FOLDER The source folder to scan for replays. Uses recursive scan by default. --dest DESTINATION_FOLDER The destination folder to place replays into. --depth DEPTH Allows recursion to be limited and/or disabled (with DEPTH=0). --period SECONDS Puts sc2autosave into continuous mode, scanning the directory for new files every SECONDS seconds. --rename FORMAT :map - Inserts the map name. :date - Inserts a string formatted datetime object using --date-format. :length - Inserts a string formatted time object using --length-format. :teams - Inserts a comma separated player list. Teams are separated with a ' vs ' string. Format the player with --player-format. :format - Inserts the map format (1v1, 2v2, 3v3, etc) :matchup - Inserts the matchup (ZvZ, PTvTZ, etc). The matchup is in team order with races ordered alphabetically; not by player! This makes matchups more consistent and useful for sorting. --length-format FORMAT --player-format FORMAT --date-format FORMAT --team-order-by FIELD --player-order-by FIELD --favored NAME [NAME,...] POST-Parse filtering vs preparse filtering? POST-Parse, how to do it?!?!?!?! """ import argparse import cPickle import os import shutil import sys import time import sc2reader try: raw_input # Python 2 except NameError: raw_input = input # Python 3 def run(args): # Reset wipes the destination clean so we can start over. if args.reset: reset(args) # Set up validates the destination and source directories. # It also loads the previous state or creates one as necessary. state = setup(args) # We break out of this loop in batch mode and on KeyboardInterrupt while True: # The file scan uses the arguments and the state to filter down to # only new (since the last sync time) files. for path in scan(args, state): try: # Read the file and expose useful aspects for renaming/filtering replay = sc2reader.load_replay(path, load_level=2) except KeyboardInterrupt: raise except: # Failure to parse file_name = os.path.basename(path) directory = make_directory(args, ("parse_error",)) new_path = os.path.join(directory, file_name) source_path = path[len(args.source) :] args.log.write("Error parsing replay: {0}".format(source_path)) if not args.dryrun: args.action.run(path, new_path) # Skip to the next replay continue aspects = generate_aspects(args, replay) # Use the filter args to select files based on replay attributes if filter_out_replay(args, replay): continue # Apply the aspects to the rename formatting. #'/' is a special character for creation of subdirectories. # TODO: Handle duplicate replay names, its possible.. path_parts = args.rename.format(**aspects).split("/") filename = path_parts.pop() + ".SC2Replay" # Construct the directory and file paths; create needed directories directory = make_directory(args, path_parts) new_path = os.path.join(directory, filename) # Find the source relative to the source directory for reporting dest_path = new_path[len(args.dest) :] source_path = path[len(args.source) :] # Log the action and run it if we are live msg = "{0}:\n\tSource: {1}\n\tDest: {2}\n" args.log.write(msg.format(args.action.type, source_path, dest_path)) if not args.dryrun: args.action.run(path, new_path) # After every batch completes, save the state and flush the log # TODO: modify the state to include a list of remaining files args.log.flush() save_state(state, args) # We only run once in batch mode! if args.mode == "BATCH": break # Since new replays come in fairly infrequently, reduce system load # by sleeping for an acceptable response time before the next scan. time.sleep(args.period) args.log.write("Batch Completed") def filter_out_replay(args, replay): player_names = set([player.name for player in replay.players]) filter_out_player = not set(args.filter_player) & player_names if args.filter_rule == "ALLOW": return filter_out_player else: return not filter_out_player # We need to create these compare functions at runtime because the ordering # hinges on the --favored PLAYER options passed in from the command line. def create_compare_funcs(args): favored_set = set(name.lower() for name in args.favored) def player_compare(player1, player2): # Normalize the player names and generate our key metrics player1_name = player1.name.lower() player2_name = player2.name.lower() player1_favored = player1_name in favored_set player2_favored = player2_name in favored_set # The favored player always comes first in the ordering if player1_favored and not player2_favored: return -1 elif player2_favored and not player1_favored: return 1 # The most favored person will always be listed first elif player1_favored and player2_favored: player1_index = args.favored.index(player1_name) player2_index = args.favored.index(player2_name) return player1_index - player2_index # If neither is favored, we'll order by number for now # TODO: Allow command line specification of other orderings (maybe?) else: return player1.pid - player2.pid def team_compare(team1, team2): # Normalize the team name lists and generate our key metrics team1_names = set(p.name.lower() for p in team1.players) team2_names = set(p.name.lower() for p in team2.players) team1_favored = team1_names & favored_set team2_favored = team2_names & favored_set # The team with the favored players will always be listed first if team1_favored and not team2_favored: return -1 elif team2_favored and not team1_favored: return 1 # The team with the most favored person will always come first elif team1_favored and team2_favored: team1_best = sorted(args.favored.index(n) for n in team1_favored) team2_best = sorted(args.favored.index(n) for n in team2_favored) return team1_best[-1] - team2_best[-1] # If neither is favored, we'll order by number for now # TODO: Allow command line specification of other orderings (maybe?) else: return team1.number - team2.number return team_compare, player_compare def generate_aspects(args, replay): teams = sorted(replay.teams, args.team_compare) matchups, team_strings = list(), list() for team in teams: team.players = sorted(team.players, args.player_compare) composition = sorted(p.play_race[0].upper() for p in team.players) matchups.append("".join(composition)) string = ", ".join(p.format(args.player_format) for p in team.players) team_strings.append(string) return sc2reader.utils.AttributeDict( result=teams[0].result, length=replay.length, map=replay.map, type=replay.type, date=replay.date.strftime(args.date_format), matchup="v".join(matchups), teams=" vs ".join(team_strings), ) def make_directory(args, path_parts): directory = args.dest for part in path_parts: directory = os.path.join(directory, part) if not os.path.exists(directory): args.log.write("Creating subfolder: {0}\n".format(directory)) if not args.dryrun: os.mkdir(directory) elif not os.path.isdir(directory): exit("Cannot create subfolder. Path is occupied: {0}", directory) return directory def scan(args, state): args.log.write("SCANNING: {0}\n".format(args.source)) files = sc2reader.utils.get_files( path=args.source, regex=args.exclude_files, allow=False, exclude=args.exclude_dirs, depth=args.depth, followlinks=args.follow_links, ) return filter(lambda f: os.path.getctime(f) > state.last_sync, files) def exit(msg, *args, **kwargs): sys.exit(msg.format(*args, **kwargs) + "\n\nScript Aborted.") def reset(args): if not os.path.exists(args.dest): exit("Cannot reset, destination does not exist: {0}", args.dest) elif not os.path.isdir(args.dest): exit("Cannot reset, destination must be directory: {0}", args.dest) print( "About to reset directory: {0}\nAll files and subdirectories will be removed.".format( args.dest ) ) choice = raw_input("Proceed anyway? (y/n) ") if choice.lower() == "y": args.log.write("Removing old directory: {0}\n".format(args.dest)) if not args.dryrun: print(args.dest) shutil.rmtree(args.dest) else: sys.exit("Script Aborted") def setup(args): args.team_compare, args.player_compare = create_compare_funcs(args) args.action = sc2reader.utils.AttributeDict( type=args.action, run=shutil.copy if args.action == "COPY" else shutil.move ) if not os.path.exists(args.source): msg = "Source does not exist: {0}.\n\nScript Aborted." sys.exit(msg.format(args.source)) elif not os.path.isdir(args.source): msg = "Source is not a directory: {0}.\n\nScript Aborted." sys.exit(msg.format(args.source)) if not os.path.exists(args.dest): if not args.dryrun: os.mkdir(args.dest) else: args.log.write("Creating destination: {0}\n".format(args.dest)) elif not os.path.isdir(args.dest): sys.exit("Destination must be a directory.\n\nScript Aborted") data_file = os.path.join(args.dest, "sc2autosave.dat") args.log.write("Loading state from file: {0}\n".format(data_file)) if os.path.isfile(data_file) and not args.reset: with open(data_file) as file: return cPickle.load(file) else: return sc2reader.utils.AttributeDict(last_sync=0) def save_state(state, args): state.last_sync = time.time() data_file = os.path.join(args.dest, "sc2autosave.dat") if not args.dryrun: with open(data_file, "w") as file: cPickle.dump(state, file) else: args.log.write("Writing state to file: {0}\n".format(data_file)) def main(): parser = argparse.ArgumentParser( description="Automatically copy new replays to directory", fromfile_prefix_chars="@", formatter_class=sc2reader.scripts.utils.Formatter.new(max_help_position=35), epilog="And that's all folks", ) required = parser.add_argument_group("Required Arguments") required.add_argument("source", type=str, help="The source directory to poll") required.add_argument("dest", type=str, help="The destination directory to copy to") general = parser.add_argument_group("General Options") general.add_argument( "--mode", dest="mode", type=str, choices=["BATCH", "CYCLE"], default="BATCH", help="The operating mode for the organizer", ) general.add_argument( "--action", dest="action", choices=["COPY", "MOVE"], default="COPY", type=str, help="Have the organizer move your files instead of copying", ) general.add_argument( "--period", dest="period", type=int, default=0, help="The period of time to wait between scans.", ) general.add_argument( "--log", dest="log", metavar="LOGFILE", type=argparse.FileType("w"), default=sys.stdout, help="Destination file for log information", ) general.add_argument( "--dryrun", dest="dryrun", action="store_true", help="Don't do anything. Only simulate the output", ) general.add_argument( "--reset", dest="reset", action="store_true", default=False, help="Wipe the destination directory clean and start over.", ) fileargs = parser.add_argument_group("File Options") fileargs.add_argument( "--depth", dest="depth", type=int, default=-1, help="Maximum recussion depth. -1 (default) is unlimited.", ) fileargs.add_argument( "--exclude-dirs", dest="exclude_dirs", type=str, metavar="NAME", nargs="+", default=[], help="A list of directory names to exclude during recursion", ) fileargs.add_argument( "--exclude-files", dest="exclude_files", type=str, metavar="REGEX", default="", help="An expression to match excluded files", ) fileargs.add_argument( "--follow-links", dest="follow_links", action="store_true", default=False, help="Enable following of symbolic links while scanning", ) renaming = parser.add_argument_group("Renaming Options") renaming.add_argument( "--rename", dest="rename", type=str, metavar="FORMAT", nargs="?", default="{length} {type} on {map}", help="""\ The renaming format string. can have the following values: * {length} - The length of the replay ([H:]MM:SS) * {type} - The type of the replay (1v1,2v2,4v4,etc) * {map} - The map that was played on. * {match} - Race matchup in team order, alphabetically by race. * {date} - The date the replay was played on * {teams} - The player line up """, ) renaming.add_argument( "--length-format", dest="length_format", type=str, metavar="FORMAT", default="%M.%S", help="The length format string. See the python time module for details", ) renaming.add_argument( "--player-format", dest="player_format", type=str, metavar="FORMAT", default="{name} ({play_race})", help="The player format string used to render the :teams content item.", ) renaming.add_argument( "--date-format", dest="date_format", type=str, metavar="FORMAT", default="%m-%d-%Y", help="The date format string used to render the :date content item.", ) """ renaming.add_argument('--team-order-by', dest='team_order', type=str, metavar='FIELD', default='NUMBER', help='The field by which teams are ordered.') renaming.add_argument('--player-order-by', dest='player_order', type=str, metavar='FIELD', default='NAME', help='The field by which players are ordered on teams.') """ renaming.add_argument( "--favored", dest="favored", type=str, default=[], metavar="NAME", nargs="+", help="A list of the players to favor in ordering teams and players", ) filterargs = parser.add_argument_group("Filtering Options") filterargs.add_argument( "--filter-rule", dest="filter_rule", choices=["ALLOW", "DENY"], help="The filters can either be used as a white list or a black list", ) filterargs.add_argument( "--filter-player", metavar="NAME", dest="filter_player", nargs="+", type=str, default=[], help="A list of players to filter on", ) try: run(parser.parse_args()) except KeyboardInterrupt: print("\n\nScript Interrupted. Process Aborting") if __name__ == "__main__": main()
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import functools import math import warnings import weakref import numpy as np from scipy import optimize as scipyoptimize import nevergrad.common.typing as tp from nevergrad.parametrization import parameter as p from nevergrad.common import errors from . import base from .base import IntOrParameter from . import recaster class _NonObjectMinimizeBase(recaster.SequentialRecastOptimizer): def __init__( self, parametrization: IntOrParameter, budget: tp.Optional[int] = None, num_workers: int = 1, *, method: str = "Nelder-Mead", random_restart: bool = False, ) -> None: super().__init__(parametrization, budget=budget, num_workers=num_workers) self.multirun = 1 # work in progress self._normalizer: tp.Any = None self.initial_guess: tp.Optional[tp.ArrayLike] = None # configuration assert ( method in [ "CmaFmin2", "Nelder-Mead", "COBYLA", "SLSQP", "Powell", ] or "NLOPT" in method ), f"Unknown method '{method}'" self.method = method self.random_restart = random_restart # The following line rescales to [0, 1] if fully bounded. if method == "CmaFmin2" or "NLOPT" in method: normalizer = p.helpers.Normalizer(self.parametrization) if normalizer.fully_bounded: self._normalizer = normalizer def _internal_tell_not_asked(self, candidate: p.Parameter, loss: tp.Loss) -> None: """Called whenever calling "tell" on a candidate that was not "asked". Defaults to the standard tell pipeline. """ # We do not do anything; this just updates the current best. def get_optimization_function(self) -> tp.Callable[[tp.Callable[[tp.ArrayLike], float]], tp.ArrayLike]: return functools.partial(self._optimization_function, weakref.proxy(self)) @staticmethod def _optimization_function( weakself: tp.Any, objective_function: tp.Callable[[tp.ArrayLike], float] ) -> tp.ArrayLike: # pylint:disable=unused-argument budget = np.inf if weakself.budget is None else weakself.budget best_res = np.inf best_x: np.ndarray = weakself.current_bests["average"].x # np.zeros(self.dimension) if weakself.initial_guess is not None: best_x = np.array(weakself.initial_guess, copy=True) # copy, just to make sure it is not modified remaining: float = budget - weakself._num_ask while remaining > 0: # try to restart if budget is not elapsed options: tp.Dict[str, tp.Any] = {} if weakself.budget is None else {"maxiter": remaining} # options: tp.Dict[str, tp.Any] = {} if self.budget is None else {"maxiter": remaining} if weakself.method[:5] == "NLOPT": # This is NLOPT, used as in the PCSE simulator notebook. # ( https://github.com/ajwdewit/pcse_notebooks ). import nlopt def nlopt_objective_function(*args): data = np.asarray([arg for arg in args])[0] assert len(data) == weakself.dimension, ( str(data) + " does not have length " + str(weakself.dimension) ) if weakself._normalizer is not None: data = weakself._normalizer.backward(np.asarray(data, dtype=np.float32)) return objective_function(data) # Sbplx (based on Subplex) is used by default. nlopt_param = ( getattr(nlopt, weakself.method[6:]) if len(weakself.method) > 5 else nlopt.LN_SBPLX ) opt = nlopt.opt(nlopt_param, weakself.dimension) # Assign the objective function calculator opt.set_min_objective(nlopt_objective_function) # Set the bounds. opt.set_lower_bounds(np.zeros(weakself.dimension)) opt.set_upper_bounds(np.ones(weakself.dimension)) # opt.set_initial_step([0.05, 0.05]) opt.set_maxeval(budget) # Start the optimization with the first guess firstguess = 0.5 * np.ones(weakself.dimension) best_x = opt.optimize(firstguess) # print("\noptimum at TDWI: %s, SPAN: %s" % (x[0], x[1])) # print("minimum value = ", opt.last_optimum_value()) # print("result code = ", opt.last_optimize_result()) # print("With %i function calls" % objfunc_calculator.n_calls) if weakself._normalizer is not None: best_x = weakself._normalizer.backward(np.asarray(best_x, dtype=np.float32)) elif weakself.method == "CmaFmin2": import cma # import inline in order to avoid matplotlib initialization warning def cma_objective_function(data): # Hopefully the line below does nothing if unbounded and rescales from [0, 1] if bounded. if weakself._normalizer is not None: data = weakself._normalizer.backward(np.asarray(data, dtype=np.float32)) return objective_function(data) # cma.fmin2(objective_function, [0.0] * self.dimension, [1.0] * self.dimension, remaining) x0 = 0.5 * np.ones(weakself.dimension) num_calls = 0 while budget - num_calls > 0: options = {"maxfevals": budget - num_calls, "verbose": -9} if weakself._normalizer is not None: # Tell CMA to work in [0, 1]. options["bounds"] = [0.0, 1.0] res = cma.fmin( cma_objective_function, x0=x0, sigma0=0.2, options=options, restarts=9, ) x0 = 0.5 + np.random.uniform() * np.random.uniform( low=-0.5, high=0.5, size=weakself.dimension ) if res[1] < best_res: best_res = res[1] best_x = res[0] if weakself._normalizer is not None: best_x = weakself._normalizer.backward(np.asarray(best_x, dtype=np.float32)) num_calls += res[2] else: res = scipyoptimize.minimize( objective_function, best_x if not weakself.random_restart else weakself._rng.normal(0.0, 1.0, weakself.dimension), method=weakself.method, options=options, tol=0, ) if res.fun < best_res: best_res = res.fun best_x = res.x remaining = budget - weakself._num_ask return best_x class NonObjectOptimizer(base.ConfiguredOptimizer): """Wrapper over Scipy optimizer implementations, in standard ask and tell format. This is actually an import from scipy-optimize, including Sequential Quadratic Programming, Parameters ---------- method: str Name of the method to use among: - Nelder-Mead - COBYLA - SQP (or SLSQP): very powerful e.g. in continuous noisy optimization. It is based on approximating the objective function by quadratic models. - Powell - NLOPT* (https://nlopt.readthedocs.io/en/latest/; by default, uses Sbplx, based on Subplex); can be NLOPT, NLOPT_LN_SBPLX, NLOPT_LN_PRAXIS, NLOPT_GN_DIRECT, NLOPT_GN_DIRECT_L, NLOPT_GN_CRS2_LM, NLOPT_GN_AGS, NLOPT_GN_ISRES, NLOPT_GN_ESCH, NLOPT_LN_COBYLA, NLOPT_LN_BOBYQA, NLOPT_LN_NEWUOA_BOUND, NLOPT_LN_NELDERMEAD. random_restart: bool whether to restart at a random point if the optimizer converged but the budget is not entirely spent yet (otherwise, restarts from best point) Note ---- These optimizers do not support asking several candidates in a row """ recast = True no_parallelization = True # pylint: disable=unused-argument def __init__(self, *, method: str = "Nelder-Mead", random_restart: bool = False) -> None: super().__init__(_NonObjectMinimizeBase, locals()) NelderMead = NonObjectOptimizer(method="Nelder-Mead").set_name("NelderMead", register=True) CmaFmin2 = NonObjectOptimizer(method="CmaFmin2").set_name("CmaFmin2", register=True) NLOPT = NonObjectOptimizer(method="NLOPT").set_name("NLOPT", register=True) Powell = NonObjectOptimizer(method="Powell").set_name("Powell", register=True) RPowell = NonObjectOptimizer(method="Powell", random_restart=True).set_name("RPowell", register=True) Cobyla = NonObjectOptimizer(method="COBYLA").set_name("Cobyla", register=True) RCobyla = NonObjectOptimizer(method="COBYLA", random_restart=True).set_name("RCobyla", register=True) SQP = NonObjectOptimizer(method="SLSQP").set_name("SQP", register=True) SLSQP = SQP # Just so that people who are familiar with SLSQP naming are not lost. RSQP = NonObjectOptimizer(method="SLSQP", random_restart=True).set_name("RSQP", register=True) RSLSQP = RSQP # Just so that people who are familiar with SLSQP naming are not lost. class _PymooMinimizeBase(recaster.SequentialRecastOptimizer): def __init__( self, parametrization: IntOrParameter, budget: tp.Optional[int] = None, num_workers: int = 1, *, algorithm: str, ) -> None: super().__init__(parametrization, budget=budget, num_workers=num_workers) # configuration self.algorithm = algorithm self._no_hypervolume = True self._initial_seed = -1 def get_optimization_function(self) -> tp.Callable[[tp.Callable[..., tp.Any]], tp.Optional[tp.ArrayLike]]: if self._initial_seed == -1: self._initial_seed = self._rng.randint(2**30) return functools.partial(self._optimization_function, weakref.proxy(self)) # pylint:disable=useless-return @staticmethod def _optimization_function( weakself: tp.Any, objective_function: tp.Callable[[tp.ArrayLike], float] ) -> tp.Optional[tp.ArrayLike]: # pylint:disable=unused-argument, import-outside-toplevel from pymoo import optimize as pymoooptimize from pymoo.factory import get_algorithm as get_pymoo_algorithm # from pymoo.factory import get_reference_directions # reference direction code for when we want to use the other MOO optimizers in Pymoo # if self.algorithm in [ # "rnsga2", # "nsga3", # "unsga3", # "rnsga3", # "moead", # "ctaea", # ]: # algorithms that require reference points or reference directions # the appropriate n_partitions must be looked into # ref_dirs = get_reference_directions("das-dennis", self.num_objectives, n_partitions=12) # algorithm = get_pymoo_algorithm(self.algorithm, ref_dirs) # else: algorithm = get_pymoo_algorithm(weakself.algorithm) problem = _create_pymoo_problem(weakself, objective_function) pymoooptimize.minimize(problem, algorithm, seed=weakself._initial_seed) return None def _internal_ask_candidate(self) -> p.Parameter: """ Special version to make sure that num_objectives has been set before the proper _internal_ask_candidate, in our parent class, is called. """ if self.num_objectives == 0: # dummy ask i.e. not activating pymoo until num_objectives is set warnings.warn( "with this optimizer, it is more efficient to set num_objectives before the optimization begins", errors.NevergradRuntimeWarning, ) # We need to get a datapoint that is a random point in parameter space, # and waste an evaluation on it. return self.parametrization.spawn_child() return super()._internal_ask_candidate() def _internal_tell_candidate(self, candidate: p.Parameter, loss: float) -> None: """ Special version to make sure that we the extra initial evaluation which we may have done in order to get num_objectives, is discarded. Note that this discarding means that the extra point will not make it into replay_archive_tell. Correspondingly, because num_objectives will make it into the pickle, __setstate__ will never need a dummy ask. """ if self._messaging_thread is None: return # dummy tell i.e. not activating pymoo until num_objectives is set super()._internal_tell_candidate(candidate, loss) def _post_loss(self, candidate: p.Parameter, loss: float) -> tp.Loss: # pylint: disable=unused-argument """ Multi-Objective override for this function. """ return candidate.losses class Pymoo(base.ConfiguredOptimizer): """Wrapper over Pymoo optimizer implementations, in standard ask and tell format. This is actually an import from Pymoo Optimize. Parameters ---------- algorithm: str Use "algorithm-name" with following names to access algorithm classes: Single-Objective -"de" -'ga' -"brkga" -"nelder-mead" -"pattern-search" -"cmaes" Multi-Objective -"nsga2" Multi-Objective requiring reference directions, points or lines -"rnsga2" -"nsga3" -"unsga3" -"rnsga3" -"moead" -"ctaea" Note ---- These optimizers do not support asking several candidates in a row """ recast = True no_parallelization = True # pylint: disable=unused-argument def __init__(self, *, algorithm: str) -> None: super().__init__(_PymooMinimizeBase, locals()) class _PymooBatchMinimizeBase(recaster.BatchRecastOptimizer): # pylint: disable=abstract-method def __init__( self, parametrization: IntOrParameter, budget: tp.Optional[int] = None, num_workers: int = 1, *, algorithm: str, ) -> None: super().__init__(parametrization, budget=budget, num_workers=num_workers) # configuration self.algorithm = algorithm self._no_hypervolume = True self._initial_seed = -1 def get_optimization_function(self) -> tp.Callable[[tp.Callable[..., tp.Any]], tp.Optional[tp.ArrayLike]]: if self._initial_seed == -1: self._initial_seed = self._rng.randint(2**30) return functools.partial(self._optimization_function, weakref.proxy(self)) # pylint:disable=useless-return @staticmethod def _optimization_function( weakself: tp.Any, objective_function: tp.Callable[[tp.ArrayLike], float] ) -> tp.Optional[tp.ArrayLike]: # pylint:disable=unused-argument, import-outside-toplevel from pymoo import optimize as pymoooptimize from pymoo.factory import get_algorithm as get_pymoo_algorithm # from pymoo.factory import get_reference_directions # reference direction code for when we want to use the other MOO optimizers in Pymoo # if self.algorithm in [ # "rnsga2", # "nsga3", # "unsga3", # "rnsga3", # "moead", # "ctaea", # ]: # algorithms that require reference points or reference directions # the appropriate n_partitions must be looked into # ref_dirs = get_reference_directions("das-dennis", self.num_objectives, n_partitions=12) # algorithm = get_pymoo_algorithm(self.algorithm, ref_dirs) # else: algorithm = get_pymoo_algorithm(weakself.algorithm) problem = _create_pymoo_problem(weakself, objective_function, False) pymoooptimize.minimize(problem, algorithm, seed=weakself._initial_seed) return None def _internal_ask_candidate(self) -> p.Parameter: """Reads messages from the thread in which the underlying optimization function is running New messages are sent as "ask". """ # get a datapoint that is a random point in parameter space if self.num_objectives == 0: # dummy ask i.e. not activating pymoo until num_objectives is set warnings.warn( "with this optimizer, it is more efficient to set num_objectives before the optimization begins", errors.NevergradRuntimeWarning, ) return self.parametrization.spawn_child() return super()._internal_ask_candidate() def _internal_tell_candidate(self, candidate: p.Parameter, loss: float) -> None: """Returns value for a point which was "asked" (none asked point cannot be "tell") """ if self._messaging_thread is None: return # dummy tell i.e. not activating pymoo until num_objectives is set super()._internal_tell_candidate(candidate, loss) def _post_loss(self, candidate: p.Parameter, loss: float) -> tp.Loss: # pylint: disable=unused-argument """ Multi-Objective override for this function. """ return candidate.losses class PymooBatch(base.ConfiguredOptimizer): """Wrapper over Pymoo optimizer implementations, in standard ask and tell format. This is actually an import from Pymoo Optimize. Parameters ---------- algorithm: str Use "algorithm-name" with following names to access algorithm classes: Single-Objective -"de" -'ga' -"brkga" -"nelder-mead" -"pattern-search" -"cmaes" Multi-Objective -"nsga2" Multi-Objective requiring reference directions, points or lines -"rnsga2" -"nsga3" -"unsga3" -"rnsga3" -"moead" -"ctaea" Note ---- These optimizers do not support asking several candidates in a row """ recast = True # pylint: disable=unused-argument def __init__(self, *, algorithm: str) -> None: super().__init__(_PymooBatchMinimizeBase, locals()) def _create_pymoo_problem( optimizer: base.Optimizer, objective_function: tp.Callable[[tp.ArrayLike], float], elementwise: bool = True, ): kwargs = {} try: # pylint:disable=import-outside-toplevel from pymoo.core.problem import ElementwiseProblem, Problem # type: ignore Base = ElementwiseProblem if elementwise else Problem except ImportError: # Used if pymoo < 0.5.0 # pylint:disable=import-outside-toplevel from pymoo.model.problem import Problem as Base # type: ignore kwargs = {"elementwise_evaluation": elementwise} class _PymooProblem(Base): # type: ignore def __init__(self, optimizer, objective_function): self.objective_function = objective_function super().__init__( n_var=optimizer.dimension, n_obj=optimizer.num_objectives, n_constr=0, # constraints handled already by nevergrad xl=-math.pi * 0.5, xu=math.pi * 0.5, **kwargs, ) def _evaluate(self, X, out, *args, **kwargs): # pylint:disable=unused-argument # pymoo is supplying us with bounded parameters in [-pi/2,pi/2]. Nevergrad wants unbounded reals from us. out["F"] = self.objective_function(np.tan(X)) return _PymooProblem(optimizer, objective_function) PymooNSGA2 = Pymoo(algorithm="nsga2").set_name("PymooNSGA2", register=True) PymooBatchNSGA2 = PymooBatch(algorithm="nsga2").set_name("PymooBatchNSGA2", register=False)
# valid ranges rules = [] while True: try: ln = input() if not ln.strip(): break rule = [x.split("-") for x in ln.split(": ")[1].split(" or ")] for r in rule: rules.append([int(x) for x in r]) except EOFError: break while True: if not input().strip(): break input() inval_sum = 0 while True: try: ln = input() vals = ln.split(',') for v in vals: if not any(r[0] <= int(v) <= r[1] for r in rules): inval_sum += int(v) except EOFError: break print(inval_sum)
import matplotlib as mp import pandas as pd import seaborn as sb import report.config as config from ..util import create_file, sort_dataframe from .util import savefig, set_scales, set_labels, task_labels def draw_parallel_coord(df, class_column, x_labels=True, yscale='linear', title=None, xlabel=None, ylabel=None, legend_loc='best', legend_title=None, colormap=None): colormap = config.colormap if colormap is None else colormap with sb.axes_style('ticks', rc={'grid.linestyle': 'dotted'}), sb.plotting_context('paper'): # print(sb.axes_style()) parallel_fig = mp.pyplot.figure(dpi=120, figsize=(10, df.shape[0])) # select the first colors from the colormap to ensure we use the same colors as in the stripplot later colors = mp.cm.get_cmap(colormap).colors[:len(df[class_column].unique())] axes = pd.plotting.parallel_coordinates(df, class_column=class_column, color=colors, axvlines=False, ) set_scales(axes, yscale=yscale) handles, labels = axes.get_legend_handles_labels() axes.legend(handles, labels, loc=legend_loc, title=legend_title) set_labels(axes, title=title, xlabel=xlabel, ylabel=ylabel, x_labels=x_labels, x_tick_params=dict(labelrotation=90)) return parallel_fig def draw_score_parallel_coord(col, results, type_filter='all', metadata=None, x_sort_by='name', ylabel=None, filename=None, **kwargs): res_group = results.groupby(['type', 'task', 'framework']) df = res_group[col].mean().unstack(['type', 'task']) df = df if type_filter == 'all' \ else df.iloc[:, df.columns.get_loc(type_filter)] if metadata: sort_by = lambda cols: getattr(metadata[cols[1]], x_sort_by) df = sort_dataframe(df, by=sort_by, axis=1) df.reset_index(inplace=True) fig = draw_parallel_coord(df, 'framework', x_labels=task_labels(df.columns.drop('framework')), # xlabel="Task", ylabel=ylabel or "Score", legend_title="Framework", **kwargs) if filename: savefig(fig, create_file("graphics", config.results_group, filename)) return fig
async def greet(ctx): greetings = [ "Ahn nyong ha se yo", "Ahn-nyong-ha-se-yo", "Ahoj", "An-nyŏng-ha-se-yo", "As-salamu alaykum", "Assalamo aleikum", "Assalamualaikum", "Avuxeni", "Bonġu", "Bonjour", "Bună ziua", "Ciao", "Cześć", "Dia dhuit", "Dobar dan", "Dobra većer", "Dobro jutro", "God dag", "Góðan dag", "Grüß gott", "Guten tag", "Hafa adai", "Hallå", "Hallo", "Hello", "Hoi", "Hola", "How ya doing", "How you doing", "Howdy", "Hujambo", "Hyvää päivää", "Ia orna", "Jo napot", "Konnichiwa", "Marhaba", "Merhaba", "Moïen", "Namaskar", "Namaste", "Namastē", "Nde-ewo", "Nǐ hǎo", "Niltze", "Now then", "Olá", "Salam", "Salve", "Sawasdee", "Sawubona", "Selamat siang", "Shalom", "Shwmae", "Sveiki", "Wassup", "What's up", "Xin chào", "Yasou", "Zdraveite", "Zdravo", "Zdravstvuyte", "안녕하세요", "こんにちは", "你好", ] message = ctx.content.lower() # if no one is tagged in the message if "@" not in message: message_greetings = [] # check if any of the greetings are in the message for greeting in greetings: if greeting.lower() in message: message_greetings.append(greeting) # if any are, format them into a greeting back to the user if len(message_greetings) > 0: greetings_string = message_greetings[0] if len(message_greetings) > 1: first_greeting = message_greetings[0] other_greetings = [] for greeting in message_greetings[1 : len(message_greetings)]: other_greetings.append(greeting.lower()) all_greetings = [first_greeting] + other_greetings if len(message_greetings) > 2: greetings_string = ( f"{', '.join(all_greetings[0:-1])} and {all_greetings[-1]}" ) else: greetings_string = " and ".join(all_greetings) # respond to user await ctx.channel.send(f"{greetings_string}, @{ctx.author.name}!")
from sqlalchemy.dialects.postgresql import UUID from sqlalchemy.schema import FetchedValue from sqlalchemy.ext.associationproxy import association_proxy from sqlalchemy.ext.hybrid import hybrid_property from app.api.utils.models_mixins import Base from app.extensions import db from app.api.now_applications.models.activity_summary.activity_summary_base import ActivitySummaryBase class CutLinesPolarizationSurvey(ActivitySummaryBase): __mapper_args__ = { 'polymorphic_identity': 'cut_lines_polarization_survey', ## type code } ## NO TABLE FOR THIS TYPE details = db.relationship( 'CutLinesPolarizationSurveyDetail', secondary='activity_summary_detail_xref', load_on_pending=True) @hybrid_property def calculated_total_disturbance(self): return self.calculate_total_disturbance_area(self.details) def __repr__(self): return '<CutLinesPolarizationSurvey %r>' % self.activity_summary_id
from django.apps import AppConfig class ContactConfig(AppConfig): name = 'contacts' def ready(self): import contacts.signals
#!/usr/bin/env python3 import re import sys import sqlite3 import traceback import os __location__ = os.path.realpath( os.path.join( os.getcwd(), os.path.dirname(__file__) ) ) input_failures = 0 try: DATABASE_NAME = os.path.join(__location__, 'data.sqlite') conn = sqlite3.connect(DATABASE_NAME) i = 0 for line in sys.stdin: l = line.strip() match = re.search('^(\w+)\s+([\w\-\:]+)\s+(\w+)\s+((\w+|-))\s+OK', l) if not match: input_failures += 1 print(f'Error: Not matched input line: {l}') continue date_part = match.group(2).split('T') data = { 'date': date_part[0], 'time': '', 'area': os.environ['SCRAPER_KEY'], 'tested': None, 'confirmed': int(match.group(3)), 'hospitalized': None, 'icu': None, 'vent': None, 'released': None, 'deceased': match.group(4), 'source': os.environ['SCRAPER_SOURCE'] } if len(date_part) == 2: data['time'] = date_part[1] if (data['deceased'] == '-'): data['deceased'] = None else: data['deceased'] = int(data['deceased']) c = conn.cursor() try: print(data) c.execute( ''' INSERT INTO data ( date, time, abbreviation_canton_and_fl, ncumul_tested, ncumul_conf, ncumul_hosp, ncumul_ICU, ncumul_vent, ncumul_released, ncumul_deceased, source ) VALUES (?,?,?,?,?,?,?,?,?,?,?) ''', [ data['date'], data['time'], data['area'], data['tested'], data['confirmed'], data['hospitalized'], data['icu'], data['vent'], data['released'], data['deceased'], data['source'], ] ) except sqlite3.IntegrityError: print("Error: Data for this date has already been added") finally: conn.commit() except Exception as e: print("Error: %s" % e) print(traceback.format_exc()) sys.exit(1) finally: conn.close() if input_failures: sys.exit(1)
""" Utility functions using the pyesgf package. """ import sys from urllib.parse import quote_plus def ats_url(base_url): """ Return the URL for the ESGF SAML AttributeService """ # Strip '/' from url as necessary base_url = base_url.rstrip('/') return '/'.join([base_url, 'esgf-idp/saml/soap/secure/attributeService.htm']) def get_manifest(drs_id, version, connection): """ Retrieve the filenames, sizes and checksums of a dataset. This function will raise ValueError if more than one dataset is found matching the given drs_id and version on a search without replicas. The connection should be either distrib=True or be connected to a suitable ESGF search interface. :param drs_id: a string containing the DRS identifier without version :param version: The version as a string or int """ if isinstance(version, int): version = str(version) context = connection.new_context(drs_id=drs_id, version=version) results = context.search() if len(results) > 1: raise ValueError("Search for dataset %s.v%s returns multiple hits" % (drs_id, version)) file_context = results[0].file_context() manifest = {} for file in file_context.search(): manifest[file.filename] = { 'checksum_type': file.checksum_type, 'checksum': file.checksum, 'size': file.size, } return manifest def urlencode(query): """ Encode a sequence of two-element tuples or dictionary into a URL query string. This version is adapted from the standard library to understand operators in the pyesgf.search.constraints module. If the query arg is a sequence of two-element tuples, the order of the parameters in the output will match the order of parameters in the input. """ if hasattr(query, "items"): # mapping objects query = list(query.items()) else: # it's a bother at times that strings and string-like objects are # sequences... try: # non-sequence items should not work with len() # non-empty strings will fail this if len(query) and not isinstance(query[0], tuple): raise TypeError # zero-length sequences of all types will get here and succeed, # but that's a minor nit - since the original implementation # allowed empty dicts that type of behavior probably should be # preserved for consistency except TypeError: ty, va, tb = sys.exc_info() raise TypeError("not a valid non-string sequence " "or mapping object", tb) def append(k, v, tag, lst): from .search.consts import OPERATOR_NEQ if tag == OPERATOR_NEQ: lst.append('%s!=%s' % (k, v)) elif tag is None: lst.append('%s=%s' % (k, v)) else: raise ValueError('Unknown operator tag %s' % tag) def strip_tag(v): if isinstance(v, tuple): tag, v = v else: tag = None return tag, v lst = [] for k, v in query: tag, v = strip_tag(v) k = quote_plus(str(k)) if isinstance(v, str): if hasattr(v, 'encode'): # is there a reasonable way to convert to ASCII? # encode generates a string, but "replace" or "ignore" # lose information and "strict" can raise UnicodeError v = quote_plus(v.encode("ASCII", "replace")) else: v = quote_plus(v) append(k, v, tag, lst) else: try: # is this a sufficient test for sequence-ness? len(v) except TypeError: # not a sequence v = quote_plus(str(v)) append(k, v, tag, lst) else: # loop over the sequence for elt in v: append(k, quote_plus(str(elt)), tag, lst) return '&'.join(lst)
from datetime import datetime from decimal import Decimal import os from django import forms from django.conf import settings from django.core.files.storage import default_storage as storage from django.forms.formsets import formset_factory import commonware.log import happyforms from quieter_formset.formset import BaseFormSet from tower import ugettext as _, ugettext_lazy as _lazy, ungettext as ngettext from access import acl import amo import captcha.fields from amo.fields import ColorField from amo.urlresolvers import reverse from amo.utils import slug_validator, slugify, sorted_groupby, remove_icons from addons.models import (Addon, AddonCategory, BlacklistedSlug, Category, Persona) from addons.tasks import save_theme, save_theme_reupload from addons.utils import reverse_name_lookup from addons.widgets import IconWidgetRenderer, CategoriesSelectMultiple from devhub import tasks as devhub_tasks from tags.models import Tag from translations import LOCALES from translations.fields import TransField, TransTextarea from translations.forms import TranslationFormMixin from translations.models import Translation from translations.utils import transfield_changed from translations.widgets import TranslationTextInput from users.models import UserEmailField from versions.models import Version log = commonware.log.getLogger('z.addons') def clean_name(name, instance=None): if not instance: log.debug('clean_name called without an instance: %s' % name) id = reverse_name_lookup(name) # If we get an id and either there's no instance or the instance.id != id. if id and (not instance or id != instance.id): raise forms.ValidationError(_('This name is already in use. Please ' 'choose another.')) return name def clean_slug(slug, instance): slug_validator(slug, lower=False) if slug != instance.slug: if Addon.objects.filter(slug=slug).exists(): raise forms.ValidationError( _('This slug is already in use. Please choose another.')) if BlacklistedSlug.blocked(slug): raise forms.ValidationError( _('The slug cannot be "%s". Please choose another.' % slug)) return slug def clean_tags(request, tags): target = [slugify(t, spaces=True, lower=True) for t in tags.split(',')] target = set(filter(None, target)) min_len = amo.MIN_TAG_LENGTH max_len = Tag._meta.get_field('tag_text').max_length max_tags = amo.MAX_TAGS total = len(target) blacklisted = (Tag.objects.values_list('tag_text', flat=True) .filter(tag_text__in=target, blacklisted=True)) if blacklisted: # L10n: {0} is a single tag or a comma-separated list of tags. msg = ngettext('Invalid tag: {0}', 'Invalid tags: {0}', len(blacklisted)).format(', '.join(blacklisted)) raise forms.ValidationError(msg) restricted = (Tag.objects.values_list('tag_text', flat=True) .filter(tag_text__in=target, restricted=True)) if not acl.action_allowed(request, 'Addons', 'Edit'): if restricted: # L10n: {0} is a single tag or a comma-separated list of tags. msg = ngettext('"{0}" is a reserved tag and cannot be used.', '"{0}" are reserved tags and cannot be used.', len(restricted)).format('", "'.join(restricted)) raise forms.ValidationError(msg) else: # Admin's restricted tags don't count towards the limit. total = len(target - set(restricted)) if total > max_tags: num = total - max_tags msg = ngettext('You have {0} too many tags.', 'You have {0} too many tags.', num).format(num) raise forms.ValidationError(msg) if any(t for t in target if len(t) > max_len): raise forms.ValidationError( _('All tags must be %s characters or less after invalid characters' ' are removed.' % max_len)) if any(t for t in target if len(t) < min_len): msg = ngettext("All tags must be at least {0} character.", "All tags must be at least {0} characters.", min_len).format(min_len) raise forms.ValidationError(msg) return target class AddonFormBase(TranslationFormMixin, happyforms.ModelForm): def __init__(self, *args, **kw): self.request = kw.pop('request') super(AddonFormBase, self).__init__(*args, **kw) class Meta: models = Addon fields = ('name', 'slug', 'summary', 'tags') def clean_slug(self): return clean_slug(self.cleaned_data['slug'], self.instance) def clean_tags(self): return clean_tags(self.request, self.cleaned_data['tags']) def get_tags(self, addon): if acl.action_allowed(self.request, 'Addons', 'Edit'): return list(addon.tags.values_list('tag_text', flat=True)) else: return list(addon.tags.filter(restricted=False) .values_list('tag_text', flat=True)) class AddonFormBasic(AddonFormBase): name = TransField(max_length=50) slug = forms.CharField(max_length=30) summary = TransField(widget=TransTextarea(attrs={'rows': 4}), max_length=250) tags = forms.CharField(required=False) class Meta: model = Addon fields = ('name', 'slug', 'summary', 'tags') def __init__(self, *args, **kw): super(AddonFormBasic, self).__init__(*args, **kw) self.fields['tags'].initial = ', '.join(self.get_tags(self.instance)) # Do not simply append validators, as validators will persist between # instances. def validate_name(name): return clean_name(name, self.instance) name_validators = list(self.fields['name'].validators) name_validators.append(validate_name) self.fields['name'].validators = name_validators def save(self, addon, commit=False): tags_new = self.cleaned_data['tags'] tags_old = [slugify(t, spaces=True) for t in self.get_tags(addon)] # Add new tags. for t in set(tags_new) - set(tags_old): Tag(tag_text=t).save_tag(addon) # Remove old tags. for t in set(tags_old) - set(tags_new): Tag(tag_text=t).remove_tag(addon) # We ignore `commit`, since we need it to be `False` so we can save # the ManyToMany fields on our own. addonform = super(AddonFormBasic, self).save(commit=False) addonform.save() return addonform class AppFormBasic(AddonFormBasic): """Form to override name length for apps.""" name = TransField(max_length=128) class CategoryForm(forms.Form): application = forms.TypedChoiceField(amo.APPS_CHOICES, coerce=int, widget=forms.HiddenInput, required=False) categories = forms.ModelMultipleChoiceField( queryset=Category.objects.all(), widget=CategoriesSelectMultiple) def save(self, addon): application = self.cleaned_data.get('application') categories_new = self.cleaned_data['categories'] categories_old = [cats for app, cats in addon.app_categories if (app and application and app.id == application) or (not app and not application)] if categories_old: categories_old = categories_old[0] # Add new categories. for c in set(categories_new) - set(categories_old): AddonCategory(addon=addon, category=c).save() # Remove old categories. for c in set(categories_old) - set(categories_new): AddonCategory.objects.filter(addon=addon, category=c).delete() def clean_categories(self): categories = self.cleaned_data['categories'] total = categories.count() max_cat = amo.MAX_CATEGORIES if getattr(self, 'disabled', False) and total: raise forms.ValidationError( _('Categories cannot be changed while your add-on is featured ' 'for this application.')) if total > max_cat: # L10n: {0} is the number of categories. raise forms.ValidationError(ngettext( 'You can have only {0} category.', 'You can have only {0} categories.', max_cat).format(max_cat)) has_misc = filter(lambda x: x.misc, categories) if has_misc and total > 1: raise forms.ValidationError( _('The miscellaneous category cannot be combined with ' 'additional categories.')) return categories class BaseCategoryFormSet(BaseFormSet): def __init__(self, *args, **kw): self.addon = kw.pop('addon') self.request = kw.pop('request', None) super(BaseCategoryFormSet, self).__init__(*args, **kw) self.initial = [] apps = sorted(self.addon.compatible_apps.keys(), key=lambda x: x.id) # Drop any apps that don't have appropriate categories. qs = Category.objects.filter(type=self.addon.type) app_cats = dict((k, list(v)) for k, v in sorted_groupby(qs, 'application')) for app in list(apps): if app and not app_cats.get(app.id): apps.remove(app) if not app_cats: apps = [] for app in apps: cats = dict(self.addon.app_categories).get(app, []) self.initial.append({'categories': [c.id for c in cats]}) for app, form in zip(apps, self.forms): key = app.id if app else None form.request = self.request form.initial['application'] = key form.app = app cats = sorted(app_cats[key], key=lambda x: x.name) form.fields['categories'].choices = [(c.id, c.name) for c in cats] # If this add-on is featured for this application, category # changes are forbidden. if not acl.action_allowed(self.request, 'Addons', 'Edit'): form.disabled = (app and self.addon.is_featured(app)) def save(self): for f in self.forms: f.save(self.addon) CategoryFormSet = formset_factory(form=CategoryForm, formset=BaseCategoryFormSet, extra=0) def icons(): """ Generates a list of tuples for the default icons for add-ons, in the format (pseudo-mime-type, description). """ icons = [('image/jpeg', 'jpeg'), ('image/png', 'png'), ('', 'default')] dirs, files = storage.listdir(settings.ADDON_ICONS_DEFAULT_PATH) for fname in files: if '32' in fname and 'default' not in fname: icon_name = fname.split('-')[0] icons.append(('icon/%s' % icon_name, icon_name)) return icons class AddonFormMedia(AddonFormBase): icon_type = forms.CharField(widget=forms.RadioSelect( renderer=IconWidgetRenderer, choices=[]), required=False) icon_upload_hash = forms.CharField(required=False) class Meta: model = Addon fields = ('icon_upload_hash', 'icon_type') def __init__(self, *args, **kwargs): super(AddonFormMedia, self).__init__(*args, **kwargs) # Add icons here so we only read the directory when # AddonFormMedia is actually being used. self.fields['icon_type'].widget.choices = icons() def save(self, addon, commit=True): if self.cleaned_data['icon_upload_hash']: upload_hash = self.cleaned_data['icon_upload_hash'] upload_path = os.path.join(settings.TMP_PATH, 'icon', upload_hash) dirname = addon.get_icon_dir() destination = os.path.join(dirname, '%s' % addon.id) remove_icons(destination) devhub_tasks.resize_icon.delay(upload_path, destination, amo.ADDON_ICON_SIZES, set_modified_on=[addon]) return super(AddonFormMedia, self).save(commit) class AddonFormDetails(AddonFormBase): default_locale = forms.TypedChoiceField(choices=LOCALES) class Meta: model = Addon fields = ('description', 'default_locale', 'homepage') def clean(self): # Make sure we have the required translations in the new locale. required = 'name', 'summary', 'description' data = self.cleaned_data if not self.errors and 'default_locale' in self.changed_data: fields = dict((k, getattr(self.instance, k + '_id')) for k in required) locale = self.cleaned_data['default_locale'] ids = filter(None, fields.values()) qs = (Translation.objects.filter(locale=locale, id__in=ids, localized_string__isnull=False) .values_list('id', flat=True)) missing = [k for k, v in fields.items() if v not in qs] # They might be setting description right now. if 'description' in missing and locale in data['description']: missing.remove('description') if missing: raise forms.ValidationError( _('Before changing your default locale you must have a ' 'name, summary, and description in that locale. ' 'You are missing %s.') % ', '.join(map(repr, missing))) return data class AddonFormSupport(AddonFormBase): support_url = TransField.adapt(forms.URLField)(required=False) support_email = TransField.adapt(forms.EmailField)(required=False) class Meta: model = Addon fields = ('support_email', 'support_url') def __init__(self, *args, **kw): super(AddonFormSupport, self).__init__(*args, **kw) def save(self, addon, commit=True): return super(AddonFormSupport, self).save(commit) class AddonFormTechnical(AddonFormBase): developer_comments = TransField(widget=TransTextarea, required=False) class Meta: model = Addon fields = ('developer_comments', 'view_source', 'site_specific', 'external_software', 'auto_repackage', 'public_stats', 'whiteboard') class AddonForm(happyforms.ModelForm): name = forms.CharField(widget=TranslationTextInput,) homepage = forms.CharField(widget=TranslationTextInput, required=False) eula = forms.CharField(widget=TranslationTextInput,) description = forms.CharField(widget=TranslationTextInput,) developer_comments = forms.CharField(widget=TranslationTextInput,) privacy_policy = forms.CharField(widget=TranslationTextInput,) the_future = forms.CharField(widget=TranslationTextInput,) the_reason = forms.CharField(widget=TranslationTextInput,) support_email = forms.CharField(widget=TranslationTextInput,) class Meta: model = Addon fields = ('name', 'homepage', 'default_locale', 'support_email', 'support_url', 'description', 'summary', 'developer_comments', 'eula', 'privacy_policy', 'the_reason', 'the_future', 'view_source', 'prerelease', 'site_specific',) exclude = ('status', ) def clean_name(self): return clean_name(self.cleaned_data['name']) def save(self): desc = self.data.get('description') if desc and desc != unicode(self.instance.description): amo.log(amo.LOG.EDIT_DESCRIPTIONS, self.instance) if self.changed_data: amo.log(amo.LOG.EDIT_PROPERTIES, self.instance) super(AddonForm, self).save() class AbuseForm(happyforms.Form): recaptcha = captcha.fields.ReCaptchaField(label='') text = forms.CharField(required=True, label='', widget=forms.Textarea()) def __init__(self, *args, **kwargs): self.request = kwargs.pop('request') super(AbuseForm, self).__init__(*args, **kwargs) if (not self.request.user.is_anonymous() or not settings.RECAPTCHA_PRIVATE_KEY): del self.fields['recaptcha'] class ThemeFormBase(AddonFormBase): def __init__(self, *args, **kwargs): super(ThemeFormBase, self).__init__(*args, **kwargs) cats = Category.objects.filter(type=amo.ADDON_PERSONA, weight__gte=0) cats = sorted(cats, key=lambda x: x.name) self.fields['category'].choices = [(c.id, c.name) for c in cats] for field in ('header', 'footer'): self.fields[field].widget.attrs = { 'data-upload-url': reverse('devhub.personas.upload_persona', args=['persona_%s' % field]), 'data-allowed-types': 'image/jpeg|image/png' } def clean_name(self): return clean_name(self.cleaned_data['name']) def clean_slug(self): return clean_slug(self.cleaned_data['slug'], self.instance) class ThemeForm(ThemeFormBase): name = forms.CharField(max_length=50) slug = forms.CharField(max_length=30) category = forms.ModelChoiceField(queryset=Category.objects.all(), widget=forms.widgets.RadioSelect) description = forms.CharField(widget=forms.Textarea(attrs={'rows': 4}), max_length=500, required=False) tags = forms.CharField(required=False) license = forms.TypedChoiceField( choices=amo.PERSONA_LICENSES_CHOICES, coerce=int, empty_value=None, widget=forms.HiddenInput, error_messages={'required': _lazy(u'A license must be selected.')}) header = forms.FileField(required=False) header_hash = forms.CharField(widget=forms.HiddenInput) footer = forms.FileField(required=False) footer_hash = forms.CharField(widget=forms.HiddenInput, required=False) # Native color picker doesn't allow real time tracking of user input # and empty values, thus force the JavaScript color picker for now. # See bugs 1005206 and 1003575. accentcolor = ColorField( required=False, widget=forms.TextInput(attrs={'class': 'color-picker'}), ) textcolor = ColorField( required=False, widget=forms.TextInput(attrs={'class': 'color-picker'}), ) agreed = forms.BooleanField() # This lets us POST the data URIs of the unsaved previews so we can still # show them if there were form errors. It's really clever. unsaved_data = forms.CharField(required=False, widget=forms.HiddenInput) class Meta: model = Addon fields = ('name', 'slug', 'description', 'tags') def save(self, commit=False): data = self.cleaned_data addon = Addon.objects.create( slug=data.get('slug'), status=amo.STATUS_PENDING, type=amo.ADDON_PERSONA) addon.name = {'en-US': data['name']} if data.get('description'): addon.description = data['description'] addon._current_version = Version.objects.create(addon=addon, version='0') addon.save() # Create Persona instance. p = Persona() p.persona_id = 0 p.addon = addon p.header = 'header.png' if data['footer_hash']: p.footer = 'footer.png' if data['accentcolor']: p.accentcolor = data['accentcolor'].lstrip('#') if data['textcolor']: p.textcolor = data['textcolor'].lstrip('#') p.license = data['license'] p.submit = datetime.now() user = self.request.amo_user p.author = user.username p.display_username = user.name p.save() # Save header, footer, and preview images. save_theme.delay(data['header_hash'], data['footer_hash'], addon) # Save user info. addon.addonuser_set.create(user=user, role=amo.AUTHOR_ROLE_OWNER) # Save tags. for t in data['tags']: Tag(tag_text=t).save_tag(addon) # Save categories. AddonCategory(addon=addon, category=data['category']).save() return addon class EditThemeForm(AddonFormBase): name = TransField(max_length=50, label=_lazy('Give Your Theme a Name.')) slug = forms.CharField(max_length=30) category = forms.ModelChoiceField(queryset=Category.objects.all(), widget=forms.widgets.RadioSelect) description = TransField( widget=TransTextarea(attrs={'rows': 4}), max_length=500, required=False, label=_lazy('Describe your Theme.')) tags = forms.CharField(required=False) accentcolor = ColorField( required=False, widget=forms.TextInput(attrs={'class': 'color-picker'}), ) textcolor = ColorField( required=False, widget=forms.TextInput(attrs={'class': 'color-picker'}), ) license = forms.TypedChoiceField( choices=amo.PERSONA_LICENSES_CHOICES, coerce=int, empty_value=None, widget=forms.HiddenInput, error_messages={'required': _lazy(u'A license must be selected.')}) # Theme re-upload. header = forms.FileField(required=False) header_hash = forms.CharField(widget=forms.HiddenInput, required=False) footer = forms.FileField(required=False) footer_hash = forms.CharField(widget=forms.HiddenInput, required=False) class Meta: model = Addon fields = ('name', 'slug', 'description', 'tags') def __init__(self, *args, **kw): self.request = kw.pop('request') super(AddonFormBase, self).__init__(*args, **kw) addon = Addon.objects.no_cache().get(id=self.instance.id) persona = addon.persona # Do not simply append validators, as validators will persist between # instances. self.fields['name'].validators = list(self.fields['name'].validators) self.fields['name'].validators.append(lambda x: clean_name(x, addon)) # Allow theme artists to localize Name and Description. for trans in Translation.objects.filter(id=self.initial['name']): self.initial['name_' + trans.locale.lower()] = trans for trans in Translation.objects.filter( id=self.initial['description']): self.initial['description_' + trans.locale.lower()] = trans self.old_tags = self.get_tags(addon) self.initial['tags'] = ', '.join(self.old_tags) if persona.accentcolor: self.initial['accentcolor'] = '#' + persona.accentcolor if persona.textcolor: self.initial['textcolor'] = '#' + persona.textcolor self.initial['license'] = persona.license cats = sorted(Category.objects.filter(type=amo.ADDON_PERSONA, weight__gte=0), key=lambda x: x.name) self.fields['category'].choices = [(c.id, c.name) for c in cats] try: self.initial['category'] = addon.categories.values_list( 'id', flat=True)[0] except IndexError: pass for field in ('header', 'footer'): self.fields[field].widget.attrs = { 'data-upload-url': reverse('devhub.personas.reupload_persona', args=[addon.slug, 'persona_%s' % field]), 'data-allowed-types': 'image/jpeg|image/png' } def save(self): addon = self.instance persona = addon.persona data = self.cleaned_data # Update Persona-specific data. persona_data = { 'license': int(data['license']), 'accentcolor': data['accentcolor'].lstrip('#'), 'textcolor': data['textcolor'].lstrip('#'), 'author': self.request.amo_user.username, 'display_username': self.request.amo_user.name } changed = False for k, v in persona_data.iteritems(): if v != getattr(persona, k): changed = True setattr(persona, k, v) if changed: persona.save() if self.changed_data: amo.log(amo.LOG.EDIT_PROPERTIES, addon) self.instance.modified = datetime.now() # Update Addon-specific data. changed = ( set(self.old_tags) != data['tags'] or # Check if tags changed. self.initial['slug'] != data['slug'] or # Check if slug changed. transfield_changed('description', self.initial, data) or transfield_changed('name', self.initial, data)) if changed: # Only save if addon data changed. super(EditThemeForm, self).save() # Update tags. tags_new = data['tags'] tags_old = [slugify(t, spaces=True) for t in self.old_tags] # Add new tags. for t in set(tags_new) - set(tags_old): Tag(tag_text=t).save_tag(addon) # Remove old tags. for t in set(tags_old) - set(tags_new): Tag(tag_text=t).remove_tag(addon) # Update category. if data['category'].id != self.initial['category']: addon_cat = addon.addoncategory_set.all()[0] addon_cat.category = data['category'] addon_cat.save() # Theme reupload. if not addon.is_pending(): if data['header_hash'] or data['footer_hash']: save_theme_reupload.delay( data['header_hash'], data['footer_hash'], addon) return data class EditThemeOwnerForm(happyforms.Form): owner = UserEmailField() def __init__(self, *args, **kw): self.instance = kw.pop('instance') super(EditThemeOwnerForm, self).__init__(*args, **kw) addon = self.instance self.fields['owner'].widget.attrs['placeholder'] = _( "Enter a new author's email address") try: self.instance_addonuser = addon.addonuser_set.all()[0] self.initial['owner'] = self.instance_addonuser.user.email except IndexError: # If there was never an author before, then don't require one now. self.instance_addonuser = None self.fields['owner'].required = False def save(self): data = self.cleaned_data if data.get('owner'): changed = (not self.instance_addonuser or self.instance_addonuser != data['owner']) if changed: # Update Persona-specific data. persona = self.instance.persona persona.author = data['owner'].username persona.display_username = data['owner'].name persona.save() if not self.instance_addonuser: # If there previously never another owner, create one. self.instance.addonuser_set.create(user=data['owner'], role=amo.AUTHOR_ROLE_OWNER) elif self.instance_addonuser != data['owner']: # If the owner has changed, update the `AddonUser` object. self.instance_addonuser.user = data['owner'] self.instance_addonuser.role = amo.AUTHOR_ROLE_OWNER self.instance_addonuser.save() self.instance.modified = datetime.now() self.instance.save() return data class ContributionForm(happyforms.Form): amount = forms.DecimalField(required=True, min_value=Decimal('0.01'))
import os from glob import glob import pandas as pd def get_list_of_full_child_dirs(d): """ For a directory d (full path), return a list of its subdirectories in a full path form. """ children = (os.path.join(d, child) for child in os.listdir(d)) dirs = filter(os.path.isdir, children) return list(dirs) def split_full_path(full_path, base_dir): """ Given a full path, return: - relative_dir: the part of the path that does not include the base directory and the basename - basename """ fname = os.path.basename(full_path) relative_path = full_path.split(base_dir)[-1] relative_dir = relative_path.split(fname)[0] relative_dir = relative_dir[1:-1] # clip slashes return relative_dir, fname def gather_files(base_dir, file_mask): """ Walk the directory base_dir using os.walk and gather files that match file_mask (e.g. '*.jpg'). Return the result as a Pandas dataframe with columns 'relative_dir' and 'basename'. """ res_tuples = [] for dir_name, subdirs, files in os.walk(base_dir): dir_has_files = len(files) > 0 if dir_has_files: full_mask = os.path.join(dir_name, file_mask) mask_matches = glob(full_mask) res_tuples += [split_full_path(f, base_dir) for f in mask_matches] return pd.DataFrame(res_tuples, columns=['relative_dir', 'basename'])
def coding_problem_31(s, t, debt=0): """ Given two strings, compute the edit distance between them. The edit distance between two strings refers to the minimum number of character insertions, deletions, and substitutions required to change one string to the other. Example: >>> coding_problem_31("kitten", "sitting") # k>>s, e>>i, +g 3 >>> coding_problem_31("kitten", "cat") # k>>c, i>>a, -ten 5 >>> coding_problem_31("black", "white") 5 >>> coding_problem_31("top", "dog") 2 """ pass if __name__ == '__main__': import doctest doctest.testmod(verbose=True)
import torch from .elliptical_slice import EllipticalSliceSampler class MeanEllipticalSliceSampler(EllipticalSliceSampler): def __init__(self, f_init, dist, lnpdf, nsamples, pdf_params=()): """ Implementation of elliptical slice sampling (Murray, Adams, & Mckay, 2010). f_init: initial value of `f` dist: multivariate normal to sample from to sample from lnpdf: likelihood function n_samples: number of samples pdf_params: callable arguments for lnpdf """ mean_vector = dist.mean demeaned_lnpdf = lambda g: lnpdf(g + mean_vector, *pdf_params) demeaned_init = f_init - mean_vector samples = dist.sample(sample_shape = torch.Size((nsamples,))).transpose(-1, -2) demeaned_samples = samples - mean_vector.unsqueeze(1) super(MeanEllipticalSliceSampler, self).__init__(demeaned_init, demeaned_samples, demeaned_lnpdf, nsamples, pdf_params=()) self.mean_vector = mean_vector def run(self): self.f_sampled, self.ell = super().run() #add means back into f_sampled self.f_sampled = self.f_sampled + self.mean_vector.unsqueeze(1) return self.f_sampled, self.ell
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ServiceOperations: """ServiceOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.appplatform.v2022_05_01_preview.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _registries_delete_initial( self, resource_group_name: str, service_name: str, **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2022-05-01-preview" accept = "application/json" # Construct URL url = self._registries_delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _registries_delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.AppPlatform/Spring/{serviceName}/serviceRegistries/default'} # type: ignore async def begin_registries_delete( self, resource_group_name: str, service_name: str, **kwargs: Any ) -> AsyncLROPoller[None]: """Disable the default Service Registry. :param resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :type resource_group_name: str :param service_name: The name of the Service resource. :type service_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._registries_delete_initial( resource_group_name=resource_group_name, service_name=service_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_registries_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.AppPlatform/Spring/{serviceName}/serviceRegistries/default'} # type: ignore
# coding:utf-8 ''' python 3.5 mxnet 1.3.0 gluoncv 0.3.0 visdom 0.1.7 gluonbook 0.6.9 auther: helloholmes ''' import mxnet as mx import numpy as np import os import time import pickle from mxnet import gluon from mxnet import init from mxnet import nd from mxnet import autograd from mxnet.gluon import nn class VGG16(nn.HybridBlock): # input size (b, 3, 224, 224) def __init__(self, num_classes=120, **kwargs): super(VGG16, self).__init__(**kwargs) model = gluon.model_zoo.vision.get_model('vgg16', pretrained=True) with self.name_scope(): self.features = model.features self.output = nn.Dense(num_classes) def initialize(self, ctx=None): for param in self.collect_params().values(): if param._data is not None: continue else: param.initialize() def hybrid_forward(self, F, x): x = self.features(x) x = self.output(x) return x if __name__ == '__main__': m = VGG16() m.initialize() data = mx.nd.random.uniform(shape=(1, 3, 224, 224)) out = m(data) print(out.shape)
import os import numpy as np def get_lax_sod_network(): return [12, 12, 10, 12, 10, 12, 10, 10, 12,1] def get_lax_sod_data_inner(): data_path = os.environ.get("LAX_SOD_REPO_PATH", "../lax_sod_tube") qmc_points = np.loadtxt(os.path.join(data_path, "parameters/parameters_sobol_X.txt")) forces = np.loadtxt(os.path.join(data_path, "functionals/average_functionals_sobol_2048.txt")) data_per_func = {} force_names = [*[f'q{k+1}' for k in range(3)], *[f'EK{k+1}' for k in range(3)]] for n, force_name in enumerate(force_names): data_per_func[force_name] = forces[:, n] return qmc_points, data_per_func def get_lax_sod_data(): qmc_points, qmc_values = get_lax_sod_data_inner() mc_params, mc_values = get_lax_sod_data_mc_inner() return qmc_points, qmc_values, mc_params, mc_values def get_lax_sod_data_mc_inner(): data_path = os.environ.get("LAX_SOD_REPO_PATH", "../lax_sod_tube") mc_points = np.loadtxt(os.path.join(data_path, "parameters/parameters_mc_X.txt")) forces = np.loadtxt(os.path.join(data_path, "functionals/average_functionals_mc_2048.txt")) data_per_func = {} force_names = [*[f'q{k+1}' for k in range(3)], *[f'EK{k+1}' for k in range(3)]] for n, force_name in enumerate(force_names): data_per_func[force_name] = forces[:, n] return mc_points, data_per_func def get_lax_sod_data_mc(): mc_params, mc_values = get_lax_sod_data_mc_inner() qmc_params, qmc_values = get_lax_sod_data_inner() return mc_params, mc_values, qmc_params, qmc_values def make_folders(): folders = ['img', 'img_tikz', 'tables', 'results'] for folder in folders: if not os.path.exists(folder): os.mkdir(folder)
# # The BSD License # # Copyright (c) 2008, Florian Noeding # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # Redistributions in binary form must reproduce the above copyright notice, this # list of conditions and the following disclaimer in the documentation and/or # other materials provided with the distribution. # Neither the name of the of the author nor the names of its contributors may be # used to endorse or promote products derived from this software without specific # prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # just import this file to get all the paths setup up import sys import os sys.path.append(os.path.normpath(os.path.join(sys.path[0], '..', '..', '3rdparty', 'pylibs'))) sys.path.append(os.path.normpath(os.path.join(sys.path[0], 'grammar')))
# -*- coding: utf-8 -*- # Copyright (c) 2020-2021 Salvador E. Tropea # Copyright (c) 2020-2021 Instituto Nacional de Tecnologïa Industrial # License: Apache 2.0 # Project: KiAuto (formerly kicad-automation-scripts) import os import re import json import configparser from contextlib import contextmanager from sys import exit, path # Default W,H for recording REC_W = 1366 REC_H = 960 # Return error codes # Positive values are ERC/DRC errors NO_SCHEMATIC = 1 WRONG_ARGUMENTS = 2 # This is what argsparse uses EESCHEMA_CFG_PRESENT = 11 KICAD_CFG_PRESENT = 3 NO_PCB = 4 PCBNEW_CFG_PRESENT = 5 WRONG_LAYER_NAME = 6 WRONG_PCB_NAME = 7 WRONG_SCH_NAME = 8 PCBNEW_ERROR = 9 EESCHEMA_ERROR = 10 NO_PCBNEW_MODULE = 11 USER_HOTKEYS_PRESENT = 12 CORRUPTED_PCB = 13 # Wait 40 s to pcbnew/eeschema window to be present WAIT_START = 60 # Name for testing versions NIGHTLY = 'nightly' # Scale factor for the timeouts TIME_OUT_MULT = 1.0 KICAD_VERSION_5_99 = 5099000 KICAD_SHARE = '/usr/share/kicad/' KICAD_NIGHTLY_SHARE = '/usr/share/kicad-nightly/' @contextmanager def hide_stderr(): """ Low level stderr supression, used to hide KiCad bugs. """ newstderr = os.dup(2) devnull = os.open('/dev/null', os.O_WRONLY) os.dup2(devnull, 2) os.close(devnull) yield os.dup2(newstderr, 2) class Config(object): def __init__(self, logger, input_file=None, args=None): self.export_format = 'pdf' if input_file: self.input_file = input_file self.input_no_ext = os.path.splitext(input_file)[0] # # As soon as we init pcbnew the following files are modified: # if os.path.isfile(self.input_no_ext+'.pro'): self.start_pro_stat = os.stat(self.input_no_ext+'.pro') else: self.start_pro_stat = None if os.path.isfile(self.input_no_ext+'.kicad_pro'): self.start_kicad_pro_stat = os.stat(self.input_no_ext+'.kicad_pro') else: self.start_kicad_pro_stat = None if os.path.isfile(self.input_no_ext+'.kicad_prl'): self.start_kicad_prl_stat = os.stat(self.input_no_ext+'.kicad_prl') else: self.start_kicad_prl_stat = None if args: # Session debug self.use_wm = args.use_wm # Use a Window Manager, dialogs behaves in a different way self.start_x11vnc = args.start_x11vnc self.rec_width = args.rec_width self.rec_height = args.rec_height self.record = args.record self.video_dir = args.output_dir self.wait_for_key = args.wait_key self.time_out_scale = args.time_out_scale # Others if hasattr(args, 'file_format'): self.export_format = args.file_format.lower() else: # Session debug self.use_wm = False self.start_x11vnc = False self.rec_width = REC_W self.rec_height = REC_H self.record = False self.video_dir = None self.wait_for_key = False self.time_out_scale = 1.0 self.colordepth = 24 self.video_name = None self.video_dir = self.output_dir = '' # Executable and dirs self.eeschema = 'eeschema' self.pcbnew = 'pcbnew' self.kicad_conf_dir = 'kicad' ng_ver = os.environ.get('KIAUS_USE_NIGHTLY') if ng_ver: self.eeschema += '-'+NIGHTLY self.pcbnew += '-'+NIGHTLY self.kicad_conf_dir += os.path.join(NIGHTLY, ng_ver) # Path to the Python module path.insert(0, '/usr/lib/kicad-nightly/lib/python3/dist-packages') # Detect KiCad version try: import pcbnew except ImportError: logger.error("Failed to import pcbnew Python module." " Is KiCad installed?" " Do you need to add it to PYTHONPATH?") exit(NO_PCBNEW_MODULE) kicad_version = pcbnew.GetBuildVersion() m = re.match(r'(\d+)\.(\d+)\.(\d+)', kicad_version) self.kicad_version_major = int(m.group(1)) self.kicad_version_minor = int(m.group(2)) self.kicad_version_patch = int(m.group(3)) self.kicad_version = self.kicad_version_major*1000000+self.kicad_version_minor*1000+self.kicad_version_patch logger.debug('Detected KiCad v{}.{}.{} ({} {})'.format(self.kicad_version_major, self.kicad_version_minor, self.kicad_version_patch, kicad_version, self.kicad_version)) # Config file names if self.kicad_version >= KICAD_VERSION_5_99: self.kicad_conf_path = pcbnew.GetSettingsManager().GetUserSettingsPath() if ng_ver: self.kicad_conf_path = self.kicad_conf_path.replace('/kicad/', '/kicadnightly/') else: # Bug in KiCad (#6989), prints to stderr: # `../src/common/stdpbase.cpp(62): assert "traits" failed in Get(test_dir): create wxApp before calling this` # Found in KiCad 5.1.8, 5.1.9 # So we temporarily supress stderr with hide_stderr(): self.kicad_conf_path = pcbnew.GetKicadConfigPath() logger.debug('Config path {}'.format(self.kicad_conf_path)) # First we solve kicad_common because it can redirect to another config dir self.conf_kicad = os.path.join(self.kicad_conf_path, 'kicad_common') self.conf_kicad_bkp = None if self.kicad_version >= KICAD_VERSION_5_99: self.conf_kicad += '.json' self.conf_kicad_json = True else: self.conf_kicad_json = False # Read the environment redefinitions used by KiCad if os.path.isfile(self.conf_kicad): self.load_kicad_environment(logger) if 'KICAD_CONFIG_HOME' in self.env and self.kicad_version < KICAD_VERSION_5_99: # The user is redirecting the configuration # KiCad 5 unintentionally allows it, is a bug, and won't be fixed: # https://forum.kicad.info/t/kicad-config-home-inconsistencies-and-detail/26875 self.kicad_conf_path = self.env['KICAD_CONFIG_HOME'] logger.debug('Redirecting KiCad config path to: '+self.kicad_conf_path) else: logger.warning('Missing KiCad main config file '+self.conf_kicad) # - eeschema config self.conf_eeschema = os.path.join(self.kicad_conf_path, 'eeschema') self.conf_eeschema_bkp = None # - pcbnew config self.conf_pcbnew = os.path.join(self.kicad_conf_path, 'pcbnew') self.conf_pcbnew_bkp = None # Config files that migrated to JSON # Note that they remain in the old format until saved if self.kicad_version >= KICAD_VERSION_5_99: self.conf_eeschema += '.json' self.conf_pcbnew += '.json' self.conf_eeschema_json = True self.conf_pcbnew_json = True self.pro_ext = 'kicad_pro' self.prl_ext = 'kicad_prl' else: self.conf_eeschema_json = False self.conf_pcbnew_json = False self.pro_ext = 'pro' self.prl_ext = None # - hotkeys self.conf_hotkeys = os.path.join(self.kicad_conf_path, 'user.hotkeys') self.conf_hotkeys_bkp = None # - sym-lib-table self.user_sym_lib_table = os.path.join(self.kicad_conf_path, 'sym-lib-table') self.user_fp_lib_table = os.path.join(self.kicad_conf_path, 'fp-lib-table') self.sys_sym_lib_table = [KICAD_SHARE+'template/sym-lib-table'] self.sys_fp_lib_table = [KICAD_SHARE+'template/fp-lib-table'] if ng_ver: # 20200912: sym-lib-table is missing self.sys_sym_lib_table.insert(0, KICAD_NIGHTLY_SHARE+'template/sym-lib-table') self.sys_fp_lib_table.insert(0, KICAD_NIGHTLY_SHARE+'template/fp-lib-table') # Some details about the UI if self.kicad_version >= KICAD_VERSION_5_99: # KiCad 5.99.0 self.ee_window_title = r'\[.*\] — Eeschema$' # "PROJECT [HIERARCHY_PATH] - Eeschema" else: # KiCad 5.1.6 self.ee_window_title = r'Eeschema.*\.sch' # "Eeschema - file.sch" # Collected errors and unconnecteds (warnings) self.errs = [] self.wrns = [] # Error filters self.err_filters = [] def load_kicad_environment(self, logger): self.env = {} if self.conf_kicad_json: env = self.get_config_vars_json(self.conf_kicad) if env: self.env = env else: env = self.get_config_vars_ini(self.conf_kicad) if env: for k, v in env.items(): self.env[k.upper()] = v logger.debug('KiCad environment: '+str(self.env)) @staticmethod def get_config_vars_json(file): with open(file, "rt") as f: data = json.load(f) if 'environment' in data and 'vars' in data['environment']: return data['environment']['vars'] return None @staticmethod def get_config_vars_ini(file): config = configparser.ConfigParser() with open(file, "rt") as f: data = f.read() config.read_string('[Various]\n'+data) if 'EnvironmentVariables' in config: return config['EnvironmentVariables'] return None __author__ = 'Salvador E. Tropea' __copyright__ = 'Copyright 2018-2021, INTI/Productize SPRL' __credits__ = ['Salvador E. Tropea', 'Seppe Stas', 'Jesse Vincent', 'Scott Bezek'] __license__ = 'Apache 2.0' __email__ = 'stropea@inti.gob.ar' __status__ = 'beta' __url__ = 'https://github.com/INTI-CMNB/KiAuto/' __version__ = '1.5.8'
# Replace with DB URI; proto://user:pass@host/database DB_URI = "replace" # Replace with bot token TOKEN = "replace" # Replace with IDs of admin command users ADMIN_IDS = [] # Replace with voice channel for audio clue TARGET_VOICE_CHANNEL = 0
# -*- coding: utf-8 -*- # ***************************************************************************** # NICOS, the Networked Instrument Control System of the MLZ # Copyright (c) 2009-2021 by the NICOS contributors (see AUTHORS) # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Module authors: # Alexander Steffens <a.steffens@fz-juelich.de> # # ***************************************************************************** """GALAXI Automatic vacuum control and detector positioning""" from nicos.core.device import Readable from nicos.core.params import Attach, Param, listof from nicos.devices.tango import NamedDigitalOutput class DetectorDistance(Readable): """Calculate detector distance based on the detector tubes position""" attached_devices = { 'detectubes': Attach('Pilatus detector tubes', Readable, multiple=4) } parameters = { 'offset': Param('Minimum distance between Pilatus and sample', type=int, settable=True), 'tubelength': Param('List of tube length', type=listof(int), settable=False, default=[450, 450, 900, 900]), } hardware_access = False def doInit(self, mode): self.log.debug('Detector distance init') self.read() def doRead(self, maxage=0): distance = 0 for tube, l in zip(self._attached_detectubes, self.tubelength): # tubes can only be set in correct sequence if tube.read(maxage) != 'up': break distance += l return self.offset + distance class VacuumOperation(NamedDigitalOutput): """Provide different vacuum operation states""" def doStop(self): self._dev.Reset()
"""Lauda temperature controller class Python class for Lauda temperature controllers :platform: Unix :synopsis: Python class for Lauda temperature controllers .. moduleauthor:: Henrique Dante de Almeida <henrique.almeida@lnls.br> """ from threading import Event from epics import Device, ca from py4syn.epics.IScannable import IScannable from py4syn.epics.StandardDevice import StandardDevice from py4syn.utils.timer import Timer class Lauda(StandardDevice, IScannable): """ Class to control Lauda temperature controllers via EPICS. Examples -------- >>> from py4syn.epics.LaudaClass import Lauda >>> >>> def showTemperature(pv): ... lauda = Lauda(pv, 'lauda') ... print('Temperature is: %d' % lauda.getValue()) ... >>> def setTemperature(lauda, temperature): ... lauda.setValue(temperature) ... lauda.run() """ EPSILON = 0.1 def __init__(self, pvName, mnemonic): """ **Constructor** See :class:`py4syn.epics.StandardDevice` Parameters ---------- pvName : `string` Power supply base naming of the PV (Process Variable) mnemonic : `string` Temperature controller mnemonic """ super().__init__(mnemonic) self.pvName = pvName self.lauda = Device(pvName + ':', ['BLEVEL', 'BOVERTEMP', 'BPOWER', 'BSP', 'BSTATS', 'BTEMP', 'BTN', 'BTHERMOSTATS', 'WSP', 'WSTART', 'ETEMP', 'WPUMP', 'WSTOP', 'WTN']) self.newTemperature = Event() self.lauda.add_callback('BTEMP', self.onTemperatureChange) # Skip initial callback self.newTemperature.wait(1) def __str__(self): return '%s (%s)' % (self.getMnemonic(), self.pvName) def getValue(self): """ Returns the current measured temperature. Returns ------- `int` """ return self.lauda.get('BTEMP') def getRealPosition(self): """ Returns the same as :meth:`getValue`. See: :meth:`getValue` Returns ------- `int` """ return self.getValue() def onTemperatureChange(self, **kwargs): """ Helper callback that indicates when the measured temperature changed. """ self.newTemperature.set() def setVelocity(self, r): """ Dummy method setVelocity() Parameters ---------- r : `float` Ramp speed in °C/min """ pass def setValue(self, v): """ Changes the temperature to a new value. Parameters ---------- v : `int` The target temperature in °C """ self.lauda.put('WSP', v) self.run() self.requestedValue = v def wait(self): """ Blocks until the requested temperature is achieved. """ ca.flush_io() self.newTemperature.clear() while abs(self.getValue()-self.requestedValue) > self.EPSILON: # Give up after 60 seconds without an update if not self.newTemperature.wait(60): break self.newTemperature.clear() def getLowLimitValue(self): """ Returns the controller low limit temperature. Returns ------- `int` """ return -20 def getHighLimitValue(self): """ Returns the controller high limit temperature. Returns ------- `int` """ return 200 def run(self): """ Starts or resumes executing the current temperature program. """ self.lauda.put('WSTART', 1) def stop(self): """ Stops executing the current temperature program and puts the device in idle state. In the idle state, the device will not try to set a target temperature. """ self.lauda.put('WSTOP', 1) def setPumpSpeed(self, speed): """ Changes the pump speed. Parameters ---------- speed : `int` The requested pump speed, ranging from 1 to 8. """ if speed < 1 or speed > 8: raise ValueError('Invalid speed') self.lauda.put('WPUMP', speed) def getInternalTemp(self): """ Same as :meth:`getValue`. See :meth:`getValue` Returns ------- `int` """ return self.getValue() def getExternalTemp(self): """ Returns the device's external temperature. Returns ------- `int` """ return self.lauda.get('ETEMP') def getLevel(self): """ Returns the device's bath level. Returns ------- `int` """ return self.lauda.get('BLEVEL') def getSetPoint(self): """ Returns the current target temperature. Returns ------- `int` """ return self.lauda.get('BSP') def getPower(self): """ Returns the current device power. Returns ---------- `int` """ return self.lauda.get('BPOWER') def getOverTemp(self): """ Returns the maximum temperature software defined limit. Returns ---------- `int` """ return self.lauda.get('BOVERTEMP') def getTN(self): """ Returns ---------- `int` """ return self.lauda.get('BTN') def getStatus(self): """ Returns the device status word. Returns ---------- `int` """ return self.lauda.get('BSTATS') def getThermoStatus(self): """ Returns the device thermostat error word. Returns ---------- `int` """ return self.lauda.get('BTHERMOSTATS') def changeSetPoint(self, val): """ Same as :meth:`setValue`. See :meth:`setValue` Parameters ---------- val : `int` The requested temperature. """ self.setValue(val) def changePump(self, val): """ Same as :meth:`setPumpSpeed`. See :meth:`setPumpSpeed` Parameters ---------- val : `int` The requested pump speed. """ self.setPumpSpeed(val) def changeTN(self, val): self.lauda.put('WTN', val) def start(self): """ Same as :meth:`run`. See :meth:`run` """ self.run()
import numpy as np import matplotlib.pyplot as plt import scipy.sparse.linalg as spLA import majoranaJJ.operators.sparse.qmsops as spop #sparse operators import majoranaJJ.lattice.nbrs as nb #neighbor arrays import majoranaJJ.lattice.shapes as shps #lattice shapes import majoranaJJ.modules.plots as plots #plotting functions R = 50 r = 15 ax = 10 #[A] ay = 10 #[A] coor = shps.donut(R, r) NN = nb.NN_Arr(coor) print("lattice size", coor.shape[0]) alpha = 0 #Spin-Orbit Coupling constant: [eV*A] gammaz = 0 #Zeeman field energy contribution: [T] delta = 0 #Superconducting Gap: [eV] V0 = 0.0 #Amplitude of potential : [eV] mu = 0 #Chemical Potential: [eV] H = spop.H0(coor, ax, ay, NN) print("H shape: ", H.shape) num = 75 # This is the number of eigenvalues and eigenvectors you want sigma = 0 # This is the eigenvalue we search around which = 'LM' eigs, vecs = spLA.eigsh(H, k = num, sigma = sigma, which = which) plots.state_cmap(coor, eigs, vecs, n = 0, title = 'SPARSE Free Particle Ground State') n = 39 plots.state_cmap(coor, eigs, vecs, n = n, title = 'SPARSE: Excited State # {}'.format(n))
#!/usr/bin/env python3.4 from flask import Blueprint, flash, redirect, render_template, request, url_for from flask.ext.login import login_user, logout_user, login_required from ..models import User from ..forms import LoginForm auth = Blueprint('auth', __name__) @auth.route('/login', methods=['GET', 'POST']) def login(): """ The login view. It uses the login form from forms and relies on Flask-login to do it's biding. If the form is valid on submit, the functions gets the user object using his username. """ form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(username=form.username.data).first() if not user or not user.verify_password(form.password.data): flash('Invalid email or password') return redirect(url_for('auth.login')) login_user(user, form.remember_me.data) return redirect(request.args.get('next') or url_for('admin.dashboard')) return render_template('auth/login.html', form=form) @auth.route('/logout') @login_required def logout(): logout_user() flash('Logged out and good to go.') return redirect(url_for('blog.main'))
#!/usr/bin/env python3 # -*- coding: utf-8 -*- #################################################################################################################################################################################################################################### ######################################################################################################## PRE-DEFINED IMPORTS ####################################################################################################### #################################################################################################################################################################################################################################### # Imports that are necessary for the program architecture to work properly # Do not edit this code import ast import sys import os #################################################################################################################################################################################################################################### ####################################################################################################### PRE-DEFINED CONSTANTS ###################################################################################################### #################################################################################################################################################################################################################################### # Possible characters to send to the maze application # Any other will be ignored # Do not edit this code UP = 'U' DOWN = 'D' LEFT = 'L' RIGHT = 'R' #################################################################################################################################################################################################################################### # Name of your team # It will be displayed in the maze # You have to edit this code TEAM_NAME = "closest" #################################################################################################################################################################################################################################### ########################################################################################################## YOUR VARIABLES ########################################################################################################## #################################################################################################################################################################################################################################### # Stores all the moves in a list to restitute them one by one allMoves = [RIGHT, RIGHT, RIGHT, UP, RIGHT, RIGHT, RIGHT, UP, UP, UP, RIGHT, UP, UP, UP, RIGHT, UP] #################################################################################################################################################################################################################################### ####################################################################################################### PRE-DEFINED FUNCTIONS ###################################################################################################### #################################################################################################################################################################################################################################### # Writes a message to the shell # Use for debugging your program # Channels stdout and stdin are captured to enable communication with the maze # Do not edit this code def debug (text) : # Writes to the stderr channel sys.stderr.write(str(text) + "\n") sys.stderr.flush() #################################################################################################################################################################################################################################### # Reads one line of information sent by the maze application # This function is blocking, and will wait for a line to terminate # The received information is automatically converted to the correct type # Do not edit this code def readFromPipe () : # Reads from the stdin channel and returns the structure associated to the string try : text = sys.stdin.readline() return ast.literal_eval(text.strip()) except : os._exit(-1) #################################################################################################################################################################################################################################### # Sends the text to the maze application # Do not edit this code def writeToPipe (text) : # Writes to the stdout channel sys.stdout.write(text) sys.stdout.flush() #################################################################################################################################################################################################################################### # Reads the initial maze information # The function processes the text and returns the associated variables # The dimensions of the maze are positive integers # Maze map is a dictionary associating to a location its adjacent locations and the associated weights # The preparation time gives the time during which 'initializationCode' can make computations before the game starts # The turn time gives the time during which 'determineNextMove' can make computations before returning a decision # Player locations are tuples (line, column) # Coins are given as a list of locations where they appear # A boolean indicates if the game is over # Do not edit this code def processInitialInformation () : # We read from the pipe data = readFromPipe() return (data['mazeWidth'], data['mazeHeight'], data['mazeMap'], data['preparationTime'], data['turnTime'], data['playerLocation'], data['opponentLocation'], data['coins'], data['gameIsOver']) #################################################################################################################################################################################################################################### # Reads the information after each player moved # The maze map and allowed times are no longer provided since they do not change # Do not edit this code def processNextInformation () : # We read from the pipe data = readFromPipe() return (data['playerLocation'], data['opponentLocation'], data['coins'], data['gameIsOver']) #################################################################################################################################################################################################################################### ########################################################################################################## YOUR FUNCTIONS ########################################################################################################## #################################################################################################################################################################################################################################### # This is where you should write your code to do things during the initialization delay # This function should not return anything, but should be used for a short preprocessing # This function takes as parameters the dimensions and map of the maze, the time it is allowed for computing, the players locations in the maze and the remaining coins locations # Make sure to have a safety margin for the time to include processing times (communication etc.) def initializationCode (mazeWidth, mazeHeight, mazeMap, timeAllowed, playerLocation, opponentLocation, coins) : # Nothing to do pass #################################################################################################################################################################################################################################### # This is where you should write your code to determine the next direction # This function should return one of the directions defined in the CONSTANTS section # This function takes as parameters the dimensions and map of the maze, the time it is allowed for computing, the players locations in the maze and the remaining coins locations # Make sure to have a safety margin for the time to include processing times (communication etc.) def determineNextMove (mazeWidth, mazeHeight, mazeMap, timeAllowed, playerLocation, opponentLocation, coins) : # We return the next move as described by the list global allMoves nextMove = allMoves[0] allMoves = allMoves[1:] return nextMove #################################################################################################################################################################################################################################### ############################################################################################################# MAIN LOOP ############################################################################################################ #################################################################################################################################################################################################################################### # This is the entry point when executing this file # We first send the name of the team to the maze # The first message we receive from the maze includes its dimensions and map, the times allowed to the various steps, and the players and coins locations # Then, at every loop iteration, we get the maze status and determine a move # Do not edit this code if __name__ == "__main__" : # We send the team name writeToPipe(TEAM_NAME + "\n") # We process the initial information and have a delay to compute things using it (mazeWidth, mazeHeight, mazeMap, preparationTime, turnTime, playerLocation, opponentLocation, coins, gameIsOver) = processInitialInformation() initializationCode(mazeWidth, mazeHeight, mazeMap, preparationTime, playerLocation, opponentLocation, coins) # We decide how to move and wait for the next step while not gameIsOver : (playerLocation, opponentLocation, coins, gameIsOver) = processNextInformation() if gameIsOver : break nextMove = determineNextMove(mazeWidth, mazeHeight, mazeMap, turnTime, playerLocation, opponentLocation, coins) writeToPipe(nextMove) #################################################################################################################################################################################################################################### ####################################################################################################################################################################################################################################
from distutils.core import setup setup( name='TestLibrary_MR', # How you named your package folder (MyLib) packages=['TestLibrary_MR'], # Chose the same as "name" version='0.2', # Start with a small number and increase it with every change you make license='MIT', # Chose a license from here: https://help.github.com/articles/licensing-a-repository description='Just a test module', # Give a short description about your library author='Md. Masudur Rahman', # Type in your name author_email='masudurhimel@gmail.com', # Type in your E-Mail url='https://github.com/masudurHimel/TestLibrary_MR', # Provide either the link to your github or to your website download_url='https://github.com/masudurHimel/TestLibrary_MR/archive/refs/tags/v_02.tar.gz', # I explain this later on keywords=['test'], # Keywords that define your package best install_requires=[], classifiers=[ 'Development Status :: 3 - Alpha', # Chose either "3 - Alpha", "4 - Beta" or "5 - Production/Stable" as the current state of your package 'Intended Audience :: Developers', # Define that your audience are developers 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', # Again, pick a license 'Programming Language :: Python :: 3', # Specify which pyhton versions that you want to support ], )
import discord from discord.ext import commands from decorators import * from io import BytesIO from urllib.parse import quote from base64 import b64encode from json import loads class encoding(commands.Cog): def __init__(self): self.ciphers = loads(open("./assets/json/encode.json", "r").read()) pass @command(["jumble"]) @cooldown(2) @require_args() async def shuffle(self, ctx, *args): return await ctx.reply(ctx.bot.util.shuffle(" ".join(args))) @command(["morse-code"]) @cooldown(5) @require_args() async def morse(self, ctx, *args): total = "" for char in " ".join(args).lower(): total += " " + self.ciphers.get(char, { "morse": char })["morse"] return await ctx.reply(total[1:]) @command(["blind"]) @cooldown(5) @require_args() async def braille(self, ctx, *args): total = "" for char in " ".join(args).lower(): total += self.ciphers.get(char, { "braille": char })["braille"] return await ctx.reply(total) @command(["curve", "curve-text"]) @cooldown(5) @require_args() async def cursive(self, ctx, *args): total = "" for char in " ".join(args).lower(): total += self.ciphers.get(char, { "cursive": char })["cursive"] return await ctx.reply(total) @command(["fancy-text"]) @cooldown(5) @require_args() async def fancy(self, ctx, *args): total = "" for char in " ".join(args).lower(): total += self.ciphers.get(char, { "fancy": char })["fancy"] return await ctx.reply(total) @command(["upside-down", "upsidedown", "flip-text", "textflip"]) @cooldown(5) @require_args() async def fliptext(self, ctx, *args): total = "" for char in " ".join(args).lower(): total += self.ciphers.get(char, { "upside-down": char })["upside-down"] return await ctx.reply(total) @command() @cooldown(4) @require_args() @permissions(bot=['attach_files']) async def ascii(self, ctx, *args): await ctx.trigger_typing() parser = ctx.bot.Parser(args) parser.parse(('hastebin',)) if (not parser) or (not parser.has("image")): if not parser.other: return await ctx.bot.cmds.invalid_args(ctx) ascii = await ctx.bot.util.request( "http://artii.herokuapp.com/make", text=' '.join(parser.other) ) if parser.has("hastebin"): try: response = await ctx.bot.http._HTTPClient__session.post("https://paste.mod.gg/documents", data=ascii) assert response.status < 400 json = await response.json() await ctx.success_embed(description=f"[**Click here to see the asciified text.**](https://paste.mod.gg/{json['key']})") del ascii, image, parser, json return except AssertionError: pass await ctx.reply(f'```{ascii[:2000]}```') del ascii, parser return parser.shift("image") image = await ctx.bot.Parser.parse_image(ctx, parser.other) string = await ctx.bot.Image.asciify(image) if hastebin: try: response = await ctx.bot.http._HTTPClient__session.post("https://paste.mod.gg/documents", data=string) assert response.status < 400 json = await response.json() await ctx.success_embed(description=f"[**Click here to see the asciified image.**](https://paste.mod.gg/{json['key']})") del string, image, parser, hastebin, json return except AssertionError: pass await ctx.bot.http.send_files(ctx.channel.id, content="", files=[discord.File(BytesIO(bytes(string, 'utf-8')), "asciified.txt")]) del string, image, parser, hastebin @command() @cooldown(2) @permissions(bot=['attach_files']) @require_args() async def barcode(self, ctx, *args): await ctx.trigger_typing() return await ctx.send_image('http://www.barcode-generator.org/zint/api.php?bc_number=20&bc_data=' + quote(' '.join(args))[:75]) @command(['qrcode', 'qr-code']) @cooldown(2) @permissions(bot=['attach_files']) @require_args() async def qr(self, ctx, *args): await ctx.trigger_typing() return await ctx.send_image('https://api.qrserver.com/v1/create-qr-code/?size=150x150&data=' + quote(' '.join(args))[:75]) @command() @cooldown(2) @require_args() async def binary(self, ctx, *args): return await ctx.reply('```'+''.join(map(lambda x: f"{ord(x):08b}", ' '.join(args)))[:2000]+'```') @command() @cooldown(2) @require_args(2) async def caesar(self, ctx, *args): offset = ctx.bot.Parser.get_numbers(args) if not offset: return await ctx.bot.cmds.invalid_args(ctx) return await ctx.reply(ctx.bot.util.caesar(str(' '.join(args).replace(str(offset[0]), '')), offset[0])) @command() @cooldown(2) @require_args() async def atbash(self, ctx, *args): return await ctx.reply(ctx.bot.util.atbash(' '.join(args))) @command() @cooldown(2) @require_args() async def reverse(self, ctx, *args): return await ctx.reply(' '.join(args)[::-1]) @command(['b64']) @cooldown(2) @require_args() async def base64(self, ctx, *args): return await ctx.reply(b64encode(' '.join(args).encode('ascii')).decode('ascii')) def setup(client): client.add_cog(encoding())
import json import requests EDHREC_BASE_URL = 'https://edhrec-json.s3.amazonaws.com/commanders/%s.json' COMMANDER_PAGE_SLUGS = frozenset([ 'w', 'u', 'b', 'r', 'g', 'colorless', 'wu', 'ub', 'br', 'rg', 'gw', 'wb', 'ur', 'bg', 'rw', 'gu', 'wub', 'ubr', 'brg', 'rgw', 'gwu', 'wbg', 'urw', 'bgu', 'rwb', 'gur', 'wubr', 'ubrg', 'brgw', 'rgwu', 'gwub', 'wubrg', ]) def scrape_commanders_json(color_slug): url = EDHREC_BASE_URL % color_slug req = requests.get(url) print(req.status_code, url) if(req.status_code != 200): return json_obj = req.json()['container']['json_dict'] cards = json_obj['cardlists'][0]['cardviews'] counts = [] for card in cards: card_name = card['name'] card_count = int(card['label'].split(' ')[0]) counts.append([card_name, card_count]) return counts def scrape_edhrec_json(): counts = [] for slug in COMMANDER_PAGE_SLUGS: counts.extend(scrape_commanders_json(slug)) for card in counts: print(card) return counts if __name__ == "__main__": print(scrape_commanders_json('b'))
import get_coefficients_as_list import check_diagonal_dominant # function that computes in gauss jacobi method def gauss_jacobi(no_of_unknowns): coefficient_list = get_coefficients_as_list.get_coefficients_as_list(no_of_unknowns) if check_diagonal_dominant.is_diagonally_dominant(coefficient_list): print("Computing...") else: print("Matrix failed to be diagonally dominant\nExiting...") return factors = [0]*(no_of_unknowns) sample_factors = [0]*(no_of_unknowns) for i in range(0,6): for j in range(0,no_of_unknowns): diff = 0 for k in range(0,j): diff = diff + coefficient_list[j][k]*factors[k] for k in range(j+1,no_of_unknowns): diff = diff + coefficient_list[j][k]*factors[k] #print(coefficient_list[j][no_of_unknowns],"-",diff,"/",coefficient_list[j][j]) diff = (coefficient_list[j][no_of_unknowns]-diff)/coefficient_list[j][j] sample_factors = sample_factors[0:j]+[diff]+sample_factors[j+1:] factors = sample_factors print("At iteration ",i+1," factors are ",factors)
# Copyright (c) 2015 Huawei Technologies Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from oslo_log import log as logging import taskflow.engines from taskflow.patterns import linear_flow from taskflow.types import failure as ft from cinder import exception from cinder import flow_utils from cinder.i18n import _, _LE, _LI from cinder import objects from cinder import quota from cinder.volume.flows import common as flow_common from cinder.volume import utils as volume_utils CONF = cfg.CONF LOG = logging.getLogger(__name__) QUOTAS = quota.QUOTAS ACTION = 'snapshot:manage_existing' class ExtractSnapshotRefTask(flow_utils.CinderTask): """Extracts snapshot reference for given snapshot id.""" default_provides = 'snapshot_ref' def __init__(self, db): super(ExtractSnapshotRefTask, self).__init__(addons=[ACTION]) self.db = db def execute(self, context, snapshot_id): # NOTE(wanghao): this will fetch the snapshot from the database, if # the snapshot has been deleted before we got here then this should # fail. # # In the future we might want to have a lock on the snapshot_id so that # the snapshot can not be deleted while its still being created? snapshot_ref = objects.Snapshot.get_by_id(context, snapshot_id) LOG.debug("ExtractSnapshotRefTask return" " snapshot_ref: %s", snapshot_ref) return snapshot_ref def revert(self, context, snapshot_id, result, **kwargs): if isinstance(result, ft.Failure): return flow_common.error_out_snapshot(context, self.db, snapshot_id) LOG.error(_LE("Snapshot %s: create failed"), snapshot_id) class NotifySnapshotActionTask(flow_utils.CinderTask): """Performs a notification about the given snapshot when called. Reversion strategy: N/A """ def __init__(self, db, event_suffix, host): super(NotifySnapshotActionTask, self).__init__(addons=[ACTION, event_suffix]) self.db = db self.event_suffix = event_suffix self.host = host def execute(self, context, snapshot_ref): snapshot_id = snapshot_ref['id'] try: volume_utils.notify_about_snapshot_usage(context, snapshot_ref, self.event_suffix, host=self.host) except exception.CinderException: # If notification sending of snapshot database entry reading fails # then we shouldn't error out the whole workflow since this is # not always information that must be sent for snapshots to operate LOG.exception(_LE("Failed notifying about the snapshot " "action %(event)s for snapshot %(snp_id)s."), {'event': self.event_suffix, 'snp_id': snapshot_id}) class PrepareForQuotaReservationTask(flow_utils.CinderTask): """Gets the snapshot size from the driver.""" default_provides = set(['size', 'snapshot_properties']) def __init__(self, db, driver): super(PrepareForQuotaReservationTask, self).__init__(addons=[ACTION]) self.db = db self.driver = driver def execute(self, context, snapshot_ref, manage_existing_ref): snapshot_id = snapshot_ref['id'] if not self.driver.initialized: driver_name = (self.driver.configuration. safe_get('volume_backend_name')) LOG.error(_LE("Unable to manage existing snapshot. " "Volume driver %s not initialized."), driver_name) flow_common.error_out_snapshot(context, self.db, snapshot_id, reason=_("Volume driver %s " "not initialized.") % driver_name) raise exception.DriverNotInitialized() size = self.driver.manage_existing_snapshot_get_size( snapshot=snapshot_ref, existing_ref=manage_existing_ref) return {'size': size, 'snapshot_properties': snapshot_ref} class QuotaReserveTask(flow_utils.CinderTask): """Reserves a single snapshot with the given size. Reversion strategy: rollback the quota reservation. Warning Warning: if the process that is running this reserve and commit process fails (or is killed before the quota is rolled back or committed it does appear like the quota will never be rolled back). This makes software upgrades hard (inflight operations will need to be stopped or allowed to complete before the upgrade can occur). *In the future* when taskflow has persistence built-in this should be easier to correct via an automated or manual process. """ default_provides = set(['reservations']) def __init__(self): super(QuotaReserveTask, self).__init__(addons=[ACTION]) def execute(self, context, size, optional_args): try: if CONF.no_snapshot_gb_quota: reserve_opts = {'snapshots': 1} else: reserve_opts = {'snapshots': 1, 'gigabytes': size} reservations = QUOTAS.reserve(context, **reserve_opts) return { 'reservations': reservations, } except exception.OverQuota as e: overs = e.kwargs['overs'] quotas = e.kwargs['quotas'] usages = e.kwargs['usages'] volume_utils.process_reserve_over_quota(context, overs, usages, quotas, size) def revert(self, context, result, optional_args, **kwargs): # We never produced a result and therefore can't destroy anything. if isinstance(result, ft.Failure): return if optional_args['is_quota_committed']: # The reservations have already been committed and can not be # rolled back at this point. return # We actually produced an output that we can revert so lets attempt # to use said output to rollback the reservation. reservations = result['reservations'] try: QUOTAS.rollback(context, reservations) except exception.CinderException: # We are already reverting, therefore we should silence this # exception since a second exception being active will be bad. LOG.exception(_LE("Failed rolling back quota for" " %s reservations."), reservations) class QuotaCommitTask(flow_utils.CinderTask): """Commits the reservation. Reversion strategy: N/A (the rollback will be handled by the task that did the initial reservation (see: QuotaReserveTask). Warning Warning: if the process that is running this reserve and commit process fails (or is killed before the quota is rolled back or committed it does appear like the quota will never be rolled back). This makes software upgrades hard (inflight operations will need to be stopped or allowed to complete before the upgrade can occur). *In the future* when taskflow has persistence built-in this should be easier to correct via an automated or manual process. """ def __init__(self): super(QuotaCommitTask, self).__init__(addons=[ACTION]) def execute(self, context, reservations, snapshot_properties, optional_args): QUOTAS.commit(context, reservations) # updating is_quota_committed attribute of optional_args dictionary optional_args['is_quota_committed'] = True return {'snapshot_properties': snapshot_properties} def revert(self, context, result, **kwargs): # We never produced a result and therefore can't destroy anything. if isinstance(result, ft.Failure): return snapshot = result['snapshot_properties'] try: reserve_opts = {'snapshots': -1, 'gigabytes': -snapshot['volume_size']} reservations = QUOTAS.reserve(context, project_id=context.project_id, **reserve_opts) if reservations: QUOTAS.commit(context, reservations, project_id=context.project_id) except Exception: LOG.exception(_LE("Failed to update quota while deleting " "snapshots: %s"), snapshot['id']) class ManageExistingTask(flow_utils.CinderTask): """Brings an existing snapshot under Cinder management.""" default_provides = set(['snapshot', 'new_status']) def __init__(self, db, driver): super(ManageExistingTask, self).__init__(addons=[ACTION]) self.db = db self.driver = driver def execute(self, context, snapshot_ref, manage_existing_ref, size): model_update = self.driver.manage_existing_snapshot( snapshot=snapshot_ref, existing_ref=manage_existing_ref) if not model_update: model_update = {} model_update.update({'size': size}) try: snapshot_object = objects.Snapshot.get_by_id(context, snapshot_ref['id']) snapshot_object.update(model_update) snapshot_object.save() except exception.CinderException: LOG.exception(_LE("Failed updating model of snapshot " "%(snapshot_id)s with creation provided model " "%(model)s."), {'snapshot_id': snapshot_ref['id'], 'model': model_update}) raise return {'snapshot': snapshot_ref, 'new_status': 'available'} class CreateSnapshotOnFinishTask(NotifySnapshotActionTask): """Perform final snapshot actions. When a snapshot is created successfully it is expected that MQ notifications and database updates will occur to 'signal' to others that the snapshot is now ready for usage. This task does those notifications and updates in a reliable manner (not re-raising exceptions if said actions can not be triggered). Reversion strategy: N/A """ def __init__(self, db, event_suffix, host): super(CreateSnapshotOnFinishTask, self).__init__(db, event_suffix, host) def execute(self, context, snapshot, new_status): LOG.debug("Begin to call CreateSnapshotOnFinishTask execute.") snapshot_id = snapshot['id'] LOG.debug("New status: %s", new_status) update = { 'status': new_status } try: # TODO(harlowja): is it acceptable to only log if this fails?? # or are there other side-effects that this will cause if the # status isn't updated correctly (aka it will likely be stuck in # 'building' if this fails)?? snapshot_object = objects.Snapshot.get_by_id(context, snapshot_id) snapshot_object.update(update) snapshot_object.save() # Now use the parent to notify. super(CreateSnapshotOnFinishTask, self).execute(context, snapshot) except exception.CinderException: LOG.exception(_LE("Failed updating snapshot %(snapshot_id)s with " "%(update)s."), {'snapshot_id': snapshot_id, 'update': update}) # Even if the update fails, the snapshot is ready. LOG.info(_LI("Snapshot %s created successfully."), snapshot_id) def get_flow(context, db, driver, host, snapshot_id, ref): """Constructs and returns the manager entry point flow.""" LOG.debug("Input parameters: context=%(context)s, db=%(db)s," "driver=%(driver)s, host=%(host)s, " "snapshot_id=(snapshot_id)s, ref=%(ref)s.", {'context': context, 'db': db, 'driver': driver, 'host': host, 'snapshot_id': snapshot_id, 'ref': ref} ) flow_name = ACTION.replace(":", "_") + "_manager" snapshot_flow = linear_flow.Flow(flow_name) # This injects the initial starting flow values into the workflow so that # the dependency order of the tasks provides/requires can be correctly # determined. create_what = { 'context': context, 'snapshot_id': snapshot_id, 'manage_existing_ref': ref, 'optional_args': {'is_quota_committed': False} } notify_start_msg = "manage_existing_snapshot.start" notify_end_msg = "manage_existing_snapshot.end" snapshot_flow.add(ExtractSnapshotRefTask(db), NotifySnapshotActionTask(db, notify_start_msg, host=host), PrepareForQuotaReservationTask(db, driver), QuotaReserveTask(), ManageExistingTask(db, driver), QuotaCommitTask(), CreateSnapshotOnFinishTask(db, notify_end_msg, host=host)) LOG.debug("Begin to return taskflow.engines." "load(snapshot_flow,store=create_what).") # Now load (but do not run) the flow using the provided initial data. return taskflow.engines.load(snapshot_flow, store=create_what)
import sys from os import path from setuptools import find_packages, setup import versioneer min_version = (3, 6) if sys.version_info < min_version: error = """ pcdscalc does not support Python {0}.{1}. Python {2}.{3} and above is required. Check your Python version like so: python3 --version This may be due to an out-of-date pip. Make sure you have pip >= 9.0.1. Upgrade pip like so: pip install --upgrade pip """.format(*sys.version_info[:2], *min_version) sys.exit(error) here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.rst'), encoding='utf-8') as readme_file: readme = readme_file.read() with open(path.join(here, 'requirements.txt')) as requirements_file: # Parse requirements.txt, ignoring any commented-out lines. requirements = [line for line in requirements_file.read().splitlines() if not line.startswith('#')] git_requirements = [r for r in requirements if r.startswith('git+')] if git_requirements: print('User must install the following packages manually:') print() print("\n".join(f'* {r}' for r in git_requirements)) print() setup( name='pcdscalc', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), license='BSD', author='SLAC National Accelerator Laboratory', packages=find_packages(exclude=['docs', 'tests']), description='PCDS Calculation Routines', long_description=readme, url='https://github.com/pcdshub/pcdscalc', # noqa entry_points={ 'console_scripts': [ # 'pcdscalc=pcdscalc.__main__:main', # noqa ], }, include_package_data=True, package_data={ 'pcdscalc': [ # When adding files here, remember to update MANIFEST.in as well, # or else they will not be included in the distribution on PyPI! # 'path/to/data_file', ] }, install_requires=requirements, classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Natural Language :: English', 'Programming Language :: Python :: 3', ], )
""" Interface to the accounts table. Data format is dicts, not objects. """ from anchore_engine.db import Account, AccountTypes, AccountStates from anchore_engine.db.entities.common import anchore_now class AccountNotFoundError(Exception): def __init__(self, account_name): super(AccountNotFoundError, self).__init__('User account not found. Name={}'.format(account_name)) self.account_name = account_name class AccountAlreadyExistsError(Exception): def __init__(self, account_name): super(AccountAlreadyExistsError, self).__init__('User account already exists. name={}'.format(account_name)) self.account_name = account_name class InvalidStateError(Exception): def __init__(self, current_state, desired_state): super(InvalidStateError, self).__init__('Invalid account state change requested. Cannot go from state {} to state {}'.format(current_state.value, desired_state.value)) self.current_state = current_state self.desired_state = desired_state def add(account_name, state=AccountStates.enabled, account_type=AccountTypes.user, email=None, session=None): found_account = session.query(Account).filter_by(name=account_name).one_or_none() if found_account: raise AccountAlreadyExistsError(account_name) accnt = Account() accnt.name = account_name accnt.state = state accnt.type = account_type accnt.email = email accnt.created_at = anchore_now() accnt.last_updated = anchore_now() session.add(accnt) return accnt.to_dict() def update_state(name, new_state, session=None): """ Update state of the account. Allowed transitions: active -> disabled disabled -> active disabled -> deleting Deleting is a terminal state, and can be reached only from disabled :param name: :param new_state: :param session: :return: """ accnt = session.query(Account).filter_by(name=name).one_or_none() if not accnt: raise AccountNotFoundError(name) # Deleting state is terminal. Must deactivate account prior to deleting it. if accnt.state == AccountStates.deleting or (accnt.state == AccountStates.enabled and new_state == AccountStates.deleting): raise InvalidStateError(accnt.state, new_state) accnt.state = new_state return accnt.to_dict() def get_all(with_state=None, session=None): if with_state is not None: return [x.to_dict() for x in session.query(Account).filter(Account.state == with_state)] else: return [x.to_dict() for x in session.query(Account)] def get(name, session=None): accnt = session.query(Account).filter_by(name=name).one_or_none() if accnt: return accnt.to_dict() else: return None def delete(name, session=None): accnt = session.query(Account).filter_by(name=name).one_or_none() if accnt: session.delete(accnt) return True else: return False
from keras.preprocessing.image import * from keras.applications.imagenet_utils import preprocess_input from keras import backend as K from PIL import Image import numpy as np import os #import cv2 def center_crop(x, center_crop_size, data_format, **kwargs): if data_format == 'channels_first': centerh, centerw = x.shape[1] // 2, x.shape[2] // 2 elif data_format == 'channels_last': centerh, centerw = x.shape[0] // 2, x.shape[1] // 2 lh, lw = center_crop_size[0] // 2, center_crop_size[1] // 2 rh, rw = center_crop_size[0] - lh, center_crop_size[1] - lw h_start, h_end = centerh - lh, centerh + rh w_start, w_end = centerw - lw, centerw + rw if data_format == 'channels_first': return x[:, h_start:h_end, w_start:w_end] elif data_format == 'channels_last': return x[h_start:h_end, w_start:w_end, :] def pair_center_crop(x, y, center_crop_size, data_format, **kwargs): if data_format == 'channels_first': centerh, centerw = x.shape[1] // 2, x.shape[2] // 2 elif data_format == 'channels_last': centerh, centerw = x.shape[0] // 2, x.shape[1] // 2 lh, lw = center_crop_size[0] // 2, center_crop_size[1] // 2 rh, rw = center_crop_size[0] - lh, center_crop_size[1] - lw h_start, h_end = centerh - lh, centerh + rh w_start, w_end = centerw - lw, centerw + rw if data_format == 'channels_first': return x[:, h_start:h_end, w_start:w_end], \ y[:, h_start:h_end, w_start:w_end] elif data_format == 'channels_last': return x[h_start:h_end, w_start:w_end, :], \ y[h_start:h_end, w_start:w_end, :] def random_crop(x, random_crop_size, data_format, sync_seed=None, **kwargs): np.random.seed(sync_seed) if data_format == 'channels_first': h, w = x.shape[1], x.shape[2] elif data_format == 'channels_last': h, w = x.shape[0], x.shape[1] rangeh = (h - random_crop_size[0]) // 2 rangew = (w - random_crop_size[1]) // 2 offseth = 0 if rangeh == 0 else np.random.randint(rangeh) offsetw = 0 if rangew == 0 else np.random.randint(rangew) h_start, h_end = offseth, offseth + random_crop_size[0] w_start, w_end = offsetw, offsetw + random_crop_size[1] if data_format == 'channels_first': return x[:, h_start:h_end, w_start:w_end] elif data_format == 'channels_last': return x[h_start:h_end, w_start:w_end, :] def pair_random_crop(x, y, random_crop_size, data_format, sync_seed=None, **kwargs): np.random.seed(sync_seed) if data_format == 'channels_first': h, w = x.shape[1], x.shape[2] elif data_format == 'channels_last': h, w = x.shape[0], x.shape[1] rangeh = (h - random_crop_size[0]) // 2 rangew = (w - random_crop_size[1]) // 2 offseth = 0 if rangeh == 0 else np.random.randint(rangeh) offsetw = 0 if rangew == 0 else np.random.randint(rangew) h_start, h_end = offseth, offseth + random_crop_size[0] w_start, w_end = offsetw, offsetw + random_crop_size[1] if data_format == 'channels_first': return x[:, h_start:h_end, w_start:w_end], y[:, h_start:h_end, h_start:h_end] elif data_format == 'channels_last': return x[h_start:h_end, w_start:w_end, :], y[h_start:h_end, w_start:w_end, :] class SegDirectoryIterator(Iterator): ''' Users need to ensure that all files exist. Label images should be png images where pixel values represents class number. find images -name *.jpg > images.txt find labels -name *.png > labels.txt for a file name 2011_002920.jpg, each row should contain 2011_002920 file_path: location of train.txt, or val.txt in PASCAL VOC2012 format, listing image file path components without extension data_dir: location of image files referred to by file in file_path label_dir: location of label files data_suffix: image file extension, such as `.jpg` or `.png` label_suffix: label file suffix, such as `.png`, or `.npy` loss_shape: shape to use when applying loss function to the label data ''' def __init__(self, file_path, seg_data_generator, data_dir, data_suffix, label_dir, label_suffix, classes, ignore_label=255, crop_mode='none', label_cval=255, pad_size=None, target_size=None, color_mode='rgb', data_format='default', class_mode='sparse', batch_size=1, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_format='jpeg', loss_shape=None): if data_format == 'default': data_format = K.image_data_format() self.file_path = file_path self.data_dir = data_dir self.data_suffix = data_suffix self.label_suffix = label_suffix self.label_dir = label_dir self.classes = classes self.seg_data_generator = seg_data_generator self.target_size = tuple(target_size) self.ignore_label = ignore_label self.crop_mode = crop_mode self.label_cval = label_cval self.pad_size = pad_size if color_mode not in {'rgb', 'grayscale'}: raise ValueError('Invalid color mode:', color_mode, '; expected "rgb" or "grayscale".') self.color_mode = color_mode self.data_format = data_format self.nb_label_ch = 1 self.loss_shape = loss_shape if (self.label_suffix == '.npy') or (self.label_suffix == 'npy'): self.label_file_format = 'npy' else: self.label_file_format = 'img' if target_size: if self.color_mode == 'rgb': if self.data_format == 'channels_last': self.image_shape = self.target_size + (3,) else: self.image_shape = (3,) + self.target_size else: if self.data_format == 'channels_last': self.image_shape = self.target_size + (1,) else: self.image_shape = (1,) + self.target_size if self.data_format == 'channels_last': self.label_shape = self.target_size + (self.nb_label_ch,) else: self.label_shape = (self.nb_label_ch,) + self.target_size elif batch_size != 1: raise ValueError( 'Batch size must be 1 when target image size is undetermined') else: self.image_shape = None self.label_shape = None if class_mode not in {'sparse', None}: raise ValueError('Invalid class_mode:', class_mode, '; expected one of ' '"sparse", or None.') self.class_mode = class_mode if save_to_dir: self.palette = None self.save_to_dir = save_to_dir self.save_prefix = save_prefix self.save_format = save_format white_list_formats = {'png', 'jpg', 'jpeg', 'bmp', 'npy'} # build lists for data files and label files self.data_files = [] self.label_files = [] fp = open(file_path) lines = fp.readlines() fp.close() self.nb_sample = len(lines) for line in lines: line = line.strip('\n') self.data_files.append(line + data_suffix) self.label_files.append(line + label_suffix) super(SegDirectoryIterator, self).__init__( self.nb_sample, batch_size, shuffle, seed) def next(self): with self.lock: index_array, current_index, current_batch_size = next( self.index_generator) # The transformation of images is not under thread lock so it can be # done in parallel if self.target_size: # TODO(ahundt) make dtype properly configurable batch_x = np.zeros((current_batch_size,) + self.image_shape) if self.loss_shape is None and self.label_file_format is 'img': batch_y = np.zeros((current_batch_size,) + self.label_shape, dtype=int) elif self.loss_shape is None: batch_y = np.zeros((current_batch_size,) + self.label_shape) else: batch_y = np.zeros((current_batch_size,) + self.loss_shape, dtype=np.uint8) grayscale = self.color_mode == 'grayscale' # build batch of image data and labels for i, j in enumerate(index_array): data_file = self.data_files[j] label_file = self.label_files[j] img_file_format = 'img' img = load_img(os.path.join(self.data_dir, data_file), grayscale=grayscale, target_size=None) label_filepath = os.path.join(self.label_dir, label_file) if self.label_file_format == 'npy': y = np.load(label_filepath) else: label = Image.open(label_filepath) if self.save_to_dir and self.palette is None: self.palette = label.palette # do padding if self.target_size: if self.crop_mode != 'none': x = img_to_array(img, data_format=self.data_format) if self.label_file_format is not 'npy': y = img_to_array( label, data_format=self.data_format).astype(int) img_w, img_h = img.size if self.pad_size: pad_w = max(self.pad_size[1] - img_w, 0) pad_h = max(self.pad_size[0] - img_h, 0) else: pad_w = max(self.target_size[1] - img_w, 0) pad_h = max(self.target_size[0] - img_h, 0) if self.data_format == 'channels_first': x = np.lib.pad(x, ((0, 0), (pad_h / 2, pad_h - pad_h / 2), (pad_w / 2, pad_w - pad_w / 2)), 'constant', constant_values=0.) y = np.lib.pad(y, ((0, 0), (pad_h / 2, pad_h - pad_h / 2), (pad_w / 2, pad_w - pad_w / 2)), 'constant', constant_values=self.label_cval) elif self.data_format == 'channels_last': x = np.lib.pad(x, ((pad_h / 2, pad_h - pad_h / 2), (pad_w / 2, pad_w - pad_w / 2), (0, 0)), 'constant', constant_values=0.) y = np.lib.pad(y, ((pad_h / 2, pad_h - pad_h / 2), (pad_w / 2, pad_w - pad_w / 2), (0, 0)), 'constant', constant_values=self.label_cval) else: x = img_to_array(img.resize((self.target_size[1], self.target_size[0]), Image.BILINEAR), data_format=self.data_format) if self.label_file_format is not 'npy': y = img_to_array(label.resize((self.target_size[1], self.target_size[ 0]), Image.NEAREST), data_format=self.data_format).astype(int) else: print('ERROR: resize not implemented for label npy file') if self.target_size is None: batch_x = np.zeros((current_batch_size,) + x.shape) if self.loss_shape is not None: batch_y = np.zeros((current_batch_size,) + self.loss_shape) else: batch_y = np.zeros((current_batch_size,) + y.shape) x, y = self.seg_data_generator.random_transform(x, y) x = self.seg_data_generator.standardize(x) if self.ignore_label: y[np.where(y == self.ignore_label)] = self.classes if self.loss_shape is not None: y = np.reshape(y, self.loss_shape) batch_x[i] = x batch_y[i] = y # optionally save augmented images to disk for debugging purposes if self.save_to_dir: for i in range(current_batch_size): img = array_to_img(batch_x[i], self.data_format, scale=True) label = batch_y[i][:, :, 0].astype('uint8') label[np.where(label == self.classes)] = self.ignore_label label = Image.fromarray(label, mode='P') label.palette = self.palette fname = '{prefix}_{index}_{hash}'.format(prefix=self.save_prefix, index=current_index + i, hash=np.random.randint(1e4)) img.save(os.path.join(self.save_to_dir, 'img_' + fname + '.{format}'.format(format=self.save_format))) label.save(os.path.join(self.save_to_dir, 'label_' + fname + '.png')) # return batch_x = preprocess_input(batch_x) if self.class_mode == 'sparse': return batch_x, batch_y else: return batch_x class SegDataGenerator(object): def __init__(self, featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, channelwise_center=False, rotation_range=0., width_shift_range=0., height_shift_range=0., shear_range=0., zoom_range=0., zoom_maintain_shape=True, channel_shift_range=0., fill_mode='constant', cval=0., label_cval=255, crop_mode='none', crop_size=(0, 0), pad_size=None, horizontal_flip=False, vertical_flip=False, rescale=None, data_format='default'): if data_format == 'default': data_format = K.image_data_format() self.__dict__.update(locals()) self.mean = None self.ch_mean = None self.std = None self.principal_components = None self.rescale = rescale if data_format not in {'channels_last', 'channels_first'}: raise Exception('data_format should be channels_last (channel after row and ' 'column) or channels_first (channel before row and column). ' 'Received arg: ', data_format) if crop_mode not in {'none', 'random', 'center'}: raise Exception('crop_mode should be "none" or "random" or "center" ' 'Received arg: ', crop_mode) self.data_format = data_format if data_format == 'channels_first': self.channel_index = 1 self.row_index = 2 self.col_index = 3 if data_format == 'channels_last': self.channel_index = 3 self.row_index = 1 self.col_index = 2 if np.isscalar(zoom_range): self.zoom_range = [1 - zoom_range, 1 + zoom_range] elif len(zoom_range) == 2: self.zoom_range = [zoom_range[0], zoom_range[1]] else: raise Exception('zoom_range should be a float or ' 'a tuple or list of two floats. ' 'Received arg: ', zoom_range) def flow_from_directory(self, file_path, data_dir, data_suffix, label_dir, label_suffix, classes, ignore_label=255, target_size=None, color_mode='rgb', class_mode='sparse', batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_format='jpeg', loss_shape=None): if self.crop_mode == 'random' or self.crop_mode == 'center': target_size = self.crop_size return SegDirectoryIterator( file_path, self, data_dir=data_dir, data_suffix=data_suffix, label_dir=label_dir, label_suffix=label_suffix, classes=classes, ignore_label=ignore_label, crop_mode=self.crop_mode, label_cval=self.label_cval, pad_size=self.pad_size, target_size=target_size, color_mode=color_mode, data_format=self.data_format, class_mode=class_mode, batch_size=batch_size, shuffle=shuffle, seed=seed, save_to_dir=save_to_dir, save_prefix=save_prefix, save_format=save_format, loss_shape=loss_shape) def standardize(self, x): if self.rescale: x *= self.rescale # x is a single image, so it doesn't have image number at index 0 img_channel_index = self.channel_index - 1 if self.samplewise_center: x -= np.mean(x, axis=img_channel_index, keepdims=True) if self.samplewise_std_normalization: x /= (np.std(x, axis=img_channel_index, keepdims=True) + 1e-7) if self.featurewise_center: x -= self.mean if self.featurewise_std_normalization: x /= (self.std + 1e-7) if self.channelwise_center: x -= self.ch_mean return x def random_transform(self, x, y): # x is a single image, so it doesn't have image number at index 0 img_row_index = self.row_index - 1 img_col_index = self.col_index - 1 img_channel_index = self.channel_index - 1 if self.crop_mode == 'none': crop_size = (x.shape[img_row_index], x.shape[img_col_index]) else: crop_size = self.crop_size assert x.shape[img_row_index] == y.shape[img_row_index] and x.shape[img_col_index] == y.shape[ img_col_index], 'DATA ERROR: Different shape of data and label!\ndata shape: %s, label shape: %s' % (str(x.shape), str(y.shape)) # use composition of homographies to generate final transform that # needs to be applied if self.rotation_range: theta = np.pi / 180 * \ np.random.uniform(-self.rotation_range, self.rotation_range) else: theta = 0 rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) if self.height_shift_range: # * x.shape[img_row_index] tx = np.random.uniform(-self.height_shift_range, self.height_shift_range) * crop_size[0] else: tx = 0 if self.width_shift_range: # * x.shape[img_col_index] ty = np.random.uniform(-self.width_shift_range, self.width_shift_range) * crop_size[1] else: ty = 0 translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) if self.shear_range: shear = np.random.uniform(-self.shear_range, self.shear_range) else: shear = 0 shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) if self.zoom_range[0] == 1 and self.zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform( self.zoom_range[0], self.zoom_range[1], 2) if self.zoom_maintain_shape: zy = zx zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) transform_matrix = np.dot( np.dot(np.dot(rotation_matrix, translation_matrix), shear_matrix), zoom_matrix) h, w = x.shape[img_row_index], x.shape[img_col_index] transform_matrix = transform_matrix_offset_center( transform_matrix, h, w) x = apply_transform(x, transform_matrix, img_channel_index, fill_mode=self.fill_mode, cval=self.cval) y = apply_transform(y, transform_matrix, img_channel_index, fill_mode='constant', cval=self.label_cval) if self.channel_shift_range != 0: x = random_channel_shift( x, self.channel_shift_range, img_channel_index) if self.horizontal_flip: if np.random.random() < 0.5: x = flip_axis(x, img_col_index) y = flip_axis(y, img_col_index) if self.vertical_flip: if np.random.random() < 0.5: x = flip_axis(x, img_row_index) y = flip_axis(y, img_row_index) if self.crop_mode == 'center': x, y = pair_center_crop(x, y, self.crop_size, self.data_format) elif self.crop_mode == 'random': x, y = pair_random_crop(x, y, self.crop_size, self.data_format) # TODO: # channel-wise normalization # barrel/fisheye return x, y def fit(self, X, augment=False, rounds=1, seed=None): '''Required for featurewise_center and featurewise_std_normalization # Arguments X: Numpy array, the data to fit on. augment: whether to fit on randomly augmented samples rounds: if `augment`, how many augmentation passes to do over the data seed: random seed. ''' X = np.copy(X) if augment: aX = np.zeros(tuple([rounds * X.shape[0]] + list(X.shape)[1:])) for r in range(rounds): for i in range(X.shape[0]): aX[i + r * X.shape[0]] = self.random_transform(X[i]) X = aX if self.featurewise_center: self.mean = np.mean(X, axis=0) X -= self.mean if self.featurewise_std_normalization: self.std = np.std(X, axis=0) X /= (self.std + 1e-7) def set_ch_mean(self, ch_mean): self.ch_mean = ch_mean
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument # # This file is part of DNN compiler maintained at # https://github.com/ai-techsystems/dnnCompiler import common import deepC.dnnc as dc import numpy as np import unittest class LessTest(unittest.TestCase): def setUp(self): self.len = 24 self.np_a = np.random.randn(self.len).astype(np.float32) self.np_b = np.random.randn(self.len).astype(np.float32) self.dc_a = dc.array(list(self.np_a)); self.dc_b = dc.array(list(self.np_b)); def test_Less1D (self): npr = np.less(self.np_a, self.np_b) dcr = dc.less(self.dc_a, self.dc_b) np.testing.assert_allclose(npr, np.array(dcr.data()).astype(np.bool), rtol=1e-3, atol=1e-3) def test_Less2D (self): np_a = np.reshape(self.np_a, (6,4)) np_b = np.reshape(self.np_b, (6,4)) dc_a = dc.reshape(self.dc_a, (6,4)); dc_b = dc.reshape(self.dc_b, (6,4)); npr = np.less(np_a, np_b); dcr = dc.less(dc_a, dc_b); np.testing.assert_allclose(npr.flatten(), np.array(dcr.data()).astype(np.bool), rtol=1e-3, atol=1e-3) def test_Less3D (self): np_a = np.reshape(self.np_a, (2,4,3)) np_b = np.reshape(self.np_b, (2,4,3)) dc_a = dc.reshape(self.dc_a, (2,4,3)); dc_b = dc.reshape(self.dc_b, (2,4,3)); npr = np.less(np_a, np_b); dcr = dc.less(dc_a, dc_b); np.testing.assert_allclose(npr.flatten(), np.array(dcr.data()).astype(np.bool), rtol=1e-3, atol=1e-3) def test_Equal4D (self): np_a = np.reshape(self.np_a, (2,2,2,3)) np_b = np.reshape(self.np_b, (2,2,2,3)) dc_a = dc.reshape(self.dc_a, (2,2,2,3)) dc_b = dc.reshape(self.dc_b, (2,2,2,3)) npr = np.less(np_a, np_b) dcr = dc.less(dc_a, dc_b) np.testing.assert_allclose(npr.flatten(), np.array(dcr.data()).astype(np.bool), rtol=1e-3, atol=1e-3) def tearDown(self): return "test finished" if __name__ == '__main__': unittest.main()
# Generated by Django 2.2.9 on 2020-07-23 13:41 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('messier_objects', '0002_auto_20200723_1438'), ] operations = [ migrations.AlterField( model_name='messierobject', name='photo', field=models.ImageField(default='notcaptured.JPG', upload_to='messier_objects'), ), ]
# # Copyright (c) 2018 Juniper Networks, Inc. All rights reserved. # import sys import os import logging import json import test_case from vnc_api.exceptions import NoIdError, RefsExistError from vnc_api.gen.resource_client import * from vnc_api.gen.resource_xsd import * from vnc_api.utils import obj_type_to_vnc_class import shutil sys.path.append("../common/tests") from time import sleep logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) def retry_exc_handler(tries_remaining, exception, delay): print >> sys.stderr, "Caught '%s', %d tries remaining, sleeping for %s seconds" % (exception, tries_remaining, delay) def retries(max_tries, delay=5, backoff=1, exceptions=(Exception,),hook=None): def dec(func): def f2(*args, **kwargs): mydelay = delay tries = range(max_tries) tries.reverse() for tries_remaining in tries: try: return func(*args, **kwargs) except exceptions as e: if tries_remaining > 0: if hook is not None: hook(tries_remaining, e, mydelay) sleep(mydelay) mydelay = mydelay * backoff else: raise return f2 return dec #Testing if all the objects in the json file are created. If not, create them. class TestInitData1(test_case.ApiServerTestCase): @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) super(TestInitData1, cls).setUpClass( extra_config_knobs=[('DEFAULTS', 'fabric_ansible_dir', "../fabric-ansible/ansible-playbooks")]) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestInitData1, cls).tearDownClass(*args, **kwargs) # end tearDownClass def create_object(self, object, res_type, fq_name): # Get the class name from object type vnc_cls = obj_type_to_vnc_class(res_type, __name__) instance_obj = vnc_cls.from_dict(**object) try: if(res_type == "job-template"): schema_name = fq_name.replace('template', 'schema.json') with open(os.path.join("../fabric-ansible/ansible-playbooks" + '/schema/', schema_name),'r+') as schema_file: schema_json = json.load(schema_file) object["job_template_input_schema"] = schema_json.get( "input_schema") object["job_template_output_schema"] = schema_json.get( "output_schema") self._vnc_lib.job_template_create(instance_obj) else: self._vnc_lib._object_create(res_type, instance_obj) except RefsExistError: pass def test_load_init_data_2(self): object = {} res_type = "" fq_name = "" try: with open("../fabric-ansible/ansible-playbooks/conf" "/predef_payloads.json") as data_file: input_json = json.load(data_file) for item in input_json.get('data'): res_type = item.get("object_type") for object in item.get("objects"): fq_name = object.get("name") self._vnc_lib._object_read(res_type=res_type, fq_name=fq_name) except NoIdError: self.create_object(object, res_type, fq_name) except Exception as e: print ("Test failed due to unexpected error: %s" % str(e)) # Test when object_type having invalid name class TestInitDataError2(test_case.ApiServerTestCase): @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) json_data = { "data": [ { "object_type": "abc", "objects": [{"fq_name": ["test"]}] } ] } if not os.path.exists("conf"): os.makedirs("conf") with open("conf/predef_payloads.json", "w") as f: json.dump(json_data, f) super(TestInitDataError2, cls).setUpClass( extra_config_knobs=[('DEFAULTS', 'fabric_ansible_dir', ".")]) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) if os.path.exists("conf"): shutil.rmtree("conf") super(TestInitDataError2, cls).tearDownClass(*args, **kwargs) # end tearDownClass @retries(5, hook=retry_exc_handler) def test_load_init_data_02(self): try: ipam_fq_name = ['default-domain', 'default-project', 'service-chain-flat-ipam'] ipam_obj = self._vnc_lib.network_ipam_read(fq_name=ipam_fq_name) if (ipam_obj): jb_list = self._vnc_lib.job_templates_list() self.assertEquals(len(jb_list.get('job-templates')), 0) except Exception as e: print( "Test failed due to unexpected error: %s" % str(e)) # Testing when json is invalid class TestInitDataError3(test_case.ApiServerTestCase): @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) json_data = "abc" if not os.path.exists("conf"): os.makedirs("conf") with open("conf/predef_payloads.json", "w") as f: f.write(json_data) super(TestInitDataError3, cls).setUpClass( extra_config_knobs=[('DEFAULTS', 'fabric_ansible_dir', ".")]) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) if os.path.exists("conf"): shutil.rmtree("conf") super(TestInitDataError3, cls).tearDownClass(*args, **kwargs) # end tearDownClass @retries(5, hook=retry_exc_handler) def test_load_init_data_04(self): try: ipam_fq_name = ['default-domain', 'default-project', 'service-chain-flat-ipam'] ipam_obj = self._vnc_lib.network_ipam_read(fq_name=ipam_fq_name) if (ipam_obj): jb_list = self._vnc_lib.job_templates_list() self.assertEquals(len(jb_list.get('job-templates')), 0) except Exception as e: print("Test failed due to unexpected error: %s" % str(e)) # Testing when tag type is unknown class TestInitDataError4(test_case.ApiServerTestCase): @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) # create a file in current dir and put some invalid json # create predef_payloads.json and schema/files json_data = { "data": [ { "object_type": "tag", "objects": [ { "fq_name": [ "abc=management_ip" ], "name": "abc=management_ip", "tag_type_name": "abc", "tag_value": "management_ip" } ] } ] } if not os.path.exists("conf"): os.makedirs("conf") with open("conf/predef_payloads.json", "w") as f: json.dump(json_data, f) super(TestInitDataError4, cls).setUpClass( extra_config_knobs=[('DEFAULTS', 'fabric_ansible_dir', ".")]) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) if os.path.exists("conf"): shutil.rmtree("conf") super(TestInitDataError4, cls).tearDownClass(*args, **kwargs) # end tearDownClass @retries(5, hook=retry_exc_handler) def test_load_init_data_05(self): try: ipam_fq_name = ['default-domain', 'default-project', 'service-chain-flat-ipam'] ipam_obj = self._vnc_lib.network_ipam_read(fq_name=ipam_fq_name) if (ipam_obj): tags = self._vnc_lib.tags_list() self.assertEquals(len(tags.get('tags')), 0) except Exception as e: print("Test failed due to unexpected error: %s" % str(e))
# coding: utf-8 """ 3Di API 3Di simulation API (latest version: 3.0) Framework release: 1.0.16 3Di core release: 2.0.11 deployed on: 07:33AM (UTC) on September 04, 2020 # noqa: E501 The version of the OpenAPI document: 3.0 Contact: info@nelen-schuurmans.nl Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from openapi_client.configuration import Configuration class NetCDFTimeseriesRain(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'url': 'str', 'multiplier': 'float', 'simulation': 'str', 'offset': 'int', 'duration': 'int', 'timestamps': 'list[int]', 'interval': 'int', 'values_reference': 'str', 'fill_value': 'str', 'units': 'str', 'file': 'FileReadOnly', 'uid': 'str' } attribute_map = { 'url': 'url', 'multiplier': 'multiplier', 'simulation': 'simulation', 'offset': 'offset', 'duration': 'duration', 'timestamps': 'timestamps', 'interval': 'interval', 'values_reference': 'values_reference', 'fill_value': 'fill_value', 'units': 'units', 'file': 'file', 'uid': 'uid' } def __init__(self, url=None, multiplier=None, simulation=None, offset=None, duration=None, timestamps=None, interval=None, values_reference=None, fill_value=None, units=None, file=None, uid=None, local_vars_configuration=None): # noqa: E501 """NetCDFTimeseriesRain - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._url = None self._multiplier = None self._simulation = None self._offset = None self._duration = None self._timestamps = None self._interval = None self._values_reference = None self._fill_value = None self._units = None self._file = None self._uid = None self.discriminator = None if url is not None: self.url = url if multiplier is not None: self.multiplier = multiplier if simulation is not None: self.simulation = simulation self.offset = offset self.duration = duration self.timestamps = timestamps self.interval = interval self.values_reference = values_reference if fill_value is not None: self.fill_value = fill_value self.units = units if file is not None: self.file = file if uid is not None: self.uid = uid @property def url(self): """Gets the url of this NetCDFTimeseriesRain. # noqa: E501 :return: The url of this NetCDFTimeseriesRain. # noqa: E501 :rtype: str """ return self._url @url.setter def url(self, url): """Sets the url of this NetCDFTimeseriesRain. :param url: The url of this NetCDFTimeseriesRain. # noqa: E501 :type: str """ self._url = url @property def multiplier(self): """Gets the multiplier of this NetCDFTimeseriesRain. # noqa: E501 :return: The multiplier of this NetCDFTimeseriesRain. # noqa: E501 :rtype: float """ return self._multiplier @multiplier.setter def multiplier(self, multiplier): """Sets the multiplier of this NetCDFTimeseriesRain. :param multiplier: The multiplier of this NetCDFTimeseriesRain. # noqa: E501 :type: float """ self._multiplier = multiplier @property def simulation(self): """Gets the simulation of this NetCDFTimeseriesRain. # noqa: E501 :return: The simulation of this NetCDFTimeseriesRain. # noqa: E501 :rtype: str """ return self._simulation @simulation.setter def simulation(self, simulation): """Sets the simulation of this NetCDFTimeseriesRain. :param simulation: The simulation of this NetCDFTimeseriesRain. # noqa: E501 :type: str """ self._simulation = simulation @property def offset(self): """Gets the offset of this NetCDFTimeseriesRain. # noqa: E501 offset of event in simulation in seconds # noqa: E501 :return: The offset of this NetCDFTimeseriesRain. # noqa: E501 :rtype: int """ return self._offset @offset.setter def offset(self, offset): """Sets the offset of this NetCDFTimeseriesRain. offset of event in simulation in seconds # noqa: E501 :param offset: The offset of this NetCDFTimeseriesRain. # noqa: E501 :type: int """ if (self.local_vars_configuration.client_side_validation and offset is not None and offset > 2147483647): # noqa: E501 raise ValueError("Invalid value for `offset`, must be a value less than or equal to `2147483647`") # noqa: E501 if (self.local_vars_configuration.client_side_validation and offset is not None and offset < -2147483648): # noqa: E501 raise ValueError("Invalid value for `offset`, must be a value greater than or equal to `-2147483648`") # noqa: E501 self._offset = offset @property def duration(self): """Gets the duration of this NetCDFTimeseriesRain. # noqa: E501 Duration of event in seconds # noqa: E501 :return: The duration of this NetCDFTimeseriesRain. # noqa: E501 :rtype: int """ return self._duration @duration.setter def duration(self, duration): """Sets the duration of this NetCDFTimeseriesRain. Duration of event in seconds # noqa: E501 :param duration: The duration of this NetCDFTimeseriesRain. # noqa: E501 :type: int """ if (self.local_vars_configuration.client_side_validation and duration is not None and duration > 2147483647): # noqa: E501 raise ValueError("Invalid value for `duration`, must be a value less than or equal to `2147483647`") # noqa: E501 if (self.local_vars_configuration.client_side_validation and duration is not None and duration < -2147483648): # noqa: E501 raise ValueError("Invalid value for `duration`, must be a value greater than or equal to `-2147483648`") # noqa: E501 self._duration = duration @property def timestamps(self): """Gets the timestamps of this NetCDFTimeseriesRain. # noqa: E501 in simulation in seconds # noqa: E501 :return: The timestamps of this NetCDFTimeseriesRain. # noqa: E501 :rtype: list[int] """ return self._timestamps @timestamps.setter def timestamps(self, timestamps): """Sets the timestamps of this NetCDFTimeseriesRain. in simulation in seconds # noqa: E501 :param timestamps: The timestamps of this NetCDFTimeseriesRain. # noqa: E501 :type: list[int] """ self._timestamps = timestamps @property def interval(self): """Gets the interval of this NetCDFTimeseriesRain. # noqa: E501 interval in seconds # noqa: E501 :return: The interval of this NetCDFTimeseriesRain. # noqa: E501 :rtype: int """ return self._interval @interval.setter def interval(self, interval): """Sets the interval of this NetCDFTimeseriesRain. interval in seconds # noqa: E501 :param interval: The interval of this NetCDFTimeseriesRain. # noqa: E501 :type: int """ if (self.local_vars_configuration.client_side_validation and interval is not None and interval > 2147483647): # noqa: E501 raise ValueError("Invalid value for `interval`, must be a value less than or equal to `2147483647`") # noqa: E501 if (self.local_vars_configuration.client_side_validation and interval is not None and interval < 0): # noqa: E501 raise ValueError("Invalid value for `interval`, must be a value greater than or equal to `0`") # noqa: E501 self._interval = interval @property def values_reference(self): """Gets the values_reference of this NetCDFTimeseriesRain. # noqa: E501 :return: The values_reference of this NetCDFTimeseriesRain. # noqa: E501 :rtype: str """ return self._values_reference @values_reference.setter def values_reference(self, values_reference): """Sets the values_reference of this NetCDFTimeseriesRain. :param values_reference: The values_reference of this NetCDFTimeseriesRain. # noqa: E501 :type: str """ if (self.local_vars_configuration.client_side_validation and values_reference is not None and len(values_reference) > 255): raise ValueError("Invalid value for `values_reference`, length must be less than or equal to `255`") # noqa: E501 self._values_reference = values_reference @property def fill_value(self): """Gets the fill_value of this NetCDFTimeseriesRain. # noqa: E501 :return: The fill_value of this NetCDFTimeseriesRain. # noqa: E501 :rtype: str """ return self._fill_value @fill_value.setter def fill_value(self, fill_value): """Sets the fill_value of this NetCDFTimeseriesRain. :param fill_value: The fill_value of this NetCDFTimeseriesRain. # noqa: E501 :type: str """ if (self.local_vars_configuration.client_side_validation and fill_value is not None and len(fill_value) > 128): raise ValueError("Invalid value for `fill_value`, length must be less than or equal to `128`") # noqa: E501 if (self.local_vars_configuration.client_side_validation and fill_value is not None and len(fill_value) < 1): raise ValueError("Invalid value for `fill_value`, length must be greater than or equal to `1`") # noqa: E501 self._fill_value = fill_value @property def units(self): """Gets the units of this NetCDFTimeseriesRain. # noqa: E501 :return: The units of this NetCDFTimeseriesRain. # noqa: E501 :rtype: str """ return self._units @units.setter def units(self, units): """Sets the units of this NetCDFTimeseriesRain. :param units: The units of this NetCDFTimeseriesRain. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and units is None: # noqa: E501 raise ValueError("Invalid value for `units`, must not be `None`") # noqa: E501 allowed_values = ["mm", "mm/h"] # noqa: E501 if self.local_vars_configuration.client_side_validation and units not in allowed_values: # noqa: E501 raise ValueError( "Invalid value for `units` ({0}), must be one of {1}" # noqa: E501 .format(units, allowed_values) ) self._units = units @property def file(self): """Gets the file of this NetCDFTimeseriesRain. # noqa: E501 :return: The file of this NetCDFTimeseriesRain. # noqa: E501 :rtype: FileReadOnly """ return self._file @file.setter def file(self, file): """Sets the file of this NetCDFTimeseriesRain. :param file: The file of this NetCDFTimeseriesRain. # noqa: E501 :type: FileReadOnly """ self._file = file @property def uid(self): """Gets the uid of this NetCDFTimeseriesRain. # noqa: E501 :return: The uid of this NetCDFTimeseriesRain. # noqa: E501 :rtype: str """ return self._uid @uid.setter def uid(self, uid): """Sets the uid of this NetCDFTimeseriesRain. :param uid: The uid of this NetCDFTimeseriesRain. # noqa: E501 :type: str """ self._uid = uid def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, NetCDFTimeseriesRain): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, NetCDFTimeseriesRain): return True return self.to_dict() != other.to_dict()
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making BK-BASE 蓝鲸基础平台 available. Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. BK-BASE 蓝鲸基础平台 is licensed under the MIT License. License for BK-BASE 蓝鲸基础平台: -------------------------------------------------------------------- Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import json from django.utils.translation import ugettext as _ from dataflow.pizza_settings import KAFKA_OP_ROLE_NAME from dataflow.shared.api.modules.datamanage import DatamanageApi from dataflow.shared.api.util.api_driver import APIResponseUtil as res_util from dataflow.shared.databus.databus_helper import DatabusHelper class DatamanageHelper(object): @staticmethod def op_metric_report(message, kafka_topic, tags): request_params = { "message": json.dumps(message), "kafka_topic": kafka_topic, "tags": tags, } res = DatamanageApi.metrics.report(request_params) res_util.check_response(res) return res.data @staticmethod def get_result_table_metric(database, sql, geog_area_code): request_params = {"database": database, "sql": sql, "tags": [geog_area_code]} res = DatamanageApi.metrics.query(request_params) res_util.check_response(res) return res.data # 优化指标,不再采用 sql 查询的方式 @staticmethod def get_result_table_metric_v2(request_params): res = DatamanageApi.metrics_v2.list(request_params) res_util.check_response(res) return res.data @staticmethod def get_alert_detail_v2(request_params): res = DatamanageApi.alert_detail.list(request_params) res_util.check_response(res) return res.data @staticmethod def get_batch_executions(processing_ids): """ { 'interval': 3600, 'execute_history': [] } @param processing_ids: @return: """ request_params = {"processing_ids": processing_ids} res = DatamanageApi.dmonitor.batch_executions(request_params) res_util.check_response(res) return res.data @staticmethod def get_alert_details(flow_id, start_time, end_time): """ [{ 'message': 'xxx', 'message_en': 'xxx', 'full_message': 'xxx', 'full_message_en': 'xxx' }] @param flow_id: @param start_time: @param end_time: @return: """ request_params = { "flow_id": flow_id, "start_time": start_time, "end_time": end_time, "dimensions": json.dumps({"generate_type": "user"}), } res = DatamanageApi.dmonitor.alert_details(request_params) res_util.check_response(res) return res.data @staticmethod def get_metric_kafka_server(geog_area_code): channels_info = DatabusHelper.list_channel_info([KAFKA_OP_ROLE_NAME, geog_area_code]) if len(channels_info) != 1: raise Exception(_("kafka-op 连接信息不唯一,请联系管理员处理.")) metric_kafka_server = "{}:{}".format( channels_info[0]["cluster_domain"], channels_info[0]["cluster_port"], ) return metric_kafka_server @staticmethod def create_alert_config(flow_id, dmonitor_type="alert_configs"): request_params = { "flow_id": flow_id, "dmonitor_type": dmonitor_type, } res = DatamanageApi.dmonitor_dataflow.create(request_params) res_util.check_response(res) return res.data # 数据修正相关 @staticmethod def create_data_correct(params): res = DatamanageApi.data_correct.create(params) res_util.check_response(res) return res.data @staticmethod def update_data_correct(params): res = DatamanageApi.data_correct.update(params) res_util.check_response(res) return res.data @staticmethod def get_data_correct(params): res = DatamanageApi.data_correct.retrieve(params) res_util.check_response(res) return res.data @staticmethod def del_data_correct(params): res = DatamanageApi.data_correct.delete(params) res_util.check_response(res) return res.data # 数据模型应用相关 @staticmethod def create_data_model_instance(params): res = DatamanageApi.data_model_instance.create(params) res_util.check_response(res) return res.data @staticmethod def update_data_model_instance(params): res = DatamanageApi.data_model_instance.update(params) res_util.check_response(res) return res.data @staticmethod def get_data_model_instance(params): res = DatamanageApi.data_model_instance.retrieve(params) res_util.check_response(res) return res.data @staticmethod def del_data_model_instance(params): res = DatamanageApi.data_model_instance.delete(params) res_util.check_response(res) return res.data @staticmethod def rollback_data_model_instance(params): res = DatamanageApi.data_model_instance.rollback(params) res_util.check_response(res) return res.data # 数据模型指标相关 @staticmethod def create_data_model_indicator(params): res = DatamanageApi.data_model_indicator.create(params) res_util.check_response(res) return res.data @staticmethod def update_data_model_indicator(params): res = DatamanageApi.data_model_indicator.update(params) res_util.check_response(res) return res.data @staticmethod def get_data_model_indicator(params): res = DatamanageApi.data_model_indicator.retrieve(params) res_util.check_response(res) return res.data @staticmethod def del_data_model_indicator(params): res = DatamanageApi.data_model_indicator.delete(params) res_util.check_response(res) return res.data @staticmethod def rollback_data_model_indicator(params): res = DatamanageApi.data_model_indicator.rollback(params) res_util.check_response(res) return res.data @staticmethod def check_data_model_instance(params): res = DatamanageApi.data_model_instance_check.list(params) return res
#main game section # %% plansza_do_gry = {'7':' ','8':' ','9':' ', '4':' ','5':' ','6':' ', '1':' ','2':' ','3':' '} klawisze_gry=[] for key in plansza_do_gry: klawisze_gry.append(key) # print(klawisze_gry) def drukuj_plansze(pole): print(f"{pole['7']} | {pole['8']} | {pole['9']}") print('- + - + -') print(f"{pole['4']} | {pole['5']} | {pole['6']}") print('- + - + -') print(f"{pole['1']} | {pole['2']} | {pole['3']}") # drukuj_plansze(plansza_do_gry) def gra(): gracz = 'X' licznik=0 for i in range(10): drukuj_plansze(plansza_do_gry) move=input(f"To jest ruch, {gracz}. Wybierz gdzie chcesz postawić znak") if plansza_do_gry[move] == ' ': plansza_do_gry[move] = gracz licznik += 1 else: print('miejsce zajęte\nwstaw znak w inne pole') continue if licznik >=5: #i if plansza_do_gry['7'] == plansza_do_gry['8'] == plansza_do_gry['9'] != ' ': drukuj_plansze(plansza_do_gry) print("\nKoniec Gry") print(f"Wygrał gracz: {gracz}") break elif plansza_do_gry['4'] == plansza_do_gry['5'] == plansza_do_gry['6'] != ' ': drukuj_plansze(plansza_do_gry) print("\nKoniec Gry") print(f"Wygrał gracz: {gracz}") break elif plansza_do_gry['1'] == plansza_do_gry['2'] == plansza_do_gry['3'] != ' ': drukuj_plansze(plansza_do_gry) print("\nKoniec Gry") print(f"Wygrał gracz: {gracz}") break elif plansza_do_gry['1'] == plansza_do_gry['4'] == plansza_do_gry['7'] != ' ': drukuj_plansze(plansza_do_gry) print("\nKoniec Gry") print(f"Wygrał gracz: {gracz}") break elif plansza_do_gry['2'] == plansza_do_gry['5'] == plansza_do_gry['8'] != ' ': drukuj_plansze(plansza_do_gry) print("\nKoniec Gry") print(f"Wygrał gracz: {gracz}") break elif plansza_do_gry['3'] == plansza_do_gry['6'] == plansza_do_gry['9'] != ' ': drukuj_plansze(plansza_do_gry) print("\nKoniec Gry") print(f"Wygrał gracz: {gracz}") break elif plansza_do_gry['1'] == plansza_do_gry['5'] == plansza_do_gry['9'] != ' ': drukuj_plansze(plansza_do_gry) print("\nKoniec Gry") print(f"Wygrał gracz: {gracz}") break elif plansza_do_gry['3'] == plansza_do_gry['5'] == plansza_do_gry['7'] != ' ': drukuj_plansze(plansza_do_gry) print("\nKoniec Gry") print(f"Wygrał gracz: {gracz}") break if licznik == 9: print("\nKoniec Gry") print("remis") if gracz == 'X': gracz = 'O' else: gracz = 'X' restart = input('grasz ponownie?/n(t/n') if restart == 't' or restart == 'T': for key in klawisze_gry: plansza_do_gry[key] = ' ' gra() #wywołanie rekurencyjne #superfunkcja if __name__ == '__main__': #dotyczy pakietów i pakowania do pakietu gra() # %%
""" WSGI config for thread_33988 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'thread_33988.settings') application = get_wsgi_application()
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT finetuning runner.""" from __future__ import absolute_import, division, print_function import argparse import logging import os import sys import random from tqdm import tqdm, trange import numpy as np from scipy.special import softmax # from sklearn.utils.extmath import softmax import torch from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from torch.utils.data.distributed import DistributedSampler from torch.nn import CrossEntropyLoss, MSELoss from tensorboardX import SummaryWriter from pytorch_pretrained_bert.file_utils import WEIGHTS_NAME, CONFIG_NAME from pytorch_pretrained_bert.modeling import BertForSequenceClassification from pytorch_pretrained_bert.tokenization import BertTokenizer from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule from run_classifier_dataset_utils import processors, output_modes, convert_examples_to_features, compute_metrics if sys.version_info[0] == 2: import cPickle as pickle else: import pickle logger = logging.getLogger(__name__) def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.") parser.add_argument("--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " "bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument("--task_name", default=None, type=str, required=True, help="The name of the task to train.") parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") ## Other parameters parser.add_argument("--loss_weight", default=None, type=str, help="The Loss Weight.") parser.add_argument("--pop_classifier_layer", action='store_true', help="pop classifier layer") parser.add_argument("--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3") parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_predict", action='store_true', help="Whether to run predict on the test set.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=8, type=int, help="Total batch size for eval.") parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predict.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', type=float, default=0, help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.") parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.") args = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') args.device = device logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( args.gradient_accumulation_steps)) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_eval and not args.do_predict: raise ValueError("At least one of `do_train`, `do_eval` or `do_predict` must be True.") if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir: raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir)) if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) task_name = args.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]() output_mode = output_modes[task_name] label_list = processor.get_labels() num_labels = len(label_list) if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) print("pop_classifier_layer", args.pop_classifier_layer) model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels, pop_classifier_layer=args.pop_classifier_layer) if args.local_rank == 0: torch.distributed.barrier() if args.fp16: model.half() model.to(device) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) elif n_gpu > 1: model = torch.nn.DataParallel(model) print("loss_weight", args.loss_weight) global_step = 0 nb_tr_steps = 0 tr_loss = 0 if args.do_train: if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() # Prepare data loader train_examples = processor.get_train_examples(args.data_dir) cached_train_features_file = os.path.join(args.data_dir, 'train_{0}_{1}_{2}'.format( list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(task_name))) try: with open(cached_train_features_file, "rb") as reader: train_features = pickle.load(reader) except: train_features = convert_examples_to_features( train_examples, label_list, args.max_seq_length, tokenizer, output_mode) if args.local_rank == -1 or torch.distributed.get_rank() == 0: logger.info(" Saving train features into cached file %s", cached_train_features_file) with open(cached_train_features_file, "wb") as writer: pickle.dump(train_features, writer) all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) if output_mode == "classification": all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long) elif output_mode == "regression": all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.float) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) if args.local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] if args.fp16: try: from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, max_grad_norm=1.0) if args.loss_scale == 0: optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion, t_total=num_train_optimization_steps) else: optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=num_train_optimization_steps) logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) model.train() for _ in trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]): tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, label_ids = batch # define a new function to compute loss values for both output_modes logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask) # print(input_ids) # print(logits) # print(label_ids) if output_mode == "classification": if args.loss_weight == None: loss_fct = CrossEntropyLoss() else: loss_weight= [int(_) for _ in args.loss_weight.split(",")] loss_fct = CrossEntropyLoss(torch.FloatTensor(loss_weight).cuda()) loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1)) elif output_mode == "regression": loss_fct = MSELoss() loss = loss_fct(logits.view(-1), label_ids.view(-1)) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: optimizer.backward(loss) else: loss.backward() tr_loss += loss.item() nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: # modify learning rate with special warm up BERT uses # if args.fp16 is False, BertAdam is used that handles this automatically lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step optimizer.step() optimizer.zero_grad() global_step += 1 if args.local_rank in [-1, 0]: tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step) tb_writer.add_scalar('loss', loss.item(), global_step) ### Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() ### Example: if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Save a trained model, configuration and tokenizer model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self # If we save using the predefined names, we can load using `from_pretrained` output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME) output_config_file = os.path.join(args.output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned model = BertForSequenceClassification.from_pretrained(args.output_dir, num_labels=num_labels) tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) # Good practice: save your training arguments together with the trained model output_args_file = os.path.join(args.output_dir, 'training_args.bin') torch.save(args, output_args_file) else: model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels) model.to(device) ### Evaluation if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): eval_examples = processor.get_dev_examples(args.data_dir) cached_eval_features_file = os.path.join(args.data_dir, 'dev_{0}_{1}_{2}'.format( list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(task_name))) try: with open(cached_eval_features_file, "rb") as reader: eval_features = pickle.load(reader) except: eval_features = convert_examples_to_features( eval_examples, label_list, args.max_seq_length, tokenizer, output_mode) if args.local_rank == -1 or torch.distributed.get_rank() == 0: logger.info(" Saving eval features into cached file %s", cached_eval_features_file) with open(cached_eval_features_file, "wb") as writer: pickle.dump(eval_features, writer) logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", args.eval_batch_size) all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) if output_mode == "classification": all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long) elif output_mode == "regression": all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.float) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) # Run prediction for full data if args.local_rank == -1: eval_sampler = SequentialSampler(eval_data) else: eval_sampler = DistributedSampler(eval_data) # Note that this sampler samples randomly eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) model.eval() eval_loss = 0 nb_eval_steps = 0 preds = [] out_label_ids = None for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"): input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) label_ids = label_ids.to(device) with torch.no_grad(): logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask) print(logits ) print(label_ids) print(logits.view(-1, num_labels), label_ids.view(-1)) # create eval loss and other metric required by the task if output_mode == "classification": if args.loss_weight == None: loss_fct = CrossEntropyLoss() else: loss_weight= [int(_) for _ in args.loss_weight.split(",")] loss_fct = CrossEntropyLoss(torch.FloatTensor(loss_weight).cuda()) tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1)) elif output_mode == "regression": loss_fct = MSELoss() tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1)) eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if len(preds) == 0: preds.append(logits.detach().cpu().numpy()) out_label_ids = label_ids.detach().cpu().numpy() else: preds[0] = np.append( preds[0], logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append( out_label_ids, label_ids.detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps preds = preds[0] print(preds) def swap_value(a): temp=a[0];a[0]=a[1];a[1]=temp if task_name == "copa": preds = softmax(preds,axis=1) print(preds) for i in range(int(len(preds)/2)): if preds[2*i][0]>=preds[2*i+1][0]: if preds[2*i][0]<preds[2*i][1]: # print(preds[2*i][0], preds[2*i][1]) swap_value(preds[2*i]) # print(preds[2*i][0], preds[2*i][1]) if preds[2*i+1][0]>preds[2*i+1][1]: swap_value(preds[2*i+1]) else: if preds[2*i][0]>preds[2*i][1]: swap_value(preds[2*i]) if preds[2*i+1][0]<preds[2*i+1][1]: swap_value(preds[2*i+1]) print(preds) if output_mode == "classification": preds = np.argmax(preds, axis=1) elif output_mode == "regression": preds = np.squeeze(preds) print(preds,out_label_ids) result = compute_metrics(task_name, preds, out_label_ids) loss = tr_loss/global_step if args.do_train else None result['eval_loss'] = eval_loss result['global_step'] = global_step result['loss'] = loss output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) ### Prediction if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0): predict_examples = processor.get_test_examples(args.data_dir) cached_predict_features_file = os.path.join(args.data_dir, 'predict_{0}_{1}_{2}'.format( list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(task_name))) try: with open(cached_predict_features_file, "rb") as reader: predict_features = pickle.load(reader) except: predict_features = convert_examples_to_features( predict_examples, label_list, args.max_seq_length, tokenizer, output_mode) if args.local_rank == -1 or torch.distributed.get_rank() == 0: logger.info(" Saving predict features into cached file %s", cached_predict_features_file) with open(cached_predict_features_file, "wb") as writer: pickle.dump(predict_features, writer) logger.info("***** Running prediction *****") logger.info(" Num examples = %d", len(predict_examples)) logger.info(" Batch size = %d", args.predict_batch_size) all_input_ids = torch.tensor([f.input_ids for f in predict_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in predict_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in predict_features], dtype=torch.long) if output_mode == "classification": all_label_ids = torch.tensor([f.label_id for f in predict_features], dtype=torch.long) elif output_mode == "regression": all_label_ids = torch.tensor([f.label_id for f in predict_features], dtype=torch.float) predict_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) # Run prediction for full data if args.local_rank == -1: predict_sampler = SequentialSampler(predict_data) else: predict_sampler = DistributedSampler(predict_data) # Note that this sampler samples randomly predict_dataloader = DataLoader(predict_data, sampler=predict_sampler, batch_size=args.predict_batch_size) model.eval() # predict_loss = 0 # nb_predict_steps = 0 preds = [] out_label_ids = None for input_ids, input_mask, segment_ids, label_ids in tqdm(predict_dataloader, desc="predicting"): input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) label_ids = label_ids.to(device) with torch.no_grad(): logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask) print(logits ) print(label_ids) # create eval loss and other metric required by the task # if output_mode == "classification": # loss_fct = CrossEntropyLoss() # tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1)) # elif output_mode == "regression": # loss_fct = MSELoss() # tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1)) # # eval_loss += tmp_eval_loss.mean().item() # nb_predict_steps += 1 if len(preds) == 0: preds.append(logits.detach().cpu().numpy()) # out_label_ids = label_ids.detach().cpu().numpy() else: preds[0] = np.append( preds[0], logits.detach().cpu().numpy(), axis=0) # out_label_ids = np.append( # out_label_ids, label_ids.detach().cpu().numpy(), axis=0) # # eval_loss = eval_loss / nb_eval_steps preds = preds[0] print(preds) if task_name == "copa": preds = softmax(preds,axis=1) print(preds) results=[] for i in range(int(len(preds)/2)): if preds[2*i][0]>=preds[2*i+1][0]: results.append(0) else: results.append(1) preds= results label_map = {i : i for i in range(2)} else: if output_mode == "classification": preds = np.argmax(preds, axis=1) elif output_mode == "regression": preds = np.squeeze(preds) label_map = {i : label for i, label in enumerate(label_list)} print(preds) # result = compute_metrics(task_name, preds, out_label_ids) # loss = tr_loss/global_step if args.do_train else None # result['eval_loss'] = eval_loss # result['global_step'] = global_step # result['loss'] = loss output_predict_file = os.path.join(args.output_dir, "predict_results.txt") with open(output_predict_file, "w") as writer: logger.info("***** Predict results *****") for i in range(len(preds)): label_i = label_map[preds[i]] # json_i= "\"idx: %d, \"label\": \"label_i\"" writer.write("{\"idx\": %d, \"label\": \"%s\"}\n"%(i,label_i)) # for key in sorted(result.keys()): # logger.info(" %s = %s", key, str(result[key])) # writer.write("%s = %s\n" % (key, str(result[key]))) if __name__ == "__main__": main()
import compileall import re compileall.compile_dir( 'examples', maxlevels=0, )
from functools import partial from unittest.mock import Mock, patch import graphene import pytest from django.contrib.auth.models import AnonymousUser from django.db.models import Q from django.shortcuts import reverse from graphql.error import GraphQLError from graphql_relay import to_global_id from ...core.utils import from_global_id_or_error from ...product.types import Product from ...tests.utils import get_graphql_content from ...utils import get_nodes from ...utils.filters import filter_by_query_param def test_middleware_dont_generate_sql_requests(client, settings, assert_num_queries): """When requesting on the GraphQL API endpoint, no SQL request should happen indirectly. This test ensures that.""" # Enables the Graphql playground settings.DEBUG = True with assert_num_queries(0): response = client.get(reverse("api")) assert response.status_code == 200 def test_jwt_middleware(client, admin_user): user_details_query = """ { me { email } } """ create_token_query = """ mutation { tokenCreate(email: "admin@example.com", password: "password") { token } } """ api_url = reverse("api") api_client_post = partial(client.post, api_url, content_type="application/json") # test setting AnonymousUser on unauthorized request to API response = api_client_post(data={"query": user_details_query}) repl_data = response.json() assert response.status_code == 200 assert isinstance(response.wsgi_request.user, AnonymousUser) assert repl_data["data"]["me"] is None # test creating a token for admin user response = api_client_post(data={"query": create_token_query}) repl_data = response.json() assert response.status_code == 200 assert response.wsgi_request.user == admin_user token = repl_data["data"]["tokenCreate"]["token"] assert token is not None # test request with proper JWT token authorizes the request to API response = api_client_post( data={"query": user_details_query}, HTTP_AUTHORIZATION=f"JWT {token}" ) repl_data = response.json() assert response.status_code == 200 assert response.wsgi_request.user == admin_user assert "errors" not in repl_data assert repl_data["data"]["me"] == {"email": admin_user.email} def test_real_query(user_api_client, product, channel_USD): product_attr = product.product_type.product_attributes.first() category = product.category attr_value = product_attr.values.first() query = """ query Root($categoryId: ID!, $sortBy: ProductOrder, $first: Int, $attributesFilter: [AttributeInput], $channel: String) { category(id: $categoryId) { ...CategoryPageFragmentQuery __typename } products(first: $first, sortBy: $sortBy, filter: {categories: [$categoryId], attributes: $attributesFilter}, channel: $channel) { ...ProductListFragmentQuery __typename } attributes(first: 20, filter: {inCategory: $categoryId}, channel: $channel) { edges { node { ...ProductFiltersFragmentQuery __typename } } } } fragment CategoryPageFragmentQuery on Category { id name ancestors(first: 20) { edges { node { name id __typename } } } children(first: 20) { edges { node { name id slug __typename } } } __typename } fragment ProductListFragmentQuery on ProductCountableConnection { edges { node { ...ProductFragmentQuery __typename } __typename } pageInfo { hasNextPage __typename } __typename } fragment ProductFragmentQuery on Product { id isAvailable name pricing { ...ProductPriceFragmentQuery __typename } thumbnailUrl1x: thumbnail(size: 255){ url } thumbnailUrl2x: thumbnail(size: 510){ url } __typename } fragment ProductPriceFragmentQuery on ProductPricingInfo { discount { gross { amount currency __typename } __typename } priceRange { stop { gross { amount currency __typename } currency __typename } start { gross { amount currency __typename } currency __typename } __typename } __typename } fragment ProductFiltersFragmentQuery on Attribute { id name slug choices(first: 10) { edges { node { id name slug __typename } } } __typename } """ variables = { "categoryId": graphene.Node.to_global_id("Category", category.id), "sortBy": {"field": "NAME", "direction": "ASC"}, "first": 1, "attributesFilter": [ {"slug": f"{product_attr.slug}", "values": [f"{attr_value.slug}"]} ], "channel": channel_USD.slug, } response = user_api_client.post_graphql(query, variables) get_graphql_content(response) def test_get_nodes(product_list): global_ids = [to_global_id("Product", product.pk) for product in product_list] # Make sure function works even if duplicated ids are provided global_ids.append(to_global_id("Product", product_list[0].pk)) # Return products corresponding to global ids products = get_nodes(global_ids, Product) assert products == product_list # Raise an error if requested id has no related database object nonexistent_item = Mock(type="Product", pk=-1) nonexistent_item_global_id = to_global_id( nonexistent_item.type, nonexistent_item.pk ) global_ids.append(nonexistent_item_global_id) msg = "There is no node of type {} with pk {}".format( nonexistent_item.type, nonexistent_item.pk ) with pytest.raises(AssertionError) as exc: get_nodes(global_ids, Product) assert exc.value.args == (msg,) global_ids.pop() # Raise an error if one of the node is of wrong type invalid_item = Mock(type="test", pk=-1) invalid_item_global_id = to_global_id(invalid_item.type, invalid_item.pk) global_ids.append(invalid_item_global_id) with pytest.raises(GraphQLError) as exc: get_nodes(global_ids, Product) assert exc.value.args == (f"Must receive Product id: {invalid_item_global_id}.",) # Raise an error if no nodes were found global_ids = [] msg = f"Could not resolve to a node with the global id list of '{global_ids}'." with pytest.raises(Exception) as exc: get_nodes(global_ids, Product) assert exc.value.args == (msg,) # Raise an error if pass wrong ids global_ids = ["a", "bb"] msg = f"Could not resolve to a node with the global id list of '{global_ids}'." with pytest.raises(Exception) as exc: get_nodes(global_ids, Product) assert exc.value.args == (msg,) @patch("saleor.product.models.Product.objects") def test_filter_by_query_param(qs): qs.filter.return_value = qs qs = filter_by_query_param(qs, "test", ["name", "force"]) test_kwargs = {"name__icontains": "test", "force__icontains": "test"} q_objects = Q() for q in test_kwargs: q_objects |= Q(**{q: test_kwargs[q]}) # FIXME: django 1.11 fails on called_once_with(q_objects) qs.filter.call_count == 1 def test_from_global_id_or_error(product): invalid_id = "invalid" message = f"Couldn't resolve id: {invalid_id}." with pytest.raises(GraphQLError) as error: from_global_id_or_error(invalid_id) assert str(error.value) == message def test_from_global_id_or_error_wth_invalid_type(product): product_id = graphene.Node.to_global_id("Product", product.id) message = "Must receive a ProductVariant id." with pytest.raises(GraphQLError) as error: from_global_id_or_error(product_id, "ProductVariant", raise_error=True) assert str(error.value) == message def test_from_global_id_or_error_wth_type(product): expected_product_type = str(Product) expected_product_id = graphene.Node.to_global_id(expected_product_type, product.id) product_type, product_id = from_global_id_or_error( expected_product_id, expected_product_type ) assert product_id == str(product.id) assert product_type == expected_product_type
import numpy import os import math from azureml.core.model import Model from azureml.core.dataset import Dataset from inference_schema.schema_decorators \ import input_schema, output_schema from inference_schema.parameter_types.numpy_parameter_type \ import NumpyParameterType import keras from keras.models import load_model from sklearn.preprocessing import MinMaxScaler from azureml.core.run import Run from azureml.core import Dataset, Datastore, Workspace import argparse import json import pandas as pd import numpy as np from azureml.core.authentication import ServicePrincipalAuthentication # from azureml.core.authentication import InteractiveLoginAuthentication def tts(data): data['date'] = pd.to_datetime(data['date']) data['date'] = (data['date'] - pd.Timestamp("1970-01-01")) // pd.Timedelta('1s') (train, test) = data[0:-2000].values, data[-2000:].values return (train, test) def scale_data(train_set, test_set): # apply Min Max Scaler scaler = MinMaxScaler(feature_range=(-1, 1)) scaler = scaler.fit(train_set[:, :4]) # reshape training set train_set = train_set.reshape(train_set.shape[0], train_set.shape[1]) train_set_scaled = scaler.transform(train_set[:, :4]) # reshape test set test_set = test_set.reshape(test_set.shape[0], test_set.shape[1]) test_set_scaled = scaler.transform(test_set[:, :4]) X_train, y_train = train_set[:, :4], train_set[:, 4:].ravel() X_test, y_test = test_set[:, :4], test_set[:, 4:].ravel() return X_train, y_train, X_test, y_test, scaler def init(): # load the model from file into a global object global model model_path = Model.get_model_path( os.getenv("AZUREML_MODEL_DIR").split('/')[-2]) print ("model path", model_path) # try: # print ("try") # dataset = pd.read_csv('/var/azureml-app/train.csv') # original_df = dataset.to_pandas_dataframe() # except: # print ("except") # train_dataset = original_df.to_csv('train.csv', index=False) # interactive_auth = InteractiveLoginAuthentication(tenant_id="def44f5f-0783-4b05-8f2f-dd615c5dfec4") # ws = Workspace(subscription_id="6542067a-127a-43ff-b7f2-007fe21a37f0", # resource_group="sales-mlops-rg", # workspace_name="sales-mlops-ws", # auth=interactive_auth) # ws.get_details() # print(original_df) model = keras.models.load_model(model_path) print("Current directory:", os.getcwd()) print("Model is loaded") # date = '6/25/2020' # store = 3 # item = 105 # price = 990 # date = pd.to_datetime(date) # date = (date - pd.Timestamp("1970-01-01")) // pd.Timedelta('1s') # input_sample = numpy.array([[date, store, item, price]]) # output_sample = numpy.array([4]) input_sample = numpy.array([[1591833600,34,759,690]]) output_sample = numpy.array([10]) @input_schema('data', NumpyParameterType(input_sample)) @output_schema(NumpyParameterType(output_sample)) def run(data, request_headers): global original_df sp = ServicePrincipalAuthentication(tenant_id="def44f5f-0783-4b05-8f2f-dd615c5dfec4", service_principal_id="add8f304-2d88-45e3-94fa-ac6cf335d5df", service_principal_password="If2-.7Wlno57NW6v9~nE~xNIj~naD-DL5f") ws = Workspace.get(name="sales-mlops-ws", auth = sp, subscription_id="6542067a-127a-43ff-b7f2-007fe21a37f0") ws.get_details() dataset = ws.datasets['salesforecast_ds'] original_df = dataset.to_pandas_dataframe() # date = '6/25/2020' # store = 34 # item = 759 # price = 690 # date = pd.to_datetime(date) # date = (date - pd.Timestamp("1970-01-01")) // pd.Timedelta('1s') date = data[0][0] prev_sales = [] (train, test) = tts(original_df) X_train, y_train, X_test, y_test, scaler_object = scale_data(train, test) first_date = original_df["date"][0] for x in original_df.index: last_date = original_df["date"][x] print("last date", last_date) days_diff = (int(date) - int(last_date)) / (60 * 60 * 24) total_data_days = (int(last_date) - int(first_date)) / (60 * 60 * 24) print("days:", days_diff) print("total_data_days:", total_data_days) for i in original_df.index: if (original_df["item"][i] == data[0][2] and original_df["store"][i] == data[0][1]): prev_sales.append(original_df["sales"][i]) prev_sales_avg = 0 prev_sales_avg = (sum(prev_sales)) / total_data_days forecast_result_array = [] test_set = data test_set_scaled = scaler_object.transform(test_set) X_test = test_set_scaled[:, :4] X_test = X_test.reshape(X_test.shape[0], 1, X_test.shape[1]) y_pred = model.predict(X_test) print("y_pred:",y_pred) result = y_pred[0][0][0] result = round(result) print("result:",result) prev_sales_avg = round (prev_sales_avg) next_day_prediction = math.ceil(result + prev_sales_avg) prev_sales.append(next_day_prediction) forecast_result_array.append(next_day_prediction) if days_diff > 1: for day in range(round(days_diff)): total_data_days += 1 prev_sales_avg = sum(prev_sales) / total_data_days prev_sales_avg = round(prev_sales_avg) prev_sales.append(prev_sales_avg) forecast_result_array.append(prev_sales_avg) end_result = sum(forecast_result_array) print("end result: ", end_result) print(('{{"RequestId":"{0}", ' '"TraceParent":"{1}", ' '"NumberOfPredictions":{2}}}' ).format( request_headers.get("X-Ms-Request-Id", ""), request_headers.get("Traceparent", ""), end_result )) return {"result": end_result} if __name__ == "__main__": init() # date ='6/25/2020' # store = 34 # item = 759 # price = 690 # date = pd.to_datetime(date) # date = (date - pd.Timestamp("1970-01-01")) // pd.Timedelta('1s') test = numpy.array([[date, store, item, price]]) #print("test:",test) #test =numpy.array([[1591833600,34,759,690]]) prediction = run(test, {}) print("Test result: ", prediction)
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Order.billing_call_prefix' db.add_column(u'shop_order', 'billing_call_prefix', self.gf('django.db.models.fields.CharField')(default='', max_length=100), keep_default=False) # Adding field 'Order.shipping_call_prefix' db.add_column(u'shop_order', 'shipping_call_prefix', self.gf('django.db.models.fields.CharField')(default='', max_length=100), keep_default=False) def backwards(self, orm): # Deleting field 'Order.billing_call_prefix' db.delete_column(u'shop_order', 'billing_call_prefix') # Deleting field 'Order.shipping_call_prefix' db.delete_column(u'shop_order', 'shipping_call_prefix') models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2013, 9, 13, 7, 33, 36, 439968)'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Group']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'blank': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2013, 9, 13, 7, 33, 36, 439200)'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Permission']"}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'shop.order': { 'Meta': {'object_name': 'Order'}, '_order_id': ('django.db.models.fields.CharField', [], {'max_length': '20', 'blank': 'True'}), 'billing_address': ('django.db.models.fields.TextField', [], {}), 'billing_call_prefix': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'billing_city': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'billing_company': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'billing_country': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'billing_first_name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'billing_last_name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'billing_phone': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'billing_zip_code': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'confirmed': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'currency': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'data': ('plata.fields.JSONField', [], {'blank': 'True'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'items_discount': ('django.db.models.fields.DecimalField', [], {'default': "'0.00'", 'max_digits': '18', 'decimal_places': '4'}), 'items_subtotal': ('django.db.models.fields.DecimalField', [], {'default': "'0.00'", 'max_digits': '18', 'decimal_places': '4'}), 'items_tax': ('django.db.models.fields.DecimalField', [], {'default': "'0.00'", 'max_digits': '18', 'decimal_places': '4'}), 'language_code': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '10', 'blank': 'True'}), 'notes': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'paid': ('django.db.models.fields.DecimalField', [], {'default': "'0.00'", 'max_digits': '18', 'decimal_places': '4'}), 'shipping_address': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'shipping_call_prefix': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'shipping_city': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'shipping_company': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'shipping_cost': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '18', 'decimal_places': '4', 'blank': 'True'}), 'shipping_country': ('django.db.models.fields.CharField', [], {'max_length': '3', 'blank': 'True'}), 'shipping_discount': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '18', 'decimal_places': '4', 'blank': 'True'}), 'shipping_first_name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'shipping_last_name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'shipping_method': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'shipping_phone': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'shipping_same_as_billing': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'blank': 'True'}), 'shipping_tax': ('django.db.models.fields.DecimalField', [], {'default': "'0.00'", 'max_digits': '18', 'decimal_places': '4'}), 'shipping_zip_code': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'status': ('django.db.models.fields.PositiveIntegerField', [], {'default': '10'}), 'total': ('django.db.models.fields.DecimalField', [], {'default': "'0.00'", 'max_digits': '18', 'decimal_places': '4'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'orders'", 'null': 'True', 'to': u"orm['auth.User']"}) }, u'shop.orderitem': { 'Meta': {'unique_together': "(('order', 'product'),)", 'object_name': 'OrderItem'}, '_line_item_discount': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '18', 'decimal_places': '4', 'blank': 'True'}), '_line_item_price': ('django.db.models.fields.DecimalField', [], {'default': '0', 'max_digits': '18', 'decimal_places': '4'}), '_line_item_tax': ('django.db.models.fields.DecimalField', [], {'default': '0', 'max_digits': '18', 'decimal_places': '4'}), '_unit_price': ('django.db.models.fields.DecimalField', [], {'max_digits': '18', 'decimal_places': '4'}), '_unit_tax': ('django.db.models.fields.DecimalField', [], {'max_digits': '18', 'decimal_places': '4'}), 'currency': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'data': ('plata.fields.JSONField', [], {'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_sale': ('django.db.models.fields.BooleanField', [], {'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'order': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'items'", 'to': u"orm['shop.Order']"}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['zai_products.ProductVariant']", 'null': 'True', 'blank': 'True'}), 'quantity': ('django.db.models.fields.IntegerField', [], {}), 'sku': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'tax_class': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['shop.TaxClass']", 'null': 'True', 'blank': 'True'}), 'tax_rate': ('django.db.models.fields.DecimalField', [], {'max_digits': '10', 'decimal_places': '2'}) }, u'shop.orderpayment': { 'Meta': {'object_name': 'OrderPayment'}, 'amount': ('django.db.models.fields.DecimalField', [], {'max_digits': '10', 'decimal_places': '2'}), 'authorized': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'currency': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'data': ('plata.fields.JSONField', [], {'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'notes': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'order': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'payments'", 'to': u"orm['shop.Order']"}), 'payment_method': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'payment_module': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'payment_module_key': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'status': ('django.db.models.fields.PositiveIntegerField', [], {'default': '10'}), 'timestamp': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'transaction_id': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}) }, u'shop.orderstatus': { 'Meta': {'object_name': 'OrderStatus'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'notes': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'order': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'statuses'", 'to': u"orm['shop.Order']"}), 'status': ('django.db.models.fields.PositiveIntegerField', [], {'max_length': '20'}) }, u'shop.taxclass': { 'Meta': {'object_name': 'TaxClass'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'priority': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'rate': ('django.db.models.fields.DecimalField', [], {'max_digits': '10', 'decimal_places': '2'}) }, u'zai_products.product': { 'Meta': {'object_name': 'Product'}, '_unit_price': ('django.db.models.fields.DecimalField', [], {'max_digits': '18', 'decimal_places': '4'}), 'currency': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'description_de': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'description_en': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'description_fr': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'description_it': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'description_ru': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name_de': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'name_fr': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'name_it': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'name_ru': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50', 'db_index': 'True'}), 'tax_class': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'+'", 'to': u"orm['shop.TaxClass']"}), 'tax_included': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'blank': 'True'}) }, u'zai_products.productvariant': { 'Meta': {'object_name': 'ProductVariant'}, 'grip': ('django.db.models.fields.CharField', [], {'default': "'chocolate'", 'max_length': '64'}), 'hand': ('django.db.models.fields.CharField', [], {'default': "'left'", 'max_length': '64'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'length': ('django.db.models.fields.CharField', [], {'default': "'small'", 'max_length': '64'}), 'lie': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['zai_products.Product']"}), 'shaft': ('django.db.models.fields.CharField', [], {'default': "'single'", 'max_length': '64'}), 'special_requirements': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': 'True'}) } } complete_apps = ['shop']
import unittest from simuloc.signal import Generator class GeneratorTestCase(unittest.TestCase): """GeneratorTestCase tests the generator class.""" def setUp(self): """Creates a instance of the generator class.""" self.cinst = Generator() def tearDown(self): pass def test_noise(self): """Tests the boundry of noise generator.""" self.assertTrue(self.cinst.noise(0.1) < 4) if __name__ == '__main__': unittest.main()
from source.camera import camera from source.LaneDetect import LaneDetect from moviepy.editor import VideoFileClip import glob import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import matplotlib.image as mpimg import numpy as np import cv2 # # def process_video(input_video_file): # clip1 = VideoFileClip(input_video_file); # outputclip = clip1.fl_image(process_vid) # outputclip.write_videofile('output_'+input_video_file, audio=False); def rgb2gray(rgb): return np.dot(rgb[...,:3], [0.299, 0.587, 0.114]) if __name__ == "__main__": print('main') # images = glob.glob('../camera_cal/calibration*.jpg') # print(images) camera = camera() # camera.calibration(images, x_cor=9, y_cor=6, outputfilename='./camera_calibration_data_1') camera.load_calibration_data('./camera_calibration_data.p') # # images = sorted(images, key=lambda x: float(re.findall("(\d+)", x)[0])) # # print('Correction images (successfully detected corners):') # plt.figure(figsize=(11.5, 9)) # gridspec.GridSpec(6, 3) # # Step through the list and search for chessboard corners # for i, image in enumerate(camera_calibrate.calibration_images_success): # plt.subplot2grid((6, 3), (i // 3, i % 3), colspan=1, rowspan=1) # plt.imshow(image) # plt.axis('off') # plt.show() # # plt.figure(figsize=(12, 4)) # plt.figtext(.5, .8, 'Images in which cv2 failed to find desired corners', fontsize=22, ha='center') # for i, p in enumerate(camera_calibrate.calibration_images_fail): # plt.subplot(1, 3, i + 1) # plt.imshow(mpimg.imread(p)) # draw the first image of each class # plt.title(p) # plt.axis('off') # plt.tight_layout(pad=0, h_pad=0, w_pad=0) # plt.show() # plt.savefig('fail.png') # camera_calibrate.load_calibration_data('./camera_calibration_data.p') # orig_img = mpimg.imread('../test_images/test1.jpg') # undist_img = camera_calibrate.undistort(orig_img) # f, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 6)) # ax1.imshow(orig_img) # ax1.set_title('Original', fontsize=20) # ax2.imshow(undist_img) # ax2.set_title('Undistorted', fontsize=20) # # plt.show() # plt.savefig('undistort2.png') # Perspective transform # for image in glob.glob('../test_images/*.jpg'): # orig_img = cv2.imread(image) # birdeye_img, _ = camera.birds_eye(orig_img) # f, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 6)) # f.tight_layout() # ax1.imshow(cv2.cvtColor(orig_img, cv2.COLOR_BGR2RGB)) # ax1.set_title('Original', fontsize=20) # ax2.imshow(cv2.cvtColor(birdeye_img, cv2.COLOR_BGR2RGB)) # ax2.set_title('Undistorted and Warped Image', fontsize=20) # plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.) # plt.show() # # plt.savefig('../output_images/warp_' + str(i) + '.png') # # edege # image = mpimg.imread('../test_images/test6.jpg') # lane_detecter = LaneDetect() # result = lane_detecter.get_edges(image) # # # Plot the result # f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9)) # # f.tight_layout() # ax1.axis('off') # ax1.imshow(image) # ax1.set_title('Original', fontsize=18) # ax2.axis('off') # ax2.set_title('Edge', fontsize=18) # # # ax2.imshow(result, cmap='gray') # plt.show() # plt.savefig('edge.png') # # Detect Lane line # for image_name in glob.glob('../test_images/*.jpg'): # orig_img = mpimg.imread(image_name) # # lane_detecter = LaneDetect() # lane_detecter.initcamera() # lane_detecter.initlines(orig_img) # output_img = lane_detecter.process_pipeline(orig_img) # f, (ax1) = plt.subplots(1, 1, figsize=(9, 6)) # ax1.imshow(output_img) # ax1.set_title('output_img', fontsize=20) # plt.axis('off') # plt.show() # break # Applying pipeline to video clip1 = VideoFileClip('../project_video.mp4') lane_detecter = LaneDetect() lane_detecter.initcamera() lane_detecter.initlines(clip1.get_frame(0)) outputclip = clip1.fl_image(lane_detecter.process_pipeline) outputclip.write_videofile('../output_videos/output_project_video.mp4', audio=False) # # clip1 = VideoFileClip('../harder_challenge_video.mp4'); # lane_detecter = LaneDetect(clip1.get_frame(0)) # outputclip = clip1.fl_image(lane_detecter.process_pipeline) # outputclip.write_videofile('../output_harder_challenge_video.mp4', audio=False) # # clip1 = VideoFileClip('../challenge_video.mp4') # lane_detecter = LaneDetect(clip1.get_frame(0)) # outputclip = clip1.fl_image(lane_detecter.process_pipeline) # outputclip.write_videofile('../output_challenge_video.mp4', audio=False)
# Mistral documentation build configuration file import os import sys on_rtd = os.environ.get('READTHEDOCS', None) == 'True' # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../../')) sys.path.insert(0, os.path.abspath('../')) sys.path.insert(0, os.path.abspath('./')) # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinxcontrib.apidoc', 'openstackdocstheme', ] # Add any paths that contain templates here, relative to this directory. # templates_path = ['_templates'] # sphinxcontrib.apidoc options apidoc_module_dir = '../../mistralclient' apidoc_output_dir = 'api' apidoc_excluded_paths = [ 'test', 'tests/*'] apidoc_separate_modules = True # The suffix of source filenames. source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Mistral Client' copyright = u'2016, Mistral Contributors' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'native' # A list of ignored prefixes for module index sorting. modindex_common_prefix = ['mistralclient.'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'openstackdocs' # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = 'MistralClient' # Custom sidebar templates, maps document names to template names. html_sidebars = { 'index': [ 'sidebarlinks.html', 'localtoc.html', 'searchbox.html', 'sourcelink.html' ], '**': [ 'localtoc.html', 'relations.html', 'searchbox.html', 'sourcelink.html' ] } # Output file base name for HTML help builder. htmlhelp_basename = 'Mistraldoc' # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'mistral_client', u'Mistral Client Documentation', [u'Mistral Contributors'], 1) ] # -- Options for openstackdocstheme ------------------------------------------- openstackdocs_repo_name = 'openstack/python-mistralclient' openstackdocs_bug_project = 'python-mistralclient' openstackdocs_bug_tag = '' openstackdocs_auto_name = False
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2018-07-08 17:37 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('reviews', '0008_auto_20180623_2009'), ] operations = [ migrations.AddField( model_name='movie', name='poster_thumbnail', field=models.ImageField(blank=True, help_text='Upload the poster thumbnail', null=True, upload_to='movie_posters/thumbnails/'), ), ]
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import pprint from collections import defaultdict from .context_query_attention import StructuredAttention from .encoder import StackedEncoder from .cnn import DepthwiseSeparableConv from .model_utils import save_pickle, mask_logits, flat_list_of_lists, \ find_max_triples, get_high_iou_sapns, expand_span class LinearWrapper(nn.Module): """1D conv layer""" def __init__(self, in_hsz, out_hsz, layer_norm=True, dropout=0.1, relu=True): super(LinearWrapper, self).__init__() self.relu = relu layers = [nn.LayerNorm(in_hsz)] if layer_norm else [] layers += [ nn.Dropout(dropout), nn.Linear(in_hsz, out_hsz) ] self.conv = nn.Sequential(*layers) def forward(self, x): """(N, L, D)""" if self.relu: return F.relu(self.conv(x), inplace=True) # (N, L, D) else: return self.conv(x) # (N, L, D) class ConvLinear(nn.Module): """1D conv layer""" def __init__(self, in_hsz, out_hsz, kernel_size=3, layer_norm=True, dropout=0.1, relu=True): super(ConvLinear, self).__init__() layers = [nn.LayerNorm(in_hsz)] if layer_norm else [] layers += [ nn.Dropout(dropout), DepthwiseSeparableConv(in_ch=in_hsz, out_ch=out_hsz, k=kernel_size, dim=1, relu=relu) ] self.conv = nn.Sequential(*layers) def forward(self, x): """(N, L, D)""" return self.conv(x) # (N, L, D) class STAGE(nn.Module): def __init__(self, opt): super(STAGE, self).__init__() self.opt = opt self.inference_mode = False self.sub_flag = opt.sub_flag self.vfeat_flag = opt.vfeat_flag self.vfeat_size = opt.vfeat_size self.t_iter = opt.t_iter self.extra_span_length = opt.extra_span_length self.add_local = opt.add_local self.use_sup_att = opt.use_sup_att self.num_negatives = opt.num_negatives self.negative_pool_size = opt.negative_pool_size self.num_hard = opt.num_hard self.drop_topk = opt.drop_topk self.margin = opt.margin self.att_loss_type = opt.att_loss_type self.scale = opt.scale self.alpha = opt.alpha self.dropout = opt.dropout self.hsz = opt.hsz self.bsz = None self.num_seg = None self.num_a = 5 self.flag_cnt = self.sub_flag + self.vfeat_flag self.wd_size = opt.embedding_size self.bridge_hsz = 300 self.bert_word_encoding_fc = nn.Sequential( nn.LayerNorm(self.wd_size), nn.Dropout(self.dropout), nn.Linear(self.wd_size, self.bridge_hsz), nn.ReLU(True), nn.LayerNorm(self.bridge_hsz), ) if self.sub_flag: print("Activate sub branch") if self.vfeat_flag: print("Activate vid branch") self.vid_fc = nn.Sequential( nn.LayerNorm(self.vfeat_size), nn.Dropout(self.dropout), nn.Linear(self.vfeat_size, self.bridge_hsz), nn.ReLU(True), nn.LayerNorm(self.bridge_hsz) ) if self.flag_cnt == 2: self.concat_fc = nn.Sequential( nn.LayerNorm(3 * self.hsz), nn.Dropout(self.dropout), nn.Linear(3 * self.hsz, self.hsz), nn.ReLU(True), nn.LayerNorm(self.hsz), ) self.input_embedding = nn.Sequential( nn.Dropout(self.dropout), nn.Linear(self.bridge_hsz, self.hsz), nn.ReLU(True), nn.LayerNorm(self.hsz), ) self.input_encoder = StackedEncoder(n_blocks=opt.input_encoder_n_blocks, n_conv=opt.input_encoder_n_conv, kernel_size=opt.input_encoder_kernel_size, num_heads=opt.input_encoder_n_heads, hidden_size=self.hsz, dropout=self.dropout) self.str_attn = StructuredAttention(dropout=self.dropout, scale=opt.scale, add_void=opt.add_non_visual) # no parameters inside self.c2q_down_projection = nn.Sequential( nn.LayerNorm(3 * self.hsz), nn.Dropout(self.dropout), nn.Linear(3*self.hsz, self.hsz), nn.ReLU(True), ) self.cls_encoder = StackedEncoder(n_blocks=opt.cls_encoder_n_blocks, n_conv=opt.cls_encoder_n_conv, kernel_size=opt.cls_encoder_kernel_size, num_heads=opt.cls_encoder_n_heads, hidden_size=self.hsz, dropout=self.dropout) self.cls_projection_layers = nn.ModuleList( [ LinearWrapper(in_hsz=self.hsz, out_hsz=self.hsz, layer_norm=True, dropout=self.dropout, relu=True) ] + [ ConvLinear(in_hsz=self.hsz, out_hsz=self.hsz, kernel_size=3, layer_norm=True, dropout=self.dropout, relu=True) for _ in range(self.t_iter)]) self.temporal_scoring_st_layers = nn.ModuleList([ LinearWrapper(in_hsz=self.hsz, out_hsz=1, layer_norm=True, dropout=self.dropout, relu=False) for _ in range(self.t_iter+1)]) self.temporal_scoring_ed_layers = nn.ModuleList([ LinearWrapper(in_hsz=self.hsz, out_hsz=1, layer_norm=True, dropout=self.dropout, relu=False) for _ in range(self.t_iter+1)]) self.temporal_criterion = nn.CrossEntropyLoss(reduction="sum") self.classifier = LinearWrapper(in_hsz=self.hsz * 2 if self.add_local else self.hsz, out_hsz=1, layer_norm=True, dropout=self.dropout, relu=False) def load_word_embedding(self, pretrained_embedding, requires_grad=False): self.word_embedding.weight.data.copy_(torch.from_numpy(pretrained_embedding)) self.word_embedding.weight.requires_grad = requires_grad def forward(self, batch): if self.inference_mode: return self.forward_main(batch) else: out, att_loss, att_predictions, temporal_loss, temporal_predictions, other_outputs = self.forward_main(batch) return out, att_loss, att_predictions, temporal_loss, temporal_predictions def forward_main(self, batch): """ Args: batch: edict, keys = qas, qas_mask, qa_noun_masks, sub, sub_mask, vcpt, vcpt_mask, vid, vid_mask, att_labels, att_labels_mask, qid, target, vid_name, ts_label qas, qas_mask, qa_noun_masks: (N, 5, Lqa) sub, sub_mask: (N, #imgs, Ls) vcpt, vcpt_mask: (N, #imgs, #regions) vid, vid_mask: (N, #imgs, #regions, D), (N, #imgs, #regions) att_labels, att_labels_mask: A list of N (#imgs, #qa-words, #regions) qid: list(int) vid_name: list(str) target: torch.LongTensor use_hard_negatives: bool, true to sample hard negatives q_l: int, length of the tokenized question anno_st_idx (list of int): each element is an index (at 0.5fps) of the first image with spatial annotation. ts_label: {"st": (N, ), "ed": (N, )} for 'st_ed'. (N, L) for 'frm' ts_label_mask: (N, L) for both 'st_ed' and 'frm' Returns: """ self.bsz = len(batch.qid) bsz = self.bsz num_a = self.num_a hsz = self.hsz a_embed = self.base_encoder(batch.qas_bert.view(bsz*num_a, -1, self.wd_size), # (N*5, L, D) batch.qas_mask.view(bsz * num_a, -1), # (N*5, L) self.bert_word_encoding_fc, self.input_embedding, self.input_encoder) # (N*5, L, D) a_embed = a_embed.view(bsz, num_a, 1, -1, hsz) # (N, 5, 1, L, D) a_mask = batch.qas_mask.view(bsz, num_a, 1, -1) # (N, 5, 1, L) attended_sub, attended_vid, attended_vid_mask, attended_sub_mask = (None, ) * 4 other_outputs = {} # {"pos_noun_mask": batch.qa_noun_masks} # used to visualization and compute att acc if self.sub_flag: num_imgs, num_words = batch.sub_bert.shape[1:3] sub_embed = self.base_encoder(batch.sub_bert.view(bsz*num_imgs, num_words, -1), # (N*Li, Lw) batch.sub_mask.view(bsz * num_imgs, num_words), # (N*Li, Lw) self.bert_word_encoding_fc, self.input_embedding, self.input_encoder) # (N*Li, Lw, D) sub_embed = sub_embed.contiguous().view(bsz, 1, num_imgs, num_words, -1) # (N, Li, Lw, D) sub_mask = batch.sub_mask.view(bsz, 1, num_imgs, num_words) # (N, 1, Li, Lw) attended_sub, attended_sub_mask, sub_raw_s, sub_normalized_s = \ self.qa_ctx_attention(a_embed, sub_embed, a_mask, sub_mask, noun_mask=None, non_visual_vectors=None) other_outputs["sub_normalized_s"] = sub_normalized_s other_outputs["sub_raw_s"] = sub_raw_s if self.vfeat_flag: num_imgs, num_regions = batch.vid.shape[1:3] vid_embed = F.normalize(batch.vid, p=2, dim=-1) # (N, Li, Lr, D) vid_embed = self.base_encoder(vid_embed.view(bsz*num_imgs, num_regions, -1), # (N*Li, Lw) batch.vid_mask.view(bsz * num_imgs, num_regions), # (N*Li, Lr) self.vid_fc, self.input_embedding, self.input_encoder) # (N*Li, L, D) vid_embed = vid_embed.contiguous().view(bsz, 1, num_imgs, num_regions, -1) # (N, 1, Li, Lr, D) vid_mask = batch.vid_mask.view(bsz, 1, num_imgs, num_regions) # (N, 1, Li, Lr) attended_vid, attended_vid_mask, vid_raw_s, vid_normalized_s = \ self.qa_ctx_attention(a_embed, vid_embed, a_mask, vid_mask, noun_mask=None, non_visual_vectors=None) other_outputs["vid_normalized_s"] = vid_normalized_s other_outputs["vid_raw_s"] = vid_raw_s if self.flag_cnt == 2: visual_text_embedding = torch.cat([attended_sub, attended_vid, attended_sub * attended_vid], dim=-1) # (N, 5, Li, Lqa, 3D) visual_text_embedding = self.concat_fc(visual_text_embedding) # (N, 5, Li, Lqa, D) out, target, t_scores = self.classfier_head_multi_proposal( visual_text_embedding, attended_vid_mask, batch.target, batch.ts_label, batch.ts_label_mask, extra_span_length=self.extra_span_length) elif self.sub_flag: out, target, t_scores = self.classfier_head_multi_proposal( attended_sub, attended_sub_mask, batch.target, batch.ts_label, batch.ts_label_mask, extra_span_length=self.extra_span_length) elif self.vfeat_flag: out, target, t_scores = self.classfier_head_multi_proposal( attended_vid, attended_vid_mask, batch.target, batch.ts_label, batch.ts_label_mask, extra_span_length=self.extra_span_length) else: raise NotImplementedError assert len(out) == len(target) other_outputs["temporal_scores"] = t_scores # (N, 5, Li) or (N, 5, Li, 2) if self.inference_mode: inference_outputs = { "answer": out, # (N, 5) "t_scores": F.softmax(t_scores, dim=2), "att_predictions": self.get_att_prediction( scores=other_outputs["vid_raw_s"], object_vocab=batch.eval_object_word_ids, words=batch.qas, vid_names=batch.vid_name, qids=batch.qid, img_indices=batch.image_indices, boxes=batch.boxes, start_indices=batch.anno_st_idx, ) if self.vfeat_flag else None, } return inference_outputs att_loss = 0 att_predictions = None # if (self.use_sup_att or not self.training) and self.vfeat_flag: if self.use_sup_att and self.training and self.vfeat_flag: start_indices = batch.anno_st_idx try: cur_att_loss, cur_att_predictions = \ self.get_att_loss(other_outputs["vid_raw_s"], batch.att_labels, batch.target, batch.qas, qids=batch.qid, q_lens=batch.q_l, vid_names=batch.vid_name, img_indices=batch.image_indices, boxes=batch.boxes, start_indices=start_indices, num_negatives=self.num_negatives, use_hard_negatives=batch.use_hard_negatives, drop_topk=self.drop_topk) except AssertionError as e: save_pickle( {"batch": batch, "start_indices": start_indices, "vid_raw_s": other_outputs["vid_raw_s"]}, "err_dict.pickle" ) import sys sys.exit(1) att_loss += cur_att_loss att_predictions = cur_att_predictions temporal_loss = self.get_ts_loss(temporal_scores=t_scores, ts_labels=batch.ts_label, answer_indices=batch.target) if self.training: return [out, target], att_loss, att_predictions, temporal_loss, t_scores, other_outputs else: return out, att_loss, att_predictions, temporal_loss, F.softmax(t_scores, dim=2), other_outputs @classmethod def base_encoder(cls, data, data_mask, init_encoder, downsize_encoder, input_encoder): """ Raw data --> higher-level embedding Args: data: (N, L) for text, (N, L, D) for video data_mask: (N, L) init_encoder: word_embedding layer for text, MLP (downsize) for video downsize_encoder: MLP, down project to hsz input_encoder: multiple layer of encoder block, with residual connection, CNN, layernorm, etc Returns: encoded_data: (N, L, D) """ data = downsize_encoder(init_encoder(data)) return input_encoder(data, data_mask) def qa_ctx_attention(self, qa_embed, ctx_embed, qa_mask, ctx_mask, noun_mask, non_visual_vectors): """ Align image regions with QA words Args: qa_embed: (N, 5, 1, Lqa, D) qa_mask: (N, 5, 1, Lqa) ctx_embed: (N, 1, Li, Lr, D) ctx_mask: (N, 1, Li, Lr) noun_mask: (N, 5, Lqa) non_visual_vectors: (m, D), m is a tunable parameter Returns: """ num_img, num_region = ctx_mask.shape[2:] u_a, raw_s, s_mask, s_normalized = self.str_attn( qa_embed, ctx_embed, qa_mask, ctx_mask, noun_mask=noun_mask, void_vector=non_visual_vectors) # (N, 5, Li, Lqa, D), (N, 5, Li, Lqa, lr) x2 qa_embed = qa_embed.repeat(1, 1, num_img, 1, 1) mixed = torch.cat([qa_embed, u_a, qa_embed*u_a], dim=-1) # (N, 5, Li, Lqa, D) mixed = self.c2q_down_projection(mixed) # (N, 5, Li, Lqa, D) mixed_mask = (s_mask.sum(-1) != 0).float() # (N, 5, Li, Lqa) return mixed, mixed_mask, raw_s, s_normalized def get_proposals(self, max_statement, max_statement_mask, temporal_scores, targets, ts_labels, max_num_proposal=1, iou_thd=0.5, ce_prob_thd=0.01, extra_span_length=3): """ Args: max_statement: (N, 5, Li, D) max_statement_mask: (N, 5, Li, 1) temporal_scores: (N, 5, Li, 2) targets: (N, ) ts_labels: (N, Li) for frm or N * (st, ed) for st_ed max_num_proposal: iou_thd: ce_prob_thd: extra_span_length: Returns: """ bsz, num_a, num_img, _ = max_statement_mask.shape if self.training: ca_temporal_scores_st_ed = \ temporal_scores[torch.arange(bsz, dtype=torch.long), targets].data # (N, Li, 2) ca_temporal_scores_st_ed = F.softmax(ca_temporal_scores_st_ed, dim=1) # (N, Li, 2) ca_pred_spans = find_max_triples(ca_temporal_scores_st_ed[:, :, 0], ca_temporal_scores_st_ed[:, :, 1], topN=max_num_proposal, prob_thd=ce_prob_thd) # N * [(st_idx, ed_idx, confidence), ...] # +1 for ed index before forward into get_high_iou_spans func. ca_pred_spans = [[[sub_e[0], sub_e[1] + 1, sub_e[2]] for sub_e in e] for e in ca_pred_spans] spans = get_high_iou_sapns(zip(ts_labels["st"].tolist(), (ts_labels["ed"] + 1).tolist()), ca_pred_spans, iou_thd=iou_thd, add_gt=True) # N * [(st, ed), ...] local_max_max_statement_list = [] # N_new * (5, D) global_max_max_statement_list = [] # N_new * (5, D) span_targets = [] # N_new * (1,) for idx, (t, span_sublist) in enumerate(zip(targets, spans)): span_targets.extend([t] * len(span_sublist)) cur_global_max_max_statement = \ torch.max(mask_logits(max_statement[idx], max_statement_mask[idx]), 1)[0] global_max_max_statement_list.extend([cur_global_max_max_statement] * len(span_sublist)) for span in span_sublist: span = expand_span(span, expand_length=extra_span_length) cur_span_max_statement = mask_logits( max_statement[idx, :, span[0]:span[1]], max_statement_mask[idx, :, span[0]:span[1]]) # (5, Li[st:ed], D) local_max_max_statement_list.append(torch.max(cur_span_max_statement, 1)[0]) # (5, D) local_max_max_statement = torch.stack(local_max_max_statement_list) # (N_new, 5, D) global_max_max_statement = torch.stack(global_max_max_statement_list) # (N_new, 5, D) max_max_statement = torch.cat([ local_max_max_statement, global_max_max_statement], dim=-1) # (N_new, 5, 2D) return max_max_statement, targets.new_tensor(span_targets) # (N_new, 5, 2D), (N_new, ) else: # testing temporal_scores_st_ed = F.softmax(temporal_scores, dim=2) # (N, 5, Li, 2) temporal_scores_st_ed_reshaped = temporal_scores_st_ed.view(bsz * num_a, -1, 2) # (N*5, Li, 2) pred_spans = find_max_triples(temporal_scores_st_ed_reshaped[:, :, 0], temporal_scores_st_ed_reshaped[:, :, 1], topN=1, prob_thd=None) # (N*5) * [(st, ed, confidence), ] pred_spans = flat_list_of_lists(pred_spans) # (N*5) * (st, ed, confidence) pred_spans = torch.FloatTensor(pred_spans).to(temporal_scores_st_ed_reshaped.device) # (N*5, 3) pred_spans, pred_scores = pred_spans[:, :2].long(), pred_spans[:, 2] # (N*5, 2), (N*5, ) pred_spans = [[e[0], e[1] + 1] for e in pred_spans] max_statement = max_statement.view(bsz * num_a, num_img, -1) # (N*5, Li, D) max_statement_mask = max_statement_mask.view(bsz * num_a, num_img, -1) # (N*5, Li, 1) local_max_max_statement_list = [] # N*5 * (D, ) global_max_max_statement_list = [] # N*5 * (D, ) for idx, span in enumerate(pred_spans): span = expand_span(span, expand_length=extra_span_length) cur_global_max_max_statement = \ torch.max(mask_logits(max_statement[idx], max_statement_mask[idx]), 0)[0] global_max_max_statement_list.append(cur_global_max_max_statement) cur_span_max_statement = mask_logits( max_statement[idx, span[0]:span[1]], max_statement_mask[idx, span[0]:span[1]]) # (Li[st:ed], D), words for span[0] == span[1] local_max_max_statement_list.append(torch.max(cur_span_max_statement, 0)[0]) # (D, ) local_max_max_statement = torch.stack(local_max_max_statement_list) # (N*5, D) global_max_max_statement = torch.stack(global_max_max_statement_list) # (N*5, D) max_max_statement = torch.cat([ local_max_max_statement, global_max_max_statement], dim=-1) # (N_new, 5, 2D) return max_max_statement.view(bsz, num_a, -1), targets # (N, 5, 2D), (N, ) def residual_temporal_predictor(self, layer_idx, input_tensor): """ Args: layer_idx (int): input_tensor: (N, L, D) Returns: temporal_score """ input_tensor = input_tensor + self.cls_projection_layers[layer_idx](input_tensor) # (N, L, D) t_score_st = self.temporal_scoring_st_layers[layer_idx](input_tensor) # (N, L, 1) t_score_ed = self.temporal_scoring_ed_layers[layer_idx](input_tensor) # (N, L, 1) t_score = torch.cat([t_score_st, t_score_ed], dim=2) # (N, L, 2) return input_tensor, t_score def classfier_head_multi_proposal(self, statement, statement_mask, targets, ts_labels, ts_labels_mask, max_num_proposal=1, ce_prob_thd=0.01, iou_thd=0.5, extra_span_length=3): """Predict the probabilities of each statements being true. Statements = QA + Context. Args: statement: (N, 5, Li, Lqa, D) statement_mask: (N, 5, Li, Lqa) targets: (N, ) ts_labels: (N, Li) for frm or N * (st, ed) for st_ed ts_labels_mask: (N, Li) max_num_proposal (int): ce_prob_thd (float): threshold for p1*p2 (st, ed) iou_thd (float): threshold for temporal iou extra_span_length (int): expand the localized span to give a little bit extra context Returns: """ bsz, num_a, num_img, num_words = statement_mask.shape statement = statement.view(bsz*num_a*num_img, num_words, -1) # (N*5*Li, Lqa, D) statement_mask = statement_mask.view(bsz*num_a*num_img, num_words) # (N*5*Li, Lqa) statement = self.cls_encoder(statement, statement_mask) # (N*5*Li, Lqa, D) max_statement = torch.max(mask_logits(statement, statement_mask.unsqueeze(2)), 1)[0] # (N*5*Li, D) max_statement_mask = (statement_mask.sum(1) != 0).float().view(bsz, num_a, num_img, 1) # (N, 5, Li, 1) max_statement = max_statement.view(bsz*num_a, num_img, -1) # (N, 5, Li, D) t_score_container = [] encoded_max_statement_container = [] encoded_max_statement = max_statement # (N*5, Li, D) for layer_idx in range(self.t_iter+1): encoded_max_statement, prev_t_score = \ self.residual_temporal_predictor(layer_idx, encoded_max_statement) t_score_container.append(prev_t_score.view(bsz, num_a, num_img, 2)) # (N, 5, Li, 2) encoded_max_statement_container.append(encoded_max_statement) # (N*5, Li, D) if self.t_iter > 0: temporal_scores_st_ed = 0.5 * (t_score_container[0] + torch.stack(t_score_container[:1]).mean(0)) else: temporal_scores_st_ed = t_score_container[0] # (N, 5, Li, 2) # mask before softmax temporal_scores_st_ed = mask_logits(temporal_scores_st_ed, ts_labels_mask.view(bsz, 1, num_img, 1)) # when predict answer, only consider 1st level representation !!! # since the others are all generated from the 1st level stacked_max_statement = encoded_max_statement_container[0].view(bsz, num_a, num_img, -1) # (N, 5, Li, D) if self.add_local: max_max_statement, targets = self.get_proposals( stacked_max_statement, max_statement_mask, temporal_scores_st_ed, targets, ts_labels, max_num_proposal=max_num_proposal, iou_thd=iou_thd, ce_prob_thd=ce_prob_thd, extra_span_length=extra_span_length) # (N, 5, D) else: max_max_statement = \ torch.max(mask_logits(stacked_max_statement, max_statement_mask), 2)[0] # (N, 5, D) # targets = targets answer_scores = self.classifier(max_max_statement).squeeze(2) # (N, 5) return answer_scores, targets, temporal_scores_st_ed # (N_new, 5), (N_new, ) (N, 5, Li, 2) def get_ts_loss(self, temporal_scores, ts_labels, answer_indices): """ Args: temporal_scores: (N, 5, Li, 2) ts_labels: dict(st=(N, ), ed=(N, )) answer_indices: (N, ) Returns: """ bsz = len(answer_indices) # compute loss ca_temporal_scores_st_ed = \ temporal_scores[torch.arange(bsz, dtype=torch.long), answer_indices] # (N, Li, 2) loss_st = self.temporal_criterion(ca_temporal_scores_st_ed[:, :, 0], ts_labels["st"]) loss_ed = self.temporal_criterion(ca_temporal_scores_st_ed[:, :, 1], ts_labels["ed"]) return (loss_st + loss_ed) / 2. @classmethod def sample_negatives(cls, pred_score, pos_indices, neg_indices, num_negatives=2, use_hard_negatives=False, negative_pool_size=0, num_hard=2, drop_topk=0): """ Sample negatives from a set of indices. Several sampling strategies are supported: 1, random; 2, hard negatives; 3, drop_topk hard negatives; 4, mix easy and hard negatives 5, sampling within a pool of hard negatives; 6, sample across images of the same video. Args: pred_score: (num_img, num_words, num_region) pos_indices: (N_pos, 3) all positive region indices for the same word, not necessaryily the same image. neg_indices: (N_neg, 3) ... num_negatives (int): use_hard_negatives (bool): negative_pool_size (int): num_hard (int): drop_topk (int): Returns: """ num_unique_pos = len(pos_indices) sampled_pos_indices = torch.cat([pos_indices] * num_negatives, dim=0) if use_hard_negatives: # print("using use_hard_negatives") neg_scores = pred_score[neg_indices[:, 0], neg_indices[:, 1], neg_indices[:, 2]] # TODO max_indices = torch.sort(neg_scores, descending=True)[1].tolist() if negative_pool_size > num_negatives: # sample from a pool of hard negatives hard_pool = max_indices[drop_topk:drop_topk + negative_pool_size] hard_pool_indices = neg_indices[hard_pool] num_hard_negs = num_negatives sampled_easy_neg_indices = [] if num_hard < num_negatives: easy_pool = max_indices[drop_topk + negative_pool_size:] easy_pool_indices = neg_indices[easy_pool] num_hard_negs = num_hard num_easy_negs = num_negatives - num_hard_negs sampled_easy_neg_indices = easy_pool_indices[ torch.randint(low=0, high=len(easy_pool_indices), size=(num_easy_negs * num_unique_pos, ), dtype=torch.long) ] sampled_hard_neg_indices = hard_pool_indices[ torch.randint(low=0, high=len(hard_pool_indices), size=(num_hard_negs * num_unique_pos, ), dtype=torch.long) ] if len(sampled_easy_neg_indices) != 0: sampled_neg_indices = torch.cat([sampled_hard_neg_indices, sampled_easy_neg_indices], dim=0) else: sampled_neg_indices = sampled_hard_neg_indices else: # directly take the top negatives sampled_neg_indices = neg_indices[max_indices[drop_topk:drop_topk+len(sampled_pos_indices)]] else: sampled_neg_indices = neg_indices[ torch.randint(low=0, high=len(neg_indices), size=(len(sampled_pos_indices),), dtype=torch.long) ] return sampled_pos_indices, sampled_neg_indices def get_att_loss(self, scores, att_labels, target, words, vid_names, qids, q_lens, img_indices, boxes, start_indices, num_negatives=2, use_hard_negatives=False, drop_topk=0): """ compute ranking loss, use for loop to find the indices, use advanced indexing to perform the real calculation Build a list contains a quaduple Args: scores: cosine similarity scores (N, 5, Li, Lqa, Lr), in the range [-1, 1] att_labels: list(tensor), each has dimension (#num_imgs, #num_words, #regions), not batched target: 1D tensor (N, ) words: LongTensor (N, 5, Lqa) vid_names: list(str) (N,) qids: list(int), (N, ) q_lens: list(int), (N, ) img_indices: list(list(int)), (N, Li), or None boxes: list(list(box)) of length N, each sublist represent an image, each box contains the coordinates of xyxy, or None num_negatives: number of negatives for each positive region use_hard_negatives: use hard negatives, uselect negatives with high scores drop_topk: drop topk highest negatives (since the top negatives might be correct, they are just not labeled) start_indices (list of int): each element is an index (at 0.5fps) of the first image with spatial annotation. If with_ts, set to zero Returns: att_loss: loss value for the batch att_predictions: (list) [{"gt": gt_scores, "pred": pred_scores}, ], used to calculate att. accuracy """ pos_container = [] # contains tuples of 5 elements, which are (batch_i, ca_i, img_i, word_i, region_i) neg_container = [] for batch_idx in range(len(target)): # batch ca_idx = target[batch_idx].cpu().item() gt_score = att_labels[batch_idx] # num_img * (num_words, num_region) start_idx = start_indices[batch_idx] # int num_img = len(gt_score) sen_l, _ = gt_score[0].shape pred_score = scores[batch_idx, ca_idx, :num_img, :sen_l] # (num_img, num_words, num_region) # find positive and negative indices batch_pos_indices = [] batch_neg_indices = [] for img_idx, img_gt_score in enumerate(gt_score): img_idx = start_idx + img_idx img_pos_indices = torch.nonzero(img_gt_score) # (N_pos, 2) ==> (#words, #regions) if len(img_pos_indices) == 0: # skip if no positive indices continue img_pos_indices = torch.cat([img_pos_indices.new_full([len(img_pos_indices), 1], img_idx), img_pos_indices], dim=1) # (N_pos, 3) ==> (#img, #words, #regions) img_neg_indices = torch.nonzero(img_gt_score == 0) # (N_neg, 2) img_neg_indices = torch.cat([img_neg_indices.new_full([len(img_neg_indices), 1], img_idx), img_neg_indices], dim=1) # (N_neg, 3) batch_pos_indices.append(img_pos_indices) batch_neg_indices.append(img_neg_indices) if len(batch_pos_indices) == 0: # skip if empty ==> no gt label for the video continue batch_pos_indices = torch.cat(batch_pos_indices, dim=0) # (N_pos, 3) --> batch_neg_indices = torch.cat(batch_neg_indices, dim=0) # (N_neg, 3) # sample positives and negatives available_img_indices = batch_pos_indices[:, 0].unique().tolist() for img_idx in available_img_indices: # pos_indices for a certrain img img_idx_pos_indices = batch_pos_indices[batch_pos_indices[:, 0] == img_idx] img_idx_neg_indices = batch_neg_indices[batch_neg_indices[:, 0] == img_idx] available_word_indices = img_idx_pos_indices[:, 1].unique().tolist() for word_idx in available_word_indices: # positives and negatives for a given image-word pair, specified by img_idx-word_idx img_idx_word_idx_pos_indices = img_idx_pos_indices[img_idx_pos_indices[:, 1] == word_idx] img_idx_word_idx_neg_indices = img_idx_neg_indices[img_idx_neg_indices[:, 1] == word_idx] # actually all the positives, not sampled pos sampled_pos_indices, sampled_neg_indices = \ self.sample_negatives(pred_score, img_idx_word_idx_pos_indices, img_idx_word_idx_neg_indices, num_negatives=num_negatives, use_hard_negatives=use_hard_negatives, negative_pool_size=self.negative_pool_size, num_hard=self.num_hard, drop_topk=drop_topk) base_indices = torch.LongTensor([[batch_idx, ca_idx]] * len(sampled_pos_indices)).\ to(sampled_pos_indices.device) pos_container.append(torch.cat([base_indices, sampled_pos_indices], dim=1)) neg_container.append(torch.cat([base_indices, sampled_neg_indices], dim=1)) pos_container = torch.cat(pos_container, dim=0) neg_container = torch.cat(neg_container, dim=0) # contain all the predictions and gt labels in this batch, only consider the ones with gt labels # also only consider the positive answer. att_predictions = None if not self.training and self.vfeat_flag: att_predictions = dict(det_q=[], det_ca=[]) unique_pos_container = np.unique(pos_container.cpu().numpy(), axis=0) # unique rows in the array for row in unique_pos_container: batch_idx, ca_idx, img_idx, word_idx, region_idx = row start_idx = start_indices[batch_idx] # int cur_q_len = q_lens[batch_idx] num_region = att_labels[batch_idx][img_idx-start_idx].shape[1] # num_img * (num_words, num_region) if len(scores[batch_idx, ca_idx, img_idx, word_idx, :num_region].data.cpu()) != \ len(boxes[batch_idx][img_idx-start_idx]): print("scores[batch_idx, ca_idx, img_idx, word_idx].data.cpu()", len(scores[batch_idx, ca_idx, img_idx, word_idx, :num_region].data.cpu())) print("len(boxes[batch_idx][img_idx-start_idx])", len(boxes[batch_idx][img_idx-start_idx])) print("boxes, batch_idx, img_idx, start_idx, img_idx - start_idx, word_idx", batch_idx, img_idx, start_idx, img_idx - start_idx, word_idx) print(row) raise AssertionError cur_det_data = { "pred": scores[batch_idx, ca_idx, img_idx, word_idx, :num_region].data.cpu(), "word": words[batch_idx, ca_idx, word_idx], "qid": qids[batch_idx], "vid_name": vid_names[batch_idx], "img_idx": img_indices[batch_idx][img_idx], # full indices "boxes": boxes[batch_idx][img_idx-start_idx] # located boxes } if word_idx < cur_q_len: att_predictions["det_q"].append(cur_det_data) else: att_predictions["det_ca"].append(cur_det_data) pos_scores = scores[pos_container[:, 0], pos_container[:, 1], pos_container[:, 2], pos_container[:, 3], pos_container[:, 4]] neg_scores = scores[neg_container[:, 0], neg_container[:, 1], neg_container[:, 2], neg_container[:, 3], neg_container[:, 4]] if self.att_loss_type == "hinge": # max(0, m + S_pos - S_neg) att_loss = torch.clamp(self.margin + neg_scores - pos_scores, min=0).sum() elif self.att_loss_type == "lse": # log[1 + exp(scale * (S_pos - S_neg))] att_loss = torch.log1p(torch.exp(self.alpha * (neg_scores - pos_scores))).sum() else: raise NotImplementedError("Only support hinge and lse") return att_loss, att_predictions def get_att_prediction(self, scores, object_vocab, words, vid_names, qids, img_indices, boxes, start_indices, score_thd=0.2): """ compute ranking loss, use for loop to find the indices, use advanced indexing to perform the real calculation Build a list contains a quaduple Args: scores: cosine similarity scores (N, 5, Li, Lqa, Lr), in the range [-1, 1] object_vocab: list, object word ids in the vocabulary words: LongTensor (N, 5, Lqa) vid_names: list(str) (N,) qids: list(int), (N, ) img_indices: list(list(int)), (N, Li), or None boxes: list(list(box)) of length N, each sublist represent an image, each box contains the coordinates of xyxy, or None start_indices (list of int): each element is an index (at 0.5fps) of the first image with spatial annotation. If with_ts, set to zero score_thd: only keep boxes with score higher than this value Returns: att_loss: loss value for the batch att_predictions: (list) [{"gt": gt_scores, "pred": pred_scores}, ], used to calculate att. accuracy """ # contain all the predictions and gt labels in this batch, only consider the ones with gt labels # also only consider the positive answer. att_predictions = None if self.vfeat_flag: att_predictions = [] for batch_idx in range(len(scores)): start_idx = start_indices[batch_idx] # int q_att_predictions = dict() # predictions associated with this question for ans_idx in range(5): q_att_predictions[ans_idx] = [] for img_idx_local in range(len(boxes[batch_idx])): # img_idx_local: for the imgs with box anno # img_idx_global: for all the imgs, including ones without box anno img_idx_global = img_idx_local + start_idx cur_img_scores = scores[batch_idx, ans_idx, img_idx_global] # (Lqa, Lr) cur_words = words[batch_idx, ans_idx].tolist() # (Lqa, ) cur_img_boxes = boxes[batch_idx][img_idx_local] for word_idx, w in enumerate(cur_words): if w in object_vocab: cur_word_region_scores = cur_img_scores[word_idx].data.cpu().numpy() # (Lr, ) accepted_region_ids = np.nonzero(cur_word_region_scores >= score_thd)[0].tolist() accepted_region_scores = [float(cur_word_region_scores[i]) for i in accepted_region_ids] accepted_region_boxes = [cur_img_boxes[i] for i in accepted_region_ids] sorted_indices = np.argsort(accepted_region_scores) accepted_region_scores = [accepted_region_scores[i] for i in sorted_indices] accepted_region_boxes = [accepted_region_boxes[i] for i in sorted_indices] cur_det_data = { "pred": accepted_region_scores, "bbox": accepted_region_boxes, "word": int(words[batch_idx, ans_idx, word_idx]), "qid": int(qids[batch_idx]), "vid_name": vid_names[batch_idx], "img_idx": img_indices[batch_idx][img_idx_global], # image file name id } q_att_predictions[ans_idx].append(cur_det_data) att_predictions.append(q_att_predictions) return att_predictions
from basic_functions import * import csv from collections import deque inf = 1000 def table_phase0(): trans_ep = [] with open('trans_ep_phase0.csv', mode='r') as f: for line in map(str.strip, f): trans_ep.append([int(i) for i in line.replace('\n', '').split(',')]) trans = [] with open('trans_co.csv', mode='r') as f: for line in map(str.strip, f): trans.append([int(i) for i in line.replace('\n', '').split(',')]) table = [[[inf for _ in range(2187)] for _ in range(495)] for _ in range(3)] solved1 = ep2idx_phase0(list(range(12))) solved2 = co2idx([0 for _ in range(8)]) que = deque([[solved1, solved2, 0, i, True] for i in range(24)]) for i in range(3): table[i][solved1][solved2] = 0 sorted_candidate = sorted(list(candidate[0])) cnt = 0 while que: cnt += 1 if cnt % 10000 == 0: print(cnt, len(que)) idx1, idx2, cost, direction, last_rotated = que.popleft() n_cost = cost + 1 for twist_idx, twist in enumerate(sorted_candidate): if not can_rotate[direction][twist // 6]: continue n_dirs = [direction] n_idx1 = trans_ep[idx1][twist_idx] n_idx2 = trans[idx2][twist_idx] for n_direction in n_dirs: if table[dir_type[n_direction]][n_idx1][n_idx2] > n_cost: table[dir_type[n_direction]][n_idx1][n_idx2] = n_cost que.append([n_idx1, n_idx2, n_cost, n_direction, False]) if last_rotated: continue for rotate in range(12, 14): n_idx1 = idx1 n_idx2 = idx2 n_direction = rev_move_dir(direction, rotate) if table[dir_type[n_direction]][n_idx1][n_idx2] > n_cost: table[dir_type[n_direction]][n_idx1][n_idx2] = n_cost que.append([n_idx1, n_idx2, n_cost, n_direction, True]) for i in range(3): with open('prun_phase0_co_ep_' + str(i) + '.csv', mode='w') as f: writer = csv.writer(f, lineterminator='\n') for arr in table[i]: writer.writerow(arr) trans = [] with open('trans_eo.csv', mode='r') as f: for line in map(str.strip, f): trans.append([int(i) for i in line.replace('\n', '').split(',')]) table = [[[inf for _ in range(2048)] for _ in range(495)] for _ in range(3)] solved1 = ep2idx_phase0(list(range(12))) solved2 = eo2idx([0 for _ in range(12)]) que = deque([[solved1, solved2, 0, i, True] for i in range(24)]) for i in range(3): table[i][solved1][solved2] = 0 cnt = 0 while que: cnt += 1 if cnt % 10000 == 0: print(cnt, len(que)) idx1, idx2, cost, direction, last_rotated = que.popleft() n_cost = cost + 1 for twist_idx, twist in enumerate(sorted_candidate): n_last_rotated = False if not can_rotate[direction][twist // 6]: continue n_dirs = [direction] n_idx1 = trans_ep[idx1][twist_idx] n_idx2 = trans[idx2][twist_idx] for n_direction in n_dirs: if table[dir_type[n_direction]][n_idx1][n_idx2] > n_cost: table[dir_type[n_direction]][n_idx1][n_idx2] = n_cost que.append([n_idx1, n_idx2, n_cost, n_direction, n_last_rotated]) if last_rotated: continue for rotate in range(12, 14): n_idx1 = idx1 n_idx2 = idx2 n_direction = rev_move_dir(direction, rotate) n_last_rotated = True if table[dir_type[n_direction]][n_idx1][n_idx2] > n_cost: table[dir_type[n_direction]][n_idx1][n_idx2] = n_cost que.append([n_idx1, n_idx2, n_cost, n_direction, n_last_rotated]) for i in range(3): with open('prun_phase0_eo_ep_' + str(i) + '.csv', mode='w') as f: writer = csv.writer(f, lineterminator='\n') for arr in table[i]: writer.writerow(arr) def table_phase1(): trans_ep = [] with open('trans_ep_phase1_2.csv', mode='r') as f: for line in map(str.strip, f): trans_ep.append([int(i) for i in line.replace('\n', '').split(',')]) trans = [] with open('trans_cp.csv', mode='r') as f: for line in map(str.strip, f): trans.append([int(i) for i in line.replace('\n', '').split(',')]) table = [[[inf for _ in range(40320)] for _ in range(24)] for _ in range(3)] solved1 = ep2idx_phase1_2(list(range(12))) solved2 = cp2idx(list(range(8))) que = deque([[solved1, solved2, 0, i, True] for i in range(24)]) for i in range(3): table[i][solved1][solved2] = 0 sorted_candidate = sorted(list(candidate[1])) cnt = 0 while que: cnt += 1 if cnt % 10000 == 0: print(cnt, len(que)) idx1, idx2, cost, direction, last_rotated = que.popleft() n_cost = cost + 1 for twist_idx, twist in enumerate(sorted_candidate): if not can_rotate[direction][twist // 6]: continue n_dirs = [direction] n_idx1 = trans_ep[idx1][twist_idx] n_idx2 = trans[idx2][twist_idx] for n_direction in n_dirs: if table[dir_type[n_direction]][n_idx1][n_idx2] > n_cost: table[dir_type[n_direction]][n_idx1][n_idx2] = n_cost que.append([n_idx1, n_idx2, n_cost, n_direction, False]) if last_rotated: continue for rotate in range(12, 14): n_idx1 = idx1 n_idx2 = idx2 n_direction = rev_move_dir(direction, rotate) if table[dir_type[n_direction]][n_idx1][n_idx2] > n_cost: table[dir_type[n_direction]][n_idx1][n_idx2] = n_cost que.append([n_idx1, n_idx2, n_cost, n_direction, True]) for i in range(3): with open('prun_phase1_cp_ep_' + str(i) + '.csv', mode='w') as f: writer = csv.writer(f, lineterminator='\n') for arr in table[i]: writer.writerow(arr) trans = [] with open('trans_ep_phase1_1.csv', mode='r') as f: for line in map(str.strip, f): trans.append([int(i) for i in line.replace('\n', '').split(',')]) table = [[[inf for _ in range(40320)] for _ in range(24)] for _ in range(3)] solved1 = ep2idx_phase1_2(list(range(12))) solved2 = ep2idx_phase1_1(list(range(12))) que = deque([[solved1, solved2, 0, i, True] for i in range(24)]) for i in range(3): table[i][solved1][solved2] = 0 cnt = 0 while que: cnt += 1 if cnt % 10000 == 0: print(cnt, len(que)) idx1, idx2, cost, direction, last_rotated = que.popleft() n_cost = cost + 1 for twist_idx, twist in enumerate(sorted_candidate): if not can_rotate[direction][twist // 6]: continue n_dirs = [direction] n_idx1 = trans_ep[idx1][twist_idx] n_idx2 = trans[idx2][twist_idx] for n_direction in n_dirs: if table[dir_type[n_direction]][n_idx1][n_idx2] > n_cost: table[dir_type[n_direction]][n_idx1][n_idx2] = n_cost que.append([n_idx1, n_idx2, n_cost, n_direction, False]) if last_rotated: continue for rotate in range(12, 14): n_idx1 = idx1 n_idx2 = idx2 n_direction = rev_move_dir(direction, rotate) if table[dir_type[n_direction]][n_idx1][n_idx2] > n_cost: table[dir_type[n_direction]][n_idx1][n_idx2] = n_cost que.append([n_idx1, n_idx2, n_cost, n_direction, True]) for i in range(3): with open('prun_phase1_ep_ep_' + str(i) + '.csv', mode='w') as f: writer = csv.writer(f, lineterminator='\n') for arr in table[i]: writer.writerow(arr) table_phase0() table_phase1()
def numOfAbled(L,k): hori=0 verti=0 for i in range(len(L)): for j in range(len(L)-k+1): num=0 for m in range(k): if L[i][j+m]!=1: break else : num+=1 if num==k: if j==len(L)-k: if L[i][j-1]==0 : verti+=1 elif j==0: if L[i][j+k]==0: verti+=1 elif L[i][j+k]==0 and L[i][j-1]==0: verti+=1 for j in range(len(L)): for i in range(len(L)-k+1): num=0 for m in range(k): if L[i+m][j]!=1: break else : num+=1 if num==k: if i==len(L)-k: if L[i-1][j]==0: hori+=1 elif i==0 : if L[i+k][j]==0: hori+=1 elif L[i-1][j]==0 and L[i+k][j]==0: hori+=1 return verti+hori for t in range(int(input())): L=[] [N,K] =list(map(int,input().split())) for n in range(N): L.append(list(map(int,input().split()))) print(f"#{t+1} {numOfAbled(L,K)}")
#!/usr/bin/env python # Author: Dr. Konstantin Selyunin # License: MIT # Created: 2020.08.19 import logging import os.path import struct from abc import abstractmethod, ABC from typing import Union, Tuple from .rsl_xml_svd.rsl_svd_parser import RslSvdParser class ShearWaterRegisters(ABC): def __init__(self, **kwargs): self.svd_parser = RslSvdParser(svd_file=ShearWaterRegisters.find_svd('shearwater.svd')) @staticmethod def find_svd(svd_file_name: str): parent_dir = os.path.join(os.path.dirname(__file__), os.pardir) for root, dirs, files in os.walk(parent_dir): if svd_file_name in files: return os.path.join(root, svd_file_name) @abstractmethod def connect(self, *args, **kwargs): pass @abstractmethod def read_register(self, reg_addr: int, **kw) -> Tuple[bool, bytes]: pass @abstractmethod def write_register(self, reg_addr: int, reg_value: Union[int, bytes, float, str], **kw): pass @property def creg_com_settings(self): """ The CREG_COM_SETTINGS register is used to set the boards serial port baud rate and to enable (disable) the automatic transmission of sensor data and estimated states (telemetry). Payload structure: [31:28] : BAUD_RATE -- Sets the baud rate of the boards main serial port: :return: BAUD_RATE as bitField; """ addr = 0x00 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_COM_SETTINGS') reg.raw_value, = struct.unpack('>I', payload[0:4]) # find value for BAUD_RATE bit field baud_rate_val = (reg.raw_value >> 28) & 0x000F baud_rate_enum = reg.find_field_by(name='BAUD_RATE').find_enum_entry_by(value=baud_rate_val) return reg, baud_rate_enum @creg_com_settings.setter def creg_com_settings(self, new_value): addr = 0x00 self.write_register(addr, new_value) @property def creg_com_rates1(self): """ The CREG_COM_RATES1 register sets desired telemetry transmission rates in Hz for raw accelerometer 1, gyro 1, gyro 2 and magnetometer 1 data. If the specified rate is 0, then no data is transmitted. Payload structure: [31:24] : RAW_ACCEL_1_RATE -- Specifies the desired raw accelerometer 1 data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. [23:16] : RAW_GYRO_1_RATE -- Specifies the desired raw gyro 1 data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz [15:8] : RAW_GYRO_2_RATE -- Specifies the desired raw gyro 2 data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. [7:0] : RAW_MAG_1_RATE -- Specifies the desired raw magnetometer 1 data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. :return: RAW_ACCEL_1_RATE as uint8_t; RAW_GYRO_1_RATE as uint8_t; RAW_GYRO_2_RATE as uint8_t; RAW_MAG_1_RATE as uint8_t; """ addr = 0x01 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_COM_RATES1') reg.raw_value, = struct.unpack('>I', payload[0:4]) raw_accel_1_rate, raw_gyro_1_rate, raw_gyro_2_rate, raw_mag_1_rate = struct.unpack('>BBBB', payload[0:4]) return reg, raw_accel_1_rate, raw_gyro_1_rate, raw_gyro_2_rate, raw_mag_1_rate @creg_com_rates1.setter def creg_com_rates1(self, new_value): addr = 0x01 self.write_register(addr, new_value) @property def creg_com_rates2(self): """ The CREG_COM_RATES2 register sets desired telemetry transmission rates for the magnetometer 2, all raw data, and temperature data rate. The ALL_RAW_RATE setting has higher priority over the individual raw sensor data settings, i.e. whenever this bitfield is set, then the individual raw sensor settings are ignored and not used. If the specified rate is 0, then no data is transmitted. Payload structure: [31:24] : TEMP_RATE -- Specifies the desired broadcast rate for temperature data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. [23:16] : RAW_MAG_2_RATE -- Specifies the desired raw magnetometer 2 data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. [7:0] : ALL_RAW_RATE -- Specifies the desired broadcast rate for all raw sensor data. If set, this overrides the broadcast rate setting for individual raw data broadcast rates. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. :return: TEMP_RATE as uint8_t; RAW_MAG_2_RATE as uint8_t; ALL_RAW_RATE as uint8_t; """ addr = 0x02 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_COM_RATES2') reg.raw_value, = struct.unpack('>I', payload[0:4]) temp_rate, raw_mag_2_rate, all_raw_rate = struct.unpack('>BBxB', payload[0:4]) return reg, temp_rate, raw_mag_2_rate, all_raw_rate @creg_com_rates2.setter def creg_com_rates2(self, new_value): addr = 0x02 self.write_register(addr, new_value) @property def creg_com_rates3(self): """ The CREG_COM_RATES3 register sets desired telemetry transmission rates for processed sensor data for the sensors: the accelerometer 1, gyro 1, gyro 2, and magnetometer 1. If the specified rate is 0, then no data is transmitted. Payload structure: [31:24] : PROC_ACCEL_1_RATE -- Specifies the desired broadcast rate for processed accelerometer 1 data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. [23:16] : PROC_GYRO_1_RATE -- Specifies the desired broadcast rate for processed rate gyro 1 data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. [15:8] : PROC_GYRO_2_RATE -- Specifies the desired broadcast rate for processed processed rate gyro 2 data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. [7:0] : PROC_MAG_1_RATE -- Specifies the desired broadcast rate for processed magnetometer 1 data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. :return: PROC_ACCEL_1_RATE as uint8_t; PROC_GYRO_1_RATE as uint8_t; PROC_GYRO_2_RATE as uint8_t; PROC_MAG_1_RATE as uint8_t; """ addr = 0x03 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_COM_RATES3') reg.raw_value, = struct.unpack('>I', payload[0:4]) proc_accel_1_rate, proc_gyro_1_rate, proc_gyro_2_rate, proc_mag_1_rate = struct.unpack('>BBBB', payload[0:4]) return reg, proc_accel_1_rate, proc_gyro_1_rate, proc_gyro_2_rate, proc_mag_1_rate @creg_com_rates3.setter def creg_com_rates3(self, new_value): addr = 0x03 self.write_register(addr, new_value) @property def creg_com_rates4(self): """ The CREG_COM_RATES4 register defines the desired telemetry transmission rates for the processed data for the magnetometer 2, and for all processed data. The ALL_PROC_RATE setting has higher priority over the individual processed sensor data settings, i.e. whenever this bitfield is set, then the individual processed sensor transmission rate settings are ignored and not used. If the specified rate is 0, then no data is transmitted. Payload structure: [31:24] : PROC_MAG_2_RATE -- Specifies the desired broadcast rate for processed magnetometer 2 data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. [7:0] : ALL_PROC_RATE -- Specifies the desired broadcast rate for raw all processed sensor data. If set, this overrides the broadcast rate setting for individual processed data broadcast rates. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. :return: PROC_MAG_2_RATE as uint8_t; ALL_PROC_RATE as uint8_t; """ addr = 0x04 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_COM_RATES4') reg.raw_value, = struct.unpack('>I', payload[0:4]) proc_mag_2_rate, all_proc_rate = struct.unpack('>BxxB', payload[0:4]) return reg, proc_mag_2_rate, all_proc_rate @creg_com_rates4.setter def creg_com_rates4(self, new_value): addr = 0x04 self.write_register(addr, new_value) @property def creg_com_rates5(self): """ The CREG_COM_RATES5 register sets desired telemetry transmission rates for quaternions, Euler Angles, position, and velocity estimates. If the specified rate is 0, then no data is transmitted. Payload structure: [31:24] : QUAT_RATE -- Specifies the desired broadcast rate for quaternion data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. [23:16] : EULER_RATE -- Specifies the desired broadcast rate for Euler Angle data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. [15:8] : POSITION_RATE -- Specifies the desired broadcast rate position. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. [7:0] : VELOCITY_RATE -- Specifies the desired broadcast rate for velocity. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. :return: QUAT_RATE as uint8_t; EULER_RATE as uint8_t; POSITION_RATE as uint8_t; VELOCITY_RATE as uint8_t; """ addr = 0x05 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_COM_RATES5') reg.raw_value, = struct.unpack('>I', payload[0:4]) quat_rate, euler_rate, position_rate, velocity_rate = struct.unpack('>BBBB', payload[0:4]) return reg, quat_rate, euler_rate, position_rate, velocity_rate @creg_com_rates5.setter def creg_com_rates5(self, new_value): addr = 0x05 self.write_register(addr, new_value) @property def creg_com_rates6(self): """ The CREG_COM_RATES6 register sets desired telemetry transmission rates for pose (Euler/position packet), health, and gyro bias estimates for the gyro 1 and gyro 2. If the specified rate is 0, then no data is transmitted. Payload structure: [31:24] : POSE_RATE -- Specifies the desired broadcast rate for pose (Euler Angle and position) data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. [19:16] : HEALTH_RATE -- Specifies the desired broadcast rate for the sensor health packet. [15:8] : GYRO_BIAS_1_RATE -- Specifies the desired broadcast rate for gyro 1 bias estimates. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. [7:0] : GYRO_BIAS_2_RATE -- Specifies the desired broadcast rate for gyro 2 bias estimates. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. :return: POSE_RATE as uint8_t; HEALTH_RATE as bitField; GYRO_BIAS_1_RATE as uint8_t; GYRO_BIAS_2_RATE as uint8_t; """ addr = 0x06 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_COM_RATES6') reg.raw_value, = struct.unpack('>I', payload[0:4]) pose_rate, gyro_bias_1_rate, gyro_bias_2_rate = struct.unpack('>BxBB', payload[0:4]) reg.raw_value, = struct.unpack('>I', payload[0:4]) # find value for HEALTH_RATE bit field health_rate_val = (reg.raw_value >> 16) & 0x000F health_rate_enum = reg.find_field_by(name='HEALTH_RATE').find_enum_entry_by(value=health_rate_val) return reg, pose_rate, gyro_bias_1_rate, gyro_bias_2_rate, reg, health_rate_enum @creg_com_rates6.setter def creg_com_rates6(self, new_value): addr = 0x06 self.write_register(addr, new_value) @property def creg_com_rates7(self): """ The CREG_COM_RATES7 register sets desired telemetry transmission rates in Hz for NMEA packets. Payload structure: [31:28] : NMEA_HEALTH_RATE -- Specifies the desired broadcast rate for Redshift Labs NMEA-style health packet. [27:24] : NMEA_POSE_RATE -- Specifies the desired broadcast rate for Redshift Labs NMEA-style pose (Euler Angle/position) packet. [23:20] : NMEA_ATTITUDE_RATE -- Specifies the desired broadcast rate for Redshift Labs NMEA-style attitude packet. [19:16] : NMEA_SENSOR_RATE -- Specifies the desired broadcast rate for Redshift Labs NMEA-style sensor data packet. [15:12] : NMEA_RATES_RATE -- Specifies the desired broadcast rate for Redshift Labs NMEA-style rate data packet. [11:8] : NMEA_GPS_POSE_RATE -- Specifies the desired broadcast rate for Redshift Labs NMEA-style GPS pose packet. [7:4] : NMEA_QUAT_RATE -- Specifies the desired broadcast rate for Redshift Labs NMEA-style quaternion packet. :return: NMEA_HEALTH_RATE as bitField; NMEA_POSE_RATE as bitField; NMEA_ATTITUDE_RATE as bitField; NMEA_SENSOR_RATE as bitField; NMEA_RATES_RATE as bitField; NMEA_GPS_POSE_RATE as bitField; NMEA_QUAT_RATE as bitField; """ addr = 0x07 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_COM_RATES7') reg.raw_value, = struct.unpack('>I', payload[0:4]) # find value for NMEA_HEALTH_RATE bit field nmea_health_rate_val = (reg.raw_value >> 28) & 0x000F nmea_health_rate_enum = reg.find_field_by(name='NMEA_HEALTH_RATE').find_enum_entry_by(value=nmea_health_rate_val) # find value for NMEA_POSE_RATE bit field nmea_pose_rate_val = (reg.raw_value >> 24) & 0x000F nmea_pose_rate_enum = reg.find_field_by(name='NMEA_POSE_RATE').find_enum_entry_by(value=nmea_pose_rate_val) # find value for NMEA_ATTITUDE_RATE bit field nmea_attitude_rate_val = (reg.raw_value >> 20) & 0x000F nmea_attitude_rate_enum = reg.find_field_by(name='NMEA_ATTITUDE_RATE').find_enum_entry_by(value=nmea_attitude_rate_val) # find value for NMEA_SENSOR_RATE bit field nmea_sensor_rate_val = (reg.raw_value >> 16) & 0x000F nmea_sensor_rate_enum = reg.find_field_by(name='NMEA_SENSOR_RATE').find_enum_entry_by(value=nmea_sensor_rate_val) # find value for NMEA_RATES_RATE bit field nmea_rates_rate_val = (reg.raw_value >> 12) & 0x000F nmea_rates_rate_enum = reg.find_field_by(name='NMEA_RATES_RATE').find_enum_entry_by(value=nmea_rates_rate_val) # find value for NMEA_GPS_POSE_RATE bit field nmea_gps_pose_rate_val = (reg.raw_value >> 8) & 0x000F nmea_gps_pose_rate_enum = reg.find_field_by(name='NMEA_GPS_POSE_RATE').find_enum_entry_by(value=nmea_gps_pose_rate_val) # find value for NMEA_QUAT_RATE bit field nmea_quat_rate_val = (reg.raw_value >> 4) & 0x000F nmea_quat_rate_enum = reg.find_field_by(name='NMEA_QUAT_RATE').find_enum_entry_by(value=nmea_quat_rate_val) return reg, nmea_health_rate_enum, nmea_pose_rate_enum, nmea_attitude_rate_enum, nmea_sensor_rate_enum, nmea_rates_rate_enum, nmea_gps_pose_rate_enum, nmea_quat_rate_enum @creg_com_rates7.setter def creg_com_rates7(self, new_value): addr = 0x07 self.write_register(addr, new_value) @property def creg_misc_settings(self): """ This register contains miscellaneous filter and sensor control options. Payload structure: [8] : PPS -- If set, this bit causes the TX2 pin on the IO Expansion header to be used as the PPS input from an external GPS module. PPS pulses will then be used to synchronize the system clock to UTC time of day. [3] : ZG -- If set, this bit causes the devicee to attempt to measure the rate gyro bias on startup. The sensor must be stationary on startup for this feature to work properly. [2] : Q -- If this bit is set, the sensor will run in quaternion mode instead of Euler Angle mode. [1] : MAG1 -- If set, the magnetometer 1 will be used in state updates. [0] : MAG2 -- If set, the magnetometer 2 will be used in state updates. :return: PPS as bitField; ZG as bitField; Q as bitField; MAG1 as bitField; MAG2 as bitField; """ addr = 0x08 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MISC_SETTINGS') reg.raw_value, = struct.unpack('>I', payload[0:4]) # find value for PPS bit field pps_val = (reg.raw_value >> 8) & 0x0001 pps_enum = reg.find_field_by(name='PPS').find_enum_entry_by(value=pps_val) # find value for ZG bit field zg_val = (reg.raw_value >> 3) & 0x0001 zg_enum = reg.find_field_by(name='ZG').find_enum_entry_by(value=zg_val) # find value for Q bit field q_val = (reg.raw_value >> 2) & 0x0001 q_enum = reg.find_field_by(name='Q').find_enum_entry_by(value=q_val) # find value for MAG1 bit field mag1_val = (reg.raw_value >> 1) & 0x0001 mag1_enum = reg.find_field_by(name='MAG1').find_enum_entry_by(value=mag1_val) # find value for MAG2 bit field mag2_val = (reg.raw_value >> 0) & 0x0001 mag2_enum = reg.find_field_by(name='MAG2').find_enum_entry_by(value=mag2_val) return reg, pps_enum, zg_enum, q_enum, mag1_enum, mag2_enum @creg_misc_settings.setter def creg_misc_settings(self, new_value): addr = 0x08 self.write_register(addr, new_value) @property def creg_gyro_1_meas_range(self): """ The CREG_GYRO_1_MEAS_RANGE register sets the desired measurement range for the gyro 1 sensor. If the rate is not set, then the default value of 2000 deg/s will be used as a measurement range. Payload structure: [1:0] : MEAS_GYRO1 -- Specifies the desired measurement range for the gyro 1 measurements. :return: MEAS_GYRO1 as bitField; """ addr = 0x09 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_GYRO_1_MEAS_RANGE') reg.raw_value, = struct.unpack('>I', payload[0:4]) # find value for MEAS_GYRO1 bit field meas_gyro1_val = (reg.raw_value >> 0) & 0x0003 meas_gyro1_enum = reg.find_field_by(name='MEAS_GYRO1').find_enum_entry_by(value=meas_gyro1_val) return reg, meas_gyro1_enum @creg_gyro_1_meas_range.setter def creg_gyro_1_meas_range(self, new_value): addr = 0x09 self.write_register(addr, new_value) @property def creg_gyro_1_trim_x(self): """ This register sets the x-axis rate gyro 1 trim, which is used to add additional bias compensation for the rate gyros during calls to the ZERO_GYRO_BIAS command. Payload structure: [31:0] : GYRO_1_TRIM_X -- 32-bit IEEE Floating Point Value :return: GYRO_1_TRIM_X as float; """ addr = 0x0A ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_GYRO_1_TRIM_X') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_1_trim_x, = struct.unpack('>f', payload[0:4]) return reg, gyro_1_trim_x, @creg_gyro_1_trim_x.setter def creg_gyro_1_trim_x(self, new_value): addr = 0x0A self.write_register(addr, new_value) @property def creg_gyro_1_trim_y(self): """ This register sets the y-axis rate gyro 1 trim, which is used to add additional bias compensation for the rate gyros during calls to the ZERO_GYRO_BIAS command. Payload structure: [31:0] : GYRO_1_TRIM_Y -- 32-bit IEEE Floating Point Value :return: GYRO_1_TRIM_Y as float; """ addr = 0x0B ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_GYRO_1_TRIM_Y') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_1_trim_y, = struct.unpack('>f', payload[0:4]) return reg, gyro_1_trim_y, @creg_gyro_1_trim_y.setter def creg_gyro_1_trim_y(self, new_value): addr = 0x0B self.write_register(addr, new_value) @property def creg_gyro_1_trim_z(self): """ This register sets the z-axis rate gyro 1 trim, which is used to add additional bias compensation for the rate gyros during calls to the ZERO_GYRO_BIAS command. Payload structure: [31:0] : GYRO_1_TRIM_Z -- 32-bit IEEE Floating Point Value :return: GYRO_1_TRIM_Z as float; """ addr = 0x0C ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_GYRO_1_TRIM_Z') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_1_trim_z, = struct.unpack('>f', payload[0:4]) return reg, gyro_1_trim_z, @creg_gyro_1_trim_z.setter def creg_gyro_1_trim_z(self, new_value): addr = 0x0C self.write_register(addr, new_value) @property def creg_gyro_2_meas_range(self): """ The CREG_GYRO_2_MEAS_RANGE register sets the desired measurement range for the gyro 2 sensor. If the rate is not set, then the default value of 2000 deg/s will be used as a measurement range. Payload structure: [1:0] : MEAS_GYRO2 -- Specifies the desired measurement range for the gyro 2 measurements. :return: MEAS_GYRO2 as bitField; """ addr = 0x0D ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_GYRO_2_MEAS_RANGE') reg.raw_value, = struct.unpack('>I', payload[0:4]) # find value for MEAS_GYRO2 bit field meas_gyro2_val = (reg.raw_value >> 0) & 0x0003 meas_gyro2_enum = reg.find_field_by(name='MEAS_GYRO2').find_enum_entry_by(value=meas_gyro2_val) return reg, meas_gyro2_enum @creg_gyro_2_meas_range.setter def creg_gyro_2_meas_range(self, new_value): addr = 0x0D self.write_register(addr, new_value) @property def creg_gyro_2_trim_x(self): """ This register sets the x-axis rate gyro 2 trim, which is used to add additional bias compensation for the rate gyros during calls to the ZERO_GYRO_BIAS command. Payload structure: [31:0] : GYRO_2_TRIM_X -- 32-bit IEEE Floating Point Value :return: GYRO_2_TRIM_X as float; """ addr = 0x0E ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_GYRO_2_TRIM_X') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_2_trim_x, = struct.unpack('>f', payload[0:4]) return reg, gyro_2_trim_x, @creg_gyro_2_trim_x.setter def creg_gyro_2_trim_x(self, new_value): addr = 0x0E self.write_register(addr, new_value) @property def creg_gyro_2_trim_y(self): """ This register sets the y-axis rate gyro 2 trim, which is used to add additional bias compensation for the rate gyros during calls to the ZERO_GYRO_BIAS command. Payload structure: [31:0] : GYRO_2_TRIM_Y -- 32-bit IEEE Floating Point Value :return: GYRO_2_TRIM_Y as float; """ addr = 0x0F ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_GYRO_2_TRIM_Y') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_2_trim_y, = struct.unpack('>f', payload[0:4]) return reg, gyro_2_trim_y, @creg_gyro_2_trim_y.setter def creg_gyro_2_trim_y(self, new_value): addr = 0x0F self.write_register(addr, new_value) @property def creg_gyro_2_trim_z(self): """ This register sets the z-axis rate gyro 2 trim, which is used to add additional bias compensation for the rate gyros during calls to the ZERO_GYRO_BIAS command. Payload structure: [31:0] : GYRO_2_TRIM_Z -- 32-bit IEEE Floating Point Value :return: GYRO_2_TRIM_Z as float; """ addr = 0x10 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_GYRO_2_TRIM_Z') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_2_trim_z, = struct.unpack('>f', payload[0:4]) return reg, gyro_2_trim_z, @creg_gyro_2_trim_z.setter def creg_gyro_2_trim_z(self, new_value): addr = 0x10 self.write_register(addr, new_value) @property def creg_mag_1_cal1_1(self): """ Row 1, Column 1 of magnetometer 1 calibration matrix. Payload structure: [31:0] : MAG_1_CAL1_1 -- 32-bit IEEE Floating Point Value :return: MAG_1_CAL1_1 as float; """ addr = 0x11 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_1_CAL1_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_1_cal1_1, = struct.unpack('>f', payload[0:4]) return reg, mag_1_cal1_1, @creg_mag_1_cal1_1.setter def creg_mag_1_cal1_1(self, new_value): addr = 0x11 self.write_register(addr, new_value) @property def creg_mag_1_cal1_2(self): """ Row 1, Column 2 of magnetometer 1 calibration matrix. Payload structure: [31:0] : MAG_1_CAL1_2 -- 32-bit IEEE Floating Point Value :return: MAG_1_CAL1_2 as float; """ addr = 0x12 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_1_CAL1_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_1_cal1_2, = struct.unpack('>f', payload[0:4]) return reg, mag_1_cal1_2, @creg_mag_1_cal1_2.setter def creg_mag_1_cal1_2(self, new_value): addr = 0x12 self.write_register(addr, new_value) @property def creg_mag_1_cal1_3(self): """ Row 1, Column 3 of magnetometer 1 calibration matrix. Payload structure: [31:0] : MAG_1_CAL1_3 -- 32-bit IEEE Floating Point Value :return: MAG_1_CAL1_3 as float; """ addr = 0x13 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_1_CAL1_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_1_cal1_3, = struct.unpack('>f', payload[0:4]) return reg, mag_1_cal1_3, @creg_mag_1_cal1_3.setter def creg_mag_1_cal1_3(self, new_value): addr = 0x13 self.write_register(addr, new_value) @property def creg_mag_1_cal2_1(self): """ Row 2, Column 1 of magnetometer 1 calibration matrix. Payload structure: [31:0] : MAG_1_CAL2_1 -- 32-bit IEEE Floating Point Value :return: MAG_1_CAL2_1 as float; """ addr = 0x14 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_1_CAL2_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_1_cal2_1, = struct.unpack('>f', payload[0:4]) return reg, mag_1_cal2_1, @creg_mag_1_cal2_1.setter def creg_mag_1_cal2_1(self, new_value): addr = 0x14 self.write_register(addr, new_value) @property def creg_mag_1_cal2_2(self): """ Row 2, Column 2 of magnetometer 1 calibration matrix. Payload structure: [31:0] : MAG_1_CAL2_2 -- 32-bit IEEE Floating Point Value :return: MAG_1_CAL2_2 as float; """ addr = 0x15 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_1_CAL2_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_1_cal2_2, = struct.unpack('>f', payload[0:4]) return reg, mag_1_cal2_2, @creg_mag_1_cal2_2.setter def creg_mag_1_cal2_2(self, new_value): addr = 0x15 self.write_register(addr, new_value) @property def creg_mag_1_cal2_3(self): """ Row 2, Column 3 of magnetometer 1 calibration matrix. Payload structure: [31:0] : MAG_1_CAL2_3 -- 32-bit IEEE Floating Point Value :return: MAG_1_CAL2_3 as float; """ addr = 0x16 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_1_CAL2_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_1_cal2_3, = struct.unpack('>f', payload[0:4]) return reg, mag_1_cal2_3, @creg_mag_1_cal2_3.setter def creg_mag_1_cal2_3(self, new_value): addr = 0x16 self.write_register(addr, new_value) @property def creg_mag_1_cal3_1(self): """ Row 3, Column 1 of magnetometer 1 calibration matrix. Payload structure: [31:0] : MAG_1_CAL3_1 -- 32-bit IEEE Floating Point Value :return: MAG_1_CAL3_1 as float; """ addr = 0x17 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_1_CAL3_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_1_cal3_1, = struct.unpack('>f', payload[0:4]) return reg, mag_1_cal3_1, @creg_mag_1_cal3_1.setter def creg_mag_1_cal3_1(self, new_value): addr = 0x17 self.write_register(addr, new_value) @property def creg_mag_1_cal3_2(self): """ Row 3, Column 2 of magnetometer 1 calibration matrix. Payload structure: [31:0] : MAG_1_CAL3_2 -- 32-bit IEEE Floating Point Value :return: MAG_1_CAL3_2 as float; """ addr = 0x18 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_1_CAL3_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_1_cal3_2, = struct.unpack('>f', payload[0:4]) return reg, mag_1_cal3_2, @creg_mag_1_cal3_2.setter def creg_mag_1_cal3_2(self, new_value): addr = 0x18 self.write_register(addr, new_value) @property def creg_mag_1_cal3_3(self): """ Row 3, Column 3 of magnetometer 1 calibration matrix. Payload structure: [31:0] : MAG_1_CAL3_3 -- 32-bit IEEE Floating Point Value :return: MAG_1_CAL3_3 as float; """ addr = 0x19 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_1_CAL3_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_1_cal3_3, = struct.unpack('>f', payload[0:4]) return reg, mag_1_cal3_3, @creg_mag_1_cal3_3.setter def creg_mag_1_cal3_3(self, new_value): addr = 0x19 self.write_register(addr, new_value) @property def creg_mag_1_bias_x(self): """ This register stores a bias term for the magnetometer 1 x-axis for hard-iron calibration. This term can be computed by performing magnetometer calibration with the Redshift labs Serial Interface. Payload structure: [31:0] : MAG_1_BIAS_X -- 32-bit IEEE Floating Point Value :return: MAG_1_BIAS_X as float; """ addr = 0x1A ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_1_BIAS_X') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_1_bias_x, = struct.unpack('>f', payload[0:4]) return reg, mag_1_bias_x, @creg_mag_1_bias_x.setter def creg_mag_1_bias_x(self, new_value): addr = 0x1A self.write_register(addr, new_value) @property def creg_mag_1_bias_y(self): """ This register stores a bias term for the magnetometer 1 y-axis for hard-iron calibration. This term can be computed by performing magnetometer calibration with the Redshift labs Serial Interface. Payload structure: [31:0] : MAG_1_BIAS_Y -- 32-bit IEEE Floating Point Value :return: MAG_1_BIAS_Y as float; """ addr = 0x1B ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_1_BIAS_Y') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_1_bias_y, = struct.unpack('>f', payload[0:4]) return reg, mag_1_bias_y, @creg_mag_1_bias_y.setter def creg_mag_1_bias_y(self, new_value): addr = 0x1B self.write_register(addr, new_value) @property def creg_mag_1_bias_z(self): """ This register stores a bias term for the magnetometer 1 z-axis for hard-iron calibration. This term can be computed by performing magnetometer calibration with the Redshift labs Serial Interface. Payload structure: [31:0] : MAG_1_BIAS_Z -- 32-bit IEEE Floating Point Value :return: MAG_1_BIAS_Z as float; """ addr = 0x1C ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_1_BIAS_Z') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_1_bias_z, = struct.unpack('>f', payload[0:4]) return reg, mag_1_bias_z, @creg_mag_1_bias_z.setter def creg_mag_1_bias_z(self, new_value): addr = 0x1C self.write_register(addr, new_value) @property def creg_mag_2_cal1_1(self): """ Row 1, Column 1 of magnetometer 2 calibration matrix. Payload structure: [31:0] : MAG_2_CAL1_1 -- 32-bit IEEE Floating Point Value :return: MAG_2_CAL1_1 as float; """ addr = 0x1D ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_2_CAL1_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_2_cal1_1, = struct.unpack('>f', payload[0:4]) return reg, mag_2_cal1_1, @creg_mag_2_cal1_1.setter def creg_mag_2_cal1_1(self, new_value): addr = 0x1D self.write_register(addr, new_value) @property def creg_mag_2_cal1_2(self): """ Row 1, Column 2 of magnetometer 2 calibration matrix. Payload structure: [31:0] : MAG_2_CAL1_2 -- 32-bit IEEE Floating Point Value :return: MAG_2_CAL1_2 as float; """ addr = 0x1E ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_2_CAL1_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_2_cal1_2, = struct.unpack('>f', payload[0:4]) return reg, mag_2_cal1_2, @creg_mag_2_cal1_2.setter def creg_mag_2_cal1_2(self, new_value): addr = 0x1E self.write_register(addr, new_value) @property def creg_mag_2_cal1_3(self): """ Row 1, Column 3 of magnetometer 2 calibration matrix. Payload structure: [31:0] : MAG_2_CAL1_3 -- 32-bit IEEE Floating Point Value :return: MAG_2_CAL1_3 as float; """ addr = 0x1F ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_2_CAL1_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_2_cal1_3, = struct.unpack('>f', payload[0:4]) return reg, mag_2_cal1_3, @creg_mag_2_cal1_3.setter def creg_mag_2_cal1_3(self, new_value): addr = 0x1F self.write_register(addr, new_value) @property def creg_mag_2_cal2_1(self): """ Row 2, Column 1 of magnetometer 2 calibration matrix. Payload structure: [31:0] : MAG_2_CAL2_1 -- 32-bit IEEE Floating Point Value :return: MAG_2_CAL2_1 as float; """ addr = 0x20 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_2_CAL2_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_2_cal2_1, = struct.unpack('>f', payload[0:4]) return reg, mag_2_cal2_1, @creg_mag_2_cal2_1.setter def creg_mag_2_cal2_1(self, new_value): addr = 0x20 self.write_register(addr, new_value) @property def creg_mag_2_cal2_2(self): """ Row 2, Column 2 of magnetometer 2 calibration matrix. Payload structure: [31:0] : MAG_2_CAL2_2 -- 32-bit IEEE Floating Point Value :return: MAG_2_CAL2_2 as float; """ addr = 0x21 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_2_CAL2_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_2_cal2_2, = struct.unpack('>f', payload[0:4]) return reg, mag_2_cal2_2, @creg_mag_2_cal2_2.setter def creg_mag_2_cal2_2(self, new_value): addr = 0x21 self.write_register(addr, new_value) @property def creg_mag_2_cal2_3(self): """ Row 2, Column 3 of magnetometer 2 calibration matrix. Payload structure: [31:0] : MAG_2_CAL2_3 -- 32-bit IEEE Floating Point Value :return: MAG_2_CAL2_3 as float; """ addr = 0x22 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_2_CAL2_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_2_cal2_3, = struct.unpack('>f', payload[0:4]) return reg, mag_2_cal2_3, @creg_mag_2_cal2_3.setter def creg_mag_2_cal2_3(self, new_value): addr = 0x22 self.write_register(addr, new_value) @property def creg_mag_2_cal3_1(self): """ Row 3, Column 1 of magnetometer 2 calibration matrix. Payload structure: [31:0] : MAG_2_CAL3_1 -- 32-bit IEEE Floating Point Value :return: MAG_2_CAL3_1 as float; """ addr = 0x23 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_2_CAL3_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_2_cal3_1, = struct.unpack('>f', payload[0:4]) return reg, mag_2_cal3_1, @creg_mag_2_cal3_1.setter def creg_mag_2_cal3_1(self, new_value): addr = 0x23 self.write_register(addr, new_value) @property def creg_mag_2_cal3_2(self): """ Row 3, Column 2 of magnetometer 2 calibration matrix. Payload structure: [31:0] : MAG_2_CAL3_2 -- 32-bit IEEE Floating Point Value :return: MAG_2_CAL3_2 as float; """ addr = 0x24 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_2_CAL3_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_2_cal3_2, = struct.unpack('>f', payload[0:4]) return reg, mag_2_cal3_2, @creg_mag_2_cal3_2.setter def creg_mag_2_cal3_2(self, new_value): addr = 0x24 self.write_register(addr, new_value) @property def creg_mag_2_cal3_3(self): """ Row 3, Column 3 of magnetometer 2 calibration matrix. Payload structure: [31:0] : MAG_2_CAL3_3 -- 32-bit IEEE Floating Point Value :return: MAG_2_CAL3_3 as float; """ addr = 0x25 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_2_CAL3_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_2_cal3_3, = struct.unpack('>f', payload[0:4]) return reg, mag_2_cal3_3, @creg_mag_2_cal3_3.setter def creg_mag_2_cal3_3(self, new_value): addr = 0x25 self.write_register(addr, new_value) @property def creg_mag_2_bias_x(self): """ This register stores a bias term for the magnetometer 2 x-axis for hard-iron calibration. This term can be computed by performing magnetometer calibration with the Redshift labs Serial Interface. Payload structure: [31:0] : MAG_2_BIAS_X -- 32-bit IEEE Floating Point Value :return: MAG_2_BIAS_X as float; """ addr = 0x26 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_2_BIAS_X') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_2_bias_x, = struct.unpack('>f', payload[0:4]) return reg, mag_2_bias_x, @creg_mag_2_bias_x.setter def creg_mag_2_bias_x(self, new_value): addr = 0x26 self.write_register(addr, new_value) @property def creg_mag_2_bias_y(self): """ This register stores a bias term for the magnetometer 2 y-axis for hard-iron calibration. This term can be computed by performing magnetometer calibration with the Redshift labs Serial Interface. Payload structure: [31:0] : MAG_2_BIAS_Y -- 32-bit IEEE Floating Point Value :return: MAG_2_BIAS_Y as float; """ addr = 0x27 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_2_BIAS_Y') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_2_bias_y, = struct.unpack('>f', payload[0:4]) return reg, mag_2_bias_y, @creg_mag_2_bias_y.setter def creg_mag_2_bias_y(self, new_value): addr = 0x27 self.write_register(addr, new_value) @property def creg_mag_2_bias_z(self): """ This register stores a bias term for the magnetometer 2 z-axis for hard-iron calibration. This term can be computed by performing magnetometer calibration with the Redshift labs Serial Interface. Payload structure: [31:0] : MAG_2_BIAS_Z -- 32-bit IEEE Floating Point Value :return: MAG_2_BIAS_Z as float; """ addr = 0x28 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_MAG_2_BIAS_Z') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_2_bias_z, = struct.unpack('>f', payload[0:4]) return reg, mag_2_bias_z, @creg_mag_2_bias_z.setter def creg_mag_2_bias_z(self, new_value): addr = 0x28 self.write_register(addr, new_value) @property def creg_accel_1_meas_range(self): """ The CREG_ACCEL_1_MEAS_RANGE register sets the desired measurement range for the accelerometer 1. If the rate is not set, then the default value of the +-2 g will be used as a measurement range. Payload structure: [1:0] : MEAS_ACC1 -- Specifies the desired measurement range for the accelerometer 1 measurements. :return: MEAS_ACC1 as bitField; """ addr = 0x29 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_MEAS_RANGE') reg.raw_value, = struct.unpack('>I', payload[0:4]) # find value for MEAS_ACC1 bit field meas_acc1_val = (reg.raw_value >> 0) & 0x0003 meas_acc1_enum = reg.find_field_by(name='MEAS_ACC1').find_enum_entry_by(value=meas_acc1_val) return reg, meas_acc1_enum @creg_accel_1_meas_range.setter def creg_accel_1_meas_range(self, new_value): addr = 0x29 self.write_register(addr, new_value) @property def creg_accel_1_cal1_1(self): """ Row 1, Column 1 of accelerometer 1 calibration matrix. Payload structure: [31:0] : ACCEL_1_CAL1_1 -- 32-bit IEEE Floating Point Value :return: ACCEL_1_CAL1_1 as float; """ addr = 0x2A ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_CAL1_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) accel_1_cal1_1, = struct.unpack('>f', payload[0:4]) return reg, accel_1_cal1_1, @creg_accel_1_cal1_1.setter def creg_accel_1_cal1_1(self, new_value): addr = 0x2A self.write_register(addr, new_value) @property def creg_accel_1_cal1_2(self): """ Row 1, Column 2 of accelerometer 1 calibration matrix. Payload structure: [31:0] : ACCEL_1_CAL1_2 -- 32-bit IEEE Floating Point Value :return: ACCEL_1_CAL1_2 as float; """ addr = 0x2B ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_CAL1_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) accel_1_cal1_2, = struct.unpack('>f', payload[0:4]) return reg, accel_1_cal1_2, @creg_accel_1_cal1_2.setter def creg_accel_1_cal1_2(self, new_value): addr = 0x2B self.write_register(addr, new_value) @property def creg_accel_1_cal1_3(self): """ Row 1, Column 3 of accelerometer 1 calibration matrix. Payload structure: [31:0] : ACCEL_1_CAL1_3 -- 32-bit IEEE Floating Point Value :return: ACCEL_1_CAL1_3 as float; """ addr = 0x2C ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_CAL1_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) accel_1_cal1_3, = struct.unpack('>f', payload[0:4]) return reg, accel_1_cal1_3, @creg_accel_1_cal1_3.setter def creg_accel_1_cal1_3(self, new_value): addr = 0x2C self.write_register(addr, new_value) @property def creg_accel_1_cal2_1(self): """ Row 2, Column 1 of accelerometer 1 calibration matrix. Payload structure: [31:0] : ACCEL_1_CAL2_1 -- 32-bit IEEE Floating Point Value :return: ACCEL_1_CAL2_1 as float; """ addr = 0x2D ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_CAL2_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) accel_1_cal2_1, = struct.unpack('>f', payload[0:4]) return reg, accel_1_cal2_1, @creg_accel_1_cal2_1.setter def creg_accel_1_cal2_1(self, new_value): addr = 0x2D self.write_register(addr, new_value) @property def creg_accel_1_cal2_2(self): """ Row 2, Column 2 of accelerometer 1 calibration matrix. Payload structure: [31:0] : ACCEL_1_CAL2_2 -- 32-bit IEEE Floating Point Value :return: ACCEL_1_CAL2_2 as float; """ addr = 0x2E ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_CAL2_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) accel_1_cal2_2, = struct.unpack('>f', payload[0:4]) return reg, accel_1_cal2_2, @creg_accel_1_cal2_2.setter def creg_accel_1_cal2_2(self, new_value): addr = 0x2E self.write_register(addr, new_value) @property def creg_accel_1_cal2_3(self): """ Row 2, Column 3 of accelerometer 1 calibration matrix. Payload structure: [31:0] : ACCEL_1_CAL2_3 -- 32-bit IEEE Floating Point Value :return: ACCEL_1_CAL2_3 as float; """ addr = 0x2F ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_CAL2_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) accel_1_cal2_3, = struct.unpack('>f', payload[0:4]) return reg, accel_1_cal2_3, @creg_accel_1_cal2_3.setter def creg_accel_1_cal2_3(self, new_value): addr = 0x2F self.write_register(addr, new_value) @property def creg_accel_1_cal3_1(self): """ Row 3, Column 1 of accelerometer 1 calibration matrix. Payload structure: [31:0] : ACCEL_1_CAL3_1 -- 32-bit IEEE Floating Point Value :return: ACCEL_1_CAL3_1 as float; """ addr = 0x30 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_CAL3_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) accel_1_cal3_1, = struct.unpack('>f', payload[0:4]) return reg, accel_1_cal3_1, @creg_accel_1_cal3_1.setter def creg_accel_1_cal3_1(self, new_value): addr = 0x30 self.write_register(addr, new_value) @property def creg_accel_1_cal3_2(self): """ Row 3, Column 2 of accelerometer 1 calibration matrix. Payload structure: [31:0] : ACCEL_1_CAL3_2 -- 32-bit IEEE Floating Point Value :return: ACCEL_1_CAL3_2 as float; """ addr = 0x31 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_CAL3_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) accel_1_cal3_2, = struct.unpack('>f', payload[0:4]) return reg, accel_1_cal3_2, @creg_accel_1_cal3_2.setter def creg_accel_1_cal3_2(self, new_value): addr = 0x31 self.write_register(addr, new_value) @property def creg_accel_1_cal3_3(self): """ Row 3, Column 3 of accelerometer 1 calibration matrix. Payload structure: [31:0] : ACCEL_1_CAL3_3 -- 32-bit IEEE Floating Point Value :return: ACCEL_1_CAL3_3 as float; """ addr = 0x32 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_CAL3_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) accel_1_cal3_3, = struct.unpack('>f', payload[0:4]) return reg, accel_1_cal3_3, @creg_accel_1_cal3_3.setter def creg_accel_1_cal3_3(self, new_value): addr = 0x32 self.write_register(addr, new_value) @property def creg_accel_1_bias_x(self): """ This register stores a bias term for the accelerometer 1 x-axis for bias calibration. This term can be computed by performing calibrate accelerometers command within the Redshift labs Serial Interface. Payload structure: [31:0] : ACCEL_1_BIAS_X -- 32-bit IEEE Floating Point Value :return: ACCEL_1_BIAS_X as float; """ addr = 0x33 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_BIAS_X') reg.raw_value, = struct.unpack('>f', payload[0:4]) accel_1_bias_x, = struct.unpack('>f', payload[0:4]) return reg, accel_1_bias_x, @creg_accel_1_bias_x.setter def creg_accel_1_bias_x(self, new_value): addr = 0x33 self.write_register(addr, new_value) @property def creg_accel_1_bias_y(self): """ This register stores a bias term for the accelerometer 1 y-axis for bias calibration. This term can be computed by performing calibrate accelerometers command within the Redshift labs Serial Interface. Payload structure: [31:0] : ACCEL_1_BIAS_Y -- 32-bit IEEE Floating Point Value :return: ACCEL_1_BIAS_Y as float; """ addr = 0x34 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_BIAS_Y') reg.raw_value, = struct.unpack('>f', payload[0:4]) accel_1_bias_y, = struct.unpack('>f', payload[0:4]) return reg, accel_1_bias_y, @creg_accel_1_bias_y.setter def creg_accel_1_bias_y(self, new_value): addr = 0x34 self.write_register(addr, new_value) @property def creg_accel_1_bias_z(self): """ This register stores a bias term for the accelerometer 1 z-axis for bias calibration. This term can be computed by performing calibrate accelerometers command within the Redshift labs Serial Interface. Payload structure: [31:0] : ACCEL_1_BIAS_Z -- 32-bit IEEE Floating Point Value :return: ACCEL_1_BIAS_Z as float; """ addr = 0x35 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_BIAS_Z') reg.raw_value, = struct.unpack('>f', payload[0:4]) accel_1_bias_z, = struct.unpack('>f', payload[0:4]) return reg, accel_1_bias_z, @creg_accel_1_bias_z.setter def creg_accel_1_bias_z(self, new_value): addr = 0x35 self.write_register(addr, new_value) @property def dreg_health(self): """ The health register reports the current status of the sensors on the board. Monitoring the health register is the easiest way to watch for other problems that could affect the behavior of the board, status of the sensors. The analogous to the health register, the status of the GPS signal can be monitored in the DREG_GPS_HEALTH Payload structure: [8] : OVF -- Overflow bit. This bit is set if the board is attempting to transmit data over the serial port faster than is allowed given the baud-rate. If this bit is set, reduce broadcast rates in the COM_RATES registers. [7] : ACC1_N -- This bit is set if the sensor detects that the norm of the accelerometer measurement is too far away from 1G to be used (i.e. during aggressive acceleration or high vibration). [6] : MAG1_N -- This bit is set if the sensor detects that the norm of the magnetometer measurement for the magnetometer 1 is too far away from 1.0 to be trusted. Usually indicates bad calibration, local field distortions, or both. [5] : MAG2_N -- This bit is set if the sensor detects that the norm of the magnetometer measurement for the magnetometer 2 is too far away from 1.0 to be trusted. Usually indicates bad calibration, local field distortions, or both. [4] : ACCEL1 -- This bit will be set if the accelerometer 1 fails to initialize on startup. [3] : GYRO1 -- This bit will be set if the rate gyro 1 fails to initialize on startup. [2] : GYRO2 -- This bit will be set if the rate gyro 2 fails to initialize on startup. [1] : MAG1 -- This bit will be set if the magnetometer 1 fails to initialize on startup. [0] : MAG2 -- This bit will be set if the magnetometer 2 fails to initialize on startup. :return: OVF as bitField; ACC1_N as bitField; MAG1_N as bitField; MAG2_N as bitField; ACCEL1 as bitField; GYRO1 as bitField; GYRO2 as bitField; MAG1 as bitField; MAG2 as bitField; """ addr = 0x55 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_HEALTH') reg.raw_value, = struct.unpack('>I', payload[0:4]) # find value for OVF bit field ovf_val = (reg.raw_value >> 8) & 0x0001 ovf_enum = reg.find_field_by(name='OVF').find_enum_entry_by(value=ovf_val) # find value for ACC1_N bit field acc1_n_val = (reg.raw_value >> 7) & 0x0001 acc1_n_enum = reg.find_field_by(name='ACC1_N').find_enum_entry_by(value=acc1_n_val) # find value for MAG1_N bit field mag1_n_val = (reg.raw_value >> 6) & 0x0001 mag1_n_enum = reg.find_field_by(name='MAG1_N').find_enum_entry_by(value=mag1_n_val) # find value for MAG2_N bit field mag2_n_val = (reg.raw_value >> 5) & 0x0001 mag2_n_enum = reg.find_field_by(name='MAG2_N').find_enum_entry_by(value=mag2_n_val) # find value for ACCEL1 bit field accel1_val = (reg.raw_value >> 4) & 0x0001 accel1_enum = reg.find_field_by(name='ACCEL1').find_enum_entry_by(value=accel1_val) # find value for GYRO1 bit field gyro1_val = (reg.raw_value >> 3) & 0x0001 gyro1_enum = reg.find_field_by(name='GYRO1').find_enum_entry_by(value=gyro1_val) # find value for GYRO2 bit field gyro2_val = (reg.raw_value >> 2) & 0x0001 gyro2_enum = reg.find_field_by(name='GYRO2').find_enum_entry_by(value=gyro2_val) # find value for MAG1 bit field mag1_val = (reg.raw_value >> 1) & 0x0001 mag1_enum = reg.find_field_by(name='MAG1').find_enum_entry_by(value=mag1_val) # find value for MAG2 bit field mag2_val = (reg.raw_value >> 0) & 0x0001 mag2_enum = reg.find_field_by(name='MAG2').find_enum_entry_by(value=mag2_val) return reg, ovf_enum, acc1_n_enum, mag1_n_enum, mag2_n_enum, accel1_enum, gyro1_enum, gyro2_enum, mag1_enum, mag2_enum @property def dreg_gyro_1_raw_xy(self): """ Contains raw X and Y axis rate gyro 1 data. Payload structure: [31:16] : GYRO_1_RAW_X -- Gyro X (2s complement 16-bit integer) [15:0] : GYRO_1_RAW_Y -- Gyro Y (2s complement 16-bit integer) :return: GYRO_1_RAW_X as int16_t; GYRO_1_RAW_Y as int16_t; """ addr = 0x56 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_1_RAW_XY') reg.raw_value, = struct.unpack('>I', payload[0:4]) gyro_1_raw_x, gyro_1_raw_y = struct.unpack('>hh', payload[0:4]) return reg, gyro_1_raw_x, gyro_1_raw_y @property def dreg_gyro_1_raw_z(self): """ Contains raw Z axis rate gyro 1 data. Payload structure: [31:16] : GYRO_1_RAW_Z -- Gyro Z (2s complement 16-bit integer) :return: GYRO_1_RAW_Z as int16_t; """ addr = 0x57 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_1_RAW_Z') reg.raw_value, = struct.unpack('>hxx', payload[0:4]) gyro_1_raw_z, = struct.unpack('>hxx', payload[0:4]) return reg, gyro_1_raw_z, @property def dreg_gyro_1_raw_time(self): """ Contains time at which the last rate gyro 1 data was acquired. Payload structure: [31:0] : GYRO_1_RAW_TIME -- 32-bit IEEE Floating Point Value :return: GYRO_1_RAW_TIME as float; """ addr = 0x58 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_1_RAW_TIME') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_1_raw_time, = struct.unpack('>f', payload[0:4]) return reg, gyro_1_raw_time, @property def dreg_gyro_2_raw_xy(self): """ Contains raw X and Y axis rate gyro 2 data. Payload structure: [31:16] : GYRO_2_RAW_X -- Gyro X (2s complement 16-bit integer) [15:0] : GYRO_2_RAW_Y -- Gyro Y (2s complement 16-bit integer) :return: GYRO_2_RAW_X as int16_t; GYRO_2_RAW_Y as int16_t; """ addr = 0x59 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_2_RAW_XY') reg.raw_value, = struct.unpack('>I', payload[0:4]) gyro_2_raw_x, gyro_2_raw_y = struct.unpack('>hh', payload[0:4]) return reg, gyro_2_raw_x, gyro_2_raw_y @property def dreg_gyro_2_raw_z(self): """ Contains raw Z axis rate gyro 2 data. Payload structure: [31:16] : GYRO_2_RAW_Z -- Gyro Z (2s complement 16-bit integer) :return: GYRO_2_RAW_Z as int16_t; """ addr = 0x5A ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_2_RAW_Z') reg.raw_value, = struct.unpack('>hxx', payload[0:4]) gyro_2_raw_z, = struct.unpack('>hxx', payload[0:4]) return reg, gyro_2_raw_z, @property def dreg_gyro_2_raw_time(self): """ Contains time at which the last rate gyro 2 data was acquired. Payload structure: [31:0] : GYRO_2_RAW_TIME -- 32-bit IEEE Floating Point Value :return: GYRO_2_RAW_TIME as float; """ addr = 0x5B ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_2_RAW_TIME') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_2_raw_time, = struct.unpack('>f', payload[0:4]) return reg, gyro_2_raw_time, @property def dreg_accel_1_raw_xy(self): """ Contains raw X and Y axis accelerometer 1 data. Payload structure: [31:16] : ACCEL_1_RAW_X -- Accel X (2s complement 16-bit integer) [15:0] : ACCEL_1_RAW_Y -- Accel Y (2s complement 16-bit integer) :return: ACCEL_1_RAW_X as int16_t; ACCEL_1_RAW_Y as int16_t; """ addr = 0x5C ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_RAW_XY') reg.raw_value, = struct.unpack('>I', payload[0:4]) accel_1_raw_x, accel_1_raw_y = struct.unpack('>hh', payload[0:4]) return reg, accel_1_raw_x, accel_1_raw_y @property def dreg_accel_1_raw_z(self): """ Contains raw Z axis accelerometer 1 data. Payload structure: [31:16] : ACCEL_1_RAW_Z -- Accel Z (2s complement 16-bit integer) :return: ACCEL_1_RAW_Z as int16_t; """ addr = 0x5D ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_RAW_Z') reg.raw_value, = struct.unpack('>hxx', payload[0:4]) accel_1_raw_z, = struct.unpack('>hxx', payload[0:4]) return reg, accel_1_raw_z, @property def dreg_accel_1_raw_time(self): """ Contains time at which the last raw data sample for the accelerometer 1 was acquired. Payload structure: [31:0] : ACCEL_1_RAW_TIME -- 32-bit IEEE Floating Point Value :return: ACCEL_1_RAW_TIME as float; """ addr = 0x5E ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_RAW_TIME') reg.raw_value, = struct.unpack('>f', payload[0:4]) accel_1_raw_time, = struct.unpack('>f', payload[0:4]) return reg, accel_1_raw_time, @property def dreg_mag_1_raw_x(self): """ Contains raw x axis magnetometer 1 data. Payload structure: [31:0] : MAG_1_RAW_X -- 32-bit signed integer value :return: MAG_1_RAW_X as int32_t; """ addr = 0x5F ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_MAG_1_RAW_X') reg.raw_value, = struct.unpack('>i', payload[0:4]) mag_1_raw_x, = struct.unpack('>i', payload[0:4]) return reg, mag_1_raw_x, @property def dreg_mag_1_raw_y(self): """ Contains raw y axis magnetometer 1 data. Payload structure: [31:0] : MAG_1_RAW_Y -- 32-bit signed integer value :return: MAG_1_RAW_Y as int32_t; """ addr = 0x60 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_MAG_1_RAW_Y') reg.raw_value, = struct.unpack('>i', payload[0:4]) mag_1_raw_y, = struct.unpack('>i', payload[0:4]) return reg, mag_1_raw_y, @property def dreg_mag_1_raw_z(self): """ Contains raw z axis magnetometer 1 data. Payload structure: [31:0] : MAG_1_RAW_Z -- 32-bit signed integer value :return: MAG_1_RAW_Z as int32_t; """ addr = 0x61 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_MAG_1_RAW_Z') reg.raw_value, = struct.unpack('>i', payload[0:4]) mag_1_raw_z, = struct.unpack('>i', payload[0:4]) return reg, mag_1_raw_z, @property def dreg_mag_1_raw_time(self): """ Contains time at which the last magnetometer data from the magnetometer 1 was acquired. Payload structure: [31:0] : MAG_1_RAW_TIME -- 32-bit IEEE Floating Point Value :return: MAG_1_RAW_TIME as float; """ addr = 0x62 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_MAG_1_RAW_TIME') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_1_raw_time, = struct.unpack('>f', payload[0:4]) return reg, mag_1_raw_time, @property def dreg_mag_2_raw_xy(self): """ Contains raw X and Y axis magnetometer 2 data. Payload structure: [31:16] : MAG_2_RAW_X -- Magnetometer X (2s complement 16-bit integer) [15:0] : MAG_2_RAW_Y -- Magnetometer Y (2s complement 16-bit integer) :return: MAG_2_RAW_X as int16_t; MAG_2_RAW_Y as int16_t; """ addr = 0x63 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_MAG_2_RAW_XY') reg.raw_value, = struct.unpack('>I', payload[0:4]) mag_2_raw_x, mag_2_raw_y = struct.unpack('>hh', payload[0:4]) return reg, mag_2_raw_x, mag_2_raw_y @property def dreg_mag_2_raw_z(self): """ Contains raw Z axis magnetometer 2 data. Payload structure: [31:16] : MAG_2_RAW_Z -- Magnetometer Z (2s complement 16-bit integer) :return: MAG_2_RAW_Z as int16_t; """ addr = 0x64 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_MAG_2_RAW_Z') reg.raw_value, = struct.unpack('>hxx', payload[0:4]) mag_2_raw_z, = struct.unpack('>hxx', payload[0:4]) return reg, mag_2_raw_z, @property def dreg_mag_2_raw_time(self): """ Contains time at which the last magnetometer data from the magnetometer 2 was acquired. Payload structure: [31:0] : MAG_2_RAW_TIME -- 32-bit IEEE Floating Point Value :return: MAG_2_RAW_TIME as float; """ addr = 0x65 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_MAG_2_RAW_TIME') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_2_raw_time, = struct.unpack('>f', payload[0:4]) return reg, mag_2_raw_time, @property def dreg_temperature(self): """ Contains the temperature output of the onboard temperature sensor. Payload structure: [31:0] : TEMPERATURE -- Temperature in degrees Celcius (32-bit IEEE Floating Point) :return: TEMPERATURE as float; """ addr = 0x66 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_TEMPERATURE') reg.raw_value, = struct.unpack('>f', payload[0:4]) temperature, = struct.unpack('>f', payload[0:4]) return reg, temperature, @property def dreg_temperature_time(self): """ Contains time at which the last temperature was acquired. Payload structure: [31:0] : TEMPERATURE_TIME -- 32-bit IEEE Floating Point Value :return: TEMPERATURE_TIME as float; """ addr = 0x67 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_TEMPERATURE_TIME') reg.raw_value, = struct.unpack('>f', payload[0:4]) temperature_time, = struct.unpack('>f', payload[0:4]) return reg, temperature_time, @property def dreg_gyro_1_proc_x(self): """ Contains the actual measured angular rate from the gyro 1 for the x axis in degrees/sec after calibration has been applied. Payload structure: [31:0] : GYRO_1_PROC_X -- Gyro X in degrees / sec (32-bit IEEE Floating Point Value) :return: GYRO_1_PROC_X as float; """ addr = 0x68 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_1_PROC_X') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_1_proc_x, = struct.unpack('>f', payload[0:4]) return reg, gyro_1_proc_x, @property def dreg_gyro_1_proc_y(self): """ Contains the actual measured angular rate from the gyro 1 for the y axis in degrees/sec after calibration has been applied. Payload structure: [31:0] : GYRO_1_PROC_Y -- Gyro Y in degrees / sec (32-bit IEEE Floating Point Value) :return: GYRO_1_PROC_Y as float; """ addr = 0x69 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_1_PROC_Y') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_1_proc_y, = struct.unpack('>f', payload[0:4]) return reg, gyro_1_proc_y, @property def dreg_gyro_1_proc_z(self): """ Contains the actual measured angular rate from the gyro 1 for the z axis in degrees/sec after calibration has been applied. Payload structure: [31:0] : GYRO_1_PROC_Z -- Gyro Z in degrees / sec (32-bit IEEE Floating Point Value) :return: GYRO_1_PROC_Z as float; """ addr = 0x6A ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_1_PROC_Z') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_1_proc_z, = struct.unpack('>f', payload[0:4]) return reg, gyro_1_proc_z, @property def dreg_gyro_1_proc_time(self): """ Contains the time at which the last rate gyro data from the gyro 1 was measured. Payload structure: [31:0] : GYRO_1_PROC_TIME -- Gyro 1 time stamp (32-bit IEEE Floating Point Value) :return: GYRO_1_PROC_TIME as float; """ addr = 0x6B ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_1_PROC_TIME') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_1_proc_time, = struct.unpack('>f', payload[0:4]) return reg, gyro_1_proc_time, @property def dreg_gyro_2_proc_x(self): """ Contains the actual measured angular rate from the gyro 2 for the x axis in degrees/sec after calibration has been applied. Payload structure: [31:0] : GYRO_2_PROC_X -- Gyro X in degrees / sec (32-bit IEEE Floating Point Value) :return: GYRO_2_PROC_X as float; """ addr = 0x6C ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_2_PROC_X') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_2_proc_x, = struct.unpack('>f', payload[0:4]) return reg, gyro_2_proc_x, @property def dreg_gyro_2_proc_y(self): """ Contains the actual measured angular rate from the gyro 2 for the y axis in degrees/sec after calibration has been applied. Payload structure: [31:0] : GYRO_2_PROC_Y -- Gyro Y in degrees / sec (32-bit IEEE Floating Point Value) :return: GYRO_2_PROC_Y as float; """ addr = 0x6D ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_2_PROC_Y') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_2_proc_y, = struct.unpack('>f', payload[0:4]) return reg, gyro_2_proc_y, @property def dreg_gyro_2_proc_z(self): """ Contains the actual measured angular rate from the gyro 2 for the z axis in degrees/sec after calibration has been applied. Payload structure: [31:0] : GYRO_2_PROC_Z -- Gyro Z in degrees / sec (32-bit IEEE Floating Point Value) :return: GYRO_2_PROC_Z as float; """ addr = 0x6E ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_2_PROC_Z') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_2_proc_z, = struct.unpack('>f', payload[0:4]) return reg, gyro_2_proc_z, @property def dreg_gyro_2_proc_time(self): """ Contains the time at which the last rate gyro data from the gyro 2 was measured. Payload structure: [31:0] : GYRO_2_PROC_TIME -- Gyro 2 time stamp (32-bit IEEE Floating Point Value) :return: GYRO_2_PROC_TIME as float; """ addr = 0x6F ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_2_PROC_TIME') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_2_proc_time, = struct.unpack('>f', payload[0:4]) return reg, gyro_2_proc_time, @property def dreg_accel_1_proc_x(self): """ Contains the actual measured acceleration from the accelerometer 1 for the x axis in m/s2 after calibration has been applied. Payload structure: [31:0] : ACCEL_1_PROC_X -- Acceleration X in m/s2 (32-bit IEEE Floating Point Value) :return: ACCEL_1_PROC_X as float; """ addr = 0x70 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_PROC_X') reg.raw_value, = struct.unpack('>f', payload[0:4]) accel_1_proc_x, = struct.unpack('>f', payload[0:4]) return reg, accel_1_proc_x, @property def dreg_accel_1_proc_y(self): """ Contains the actual measured acceleration from the accelerometer 1 for the y axis in m/s2 after calibration has been applied. Payload structure: [31:0] : ACCEL_1_PROC_Y -- Acceleration Y in m/s2 (32-bit IEEE Floating Point Value) :return: ACCEL_1_PROC_Y as float; """ addr = 0x71 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_PROC_Y') reg.raw_value, = struct.unpack('>f', payload[0:4]) accel_1_proc_y, = struct.unpack('>f', payload[0:4]) return reg, accel_1_proc_y, @property def dreg_accel_1_proc_z(self): """ Contains the actual measured acceleration from the accelerometer 1 for the z axis in m/s2 after calibration has been applied. Payload structure: [31:0] : ACCEL_1_PROC_Z -- Acceleration Z in m/s2 (32-bit IEEE Floating Point Value) :return: ACCEL_1_PROC_Z as float; """ addr = 0x72 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_PROC_Z') reg.raw_value, = struct.unpack('>f', payload[0:4]) accel_1_proc_z, = struct.unpack('>f', payload[0:4]) return reg, accel_1_proc_z, @property def dreg_accel_1_proc_time(self): """ Contains the time at which the last acceleration data from the accelerometer 1 was measured. Payload structure: [31:0] : ACCEL_1_PROC_TIME -- Accelerometer 1 time stamp (32-bit IEEE Floating Point Value) :return: ACCEL_1_PROC_TIME as float; """ addr = 0x73 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_PROC_TIME') reg.raw_value, = struct.unpack('>f', payload[0:4]) accel_1_proc_time, = struct.unpack('>f', payload[0:4]) return reg, accel_1_proc_time, @property def dreg_mag_1_proc_x(self): """ Contains the actual measured magnetic field from the magnetometer 1 for the x axis in mT after calibration has been applied. Payload structure: [31:0] : MAG_1_PROC_X -- Magnetometer X in mT (32-bit IEEE Floating Point Value) :return: MAG_1_PROC_X as float; """ addr = 0x74 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_MAG_1_PROC_X') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_1_proc_x, = struct.unpack('>f', payload[0:4]) return reg, mag_1_proc_x, @property def dreg_mag_1_proc_y(self): """ Contains the actual measured magnetic field from the magnetometer 1 for the y axis in mT after calibration has been applied. Payload structure: [31:0] : MAG_1_PROC_Y -- Magnetometer Y in mT (32-bit IEEE Floating Point Value) :return: MAG_1_PROC_Y as float; """ addr = 0x75 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_MAG_1_PROC_Y') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_1_proc_y, = struct.unpack('>f', payload[0:4]) return reg, mag_1_proc_y, @property def dreg_mag_1_proc_z(self): """ Contains the actual measured magnetic field from the magnetometer 1 for the z axis in mT after calibration has been applied. Payload structure: [31:0] : MAG_1_PROC_Z -- Magnetometer Z in mT (32-bit IEEE Floating Point Value) :return: MAG_1_PROC_Z as float; """ addr = 0x76 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_MAG_1_PROC_Z') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_1_proc_z, = struct.unpack('>f', payload[0:4]) return reg, mag_1_proc_z, @property def dreg_mag_1_norm(self): """ Contains the L2-norm (magnetic norm) for the measured magnetic field from the magnetometer 1 computed over the calibrated values. Payload structure: [31:0] : MAG_1_NORM -- Magnetic norm (32-bit IEEE Floating Point Value) :return: MAG_1_NORM as float; """ addr = 0x77 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_MAG_1_NORM') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_1_norm, = struct.unpack('>f', payload[0:4]) return reg, mag_1_norm, @property def dreg_mag_1_proc_time(self): """ Contains the time stamp at which the calibrated magnetometer 1 data was acquired. Payload structure: [31:0] : MAG_1_PROC_TIME -- Magnetometer 1 time stamp (32-bit IEEE Floating Point Value) :return: MAG_1_PROC_TIME as float; """ addr = 0x78 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_MAG_1_PROC_TIME') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_1_proc_time, = struct.unpack('>f', payload[0:4]) return reg, mag_1_proc_time, @property def dreg_mag_2_proc_x(self): """ Contains the actual measured magnetic field from the magnetometer 2 for the x axis in mT after calibration has been applied. Payload structure: [31:0] : MAG_2_PROC_X -- Magnetometer X in mT (32-bit IEEE Floating Point Value) :return: MAG_2_PROC_X as float; """ addr = 0x79 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_MAG_2_PROC_X') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_2_proc_x, = struct.unpack('>f', payload[0:4]) return reg, mag_2_proc_x, @property def dreg_mag_2_proc_y(self): """ Contains the actual measured magnetic field from the magnetometer 2 for the y axis in mT after calibration has been applied. Payload structure: [31:0] : MAG_2_PROC_Y -- Magnetometer Y in mT (32-bit IEEE Floating Point Value) :return: MAG_2_PROC_Y as float; """ addr = 0x7A ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_MAG_2_PROC_Y') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_2_proc_y, = struct.unpack('>f', payload[0:4]) return reg, mag_2_proc_y, @property def dreg_mag_2_proc_z(self): """ Contains the actual measured magnetic field from the magnetometer 2 for the z axis in mT after calibration has been applied. Payload structure: [31:0] : MAG_2_PROC_Z -- Magnetometer Z in mT (32-bit IEEE Floating Point Value) :return: MAG_2_PROC_Z as float; """ addr = 0x7B ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_MAG_2_PROC_Z') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_2_proc_z, = struct.unpack('>f', payload[0:4]) return reg, mag_2_proc_z, @property def dreg_mag_2_norm(self): """ Contains the L2-norm (magnetic norm) for the measured magnetic field from the magnetometer 2 computed over the calibrated values. Payload structure: [31:0] : MAG_2_NORM -- Magnetic norm (32-bit IEEE Floating Point Value) :return: MAG_2_NORM as float; """ addr = 0x7C ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_MAG_2_NORM') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_2_norm, = struct.unpack('>f', payload[0:4]) return reg, mag_2_norm, @property def dreg_mag_2_proc_time(self): """ Contains the time stamp at which the calibrated magnetometer 2 data was acquired. Payload structure: [31:0] : MAG_2_PROC_TIME -- Magnetometer 2 time stamp (32-bit IEEE Floating Point Value) :return: MAG_2_PROC_TIME as float; """ addr = 0x7D ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_MAG_2_PROC_TIME') reg.raw_value, = struct.unpack('>f', payload[0:4]) mag_2_proc_time, = struct.unpack('>f', payload[0:4]) return reg, mag_2_proc_time, @property def dreg_quat_ab(self): """ Contains the first two components (a and b) of the estimated quaternion attitude. Payload structure: [31:16] : QUAT_A -- First quaternion component. Stored as a 16-bit signed integer. To get the actual value, divide by 29789.09091. [15:0] : QUAT_B -- Second quaternion component. Stored as a 16-bit signed integer. To get the actual value, divide by 29789.09091. :return: QUAT_A as int16_t; QUAT_B as int16_t; """ addr = 0x7E ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_QUAT_AB') reg.raw_value, = struct.unpack('>I', payload[0:4]) quat_a, quat_b = struct.unpack('>hh', payload[0:4]) return reg, quat_a, quat_b @property def dreg_quat_cd(self): """ Contains the second two components (c and d) of the estimated quaternion attitude. Payload structure: [31:16] : QUAT_C -- Third quaternion component. Stored as a 16-bit signed integer. To get the actual value, divide by 29789.09091. [15:0] : QUAT_D -- Fourth quaternion component. Stored as a 16-bit signed integer. To get the actual value, divide by 29789.09091. :return: QUAT_C as int16_t; QUAT_D as int16_t; """ addr = 0x7F ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_QUAT_CD') reg.raw_value, = struct.unpack('>I', payload[0:4]) quat_c, quat_d = struct.unpack('>hh', payload[0:4]) return reg, quat_c, quat_d @property def dreg_quat_time(self): """ Contains the time that the quaternion attitude was estimated. Payload structure: [31:0] : QUAT_TIME -- Quaternion time (32-bit IEEE Floating Point Value) :return: QUAT_TIME as float; """ addr = 0x80 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_QUAT_TIME') reg.raw_value, = struct.unpack('>f', payload[0:4]) quat_time, = struct.unpack('>f', payload[0:4]) return reg, quat_time, @property def dreg_euler_phi_theta(self): """ Contains the pitch and roll angle estimates. Payload structure: [31:16] : PHI -- Roll angle. Stored as a 16-bit signed integer. To get the actual value, divide by 91.02222. [15:0] : THETA -- Pitch angle. Stored as a 16-bit signed integer. To get the actual value, divide by 91.02222. :return: PHI as int16_t; THETA as int16_t; """ addr = 0x81 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_EULER_PHI_THETA') reg.raw_value, = struct.unpack('>I', payload[0:4]) phi, theta = struct.unpack('>hh', payload[0:4]) return reg, phi, theta @property def dreg_euler_psi(self): """ Contains the yaw angle estimate. Payload structure: [31:16] : PSI -- Yaw angle. Stored as a 16-bit signed integer. To get the actual value, divide by 91.02222. :return: PSI as int16_t; """ addr = 0x82 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_EULER_PSI') reg.raw_value, = struct.unpack('>hxx', payload[0:4]) psi, = struct.unpack('>hxx', payload[0:4]) return reg, psi, @property def dreg_euler_phi_theta_dot(self): """ Contains the pitch and roll rate estimates. Payload structure: [31:16] : PHI_DOT -- Roll rate. Stored as a 16-bit signed integer. To get the actual value, divide by 16.0. [15:0] : THETA_DOT -- Pitch rate. Stored as a 16-bit signed integer. To get the actual value, divide by 16.0. :return: PHI_DOT as int16_t; THETA_DOT as int16_t; """ addr = 0x83 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_EULER_PHI_THETA_DOT') reg.raw_value, = struct.unpack('>I', payload[0:4]) phi_dot, theta_dot = struct.unpack('>hh', payload[0:4]) return reg, phi_dot, theta_dot @property def dreg_euler_psi_dot(self): """ Contains the yaw rate estimate. Payload structure: [31:16] : PSI_DOT -- Yaw rate. Stored as a 16-bit signed integer. To get the actual value, divide by 16.0. :return: PSI_DOT as int16_t; """ addr = 0x84 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_EULER_PSI_DOT') reg.raw_value, = struct.unpack('>hxx', payload[0:4]) psi_dot, = struct.unpack('>hxx', payload[0:4]) return reg, psi_dot, @property def dreg_euler_time(self): """ Contains the time that the Euler Angles were estimated. Payload structure: [31:0] : EULER_TIME -- Euler time (32-bit IEEE Floating Point Value) :return: EULER_TIME as float; """ addr = 0x85 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_EULER_TIME') reg.raw_value, = struct.unpack('>f', payload[0:4]) euler_time, = struct.unpack('>f', payload[0:4]) return reg, euler_time, @property def dreg_position_north(self): """ Contains the measured north position in meters from the latitude specified in CREG_HOME_NORTH. Payload structure: [31:0] : POSITION_NORTH -- North Position (32-bit IEEE Floating Point Value) :return: POSITION_NORTH as float; """ addr = 0x86 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_POSITION_NORTH') reg.raw_value, = struct.unpack('>f', payload[0:4]) position_north, = struct.unpack('>f', payload[0:4]) return reg, position_north, @property def dreg_position_east(self): """ Contains the measured east position in meters from the longitude specified in CREG_HOME_EAST. Payload structure: [31:0] : POSITION_EAST -- East Position (32-bit IEEE Floating Point Value) :return: POSITION_EAST as float; """ addr = 0x87 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_POSITION_EAST') reg.raw_value, = struct.unpack('>f', payload[0:4]) position_east, = struct.unpack('>f', payload[0:4]) return reg, position_east, @property def dreg_position_up(self): """ Contains the measured altitude in meters from the altitude specified in CREG_HOME_UP. Payload structure: [31:0] : POSITION_UP -- Altitude (32-bit IEEE Floating Point Value) :return: POSITION_UP as float; """ addr = 0x88 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_POSITION_UP') reg.raw_value, = struct.unpack('>f', payload[0:4]) position_up, = struct.unpack('>f', payload[0:4]) return reg, position_up, @property def dreg_position_time(self): """ Contains the time at which the position was acquired. Payload structure: [31:0] : POSITION_TIME -- Position Time (32-bit IEEE Floating Point Value) :return: POSITION_TIME as float; """ addr = 0x89 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_POSITION_TIME') reg.raw_value, = struct.unpack('>f', payload[0:4]) position_time, = struct.unpack('>f', payload[0:4]) return reg, position_time, @property def dreg_velocity_north(self): """ Contains the measured north velocity in m/s. Payload structure: [31:0] : VELOCITY_NORTH -- North Velocity (32-bit IEEE Floating Point Value) :return: VELOCITY_NORTH as float; """ addr = 0x8A ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_VELOCITY_NORTH') reg.raw_value, = struct.unpack('>f', payload[0:4]) velocity_north, = struct.unpack('>f', payload[0:4]) return reg, velocity_north, @property def dreg_velocity_east(self): """ Contains the measured east velocity in m/s. Payload structure: [31:0] : VELOCITY_EAST -- East Velocity (32-bit IEEE Floating Point Value) :return: VELOCITY_EAST as float; """ addr = 0x8B ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_VELOCITY_EAST') reg.raw_value, = struct.unpack('>f', payload[0:4]) velocity_east, = struct.unpack('>f', payload[0:4]) return reg, velocity_east, @property def dreg_velocity_up(self): """ Contains the measured altitude velocity in m/s. Payload structure: [31:0] : VELOCITY_UP -- Altitude Velocity (32-bit IEEE Floating Point Value) :return: VELOCITY_UP as float; """ addr = 0x8C ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_VELOCITY_UP') reg.raw_value, = struct.unpack('>f', payload[0:4]) velocity_up, = struct.unpack('>f', payload[0:4]) return reg, velocity_up, @property def dreg_velocity_time(self): """ Contains the time at which the velocity was measured. Payload structure: [31:0] : VELOCITY_TIME -- Velocity time (32-bit IEEE Floating Point Value) :return: VELOCITY_TIME as float; """ addr = 0x8D ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_VELOCITY_TIME') reg.raw_value, = struct.unpack('>f', payload[0:4]) velocity_time, = struct.unpack('>f', payload[0:4]) return reg, velocity_time, @property def dreg_gyro_1_bias_x(self): """ Contains the estimated x-axis bias for the gyro 1 in degrees/s. Payload structure: [31:0] : GYRO_1_BIAS_X -- Gyro 1 bias X (32-bit IEEE Floating Point Value) :return: GYRO_1_BIAS_X as float; """ addr = 0x8E ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_1_BIAS_X') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_1_bias_x, = struct.unpack('>f', payload[0:4]) return reg, gyro_1_bias_x, @property def dreg_gyro_1_bias_y(self): """ Contains the estimated y-axis bias for the gyro 1 in degrees/s. Payload structure: [31:0] : GYRO_1_BIAS_Y -- Gyro 1 bias Y (32-bit IEEE Floating Point Value) :return: GYRO_1_BIAS_Y as float; """ addr = 0x8F ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_1_BIAS_Y') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_1_bias_y, = struct.unpack('>f', payload[0:4]) return reg, gyro_1_bias_y, @property def dreg_gyro_1_bias_z(self): """ Contains the estimated z-axis bias for the gyro 1 in degrees/s. Payload structure: [31:0] : GYRO_1_BIAS_Z -- Gyro 1 bias Z (32-bit IEEE Floating Point Value) :return: GYRO_1_BIAS_Z as float; """ addr = 0x90 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_1_BIAS_Z') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_1_bias_z, = struct.unpack('>f', payload[0:4]) return reg, gyro_1_bias_z, @property def dreg_gyro_2_bias_x(self): """ Contains the estimated x-axis bias for the gyro 2 in degrees/s. Payload structure: [31:0] : GYRO_2_BIAS_X -- Gyro 2 bias X (32-bit IEEE Floating Point Value) :return: GYRO_2_BIAS_X as float; """ addr = 0x91 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_2_BIAS_X') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_2_bias_x, = struct.unpack('>f', payload[0:4]) return reg, gyro_2_bias_x, @property def dreg_gyro_2_bias_y(self): """ Contains the estimated y-axis bias for the gyro 2 in degrees/s. Payload structure: [31:0] : GYRO_2_BIAS_Y -- Gyro 2 bias Y (32-bit IEEE Floating Point Value) :return: GYRO_2_BIAS_Y as float; """ addr = 0x92 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_2_BIAS_Y') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_2_bias_y, = struct.unpack('>f', payload[0:4]) return reg, gyro_2_bias_y, @property def dreg_gyro_2_bias_z(self): """ Contains the estimated z-axis bias for the gyro 2 in degrees/s. Payload structure: [31:0] : GYRO_2_BIAS_Z -- Gyro 2 bias Z (32-bit IEEE Floating Point Value) :return: GYRO_2_BIAS_Z as float; """ addr = 0x93 ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='DREG_GYRO_2_BIAS_Z') reg.raw_value, = struct.unpack('>f', payload[0:4]) gyro_2_bias_z, = struct.unpack('>f', payload[0:4]) return reg, gyro_2_bias_z, @property def get_fw_build_id(self): """ Firmware build identification string: a four byte ASCII character sequence which corresponds to a firmware series. Payload structure: [31:0] : FW_BUILD_ID -- Firmware Build ID string :return: FW_BUILD_ID as string; """ addr = 0xAA ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='GET_FW_BUILD_ID') reg.raw_value, = struct.unpack('>I', payload[0:4]) fw_build_id = struct.unpack('>4s', payload[0:4])[0].decode('utf-8') return fw_build_id @property def get_fw_build_version(self): """ Firmware build version provides the unique identifier of the firmware programmed in the board. A response is four bytes long and identifies major and minor build version, and the build number. Payload structure: [31:24] : VERSION_MAJOR -- 8-bit unsigned integer major version number [23:16] : VERSION_MINOR -- 8-bit unsigned integer minor version number [15:0] : BUILD_ID -- 16-bit unsigned integer build ID number :return: VERSION_MAJOR as uint8_t; VERSION_MINOR as uint8_t; BUILD_ID as uint16_t; """ addr = 0xAB ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='GET_FW_BUILD_VERSION') reg.raw_value, = struct.unpack('>I', payload[0:4]) version_major, version_minor, build_id = struct.unpack('>BBH', payload[0:4]) return reg, version_major, version_minor, build_id @property def flash_commit(self): raise RuntimeError('flash_commit has no getter! The register flash_commit is write-only!') @flash_commit.setter def flash_commit(self, new_value): addr = 0xAC self.write_register(addr, new_value) @property def reset_to_factory(self): raise RuntimeError('reset_to_factory has no getter! The register reset_to_factory is write-only!') @reset_to_factory.setter def reset_to_factory(self, new_value): addr = 0xAD self.write_register(addr, new_value) @property def zero_gyros(self): raise RuntimeError('zero_gyros has no getter! The register zero_gyros is write-only!') @zero_gyros.setter def zero_gyros(self, new_value): addr = 0xAE self.write_register(addr, new_value) @property def set_home_position(self): raise RuntimeError('set_home_position has no getter! The register set_home_position is write-only!') @set_home_position.setter def set_home_position(self, new_value): addr = 0xB0 self.write_register(addr, new_value) @property def set_mag_reference(self): raise RuntimeError('set_mag_reference has no getter! The register set_mag_reference is write-only!') @set_mag_reference.setter def set_mag_reference(self, new_value): addr = 0xB1 self.write_register(addr, new_value) @property def calibrate_accelerometers(self): raise RuntimeError('calibrate_accelerometers has no getter! The register calibrate_accelerometers is write-only!') @calibrate_accelerometers.setter def calibrate_accelerometers(self, new_value): addr = 0xB2 self.write_register(addr, new_value) @property def reset_fusion(self): raise RuntimeError('reset_fusion has no getter! The register reset_fusion is write-only!') @reset_fusion.setter def reset_fusion(self, new_value): addr = 0xB3 self.write_register(addr, new_value) @property def enable_zupt(self): raise RuntimeError('enable_zupt has no getter! The register enable_zupt is write-only!') @enable_zupt.setter def enable_zupt(self, new_value): addr = 0xB4 self.write_register(addr, new_value) @property def euler_mode(self): raise RuntimeError('euler_mode has no getter! The register euler_mode is write-only!') @euler_mode.setter def euler_mode(self, new_value): addr = 0xB5 self.write_register(addr, new_value) @property def quaternion_mode(self): raise RuntimeError('quaternion_mode has no getter! The register quaternion_mode is write-only!') @quaternion_mode.setter def quaternion_mode(self, new_value): addr = 0xB6 self.write_register(addr, new_value) @property def enable_rt_calibration(self): raise RuntimeError('enable_rt_calibration has no getter! The register enable_rt_calibration is write-only!') @enable_rt_calibration.setter def enable_rt_calibration(self, new_value): addr = 0xB7 self.write_register(addr, new_value) @property def en_mag_anomaly_detection(self): raise RuntimeError('en_mag_anomaly_detection has no getter! The register en_mag_anomaly_detection is write-only!') @en_mag_anomaly_detection.setter def en_mag_anomaly_detection(self, new_value): addr = 0xB8 self.write_register(addr, new_value) @property def run_self_tests(self): raise RuntimeError('run_self_tests has no getter! The register run_self_tests is write-only!') @run_self_tests.setter def run_self_tests(self, new_value): addr = 0xB9 self.write_register(addr, new_value) @property def enable_external_event(self): raise RuntimeError('enable_external_event has no getter! The register enable_external_event is write-only!') @enable_external_event.setter def enable_external_event(self, new_value): addr = 0xBA self.write_register(addr, new_value) @property def enable_gnns_fusion(self): raise RuntimeError('enable_gnns_fusion has no getter! The register enable_gnns_fusion is write-only!') @enable_gnns_fusion.setter def enable_gnns_fusion(self, new_value): addr = 0xBB self.write_register(addr, new_value) @property def enable_usr_euler_output(self): raise RuntimeError('enable_usr_euler_output has no getter! The register enable_usr_euler_output is write-only!') @enable_usr_euler_output.setter def enable_usr_euler_output(self, new_value): addr = 0xBC self.write_register(addr, new_value) @property def enable_dead_reckoning(self): raise RuntimeError('enable_dead_reckoning has no getter! The register enable_dead_reckoning is write-only!') @enable_dead_reckoning.setter def enable_dead_reckoning(self, new_value): addr = 0xBD self.write_register(addr, new_value) @property def enable_heave_sway_surge(self): raise RuntimeError('enable_heave_sway_surge has no getter! The register enable_heave_sway_surge is write-only!') @enable_heave_sway_surge.setter def enable_heave_sway_surge(self, new_value): addr = 0xBE self.write_register(addr, new_value) @property def enable_ukf(self): raise RuntimeError('enable_ukf has no getter! The register enable_ukf is write-only!') @enable_ukf.setter def enable_ukf(self, new_value): addr = 0xBF self.write_register(addr, new_value) @property def board_unique_id_1(self): """ First 32-bits of the 64-bits of the board unique identifier. Bits of the unique identifier cannot be modified by the user. Payload structure: [31:0] : BOARD_UNIQUE_ID_1_BITS -- Board unique ID bits :return: BOARD_UNIQUE_ID_1_BITS as uint32_t; """ addr = 0xFD ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='BOARD_UNIQUE_ID_1') reg.raw_value, = struct.unpack('>I', payload[0:4]) board_unique_id_1_bits, = struct.unpack('>I', payload[0:4]) return reg, board_unique_id_1_bits, @property def board_unique_id_2(self): """ Last 32-bits of the 64-bits of the board unique identifier. Bits of the unique identifier cannot be modified by the user. Payload structure: [31:0] : BOARD_UNIQUE_ID_2_BITS -- Board unique ID bits :return: BOARD_UNIQUE_ID_2_BITS as uint32_t; """ addr = 0xFE ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='BOARD_UNIQUE_ID_2') reg.raw_value, = struct.unpack('>I', payload[0:4]) board_unique_id_2_bits, = struct.unpack('>I', payload[0:4]) return reg, board_unique_id_2_bits, @property def protocol_version(self): """ String version of the protocol. Payload structure: [31:0] : PROTOCOL_VERSION_STR -- Protocol version string :return: PROTOCOL_VERSION_STR as string; """ addr = 0xFF ok, payload = self.read_register(addr) if ok: reg = self.svd_parser.find_register_by(name='PROTOCOL_VERSION') reg.raw_value, = struct.unpack('>I', payload[0:4]) protocol_version_str = struct.unpack('>4s', payload[0:4])[0].decode('utf-8') return protocol_version_str @property def hidden_gyro_1_variance(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_1_VARIANCE -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_1_VARIANCE as float; """ addr = 0x00 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_1_VARIANCE') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_1_variance, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_1_variance, @hidden_gyro_1_variance.setter def hidden_gyro_1_variance(self, new_value): addr = 0x00 self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_2_variance(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_2_VARIANCE -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_2_VARIANCE as float; """ addr = 0x01 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_2_VARIANCE') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_2_variance, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_2_variance, @hidden_gyro_2_variance.setter def hidden_gyro_2_variance(self, new_value): addr = 0x01 self.write_register(addr, new_value, hidden=True) @property def hidden_accel_1_variance(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_ACCEL_1_VARIANCE -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_ACCEL_1_VARIANCE as float; """ addr = 0x02 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_ACCEL_1_VARIANCE') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_accel_1_variance, = struct.unpack('>f', payload[0:4]) return reg, hidden_accel_1_variance, @hidden_accel_1_variance.setter def hidden_accel_1_variance(self, new_value): addr = 0x02 self.write_register(addr, new_value, hidden=True) @property def hidden_mag_1_variance(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_1_VARIANCE -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_1_VARIANCE as float; """ addr = 0x03 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_1_VARIANCE') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_1_variance, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_1_variance, @hidden_mag_1_variance.setter def hidden_mag_1_variance(self, new_value): addr = 0x03 self.write_register(addr, new_value, hidden=True) @property def hidden_mag_2_variance(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_2_VARIANCE -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_2_VARIANCE as float; """ addr = 0x04 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_2_VARIANCE') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_2_variance, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_2_variance, @hidden_mag_2_variance.setter def hidden_mag_2_variance(self, new_value): addr = 0x04 self.write_register(addr, new_value, hidden=True) @property def hidden_gps_course_variance(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GPS_COURSE_VARIANCE -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GPS_COURSE_VARIANCE as float; """ addr = 0x05 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GPS_COURSE_VARIANCE') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gps_course_variance, = struct.unpack('>f', payload[0:4]) return reg, hidden_gps_course_variance, @hidden_gps_course_variance.setter def hidden_gps_course_variance(self, new_value): addr = 0x05 self.write_register(addr, new_value, hidden=True) @property def hidden_gps_position_variance(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GPS_POSITION_VARIANCE -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GPS_POSITION_VARIANCE as float; """ addr = 0x06 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GPS_POSITION_VARIANCE') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gps_position_variance, = struct.unpack('>f', payload[0:4]) return reg, hidden_gps_position_variance, @hidden_gps_position_variance.setter def hidden_gps_position_variance(self, new_value): addr = 0x06 self.write_register(addr, new_value, hidden=True) @property def hidden_gps_velocity_variance(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GPS_VELOCITY_VARIANCE -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GPS_VELOCITY_VARIANCE as float; """ addr = 0x07 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GPS_VELOCITY_VARIANCE') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gps_velocity_variance, = struct.unpack('>f', payload[0:4]) return reg, hidden_gps_velocity_variance, @hidden_gps_velocity_variance.setter def hidden_gps_velocity_variance(self, new_value): addr = 0x07 self.write_register(addr, new_value, hidden=True) @property def hidden_static_press_variance(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_STATIC_PRESS_VARIANCE -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_STATIC_PRESS_VARIANCE as float; """ addr = 0x08 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_STATIC_PRESS_VARIANCE') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_static_press_variance, = struct.unpack('>f', payload[0:4]) return reg, hidden_static_press_variance, @hidden_static_press_variance.setter def hidden_static_press_variance(self, new_value): addr = 0x08 self.write_register(addr, new_value, hidden=True) @property def hidden_diff_press_variance(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_DIFF_PRESS_VARIANCE -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_DIFF_PRESS_VARIANCE as float; """ addr = 0x09 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_DIFF_PRESS_VARIANCE') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_diff_press_variance, = struct.unpack('>f', payload[0:4]) return reg, hidden_diff_press_variance, @hidden_diff_press_variance.setter def hidden_diff_press_variance(self, new_value): addr = 0x09 self.write_register(addr, new_value, hidden=True) @property def hidden_q_uvw(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_Q_UVW -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_Q_UVW as float; """ addr = 0x0A ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_Q_UVW') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_q_uvw, = struct.unpack('>f', payload[0:4]) return reg, hidden_q_uvw, @hidden_q_uvw.setter def hidden_q_uvw(self, new_value): addr = 0x0A self.write_register(addr, new_value, hidden=True) @property def hidden_q_quaternion(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_Q_QUATERNION -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_Q_QUATERNION as float; """ addr = 0x0B ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_Q_QUATERNION') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_q_quaternion, = struct.unpack('>f', payload[0:4]) return reg, hidden_q_quaternion, @hidden_q_quaternion.setter def hidden_q_quaternion(self, new_value): addr = 0x0B self.write_register(addr, new_value, hidden=True) @property def hidden_q_gps_position(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_Q_GPS_POSITION -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_Q_GPS_POSITION as float; """ addr = 0x0C ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_Q_GPS_POSITION') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_q_gps_position, = struct.unpack('>f', payload[0:4]) return reg, hidden_q_gps_position, @hidden_q_gps_position.setter def hidden_q_gps_position(self, new_value): addr = 0x0C self.write_register(addr, new_value, hidden=True) @property def hidden_q_bias(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_Q_BIAS -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_Q_BIAS as float; """ addr = 0x0D ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_Q_BIAS') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_q_bias, = struct.unpack('>f', payload[0:4]) return reg, hidden_q_bias, @hidden_q_bias.setter def hidden_q_bias(self, new_value): addr = 0x0D self.write_register(addr, new_value, hidden=True) @property def hidden_q_euler_angles(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_Q_EULER_ANGLES -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_Q_EULER_ANGLES as float; """ addr = 0x0E ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_Q_EULER_ANGLES') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_q_euler_angles, = struct.unpack('>f', payload[0:4]) return reg, hidden_q_euler_angles, @hidden_q_euler_angles.setter def hidden_q_euler_angles(self, new_value): addr = 0x0E self.write_register(addr, new_value, hidden=True) @property def hidden_low_vg_accel_noise_factor(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_LOW_VG_ACCEL_NOISE_FACTOR -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_LOW_VG_ACCEL_NOISE_FACTOR as float; """ addr = 0x0F ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_LOW_VG_ACCEL_NOISE_FACTOR') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_low_vg_accel_noise_factor, = struct.unpack('>f', payload[0:4]) return reg, hidden_low_vg_accel_noise_factor, @hidden_low_vg_accel_noise_factor.setter def hidden_low_vg_accel_noise_factor(self, new_value): addr = 0x0F self.write_register(addr, new_value, hidden=True) @property def hidden_lpf_tau_groundspeed(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_LPF_TAU_GROUNDSPEED -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_LPF_TAU_GROUNDSPEED as float; """ addr = 0x10 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_LPF_TAU_GROUNDSPEED') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_lpf_tau_groundspeed, = struct.unpack('>f', payload[0:4]) return reg, hidden_lpf_tau_groundspeed, @hidden_lpf_tau_groundspeed.setter def hidden_lpf_tau_groundspeed(self, new_value): addr = 0x10 self.write_register(addr, new_value, hidden=True) @property def hidden_lpf_tau_gyro_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_LPF_TAU_GYRO_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_LPF_TAU_GYRO_1 as float; """ addr = 0x11 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_LPF_TAU_GYRO_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_lpf_tau_gyro_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_lpf_tau_gyro_1, @hidden_lpf_tau_gyro_1.setter def hidden_lpf_tau_gyro_1(self, new_value): addr = 0x11 self.write_register(addr, new_value, hidden=True) @property def hidden_lpf_tau_gyro_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_LPF_TAU_GYRO_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_LPF_TAU_GYRO_2 as float; """ addr = 0x12 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_LPF_TAU_GYRO_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_lpf_tau_gyro_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_lpf_tau_gyro_2, @hidden_lpf_tau_gyro_2.setter def hidden_lpf_tau_gyro_2(self, new_value): addr = 0x12 self.write_register(addr, new_value, hidden=True) @property def hidden_lpf_tau_accel_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_LPF_TAU_ACCEL_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_LPF_TAU_ACCEL_1 as float; """ addr = 0x13 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_LPF_TAU_ACCEL_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_lpf_tau_accel_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_lpf_tau_accel_1, @hidden_lpf_tau_accel_1.setter def hidden_lpf_tau_accel_1(self, new_value): addr = 0x13 self.write_register(addr, new_value, hidden=True) @property def hidden_lpf_tau_mag_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_LPF_TAU_MAG_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_LPF_TAU_MAG_1 as float; """ addr = 0x14 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_LPF_TAU_MAG_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_lpf_tau_mag_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_lpf_tau_mag_1, @hidden_lpf_tau_mag_1.setter def hidden_lpf_tau_mag_1(self, new_value): addr = 0x14 self.write_register(addr, new_value, hidden=True) @property def hidden_lpf_tau_mag_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_LPF_TAU_MAG_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_LPF_TAU_MAG_2 as float; """ addr = 0x15 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_LPF_TAU_MAG_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_lpf_tau_mag_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_lpf_tau_mag_2, @hidden_lpf_tau_mag_2.setter def hidden_lpf_tau_mag_2(self, new_value): addr = 0x15 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_bias_x_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_BIAS_X_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_BIAS_X_POW_0 as float; """ addr = 0x16 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_BIAS_X_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_bias_x_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_bias_x_pow_0, @hidden_c_gyro_1_bias_x_pow_0.setter def hidden_c_gyro_1_bias_x_pow_0(self, new_value): addr = 0x16 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_bias_x_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_BIAS_X_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_BIAS_X_POW_1 as float; """ addr = 0x17 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_BIAS_X_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_bias_x_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_bias_x_pow_1, @hidden_c_gyro_1_bias_x_pow_1.setter def hidden_c_gyro_1_bias_x_pow_1(self, new_value): addr = 0x17 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_bias_x_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_BIAS_X_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_BIAS_X_POW_2 as float; """ addr = 0x18 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_BIAS_X_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_bias_x_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_bias_x_pow_2, @hidden_c_gyro_1_bias_x_pow_2.setter def hidden_c_gyro_1_bias_x_pow_2(self, new_value): addr = 0x18 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_bias_x_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_BIAS_X_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_BIAS_X_POW_3 as float; """ addr = 0x19 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_BIAS_X_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_bias_x_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_bias_x_pow_3, @hidden_c_gyro_1_bias_x_pow_3.setter def hidden_c_gyro_1_bias_x_pow_3(self, new_value): addr = 0x19 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_bias_y_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_BIAS_Y_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_BIAS_Y_POW_0 as float; """ addr = 0x1A ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_BIAS_Y_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_bias_y_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_bias_y_pow_0, @hidden_c_gyro_1_bias_y_pow_0.setter def hidden_c_gyro_1_bias_y_pow_0(self, new_value): addr = 0x1A self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_bias_y_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_BIAS_Y_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_BIAS_Y_POW_1 as float; """ addr = 0x1B ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_BIAS_Y_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_bias_y_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_bias_y_pow_1, @hidden_c_gyro_1_bias_y_pow_1.setter def hidden_c_gyro_1_bias_y_pow_1(self, new_value): addr = 0x1B self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_bias_y_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_BIAS_Y_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_BIAS_Y_POW_2 as float; """ addr = 0x1C ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_BIAS_Y_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_bias_y_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_bias_y_pow_2, @hidden_c_gyro_1_bias_y_pow_2.setter def hidden_c_gyro_1_bias_y_pow_2(self, new_value): addr = 0x1C self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_bias_y_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_BIAS_Y_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_BIAS_Y_POW_3 as float; """ addr = 0x1D ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_BIAS_Y_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_bias_y_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_bias_y_pow_3, @hidden_c_gyro_1_bias_y_pow_3.setter def hidden_c_gyro_1_bias_y_pow_3(self, new_value): addr = 0x1D self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_bias_z_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_BIAS_Z_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_BIAS_Z_POW_0 as float; """ addr = 0x1E ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_BIAS_Z_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_bias_z_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_bias_z_pow_0, @hidden_c_gyro_1_bias_z_pow_0.setter def hidden_c_gyro_1_bias_z_pow_0(self, new_value): addr = 0x1E self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_bias_z_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_BIAS_Z_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_BIAS_Z_POW_1 as float; """ addr = 0x1F ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_BIAS_Z_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_bias_z_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_bias_z_pow_1, @hidden_c_gyro_1_bias_z_pow_1.setter def hidden_c_gyro_1_bias_z_pow_1(self, new_value): addr = 0x1F self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_bias_z_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_BIAS_Z_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_BIAS_Z_POW_2 as float; """ addr = 0x20 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_BIAS_Z_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_bias_z_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_bias_z_pow_2, @hidden_c_gyro_1_bias_z_pow_2.setter def hidden_c_gyro_1_bias_z_pow_2(self, new_value): addr = 0x20 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_bias_z_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_BIAS_Z_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_BIAS_Z_POW_3 as float; """ addr = 0x21 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_BIAS_Z_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_bias_z_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_bias_z_pow_3, @hidden_c_gyro_1_bias_z_pow_3.setter def hidden_c_gyro_1_bias_z_pow_3(self, new_value): addr = 0x21 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_scale_x_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_SCALE_X_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_SCALE_X_POW_0 as float; """ addr = 0x22 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_SCALE_X_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_scale_x_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_scale_x_pow_0, @hidden_c_gyro_1_scale_x_pow_0.setter def hidden_c_gyro_1_scale_x_pow_0(self, new_value): addr = 0x22 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_scale_x_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_SCALE_X_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_SCALE_X_POW_1 as float; """ addr = 0x23 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_SCALE_X_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_scale_x_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_scale_x_pow_1, @hidden_c_gyro_1_scale_x_pow_1.setter def hidden_c_gyro_1_scale_x_pow_1(self, new_value): addr = 0x23 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_scale_x_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_SCALE_X_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_SCALE_X_POW_2 as float; """ addr = 0x24 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_SCALE_X_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_scale_x_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_scale_x_pow_2, @hidden_c_gyro_1_scale_x_pow_2.setter def hidden_c_gyro_1_scale_x_pow_2(self, new_value): addr = 0x24 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_scale_x_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_SCALE_X_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_SCALE_X_POW_3 as float; """ addr = 0x25 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_SCALE_X_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_scale_x_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_scale_x_pow_3, @hidden_c_gyro_1_scale_x_pow_3.setter def hidden_c_gyro_1_scale_x_pow_3(self, new_value): addr = 0x25 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_scale_y_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_SCALE_Y_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_SCALE_Y_POW_0 as float; """ addr = 0x26 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_SCALE_Y_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_scale_y_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_scale_y_pow_0, @hidden_c_gyro_1_scale_y_pow_0.setter def hidden_c_gyro_1_scale_y_pow_0(self, new_value): addr = 0x26 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_scale_y_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_SCALE_Y_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_SCALE_Y_POW_1 as float; """ addr = 0x27 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_SCALE_Y_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_scale_y_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_scale_y_pow_1, @hidden_c_gyro_1_scale_y_pow_1.setter def hidden_c_gyro_1_scale_y_pow_1(self, new_value): addr = 0x27 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_scale_y_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_SCALE_Y_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_SCALE_Y_POW_2 as float; """ addr = 0x28 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_SCALE_Y_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_scale_y_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_scale_y_pow_2, @hidden_c_gyro_1_scale_y_pow_2.setter def hidden_c_gyro_1_scale_y_pow_2(self, new_value): addr = 0x28 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_scale_y_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_SCALE_Y_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_SCALE_Y_POW_3 as float; """ addr = 0x29 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_SCALE_Y_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_scale_y_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_scale_y_pow_3, @hidden_c_gyro_1_scale_y_pow_3.setter def hidden_c_gyro_1_scale_y_pow_3(self, new_value): addr = 0x29 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_scale_z_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_SCALE_Z_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_SCALE_Z_POW_0 as float; """ addr = 0x2A ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_SCALE_Z_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_scale_z_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_scale_z_pow_0, @hidden_c_gyro_1_scale_z_pow_0.setter def hidden_c_gyro_1_scale_z_pow_0(self, new_value): addr = 0x2A self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_scale_z_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_SCALE_Z_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_SCALE_Z_POW_1 as float; """ addr = 0x2B ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_SCALE_Z_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_scale_z_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_scale_z_pow_1, @hidden_c_gyro_1_scale_z_pow_1.setter def hidden_c_gyro_1_scale_z_pow_1(self, new_value): addr = 0x2B self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_scale_z_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_SCALE_Z_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_SCALE_Z_POW_2 as float; """ addr = 0x2C ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_SCALE_Z_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_scale_z_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_scale_z_pow_2, @hidden_c_gyro_1_scale_z_pow_2.setter def hidden_c_gyro_1_scale_z_pow_2(self, new_value): addr = 0x2C self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_1_scale_z_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_1_SCALE_Z_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_1_SCALE_Z_POW_3 as float; """ addr = 0x2D ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_1_SCALE_Z_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_1_scale_z_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_1_scale_z_pow_3, @hidden_c_gyro_1_scale_z_pow_3.setter def hidden_c_gyro_1_scale_z_pow_3(self, new_value): addr = 0x2D self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_1_alignment1_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_1_ALIGNMENT1_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_1_ALIGNMENT1_1 as float; """ addr = 0x2E ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_1_ALIGNMENT1_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_1_alignment1_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_1_alignment1_1, @hidden_gyro_1_alignment1_1.setter def hidden_gyro_1_alignment1_1(self, new_value): addr = 0x2E self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_1_alignment1_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_1_ALIGNMENT1_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_1_ALIGNMENT1_2 as float; """ addr = 0x2F ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_1_ALIGNMENT1_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_1_alignment1_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_1_alignment1_2, @hidden_gyro_1_alignment1_2.setter def hidden_gyro_1_alignment1_2(self, new_value): addr = 0x2F self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_1_alignment1_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_1_ALIGNMENT1_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_1_ALIGNMENT1_3 as float; """ addr = 0x30 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_1_ALIGNMENT1_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_1_alignment1_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_1_alignment1_3, @hidden_gyro_1_alignment1_3.setter def hidden_gyro_1_alignment1_3(self, new_value): addr = 0x30 self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_1_alignment2_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_1_ALIGNMENT2_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_1_ALIGNMENT2_1 as float; """ addr = 0x31 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_1_ALIGNMENT2_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_1_alignment2_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_1_alignment2_1, @hidden_gyro_1_alignment2_1.setter def hidden_gyro_1_alignment2_1(self, new_value): addr = 0x31 self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_1_alignment2_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_1_ALIGNMENT2_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_1_ALIGNMENT2_2 as float; """ addr = 0x32 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_1_ALIGNMENT2_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_1_alignment2_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_1_alignment2_2, @hidden_gyro_1_alignment2_2.setter def hidden_gyro_1_alignment2_2(self, new_value): addr = 0x32 self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_1_alignment2_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_1_ALIGNMENT2_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_1_ALIGNMENT2_3 as float; """ addr = 0x33 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_1_ALIGNMENT2_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_1_alignment2_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_1_alignment2_3, @hidden_gyro_1_alignment2_3.setter def hidden_gyro_1_alignment2_3(self, new_value): addr = 0x33 self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_1_alignment3_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_1_ALIGNMENT3_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_1_ALIGNMENT3_1 as float; """ addr = 0x34 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_1_ALIGNMENT3_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_1_alignment3_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_1_alignment3_1, @hidden_gyro_1_alignment3_1.setter def hidden_gyro_1_alignment3_1(self, new_value): addr = 0x34 self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_1_alignment3_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_1_ALIGNMENT3_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_1_ALIGNMENT3_2 as float; """ addr = 0x35 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_1_ALIGNMENT3_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_1_alignment3_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_1_alignment3_2, @hidden_gyro_1_alignment3_2.setter def hidden_gyro_1_alignment3_2(self, new_value): addr = 0x35 self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_1_alignment3_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_1_ALIGNMENT3_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_1_ALIGNMENT3_3 as float; """ addr = 0x36 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_1_ALIGNMENT3_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_1_alignment3_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_1_alignment3_3, @hidden_gyro_1_alignment3_3.setter def hidden_gyro_1_alignment3_3(self, new_value): addr = 0x36 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_bias_x_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_BIAS_X_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_BIAS_X_POW_0 as float; """ addr = 0x37 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_BIAS_X_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_bias_x_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_bias_x_pow_0, @hidden_c_gyro_2_bias_x_pow_0.setter def hidden_c_gyro_2_bias_x_pow_0(self, new_value): addr = 0x37 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_bias_x_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_BIAS_X_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_BIAS_X_POW_1 as float; """ addr = 0x38 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_BIAS_X_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_bias_x_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_bias_x_pow_1, @hidden_c_gyro_2_bias_x_pow_1.setter def hidden_c_gyro_2_bias_x_pow_1(self, new_value): addr = 0x38 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_bias_x_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_BIAS_X_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_BIAS_X_POW_2 as float; """ addr = 0x39 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_BIAS_X_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_bias_x_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_bias_x_pow_2, @hidden_c_gyro_2_bias_x_pow_2.setter def hidden_c_gyro_2_bias_x_pow_2(self, new_value): addr = 0x39 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_bias_x_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_BIAS_X_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_BIAS_X_POW_3 as float; """ addr = 0x3A ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_BIAS_X_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_bias_x_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_bias_x_pow_3, @hidden_c_gyro_2_bias_x_pow_3.setter def hidden_c_gyro_2_bias_x_pow_3(self, new_value): addr = 0x3A self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_bias_y_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_BIAS_Y_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_BIAS_Y_POW_0 as float; """ addr = 0x3B ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_BIAS_Y_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_bias_y_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_bias_y_pow_0, @hidden_c_gyro_2_bias_y_pow_0.setter def hidden_c_gyro_2_bias_y_pow_0(self, new_value): addr = 0x3B self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_bias_y_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_BIAS_Y_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_BIAS_Y_POW_1 as float; """ addr = 0x3C ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_BIAS_Y_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_bias_y_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_bias_y_pow_1, @hidden_c_gyro_2_bias_y_pow_1.setter def hidden_c_gyro_2_bias_y_pow_1(self, new_value): addr = 0x3C self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_bias_y_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_BIAS_Y_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_BIAS_Y_POW_2 as float; """ addr = 0x3D ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_BIAS_Y_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_bias_y_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_bias_y_pow_2, @hidden_c_gyro_2_bias_y_pow_2.setter def hidden_c_gyro_2_bias_y_pow_2(self, new_value): addr = 0x3D self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_bias_y_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_BIAS_Y_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_BIAS_Y_POW_3 as float; """ addr = 0x3E ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_BIAS_Y_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_bias_y_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_bias_y_pow_3, @hidden_c_gyro_2_bias_y_pow_3.setter def hidden_c_gyro_2_bias_y_pow_3(self, new_value): addr = 0x3E self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_bias_z_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_BIAS_Z_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_BIAS_Z_POW_0 as float; """ addr = 0x3F ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_BIAS_Z_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_bias_z_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_bias_z_pow_0, @hidden_c_gyro_2_bias_z_pow_0.setter def hidden_c_gyro_2_bias_z_pow_0(self, new_value): addr = 0x3F self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_bias_z_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_BIAS_Z_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_BIAS_Z_POW_1 as float; """ addr = 0x40 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_BIAS_Z_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_bias_z_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_bias_z_pow_1, @hidden_c_gyro_2_bias_z_pow_1.setter def hidden_c_gyro_2_bias_z_pow_1(self, new_value): addr = 0x40 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_bias_z_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_BIAS_Z_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_BIAS_Z_POW_2 as float; """ addr = 0x41 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_BIAS_Z_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_bias_z_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_bias_z_pow_2, @hidden_c_gyro_2_bias_z_pow_2.setter def hidden_c_gyro_2_bias_z_pow_2(self, new_value): addr = 0x41 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_bias_z_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_BIAS_Z_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_BIAS_Z_POW_3 as float; """ addr = 0x42 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_BIAS_Z_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_bias_z_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_bias_z_pow_3, @hidden_c_gyro_2_bias_z_pow_3.setter def hidden_c_gyro_2_bias_z_pow_3(self, new_value): addr = 0x42 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_scale_x_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_SCALE_X_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_SCALE_X_POW_0 as float; """ addr = 0x43 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_SCALE_X_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_scale_x_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_scale_x_pow_0, @hidden_c_gyro_2_scale_x_pow_0.setter def hidden_c_gyro_2_scale_x_pow_0(self, new_value): addr = 0x43 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_scale_x_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_SCALE_X_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_SCALE_X_POW_1 as float; """ addr = 0x44 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_SCALE_X_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_scale_x_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_scale_x_pow_1, @hidden_c_gyro_2_scale_x_pow_1.setter def hidden_c_gyro_2_scale_x_pow_1(self, new_value): addr = 0x44 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_scale_x_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_SCALE_X_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_SCALE_X_POW_2 as float; """ addr = 0x45 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_SCALE_X_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_scale_x_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_scale_x_pow_2, @hidden_c_gyro_2_scale_x_pow_2.setter def hidden_c_gyro_2_scale_x_pow_2(self, new_value): addr = 0x45 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_scale_x_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_SCALE_X_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_SCALE_X_POW_3 as float; """ addr = 0x46 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_SCALE_X_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_scale_x_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_scale_x_pow_3, @hidden_c_gyro_2_scale_x_pow_3.setter def hidden_c_gyro_2_scale_x_pow_3(self, new_value): addr = 0x46 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_scale_y_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_SCALE_Y_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_SCALE_Y_POW_0 as float; """ addr = 0x47 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_SCALE_Y_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_scale_y_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_scale_y_pow_0, @hidden_c_gyro_2_scale_y_pow_0.setter def hidden_c_gyro_2_scale_y_pow_0(self, new_value): addr = 0x47 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_scale_y_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_SCALE_Y_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_SCALE_Y_POW_1 as float; """ addr = 0x48 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_SCALE_Y_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_scale_y_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_scale_y_pow_1, @hidden_c_gyro_2_scale_y_pow_1.setter def hidden_c_gyro_2_scale_y_pow_1(self, new_value): addr = 0x48 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_scale_y_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_SCALE_Y_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_SCALE_Y_POW_2 as float; """ addr = 0x49 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_SCALE_Y_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_scale_y_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_scale_y_pow_2, @hidden_c_gyro_2_scale_y_pow_2.setter def hidden_c_gyro_2_scale_y_pow_2(self, new_value): addr = 0x49 self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_scale_y_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_SCALE_Y_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_SCALE_Y_POW_3 as float; """ addr = 0x4A ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_SCALE_Y_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_scale_y_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_scale_y_pow_3, @hidden_c_gyro_2_scale_y_pow_3.setter def hidden_c_gyro_2_scale_y_pow_3(self, new_value): addr = 0x4A self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_scale_z_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_SCALE_Z_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_SCALE_Z_POW_0 as float; """ addr = 0x4B ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_SCALE_Z_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_scale_z_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_scale_z_pow_0, @hidden_c_gyro_2_scale_z_pow_0.setter def hidden_c_gyro_2_scale_z_pow_0(self, new_value): addr = 0x4B self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_scale_z_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_SCALE_Z_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_SCALE_Z_POW_1 as float; """ addr = 0x4C ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_SCALE_Z_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_scale_z_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_scale_z_pow_1, @hidden_c_gyro_2_scale_z_pow_1.setter def hidden_c_gyro_2_scale_z_pow_1(self, new_value): addr = 0x4C self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_scale_z_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_SCALE_Z_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_SCALE_Z_POW_2 as float; """ addr = 0x4D ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_SCALE_Z_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_scale_z_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_scale_z_pow_2, @hidden_c_gyro_2_scale_z_pow_2.setter def hidden_c_gyro_2_scale_z_pow_2(self, new_value): addr = 0x4D self.write_register(addr, new_value, hidden=True) @property def hidden_c_gyro_2_scale_z_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_GYRO_2_SCALE_Z_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_GYRO_2_SCALE_Z_POW_3 as float; """ addr = 0x4E ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_GYRO_2_SCALE_Z_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_gyro_2_scale_z_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_gyro_2_scale_z_pow_3, @hidden_c_gyro_2_scale_z_pow_3.setter def hidden_c_gyro_2_scale_z_pow_3(self, new_value): addr = 0x4E self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_2_alignment1_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_2_ALIGNMENT1_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_2_ALIGNMENT1_1 as float; """ addr = 0x4F ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_2_ALIGNMENT1_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_2_alignment1_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_2_alignment1_1, @hidden_gyro_2_alignment1_1.setter def hidden_gyro_2_alignment1_1(self, new_value): addr = 0x4F self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_2_alignment1_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_2_ALIGNMENT1_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_2_ALIGNMENT1_2 as float; """ addr = 0x50 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_2_ALIGNMENT1_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_2_alignment1_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_2_alignment1_2, @hidden_gyro_2_alignment1_2.setter def hidden_gyro_2_alignment1_2(self, new_value): addr = 0x50 self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_2_alignment1_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_2_ALIGNMENT1_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_2_ALIGNMENT1_3 as float; """ addr = 0x51 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_2_ALIGNMENT1_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_2_alignment1_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_2_alignment1_3, @hidden_gyro_2_alignment1_3.setter def hidden_gyro_2_alignment1_3(self, new_value): addr = 0x51 self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_2_alignment2_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_2_ALIGNMENT2_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_2_ALIGNMENT2_1 as float; """ addr = 0x52 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_2_ALIGNMENT2_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_2_alignment2_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_2_alignment2_1, @hidden_gyro_2_alignment2_1.setter def hidden_gyro_2_alignment2_1(self, new_value): addr = 0x52 self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_2_alignment2_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_2_ALIGNMENT2_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_2_ALIGNMENT2_2 as float; """ addr = 0x53 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_2_ALIGNMENT2_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_2_alignment2_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_2_alignment2_2, @hidden_gyro_2_alignment2_2.setter def hidden_gyro_2_alignment2_2(self, new_value): addr = 0x53 self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_2_alignment2_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_2_ALIGNMENT2_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_2_ALIGNMENT2_3 as float; """ addr = 0x54 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_2_ALIGNMENT2_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_2_alignment2_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_2_alignment2_3, @hidden_gyro_2_alignment2_3.setter def hidden_gyro_2_alignment2_3(self, new_value): addr = 0x54 self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_2_alignment3_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_2_ALIGNMENT3_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_2_ALIGNMENT3_1 as float; """ addr = 0x55 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_2_ALIGNMENT3_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_2_alignment3_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_2_alignment3_1, @hidden_gyro_2_alignment3_1.setter def hidden_gyro_2_alignment3_1(self, new_value): addr = 0x55 self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_2_alignment3_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_2_ALIGNMENT3_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_2_ALIGNMENT3_2 as float; """ addr = 0x56 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_2_ALIGNMENT3_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_2_alignment3_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_2_alignment3_2, @hidden_gyro_2_alignment3_2.setter def hidden_gyro_2_alignment3_2(self, new_value): addr = 0x56 self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_2_alignment3_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_2_ALIGNMENT3_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_2_ALIGNMENT3_3 as float; """ addr = 0x57 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_2_ALIGNMENT3_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_2_alignment3_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_2_alignment3_3, @hidden_gyro_2_alignment3_3.setter def hidden_gyro_2_alignment3_3(self, new_value): addr = 0x57 self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_bias_x_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_BIAS_X_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_BIAS_X_POW_0 as float; """ addr = 0x58 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_BIAS_X_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_bias_x_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_bias_x_pow_0, @hidden_c_accel_1_bias_x_pow_0.setter def hidden_c_accel_1_bias_x_pow_0(self, new_value): addr = 0x58 self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_bias_x_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_BIAS_X_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_BIAS_X_POW_1 as float; """ addr = 0x59 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_BIAS_X_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_bias_x_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_bias_x_pow_1, @hidden_c_accel_1_bias_x_pow_1.setter def hidden_c_accel_1_bias_x_pow_1(self, new_value): addr = 0x59 self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_bias_x_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_BIAS_X_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_BIAS_X_POW_2 as float; """ addr = 0x5A ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_BIAS_X_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_bias_x_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_bias_x_pow_2, @hidden_c_accel_1_bias_x_pow_2.setter def hidden_c_accel_1_bias_x_pow_2(self, new_value): addr = 0x5A self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_bias_x_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_BIAS_X_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_BIAS_X_POW_3 as float; """ addr = 0x5B ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_BIAS_X_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_bias_x_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_bias_x_pow_3, @hidden_c_accel_1_bias_x_pow_3.setter def hidden_c_accel_1_bias_x_pow_3(self, new_value): addr = 0x5B self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_bias_y_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_BIAS_Y_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_BIAS_Y_POW_0 as float; """ addr = 0x5C ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_BIAS_Y_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_bias_y_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_bias_y_pow_0, @hidden_c_accel_1_bias_y_pow_0.setter def hidden_c_accel_1_bias_y_pow_0(self, new_value): addr = 0x5C self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_bias_y_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_BIAS_Y_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_BIAS_Y_POW_1 as float; """ addr = 0x5D ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_BIAS_Y_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_bias_y_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_bias_y_pow_1, @hidden_c_accel_1_bias_y_pow_1.setter def hidden_c_accel_1_bias_y_pow_1(self, new_value): addr = 0x5D self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_bias_y_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_BIAS_Y_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_BIAS_Y_POW_2 as float; """ addr = 0x5E ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_BIAS_Y_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_bias_y_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_bias_y_pow_2, @hidden_c_accel_1_bias_y_pow_2.setter def hidden_c_accel_1_bias_y_pow_2(self, new_value): addr = 0x5E self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_bias_y_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_BIAS_Y_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_BIAS_Y_POW_3 as float; """ addr = 0x5F ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_BIAS_Y_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_bias_y_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_bias_y_pow_3, @hidden_c_accel_1_bias_y_pow_3.setter def hidden_c_accel_1_bias_y_pow_3(self, new_value): addr = 0x5F self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_bias_z_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_BIAS_Z_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_BIAS_Z_POW_0 as float; """ addr = 0x60 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_BIAS_Z_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_bias_z_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_bias_z_pow_0, @hidden_c_accel_1_bias_z_pow_0.setter def hidden_c_accel_1_bias_z_pow_0(self, new_value): addr = 0x60 self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_bias_z_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_BIAS_Z_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_BIAS_Z_POW_1 as float; """ addr = 0x61 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_BIAS_Z_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_bias_z_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_bias_z_pow_1, @hidden_c_accel_1_bias_z_pow_1.setter def hidden_c_accel_1_bias_z_pow_1(self, new_value): addr = 0x61 self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_bias_z_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_BIAS_Z_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_BIAS_Z_POW_2 as float; """ addr = 0x62 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_BIAS_Z_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_bias_z_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_bias_z_pow_2, @hidden_c_accel_1_bias_z_pow_2.setter def hidden_c_accel_1_bias_z_pow_2(self, new_value): addr = 0x62 self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_bias_z_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_BIAS_Z_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_BIAS_Z_POW_3 as float; """ addr = 0x63 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_BIAS_Z_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_bias_z_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_bias_z_pow_3, @hidden_c_accel_1_bias_z_pow_3.setter def hidden_c_accel_1_bias_z_pow_3(self, new_value): addr = 0x63 self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_scale_x_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_SCALE_X_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_SCALE_X_POW_0 as float; """ addr = 0x64 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_SCALE_X_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_scale_x_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_scale_x_pow_0, @hidden_c_accel_1_scale_x_pow_0.setter def hidden_c_accel_1_scale_x_pow_0(self, new_value): addr = 0x64 self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_scale_x_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_SCALE_X_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_SCALE_X_POW_1 as float; """ addr = 0x65 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_SCALE_X_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_scale_x_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_scale_x_pow_1, @hidden_c_accel_1_scale_x_pow_1.setter def hidden_c_accel_1_scale_x_pow_1(self, new_value): addr = 0x65 self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_scale_x_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_SCALE_X_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_SCALE_X_POW_2 as float; """ addr = 0x66 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_SCALE_X_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_scale_x_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_scale_x_pow_2, @hidden_c_accel_1_scale_x_pow_2.setter def hidden_c_accel_1_scale_x_pow_2(self, new_value): addr = 0x66 self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_scale_x_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_SCALE_X_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_SCALE_X_POW_3 as float; """ addr = 0x67 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_SCALE_X_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_scale_x_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_scale_x_pow_3, @hidden_c_accel_1_scale_x_pow_3.setter def hidden_c_accel_1_scale_x_pow_3(self, new_value): addr = 0x67 self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_scale_y_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_SCALE_Y_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_SCALE_Y_POW_0 as float; """ addr = 0x68 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_SCALE_Y_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_scale_y_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_scale_y_pow_0, @hidden_c_accel_1_scale_y_pow_0.setter def hidden_c_accel_1_scale_y_pow_0(self, new_value): addr = 0x68 self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_scale_y_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_SCALE_Y_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_SCALE_Y_POW_1 as float; """ addr = 0x69 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_SCALE_Y_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_scale_y_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_scale_y_pow_1, @hidden_c_accel_1_scale_y_pow_1.setter def hidden_c_accel_1_scale_y_pow_1(self, new_value): addr = 0x69 self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_scale_y_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_SCALE_Y_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_SCALE_Y_POW_2 as float; """ addr = 0x6A ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_SCALE_Y_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_scale_y_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_scale_y_pow_2, @hidden_c_accel_1_scale_y_pow_2.setter def hidden_c_accel_1_scale_y_pow_2(self, new_value): addr = 0x6A self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_scale_y_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_SCALE_Y_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_SCALE_Y_POW_3 as float; """ addr = 0x6B ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_SCALE_Y_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_scale_y_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_scale_y_pow_3, @hidden_c_accel_1_scale_y_pow_3.setter def hidden_c_accel_1_scale_y_pow_3(self, new_value): addr = 0x6B self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_scale_z_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_SCALE_Z_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_SCALE_Z_POW_0 as float; """ addr = 0x6C ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_SCALE_Z_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_scale_z_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_scale_z_pow_0, @hidden_c_accel_1_scale_z_pow_0.setter def hidden_c_accel_1_scale_z_pow_0(self, new_value): addr = 0x6C self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_scale_z_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_SCALE_Z_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_SCALE_Z_POW_1 as float; """ addr = 0x6D ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_SCALE_Z_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_scale_z_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_scale_z_pow_1, @hidden_c_accel_1_scale_z_pow_1.setter def hidden_c_accel_1_scale_z_pow_1(self, new_value): addr = 0x6D self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_scale_z_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_SCALE_Z_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_SCALE_Z_POW_2 as float; """ addr = 0x6E ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_SCALE_Z_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_scale_z_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_scale_z_pow_2, @hidden_c_accel_1_scale_z_pow_2.setter def hidden_c_accel_1_scale_z_pow_2(self, new_value): addr = 0x6E self.write_register(addr, new_value, hidden=True) @property def hidden_c_accel_1_scale_z_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_ACCEL_1_SCALE_Z_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_ACCEL_1_SCALE_Z_POW_3 as float; """ addr = 0x6F ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_ACCEL_1_SCALE_Z_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_accel_1_scale_z_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_accel_1_scale_z_pow_3, @hidden_c_accel_1_scale_z_pow_3.setter def hidden_c_accel_1_scale_z_pow_3(self, new_value): addr = 0x6F self.write_register(addr, new_value, hidden=True) @property def hidden_accel_1_alignment1_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_ACCEL_1_ALIGNMENT1_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_ACCEL_1_ALIGNMENT1_1 as float; """ addr = 0x70 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_ACCEL_1_ALIGNMENT1_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_accel_1_alignment1_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_accel_1_alignment1_1, @hidden_accel_1_alignment1_1.setter def hidden_accel_1_alignment1_1(self, new_value): addr = 0x70 self.write_register(addr, new_value, hidden=True) @property def hidden_accel_1_alignment1_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_ACCEL_1_ALIGNMENT1_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_ACCEL_1_ALIGNMENT1_2 as float; """ addr = 0x71 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_ACCEL_1_ALIGNMENT1_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_accel_1_alignment1_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_accel_1_alignment1_2, @hidden_accel_1_alignment1_2.setter def hidden_accel_1_alignment1_2(self, new_value): addr = 0x71 self.write_register(addr, new_value, hidden=True) @property def hidden_accel_1_alignment1_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_ACCEL_1_ALIGNMENT1_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_ACCEL_1_ALIGNMENT1_3 as float; """ addr = 0x72 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_ACCEL_1_ALIGNMENT1_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_accel_1_alignment1_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_accel_1_alignment1_3, @hidden_accel_1_alignment1_3.setter def hidden_accel_1_alignment1_3(self, new_value): addr = 0x72 self.write_register(addr, new_value, hidden=True) @property def hidden_accel_1_alignment2_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_ACCEL_1_ALIGNMENT2_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_ACCEL_1_ALIGNMENT2_1 as float; """ addr = 0x73 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_ACCEL_1_ALIGNMENT2_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_accel_1_alignment2_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_accel_1_alignment2_1, @hidden_accel_1_alignment2_1.setter def hidden_accel_1_alignment2_1(self, new_value): addr = 0x73 self.write_register(addr, new_value, hidden=True) @property def hidden_accel_1_alignment2_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_ACCEL_1_ALIGNMENT2_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_ACCEL_1_ALIGNMENT2_2 as float; """ addr = 0x74 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_ACCEL_1_ALIGNMENT2_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_accel_1_alignment2_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_accel_1_alignment2_2, @hidden_accel_1_alignment2_2.setter def hidden_accel_1_alignment2_2(self, new_value): addr = 0x74 self.write_register(addr, new_value, hidden=True) @property def hidden_accel_1_alignment2_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_ACCEL_1_ALIGNMENT2_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_ACCEL_1_ALIGNMENT2_3 as float; """ addr = 0x75 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_ACCEL_1_ALIGNMENT2_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_accel_1_alignment2_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_accel_1_alignment2_3, @hidden_accel_1_alignment2_3.setter def hidden_accel_1_alignment2_3(self, new_value): addr = 0x75 self.write_register(addr, new_value, hidden=True) @property def hidden_accel_1_alignment3_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_ACCEL_1_ALIGNMENT3_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_ACCEL_1_ALIGNMENT3_1 as float; """ addr = 0x76 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_ACCEL_1_ALIGNMENT3_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_accel_1_alignment3_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_accel_1_alignment3_1, @hidden_accel_1_alignment3_1.setter def hidden_accel_1_alignment3_1(self, new_value): addr = 0x76 self.write_register(addr, new_value, hidden=True) @property def hidden_accel_1_alignment3_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_ACCEL_1_ALIGNMENT3_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_ACCEL_1_ALIGNMENT3_2 as float; """ addr = 0x77 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_ACCEL_1_ALIGNMENT3_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_accel_1_alignment3_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_accel_1_alignment3_2, @hidden_accel_1_alignment3_2.setter def hidden_accel_1_alignment3_2(self, new_value): addr = 0x77 self.write_register(addr, new_value, hidden=True) @property def hidden_accel_1_alignment3_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_ACCEL_1_ALIGNMENT3_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_ACCEL_1_ALIGNMENT3_3 as float; """ addr = 0x78 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_ACCEL_1_ALIGNMENT3_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_accel_1_alignment3_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_accel_1_alignment3_3, @hidden_accel_1_alignment3_3.setter def hidden_accel_1_alignment3_3(self, new_value): addr = 0x78 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_bias_x_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_BIAS_X_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_BIAS_X_POW_0 as float; """ addr = 0x79 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_BIAS_X_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_bias_x_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_bias_x_pow_0, @hidden_c_mag_1_bias_x_pow_0.setter def hidden_c_mag_1_bias_x_pow_0(self, new_value): addr = 0x79 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_bias_x_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_BIAS_X_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_BIAS_X_POW_1 as float; """ addr = 0x7A ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_BIAS_X_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_bias_x_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_bias_x_pow_1, @hidden_c_mag_1_bias_x_pow_1.setter def hidden_c_mag_1_bias_x_pow_1(self, new_value): addr = 0x7A self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_bias_x_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_BIAS_X_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_BIAS_X_POW_2 as float; """ addr = 0x7B ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_BIAS_X_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_bias_x_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_bias_x_pow_2, @hidden_c_mag_1_bias_x_pow_2.setter def hidden_c_mag_1_bias_x_pow_2(self, new_value): addr = 0x7B self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_bias_x_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_BIAS_X_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_BIAS_X_POW_3 as float; """ addr = 0x7C ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_BIAS_X_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_bias_x_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_bias_x_pow_3, @hidden_c_mag_1_bias_x_pow_3.setter def hidden_c_mag_1_bias_x_pow_3(self, new_value): addr = 0x7C self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_bias_y_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_BIAS_Y_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_BIAS_Y_POW_0 as float; """ addr = 0x7D ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_BIAS_Y_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_bias_y_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_bias_y_pow_0, @hidden_c_mag_1_bias_y_pow_0.setter def hidden_c_mag_1_bias_y_pow_0(self, new_value): addr = 0x7D self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_bias_y_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_BIAS_Y_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_BIAS_Y_POW_1 as float; """ addr = 0x7E ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_BIAS_Y_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_bias_y_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_bias_y_pow_1, @hidden_c_mag_1_bias_y_pow_1.setter def hidden_c_mag_1_bias_y_pow_1(self, new_value): addr = 0x7E self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_bias_y_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_BIAS_Y_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_BIAS_Y_POW_2 as float; """ addr = 0x7F ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_BIAS_Y_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_bias_y_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_bias_y_pow_2, @hidden_c_mag_1_bias_y_pow_2.setter def hidden_c_mag_1_bias_y_pow_2(self, new_value): addr = 0x7F self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_bias_y_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_BIAS_Y_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_BIAS_Y_POW_3 as float; """ addr = 0x80 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_BIAS_Y_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_bias_y_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_bias_y_pow_3, @hidden_c_mag_1_bias_y_pow_3.setter def hidden_c_mag_1_bias_y_pow_3(self, new_value): addr = 0x80 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_bias_z_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_BIAS_Z_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_BIAS_Z_POW_0 as float; """ addr = 0x81 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_BIAS_Z_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_bias_z_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_bias_z_pow_0, @hidden_c_mag_1_bias_z_pow_0.setter def hidden_c_mag_1_bias_z_pow_0(self, new_value): addr = 0x81 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_bias_z_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_BIAS_Z_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_BIAS_Z_POW_1 as float; """ addr = 0x82 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_BIAS_Z_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_bias_z_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_bias_z_pow_1, @hidden_c_mag_1_bias_z_pow_1.setter def hidden_c_mag_1_bias_z_pow_1(self, new_value): addr = 0x82 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_bias_z_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_BIAS_Z_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_BIAS_Z_POW_2 as float; """ addr = 0x83 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_BIAS_Z_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_bias_z_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_bias_z_pow_2, @hidden_c_mag_1_bias_z_pow_2.setter def hidden_c_mag_1_bias_z_pow_2(self, new_value): addr = 0x83 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_bias_z_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_BIAS_Z_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_BIAS_Z_POW_3 as float; """ addr = 0x84 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_BIAS_Z_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_bias_z_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_bias_z_pow_3, @hidden_c_mag_1_bias_z_pow_3.setter def hidden_c_mag_1_bias_z_pow_3(self, new_value): addr = 0x84 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_scale_x_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_SCALE_X_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_SCALE_X_POW_0 as float; """ addr = 0x85 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_SCALE_X_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_scale_x_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_scale_x_pow_0, @hidden_c_mag_1_scale_x_pow_0.setter def hidden_c_mag_1_scale_x_pow_0(self, new_value): addr = 0x85 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_scale_x_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_SCALE_X_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_SCALE_X_POW_1 as float; """ addr = 0x86 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_SCALE_X_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_scale_x_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_scale_x_pow_1, @hidden_c_mag_1_scale_x_pow_1.setter def hidden_c_mag_1_scale_x_pow_1(self, new_value): addr = 0x86 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_scale_x_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_SCALE_X_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_SCALE_X_POW_2 as float; """ addr = 0x87 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_SCALE_X_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_scale_x_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_scale_x_pow_2, @hidden_c_mag_1_scale_x_pow_2.setter def hidden_c_mag_1_scale_x_pow_2(self, new_value): addr = 0x87 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_scale_x_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_SCALE_X_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_SCALE_X_POW_3 as float; """ addr = 0x88 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_SCALE_X_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_scale_x_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_scale_x_pow_3, @hidden_c_mag_1_scale_x_pow_3.setter def hidden_c_mag_1_scale_x_pow_3(self, new_value): addr = 0x88 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_scale_y_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_SCALE_Y_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_SCALE_Y_POW_0 as float; """ addr = 0x89 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_SCALE_Y_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_scale_y_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_scale_y_pow_0, @hidden_c_mag_1_scale_y_pow_0.setter def hidden_c_mag_1_scale_y_pow_0(self, new_value): addr = 0x89 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_scale_y_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_SCALE_Y_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_SCALE_Y_POW_1 as float; """ addr = 0x8A ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_SCALE_Y_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_scale_y_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_scale_y_pow_1, @hidden_c_mag_1_scale_y_pow_1.setter def hidden_c_mag_1_scale_y_pow_1(self, new_value): addr = 0x8A self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_scale_y_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_SCALE_Y_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_SCALE_Y_POW_2 as float; """ addr = 0x8B ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_SCALE_Y_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_scale_y_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_scale_y_pow_2, @hidden_c_mag_1_scale_y_pow_2.setter def hidden_c_mag_1_scale_y_pow_2(self, new_value): addr = 0x8B self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_scale_y_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_SCALE_Y_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_SCALE_Y_POW_3 as float; """ addr = 0x8C ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_SCALE_Y_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_scale_y_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_scale_y_pow_3, @hidden_c_mag_1_scale_y_pow_3.setter def hidden_c_mag_1_scale_y_pow_3(self, new_value): addr = 0x8C self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_scale_z_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_SCALE_Z_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_SCALE_Z_POW_0 as float; """ addr = 0x8D ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_SCALE_Z_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_scale_z_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_scale_z_pow_0, @hidden_c_mag_1_scale_z_pow_0.setter def hidden_c_mag_1_scale_z_pow_0(self, new_value): addr = 0x8D self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_scale_z_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_SCALE_Z_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_SCALE_Z_POW_1 as float; """ addr = 0x8E ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_SCALE_Z_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_scale_z_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_scale_z_pow_1, @hidden_c_mag_1_scale_z_pow_1.setter def hidden_c_mag_1_scale_z_pow_1(self, new_value): addr = 0x8E self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_scale_z_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_SCALE_Z_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_SCALE_Z_POW_2 as float; """ addr = 0x8F ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_SCALE_Z_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_scale_z_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_scale_z_pow_2, @hidden_c_mag_1_scale_z_pow_2.setter def hidden_c_mag_1_scale_z_pow_2(self, new_value): addr = 0x8F self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_1_scale_z_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_1_SCALE_Z_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_1_SCALE_Z_POW_3 as float; """ addr = 0x90 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_1_SCALE_Z_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_1_scale_z_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_1_scale_z_pow_3, @hidden_c_mag_1_scale_z_pow_3.setter def hidden_c_mag_1_scale_z_pow_3(self, new_value): addr = 0x90 self.write_register(addr, new_value, hidden=True) @property def hidden_mag_1_alignment1_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_1_ALIGNMENT1_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_1_ALIGNMENT1_1 as float; """ addr = 0x91 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_1_ALIGNMENT1_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_1_alignment1_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_1_alignment1_1, @hidden_mag_1_alignment1_1.setter def hidden_mag_1_alignment1_1(self, new_value): addr = 0x91 self.write_register(addr, new_value, hidden=True) @property def hidden_mag_1_alignment1_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_1_ALIGNMENT1_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_1_ALIGNMENT1_2 as float; """ addr = 0x92 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_1_ALIGNMENT1_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_1_alignment1_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_1_alignment1_2, @hidden_mag_1_alignment1_2.setter def hidden_mag_1_alignment1_2(self, new_value): addr = 0x92 self.write_register(addr, new_value, hidden=True) @property def hidden_mag_1_alignment1_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_1_ALIGNMENT1_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_1_ALIGNMENT1_3 as float; """ addr = 0x93 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_1_ALIGNMENT1_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_1_alignment1_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_1_alignment1_3, @hidden_mag_1_alignment1_3.setter def hidden_mag_1_alignment1_3(self, new_value): addr = 0x93 self.write_register(addr, new_value, hidden=True) @property def hidden_mag_1_alignment2_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_1_ALIGNMENT2_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_1_ALIGNMENT2_1 as float; """ addr = 0x94 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_1_ALIGNMENT2_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_1_alignment2_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_1_alignment2_1, @hidden_mag_1_alignment2_1.setter def hidden_mag_1_alignment2_1(self, new_value): addr = 0x94 self.write_register(addr, new_value, hidden=True) @property def hidden_mag_1_alignment2_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_1_ALIGNMENT2_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_1_ALIGNMENT2_2 as float; """ addr = 0x95 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_1_ALIGNMENT2_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_1_alignment2_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_1_alignment2_2, @hidden_mag_1_alignment2_2.setter def hidden_mag_1_alignment2_2(self, new_value): addr = 0x95 self.write_register(addr, new_value, hidden=True) @property def hidden_mag_1_alignment2_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_1_ALIGNMENT2_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_1_ALIGNMENT2_3 as float; """ addr = 0x96 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_1_ALIGNMENT2_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_1_alignment2_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_1_alignment2_3, @hidden_mag_1_alignment2_3.setter def hidden_mag_1_alignment2_3(self, new_value): addr = 0x96 self.write_register(addr, new_value, hidden=True) @property def hidden_mag_1_alignment3_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_1_ALIGNMENT3_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_1_ALIGNMENT3_1 as float; """ addr = 0x97 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_1_ALIGNMENT3_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_1_alignment3_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_1_alignment3_1, @hidden_mag_1_alignment3_1.setter def hidden_mag_1_alignment3_1(self, new_value): addr = 0x97 self.write_register(addr, new_value, hidden=True) @property def hidden_mag_1_alignment3_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_1_ALIGNMENT3_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_1_ALIGNMENT3_2 as float; """ addr = 0x98 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_1_ALIGNMENT3_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_1_alignment3_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_1_alignment3_2, @hidden_mag_1_alignment3_2.setter def hidden_mag_1_alignment3_2(self, new_value): addr = 0x98 self.write_register(addr, new_value, hidden=True) @property def hidden_mag_1_alignment3_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_1_ALIGNMENT3_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_1_ALIGNMENT3_3 as float; """ addr = 0x99 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_1_ALIGNMENT3_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_1_alignment3_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_1_alignment3_3, @hidden_mag_1_alignment3_3.setter def hidden_mag_1_alignment3_3(self, new_value): addr = 0x99 self.write_register(addr, new_value, hidden=True) @property def hidden_mag_1_reference_x(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_1_REFERENCE_X -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_1_REFERENCE_X as float; """ addr = 0x9A ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_1_REFERENCE_X') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_1_reference_x, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_1_reference_x, @hidden_mag_1_reference_x.setter def hidden_mag_1_reference_x(self, new_value): addr = 0x9A self.write_register(addr, new_value, hidden=True) @property def hidden_mag_1_reference_y(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_1_REFERENCE_Y -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_1_REFERENCE_Y as float; """ addr = 0x9B ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_1_REFERENCE_Y') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_1_reference_y, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_1_reference_y, @hidden_mag_1_reference_y.setter def hidden_mag_1_reference_y(self, new_value): addr = 0x9B self.write_register(addr, new_value, hidden=True) @property def hidden_mag_1_reference_z(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_1_REFERENCE_Z -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_1_REFERENCE_Z as float; """ addr = 0x9C ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_1_REFERENCE_Z') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_1_reference_z, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_1_reference_z, @hidden_mag_1_reference_z.setter def hidden_mag_1_reference_z(self, new_value): addr = 0x9C self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_bias_x_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_BIAS_X_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_BIAS_X_POW_0 as float; """ addr = 0x9D ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_BIAS_X_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_bias_x_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_bias_x_pow_0, @hidden_c_mag_2_bias_x_pow_0.setter def hidden_c_mag_2_bias_x_pow_0(self, new_value): addr = 0x9D self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_bias_x_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_BIAS_X_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_BIAS_X_POW_1 as float; """ addr = 0x9E ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_BIAS_X_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_bias_x_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_bias_x_pow_1, @hidden_c_mag_2_bias_x_pow_1.setter def hidden_c_mag_2_bias_x_pow_1(self, new_value): addr = 0x9E self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_bias_x_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_BIAS_X_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_BIAS_X_POW_2 as float; """ addr = 0x9F ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_BIAS_X_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_bias_x_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_bias_x_pow_2, @hidden_c_mag_2_bias_x_pow_2.setter def hidden_c_mag_2_bias_x_pow_2(self, new_value): addr = 0x9F self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_bias_x_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_BIAS_X_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_BIAS_X_POW_3 as float; """ addr = 0xA0 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_BIAS_X_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_bias_x_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_bias_x_pow_3, @hidden_c_mag_2_bias_x_pow_3.setter def hidden_c_mag_2_bias_x_pow_3(self, new_value): addr = 0xA0 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_bias_y_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_BIAS_Y_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_BIAS_Y_POW_0 as float; """ addr = 0xA1 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_BIAS_Y_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_bias_y_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_bias_y_pow_0, @hidden_c_mag_2_bias_y_pow_0.setter def hidden_c_mag_2_bias_y_pow_0(self, new_value): addr = 0xA1 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_bias_y_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_BIAS_Y_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_BIAS_Y_POW_1 as float; """ addr = 0xA2 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_BIAS_Y_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_bias_y_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_bias_y_pow_1, @hidden_c_mag_2_bias_y_pow_1.setter def hidden_c_mag_2_bias_y_pow_1(self, new_value): addr = 0xA2 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_bias_y_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_BIAS_Y_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_BIAS_Y_POW_2 as float; """ addr = 0xA3 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_BIAS_Y_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_bias_y_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_bias_y_pow_2, @hidden_c_mag_2_bias_y_pow_2.setter def hidden_c_mag_2_bias_y_pow_2(self, new_value): addr = 0xA3 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_bias_y_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_BIAS_Y_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_BIAS_Y_POW_3 as float; """ addr = 0xA4 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_BIAS_Y_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_bias_y_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_bias_y_pow_3, @hidden_c_mag_2_bias_y_pow_3.setter def hidden_c_mag_2_bias_y_pow_3(self, new_value): addr = 0xA4 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_bias_z_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_BIAS_Z_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_BIAS_Z_POW_0 as float; """ addr = 0xA5 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_BIAS_Z_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_bias_z_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_bias_z_pow_0, @hidden_c_mag_2_bias_z_pow_0.setter def hidden_c_mag_2_bias_z_pow_0(self, new_value): addr = 0xA5 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_bias_z_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_BIAS_Z_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_BIAS_Z_POW_1 as float; """ addr = 0xA6 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_BIAS_Z_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_bias_z_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_bias_z_pow_1, @hidden_c_mag_2_bias_z_pow_1.setter def hidden_c_mag_2_bias_z_pow_1(self, new_value): addr = 0xA6 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_bias_z_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_BIAS_Z_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_BIAS_Z_POW_2 as float; """ addr = 0xA7 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_BIAS_Z_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_bias_z_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_bias_z_pow_2, @hidden_c_mag_2_bias_z_pow_2.setter def hidden_c_mag_2_bias_z_pow_2(self, new_value): addr = 0xA7 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_bias_z_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_BIAS_Z_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_BIAS_Z_POW_3 as float; """ addr = 0xA8 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_BIAS_Z_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_bias_z_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_bias_z_pow_3, @hidden_c_mag_2_bias_z_pow_3.setter def hidden_c_mag_2_bias_z_pow_3(self, new_value): addr = 0xA8 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_scale_x_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_SCALE_X_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_SCALE_X_POW_0 as float; """ addr = 0xA9 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_SCALE_X_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_scale_x_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_scale_x_pow_0, @hidden_c_mag_2_scale_x_pow_0.setter def hidden_c_mag_2_scale_x_pow_0(self, new_value): addr = 0xA9 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_scale_x_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_SCALE_X_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_SCALE_X_POW_1 as float; """ addr = 0xAA ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_SCALE_X_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_scale_x_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_scale_x_pow_1, @hidden_c_mag_2_scale_x_pow_1.setter def hidden_c_mag_2_scale_x_pow_1(self, new_value): addr = 0xAA self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_scale_x_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_SCALE_X_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_SCALE_X_POW_2 as float; """ addr = 0xAB ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_SCALE_X_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_scale_x_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_scale_x_pow_2, @hidden_c_mag_2_scale_x_pow_2.setter def hidden_c_mag_2_scale_x_pow_2(self, new_value): addr = 0xAB self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_scale_x_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_SCALE_X_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_SCALE_X_POW_3 as float; """ addr = 0xAC ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_SCALE_X_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_scale_x_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_scale_x_pow_3, @hidden_c_mag_2_scale_x_pow_3.setter def hidden_c_mag_2_scale_x_pow_3(self, new_value): addr = 0xAC self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_scale_y_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_SCALE_Y_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_SCALE_Y_POW_0 as float; """ addr = 0xAD ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_SCALE_Y_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_scale_y_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_scale_y_pow_0, @hidden_c_mag_2_scale_y_pow_0.setter def hidden_c_mag_2_scale_y_pow_0(self, new_value): addr = 0xAD self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_scale_y_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_SCALE_Y_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_SCALE_Y_POW_1 as float; """ addr = 0xAE ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_SCALE_Y_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_scale_y_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_scale_y_pow_1, @hidden_c_mag_2_scale_y_pow_1.setter def hidden_c_mag_2_scale_y_pow_1(self, new_value): addr = 0xAE self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_scale_y_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_SCALE_Y_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_SCALE_Y_POW_2 as float; """ addr = 0xAF ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_SCALE_Y_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_scale_y_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_scale_y_pow_2, @hidden_c_mag_2_scale_y_pow_2.setter def hidden_c_mag_2_scale_y_pow_2(self, new_value): addr = 0xAF self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_scale_y_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_SCALE_Y_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_SCALE_Y_POW_3 as float; """ addr = 0xB0 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_SCALE_Y_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_scale_y_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_scale_y_pow_3, @hidden_c_mag_2_scale_y_pow_3.setter def hidden_c_mag_2_scale_y_pow_3(self, new_value): addr = 0xB0 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_scale_z_pow_0(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_SCALE_Z_POW_0 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_SCALE_Z_POW_0 as float; """ addr = 0xB1 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_SCALE_Z_POW_0') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_scale_z_pow_0, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_scale_z_pow_0, @hidden_c_mag_2_scale_z_pow_0.setter def hidden_c_mag_2_scale_z_pow_0(self, new_value): addr = 0xB1 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_scale_z_pow_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_SCALE_Z_POW_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_SCALE_Z_POW_1 as float; """ addr = 0xB2 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_SCALE_Z_POW_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_scale_z_pow_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_scale_z_pow_1, @hidden_c_mag_2_scale_z_pow_1.setter def hidden_c_mag_2_scale_z_pow_1(self, new_value): addr = 0xB2 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_scale_z_pow_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_SCALE_Z_POW_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_SCALE_Z_POW_2 as float; """ addr = 0xB3 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_SCALE_Z_POW_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_scale_z_pow_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_scale_z_pow_2, @hidden_c_mag_2_scale_z_pow_2.setter def hidden_c_mag_2_scale_z_pow_2(self, new_value): addr = 0xB3 self.write_register(addr, new_value, hidden=True) @property def hidden_c_mag_2_scale_z_pow_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_C_MAG_2_SCALE_Z_POW_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_C_MAG_2_SCALE_Z_POW_3 as float; """ addr = 0xB4 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_C_MAG_2_SCALE_Z_POW_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_c_mag_2_scale_z_pow_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_c_mag_2_scale_z_pow_3, @hidden_c_mag_2_scale_z_pow_3.setter def hidden_c_mag_2_scale_z_pow_3(self, new_value): addr = 0xB4 self.write_register(addr, new_value, hidden=True) @property def hidden_mag_2_alignment1_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_2_ALIGNMENT1_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_2_ALIGNMENT1_1 as float; """ addr = 0xB5 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_2_ALIGNMENT1_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_2_alignment1_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_2_alignment1_1, @hidden_mag_2_alignment1_1.setter def hidden_mag_2_alignment1_1(self, new_value): addr = 0xB5 self.write_register(addr, new_value, hidden=True) @property def hidden_mag_2_alignment1_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_2_ALIGNMENT1_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_2_ALIGNMENT1_2 as float; """ addr = 0xB6 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_2_ALIGNMENT1_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_2_alignment1_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_2_alignment1_2, @hidden_mag_2_alignment1_2.setter def hidden_mag_2_alignment1_2(self, new_value): addr = 0xB6 self.write_register(addr, new_value, hidden=True) @property def hidden_mag_2_alignment1_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_2_ALIGNMENT1_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_2_ALIGNMENT1_3 as float; """ addr = 0xB7 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_2_ALIGNMENT1_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_2_alignment1_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_2_alignment1_3, @hidden_mag_2_alignment1_3.setter def hidden_mag_2_alignment1_3(self, new_value): addr = 0xB7 self.write_register(addr, new_value, hidden=True) @property def hidden_mag_2_alignment2_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_2_ALIGNMENT2_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_2_ALIGNMENT2_1 as float; """ addr = 0xB8 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_2_ALIGNMENT2_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_2_alignment2_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_2_alignment2_1, @hidden_mag_2_alignment2_1.setter def hidden_mag_2_alignment2_1(self, new_value): addr = 0xB8 self.write_register(addr, new_value, hidden=True) @property def hidden_mag_2_alignment2_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_2_ALIGNMENT2_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_2_ALIGNMENT2_2 as float; """ addr = 0xB9 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_2_ALIGNMENT2_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_2_alignment2_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_2_alignment2_2, @hidden_mag_2_alignment2_2.setter def hidden_mag_2_alignment2_2(self, new_value): addr = 0xB9 self.write_register(addr, new_value, hidden=True) @property def hidden_mag_2_alignment2_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_2_ALIGNMENT2_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_2_ALIGNMENT2_3 as float; """ addr = 0xBA ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_2_ALIGNMENT2_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_2_alignment2_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_2_alignment2_3, @hidden_mag_2_alignment2_3.setter def hidden_mag_2_alignment2_3(self, new_value): addr = 0xBA self.write_register(addr, new_value, hidden=True) @property def hidden_mag_2_alignment3_1(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_2_ALIGNMENT3_1 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_2_ALIGNMENT3_1 as float; """ addr = 0xBB ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_2_ALIGNMENT3_1') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_2_alignment3_1, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_2_alignment3_1, @hidden_mag_2_alignment3_1.setter def hidden_mag_2_alignment3_1(self, new_value): addr = 0xBB self.write_register(addr, new_value, hidden=True) @property def hidden_mag_2_alignment3_2(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_2_ALIGNMENT3_2 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_2_ALIGNMENT3_2 as float; """ addr = 0xBC ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_2_ALIGNMENT3_2') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_2_alignment3_2, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_2_alignment3_2, @hidden_mag_2_alignment3_2.setter def hidden_mag_2_alignment3_2(self, new_value): addr = 0xBC self.write_register(addr, new_value, hidden=True) @property def hidden_mag_2_alignment3_3(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_2_ALIGNMENT3_3 -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_2_ALIGNMENT3_3 as float; """ addr = 0xBD ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_2_ALIGNMENT3_3') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_2_alignment3_3, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_2_alignment3_3, @hidden_mag_2_alignment3_3.setter def hidden_mag_2_alignment3_3(self, new_value): addr = 0xBD self.write_register(addr, new_value, hidden=True) @property def hidden_mag_2_reference_x(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_2_REFERENCE_X -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_2_REFERENCE_X as float; """ addr = 0xBE ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_2_REFERENCE_X') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_2_reference_x, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_2_reference_x, @hidden_mag_2_reference_x.setter def hidden_mag_2_reference_x(self, new_value): addr = 0xBE self.write_register(addr, new_value, hidden=True) @property def hidden_mag_2_reference_y(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_2_REFERENCE_Y -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_2_REFERENCE_Y as float; """ addr = 0xBF ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_2_REFERENCE_Y') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_2_reference_y, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_2_reference_y, @hidden_mag_2_reference_y.setter def hidden_mag_2_reference_y(self, new_value): addr = 0xBF self.write_register(addr, new_value, hidden=True) @property def hidden_mag_2_reference_z(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_2_REFERENCE_Z -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_2_REFERENCE_Z as float; """ addr = 0xC0 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_2_REFERENCE_Z') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_2_reference_z, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_2_reference_z, @hidden_mag_2_reference_z.setter def hidden_mag_2_reference_z(self, new_value): addr = 0xC0 self.write_register(addr, new_value, hidden=True) @property def hidden_gyro_1_conversion(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_1_CONVERSION -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_1_CONVERSION as float; """ addr = 0xC1 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_1_CONVERSION') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_1_conversion, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_1_conversion, @property def hidden_gyro_2_conversion(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_GYRO_2_CONVERSION -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_GYRO_2_CONVERSION as float; """ addr = 0xC2 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_GYRO_2_CONVERSION') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_gyro_2_conversion, = struct.unpack('>f', payload[0:4]) return reg, hidden_gyro_2_conversion, @property def hidden_accel_1_conversion(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_ACCEL_1_CONVERSION -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_ACCEL_1_CONVERSION as float; """ addr = 0xC3 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_ACCEL_1_CONVERSION') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_accel_1_conversion, = struct.unpack('>f', payload[0:4]) return reg, hidden_accel_1_conversion, @property def hidden_mag_1_conversion(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_1_CONVERSION -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_1_CONVERSION as float; """ addr = 0xC4 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_1_CONVERSION') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_1_conversion, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_1_conversion, @property def hidden_mag_2_conversion(self): """ TODO: add description Payload structure: [31:0] : HIDDEN_MAG_2_CONVERSION -- 32-bit IEEE 754 Floating Point Value :return: HIDDEN_MAG_2_CONVERSION as float; """ addr = 0xC5 ok, payload = self.read_register(addr, hidden=True) if ok: reg = self.svd_parser.find_hidden_register_by(name='HIDDEN_MAG_2_CONVERSION') reg.raw_value, = struct.unpack('>f', payload[0:4]) hidden_mag_2_conversion, = struct.unpack('>f', payload[0:4]) return reg, hidden_mag_2_conversion, if __name__ == '__main__': pass
def binaryToInt (string: str, oneChar = "1", zeroChar = "0"): out = 0 for i in range(len(string)): currentDigit = None if string[len(string) - 1 - i] == oneChar: currentDigit = 1 elif string[len(string) - 1 - i] == zeroChar: currentDigit = 0 out += (2**i) * currentDigit return(out) if __name__ == "__main__": print(binaryToInt("1011"))
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import unicode_literals from poetry.poetry import Poetry from poetry.utils._compat import Path from poetry.utils.toml_file import TomlFile fixtures_dir = Path(__file__).parent / "fixtures" def test_poetry(): poetry = Poetry.create(str(fixtures_dir / "sample_project")) package = poetry.package assert package.name == "my-package" assert package.version.text == "1.2.3" assert package.description == "Some description." assert package.authors == ["Sébastien Eustace <sebastien@eustace.io>"] assert package.license.id == "MIT" assert ( package.readme.relative_to(fixtures_dir).as_posix() == "sample_project/README.rst" ) assert package.homepage == "https://poetry.eustace.io" assert package.repository_url == "https://github.com/sdispater/poetry" assert package.keywords == ["packaging", "dependency", "poetry"] assert package.python_versions == "~2.7 || ^3.6" assert str(package.python_constraint) == ">=2.7,<2.8 || >=3.6,<4.0" dependencies = {} for dep in package.requires: dependencies[dep.name] = dep cleo = dependencies["cleo"] assert cleo.pretty_constraint == "^0.6" assert not cleo.is_optional() pendulum = dependencies["pendulum"] assert pendulum.pretty_constraint == "branch 2.0" assert pendulum.is_vcs() assert pendulum.vcs == "git" assert pendulum.branch == "2.0" assert pendulum.source == "https://github.com/sdispater/pendulum.git" assert pendulum.allows_prereleases() requests = dependencies["requests"] assert requests.pretty_constraint == "^2.18" assert not requests.is_vcs() assert not requests.allows_prereleases() assert requests.is_optional() assert requests.extras == ["security"] pathlib2 = dependencies["pathlib2"] assert pathlib2.pretty_constraint == "^2.2" assert pathlib2.python_versions == "~2.7" assert not pathlib2.is_optional() demo = dependencies["demo"] assert demo.is_file() assert not demo.is_vcs() assert demo.name == "demo" assert demo.pretty_constraint == "0.1.0" demo = dependencies["my-package"] assert not demo.is_file() assert demo.is_directory() assert not demo.is_vcs() assert demo.name == "my-package" assert demo.pretty_constraint == "0.1.2" assert demo.package.requires[0].name == "pendulum" assert demo.package.requires[1].name == "cachy" assert demo.package.requires[1].extras == ["msgpack"] simple_project = dependencies["simple-project"] assert not simple_project.is_file() assert simple_project.is_directory() assert not simple_project.is_vcs() assert simple_project.name == "simple-project" assert simple_project.pretty_constraint == "1.2.3" assert simple_project.package.requires == [] assert "db" in package.extras classifiers = package.classifiers assert classifiers == [ "Topic :: Software Development :: Build Tools", "Topic :: Software Development :: Libraries :: Python Modules", ] assert package.all_classifiers == [ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Software Development :: Build Tools", "Topic :: Software Development :: Libraries :: Python Modules", ] def test_poetry_with_packages_and_includes(): poetry = Poetry.create( str(fixtures_dir.parent / "masonry" / "builders" / "fixtures" / "with-include") ) package = poetry.package assert package.packages == [ {"include": "extra_dir/**/*.py"}, {"include": "my_module.py"}, {"include": "package_with_include"}, ] assert package.include == ["extra_dir/vcs_excluded.txt", "notes.txt"] def test_check(): complete = TomlFile(fixtures_dir / "complete.toml") content = complete.read(raw=True)["tool"]["poetry"] assert Poetry.check(content)
#! python """ Modified version of barcode report for use on CCS inputs """ from pprint import pformat import functools import logging import json import os.path as op import sys from pbcommand.models import DataStore, FileTypes from pbcommand.models.report import PlotGroup from pbcommand.cli import pbparser_runner from pbcommand.utils import setup_log from pbcore.io import ConsensusReadSet from pbreports.report import barcode as barcode_report from pbreports.report.barcode import (read_inputs, get_barcode_info_parallel, save_demuxed_dataset_reports) from pbreports.io.barcode import get_unbarcoded_reads_info from pbreports.io.specs import load_spec from pbreports.plot.helper import to_plotgroup from pbreports.plot.tools import plot_read_lengths_with_cdf log = logging.getLogger(__name__) __version__ = "0.2.1" class Constants(barcode_report.Constants): TOOL_ID = "pbreports.tasks.barcode_ccs" TOOL_NAME = "barcode_ccs" DRIVER_EXE = "python -m pbreports.report.barcode_ccs --resolved-tool-contract" VERSION = __version__ DOC = __doc__ FILE_TYPE_READS_IN = FileTypes.DS_CCS SHOW_COLUMNS = [ barcode_report.Constants.C_BIOSAMPLE, barcode_report.Constants.C_IDX, barcode_report.Constants.C_BARCODE, barcode_report.Constants.C_NREADS, barcode_report.Constants.C_NBASES, barcode_report.Constants.C_BCQUAL, barcode_report.Constants.C_RANK ] SHOW_ATTRIBUTES = [ barcode_report.Constants.A_NBARCODES, barcode_report.Constants.A_NREADS_BARCODED, barcode_report.Constants.A_NREADS_UNBARCODED, barcode_report.Constants.A_MEAN_READS, barcode_report.Constants.A_MAX_READS, barcode_report.Constants.A_MIN_READS, barcode_report.Constants.A_MEAN_RL ] make_report = functools.partial(barcode_report._make_report_impl, Constants.SHOW_ATTRIBUTES, Constants.SHOW_COLUMNS, Constants.LABEL_NONE) def run_to_report(ds_bc_file, barcodes_file, reads_in_file, base_dir=None, datastore_json=None, nproc=1, test_mode=False, min_bq_filter=Constants.MIN_BQ_FILTER): spec = load_spec("barcode") inputs = read_inputs(ds_bc_file, barcodes_file, reads_in_file) read_info, barcoded_zmws, biosamples, subrpt_files, bc_dataset_uuids = get_barcode_info_parallel( inputs.ds_files, barcodes_file, nproc=nproc, subrpt_output_dir=op.join(base_dir, "sub_reports"), isoseq_mode=False) read_info.extend(list(get_unbarcoded_reads_info( inputs.reads_in, barcoded_zmws))) if datastore_json is not None: save_demuxed_dataset_reports( subrpt_files, base_dir, datastore_json) else: barcode_report.write_empty_datastore(datastore_json) rpt = make_report(biosamples=biosamples, read_info=read_info, bc_dataset_uuids=bc_dataset_uuids, dataset_uuids=inputs.dataset_uuids, base_dir=base_dir, use_spec=spec, test_mode=test_mode, min_bq_filter=min_bq_filter) return spec.apply_view(rpt) def args_runner(args): log.info("Starting {f} version {v} report generation".format( f=__file__, v=__version__)) report = run_to_report(args.ds_bc, args.barcodes, args.reads_in, base_dir=op.dirname(args.report_json), datastore_json=args.dataset_reports, nproc=args.nproc, test_mode=args.test_mode, min_bq_filter=args.min_bq_filter) log.info(pformat(report.to_dict())) report.write_json(args.report_json) report.tables[0].to_csv(args.report_csv) return 0 def resolved_tool_contract_runner(rtc): log.info("Starting {f} version {v} report generation".format( f=__file__, v=__version__)) report = run_to_report( ds_bc_file=rtc.task.input_files[0], barcodes_file=rtc.task.input_files[2], reads_in_file=rtc.task.input_files[1], base_dir=op.dirname(rtc.task.output_files[0]), datastore_json=rtc.task.output_files[2], nproc=rtc.task.nproc) log.debug(pformat(report.to_dict())) report.write_json(rtc.task.output_files[0]) report.tables[0].to_csv(rtc.task.output_files[1]) return 0 def _get_parser(): return barcode_report.get_parser(Constants) def main(argv=sys.argv): return pbparser_runner( argv=argv[1:], parser=_get_parser(), args_runner_func=args_runner, contract_runner_func=resolved_tool_contract_runner, alog=log, setup_log_func=setup_log) if __name__ == "__main__": sys.exit(main(sys.argv))
# -*- coding: utf-8 -*- from typing import List, Dict, AnyStr from retry import retry from ratelimit import limits, RateLimitException import dataiku from dataiku.customrecipe import get_recipe_config, get_input_names_for_role, get_output_names_for_role from plugin_io_utils import ErrorHandlingEnum, validate_column_input from dku_io_utils import set_column_description from amazon_comprehend_api_client import API_EXCEPTIONS, batch_api_response_parser, get_client from api_parallelizer import api_parallelizer from amazon_comprehend_api_formatting import LanguageDetectionAPIFormatter # ============================================================================== # SETUP # ============================================================================== api_configuration_preset = get_recipe_config().get("api_configuration_preset") api_quota_rate_limit = api_configuration_preset.get("api_quota_rate_limit") api_quota_period = api_configuration_preset.get("api_quota_period") parallel_workers = api_configuration_preset.get("parallel_workers") batch_size = api_configuration_preset.get("batch_size") text_column = get_recipe_config().get("text_column") error_handling = ErrorHandlingEnum[get_recipe_config().get("error_handling")] input_dataset_name = get_input_names_for_role("input_dataset")[0] input_dataset = dataiku.Dataset(input_dataset_name) input_schema = input_dataset.read_schema() input_columns_names = [col["name"] for col in input_schema] output_dataset_name = get_output_names_for_role("output_dataset")[0] output_dataset = dataiku.Dataset(output_dataset_name) validate_column_input(text_column, input_columns_names) input_df = input_dataset.get_dataframe() client = get_client(api_configuration_preset) column_prefix = "lang_detect_api" batch_kwargs = { "api_support_batch": True, "batch_size": batch_size, "batch_api_response_parser": batch_api_response_parser, } # ============================================================================== # RUN # ============================================================================== @retry((RateLimitException, OSError), delay=api_quota_period, tries=5) @limits(calls=api_quota_rate_limit, period=api_quota_period) def call_api_language_detection(batch: List[Dict], text_column: AnyStr) -> List[Dict]: text_list = [str(r.get(text_column, "")).strip() for r in batch] responses = client.batch_detect_dominant_language(TextList=text_list) return responses df = api_parallelizer( input_df=input_df, api_call_function=call_api_language_detection, api_exceptions=API_EXCEPTIONS, column_prefix=column_prefix, text_column=text_column, parallel_workers=parallel_workers, error_handling=error_handling, **batch_kwargs ) api_formatter = LanguageDetectionAPIFormatter( input_df=input_df, column_prefix=column_prefix, error_handling=error_handling, ) output_df = api_formatter.format_df(df) output_dataset.write_with_schema(output_df) set_column_description( input_dataset=input_dataset, output_dataset=output_dataset, column_description_dict=api_formatter.column_description_dict, )
#!/usr/bin/python3 # mari von steinkirch @2013 # steinkirch at gmail def find_edit_distance(str1, str2): ''' computes the edit distance between two strings ''' m = len(str1) n = len(str2) diff = lambda c1, c2: 0 if c1 == c2 else 1 E = [[0] * (n + 1) for i in range(m + 1)] for i in range(m + 1): E[i][0] = i for j in range(1, n + 1): E[0][j] = j for i in range(1, m + 1): for j in range(1, n + 1): E[i][j] = min(E[i-1][j] + 1, E[i][j-1] + 1, E[i-1][j-1] + diff(str1[i-1], str2[j-1])) return E[m][n] def test_find_edit_distance(): s = 'sunday' t = 'saturday' assert(find_edit_distance(s, t) == 3) print('Tests passed!') if __name__ == '__main__': test_find_edit_distance()
#!/usr/bin/env python # coding: utf-8 # # Cats and Dogs Classification # Data Loading and Exploring # In[1]: import os base_dir = './cats_and_dogs_filtered' train_dir = os.path.join(base_dir, 'train') validation_dir = os.path.join(base_dir, 'validation') # cat training pictures train_cats_dir = os.path.join(train_dir, 'cats') # dog training pictures train_dogs_dir = os.path.join(train_dir, 'dogs') # cat validation pictures validation_cats_dir = os.path.join(validation_dir, 'cats') # dog validation pictures validation_dogs_dir = os.path.join(validation_dir, 'dogs') # In[2]: # view file names train_cat_fnames = os.listdir(train_cats_dir) print(train_cat_fnames[:10]) train_dog_fnames = os.listdir(train_dogs_dir) train_dog_fnames.sort() print(train_dog_fnames[:10]) # In[3]: # preview images to know what the dataset is like import matplotlib.pyplot as plt import matplotlib.image as mpimg # Parameters for our graph; we'll output images in a 4*4 configuration nrows = 4 ncols = 4 # Index for iterating over images pic_index = 0 # Set up matplotlib fig, and size it to fit 4*4 pics fig = plt.gcf() fig.set_size_inches(ncols*4, nrows*4) # 8 images for cats and dogs separately pic_index += 8 next_cat_pix = [os.path.join(train_cats_dir, fname) for fname in train_cat_fnames[pic_index-8:pic_index]] next_dog_pix = [os.path.join(train_dogs_dir, fname) for fname in train_dog_fnames[pic_index-8:pic_index]] for i, img_path in enumerate(next_cat_pix + next_dog_pix): # Set up subplot; subplot indices starts at 1 sp = plt.subplot(nrows, ncols, i+1) sp.axis('Off') img = mpimg.imread(img_path) plt.imshow(img) plt.show() # build a small convnet from scratch to get to 72% accuracy # In[4]: from tensorflow.keras import layers from tensorflow.keras import Model # Our input feature map is 150*150*3: 150*150 for the image pixels, # and 3 for the three color channels: R, G and B img_input = layers.Input(shape=(150,150,3)) # First convolution extracts 16 filters that are 3*3 # Convolution is followed by max-pooling layer with a 2*2 window x = layers.Conv2D(16,3,activation='relu')(img_input) x = layers.MaxPooling2D(2)(x) # Second convolution extracts 32 filters that are 3*3 # Convolution is followed by max-pooling layer with a 2*2 window x = layers.Conv2D(32,3,activation='relu')(x) x = layers.MaxPooling2D(2)(x) # Third convolution extracts 64 filters that are 3*3 # Convolution is followed by max-pooling layer with a 2*2 window x = layers.Conv2D(64,3, activation='relu')(x) x = layers.MaxPooling2D(2)(x) # fully-connected layers: because we are facing a binary classification problem, we will end our network with a sigmoid activation, so that the output of our network will be a single scalar between 0 and 1. # In[5]: # Flatten feature map to a 1-dim tensor so we can add fully connected layers x = layers.Flatten()(x) # Generate a fully connected layer with ReLU activation and 512 hidden units x = layers.Dense(512,activation='relu')(x) # Create output layer with a single node and sigmoid activation output = layers.Dense(1, activation='sigmoid')(x) # Create Model # input = input feature map # output = output feature map # connected layer + sigmoid output layer model = Model(img_input,output) # Let's summarize the model architecture # In[6]: model.summary() # In[7]: # use RMSprop instead of stochastic gradient from tensorflow.keras.optimizers import RMSprop model.compile(loss='binary_crossentropy', optimizer=RMSprop(lr=0.001), metrics=['acc']) # Data Preprocessing # In[8]: from tensorflow.keras.preprocessing.image import ImageDataGenerator # All images will be rescaled by 1./255 train_datagen = ImageDataGenerator(rescale=1./255) val_datagen = ImageDataGenerator(rescale=1./255) # Flow training images in batches of 20 using train_datagen generator train_generator = train_datagen.flow_from_directory( train_dir, # This is the source directory for training images target_size=(150,150), batch_size=20, # Since we use binary_crossentropy loss, we need binary labels class_mode='binary' ) # Flow validation images in batches of 20 using val_datagen generator validation_generator = val_datagen.flow_from_directory( validation_dir, target_size=(150,150), batch_size=20, class_mode='binary' ) # Training # <br>train on 2000 images, for 15 epochs and validate on 1000 images # In[ ]: history = model.fit_generator( train_generator, steps_per_epoch=100, # 2000 images = batch_size * steps epochs=15, validation_data=validation_generator, validation_steps=50, # 1000 images = batch_size * steps verbose=1 ) # Visualizing Intermediate Representations # Visualize how an input gets transformed as it goes through the convnet # In[ ]: import numpy as np import random from tensorflow.keras.preprocessing.image import img_to_array, load_img # define a new Model that takes an img as input and will output # intermediate representations for all layers in the previous model after # the first successive_outputs = [layers.output for layer in model.layers[1:]] visualization_model = Model(img_input, successive_outputs) # prepare a random input img of a cat or dog from the training set cat_img_files = [os.path.join(train_cats_dir, f) for f in train_cat_fnames] dog_img_files = [os.path.join(train_dogs_dir, f) for f in train_dog_fnames] img_path = random.choice(cat_img_files + dog_img_files) img = load_img(img_path, target_size=(150, 150)) # this is a PIL img x = img_to_array(img) # Numpy array with shape (150, 150, 3) x = x.reshape((1,) + x.shape) # Rescale by 1/255 x /= 255 # Let's run our image through our network, thus obtaining all # intermediate representations for this img. successive_feature_maps = visualization_model.predict(x) # These are names of the layers layer_names = [layer.name for layer in model.layers] # Now let's display our representations for layer_name, feature_map in zip(layer_names, successive_feature_maps): if len(feature_map.shape) == 4: # Just do this for the conv/ maxpool layers, not the fully-connected layers n_features = feature_map.shape[-1] # number of features in feature map # retrieve a list of lists results on training and validattion data # sets for each training epoch loss = history.history['val_loss'] # Get number of epochs epochs = range(len(acc)) # Plot training and validation accuracy per epoch plt.plot(epochs, acc) plt.plot(epochs, val_acc) plt.title('Train and validation accuracy') plt.figure() # plot training and validation loss per epoch plt.plot(epochs, loss) plt.plot(epochs, val_loss) plt.title('Training and validation loss') # Evaluating Accuracy and Loss for the Model # plot the training / validation accuracy and loss as collected during training # In[ ]: # Retrieve a list of accuracy results on training and validation data # sets for each training epoch acc = history.history['acc'] val_acc = history.history['val_acc'] # Retrieve a list of list results on training and validation data # sets for each training epoch loss = history.history['loss'] val_loss = history.history['val_loss'] # Get number of epochs epochs = range(len(acc)) # Plot training and validation accuracy per epoch plt.plot(epochs, acc) plt.plot(epochs, val_acc) plt.title('Training and validation accuracy') plt.figure() # Plot training and validation loss per epoch plt.plot(epochs, loss) plt.plot(epochs, val_loss) plt.title('Training and validation loss') # Clean Up # In[ ]: import os, signal os.kill(os.getpid(), signal.SIGKILL)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import pathlib from collections import namedtuple import torchaudio import shutil Speaker = namedtuple('Speaker', ['id', 'gender', 'subset']) FileRecord = namedtuple( 'FileRecord', ['fname', 'length', 'speaker', 'book', 'text_file']) def get_speakers(speaker_path): all_speakers = [] with open(speaker_path) as f: for line in f: if line.startswith(';'): continue line = line.split('|') speaker_id, gender, subset = [x.strip() for x in line[0:3]] speaker_id = int(speaker_id) assert subset in ['test-clean', 'train-clean-360', 'train-clean-100', 'test-other', 'dev-clean', 'train-other-500', 'dev-other'], subset speaker = Speaker(id=speaker_id, gender=gender, subset=subset) all_speakers.append(speaker) return all_speakers def get_filelength(fname): info = torchaudio.info(fname)[0] return info.length def traverse_tree(root, ext='flac'): fnames = pathlib.Path(root).rglob(f"*.{ext}") fnames = sorted(list(fnames)) lengths = [] for file in fnames: file = str(file.resolve()) length = get_filelength(file) lengths.append(length) return list(zip(fnames, lengths)) def get_speaker_fname(fname): stemmed = fname.stem speaker, book, seq = stemmed.split('-') return int(speaker), int(book) def full_records(speakers, fname2length, subset_name=None): all_records = [] speakers = dict((speaker.id, speaker) for speaker in speakers) for fname, length in fname2length: speaker, book = get_speaker_fname(fname) assert speaker in speakers, f'Unknown speaker! {speaker}' speaker = speakers[speaker] if subset_name is not None: assert subset_name == speaker.subset # hacky text_file = fname.parent / f'{speaker.id}-{book}.trans.txt' frecord = FileRecord(speaker=speaker, length=length, fname=fname, book=book, text_file=text_file) all_records.append(frecord) return all_records def get_histogram(records, lambda_key, lambda_value): from collections import defaultdict key_value = defaultdict(int) for record in records: key = lambda_key(record) value = lambda_value(record) key_value[key] += value return key_value def materialize(records, target_dir, tag=None, move=False): target_dir = pathlib.Path(target_dir) to_copy = set() to_move = set() for record in records: # outline: # target_dir / speaker / book / file if tag is None: target_book_dir = target_dir / \ str(record.speaker.id) / str(record.book) else: target_book_dir = target_dir / tag / \ str(record.speaker.id) / str(record.book) target_book_dir.mkdir(exist_ok=True, parents=True) if not move: to_copy.add((record.fname, target_book_dir / record.fname.name)) else: to_move.add((record.fname, target_book_dir / record.fname.name)) to_copy.add((record.text_file, target_book_dir / record.text_file.name)) to_copy = sorted(list(to_copy)) for src, dst in to_copy: shutil.copy(src, dst) if len(to_move) > 0: to_move = sorted(list(to_move)) for src, dst in to_move: shutil.move(src, dst) def print_stats(records): def lambda_speaker(r): return r.speaker.id def lambda_time(r): return r.length / 16000.0 speaker_time = get_histogram( records, lambda_key=lambda_speaker, lambda_value=lambda_time) print(f'Unique speakers: {len(speaker_time)}') times = speaker_time.values() min_time, max_time, mean_time, total_time = min( times), max(times), sum(times) / len(times), sum(times) min_time, max_time, mean_time, total_time = map( int, [min_time, max_time, mean_time, total_time]) print( f'Min/Mean/Max/Total, seconds: {min_time}/{mean_time}/{max_time}/{total_time}') print(f'n_utterances: {len(records)}')
import os PROJECT_DIR = os.path.abspath(os.pardir) RUN_DIR = os.path.join(PROJECT_DIR, "runs/") DATA_DIR = os.path.join(PROJECT_DIR, "data/") EMBEDDINGS_DIR = os.path.join(PROJECT_DIR, "embeddings/")
""" # BEGIN TAG_DEMO >>> tag('br') # <1> '<br />' >>> tag('p', 'hello') # <2> '<p>hello</p>' >>> print(tag('p', 'hello', 'world')) <p>hello</p> <p>world</p> >>> tag('p', 'hello', id=33) # <3> '<p id="33">hello</p>' >>> print(tag('p', 'hello', 'world', cls='sidebar')) # <4> <p class="sidebar">hello</p> <p class="sidebar">world</p> >>> tag(content='testing', name="img") # <5> '<img content="testing" />' >>> my_tag = {'name': 'img', 'title': 'Sunset Boulevard', ... 'src': 'sunset.jpg', 'cls': 'framed'} >>> tag(**my_tag) # <6> '<img class="framed" src="sunset.jpg" title="Sunset Boulevard" />' # END TAG_DEMO """ # BEGIN TAG_FUNC def tag(name, *content, cls=None, **attrs): """Generate one or more HTML tags""" if cls is not None: attrs['class'] = cls if attrs: attr_str = ''.join(' %s="%s"' % (attr, value) for attr, value in sorted(attrs.items())) else: attr_str = '' if content: return '\n'.join('<%s%s>%s</%s>' % (name, attr_str, c, name) for c in content) else: return '<%s%s />' % (name, attr_str) # END TAG_FUNC
from functools import lru_cache class Solution: def longestPalindromeSubseq(self, s: str) -> int: @lru_cache(None) def helper(b,e): print(b,e) if b > e : return 0 if b == e : return 1 if s[b] == s[e] : return helper(b+1,e-1) + 2 return max(helper(b+1,e), helper(b,e-1)) return helper(0,len(s)-1) s = Solution() ans = s.longestPalindromeSubseq('bcbbd') print(ans)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ A script to run multinode training with submitit. """ import argparse import os import uuid from pathlib import Path import main as detection import submitit def parse_args(): detection_parser = detection.get_args_parser() parser = argparse.ArgumentParser("Submitit for detection", parents=[detection_parser]) parser.add_argument("--ngpus", default=8, type=int, help="Number of gpus to request on each node") parser.add_argument("--nodes", default=4, type=int, help="Number of nodes to request") parser.add_argument("--timeout", default=60, type=int, help="Duration of the job") parser.add_argument("--job_dir", default="", type=str, help="Job dir. Leave empty for automatic.") return parser.parse_args() def get_shared_folder() -> Path: user = os.getenv("USER") if Path("/checkpoint/").is_dir(): p = Path("/checkpoint/{}/experiments".format(user)) p.mkdir(exist_ok=True) return p raise RuntimeError("No shared folder available") def get_init_file(): # Init file must not exist, but it's parent dir must exist. os.makedirs(str(get_shared_folder()), exist_ok=True) init_file = get_shared_folder() / "{}_init".format(uuid.uuid4().hex) if init_file.exists(): os.remove(str(init_file)) return init_file class Trainer(object): def __init__(self, args): self.args = args def __call__(self): import main as detection self._setup_gpu_args() detection.main(self.args) def checkpoint(self): import os import submitit from pathlib import Path self.args.dist_url = get_init_file().as_uri() checkpoint_file = os.path.join(self.args.output_dir, "checkpoint.pth") if os.path.exists(checkpoint_file): self.args.resume = checkpoint_file print("Requeuing ", self.args) empty_trainer = type(self)(self.args) return submitit.helpers.DelayedSubmission(empty_trainer) def _setup_gpu_args(self): import submitit from pathlib import Path job_env = submitit.JobEnvironment() self.args.output_dir = Path(str(self.args.output_dir).replace("%j", str(job_env.job_id))) self.args.gpu = job_env.local_rank self.args.rank = job_env.global_rank self.args.world_size = job_env.num_tasks print("Process group: {} tasks, rank: {}".format(job_env.num_tasks,job_env.global_rank)) def main(): args = parse_args() if args.job_dir == "": args.job_dir = get_shared_folder() / "%j" # Note that the folder will depend on the job_id, to easily track experiments executor = submitit.AutoExecutor(folder=args.job_dir, slurm_max_num_timeout=30) # cluster setup is defined by environment variables num_gpus_per_node = args.ngpus nodes = args.nodes timeout_min = args.timeout executor.update_parameters( mem_gb=40 * num_gpus_per_node, gpus_per_node=num_gpus_per_node, tasks_per_node=num_gpus_per_node, # one task per GPU cpus_per_task=10, nodes=nodes, timeout_min=timeout_min, # max is 60 * 72 ) executor.update_parameters(name="detr") args.dist_url = get_init_file().as_uri() args.output_dir = args.job_dir trainer = Trainer(args) job = executor.submit(trainer) print("Submitted job_id:", job.job_id) if __name__ == "__main__": main()
"""Entity for Zigbee Home Automation.""" from __future__ import annotations import asyncio from collections.abc import Callable import functools import logging from typing import TYPE_CHECKING, Any from homeassistant.const import ATTR_NAME from homeassistant.core import CALLBACK_TYPE, Event, callback from homeassistant.helpers import entity from homeassistant.helpers.debounce import Debouncer from homeassistant.helpers.device_registry import CONNECTION_ZIGBEE from homeassistant.helpers.dispatcher import ( async_dispatcher_connect, async_dispatcher_send, ) from homeassistant.helpers.event import async_track_state_change_event from homeassistant.helpers.restore_state import RestoreEntity from .core.const import ( ATTR_MANUFACTURER, ATTR_MODEL, DATA_ZHA, DATA_ZHA_BRIDGE_ID, DOMAIN, SIGNAL_GROUP_ENTITY_REMOVED, SIGNAL_GROUP_MEMBERSHIP_CHANGE, SIGNAL_REMOVE, ) from .core.helpers import LogMixin if TYPE_CHECKING: from .core.channels.base import ZigbeeChannel from .core.device import ZHADevice _LOGGER = logging.getLogger(__name__) ENTITY_SUFFIX = "entity_suffix" UPDATE_GROUP_FROM_CHILD_DELAY = 0.5 class BaseZhaEntity(LogMixin, entity.Entity): """A base class for ZHA entities.""" unique_id_suffix: str | None = None def __init__(self, unique_id: str, zha_device: ZHADevice, **kwargs: Any) -> None: """Init ZHA entity.""" self._name: str = "" self._force_update: bool = False self._should_poll: bool = False self._unique_id: str = unique_id if self.unique_id_suffix: self._unique_id += f"-{self.unique_id_suffix}" self._state: Any = None self._extra_state_attributes: dict[str, Any] = {} self._zha_device = zha_device self._unsubs: list[Callable[[], None]] = [] self.remove_future: asyncio.Future[Any] = asyncio.Future() @property def name(self) -> str: """Return Entity's default name.""" return self._name @property def unique_id(self) -> str: """Return a unique ID.""" return self._unique_id @property def zha_device(self) -> ZHADevice: """Return the zha device this entity is attached to.""" return self._zha_device @property def extra_state_attributes(self) -> dict[str, Any]: """Return device specific state attributes.""" return self._extra_state_attributes @property def force_update(self) -> bool: """Force update this entity.""" return self._force_update @property def should_poll(self) -> bool: """Poll state from device.""" return self._should_poll @property def device_info(self) -> entity.DeviceInfo: """Return a device description for device registry.""" zha_device_info = self._zha_device.device_info ieee = zha_device_info["ieee"] return entity.DeviceInfo( connections={(CONNECTION_ZIGBEE, ieee)}, identifiers={(DOMAIN, ieee)}, manufacturer=zha_device_info[ATTR_MANUFACTURER], model=zha_device_info[ATTR_MODEL], name=zha_device_info[ATTR_NAME], via_device=(DOMAIN, self.hass.data[DATA_ZHA][DATA_ZHA_BRIDGE_ID]), ) @callback def async_state_changed(self) -> None: """Entity state changed.""" self.async_write_ha_state() @callback def async_update_state_attribute(self, key: str, value: Any) -> None: """Update a single device state attribute.""" self._extra_state_attributes.update({key: value}) self.async_write_ha_state() @callback def async_set_state(self, attr_id: int, attr_name: str, value: Any) -> None: """Set the entity state.""" async def async_will_remove_from_hass(self) -> None: """Disconnect entity object when removed.""" for unsub in self._unsubs[:]: unsub() self._unsubs.remove(unsub) @callback def async_accept_signal( self, channel: ZigbeeChannel | None, signal: str, func: Callable[..., Any], signal_override=False, ): """Accept a signal from a channel.""" unsub = None if signal_override: unsub = async_dispatcher_connect(self.hass, signal, func) else: assert channel unsub = async_dispatcher_connect( self.hass, f"{channel.unique_id}_{signal}", func ) self._unsubs.append(unsub) def log(self, level: int, msg: str, *args, **kwargs): """Log a message.""" msg = f"%s: {msg}" args = (self.entity_id,) + args _LOGGER.log(level, msg, *args, **kwargs) class ZhaEntity(BaseZhaEntity, RestoreEntity): """A base class for non group ZHA entities.""" def __init_subclass__(cls, id_suffix: str | None = None, **kwargs) -> None: """Initialize subclass. :param id_suffix: suffix to add to the unique_id of the entity. Used for multi entities using the same channel/cluster id for the entity. """ super().__init_subclass__(**kwargs) if id_suffix: cls.unique_id_suffix = id_suffix def __init__( self, unique_id: str, zha_device: ZHADevice, channels: list[ZigbeeChannel], **kwargs: Any, ) -> None: """Init ZHA entity.""" super().__init__(unique_id, zha_device, **kwargs) ieeetail = "".join([f"{o:02x}" for o in zha_device.ieee[:4]]) ch_names = ", ".join(sorted(ch.name for ch in channels)) self._name: str = f"{zha_device.name} {ieeetail} {ch_names}" if self.unique_id_suffix: self._name += f" {self.unique_id_suffix}" self.cluster_channels: dict[str, ZigbeeChannel] = {} for channel in channels: self.cluster_channels[channel.name] = channel @classmethod def create_entity( cls, unique_id: str, zha_device: ZHADevice, channels: list[ZigbeeChannel], **kwargs, ) -> ZhaEntity | None: """Entity Factory. Return entity if it is a supported configuration, otherwise return None """ return cls(unique_id, zha_device, channels, **kwargs) @property def available(self) -> bool: """Return entity availability.""" return self._zha_device.available async def async_added_to_hass(self) -> None: """Run when about to be added to hass.""" self.remove_future = asyncio.Future() self.async_accept_signal( None, f"{SIGNAL_REMOVE}_{self.zha_device.ieee}", functools.partial(self.async_remove, force_remove=True), signal_override=True, ) if last_state := await self.async_get_last_state(): self.async_restore_last_state(last_state) self.async_accept_signal( None, f"{self.zha_device.available_signal}_entity", self.async_state_changed, signal_override=True, ) self._zha_device.gateway.register_entity_reference( self._zha_device.ieee, self.entity_id, self._zha_device, self.cluster_channels, self.device_info, self.remove_future, ) async def async_will_remove_from_hass(self) -> None: """Disconnect entity object when removed.""" await super().async_will_remove_from_hass() self.zha_device.gateway.remove_entity_reference(self) self.remove_future.set_result(True) @callback def async_restore_last_state(self, last_state) -> None: """Restore previous state.""" async def async_update(self) -> None: """Retrieve latest state.""" tasks = [ channel.async_update() for channel in self.cluster_channels.values() if hasattr(channel, "async_update") ] if tasks: await asyncio.gather(*tasks) class ZhaGroupEntity(BaseZhaEntity): """A base class for ZHA group entities.""" def __init__( self, entity_ids: list[str], unique_id: str, group_id: int, zha_device, **kwargs ) -> None: """Initialize a light group.""" super().__init__(unique_id, zha_device, **kwargs) self._available = False self._group = zha_device.gateway.groups.get(group_id) self._name = f"{self._group.name}_zha_group_0x{group_id:04x}" self._group_id: int = group_id self._entity_ids: list[str] = entity_ids self._async_unsub_state_changed: CALLBACK_TYPE | None = None self._handled_group_membership = False self._change_listener_debouncer: Debouncer | None = None @property def available(self) -> bool: """Return entity availability.""" return self._available @classmethod def create_entity( cls, entity_ids: list[str], unique_id: str, group_id: int, zha_device, **kwargs ) -> ZhaGroupEntity | None: """Group Entity Factory. Return entity if it is a supported configuration, otherwise return None """ return cls(entity_ids, unique_id, group_id, zha_device, **kwargs) async def _handle_group_membership_changed(self): """Handle group membership changed.""" # Make sure we don't call remove twice as members are removed if self._handled_group_membership: return self._handled_group_membership = True await self.async_remove(force_remove=True) async def async_added_to_hass(self) -> None: """Register callbacks.""" await super().async_added_to_hass() await self.async_update() self.async_accept_signal( None, f"{SIGNAL_GROUP_MEMBERSHIP_CHANGE}_0x{self._group_id:04x}", self._handle_group_membership_changed, signal_override=True, ) if self._change_listener_debouncer is None: self._change_listener_debouncer = Debouncer( self.hass, _LOGGER, cooldown=UPDATE_GROUP_FROM_CHILD_DELAY, immediate=False, function=functools.partial(self.async_update_ha_state, True), ) self._async_unsub_state_changed = async_track_state_change_event( self.hass, self._entity_ids, self.async_state_changed_listener ) def send_removed_signal(): async_dispatcher_send( self.hass, SIGNAL_GROUP_ENTITY_REMOVED, self._group_id ) self.async_on_remove(send_removed_signal) @callback def async_state_changed_listener(self, event: Event): """Handle child updates.""" # Delay to ensure that we get updates from all members before updating the group assert self._change_listener_debouncer self.hass.create_task(self._change_listener_debouncer.async_call()) async def async_will_remove_from_hass(self) -> None: """Handle removal from Home Assistant.""" await super().async_will_remove_from_hass() if self._async_unsub_state_changed is not None: self._async_unsub_state_changed() self._async_unsub_state_changed = None async def async_update(self) -> None: """Update the state of the group entity."""
# -*- coding:utf-8 -*- from __future__ import absolute_import, unicode_literals from exmail.client.api.base import EmailBaseAPI class Department(EmailBaseAPI): def create(self, department_data): ''' 创建部门 :param department_data: 创建部门所需数据 :return: ''' return self._post( '/department/create', data=department_data ) def update(self, department_data): ''' 创建部门 :param department_data: 更新部门所需数据 :return: ''' return self._post( '/department/update', data=department_data ) def delete(self, _id): ''' 删除部门 :param _id: 部门id (注:不能删除根部门;不能删除含有子部门、成员的部门) :return: ''' return self._get( '/department/delete', {'id': _id} ) def list(self, _id=1): """ 获取部门列表 :param _id: 父部门id(如果不传,默认部门为根部门,根部门ID为1) :return: 部门列表数据。以部门的order字段从小到大排列 """ return self._get( '/department/list', {'id': _id} ) def search(self, name, fuzzy=False): ''' 查找部门 :param name: 查找的部门名字,必须合法 :param fuzzy: 是否模糊匹配 :return: ''' return self._post( '/department/search', data={'name': name, 'fuzzy': int(fuzzy)} )
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch ALBERT model. """ import logging import math import os import torch import torch.nn as nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.configuration_albert import AlbertConfig from transformers.modeling_bert import ACT2FN, BertEmbeddings, BertSelfAttention, prune_linear_layer from transformers.modeling_utils import PreTrainedModel from .file_utils import add_start_docstrings, add_start_docstrings_to_callable logger = logging.getLogger(__name__) ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP = { "albert-base-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-pytorch_model.bin", "albert-large-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-pytorch_model.bin", "albert-xlarge-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-pytorch_model.bin", "albert-xxlarge-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-pytorch_model.bin", "albert-base-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-v2-pytorch_model.bin", "albert-large-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-v2-pytorch_model.bin", "albert-xlarge-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-v2-pytorch_model.bin", "albert-xxlarge-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-v2-pytorch_model.bin", } def load_tf_weights_in_albert(model, config, tf_checkpoint_path): """ Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info("Loading TF weight {} with shape {}".format(name, shape)) array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): print(name) for name, array in zip(names, arrays): original_name = name # If saved from the TF HUB module name = name.replace("module/", "") # Renaming and simplifying name = name.replace("ffn_1", "ffn") name = name.replace("bert/", "albert/") name = name.replace("attention_1", "attention") name = name.replace("transform/", "") name = name.replace("LayerNorm_1", "full_layer_layer_norm") name = name.replace("LayerNorm", "attention/LayerNorm") name = name.replace("transformer/", "") # The feed forward layer had an 'intermediate' step which has been abstracted away name = name.replace("intermediate/dense/", "") name = name.replace("ffn/intermediate/output/dense/", "ffn_output/") # ALBERT attention was split between self and output which have been abstracted away name = name.replace("/output/", "/") name = name.replace("/self/", "/") # The pooler is a linear layer name = name.replace("pooler/dense", "pooler") # The classifier was simplified to predictions from cls/predictions name = name.replace("cls/predictions", "predictions") name = name.replace("predictions/attention", "predictions") # Naming was changed to be more explicit name = name.replace("embeddings/attention", "embeddings") name = name.replace("inner_group_", "albert_layers/") name = name.replace("group_", "albert_layer_groups/") # Classifier if len(name.split("/")) == 1 and ("output_bias" in name or "output_weights" in name): name = "classifier/" + name # No ALBERT model currently handles the next sentence prediction task if "seq_relationship" in name: continue name = name.split("/") # Ignore the gradients applied by the LAMB/ADAM optimizers. if "adam_m" in name or "adam_v" in name or "global_step" in name: logger.info("Skipping {}".format("/".join(name))) continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info("Skipping {}".format("/".join(name))) continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: assert pointer.shape == array.shape except AssertionError as e: e.args += (pointer.shape, array.shape) raise print("Initialize PyTorch weight {} from {}".format(name, original_name)) pointer.data = torch.from_numpy(array) return model class AlbertEmbeddings(BertEmbeddings): """ Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super().__init__(config) self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=0) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size) self.LayerNorm = torch.nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) class AlbertAttention(BertSelfAttention): def __init__(self, config): super().__init__(config) self.output_attentions = config.output_attentions self.num_attention_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.attention_head_size = config.hidden_size // config.num_attention_heads self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return mask = torch.ones(self.num_attention_heads, self.attention_head_size) heads = set(heads) - self.pruned_heads # Convert to set and emove already pruned heads for head in heads: # Compute how many pruned heads are before the head and move the index accordingly head = head - sum(1 if h < head else 0 for h in self.pruned_heads) mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index = torch.arange(len(mask))[mask].long() # Prune linear layers self.query = prune_linear_layer(self.query, index) self.key = prune_linear_layer(self.key, index) self.value = prune_linear_layer(self.value, index) self.dense = prune_linear_layer(self.dense, index, dim=1) # Update hyper params and store pruned heads self.num_attention_heads = self.num_attention_heads - len(heads) self.all_head_size = self.attention_head_size * self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, input_ids, attention_mask=None, head_mask=None): mixed_query_layer = self.query(input_ids) mixed_key_layer = self.key(input_ids) mixed_value_layer = self.value(input_ids) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() # Should find a better way to do this w = ( self.dense.weight.t() .view(self.num_attention_heads, self.attention_head_size, self.hidden_size) .to(context_layer.dtype) ) b = self.dense.bias.to(context_layer.dtype) projected_context_layer = torch.einsum("bfnd,ndh->bfh", context_layer, w) + b projected_context_layer_dropout = self.dropout(projected_context_layer) layernormed_context_layer = self.LayerNorm(input_ids + projected_context_layer_dropout) return (layernormed_context_layer, attention_probs) if self.output_attentions else (layernormed_context_layer,) class AlbertLayer(nn.Module): def __init__(self, config): super().__init__() self.config = config self.full_layer_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.attention = AlbertAttention(config) self.ffn = nn.Linear(config.hidden_size, config.intermediate_size) self.ffn_output = nn.Linear(config.intermediate_size, config.hidden_size) self.activation = ACT2FN[config.hidden_act] def forward(self, hidden_states, attention_mask=None, head_mask=None): attention_output = self.attention(hidden_states, attention_mask, head_mask) ffn_output = self.ffn(attention_output[0]) ffn_output = self.activation(ffn_output) ffn_output = self.ffn_output(ffn_output) hidden_states = self.full_layer_layer_norm(ffn_output + attention_output[0]) return (hidden_states,) + attention_output[1:] # add attentions if we output them class AlbertLayerGroup(nn.Module): def __init__(self, config): super().__init__() self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.albert_layers = nn.ModuleList([AlbertLayer(config) for _ in range(config.inner_group_num)]) def forward(self, hidden_states, attention_mask=None, head_mask=None): layer_hidden_states = () layer_attentions = () for layer_index, albert_layer in enumerate(self.albert_layers): layer_output = albert_layer(hidden_states, attention_mask, head_mask[layer_index]) hidden_states = layer_output[0] if self.output_attentions: layer_attentions = layer_attentions + (layer_output[1],) if self.output_hidden_states: layer_hidden_states = layer_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_hidden_states: outputs = outputs + (layer_hidden_states,) if self.output_attentions: outputs = outputs + (layer_attentions,) return outputs # last-layer hidden state, (layer hidden states), (layer attentions) class AlbertTransformer(nn.Module): def __init__(self, config): super().__init__() self.config = config self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size) self.albert_layer_groups = nn.ModuleList([AlbertLayerGroup(config) for _ in range(config.num_hidden_groups)]) def forward(self, hidden_states, attention_mask=None, head_mask=None): hidden_states = self.embedding_hidden_mapping_in(hidden_states) all_attentions = () if self.output_hidden_states: all_hidden_states = (hidden_states,) for i in range(self.config.num_hidden_layers): # Number of layers in a hidden group layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups) # Index of the hidden group group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups)) layer_group_output = self.albert_layer_groups[group_idx]( hidden_states, attention_mask, head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group], ) hidden_states = layer_group_output[0] if self.output_attentions: all_attentions = all_attentions + layer_group_output[-1] if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: outputs = outputs + (all_attentions,) return outputs # last-layer hidden state, (all hidden states), (all attentions) class AlbertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = AlbertConfig pretrained_model_archive_map = ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "albert" def _init_weights(self, module): """ Initialize the weights. """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if isinstance(module, (nn.Linear)) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) ALBERT_START_DOCSTRING = r""" This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Args: config (:class:`~transformers.AlbertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ ALBERT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`transformers.AlbertTokenizer`. See :func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.encode_plus` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` corresponds to a `sentence B` token `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**. input_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. """ @add_start_docstrings( "The bare ALBERT Model transformer outputting raw hidden-states without any specific head on top.", ALBERT_START_DOCSTRING, ) class AlbertModel(AlbertPreTrainedModel): config_class = AlbertConfig pretrained_model_archive_map = ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP load_tf_weights = load_tf_weights_in_albert base_model_prefix = "albert" def __init__(self, config): super().__init__(config) self.config = config self.embeddings = AlbertEmbeddings(config) self.encoder = AlbertTransformer(config) self.pooler = nn.Linear(config.hidden_size, config.hidden_size) self.pooler_activation = nn.Tanh() self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _resize_token_embeddings(self, new_num_tokens): old_embeddings = self.embeddings.word_embeddings new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) self.embeddings.word_embeddings = new_embeddings return self.embeddings.word_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} ALBERT has a different architecture in that its layers are shared across groups, which then has inner groups. If an ALBERT model has 12 hidden layers and 2 hidden groups, with two inner groups, there is a total of 4 different layers. These layers are flattened: the indices [0,1] correspond to the two inner groups of the first hidden layer, while [2,3] correspond to the two inner groups of the second hidden layer. Any layer with in index other than [0,1,2,3] will result in an error. See base class PreTrainedModel for more information about head pruning """ for layer, heads in heads_to_prune.items(): group_idx = int(layer / self.config.inner_group_num) inner_group_idx = int(layer - group_idx * self.config.inner_group_num) self.encoder.albert_layer_groups[group_idx].albert_layers[inner_group_idx].attention.prune_heads(heads) @add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, ): r""" Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs: last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pre-training. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Example:: from transformers import AlbertModel, AlbertTokenizer import torch tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') model = AlbertModel.from_pretrained('albert-base-v2') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = ( head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) ) # We can specify head_mask for each layer head_mask = head_mask.to( dtype=next(self.parameters()).dtype ) # switch to fload if need + fp16 compatibility else: head_mask = [None] * self.config.num_hidden_layers embedding_output = self.embeddings( input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder(embedding_output, extended_attention_mask, head_mask=head_mask) sequence_output = encoder_outputs[0] pooled_output = self.pooler_activation(self.pooler(sequence_output[:, 0])) outputs = (sequence_output, pooled_output) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs class AlbertMLMHead(nn.Module): def __init__(self, config): super().__init__() self.LayerNorm = nn.LayerNorm(config.embedding_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.dense = nn.Linear(config.hidden_size, config.embedding_size) self.decoder = nn.Linear(config.embedding_size, config.vocab_size) self.activation = ACT2FN[config.hidden_act] # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.LayerNorm(hidden_states) hidden_states = self.decoder(hidden_states) prediction_scores = hidden_states + self.bias return prediction_scores @add_start_docstrings( "Albert Model with a `language modeling` head on top.", ALBERT_START_DOCSTRING, ) class AlbertForMaskedLM(AlbertPreTrainedModel): def __init__(self, config): super().__init__(config) self.albert = AlbertModel(config) self.predictions = AlbertMLMHead(config) self.init_weights() self.tie_weights() def tie_weights(self): self._tie_or_clone_weights(self.predictions.decoder, self.albert.embeddings.word_embeddings) def get_output_embeddings(self): return self.predictions.decoder @add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, masked_lm_labels=None, ): r""" masked_lm_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs: loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Masked language modeling loss. prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`) Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Example:: from transformers import AlbertTokenizer, AlbertForMaskedLM import torch tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') model = AlbertForMaskedLM.from_pretrained('albert-base-v2') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids, masked_lm_labels=input_ids) loss, prediction_scores = outputs[:2] """ outputs = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, ) sequence_outputs = outputs[0] prediction_scores = self.predictions(sequence_outputs) outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here if masked_lm_labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) outputs = (masked_lm_loss,) + outputs return outputs @add_start_docstrings( """Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ALBERT_START_DOCSTRING, ) class AlbertForSequenceClassification(AlbertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.albert = AlbertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) self.init_weights() @add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for computing the sequence classification/regression loss. Indices should be in ``[0, ..., config.num_labels - 1]``. If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs: loss: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification (or regression if config.num_labels==1) loss. logits ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: from transformers import AlbertTokenizer, AlbertForSequenceClassification import torch tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') model = AlbertForSequenceClassification.from_pretrained('albert-base-v2') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=labels) loss, logits = outputs[:2] """ outputs = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), logits, (hidden_states), (attentions) @add_start_docstrings( """Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ALBERT_START_DOCSTRING, ) class AlbertForQuestionAnswering(AlbertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.albert = AlbertModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs: loss: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_scores ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` Span-start scores (before SoftMax). end_scores: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` Span-end scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: # The checkpoint albert-base-v2 is not fine-tuned for question answering. Please see the # examples/run_squad.py example to see how to fine-tune a model to a question answering task. from transformers import AlbertTokenizer, AlbertForQuestionAnswering import torch tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') model = AlbertForQuestionAnswering.from_pretrained('albert-base-v2') question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" input_dict = tokenizer.encode_plus(question, text, return_tensors='pt') start_scores, end_scores = model(**input_dict) """ outputs = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) outputs = (start_logits, end_logits,) + outputs[2:] if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 outputs = (total_loss,) + outputs return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions)
import datetime as dt import os # ログファイル差分チェッカー # ファイル名を受け取り、update()実行ごとに差分を返す # 更新実行時の時間をもつ # 更新にかかった総所要時間の計測はせず、上のレイヤーに任せる # 監視対象のファイルは行を追加する形で情報が増えていくものとする class LogReader: # filename, last_update, tail_ix def __init__(self, filename): self.filename = filename self.last_update = dt.datetime.now() assert os.path.isfile(filename), '存在しないファイルを指定しました' with open(self.filename, 'r') as f: lines = f.readlines() self.tail_ix = len(lines) # 末尾の行数(1から数えた場合の) = 次回更新でこの行数から読み込む # TODO ファイルの存在をassertできるともっと良い(import osでexists?) # TODO ログ出力はこれでよいのか?Viewクラス使ったほうがよいのでは? # self.__printlog('初期化成功。'+self.filename+'を監視します。') # 同期。last_updateを更新し、差分を取得し、tail_ixを更新。差分(文字列のリスト)を返す。無ければ空のリスト。 def added_lines(self): self.last_update = dt.datetime.now() with open(self.filename, 'r') as f: all_lines = f.readlines() added_lines = all_lines[self.tail_ix:] self.tail_ix = len(all_lines) return added_lines # def __printlog(self, mes): # print('['+str(dt.datetime.now())[:-7]+']', mes)
# -*- coding: utf-8 -*- # Generated by Django 1.9.4 on 2016-04-20 21:54 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0001_initial'), ] operations = [ migrations.AlterField( model_name='entry', name='state', field=models.CharField(choices=[(b'review', b'Review'), (b'archived', b'Archived'), (b'private', b'Private'), (b'published', b'Published')], default=b'private', max_length=20, verbose_name='State'), ), ]
import time import torch from torchtext.experimental.datasets import AG_NEWS from torchtext.experimental.vectors import FastText as FastTextExperimental from torchtext.vocab import FastText def benchmark_experimental_vectors(): def _run_benchmark_lookup(tokens, vector): t0 = time.monotonic() for token in tokens: vector[token] print("Lookup time:", time.monotonic() - t0) train, = AG_NEWS(data_select='train') vocab = train.get_vocab() tokens = [] for (label, text) in train: for id in text.tolist(): tokens.append(vocab.itos[id]) # existing FastText construction print("Existing FastText - Not Jit Mode") t0 = time.monotonic() fast_text = FastText() print("Construction time:", time.monotonic() - t0) _run_benchmark_lookup(tokens, fast_text) # experimental FastText construction print("FastText Experimental") t0 = time.monotonic() fast_text_experimental = FastTextExperimental(validate_file=False) print("Construction time:", time.monotonic() - t0) # not jit lookup print("FastText Experimental - Not Jit Mode") _run_benchmark_lookup(tokens, fast_text_experimental) # jit lookup print("FastText Experimental - Jit Mode") jit_fast_text_experimental = torch.jit.script(fast_text_experimental) _run_benchmark_lookup(tokens, jit_fast_text_experimental) if __name__ == "__main__": benchmark_experimental_vectors()
# Copyright 2012 New Dream Network, LLC (DreamHost) # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os from alembic import command as alembic_command from alembic import config as alembic_config from alembic import script as alembic_script from alembic import util as alembic_util from oslo_config import cfg from tacker.db.migration.models import head # noqa from tacker.db.migration import purge_tables HEAD_FILENAME = 'HEAD' _db_opts = [ cfg.StrOpt('connection', deprecated_name='sql_connection', default='', secret=True, help=_('URL to database')), cfg.StrOpt('engine', default='', help=_('Database engine')), ] CONF = cfg.ConfigOpts() CONF.register_cli_opts(_db_opts, 'database') def do_alembic_command(config, cmd, *args, **kwargs): try: getattr(alembic_command, cmd)(config, *args, **kwargs) except alembic_util.CommandError as e: alembic_util.err(str(e)) def do_check_migration(config, cmd): do_alembic_command(config, 'branches') validate_head_file(config) def do_upgrade(config, cmd): if not CONF.command.revision and not CONF.command.delta: raise SystemExit(_('You must provide a revision or relative delta')) revision = CONF.command.revision if CONF.command.delta: revision = '+%s' % str(CONF.command.delta) else: revision = CONF.command.revision do_alembic_command(config, cmd, revision, sql=CONF.command.sql) def do_stamp(config, cmd): do_alembic_command(config, cmd, CONF.command.revision, sql=CONF.command.sql) def do_revision(config, cmd): do_alembic_command(config, cmd, message=CONF.command.message, autogenerate=CONF.command.autogenerate, sql=CONF.command.sql) update_head_file(config) def validate_head_file(config): script = alembic_script.ScriptDirectory.from_config(config) if len(script.get_heads()) > 1: alembic_util.err(_('Timeline branches unable to generate timeline')) head_path = os.path.join(script.versions, HEAD_FILENAME) if (os.path.isfile(head_path) and open(head_path).read().strip() == script.get_current_head()): return else: alembic_util.err(_('HEAD file does not match migration timeline head')) def update_head_file(config): script = alembic_script.ScriptDirectory.from_config(config) if len(script.get_heads()) > 1: alembic_util.err(_('Timeline branches unable to generate timeline')) head_path = os.path.join(script.versions, HEAD_FILENAME) with open(head_path, 'w+') as f: f.write(script.get_current_head()) def purge_deleted(config, cmd): """Remove database records that have been previously soft deleted.""" purge_tables.purge_deleted(config.tacker_config, CONF.command.resource, CONF.command.age, CONF.command.granularity) def add_command_parsers(subparsers): for name in ['current', 'history', 'branches']: parser = subparsers.add_parser(name) parser.set_defaults(func=do_alembic_command) parser = subparsers.add_parser('check_migration') parser.set_defaults(func=do_check_migration) parser = subparsers.add_parser('upgrade') parser.add_argument('--delta', type=int) parser.add_argument('--sql', action='store_true') parser.add_argument('revision', nargs='?') parser.set_defaults(func=do_upgrade) parser = subparsers.add_parser('stamp') parser.add_argument('--sql', action='store_true') parser.add_argument('revision') parser.set_defaults(func=do_stamp) parser = subparsers.add_parser('revision') parser.add_argument('-m', '--message') parser.add_argument('--autogenerate', action='store_true') parser.add_argument('--sql', action='store_true') parser.set_defaults(func=do_revision) parser = subparsers.add_parser('purge_deleted') parser.set_defaults(func=purge_deleted) # positional parameter parser.add_argument( 'resource', choices=['all', 'events', 'vnf', 'vnfd', 'vims'], help=_('Resource name for which deleted entries are to be purged.')) # optional parameter, can be skipped. default='90' parser.add_argument('-a', '--age', nargs='?', default='90', help=_('How long to preserve deleted data,' 'defaults to 90')) # optional parameter, can be skipped. default='days' parser.add_argument( '-g', '--granularity', default='days', choices=['days', 'hours', 'minutes', 'seconds'], help=_('Granularity to use for age argument, defaults to days.')) command_opt = cfg.SubCommandOpt('command', title='Command', help=_('Available commands'), handler=add_command_parsers) CONF.register_cli_opt(command_opt) def main(): config = alembic_config.Config( os.path.join(os.path.dirname(__file__), 'alembic.ini') ) config.set_main_option('script_location', 'tacker.db.migration:alembic_migrations') # attach the Tacker conf to the Alembic conf config.tacker_config = CONF CONF() # TODO(gongysh) enable logging CONF.command.func(config, CONF.command.name)
def check_lists(l1, l2): def contains(l1, l2):
"""Loads deepmind_lab.so.""" import imp import pkg_resources imp.load_dynamic(__name__, pkg_resources.resource_filename( __name__, 'deepmind_lab.so'))
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2018-05-05 02:05 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("PartyListV2", "0002_restrictedguest"), ] operations = [ migrations.AddField( model_name="partyguest", name="hasPrepartyAccess", field=models.BooleanField(default=False), ), ]
import random from urllib.request import urlopen import sys WORD_URL="http://learncodethehardway.org/words.txt" WORDS=[] PHRASES={"class %%%(%%%):": "Make a class named %%% that is-a %%%.", "class %%%(object):\n\tdef _init_(self,***)": "class %%% has-a _init_that takes self and *** params.", "class %%%(object):\n\tdef ***(self,@@@): "class %%% has-a function *** that takes self and @@@ params.", "*** = %%%()": "Set *** to an instance of class %%%.", "***.***(@@@)": "From *** get the *** function,call it with params self,@@@.", "***.***='***'": "From *** get the *** attribute and set it to '***'."} if len(sys.argv) == 2 and sys.argv[1] == "english": PHRASES_FIRST=True else: PHRASES_FIRST=False for word in urlopen(WORLD_URL.readlines(): WORDS.appen(str(word.strip(),encoding="utf-8")) def convert(snippet,phrase): class_names=[w.capitalized() for w in random.sample(WORDS,snippet.count("%%%"))] other_names=random.sample(WORDS,sinppet.count("***")) results=[] param_name=[] for i in range(0,snippet.count("@@@")): param-count=random.randint(1,3) param_names.append(','.join( radom.sample(WORDS,param_count))) for word in class_names: result=result.replace("%%%",word,1) for word in other_names: result=result.replace("@@@",word,1) results.append(result0 return results try: while True: snippes=list(PHRASES.keys()) random.shuffle(snippets) for snippet in snippets: phrase=PHRASES[snippet,phrase) if PHRASES_FIRST: question,answer=answer,question print(question) input(">") print(f"ANSWER: {answer}\n\") except EOFError: print("\nBye")
"""Auto-generated file, do not edit by hand. HR metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_HR = PhoneMetadata(id='HR', country_code=385, international_prefix='00', general_desc=PhoneNumberDesc(national_number_pattern='[1-7]\\d{5,8}|[89]\\d{6,11}', possible_number_pattern='\\d{6,12}'), fixed_line=PhoneNumberDesc(national_number_pattern='1\\d{7}|(?:2[0-3]|3[1-5]|4[02-47-9]|5[1-3])\\d{6}', possible_number_pattern='\\d{6,8}', example_number='12345678'), mobile=PhoneNumberDesc(national_number_pattern='9[1257-9]\\d{6,10}', possible_number_pattern='\\d{8,12}', example_number='912345678'), toll_free=PhoneNumberDesc(national_number_pattern='80[01]\\d{4,7}', possible_number_pattern='\\d{7,10}', example_number='8001234567'), premium_rate=PhoneNumberDesc(national_number_pattern='6(?:[09]\\d{7}|[145]\\d{4,7})', possible_number_pattern='\\d{6,9}', example_number='611234'), shared_cost=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), personal_number=PhoneNumberDesc(national_number_pattern='7[45]\\d{4,7}', possible_number_pattern='\\d{6,9}', example_number='741234567'), voip=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), pager=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), uan=PhoneNumberDesc(national_number_pattern='62\\d{6,7}', possible_number_pattern='\\d{8,9}', example_number='62123456'), voicemail=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), no_international_dialling=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), national_prefix='0', national_prefix_for_parsing='0', number_format=[NumberFormat(pattern='(1)(\\d{4})(\\d{3})', format=u'\\1 \\2 \\3', leading_digits_pattern=['1'], national_prefix_formatting_rule=u'0\\1'), NumberFormat(pattern='(6[09])(\\d{4})(\\d{3})', format=u'\\1 \\2 \\3', leading_digits_pattern=['6[09]'], national_prefix_formatting_rule=u'0\\1'), NumberFormat(pattern='(62)(\\d{3})(\\d{3,4})', format=u'\\1 \\2 \\3', leading_digits_pattern=['62'], national_prefix_formatting_rule=u'0\\1'), NumberFormat(pattern='([2-5]\\d)(\\d{3})(\\d{3})', format=u'\\1 \\2 \\3', leading_digits_pattern=['[2-5]'], national_prefix_formatting_rule=u'0\\1'), NumberFormat(pattern='(9\\d)(\\d{3})(\\d{3,4})', format=u'\\1 \\2 \\3', leading_digits_pattern=['9'], national_prefix_formatting_rule=u'0\\1'), NumberFormat(pattern='(9\\d)(\\d{4})(\\d{4})', format=u'\\1 \\2 \\3', leading_digits_pattern=['9'], national_prefix_formatting_rule=u'0\\1'), NumberFormat(pattern='(9\\d)(\\d{3,4})(\\d{3})(\\d{3})', format=u'\\1 \\2 \\3 \\4', leading_digits_pattern=['9'], national_prefix_formatting_rule=u'0\\1'), NumberFormat(pattern='(\\d{2})(\\d{2})(\\d{2,3})', format=u'\\1 \\2 \\3', leading_digits_pattern=['6[145]|7'], national_prefix_formatting_rule=u'0\\1'), NumberFormat(pattern='(\\d{2})(\\d{3,4})(\\d{3})', format=u'\\1 \\2 \\3', leading_digits_pattern=['6[145]|7'], national_prefix_formatting_rule=u'0\\1'), NumberFormat(pattern='(80[01])(\\d{2})(\\d{2,3})', format=u'\\1 \\2 \\3', leading_digits_pattern=['8'], national_prefix_formatting_rule=u'0\\1'), NumberFormat(pattern='(80[01])(\\d{3,4})(\\d{3})', format=u'\\1 \\2 \\3', leading_digits_pattern=['8'], national_prefix_formatting_rule=u'0\\1')], mobile_number_portable_region=True)
from django.contrib import messages from django.utils import timezone from django.utils.translation import gettext_lazy as _ from ...admin.views import generic from ..models import Agreement from .forms import AgreementForm, FilterAgreementsForm from .utils import disable_agreement, set_agreement_as_active class AgreementAdmin(generic.AdminBaseMixin): root_link = "misago:admin:settings:agreements:index" model = Agreement form_class = AgreementForm templates_dir = "misago/admin/agreements" message_404 = _("Requested agreement does not exist.") def handle_form(self, form, request, target): form.save() if self.message_submit: messages.success( request, self.message_submit % {"title": target.get_final_title()} ) class AgreementsList(AgreementAdmin, generic.ListView): items_per_page = 30 ordering = [("-id", _("From newest")), ("id", _("From oldest"))] filter_form = FilterAgreementsForm selection_label = _("With agreements: 0") empty_selection_label = _("Select agreements") mass_actions = [ { "action": "delete", "name": _("Delete agreements"), "confirmation": _("Are you sure you want to delete those agreements?"), } ] def get_queryset(self): qs = super().get_queryset() return qs.select_related() def action_delete(self, request, items): items.delete() Agreement.objects.invalidate_cache() messages.success(request, _("Selected agreements have been deleted.")) class NewAgreement(AgreementAdmin, generic.ModelFormView): message_submit = _('New agreement "%(title)s" has been saved.') def handle_form(self, form, request, target): super().handle_form(form, request, target) form.instance.set_created_by(request.user) form.instance.save() Agreement.objects.invalidate_cache() class EditAgreement(AgreementAdmin, generic.ModelFormView): message_submit = _('Agreement "%(title)s" has been edited.') def handle_form(self, form, request, target): super().handle_form(form, request, target) form.instance.last_modified_on = timezone.now() form.instance.set_last_modified_by(request.user) form.instance.save() Agreement.objects.invalidate_cache() class DeleteAgreement(AgreementAdmin, generic.ButtonView): def button_action(self, request, target): target.delete() Agreement.objects.invalidate_cache() message = _('Agreement "%(title)s" has been deleted.') messages.success(request, message % {"title": target.get_final_title()}) class SetAgreementAsActive(AgreementAdmin, generic.ButtonView): def button_action(self, request, target): set_agreement_as_active(target, commit=True) message = _('Agreement "%(title)s" has been set as active for type "%(type)s".') targets_names = { "title": target.get_final_title(), "type": target.get_type_display(), } messages.success(request, message % targets_names) class DisableAgreement(AgreementAdmin, generic.ButtonView): def button_action(self, request, target): disable_agreement(target, commit=True) message = _('Agreement "%(title)s" has been disabled.') % { "title": target.get_final_title() } messages.success(request, message)
""" WSGI config for apiwrapper project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'apiwrapper.settings') application = get_wsgi_application()
from django.urls import path from profiles_api import views urlpatterns =[ path('hello-view/',views.HelloApiView.as_view()) ]
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # pytype: skip-file from __future__ import absolute_import from apache_beam.transforms.external import ExternalTransform from apache_beam.transforms.external import ImplicitSchemaPayloadBuilder class GenerateSequence(ExternalTransform): """ An external PTransform which provides a bounded or unbounded stream of integers. Note: To use this transform, you need to start the Java expansion service. Please refer to the portability documentation on how to do that. The expansion service address has to be provided when instantiating this transform. During pipeline translation this transform will be replaced by the Java SDK's GenerateSequence. If you start Flink's job server, the expansion service will be started on port 8097. This is also the configured default for this transform. For a different address, please set the expansion_service parameter. For more information see: - https://beam.apache.org/documentation/runners/flink/ - https://beam.apache.org/roadmap/portability/ Note: Runners need to support translating Read operations in order to use this source. At the moment only the Flink Runner supports this. Experimental; no backwards compatibility guarantees. """ URN = 'beam:external:java:generate_sequence:v1' def __init__( self, start, stop=None, elements_per_period=None, max_read_time=None, expansion_service=None): super(GenerateSequence, self).__init__( self.URN, ImplicitSchemaPayloadBuilder({ 'start': start, 'stop': stop, 'elements_per_period': elements_per_period, 'max_read_time': max_read_time, }), expansion_service)
import azureml from azureml.core import VERSION from azureml.core import Workspace, Experiment, Datastore, Environment from azureml.core.runconfig import RunConfiguration from azureml.data.datapath import DataPath, DataPathComputeBinding from azureml.data.data_reference import DataReference from azureml.core.compute import ComputeTarget, AmlCompute from azureml.core.compute_target import ComputeTargetException from azureml.pipeline.core import Pipeline, PipelineData, PipelineParameter from azureml.pipeline.steps import PythonScriptStep, EstimatorStep from azureml.train.estimator import Estimator import sys, getopt, os ## Get arguments def printhelp(): print ('Arguments:') print (' -d Data Store name') print (' -p Data Store Path') print (' -c Compute Target name') print (' -v Universal Package version (for deployment and inferencing code)') print (' -s Azure Subscription id') print (' -a Storage Account name') print (' -k Storage Account key') print (' -r Resource Group name') print (' -w Machine Learning workspace name') datastorename='' datastorepath='' computetarget='' packageversion='' workspace_name='' subscription_id='' resource_group='' storage_account='' storage_account_key='' try: print('Arguments: ', sys.argv[1:]) opts, args = getopt.getopt(sys.argv[1:],"d:p:c:v:s:a:k:r:w:") except getopt.GetoptError: printhelp for opt, arg in opts: if opt == '-h': printhelp elif opt == '-d': datastorename = arg elif opt == '-p': datastorepath = arg elif opt == '-c': computetarget = arg elif opt == '-v': packageversion = arg elif opt == '-s': subscription_id = arg elif opt == '-a': storage_account = arg elif opt == '-k': storage_account_key = arg elif opt == '-r': resource_group = arg elif opt == '-w': workspace_name = arg print("Azure ML SDK Version: ", VERSION) #### Connect to our workspace #### ################################## # workspace ws = Workspace.get( name=workspace_name, subscription_id=subscription_id, resource_group=resource_group) # data ds = Datastore.register_azure_blob_container(workspace=ws, datastore_name=datastorename, container_name='seer-container', account_name=storage_account, account_key=storage_account_key, create_if_not_exists=True) datastore = ws.datastores[datastorename] # compute target try: cpu_cluster = ComputeTarget(workspace=ws, name=computetarget) print('Found existing cluster, use it.') except ComputeTargetException: compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6', min_nodes=1, max_nodes=4) cpu_cluster = ComputeTarget.create(ws, computetarget, compute_config) cpu_cluster.wait_for_completion(show_output=True) compute = ws.compute_targets[computetarget] #### Define Pipeline! #### ########################## # The following will be created and then run: # 1. Pipeline Parameters # 2. Data Process Step # 3. Training Step # 4. Model Registration Step # 5. Pipeline registration # 6. Submit the pipeline for execution ## Pipeline Parameters ## # We need to tell the Pipeline what it needs to learn to see! datapath = DataPath(datastore=datastore, path_on_datastore=datastorepath) data_path_pipeline_param = (PipelineParameter(name="data", default_value=datapath), DataPathComputeBinding(mode='mount')) # Configuration for data prep and training steps # dataprepEnvironment = Environment.from_pip_requirements('dataprepenv', 'requirements-dataprepandtraining.txt') dataprepRunConfig = RunConfiguration() dataprepRunConfig.environment = dataprepEnvironment ## Data Process Step ## # parse.py file parses the images in our data source # seer_tfrecords = PipelineData( "tfrecords_set", datastore=datastore, is_directory=True ) prepStep = PythonScriptStep( 'parse.py', source_directory='.', name='Data Preparation', compute_target=compute, arguments=["--source_path", data_path_pipeline_param, "--target_path", seer_tfrecords], runconfig=dataprepRunConfig, inputs=[data_path_pipeline_param], outputs=[seer_tfrecords], allow_reuse=True # Allow reuse of the data prep step ) ## Training Step ## # train.py does the training based on the processed data # seer_training = PipelineData( "train", datastore=datastore, is_directory=True ) train = Estimator(source_directory='.', compute_target=compute, entry_script='train.py', use_gpu=True, pip_requirements_file='requirements-dataprepandtraining.txt') trainStep = EstimatorStep( name='Model Training', estimator=train, estimator_entry_script_arguments=["--source_path", seer_tfrecords, "--target_path", seer_training, "--epochs", 5, # Consider transfer learning. See line 111 in train.py file. "--batch", 10, "--lr", 0.001], inputs=[seer_tfrecords], outputs=[seer_training], compute_target=compute ) ## Register Model Step ## # Once training is complete, register.py registers the model with AML # # Configuration for registration step # registerEnvironment = Environment.from_pip_requirements('registerenv', 'requirements-registration.txt') registerRunConfig = RunConfiguration() registerRunConfig.environment = registerEnvironment seer_model = PipelineData( "model", datastore=datastore, is_directory=True ) registerStep = PythonScriptStep( 'register.py', source_directory='.', name='Model Registration', arguments=["--source_path", seer_training, "--target_path", seer_model, "--universal_package_version", packageversion], inputs=[seer_training], outputs=[seer_model], compute_target=compute, runconfig=registerRunConfig ) ## Create and publish the Pipeline ## # We now define and publish the pipeline # pipeline = Pipeline(workspace=ws, steps=[prepStep, trainStep, registerStep]) published_pipeline = pipeline.publish( name="Seer Pipeline", description="Transfer learned image classifier. Uses folders as labels.") ## Submit the pipeline to be run ## # Finally, we submit the pipeline for execution # pipeline_run = Experiment(ws, 'seer',).submit(published_pipeline, tags={'universalPackageVersion': packageversion}) print('Run created with ID: ', pipeline_run.id)
import torch import torch.nn as nn class Normalize_layer(nn.Module): def __init__(self, mean, std): super(Normalize_layer, self).__init__() self.mean = nn.Parameter(torch.Tensor(mean).unsqueeze(1).unsqueeze(1), requires_grad=False) self.std = nn.Parameter(torch.Tensor(std).unsqueeze(1).unsqueeze(1), requires_grad=False) def forward(self, input): return input.sub(self.mean).div(self.std) class noise_Normalize_layer(nn.Module): def __init__(self, mean, std, input_noise=False): super(noise_Normalize_layer, self).__init__() self.mean = nn.Parameter(torch.Tensor(mean).unsqueeze(1).unsqueeze(1), requires_grad=False) self.std = nn.Parameter(torch.Tensor(std).unsqueeze(1).unsqueeze(1), requires_grad=False) self.input_noise = input_noise self.alpha_i = nn.Parameter(torch.Tensor([0.25]), requires_grad=True) def forward(self, input): output = input.sub(self.mean).div(self.std) input_std = output.std().item() input_noise = output.clone().normal_(0, input_std) return output + input_noise * self.alpha_i * self.input_noise
import logging import os import torch import torch.nn as nn import torch.utils.model_zoo as model_zoo from modeling.layers.epipolar import Epipolar from modeling import registry from core import cfg from .basic_batch import find_tensor_peak_batch from utils.logger import setup_logger from utils.model_serialization import load_state_dict # logger = logging.getLogger(__name__) logger = setup_logger("resnet", cfg.FOLDER_NAME) __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, planes) self.bn1 = norm_layer(planes) self.conv2 = conv3x3(planes, planes, stride) self.bn2 = norm_layer(planes) self.conv3 = conv1x1(planes, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, norm_layer=None): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self.inplanes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], norm_layer=norm_layer) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, norm_layer=norm_layer) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, norm_layer=norm_layer) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, norm_layer=norm_layer) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.out_channels = 512 * block.expansion #self.fc = nn.Linear(self.out_channels, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, norm_layer=None): if norm_layer is None: norm_layer = nn.BatchNorm2d downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, norm_layer=norm_layer)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) #x = self.fc(x) return x @registry.BACKBONES.register('R-18') def resnet18(cfg, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) if cfg.BACKBONE.PRETRAINED: model.load_state_dict(model_zoo.load_url(model_urls['resnet18']), strict=False) return model @registry.BACKBONES.register('R-34') def resnet34(cfg, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) if cfg.BACKBONE.PRETRAINED: model.load_state_dict(model_zoo.load_url(model_urls['resnet34']), strict=False) return model @registry.BACKBONES.register('R-50') def resnet50(cfg, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) if cfg.BACKBONE.PRETRAINED: model.load_state_dict(model_zoo.load_url(model_urls['resnet50']), strict=False) return model @registry.BACKBONES.register('R-101') def resnet101(cfg, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) if cfg.BACKBONE.PRETRAINED: model.load_state_dict(model_zoo.load_url(model_urls['resnet101']), strict=False) return model @registry.BACKBONES.register('R-152') def resnet152(cfg, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) if cfg.BACKBONE.PRETRAINED: model.load_state_dict(model_zoo.load_url(model_urls['resnet152']), strict=False) return model # ------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # Written by Chunyu Wang (chnuwa@microsoft.com), modified by Yihui He # ------------------------------------------------------------------------------ class PoseResNet(nn.Module): def __init__(self, block, layers, cfg, **kwargs): if cfg.BACKBONE.BN_MOMENTUM < 0: self.BN_MOMENTUM = None else: self.BN_MOMENTUM = cfg.BACKBONE.BN_MOMENTUM DECONV_WITH_BIAS = False NUM_DECONV_LAYERS = 3 NUM_DECONV_FILTERS = [256, 256, 256] NUM_DECONV_KERNELS = [4, 4, 4] FINAL_CONV_KERNEL = 1 #cfg.POSE_RESNET.FINAL_CONV_KERNEL self.inplanes = 64 self.deconv_with_bias = DECONV_WITH_BIAS super(PoseResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64, momentum=self.BN_MOMENTUM) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) # used for deconv layers self.deconv_layers = self._make_deconv_layer( NUM_DECONV_LAYERS, NUM_DECONV_FILTERS, NUM_DECONV_KERNELS, ) self.final_layer = nn.Conv2d( in_channels=NUM_DECONV_FILTERS[-1], out_channels=cfg.KEYPOINT.NUM_PTS, kernel_size=FINAL_CONV_KERNEL, stride=1, padding=1 if FINAL_CONV_KERNEL == 3 else 0 ) if 'epipolarpose' in cfg.BACKBONE.BODY: if cfg.EPIPOLAR.MERGE == 'both': self.epipolar_sampler1 = Epipolar() self.epipolar_sampler = Epipolar() else: self.epipolar_sampler = None self.epipolar_sampler1 = None def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion, momentum=self.BN_MOMENTUM), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _get_deconv_cfg(self, deconv_kernel, index): if deconv_kernel == 4: padding = 1 output_padding = 0 elif deconv_kernel == 3: padding = 1 output_padding = 1 elif deconv_kernel == 2: padding = 0 output_padding = 0 return deconv_kernel, padding, output_padding def _make_deconv_layer(self, num_layers, num_filters, num_kernels): assert num_layers == len(num_filters), \ 'ERROR: num_deconv_layers is different len(num_deconv_filters)' assert num_layers == len(num_kernels), \ 'ERROR: num_deconv_layers is different len(num_deconv_filters)' layers = [] for i in range(num_layers): kernel, padding, output_padding = \ self._get_deconv_cfg(num_kernels[i], i) planes = num_filters[i] layers.append( nn.ConvTranspose2d( in_channels=self.inplanes, out_channels=planes, kernel_size=kernel, stride=2, padding=padding, output_padding=output_padding, bias=self.deconv_with_bias)) layers.append(nn.BatchNorm2d(planes, momentum=self.BN_MOMENTUM)) layers.append(nn.ReLU(inplace=True)) self.inplanes = planes return nn.Sequential(*layers) def forward(self, x, other_inputs=[None, None, None, None, None, None, None]): batch_size = x.shape[0] other_features, other_KRT, other_heatmaps, KRT, camera, other_camera, other_img = other_inputs features, heatmaps, batch_locs, batch_scos, corr_poss, depths = [], [], [], [], [], [] # 3 x 256 x 256 x = self.conv1(x) # 128 x 128 x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) # 256 x 64 x 64 def getOtherFeat(feat, sampler=None): # skip feature aggregation for last layer corr_pos = None depth = None if other_features is None: # normal hourglass return feat, None, None, None if 'epipolarpose' in cfg.BACKBONE.BODY: ret, corr_pos, depth, sample_locs = \ sampler(feat, other_features, KRT, other_KRT, \ camera=camera, other_camera=other_camera) return ret + feat, corr_pos, depth, sample_locs if cfg.EPIPOLAR.MERGE == 'early': feature = x x, corr_pos, depth, sample_locs = getOtherFeat(feature, sampler=self.epipolar_sampler) depths.append(depth) corr_poss.append(corr_pos) elif cfg.EPIPOLAR.MERGE == 'both': feature = x x, _, _, _ = getOtherFeat(feature, sampler=self.epipolar_sampler) x = self.layer2(x) # 512 x 32 × 32 x = self.layer3(x) # 1024 x 16 × 16 x = self.layer4(x) # 2048 x 8 x 8 feature = self.deconv_layers(x) #256 x 64 x 64 if cfg.EPIPOLAR.MERGE == 'late': x, corr_pos, depth, sample_locs = getOtherFeat(feature, sampler=self.epipolar_sampler) depths.append(depth) corr_poss.append(corr_pos) elif cfg.EPIPOLAR.MERGE == 'both': x, corr_pos, depth, sample_locs = getOtherFeat(feature, sampler=self.epipolar_sampler1) depths.append(depth) corr_poss.append(corr_pos) else: x = feature #20 x 64 x 64 heatmaps.append(self.final_layer(x)) # The location of the current batch for ibatch in range(batch_size): batch_location, batch_score = find_tensor_peak_batch(heatmaps[-1][ibatch], cfg.KEYPOINT.SIGMA, cfg.BACKBONE.DOWNSAMPLE) batch_locs.append(batch_location) batch_scos.append(batch_score) batch_locs, batch_scos = torch.stack(batch_locs), torch.stack(batch_scos) if other_features is None: corr_poss, depths = None, None else: corr_poss = corr_poss[-1] depths = depths[-1] return feature, heatmaps, batch_locs, batch_scos, corr_poss, depths, sample_locs, None def init_weights(self, pretrained=None): if pretrained is not None: if isinstance(pretrained, str) and os.path.isfile(pretrained): logger.info('=> loading pretrained model {}'.format(pretrained)) pretrained_state_dict = torch.load(pretrained) else: logger.info('=> loading pretrained model from web') pretrained_state_dict = pretrained logger.info('=> init deconv weights from normal distribution') for name, m in self.deconv_layers.named_modules(): if isinstance(m, nn.ConvTranspose2d): logger.info('=> init {}.weight as normal(0, 0.001)'.format(name)) logger.info('=> init {}.bias as 0'.format(name)) nn.init.normal_(m.weight, std=0.001) if self.deconv_with_bias: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): logger.info('=> init {}.weight as 1'.format(name)) logger.info('=> init {}.bias as 0'.format(name)) nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) logger.info('=> init final conv weights from normal distribution') for m in self.final_layer.modules(): if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') logger.info('=> init {}.weight as normal(0, 0.001)'.format(name)) logger.info('=> init {}.bias as 0'.format(name)) nn.init.normal_(m.weight, std=0.001) nn.init.constant_(m.bias, 0) #load_state_dict(self, pretrained_state_dict, prefix='resnet.') #load_state_dict(self, pretrained_state_dict, prefix='backbone.') load_state_dict(self, pretrained_state_dict, strict=False, ignored_layers=['final_layer.bias', 'final_layer.weight'], prefix=cfg.WEIGHTS_PREFIX, prefix_replace=cfg.WEIGHTS_PREFIX_REPLACE) #self.load_state_dict(pretrained_state_dict, strict=False) else: logger.info('=> init weights from normal distribution') for m in self.modules(): if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') nn.init.normal_(m.weight, std=0.001) # nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.ConvTranspose2d): nn.init.normal_(m.weight, std=0.001) if self.deconv_with_bias: nn.init.constant_(m.bias, 0) resnet_spec = {'18': (BasicBlock, [2, 2, 2, 2]), '34': (BasicBlock, [3, 4, 6, 3]), '50': (Bottleneck, [3, 4, 6, 3]), '101': (Bottleneck, [3, 4, 23, 3]), '152': (Bottleneck, [3, 8, 36, 3])} @registry.BACKBONES.register('poseR-18') @registry.BACKBONES.register('poseR-34') @registry.BACKBONES.register('poseR-50') @registry.BACKBONES.register('poseR-101') @registry.BACKBONES.register('poseR-152') @registry.BACKBONES.register('epipolarposeR-18') @registry.BACKBONES.register('epipolarposeR-34') @registry.BACKBONES.register('epipolarposeR-50') @registry.BACKBONES.register('epipolarposeR-101') @registry.BACKBONES.register('epipolarposeR-152') def get_pose_net(cfg, **kwargs): num_layers = cfg.BACKBONE.BODY.split('-')[-1] block_class, layers = resnet_spec[num_layers] model = PoseResNet(block_class, layers, cfg, **kwargs) if cfg.BACKBONE.PRETRAINED: # model.init_weights(cfg.NETWORK.PRETRAINED) if cfg.BACKBONE.PRETRAINED_WEIGHTS: model.init_weights(cfg.BACKBONE.PRETRAINED_WEIGHTS) else: model.init_weights(model_zoo.load_url(model_urls['resnet'+num_layers])) return model
# Copyright 2020 The StackStorm Authors. # Copyright 2019 Extreme Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import logging from st2client.models import core LOG = logging.getLogger(__name__) class KeyValuePair(core.Resource): _alias = 'Key' _display_name = 'Key Value Pair' _plural = 'Keys' _plural_display_name = 'Key Value Pairs' _repr_attributes = ['name', 'value'] # Note: This is a temporary hack until we refactor client and make it support non id PKs def get_id(self): return self.name def set_id(self, value): pass id = property(get_id, set_id)
import pandas as pd import numpy as np import statsmodels.api as sm from enum import Enum class ParValue(Enum): TSTAT = 1 PVALUE = 2 STD = 3 class OneReg: def __init__(self, reg, show_list=[], hide_list=[], blocks=[], bottom_blocks=[]): self.reg = reg if show_list == []: self.show_list = [] for s in self.reg.params.keys(): if s not in hide_list: self.show_list.append(s) else: self.show_list = show_list self.blocks = blocks self.bottom_block = bottom_blocks def create_columns(self): # first add the parameters of the reg d = pd.Series(dtype=object) for k in self.show_list: if k in self.reg.params.keys(): v = self.reg.pvalues[k] p = f'{np.round(self.reg.params[k], TableReg.round):,}' for tr in TableReg.sign_tr: if v <= tr: p += '*' # self = table_2.reg_list[0] # update the v to be tstat or std depending on parameters if TableReg.par_value == ParValue.TSTAT: v = self.reg.tvalues[k] if TableReg.par_value == ParValue.STD: v = self.reg.bse[k] v = r'(' + f'{np.round(v, TableReg.round):,}' + r')' v_l = [len(x) for x in v.split('.')] p_l = [len(x) for x in p.split('.')] t = abs(v_l[0] - p_l[0]) t = r'\phantom{' + '*' * t + '}' if v_l[0] > p_l[0]: p = t + p if v_l[0] < p_l[0]: v = t + v t = abs(v_l[1] - p_l[1]) t = r'\phantom{' + '*' * t + '}' if v_l[1] > p_l[1]: p = p+t if v_l[1] < p_l[1]: v = v+t # else: # p = r'\phantom{(}' + p + r'\phantom{)}' d[k] = p t = pd.Series(dtype=object) t[''] =v d = d.append(t) else: t = pd.Series(dtype=object) t[k] = TableReg.missing_symbol t[''] = TableReg.missing_symbol d = d.append(t) # now we can add the "blocks", that is fix effects and others for block in self.blocks: t = pd.Series(dtype=object) t[TableReg.group_key] = '' for k in block.keys(): t[k] = block[k] d = d.append(t) # finaly additional info (r² and n.obs per default, but you can add anything through bottom blocks if TableReg.show_obs | TableReg.show_r2 | (len(self.bottom_block)>0): t = pd.Series(dtype=object) t[TableReg.group_key] = '' t['Observations'] = f'{int(self.reg.nobs):,}' if hasattr(self.reg,'rsquared_adj'): t[r'$R^2$'] = np.round(self.reg.rsquared_adj,TableReg.round_r2) else: t[r'Pseudo $R^2$'] = np.round(self.reg.prsquared,TableReg.round_r2) first_block = True for block in self.bottom_block: if first_block: first_block = False else: t[TableReg.group_key] = '' t = pd.Series(dtype=object) for k in block.keys(): t[k] = block[k] d = d.append(t) return d class TableReg: missing_symbol = ' ' par_value = ParValue.STD round = 4 round_r2 = 4 sign_tr = [0.1, 0.05, 0.01] show_obs = True show_r2 = True variable_skip = r'\smallskip' group_key = 'asgeg' group_skip = r'\medskip' equal_lines = False def __init__(self, **option): self.reg_list = [] self.hide_list = [] self.order = [] self.df = None self.final_show_list = [] self.show_only_list = [] self.col_groups = [] self.rename_dict = {} if 'hide_list' in option: assert type(option['hide_list']) == list, "The overall hide list has to be a list" self.hide_list = option['hide_list'] if 'show_only_list' in option: assert type(option['show_only_list']) == list, "The show only list has to be a list" self.show_only_list = option['show_only_list'] if 'order' in option: assert type(option['order']) == list, "The order has to be a list" self.order = option['order'] if 'col_groups' in option: self.set_col_groups(option['col_groups']) if 'rename_dict' in option: self.set_rename_dict(option['rename_dict']) def set_rename_dict(self, rename_dict): assert type(rename_dict) == dict, "The rename dict must be a dictionary" self.rename_dict = rename_dict def set_col_groups(self, groups): assert type(groups) == list, "The col order has to be a list of list" for group in groups: assert type(group) == list, "Each col group must be a list ['name of group', first columne in the group (int), last col in group (int)]" self.col_groups = groups def add_reg(self, reg, show_list=[], hide_list=[], blocks=[],bottom_blocks=[]): hide_list = hide_list + self.hide_list self.reg_list.append(OneReg(reg, show_list, hide_list, blocks, bottom_blocks)) def update_show_list(self): if len(self.show_only_list) == 0: show_list = [] for oneReg in self.reg_list: show_list = list(set(show_list + oneReg.show_list)) show_list = list(np.sort(show_list)) show_list = self.order + [x for x in show_list if x not in self.order] else: show_list = self.show_only_list col = [] for oneReg in self.reg_list: oneReg.show_list = show_list col.append(oneReg.create_columns()) self.df = pd.concat(col,1) self.df.columns = [r'\parboxc{c}{0.6cm}{('+str(int(i+1))+')}' for i in range(self.df.shape[1])] self.df = self.df.rename(index=self.rename_dict) self.final_show_list = show_list self.final_show_list = pd.Series(self.final_show_list).replace(self.rename_dict).values.tolist() self.tex='' def create_tex(self): self.update_show_list() # writing the tex modification to include name templatess tex = self.df.to_latex(escape=False) cols = tex.split('\\begin{tabular}{')[1].split('}')[0] rep = list(cols.replace('l','c')) rep[0] = 'l' tex = tex.replace(cols,''.join(rep)) if len(self.col_groups)>0: # adding "group col names" s = '\n ' s_line = '\n ' for g in self.col_groups: s += '& \multicolumn{'+str(1+g[2]-g[1])+'}{c}{\parboxc{c}{0.6cm}{'+g[0]+'}}' # s += '& \multicolumn{'+str(1+g[2]-g[1])+'}{c}{'+g[0]+'}' s_line += r'\cmidrule(lr){'+str(g[1]+1)+'-'+str(g[2]+1)+'}' s += r' \\'+'\n' s_line += '\n' ts = tex.split(r'\toprule') tex = ts[0]+r'\toprule' + s +s_line+ ts[1] ts = tex.split(r'\midrule') tex = ts[0]+r'\midrule' + ts[1] # adding the skip between variable # first we extract the maxium length of a column on the first one L = 0 for x in self.df.index: L = max(L,len(x)) L+=1 for i in range(1,len(self.final_show_list)): a = self.final_show_list[i] a += ' '*(L-len(a))+'&' ts = tex.split(a) temp = ts[0][:-4] + TableReg.variable_skip + ts[0][-4:] tex=temp+a+ts[1] # processing the group skip t = None for item in tex.split("\n"): if TableReg.group_key in item: t = item # replacing specific rule if t is not None: self.tex = tex.replace(t, TableReg.group_skip + r'\\') else: self.tex = tex def save_tex(self, save_dir): self.create_tex() tex = self.tex if TableReg.equal_lines: tex=tex.replace(r'\toprule',r'\hline') tex=tex.replace(r'\midrule',r'\hline') tex=tex.replace(r'\bottomrule',r'\hline') with open(save_dir,'w') as txt: txt.write(tex) @staticmethod def create_panel_of_tables(table_list, name_list, save_dir): numbers = 'A B C D E F G H I J K L M N O P Q R S T U V W X Y Z'.split() title_list = [] for i in range(len(table_list)): table_list[i].create_tex() title_list.append('Panel '+numbers[i]+': '+name_list[i]) tex = table_list[0].tex temp = r' \multicolumn{6}{c}{\parboxc{c}{0.7cm}{'+title_list[i]+r'}} \\' ts = tex.split(r'\toprule') tex = ts[0]+r'\toprule' +temp+r'\hline'+ts[1] tex = tex.replace(r'\bottomrule','') tex = tex.replace(r'\end{tabular}',r'asf') tex = tex.replace('\\\\\n\nasf','\\bigskip \\\\ \n') for i in range(1,len(table_list)): t_tex = table_list[i].tex temp = r' \multicolumn{6}{c}{\parboxc{c}{0.6cm}{' + title_list[i] + r'}} \\' ts = t_tex.split(r'\toprule') t_tex = ts[0] + r'\hline' + temp + r'\hline' + ts[1] t = None for item in t_tex.split("\n"): if r'\begin{tabular}' in item: t = item t_tex = t_tex.replace(t,'') if i+1 < len(table_list): t_tex = t_tex.replace(r'\bottomrule','') t_tex = t_tex.replace(r'\end{tabular}', r'asf') t_tex = t_tex.replace('\\\\\n\nasf', '\\bigskip \\\\ \n') tex +=t_tex with open(save_dir,'w') as txt: txt.write(tex)
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import stim import pytest def test_identity(): p = stim.PauliString(3) assert len(p) == 3 assert p[0] == p[1] == p[2] == 0 assert p.sign == +1 def test_from_str(): p = stim.PauliString("-_XYZ_ZYX") assert len(p) == 8 assert p[0] == 0 assert p[1] == 1 assert p[2] == 2 assert p[3] == 3 assert p[4] == 0 assert p[5] == 3 assert p[6] == 2 assert p[7] == 1 assert p.sign == -1 p = stim.PauliString("") assert len(p) == 0 assert p.sign == +1 p = stim.PauliString("X") assert len(p) == 1 assert p[0] == 1 assert p.sign == +1 p = stim.PauliString("+X") assert len(p) == 1 assert p[0] == 1 assert p.sign == +1 p = stim.PauliString("iX") assert len(p) == 1 assert p[0] == 1 assert p.sign == 1j p = stim.PauliString("+iX") assert len(p) == 1 assert p[0] == 1 assert p.sign == 1j p = stim.PauliString("-iX") assert len(p) == 1 assert p[0] == 1 assert p.sign == -1j def test_equality(): assert not (stim.PauliString(4) == None) assert not (stim.PauliString(4) == "other object") assert not (stim.PauliString(4) == object()) assert stim.PauliString(4) != None assert stim.PauliString(4) != "other object" assert stim.PauliString(4) != object() assert stim.PauliString(4) == stim.PauliString(4) assert stim.PauliString(3) != stim.PauliString(4) assert not (stim.PauliString(4) != stim.PauliString(4)) assert not (stim.PauliString(3) == stim.PauliString(4)) assert stim.PauliString("+X") == stim.PauliString("+X") assert stim.PauliString("+X") != stim.PauliString("-X") assert stim.PauliString("+X") != stim.PauliString("+Y") assert stim.PauliString("+X") != stim.PauliString("-Y") assert stim.PauliString("+X") != stim.PauliString("+iX") assert stim.PauliString("+X") != stim.PauliString("-iX") assert stim.PauliString("__") != stim.PauliString("_X") assert stim.PauliString("__") != stim.PauliString("X_") assert stim.PauliString("__") != stim.PauliString("XX") assert stim.PauliString("__") == stim.PauliString("__") def test_random(): p1 = stim.PauliString.random(100) p2 = stim.PauliString.random(100) assert p1 != p2 seen_signs = {stim.PauliString.random(1).sign for _ in range(200)} assert seen_signs == {1, -1} seen_signs = {stim.PauliString.random(1, allow_imaginary=True).sign for _ in range(200)} assert seen_signs == {1, -1, 1j, -1j} def test_str(): assert str(stim.PauliString(3)) == "+___" assert str(stim.PauliString("XYZ")) == "+XYZ" assert str(stim.PauliString("-XYZ")) == "-XYZ" assert str(stim.PauliString("iXYZ")) == "+iXYZ" assert str(stim.PauliString("-iXYZ")) == "-iXYZ" def test_repr(): assert repr(stim.PauliString(3)) == 'stim.PauliString("+___")' assert repr(stim.PauliString("-XYZ")) == 'stim.PauliString("-XYZ")' vs = [ stim.PauliString(""), stim.PauliString("ZXYZZ"), stim.PauliString("-XYZ"), stim.PauliString("I"), stim.PauliString("iIXYZ"), stim.PauliString("-iIXYZ"), ] for v in vs: r = repr(v) assert eval(r, {'stim': stim}) == v def test_commutes(): def c(a: str, b: str) -> bool: return stim.PauliString(a).commutes(stim.PauliString(b)) assert c("", "") assert c("X", "_") assert c("X", "X") assert not c("X", "Y") assert not c("X", "Z") assert c("XXXX", "YYYY") assert c("XXXX", "YYYZ") assert not c("XXXX", "XXXZ") assert not c("XXXX", "___Z") assert not c("XXXX", "Z___") assert c("XXXX", "Z_Z_") def test_product(): assert stim.PauliString("") * stim.PauliString("") == stim.PauliString("") assert stim.PauliString("i") * stim.PauliString("i") == stim.PauliString("-") assert stim.PauliString("i") * stim.PauliString("-i") == stim.PauliString("+") assert stim.PauliString("-i") * stim.PauliString("-i") == stim.PauliString("-") assert stim.PauliString("i") * stim.PauliString("-") == stim.PauliString("-i") x = stim.PauliString("X") y = stim.PauliString("Y") z = stim.PauliString("Z") assert x == +1 * x == x * +1 == +x assert x * -1 == -x == -1 * x assert (-x)[0] == 1 assert (-x).sign == -1 assert -(-x) == x assert stim.PauliString(10) * stim.PauliString(11) == stim.PauliString(11) assert x * z == stim.PauliString("-iY") assert x * x == stim.PauliString(1) assert x * y == stim.PauliString("iZ") assert y * x == stim.PauliString("-iZ") assert x * y == 1j * z assert y * x == z * -1j assert x.extended_product(y) == (1, 1j * z) assert y.extended_product(x) == (1, -1j * z) assert x.extended_product(x) == (1, stim.PauliString(1)) xx = stim.PauliString("+XX") yy = stim.PauliString("+YY") zz = stim.PauliString("+ZZ") assert xx * zz == -yy assert xx.extended_product(zz) == (1, -yy) def test_inplace_product(): p = stim.PauliString("X") alias = p p *= 1j assert alias == stim.PauliString("iX") assert alias is p p *= 1j assert alias == stim.PauliString("-X") p *= 1j assert alias == stim.PauliString("-iX") p *= 1j assert alias == stim.PauliString("+X") p *= stim.PauliString("Z") assert alias == stim.PauliString("-iY") p *= -1j assert alias == stim.PauliString("-Y") p *= -1j assert alias == stim.PauliString("iY") p *= -1j assert alias == stim.PauliString("+Y") p *= -1j assert alias == stim.PauliString("-iY") p *= stim.PauliString("i_") assert alias == stim.PauliString("+Y") p *= stim.PauliString("i_") assert alias == stim.PauliString("iY") p *= stim.PauliString("i_") assert alias == stim.PauliString("-Y") p *= stim.PauliString("i_") assert alias == stim.PauliString("-iY") p *= stim.PauliString("-i_") assert alias == stim.PauliString("-Y") p *= stim.PauliString("-i_") assert alias == stim.PauliString("iY") p *= stim.PauliString("-i_") assert alias == stim.PauliString("+Y") p *= stim.PauliString("-i_") assert alias == stim.PauliString("-iY") assert alias is p def test_imaginary_phase(): p = stim.PauliString("IXYZ") ip = stim.PauliString("iIXYZ") assert 1j * p == p * 1j == ip == -stim.PauliString("-iIXYZ") assert p.sign == 1 assert (-p).sign == -1 assert ip.sign == 1j assert (-ip).sign == -1j assert stim.PauliString("X") * stim.PauliString("Y") == 1j * stim.PauliString("Z") assert stim.PauliString("Y") * stim.PauliString("X") == -1j * stim.PauliString("Z") def test_get_set_sign(): p = stim.PauliString(2) assert p.sign == +1 p.sign = -1 assert str(p) == "-__" assert p.sign == -1 p.sign = +1 assert str(p) == "+__" assert p.sign == +1 with pytest.raises(ValueError, match="new_sign"): p.sign = 5 p.sign = 1j assert str(p) == "+i__" assert p.sign == 1j p.sign = -1j assert str(p) == "-i__" assert p.sign == -1j def test_get_set_item(): p = stim.PauliString(5) assert list(p) == [0, 0, 0, 0, 0] assert p[0] == 0 p[0] = 1 assert p[0] == 1 p[0] = 'Y' assert p[0] == 2 p[0] = 'Z' assert p[0] == 3 with pytest.raises(IndexError, match="new_pauli"): p[0] = 't' with pytest.raises(IndexError, match="new_pauli"): p[0] = 10 assert p[1] == 0 p[1] = 2 assert p[1] == 2 def test_get_slice(): p = stim.PauliString("XXXX__YYYY__ZZZZX") assert p[:7] == stim.PauliString("XXXX__Y") assert p[:-3] == stim.PauliString("XXXX__YYYY__ZZ") assert p[::2] == stim.PauliString("XX_YY_ZZX") assert p[::-1] == stim.PauliString("XZZZZ__YYYY__XXXX") assert p[-3:3] == stim.PauliString("") assert p[-6:-1] == stim.PauliString("_ZZZZ") assert p[3:5:-1] == stim.PauliString("") assert p[5:3:-1] == stim.PauliString("__") assert p[4:2:-1] == stim.PauliString("_X") assert p[2:0:-1] == stim.PauliString("XX") def test_copy(): p = stim.PauliString(3) p2 = p.copy() assert p == p2 assert p is not p2 p = stim.PauliString("-i_XYZ") p2 = p.copy() assert p == p2 assert p is not p2 def test_hash(): # stim.PauliString is mutable. It must not also be value-hashable. # Defining __hash__ requires defining a FrozenPauliString variant instead. with pytest.raises(TypeError, match="unhashable"): _ = hash(stim.PauliString(1)) def test_add(): ps = stim.PauliString assert ps(0) + ps(0) == ps(0) assert ps(3) + ps(1000) == ps(1003) assert ps(1000) + ps(3) == ps(1003) assert ps("_XYZ") + ps("_ZZZ_") == ps("_XYZ_ZZZ_") p = ps("_XYZ") p += p assert p == ps("_XYZ_XYZ") for k in range(1, 8): p += p assert p == ps("_XYZ_XYZ" * 2**k) p = ps("_XXX") p += ps("Y") assert p == ps("_XXXY") p = ps("") alias = p p += ps("X") assert alias is p assert alias == ps("X") p += p assert alias is p assert alias == ps("XX") def test_mul_different_sizes(): ps = stim.PauliString assert ps("") * ps("X" * 1000) == ps("X" * 1000) assert ps("X" * 1000) * ps("") == ps("X" * 1000) assert ps("Z" * 1000) * ps("") == ps("Z" * 1000) p = ps("Z") alias = p p *= ps("ZZZ") assert p == ps("_ZZ") p *= ps("Z") assert p == ps("ZZZ") assert alias is p def test_div(): assert stim.PauliString("+XYZ") / +1 == stim.PauliString("+XYZ") assert stim.PauliString("+XYZ") / -1 == stim.PauliString("-XYZ") assert stim.PauliString("+XYZ") / 1j == stim.PauliString("-iXYZ") assert stim.PauliString("+XYZ") / -1j == stim.PauliString("iXYZ") assert stim.PauliString("iXYZ") / 1j == stim.PauliString("XYZ") p = stim.PauliString("__") alias = p assert p / -1 == stim.PauliString("-__") assert alias == stim.PauliString("__") p /= -1 assert alias == stim.PauliString("-__") p /= 1j assert alias == stim.PauliString("i__") p /= 1j assert alias == stim.PauliString("__") p /= -1j assert alias == stim.PauliString("i__") p /= 1 assert alias == stim.PauliString("i__") def test_mul_repeat(): ps = stim.PauliString assert ps("") * 100 == ps("") assert ps("X") * 100 == ps("X" * 100) assert ps("XYZ_") * 1000 == ps("XYZ_" * 1000) assert ps("XYZ_") * 1 == ps("XYZ_") assert ps("XYZ_") * 0 == ps("") assert 100 * ps("") == ps("") assert 100 * ps("X") == ps("X" * 100) assert 1000 * ps("XYZ_") == ps("XYZ_" * 1000) assert 1 * ps("XYZ_") == ps("XYZ_") assert 0 * ps("XYZ_") == ps("") assert ps("i") * 0 == ps("+") assert ps("i") * 1 == ps("i") assert ps("i") * 2 == ps("-") assert ps("i") * 3 == ps("-i") assert ps("i") * 4 == ps("+") assert ps("i") * 5 == ps("i") assert ps("-i") * 0 == ps("+") assert ps("-i") * 1 == ps("-i") assert ps("-i") * 2 == ps("-") assert ps("-i") * 3 == ps("i") assert ps("-i") * 4 == ps("+") assert ps("-i") * 5 == ps("-i") assert ps("-") * 0 == ps("+") assert ps("-") * 1 == ps("-") assert ps("-") * 2 == ps("+") assert ps("-") * 3 == ps("-") assert ps("-") * 4 == ps("+") assert ps("-") * 5 == ps("-") p = ps("XYZ") alias = p p *= 1000 assert p == ps("XYZ" * 1000) assert alias is p def test_init_list(): assert stim.PauliString([]) == stim.PauliString(0) assert stim.PauliString([0, 1, 2, 3]) == stim.PauliString("_XYZ") with pytest.raises(ValueError, match="pauli"): _ = stim.PauliString([-1]) with pytest.raises(ValueError, match="pauli"): _ = stim.PauliString([4]) with pytest.raises(TypeError): _ = stim.PauliString([2**500]) def test_init_copy(): p = stim.PauliString("_XYZ") p2 = stim.PauliString(p) assert p is not p2 assert p == p2 p = stim.PauliString("-i_XYZ") p2 = stim.PauliString(p) assert p is not p2 assert p == p2 def test_commutes_different_lengths(): x1000 = stim.PauliString("X" * 1000) z1000 = stim.PauliString("Z" * 1000) x1 = stim.PauliString("X") z1 = stim.PauliString("Z") assert x1.commutes(x1000) assert x1000.commutes(x1) assert z1.commutes(z1000) assert z1000.commutes(z1) assert not z1.commutes(x1000) assert not x1000.commutes(z1) assert not x1.commutes(z1000) assert not z1000.commutes(x1) def test_pickle(): import pickle t = stim.PauliString.random(4) a = pickle.dumps(t) assert pickle.loads(a) == t t = stim.PauliString("i_XYZ") a = pickle.dumps(t) assert pickle.loads(a) == t
#!/usr/bin/env python3 """Node para controlar um robô de sumô File ------- sumo_controller/src/sumo_controller_node.py Authors ------- ThundeRatz Team <comp@thunderatz.org> """ import rospy from std_msgs.msg import Float64 CONTROL_RATE = 60 # Hz def main(): """ Lógica principal do node de controle """ rospy.init_node("sumo_controller", disable_signals=True, anonymous=True) rospy.loginfo(f"Node de controle iniciado {rospy.get_time()}") rate = rospy.Rate(CONTROL_RATE) # Inicialize os sensores e motores aqui while not rospy.is_shutdown(): # Escreva aqui seu código para controlar o sumô rate.sleep() if __name__ == "__main__": try: main() except (rospy.ROSInterruptException, KeyboardInterrupt): pass finally: # Corrija o nome dos tópicos!!! left_motor_pub = rospy.Publisher("topico/do/motor/esquerdo", Float64, queue_size=1) right_motor_pub = rospy.Publisher("topico/do/motor/direito", Float64, queue_size=1) left_motor_pub.publish(Float64(0)) right_motor_pub.publish(Float64(0))
# Copyright 2020 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import absolute_import import os import subprocess import tempfile from subprocess import CalledProcessError from textwrap import dedent import pytest from pex.common import temporary_dir, touch from pex.executor import Executor from pex.testing import run_pex_command from pex.tools.commands.virtualenv import Virtualenv from pex.typing import TYPE_CHECKING from pex.util import named_temporary_file if TYPE_CHECKING: from typing import Callable, Tuple, Any, Dict, Optional, Iterable CreatePexVenv = Callable[[Tuple[str, ...]], Virtualenv] FABRIC_VERSION = "2.5.0" @pytest.fixture(scope="module") def pex(): # type: () -> str with temporary_dir() as tmpdir: pex_path = os.path.join(tmpdir, "fabric.pex") src_dir = os.path.join(tmpdir, "src") touch(os.path.join(src_dir, "user/__init__.py")) touch(os.path.join(src_dir, "user/package/__init__.py")) # N.B.: --unzip just speeds up runs 2+ of the pex file and is otherwise not relevant to # these tests. run_pex_command( args=[ "fabric=={}".format(FABRIC_VERSION), "-c", "fab", "--sources-directory", src_dir, "-o", pex_path, "--unzip", "--include-tools", ] ) yield os.path.realpath(pex_path) def make_env(**kwargs): # type: (**Any) -> Dict[str, str] env = os.environ.copy() env.update((k, str(v)) for k, v in kwargs.items()) return env @pytest.fixture def create_pex_venv(pex): # type: (str) -> CreatePexVenv with temporary_dir() as tmpdir: venv_dir = os.path.join(tmpdir, "venv") def _create_pex_venv(*options): # type: (*str) -> Virtualenv subprocess.check_call( args=[pex, "venv", venv_dir] + list(options or ()), env=make_env(PEX_TOOLS="1") ) return Virtualenv(venv_dir) yield _create_pex_venv def test_force(create_pex_venv): # type: (CreatePexVenv) -> None venv = create_pex_venv("--pip") venv.interpreter.execute(args=["-m", "pip", "install", "ansicolors==1.1.8"]) venv.interpreter.execute(args=["-c", "import colors"]) with pytest.raises(CalledProcessError): create_pex_venv() venv_force = create_pex_venv("--force") # The re-created venv should have no ansicolors installed like the prior venv. with pytest.raises(Executor.NonZeroExit): venv_force.interpreter.execute(args=["-c", "import colors"]) # The re-created venv should have no pip installed either. with pytest.raises(Executor.NonZeroExit): venv.interpreter.execute(args=["-m", "pip", "install", "ansicolors==1.1.8"]) def execute_venv_pex_interpreter( venv, # type: Virtualenv code=None, # type: Optional[str] extra_args=(), # type: Iterable[str] **extra_env # type: Any ): # type: (...) -> Tuple[int, str, str] process = subprocess.Popen( args=[venv.join_path("pex")] + list(extra_args), env=make_env(PEX_INTERPRETER=True, **extra_env), stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE, ) stdout, stderr = process.communicate(input=None if code is None else code.encode()) return process.returncode, stdout.decode("utf-8"), stderr.decode("utf-8") def expected_file_path( venv, # type: Virtualenv package, # type: str ): # type: (...) -> str return os.path.realpath( os.path.join( venv.site_packages_dir, os.path.sep.join(package.split(".")), "__init__.{ext}".format(ext="pyc" if venv.interpreter.version[0] == 2 else "py"), ) ) def parse_fabric_version_output(output): # type: (str) -> Dict[str, str] return dict(line.split(" ", 1) for line in output.splitlines()) def test_venv_pex(create_pex_venv): # type: (CreatePexVenv) -> None venv = create_pex_venv() venv_pex = venv.join_path("pex") fabric_output = subprocess.check_output(args=[venv_pex, "-V"]) # N.B.: `fab -V` output looks like so: # $ fab -V # Fabric 2.5.0 # Paramiko 2.7.2 # Invoke 1.4.1 versions = parse_fabric_version_output(fabric_output.decode("utf-8")) assert FABRIC_VERSION == versions["Fabric"] invoke_version = "Invoke {}".format(versions["Invoke"]) invoke_script_output = subprocess.check_output( args=[venv_pex, "-V"], env=make_env(PEX_SCRIPT="invoke") ) assert invoke_version == invoke_script_output.decode("utf-8").strip() invoke_entry_point_output = subprocess.check_output( args=[venv_pex, "-V"], env=make_env(PEX_MODULE="invoke.main:program.run"), ) assert invoke_version == invoke_entry_point_output.decode("utf-8").strip() pex_extra_sys_path = ["/dev/null", "Bob"] returncode, _, stderr = execute_venv_pex_interpreter( venv, code=dedent( """\ from __future__ import print_function import os import sys def assert_equal(test_num, expected, actual): if expected == actual: return print( "[{{}}] Expected {{}} but got {{}}".format(test_num, expected, actual), file=sys.stderr, ) sys.exit(test_num) assert_equal(1, {pex_extra_sys_path!r}, sys.path[-2:]) import fabric assert_equal(2, {fabric!r}, os.path.realpath(fabric.__file__)) import user.package assert_equal(3, {user_package!r}, os.path.realpath(user.package.__file__)) """.format( pex_extra_sys_path=pex_extra_sys_path, fabric=expected_file_path(venv, "fabric"), user_package=expected_file_path(venv, "user.package"), ) ), PEX_EXTRA_SYS_PATH=os.pathsep.join(pex_extra_sys_path), ) assert 0 == returncode, stderr def test_binary_path(create_pex_venv): # type: (CreatePexVenv) -> None code = dedent( """\ import errno import subprocess import sys # PEXed code should be able to find all (console) scripts on the $PATH when the venv is # created with --bin-path set, and the scripts should all run with the venv interpreter in # order to find their code. def try_invoke(*args): try: subprocess.check_call(list(args)) return 0 except OSError as e: if e.errno == errno.ENOENT: # This is what we expect when scripts are not set up on PATH via --bin-path. return 1 return 2 exit_code = try_invoke("fab", "-V") exit_code += 10 * try_invoke("inv", "-V") exit_code += 100 * try_invoke("invoke", "-V") sys.exit(exit_code) """ ) venv = create_pex_venv() returncode, stdout, stderr = execute_venv_pex_interpreter( venv, code=code, PATH=tempfile.gettempdir() ) assert 111 == returncode, stdout + stderr venv_bin_path = create_pex_venv("-f", "--bin-path", "prepend") returncode, _, _ = execute_venv_pex_interpreter( venv_bin_path, code=code, PATH=tempfile.gettempdir() ) assert 0 == returncode def test_venv_pex_interpreter_special_modes(create_pex_venv): # type: (CreatePexVenv) -> None venv = create_pex_venv() # special mode execute module: -m module returncode, stdout, stderr = execute_venv_pex_interpreter(venv, extra_args=["-m"]) assert 2 == returncode, stderr assert "" == stdout returncode, stdout, stderr = execute_venv_pex_interpreter( venv, extra_args=["-m", "fabric", "--version"] ) assert 0 == returncode, stderr versions = parse_fabric_version_output(stdout) assert FABRIC_VERSION == versions["Fabric"] # special mode execute code string: -c <str> returncode, stdout, stderr = execute_venv_pex_interpreter(venv, extra_args=["-c"]) assert 2 == returncode, stderr assert "" == stdout fabric_file_code = "import fabric, os; print(os.path.realpath(fabric.__file__))" expected_fabric_file_path = expected_file_path(venv, "fabric") returncode, stdout, stderr = execute_venv_pex_interpreter( venv, extra_args=["-c", fabric_file_code] ) assert 0 == returncode, stderr assert expected_fabric_file_path == stdout.strip() # special mode execute stdin: - returncode, stdout, stderr = execute_venv_pex_interpreter( venv, code=fabric_file_code, extra_args=["-"] ) assert 0 == returncode, stderr assert expected_fabric_file_path == stdout.strip() # special mode execute python file: <py file name> with named_temporary_file(prefix="code", suffix=".py", mode="w") as fp: fp.write(fabric_file_code) fp.close() returncode, stdout, stderr = execute_venv_pex_interpreter( venv, code=fabric_file_code, extra_args=[fp.name] ) assert 0 == returncode, stderr assert expected_fabric_file_path == stdout.strip()
from cvxpy import Variable, Parameter, Minimize, Problem, OSQP, quad_form import numpy as np import scipy as sp import scipy.sparse as sparse import time if __name__ == "__main__": # Discrete time model of a quadcopter Ts = 0.2 M = 2.0 Ad = sparse.csc_matrix([ [1.0, Ts], [0, 1.0] ]) Bd = sparse.csc_matrix([ [0.0], [Ts/M]]) [nx, nu] = Bd.shape # number of states and number or inputs # Constraints uref = 0 uinit = 0 # not used here umin = np.array([-1000.0]) - uref umax = np.array([1000.0]) - uref xmin = np.array([-100.0, -100.0]) xmax = np.array([100.0, 100.0]) # Objective function Q = sparse.diags([0.2, 0.3]) QN = sparse.diags([0.4, 0.5]) # final cost R = 0.1*sparse.eye(1) # Initial and reference states x0 = np.array([0.1, 0.2]) # initial state # Reference input and states pref = 7.0 vref = 0 xref = np.array([pref, vref]) # reference state # Prediction horizon Np = 20 # Define problem u = Variable((nu, Np)) x = Variable((nx, Np + 1)) x_init = Parameter(nx) objective = 0 constraints = [x[:,0] == x_init] for k in range(Np): objective += quad_form(x[:, k] - xref, Q) + quad_form(u[:, k], R) constraints += [x[:, k+1] == Ad*x[:, k] + Bd*u[:, k]] constraints += [xmin <= x[:, k], x[:, k] <= xmax] constraints += [umin <= u[:, k], u[:, k] <= umax] objective += quad_form(x[:, Np] - xref, QN) prob = Problem(Minimize(objective), constraints) # Simulate in closed loop # Simulate in closed loop len_sim = 15 # simulation length (s) nsim = int(len_sim/Ts) # simulation length(timesteps) xsim = np.zeros((nsim,nx)) usim = np.zeros((nsim,nu)) tsim = np.arange(0,nsim)*Ts uminus1_val = uinit # initial previous measured input is the input at time instant -1. time_start = time.time() for i in range(nsim): x_init.value = x0 #uminus1.value = uminus1_val prob.solve(solver=OSQP, warm_start=True) uMPC = u[:,0].value usim[i,:] = uMPC x0 = Ad.dot(x0) + Bd.dot(uMPC) xsim[i,:] = x0 uminus1_val = uMPC # or a measurement if the input is affected by noise time_sim = time.time() - time_start # In [1] import matplotlib.pyplot as plt fig,axes = plt.subplots(3,1, figsize=(10,10)) axes[0].plot(tsim, xsim[:,0], "k", label='p') axes[0].plot(tsim, xref[0]*np.ones(np.shape(tsim)), "r--", label="pref") axes[0].set_title("Position (m)") axes[1].plot(tsim, xsim[:,1], label="v") axes[1].plot(tsim, xref[1]*np.ones(np.shape(tsim)), "r--", label="vref") axes[1].set_title("Velocity (m/s)") axes[2].plot(tsim, usim[:,0], label="u") axes[2].plot(tsim, uref*np.ones(np.shape(tsim)), "r--", label="uref") axes[2].set_title("Force (N)") for ax in axes: ax.grid(True) ax.legend()
# Задача 1, Вариант 14 # Напишите программу, которая будет сообщать род деятельности и псевдоним под которым скрывается Мари Фрасуа Аруэ. После вывода информации программа должна дожидаться пока пользователь нажмет Enter для выхода. # Моренко А.А. # 07.03.2016 print("Мари Франсуа Аруэ, – великий французский писатель, поэт, драматург, философ-просветитель, более известный как Вольтер.") Input("Нажмите Enter для выхода")
from sklearn import tree from sklearn import preprocessing from sklearn.model_selection import cross_val_score from sklearn.metrics import mean_absolute_error, f1_score import pandas as pd from pandas.api.types import ( is_numeric_dtype, is_bool_dtype, is_categorical_dtype, is_string_dtype, is_datetime64_any_dtype, is_timedelta64_dtype, ) # if the number is 4, then it is possible to detect patterns when there are at least 4 times the same observation. If the limit is increased, the minimum observations also increase. This is important, because this is the limit when sklearn will throw an error which will lead to a score of 0 if we catch it CV_ITERATIONS = 4 RANDOM_SEED = 587136 # if a numeric column has less than 15 unique values, it is inferred as categoric # thus, the ppscore will use a classification # this has important implications on the ppscore # eg if you have 4 equal categories encoded 0, 1, 2, 3 and treat it as a regression # then the baseline is 1 (median) which is okayish and a predictor will have a harder time # to beat the baseline, thus the ppscore will be considerably lower # if the column is encoded as category, then the baseline will be to always predict 0 # this baseline will be way easier to beat and thus result in a higher ppscore NUMERIC_AS_CATEGORIC_BREAKPOINT = 15 def _calculate_model_cv_score_(df, target, feature, metric, model, **kwargs): "Calculates the mean model score based on cross-validation" # Sources about the used methods: # https://scikit-learn.org/stable/modules/tree.html # https://scikit-learn.org/stable/modules/cross_validation.html # https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html # shuffle the rows - this is important for crossvalidation # because the crossvalidation just takes the first n lines # if there is a strong pattern in the rows eg 0,0,0,0,1,1,1,1 # then this will lead to problems because the first cv sees mostly 0 and the later 1 # this approach might be wrong for timeseries because it might leak information df = df.sample(frac=1, random_state=RANDOM_SEED, replace=False) # preprocess target if df[target].dtype == object: le = preprocessing.LabelEncoder() df[target] = le.fit_transform(df[target]) target_series = df[target] else: target_series = df[target] # preprocess feature if df[feature].dtype == object: one_hot_encoder = preprocessing.OneHotEncoder() sparse_matrix = one_hot_encoder.fit_transform(df[feature].values.reshape(-1, 1)) feature_df = sparse_matrix else: # reshaping needed because there is only 1 feature feature_df = df[feature].values.reshape(-1, 1) # Crossvalidation is stratifiedKFold for classification, KFold for regression # CV on one core (n_job=1; default) has shown to be fastest scores = cross_val_score( model, feature_df, target_series, cv=CV_ITERATIONS, scoring=metric ) return scores.mean() def _normalized_mae_score(model_mae, naive_mae): "Normalizes the model MAE score, given the baseline score" # # Value range of MAE is [0, infinity), 0 is best # 10, 5 >> 0 because worse than naive # 10, 20 >> 0.5 # 5, 20 >> 0.75 = 1 - (mae/base_mae) if model_mae > naive_mae: return 0 else: return 1 - (model_mae / naive_mae) def _mae_normalizer(df, y, model_score): "In case of MAE, calculates the baseline score for y and derives the PPS." df["naive"] = df[y].median() baseline_score = mean_absolute_error(df[y], df["naive"]) # true, pred ppscore = _normalized_mae_score(abs(model_score), baseline_score) return ppscore, baseline_score def _normalized_f1_score(model_f1, baseline_f1): "Normalizes the model F1 score, given the baseline score" # # F1 ranges from 0 to 1 # # 1 is best # 0.5, 0.7 = 0 because worse than naive # 0.75, 0.5 > 0.5 # if model_f1 < baseline_f1: return 0 else: scale_range = 1.0 - baseline_f1 # eg 0.3 f1_diff = model_f1 - baseline_f1 # eg 0.1 return f1_diff / scale_range # 0.1/0.3 = 0.33 def _f1_normalizer(df, y, model_score): "In case of F1, calculates the baseline score for y and derives the PPS." df["naive"] = df[y].value_counts().index[0] baseline_score = f1_score(df[y], df["naive"], average="weighted") ppscore = _normalized_f1_score(model_score, baseline_score) return ppscore, baseline_score TASKS = { "regression": { "metric_name": "mean absolute error", "metric_key": "neg_mean_absolute_error", "model": tree.DecisionTreeRegressor(), "score_normalizer": _mae_normalizer, }, "classification": { "metric_name": "weighted F1", "metric_key": "f1_weighted", "model": tree.DecisionTreeClassifier(), "score_normalizer": _f1_normalizer, }, "predict_itself": { "metric_name": None, "metric_key": None, "model": None, "score_normalizer": None, }, "predict_constant": { "metric_name": None, "metric_key": None, "model": None, "score_normalizer": None, }, "predict_id": { "metric_name": None, "metric_key": None, "model": None, "score_normalizer": None, }, } def _infer_task(df, x, y): "Returns str with the name of the inferred task based on the columns x and y" if x == y: return "predict_itself" category_count = df[y].value_counts().count() if category_count == 1: return "predict_constant" if category_count == 2: return "classification" if category_count == len(df[y]) and ( is_string_dtype(df[y]) or is_categorical_dtype(df[y]) ): return "predict_id" if category_count <= NUMERIC_AS_CATEGORIC_BREAKPOINT and is_numeric_dtype(df[y]): return "classification" if is_bool_dtype(df[y]) or is_string_dtype(df[y]) or is_categorical_dtype(df[y]): return "classification" if is_datetime64_any_dtype(df[y]) or is_timedelta64_dtype(df[y]): raise Exception( f"The target column {y} has the dtype {df[y].dtype} which is not supported. A possible solution might be to convert {y} to a string column" ) # this check needs to be after is_bool_dtype because bool is considered numeric by pandas if is_numeric_dtype(df[y]): return "regression" raise Exception( f"Could not infer a valid task based on the target {y}. The dtype {df[y].dtype} is not yet supported" ) # pragma: no cover def _feature_is_id(df, x): "Returns Boolean if the feature column x is an ID" if not (is_string_dtype(df[x]) or is_categorical_dtype(df[x])): return False category_count = df[x].value_counts().count() return category_count == len(df[x]) def _maybe_sample(df, sample): """ Maybe samples the rows of the given df to have at most ``sample`` rows If sample is ``None`` or falsy, there will be no sampling. If the df has fewer rows than the sample, there will be no sampling. Parameters ---------- df : pandas.DataFrame Dataframe that might be sampled sample : int or ``None`` Number of rows to be sampled Returns ------- pandas.DataFrame DataFrame after potential sampling """ if sample and len(df) > sample: # this is a problem if x or y have more than sample=5000 categories # TODO: dont sample when the problem occurs and show warning df = df.sample(sample, random_state=RANDOM_SEED, replace=False) return df def score(df, x, y, task=None, sample=5000): """ Calculate the Predictive Power Score (PPS) for "x predicts y" The score always ranges from 0 to 1 and is data-type agnostic. A score of 0 means that the column x cannot predict the column y better than a naive baseline model. A score of 1 means that the column x can perfectly predict the column y given the model. A score between 0 and 1 states the ratio of how much potential predictive power the model achieved compared to the baseline model. Parameters ---------- df : pandas.DataFrame Dataframe that contains the columns x and y x : str Name of the column x which acts as the feature y : str Name of the column y which acts as the target task : str, default ``None`` Name of the prediction task, e.g. ``classification`` or ``regression`` If the task is not specified, it is infered based on the y column The task determines which model and evaluation score is used for the PPS sample : int or ``None`` Number of rows for sampling. The sampling decreases the calculation time of the PPS. If ``None`` there will be no sampling. Returns ------- Dict A dict that contains multiple fields about the resulting PPS. The dict enables introspection into the calculations that have been performed under the hood """ if x == y: task_name = "predict_itself" else: # TODO: log.warning when values have been dropped df = df[[x, y]].dropna() if len(df) == 0: raise Exception("After dropping missing values, there are no valid rows left") df = _maybe_sample(df, sample) if task is None: task_name = _infer_task(df, x, y) else: task_name = task task = TASKS[task_name] if task_name in ["predict_constant", "predict_itself"]: model_score = 1 ppscore = 1 baseline_score = 1 elif task_name == "predict_id": # target is id model_score = 0 ppscore = 0 baseline_score = 0 elif _feature_is_id(df, x): model_score = 0 ppscore = 0 baseline_score = 0 else: model_score = _calculate_model_cv_score_( df, target=y, feature=x, metric=task["metric_key"], model=task["model"] ) ppscore, baseline_score = task["score_normalizer"](df, y, model_score) return { "x": x, "y": y, "task": task_name, "ppscore": ppscore, "metric": task["metric_name"], "baseline_score": baseline_score, "model_score": abs(model_score), # sklearn returns negative mae "model": task["model"], } # def predictors(df, y, task=None, sorted=True): # pass def matrix(df, output="df", **kwargs): """ Calculate the Predictive Power Score (PPS) matrix for all columns in the dataframe Parameters ---------- df : pandas.DataFrame The dataframe that contains the data output: str - potential values: "df", "dict" Control the type of the output. Either return a df or a dict with all the PPS dicts arranged by the target column kwargs: Other key-word arguments that shall be forwarded to the pps.score method Returns ------- pandas.DataFrame or Dict Either returns a df or a dict with all the PPS dicts arranged by the target column. This can be influenced by the output argument """ data = {} columns = list(df.columns) for target in columns: scores = [] for feature in columns: # single_score = score(df, x=feature, y=target)["ppscore"] try: single_score = score(df, x=feature, y=target, **kwargs)["ppscore"] except: # TODO: log error single_score = 0 scores.append(single_score) data[target] = scores if output == "df": matrix = pd.DataFrame.from_dict(data, orient="index") matrix.columns = columns return matrix else: # output == "dict" return data
# coding=utf-8 # Copyright (c) DIRECT Contributors import argparse import pathlib import sys from direct.types import FileOrUrl, PathOrString from direct.utils.io import check_is_valid_url def is_file(path): path = pathlib.Path(path) if path.is_file(): return path raise argparse.ArgumentTypeError(f"{path} is not a valid file or url.") def file_or_url(path: PathOrString) -> FileOrUrl: if check_is_valid_url(path): return FileOrUrl(path) path = pathlib.Path(path) if path.is_file(): return FileOrUrl(path) raise argparse.ArgumentTypeError(f"{path} is not a valid file or url.") def check_train_val(key, name): if key is not None and len(key) != 2: sys.exit(f"--{name} has to be of the form `train_folder, validation_folder` if a validation folder is set.")
from django.contrib import admin from django.urls import path, include from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), path('', include('store.urls')) ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
# # Py-Alpha-AMD Registration Framework # Author: Johan Ofverstedt # Reference: Fast and Robust Symmetric Image Registration Based on Distances Combining Intensity and Spatial Information # # Copyright 2019 Johan Ofverstedt # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # # # Registration framework # # Import Numpy/Scipy import numpy as np import scipy as sp import scipy.misc # Import transforms from transforms import CompositeTransform from transforms import AffineTransform from transforms import Rigid2DTransform from transforms import Rotate2DTransform from transforms import TranslationTransform from transforms import ScalingTransform # Import distances from distances import QuantizedImage from distances import alpha_amd from distances import symmetric_amd_distance # Import optimizers from optimizers import GradientDescentOptimizer # Import generators and filters import generators import filters # Import misc import math import sys import time import cProfile, pstats class Register: def __init__(self, dim): self.dim = dim self.sampling_fraction = 1.0 self.step_lengths = np.array([[0.1, 1.0]]) self.iterations = 1500 self.alpha_levels = 7 self.gradient_magnitude_threshold = 0.00001 self.ref_im = None self.flo_im = None self.ref_mask = None self.flo_mask = None self.ref_weights = None self.flo_weights = None # Transforms self.initial_transforms = [] self.transforms_param_scaling = [] self.output_transforms = [] self.values = [] self.value_history = [] # Resolution pyramid levels self.pyramid_factors = [] self.pyramid_sigmas = [] self.distances = [] # Reporting/Output self.report_func = None self.report_freq = 25 def add_initial_transform(self, transform, param_scaling=None): if param_scaling is None: param_scaling = np.ones((transforms.get_param_count(),)) self.initial_transforms.append(transform) self.transforms_param_scaling.append(param_scaling) def add_initial_transforms(self, transforms, param_scaling=None): for i, t in enumerate(transforms): if param_scaling is None: pscaling = np.ones((transforms.get_param_count(),)) else: pscaling = param_scaling[i] self.add_initial_transform(t, pscaling) def clear_transforms(self): self.initial_transforms = [] self.output_transforms = [] self.transforms_param_scaling = [] self.values = [] self.value_history = [] def get_output(self, index): return self.output_transforms[index], self.values[index] def get_value_history(self, index, level): return self.value_history[index][level] def add_pyramid_level(self, factor, sigma): self.pyramid_factors.append(factor) self.pyramid_sigmas.append(sigma) def add_pyramid_levels(self, factors, sigmas): for i in range(len(factors)): self.add_pyramid_level(factors[i], sigmas[i]) def get_pyramid_level_count(self): return len(self.pyramid_factors) def set_sampling_fraction(self, sampling_fraction): self.sampling_fraction = sampling_fraction def set_iterations(self, iterations): self.iterations = iterations def set_alpha_levels(self, alpha_levels): self.alpha_levels = alpha_levels def set_step_lengths(self, step_lengths): self.step_lengths = np.array(step_lengths)#np.array([start_step_length, end_step_length]) def set_reference_image(self, image, spacing = None): self.ref_im = image if spacing is None: self.ref_spacing = np.ones(image.ndim) else: self.ref_spacing = spacing def set_floating_image(self, image, spacing = None): self.flo_im = image if spacing is None: self.flo_spacing = np.ones(image.ndim) else: self.flo_spacing = spacing def set_reference_mask(self, mask): self.ref_mask = mask def set_floating_mask(self, mask): self.flo_mask = mask def set_reference_weights(self, weights): self.ref_weights = weights def set_floating_weights(self, weights): self.flo_weights = weights def set_gradient_magnitude_threshold(self, t): self.gradient_magnitude_threshold = t def set_report_freq(self, freq): self.report_freq = freq def set_report_func(self, func): self.report_func = func def initialize(self, pyramid_images_output_path=None): if len(self.pyramid_factors) == 0: self.add_pyramid_level(1, 0.0) if len(self.initial_transforms) == 0: self.add_initial_transform(AffineTransform(self.dim)) ### Preprocessing pyramid_levels = len(self.pyramid_factors) for i in range(pyramid_levels): factor = self.pyramid_factors[i] ref_resampled = filters.downsample(filters.gaussian_filter(self.ref_im, self.pyramid_sigmas[i]), factor) flo_resampled = filters.downsample(filters.gaussian_filter(self.flo_im, self.pyramid_sigmas[i]), factor) ref_mask_resampled = filters.downsample(self.ref_mask, factor) flo_mask_resampled = filters.downsample(self.flo_mask, factor) ref_resampled = filters.normalize(ref_resampled, 0.0, ref_mask_resampled) flo_resampled = filters.normalize(flo_resampled, 0.0, flo_mask_resampled) if pyramid_images_output_path is not None and ref_resampled.ndim == 2: scipy.misc.imsave('%sref_resampled_%d.png' % (pyramid_images_output_path, i+1), ref_resampled) scipy.misc.imsave('%sflo_resampled_%d.png' % (pyramid_images_output_path, i+1), flo_resampled) if self.ref_weights is None: ref_weights = np.zeros(ref_resampled.shape) ref_weights[ref_mask_resampled] = 1.0 else: ref_weights = filters.downsample(self.ref_weights, factor) if self.flo_weights is None: flo_weights = np.zeros(flo_resampled.shape) flo_weights[flo_mask_resampled] = 1.0 else: flo_weights = filters.downsample(self.flo_weights, factor) ref_diag = np.sqrt(np.square(np.array(ref_resampled.shape)*self.ref_spacing).sum()) flo_diag = np.sqrt(np.square(np.array(flo_resampled.shape)*self.flo_spacing).sum()) q_ref = QuantizedImage(ref_resampled, self.alpha_levels, ref_weights, self.ref_spacing*factor, remove_zero_weight_pnts = True) q_flo = QuantizedImage(flo_resampled, self.alpha_levels, flo_weights, self.flo_spacing*factor, remove_zero_weight_pnts = True) tf_ref = alpha_amd.AlphaAMD(q_ref, self.alpha_levels, ref_diag, self.ref_spacing*factor, ref_mask_resampled, ref_mask_resampled, interpolator_mode='linear', dt_fun = None, mask_out_edges = True) tf_flo = alpha_amd.AlphaAMD(q_flo, self.alpha_levels, flo_diag, self.flo_spacing*factor, flo_mask_resampled, flo_mask_resampled, interpolator_mode='linear', dt_fun = None, mask_out_edges = True) symmetric_measure = True squared_measure = False sym_dist = symmetric_amd_distance.SymmetricAMDDistance(symmetric_measure=symmetric_measure, squared_measure=squared_measure) sym_dist.set_ref_image_source(q_ref) sym_dist.set_ref_image_target(tf_ref) sym_dist.set_flo_image_source(q_flo) sym_dist.set_flo_image_target(tf_flo) sym_dist.set_sampling_fraction(self.sampling_fraction) sym_dist.initialize() self.distances.append(sym_dist) def run(self): pyramid_level_count = len(self.pyramid_factors) transform_count = len(self.initial_transforms) for t_it in range(transform_count): init_transform = self.initial_transforms[t_it] param_scaling = self.transforms_param_scaling[t_it] self.value_history.append([]) for lvl_it in range(pyramid_level_count): opt = GradientDescentOptimizer(self.distances[lvl_it], init_transform.copy()) if self.step_lengths.ndim == 1: opt.set_step_length(self.step_lengths[0], self.step_lengths[1]) else: opt.set_step_length(self.step_lengths[lvl_it, 0], self.step_lengths[lvl_it, 1]) opt.set_scalings(param_scaling) opt.set_gradient_magnitude_threshold(self.gradient_magnitude_threshold) opt.set_report_freq(self.report_freq) if type(self.report_func) is list or type(self.report_func) is tuple: opt.set_report_callback(self.report_func[t_it]) else: opt.set_report_callback(self.report_func) if isinstance(self.iterations, int): itercount = self.iterations else: assert(len(self.iterations) == pyramid_level_count) itercount = self.iterations[lvl_it] opt.optimize(itercount) if lvl_it + 1 == pyramid_level_count: self.output_transforms.append(opt.get_transform()) self.values.append(opt.get_value()) self.initial_transforms[t_it] = opt.get_transform() else: init_transform = opt.get_transform() self.value_history[-1].append(opt.get_value_history())
from .data_loader import StackOverflowLRDataLoader __all__ = [ 'StackOverflowLRDataLoader', ]
import argparse import discretisedfield as df def convert_files(input_files, output_files): for input_file, output_file in zip(input_files, output_files): field = df.Field.fromfile(input_file) field.write(output_file) def main(): parser = argparse.ArgumentParser( prog='ovf2vtk', description='ovf2vtk - ovf to VTK format conversion' ) parser.add_argument('--infile', type=argparse.FileType('r'), help='One or more input files', nargs='+', required=True) parser.add_argument('--outfile', type=argparse.FileType('w'), nargs='+', help='One or more output files, optional') args = parser.parse_args() if args.outfile: if len(args.infile) == len(args.outfile): input_files = [f.name for f in args.infile] output_files = [f.name for f in args.outfile] else: print('\nError: The number of input and output ' 'files does not match.') return 0 else: input_files = [f.name for f in args.infile] output_files = [f'{f.split(".")[0]}.vtk' for f in input_files] convert_files(input_files, output_files) if __name__ == "__main__": main()
import os import argparse # import json from wallstreet import Stock from wallstreet_cli import xetra from forex_python.converter import CurrencyRates LOCAL_DB_PATH = os.path.join(os.path.dirname(__file__), "data", "db.txt") def _currency_conversion(source_v: float, source_currency: str, target_currency: str): """Convert source currency to target currency Args: source_v (float): source_currency (str): designation of source currency target_currency (str): [description] """ c = CurrencyRates() return c.convert(source_currency, target_currency, source_v) def _get_stock_price(stock_name: str): try: return xetra.pipeline([stock_name]) except IndexError: print("Ticker not found!") return None # TODO (easy): handle other exceptions. try using "APPL" as arguement for --stock, # unknown error occured def _get_all_fav_stock_prices(show_command): xetra.pipeline(_get_fav_tickers(), show_command) # for stock in _get_fav_tickers(): # xetra.get_stock_from_dataset(stock, csv_list) # show_stock(stock) def _find_ticker(company_name): """give the company_name, finds the ticker name""" # TODO (harder) having a function to search for tickers by just giving a company name # probably need to make an api request to some search engine pass def show_stock(stock_name: str): """show stock price of certain stock Args: stock_name (str): [description] """ # TODO (easy): take currency as arguement and show stock prices in different currencies price_in_usd = _get_stock_price(stock_name) if not price_in_usd: return price_in_eur = _currency_conversion(price_in_usd, "USD", "EUR") print(f"{stock_name}: {round(price_in_eur, 2)} EUR") def _append_fav_ticker(l_of_tickers: list, db_path: str=LOCAL_DB_PATH): """append a list of tickers to a json file Args: l_of_tickers (list): list of tickers to add to favorites db_path (str, optional): path to store the fav file. Defaults to LOCAL_DB_PATH. """ # create the folder if not yet initialized if not os.path.exists(db_path): os.makedirs(os.path.dirname(db_path), exist_ok=True) # read the json file from local path # update the list l_of_tickers = l_of_tickers + _get_fav_tickers() file = open(db_path, "w") file.write("{}".format(l_of_tickers)) file.close() def _get_fav_tickers(db_path: str=LOCAL_DB_PATH): """read from the local json file, get all fav tickers Returns a list of strings """ # return list of tickers from file if not os.path.exists(db_path): return [] file = open(db_path, "r") content = file.read() file.close() output = content.strip("][").replace("'", "").split(", ") return output def main(): ## TODO clean tmp files parser = argparse.ArgumentParser(description="cli for wallstreet") parser.add_argument("--stock", help="show stock price of ticker") parser.add_argument("--currency", default="EUR", help="currency") parser.add_argument("-s", default=False, action="store_true") parser.add_argument("--add_fav", default=None, help="show stock price of ticker") parser.add_argument("--show_fav", default=False, action="store_true") args = parser.parse_args() if args.stock: show_stock(args.stock) elif args.show_fav: _get_all_fav_stock_prices(args.s) elif args.add_fav: _append_fav_ticker(args.add_fav.split(",")) if __name__ == "__main__": main()
""" The core part of the SOTA model of CPSC2019, branched, and has different scope (in terms of dilation) in each branch """ from copy import deepcopy from itertools import repeat from collections import OrderedDict from typing import Union, Optional, Sequence, NoReturn import numpy as np np.set_printoptions(precision=5, suppress=True) import torch from torch import nn from torch import Tensor from ...cfg import CFG, DEFAULTS from ...utils.utils_nn import compute_module_size, SizeMixin from ...utils.misc import dict_to_str from ...models._nets import ( Conv_Bn_Activation, DownSample, NonLocalBlock, SEBlock, GlobalContextBlock, ) if DEFAULTS.torch_dtype == torch.float64: torch.set_default_tensor_type(torch.DoubleTensor) __all__ = [ "MultiScopicCNN", "MultiScopicBasicBlock", "MultiScopicBranch", ] class MultiScopicBasicBlock(SizeMixin, nn.Sequential): """ finished, checked, basic building block of the CNN part of the SOTA model from CPSC2019 challenge (entry 0416) (conv -> activation) * N --> bn --> down_sample """ __DEBUG__ = False __name__ = "MultiScopicBasicBlock" def __init__(self, in_channels:int, scopes:Sequence[int], num_filters:Union[int,Sequence[int]], filter_lengths:Union[int,Sequence[int]], subsample_length:int, groups:int=1, **config) -> NoReturn: """ finished, checked, Parameters ---------- in_channels: int, number of channels in the input scopes: sequence of int, scopes of the convolutional layers, via `dilation` num_filters: int or sequence of int, number of filters of the convolutional layer(s) filter_lengths: int or sequence of int, filter length(s) (kernel size(s)) of the convolutional layer(s) subsample_length: int, subsample length (ratio) at the last layer of the block """ super().__init__() self.__in_channels = in_channels self.__scopes = scopes self.__num_convs = len(self.__scopes) if isinstance(num_filters, int): self.__out_channels = list(repeat(num_filters, self.__num_convs)) else: self.__out_channels = num_filters assert len(self.__out_channels) == self.__num_convs, \ f"`scopes` indicates {self.__num_convs} convolutional layers, while `num_filters` indicates {len(self.__out_channels)}" if isinstance(filter_lengths, int): self.__filter_lengths = list(repeat(filter_lengths, self.__num_convs)) else: self.__filter_lengths = filter_lengths assert len(self.__filter_lengths) == self.__num_convs, \ f"`scopes` indicates {self.__num_convs} convolutional layers, while `filter_lengths` indicates {len(self.__filter_lengths)}" self.__subsample_length = subsample_length self.__groups = groups self.config = CFG(deepcopy(config)) conv_in_channels = self.__in_channels for idx in range(self.__num_convs): self.add_module( f"ca_{idx}", Conv_Bn_Activation( in_channels=conv_in_channels, out_channels=self.__out_channels[idx], kernel_size=self.__filter_lengths[idx], stride=1, dilation=self.__scopes[idx], groups=self.__groups, batch_norm=self.config.batch_norm, # kw_bn=self.config.kw_bn, activation=self.config.activation, kw_activation=self.config.kw_activation, kernel_initializer=self.config.kernel_initializer, kw_initializer=self.config.kw_initializer, bias=self.config.bias, ) ) conv_in_channels = self.__out_channels[idx] self.add_module( "bn", nn.BatchNorm1d(self.__out_channels[-1]) ) self.add_module( "down", DownSample( down_scale=self.__subsample_length, in_channels=self.__out_channels[-1], groups=self.__groups, # padding= batch_norm=False, mode=self.config.subsample_mode, ) ) if self.config.dropout > 0: self.add_module( "dropout", nn.Dropout(self.config.dropout, inplace=False) ) def forward(self, input:Tensor) -> Tensor: """ finished, checked, Parameters ---------- input: Tensor, of shape (batch_size, n_channels, seq_len) Returns ------- output: Tensor, of shape (batch_size, n_channels, seq_len) """ output = super().forward(input) return output def compute_output_shape(self, seq_len:Optional[int]=None, batch_size:Optional[int]=None) -> Sequence[Union[int, None]]: """ finished, checked, Parameters ---------- seq_len: int, length of the 1d sequence batch_size: int, optional, the batch size, can be None Returns ------- output_shape: sequence, the output shape of this block, given `seq_len` and `batch_size` """ _seq_len = seq_len for idx, module in enumerate(self): if idx == self.__num_convs: # bn layer continue elif self.config.dropout > 0 and idx == len(self)-1: # dropout layer continue output_shape = module.compute_output_shape(_seq_len, batch_size) _, _, _seq_len = output_shape return output_shape class MultiScopicBranch(SizeMixin, nn.Sequential): """ finished, checked, branch path of the CNN part of the SOTA model from CPSC2019 challenge (entry 0416) """ __DEBUG__ = False __name__ = "MultiScopicBranch" def __init__(self, in_channels:int, scopes:Sequence[Sequence[int]], num_filters:Union[Sequence[int],Sequence[Sequence[int]]], filter_lengths:Union[Sequence[int],Sequence[Sequence[int]]], subsample_lengths:Union[int,Sequence[int]], groups:int=1, **config) -> NoReturn: """ finished, checked, Parameters ---------- in_channels: int, number of features (channels) of the input scopes: sequence of sequences of int, scopes (in terms of `dilation`) for the convolutional layers, each sequence of int is for one branch num_filters: sequence of int, or sequence of sequences of int, number of filters for the convolutional layers, if is sequence of int, then convolutionaly layers in one branch will have the same number of filters filter_lengths: sequence of int, or sequence of sequences of int, filter length (kernel size) of the convolutional layers, if is sequence of int, then convolutionaly layers in one branch will have the same filter length subsample_lengths: int, or sequence of int, subsample length (stride) of the convolutional layers, if is sequence of int, then convolutionaly layers in one branch will have the same subsample length groups: int, default 1, connection pattern (of channels) of the inputs and outputs config: dict, other hyper-parameters, including dropout, activation choices, weight initializer, etc. """ super().__init__() self.__in_channels = in_channels self.__scopes = scopes self.__num_blocks = len(self.__scopes) self.__num_filters = num_filters assert len(self.__num_filters) == self.__num_blocks, \ f"`scopes` indicates {self.__num_blocks} `MultiScopicBasicBlock`s, while `num_filters` indicates {len(self.__num_filters)}" self.__filter_lengths = filter_lengths assert len(self.__filter_lengths) == self.__num_blocks, \ f"`scopes` indicates {self.__num_blocks} `MultiScopicBasicBlock`s, while `filter_lengths` indicates {len(self.__filter_lengths)}" if isinstance(subsample_lengths, int): self.__subsample_lengths = list(repeat(subsample_lengths, self.__num_blocks)) else: self.__subsample_lengths = filter_lengths assert len(self.__subsample_lengths) == self.__num_blocks, \ f"`scopes` indicates {self.__num_blocks} `MultiScopicBasicBlock`s, while `subsample_lengths` indicates {len(self.__subsample_lengths)}" self.__groups = groups self.config = CFG(deepcopy(config)) block_in_channels = self.__in_channels for idx in range(self.__num_blocks): self.add_module( f"block_{idx}", MultiScopicBasicBlock( in_channels=block_in_channels, scopes=self.__scopes[idx], num_filters=self.__num_filters[idx], filter_lengths=self.__filter_lengths[idx], subsample_length=self.__subsample_lengths[idx], groups=self.__groups, dropout=self.config.dropouts[idx], **(self.config.block) ) ) block_in_channels = self.__num_filters[idx] def forward(self, input:Tensor) -> Tensor: """ finished, checked, Parameters ---------- input: Tensor, of shape (batch_size, n_channels, seq_len) Returns ------- output: Tensor, of shape (batch_size, n_channels, seq_len) """ output = super().forward(input) return output def compute_output_shape(self, seq_len:Optional[int]=None, batch_size:Optional[int]=None) -> Sequence[Union[int, None]]: """ finished, checked, Parameters ---------- seq_len: int, length of the 1d sequence batch_size: int, optional, the batch size, can be None Returns ------- output_shape: sequence, the output shape of this block, given `seq_len` and `batch_size` """ _seq_len = seq_len for idx, module in enumerate(self): output_shape = module.compute_output_shape(_seq_len, batch_size) _, _, _seq_len = output_shape return output_shape class MultiScopicCNN(SizeMixin, nn.Module): """ finished, checked, CNN part of the SOTA model from CPSC2019 challenge (entry 0416) """ __DEBUG__ = False __name__ = "MultiScopicCNN" def __init__(self, in_channels:int, **config) -> NoReturn: """ finished, checked, Parameters ---------- in_channels: int, number of channels in the input config: dict, other hyper-parameters of the Module, ref. corresponding config file key word arguments that have to be set: scopes: sequence of sequences of sequences of int, scopes (in terms of dilation) of each convolution num_filters: sequence of sequences (of int or of sequences of int), number of filters of the convolutional layers, with granularity to each block of each branch, or to each convolution of each block of each branch filter_lengths: sequence of sequences (of int or of sequences of int), filter length(s) (kernel size(s)) of the convolutions, with granularity to each block of each branch, or to each convolution of each block of each branch subsample_lengths: sequence of int or sequence of sequences of int, subsampling length(s) (ratio(s)) of all blocks, with granularity to each branch or to each block of each branch, each subsamples after the last convolution of each block dropouts: sequence of int or sequence of sequences of int, dropout rates of all blocks, with granularity to each branch or to each block of each branch, each dropouts at the last of each block groups: int, connection pattern (of channels) of the inputs and outputs block: dict, other parameters that can be set for the building blocks for a full list of configurable parameters, ref. corr. config file """ super().__init__() self.__in_channels = in_channels self.config = CFG(deepcopy(config)) self.__scopes = self.config.scopes self.__num_branches = len(self.__scopes) if self.__DEBUG__: print(f"configuration of {self.__name__} is as follows\n{dict_to_str(self.config)}") self.branches = nn.ModuleDict() for idx in range(self.__num_branches): self.branches[f"branch_{idx}"] = \ MultiScopicBranch( in_channels=self.__in_channels, scopes=self.__scopes[idx], num_filters=self.config.num_filters[idx], filter_lengths=self.config.filter_lengths[idx], subsample_lengths=self.config.subsample_lengths[idx], groups=self.config.groups, dropouts=self.config.dropouts[idx], block=self.config.block, # a dict ) def forward(self, input:Tensor) -> Tensor: """ finished, checked, Parameters ---------- input: Tensor, of shape (batch_size, n_channels, seq_len) Returns ------- output: Tensor, of shape (batch_size, n_channels, seq_len) """ branch_out = OrderedDict() for idx in range(self.__num_branches): key = f"branch_{idx}" branch_out[key] = self.branches[key].forward(input) output = torch.cat( [branch_out[f"branch_{idx}"] for idx in range(self.__num_branches)], dim=1, # along channels ) return output def compute_output_shape(self, seq_len:Optional[int]=None, batch_size:Optional[int]=None) -> Sequence[Union[int, None]]: """ finished, checked, Parameters ---------- seq_len: int, length of the 1d sequence batch_size: int, optional, the batch size, can be None Returns ------- output_shape: sequence, the output shape of this block, given `seq_len` and `batch_size` """ out_channels = 0 for idx in range(self.__num_branches): key = f"branch_{idx}" _, _branch_oc, _seq_len = \ self.branches[key].compute_output_shape(seq_len, batch_size) out_channels += _branch_oc output_shape = (batch_size, out_channels, _seq_len) return output_shape
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.python.framework import tensor_util dists = tf.contrib.distributions class DistributionTest(tf.test.TestCase): def testParamShapesAndFromParams(self): classes = [ dists.Normal, dists.Bernoulli, dists.Beta, dists.Chi2, dists.Exponential, dists.Gamma, dists.InverseGamma, dists.Laplace, dists.StudentT, dists.Uniform] sample_shapes = [(), (10,), (10, 20, 30)] with self.test_session(): for cls in classes: for sample_shape in sample_shapes: param_shapes = cls.param_shapes(sample_shape) params = dict([(name, tf.random_normal(shape)) for name, shape in param_shapes.items()]) dist = cls(**params) self.assertAllEqual(sample_shape, tf.shape(dist.sample()).eval()) dist_copy = dist.copy() self.assertAllEqual(sample_shape, tf.shape(dist_copy.sample()).eval()) self.assertEqual(dist.parameters, dist_copy.parameters) def testCopyExtraArgs(self): with self.test_session(): # Note: we cannot easily test all distributions since each requires # different initialization arguments. We therefore spot test a few. normal = dists.Normal(mu=1., sigma=2., validate_args=True) self.assertEqual(normal.parameters, normal.copy().parameters) wishart = dists.WishartFull(df=2, scale=[[1., 2], [2, 5]], validate_args=True) self.assertEqual(wishart.parameters, wishart.copy().parameters) def testCopyOverride(self): with self.test_session(): normal = dists.Normal(mu=1., sigma=2., validate_args=True) normal_copy = normal.copy(validate_args=False) base_params = normal.parameters.copy() copy_params = normal.copy(validate_args=False).parameters.copy() self.assertNotEqual(base_params.pop("validate_args"), copy_params.pop("validate_args")) self.assertEqual(base_params, copy_params) def testIsScalar(self): with self.test_session(): mu = 1. sigma = 2. normal = dists.Normal(mu, sigma, validate_args=True) self.assertTrue(tensor_util.constant_value(normal.is_scalar_event)) self.assertTrue(tensor_util.constant_value(normal.is_scalar_batch)) normal = dists.Normal([mu], [sigma], validate_args=True) self.assertTrue(tensor_util.constant_value(normal.is_scalar_event)) self.assertFalse(tensor_util.constant_value(normal.is_scalar_batch)) mvn = dists.MultivariateNormalDiag([mu], [sigma], validate_args=True) self.assertFalse(tensor_util.constant_value(mvn.is_scalar_event)) self.assertTrue(tensor_util.constant_value(mvn.is_scalar_batch)) mvn = dists.MultivariateNormalDiag([[mu]], [[sigma]], validate_args=True) self.assertFalse(tensor_util.constant_value(mvn.is_scalar_event)) self.assertFalse(tensor_util.constant_value(mvn.is_scalar_batch)) # We now test every codepath within the underlying is_scalar_helper # function. # Test case 1, 2. x = tf.placeholder(dtype=tf.int32, shape=[]) # None would fire an exception were it actually executed. self.assertTrue(normal._is_scalar_helper(x.get_shape, lambda: None)) self.assertTrue(normal._is_scalar_helper(lambda: tf.TensorShape(None), lambda: tf.shape(x))) x = tf.placeholder(dtype=tf.int32, shape=[1]) # None would fire an exception were it actually executed. self.assertFalse(normal._is_scalar_helper(x.get_shape, lambda: None)) self.assertFalse(normal._is_scalar_helper(lambda: tf.TensorShape(None), lambda: tf.shape(x))) # Test case 3. x = tf.placeholder(dtype=tf.int32) is_scalar = normal._is_scalar_helper(x.get_shape, lambda: tf.shape(x)) self.assertTrue(is_scalar.eval(feed_dict={x: 1})) self.assertFalse(is_scalar.eval(feed_dict={x: [1]})) if __name__ == '__main__': tf.test.main()