text
stringlengths
2
999k
#!/usr/bin/python from __future__ import print_function import struct import sys import usb.core import usb.util from intelhex import IntelHex scrambleCode = (0x29, 0x52, 0x8C, 0x70) stats = [0xff, 0x02, 0x00, 0xf5, 0xe5, 0x75, 0x03, 0x04, 0x80, 0x05, 0xd2, 0x01, 0xe4, 0xef, 0x82, 0x83, 0x08, 0x24, 0xc2, 0x60, 0xe0, 0x12, 0x7f, 0x34, 0x10, 0x07, 0x22, 0x40, 0x54, 0x94, 0x30, 0x70, 0xc0, 0xf0, 0xaf, 0xd0, 0x44, 0xa3, 0x36, 0x74, 0x15, 0xc3, 0x09, 0x93, 0x53, 0xec, 0x48, 0x06, 0x0a, 0x14, 0x20, 0x25, 0x50, 0x64, 0xd4, 0x16, 0x43, 0x47, 0xd6, 0xe7, 0xea, 0x0c, 0x32, 0x3f, 0x46, 0x90, 0xc8, 0xdf, 0x38, 0x45, 0xb4, 0xd3, 0xfa, 0xa1, 0xc5, 0xca, 0xcc, 0xde, 0xfc, 0x0b, 0x23, 0x37, 0x42, 0xed, 0xfb, 0x2f, 0x95, 0x55, 0x85, 0xdc, 0x18, 0x26, 0x33, 0x7d, 0x89, 0xac, 0xae, 0xfe, 0x0f, 0x17, 0x1b, 0x27, 0x35, 0x39, 0x3e, 0x57, 0x78, 0x8f, 0xa9, 0xaa, 0xc1, 0xd9, 0xdd, 0xe3, 0xf3, 0xf8, 0x0d, 0x21, 0x3b, 0x3c, 0x73, 0x81, 0x87, 0x88, 0x8a, 0x99, 0xbf, 0xdb, 0xf2, 0xfd, 0x1a, 0x1f, 0x31, 0x5f, 0x6c, 0x7a, 0x7e, 0x8e, 0xbc, 0xd5, 0xd8, 0xda, 0xe9, 0xeb, 0xee, 0xf6, 0x11, 0x1c, 0x29, 0x2d, 0x56, 0x58, 0x7c, 0x8d, 0x91, 0x98, 0xb3, 0xb9, 0xd7, 0xe1, 0xe6, 0xe8, 0xf9, 0x13, 0x1e, 0x28, 0x2e, 0x41, 0x4e, 0x69, 0x79, 0x7b, 0x9e, 0x9f, 0xa0, 0xab, 0xad, 0xcf, 0xe2, 0x0e, 0x19, 0x1d, 0x2a, 0x4b, 0x52, 0x5b, 0x63, 0x84, 0x86, 0x8c, 0x9d, 0xa2, 0xb1, 0xb2, 0xc4, 0x2b, 0x49, 0x4a, 0x4c, 0x4d, 0x59, 0x61, 0x67, 0x68, 0x6b, 0x6d, 0x6e, 0x6f, 0x77, 0x92, 0x96, 0x9a, 0xa6, 0xa8, 0xb0, 0xb5, 0xbb, 0xc6, 0xc7, 0xc9, 0xcd, 0xd1, 0xf4, 0x2c, 0x3a, 0x3d, 0x4f, 0x51, 0x5a, 0x5c, 0x5d, 0x5e, 0x62, 0x65, 0x66, 0x6a, 0x71, 0x72, 0x76, 0x8b, 0x97, 0x9b, 0x9c, 0xa4, 0xa5, 0xa7, 0xb6, 0xb7, 0xb8, 0xba, 0xbd, 0xbe, 0xcb, 0xce, 0xf1, 0xf7] def scramble(l): return [v ^ scrambleCode[i%4] for i, v in enumerate(l)] def binStrOfList(l): return ''.join(chr(x) for x in l) class WCHISP: def __init__(self): # find our device dev = usb.core.find(idVendor=0x4348, idProduct=0x55e0) if dev is None: raise ValueError('Device not found') dev.set_configuration() cfg = dev.get_active_configuration() intf = cfg[(0, 0)] self.epout = usb.util.find_descriptor(intf, custom_match = lambda e: usb.util.endpoint_direction(e.bEndpointAddress) == usb.util.ENDPOINT_OUT) self.epin = usb.util.find_descriptor(intf, custom_match = lambda e: usb.util.endpoint_direction(e.bEndpointAddress) == usb.util.ENDPOINT_IN) def cmd(self, msg, length=64): self.writeb(msg) b = self.readb(length) if len(b) == 2: return struct.unpack('<H', b)[0] return b def xcmd(self, msg, exp): #xmsg = map(lambda x: hex(ord(x))[2:], msg) #print ' '.join(xmsg) #return 0 ret = self.cmd(msg) if ret != exp: xmsg = map(lambda x: hex(ord(x)), msg[0:4]) raise Exception('cmd[%s] return %d != %d' % (','.join(xmsg), ret, exp)) def info(self): v = self.cmd('\xa2\x13USB DBG CH559 & ISP' + '\0') self.cmd('\xbb\x00') return v def readb(self, size): return self.epin.read(size) def writeb(self, b): self.epout.write(b) def dump(self): # send the key b = '\xa6\x04' + struct.pack('BBBB', *scrambleCode) self.xcmd(b, 0) # find block of 16 0xFF at the end of the device memory block = [0xff] * 16 found = False for address in range(0x3ff0, -1, -1): print('\rLooking for address 0x{:04X}'.format(address), end='') r = self.cmd('\xa7\16' + struct.pack('<H', address) + binStrOfList(scramble(block))) if r == 0: print('\nFound 0xFF block at address 0x{:04X}'.format(address)) found = True break if not found: print('\nUnable to find 0xFF block') return memdump = IntelHex() memdump.puts(address, binStrOfList(block)) print('Starting flash dumping') base = [0xa7, 16, 0, 0] nTry = 0 nBytes = 0 for address in range(address - 1, - 1, -1): block[1:] = block[:-1] # shift base[2:4] = address & 0xFF, address >> 8 found = False for i in range(256): i = stats[i] block[0] = i nTry += 1 r = self.cmd(binStrOfList(base + scramble(block)), 4) if r == 0: # verification ok, we found the correct byte print('{:02X} '.format(i), end='') sys.stdout.flush() found = True nBytes += 1 memdump[address] = i break if not found: raise ValueError('Unable to find correct ' 'byte for address 0x{:04X}'.format(address)) output_bin = 'out.bin' output_hex = 'out.hex' print('\nDone, writing output files {} and {}'. format(output_bin, output_hex)) print('Ntry = {} {:.2f}try/bytes'.format(nTry, float(nTry) / nBytes)) memdump.tobinfile(output_bin) memdump.tofile(output_hex, format='hex') isp = WCHISP() # check chip ID and bootloader presence if isp.info() != 0x52: raise IOError("not a CH552T device") # dump flash isp.dump()
### # Copyright (c) 2004-2005, Jeremiah Fincher # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions, and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the author of this software nor the name of # contributors to this software may be used to endorse or promote products # derived from this software without specific prior written consent. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ### from supybot.test import * class LimiterTestCase(ChannelPluginTestCase): plugins = ('Limiter',) config = {'supybot.plugins.Limiter.enable': True} def testEnforceLimit(self): origMin = conf.supybot.plugins.Limiter.minimumExcess() origMax = conf.supybot.plugins.Limiter.maximumExcess() try: conf.supybot.plugins.Limiter.minimumExcess.setValue(5) conf.supybot.plugins.Limiter.maximumExcess.setValue(10) self.irc.feedMsg(ircmsgs.join('#foo', prefix='foo!root@host')) m = self.irc.takeMsg() self.assertEqual(m, ircmsgs.limit('#foo', 1+10)) self.irc.feedMsg(ircmsgs.join('#foo', prefix='bar!root@host')) m = self.irc.takeMsg() self.failIf(m is not None) conf.supybot.plugins.Limiter.maximumExcess.setValue(7) self.irc.feedMsg(ircmsgs.part('#foo', prefix='bar!root@host')) m = self.irc.takeMsg() self.assertEqual(m, ircmsgs.limit('#foo', 1+5)) finally: conf.supybot.plugins.Limiter.minimumExcess.setValue(origMin) conf.supybot.plugins.Limiter.maximumExcess.setValue(origMax) # vim:set shiftwidth=4 softtabstop=4 expandtab textwidth=79:
import textwrap import aiohttp from aiostripe import error def new_default_http_client(*args, **kwargs): return AsyncioClient(*args, **kwargs) class HTTPClient(object): def __init__(self, verify_ssl_certs=True): self._verify_ssl_certs = verify_ssl_certs def request(self, method, url, headers, post_data=None): raise NotImplementedError('HTTPClient subclasses must implement `request`') class AsyncioClient(HTTPClient): name = 'aiohttp' async def request(self, method, url, headers, post_data=None): if isinstance(post_data, str): post_data = post_data.encode('utf8') with aiohttp.ClientSession(headers=headers, skip_auto_headers=('User-Agent', 'Content-Type', 'Authorization')) as client: try: async with client.request(method.upper(), url, data=post_data) as res: rbody = await res.read() rstatus = res.status rheaders = {k.lower(): v for k, v in res.headers.items()} except Exception as e: self._handle_request_error(e) assert False, 'unreachable' return rbody, rstatus, rheaders @staticmethod def _handle_request_error(e): msg = 'Unexpected error communicating with Stripe. If this problem persists, let me know at ' \ '<alex@downtownapp.co>.' msg = textwrap.fill(msg) + '\n\n(Network error: %r)' % e raise error.APIConnectionError(msg) from e
""" Base settings to build other settings files upon. """ import environ ROOT_DIR = environ.Path(__file__) - 3 # (algerian_library/config/settings/base.py - 3 = algerian_library/) APPS_DIR = ROOT_DIR.path('algerian_library') env = environ.Env() READ_DOT_ENV_FILE = env.bool('DJANGO_READ_DOT_ENV_FILE', default=False) if READ_DOT_ENV_FILE: # OS environment variables take precedence over variables from .env env.read_env(str(ROOT_DIR.path('.env'))) # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = env.bool('DJANGO_DEBUG', False) # Local time zone. Choices are # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # though not all of them may be available with every OS. # In Windows, this must be set to your system time zone. TIME_ZONE = 'UTC' # https://docs.djangoproject.com/en/dev/ref/settings/#language-code LANGUAGE_CODE = 'en-us' # https://docs.djangoproject.com/en/dev/ref/settings/#site-id SITE_ID = 1 # https://docs.djangoproject.com/en/dev/ref/settings/#use-i18n USE_I18N = True # https://docs.djangoproject.com/en/dev/ref/settings/#use-l10n USE_L10N = True # https://docs.djangoproject.com/en/dev/ref/settings/#use-tz USE_TZ = True # DATABASES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#databases DATABASES = { 'default': env.db('DATABASE_URL', default='postgres:///algerian_library'), } DATABASES['default']['ATOMIC_REQUESTS'] = True # URLS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#root-urlconf ROOT_URLCONF = 'config.urls' # https://docs.djangoproject.com/en/dev/ref/settings/#wsgi-application WSGI_APPLICATION = 'config.wsgi.application' # APPS # ------------------------------------------------------------------------------ DJANGO_APPS = [ 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', # 'django.contrib.humanize', # Handy template tags 'django.contrib.admin', ] THIRD_PARTY_APPS = [ 'crispy_forms', 'allauth', 'allauth.account', 'allauth.socialaccount', 'rest_framework', ] LOCAL_APPS = [ 'algerian_library.users.apps.UsersAppConfig', 'catalog.apps.CatalogConfig', ] # https://docs.djangoproject.com/en/dev/ref/settings/#installed-apps INSTALLED_APPS = DJANGO_APPS + THIRD_PARTY_APPS + LOCAL_APPS # MIGRATIONS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#migration-modules MIGRATION_MODULES = { 'sites': 'algerian_library.contrib.sites.migrations' } # AUTHENTICATION # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#authentication-backends AUTHENTICATION_BACKENDS = [ 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend', ] # https://docs.djangoproject.com/en/dev/ref/settings/#auth-user-model AUTH_USER_MODEL = 'users.User' # https://docs.djangoproject.com/en/dev/ref/settings/#login-redirect-url LOGIN_REDIRECT_URL = 'users:redirect' # https://docs.djangoproject.com/en/dev/ref/settings/#login-url LOGIN_URL = 'account_login' # PASSWORDS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#password-hashers PASSWORD_HASHERS = [ # https://docs.djangoproject.com/en/dev/topics/auth/passwords/#using-argon2-with-django 'django.contrib.auth.hashers.Argon2PasswordHasher', 'django.contrib.auth.hashers.PBKDF2PasswordHasher', 'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher', 'django.contrib.auth.hashers.BCryptSHA256PasswordHasher', 'django.contrib.auth.hashers.BCryptPasswordHasher', ] # https://docs.djangoproject.com/en/dev/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # MIDDLEWARE # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#middleware MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] # STATIC # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#static-root STATIC_ROOT = str(ROOT_DIR('staticfiles')) # https://docs.djangoproject.com/en/dev/ref/settings/#static-url STATIC_URL = '/static/' # https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#std:setting-STATICFILES_DIRS STATICFILES_DIRS = [ str(APPS_DIR.path('static')), ] # https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#staticfiles-finders STATICFILES_FINDERS = [ 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ] # MEDIA # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#media-root MEDIA_ROOT = str(APPS_DIR('media')) # https://docs.djangoproject.com/en/dev/ref/settings/#media-url MEDIA_URL = '/media/' # TEMPLATES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES = [ { # https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-TEMPLATES-BACKEND 'BACKEND': 'django.template.backends.django.DjangoTemplates', # https://docs.djangoproject.com/en/dev/ref/settings/#template-dirs 'DIRS': [ str(APPS_DIR.path('templates')), ], 'OPTIONS': { # https://docs.djangoproject.com/en/dev/ref/settings/#template-debug 'debug': DEBUG, # https://docs.djangoproject.com/en/dev/ref/settings/#template-loaders # https://docs.djangoproject.com/en/dev/ref/templates/api/#loader-types 'loaders': [ 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ], # https://docs.djangoproject.com/en/dev/ref/settings/#template-context-processors 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.template.context_processors.i18n', 'django.template.context_processors.media', 'django.template.context_processors.static', 'django.template.context_processors.tz', 'django.contrib.messages.context_processors.messages', ], }, }, ] # http://django-crispy-forms.readthedocs.io/en/latest/install.html#template-packs CRISPY_TEMPLATE_PACK = 'bootstrap4' # FIXTURES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#fixture-dirs FIXTURE_DIRS = ( str(APPS_DIR.path('fixtures')), ) # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = env('DJANGO_EMAIL_BACKEND', default='django.core.mail.backends.smtp.EmailBackend') # ADMIN # ------------------------------------------------------------------------------ # Django Admin URL. ADMIN_URL = 'admin/' # https://docs.djangoproject.com/en/dev/ref/settings/#admins ADMINS = [ ("""Achour Ait Hamiche""", 'axchouraithamiche40@gmail.com'), ] # https://docs.djangoproject.com/en/dev/ref/settings/#managers MANAGERS = ADMINS # django-allauth # ------------------------------------------------------------------------------ ACCOUNT_ALLOW_REGISTRATION = env.bool('DJANGO_ACCOUNT_ALLOW_REGISTRATION', True) # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_AUTHENTICATION_METHOD = 'username' # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_EMAIL_REQUIRED = True # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_EMAIL_VERIFICATION = 'mandatory' # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_ADAPTER = 'algerian_library.users.adapters.AccountAdapter' # https://django-allauth.readthedocs.io/en/latest/configuration.html SOCIALACCOUNT_ADAPTER = 'algerian_library.users.adapters.SocialAccountAdapter' # Your stuff... # ------------------------------------------------------------------------------
# Zbiór przedziałów [(a[1], b[1]), ..., (a[n], b[n])], każdy przedział należy do [0, 1]. Opisać algorytm # który sprawdzi czy jest możliwy taki wybór przedziałów, aby cały przedział [0, 1] zawierał się # w wybranych odcinkach. Przedział ma składać się z jak najmniejszej ilości odcinków. def minimum_intervals(T): T.sort(key=lambda x: x[0]) i = 0 end = 0 result = [] while i < len(T) and end != 1: actual_start = T[i][0] actual_end = T[i][1] flag = True while i != len(T) and T[i][0] <= end: if actual_end < T[i][1]: actual_start = T[i][0] actual_end = T[i][1] i += 1 flag = False if flag: i += 1 result.append((actual_start, actual_end)) end = actual_end return result T = [[0, 0.4], [0, 0.35], [0.2, 0.6], [0.4, 0.6], [0.5, 0.6], [0.1, 0.9], [0.85, 1], [0.9, 1], [0.3, 0.4], [0.35, 0.4], [0.2, 0.75], [0.4, 1], [0.55, 1], [0.6, 1], [0.9, 1]] print(minimum_intervals(T))
# Copyright 2014 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from proboscis.asserts import assert_equal from proboscis import test from fuelweb_test.helpers import common from fuelweb_test.helpers import os_actions from fuelweb_test import settings from fuelweb_test import logger from fuelweb_test.tests import base_test_case @test(groups=["thread_non_func_1"]) class DeployHAOneControllerMasterNodeFail(base_test_case.TestBasic): @test(depends_on=[base_test_case.SetupEnvironment.prepare_slaves_3], groups=["non_functional", "deploy_ha_one_controller_flat_master_node_fail"]) def deploy_ha_one_controller_flat_master_node_fail(self): """Deploy HA cluster with nova-network and check it without master node Scenario: 1. Create cluster in ha mode with 1 controller 2. Add 1 node with controller role 3. Add 1 node with compute role 4. Deploy the cluster 5. Validate cluster was set up correctly, there are no dead services, there are no errors in logs 6. Verify networks 7. Verify network configuration on controller 8. Run OSTF 9. Shut down master node 10. Run openstack verification Duration 1000m """ self.env.revert_snapshot("ready_with_3_slaves") cluster_id = self.fuel_web.create_cluster( name=self.__class__.__name__, mode=settings.DEPLOYMENT_MODE ) self.fuel_web.update_nodes( cluster_id, { 'slave-01': ['controller'], 'slave-02': ['compute'] } ) self.fuel_web.deploy_cluster_wait(cluster_id) controller_ip = self.fuel_web.get_public_vip(cluster_id) os_conn = os_actions.OpenStackActions(controller_ip) self.fuel_web.assert_cluster_ready( os_conn, smiles_count=6, networks_count=1, timeout=300) self.fuel_web.verify_network(cluster_id) logger.info('PASS DEPLOYMENT') self.fuel_web.run_ostf( cluster_id=cluster_id) logger.info('PASS OSTF') logger.info('Destroy admin node...') self.env.nodes().admin.destroy() logger.info('Admin node destroyed') common_func = common.Common( controller_ip, settings.SERVTEST_USERNAME, settings.SERVTEST_PASSWORD, settings.SERVTEST_TENANT) # create instance server = common_func.create_instance() # get_instance details details = common_func.get_instance_detail(server) assert_equal(details.name, 'test_instance') # Check if instacne active common_func.verify_instance_status(server, 'ACTIVE') # delete instance common_func.delete_instance(server)
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This python program saves test XMLs from denon receiver to current directory. Usage: python denon_receiver_xml.py --host 192.168.0.250 --prefix AVR-X4100W :copyright: (c) 2017 by Oliver Goetz. :license: MIT, see LICENSE for more details. """ import argparse from io import BytesIO import requests import xml.etree.ElementTree as ET from collections import namedtuple XML = namedtuple("XML", ["port", "type", "path", "tags", "filename"]) SAVED_XML = [XML("80", "post", "/goform/AppCommand.xml", ["GetFriendlyName"], "AppCommand-setup"), XML("80", "post", "/goform/AppCommand.xml", ["GetAllZonePowerStatus", "GetAllZoneSource", "GetRenameSource", "GetDeletedSource", "GetSurroundModeStatus", "GetToneControl", "GetAllZoneVolume", "GetAllZoneMuteStatus"], "AppCommand-update"), XML("80", "get", "/goform/Deviceinfo.xml", [], "Deviceinfo.xml"), XML("80", "get", "/goform/formMainZone_MainZoneXmlStatus.xml", [], "formMainZone_MainZoneXmlStatus"), XML("80", "get", "/goform/formMainZone_MainZoneXml.xml", [], "formMainZone_MainZoneXml"), XML("80", "get", "/goform/formNetAudio_StatusXml.xml", [], "formNetAudio_StatusXml"), XML("80", "get", "/goform/formTuner_TunerXml.xml", [], "formTuner_TunerXml"), XML("80", "get", "/goform/formTuner_HdXml.xml", [], "formTuner_HdXml"), XML("80", "get", "/goform/formZone2_Zone2XmlStatus.xml", [], "formZone2_Zone2XmlStatus"), XML("80", "get", "/goform/formZone3_Zone3XmlStatus.xml", [], "formZone3_Zone3XmlStatus"), XML("8080", "post", "/goform/AppCommand.xml", ["GetFriendlyName"], "AppCommand-setup"), XML("8080", "post", "/goform/AppCommand.xml", ["GetAllZonePowerStatus", "GetAllZoneSource", "GetRenameSource", "GetDeletedSource", "GetSurroundModeStatus", "GetToneControl", "GetAllZoneVolume", "GetAllZoneMuteStatus"], "AppCommand-update"), XML("8080", "get", "/goform/Deviceinfo.xml", [], "Deviceinfo.xml"), XML("8080", "get", "/goform/formMainZone_MainZoneXmlStatus.xml", [], "formMainZone_MainZoneXmlStatus"), XML("8080", "get", "/goform/formMainZone_MainZoneXml.xml", [], "formMainZone_MainZoneXml"), XML("8080", "get", "/goform/formNetAudio_StatusXml.xml", [], "formNetAudio_StatusXml"), XML("8080", "get", "/goform/formTuner_TunerXml.xml", [], "formTuner_TunerXml"), XML("8080", "get", "/goform/formTuner_HdXml.xml", [], "formTuner_HdXml"), XML("8080", "get", "/goform/formZone2_Zone2XmlStatus.xml", [], "formZone2_Zone2XmlStatus"), XML("8080", "get", "/goform/formZone3_Zone3XmlStatus.xml", [], "formZone3_Zone3XmlStatus")] def create_post_body(attribute_list): # Buffer XML body as binary IO body = BytesIO() chunks = [attribute_list[i:i+5] for i in range( 0, len(attribute_list), 5)] for i, chunk in enumerate(chunks): # Prepare POST XML body for AppCommand.xml post_root = ET.Element("tx") for attribute in chunk: # Append tags for each attribute item = ET.Element("cmd") item.set("id", "1") item.text = attribute post_root.append(item) post_tree = ET.ElementTree(post_root) post_tree.write(body, encoding="utf-8", xml_declaration=bool(i == 0)) body_bytes = body.getvalue() body.close() return body_bytes def http_post(host, port, path, tags, filename): filename = filename + "-" + str(port) data = create_post_body(tags) try: r = requests.post( "http://{host}:{port}/{path}".format( host=host, port=port, path=path), data=data) except requests.exceptions.ConnectionError: print("ConnectionError retrieving data from host {} port {} \ path {}".format(host, port, path)) filename = filename + "-ConnectionError.xml" with open("./{}".format(filename), "wb") as file: file.write("".encode()) except requests.exceptions.Timeout: print("Timeout retrieving data from host {} port {} path {}".format( host, port, path)) filename = filename + "-Timeout.xml" with open("./{}".format(filename), "wb") as file: file.write("".encode()) else: print("HTTP Status Code of {}: {}".format(path, r.status_code)) filename = filename + "-" + str(r.status_code) + ".xml" with open("./{}".format(filename), "wb") as file: file.write(r.content) def http_get(host, port, path, filename): filename = filename + "-" + str(port) try: r = requests.get( "http://{host}:{port}/{path}".format( host=host, port=port, path=path)) except requests.exceptions.ConnectionError: print("ConnectionError retrieving data from host {} path {}".format( host, path)) filename = filename + "-ConnectionError.xml" with open("./{}".format(filename), "wb") as file: file.write("".encode()) except requests.exceptions.Timeout: print("Timeout retrieving data from host {} path {}".format( host, path)) filename = filename + "-Timeout.xml" with open("./{}".format(filename), "wb") as file: file.write("".encode()) else: print("HTTP Status Code of {}: {}".format(path, r.status_code)) filename = filename + "-" + str(r.status_code) + ".xml" with open("./{}".format(filename), "wb") as file: file.write(r.content) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--host', type=str, default='192.168.0.250', help='host of Denon AVR receiver') parser.add_argument('--prefix', type=str, default='AVR', help='prefix of filenames to be saved') args = parser.parse_args() for entry in SAVED_XML: if entry.type == "post": http_post(args.host, entry.port, entry.path, entry.tags, "{}-{}".format(args.prefix, entry.filename)) elif entry.type == "get": http_get(args.host, entry.port, entry.path, "{}-{}".format( args.prefix, entry.filename)) else: print("wrong type, only \"get\" and \"post\" are allowed")
import logging from sqlalchemy import Column, INT from sqlalchemy_utc import UtcDateTime from pajbot import utils from pajbot.managers.db import Base log = logging.getLogger(__name__) class Roulette(Base): __tablename__ = "roulette" id = Column(INT, primary_key=True) user_id = Column(INT, index=True, nullable=False) created_at = Column(UtcDateTime(), nullable=False) points = Column(INT, nullable=False) def __init__(self, user_id, points): self.user_id = user_id self.created_at = utils.now() self.points = points
# python3 import sys def fib_slow(n): '''Dumb (slow) example solution. ''' if (n <= 1): return n return fib_slow(n - 1) + fib_slow(n - 2) def fib_countup(n): '''Less-dumb 'count up as you go' solution. ''' if (n <= 1): return n x, y = 0, 1 for i in range(n): x, y = y, x + y return x def fib_memoize(n, saved={0: 0, 1: 1}): '''Use memoization to speed things up. ''' if (n <= 1): return n if n not in saved: saved[n] = fib_memoize(n-1, saved) + fib_memoize(n-2, saved) return saved[n] def fib_matrix(n): '''Use matrix multiplication to solve it. Ref: https://en.wikipedia.org/wiki/Fibonacci_number#Matrix_form ''' if (n <= 1): return n v1, v2, v3 = 1, 1, 0 # Initialise a matrix [[1,1],[1,0]] for rec in bin(n)[3:]: # Raise it to the nth power calc = v2 * v2 v1, v2, v3 = v1 * v1 + calc, (v1 + v3) * v2, calc + v3 * v3 if rec == '1': v1, v2, v3 = v1 + v2, v1, v2 return v2 def fib_fast_double(n): '''Use fast doubling method. Ref: https://www.nayuki.io/page/fast-fibonacci-algorithms ''' if n == 0: return (0, 1) else: a, b = fib_fast_double(n // 2) c = a * (b * 2 - a) d = a * a + b * b if n % 2 == 0: return (c, d) else: return (d, c + d) def fibonacci(n): """Returns F(n) """ if n < 0: raise ValueError return fib_fast_double(n)[0] if __name__ == '__main__': n = int(sys.stdin.read()) print(fibonacci(n))
''' Copyright 2017-present, Airbnb Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import json import os from collections import OrderedDict class ConfigError(Exception): pass def load_config(conf_dir='conf/'): """Load the configuration for StreamAlert. All configuration files live in the `conf` directory in JSON format. `sources` define a colleciton of AWS services (S3, Kinesis) supported as inputs to StreamAlert, specific entities (S3 buckets, Kinesis streams), and log types emitted from them. `logs` declare the schema for the listed log types in `sources`. Each key denotes the name of the log type, and includes 'keys' used to match rules to log fields. """ conf_files = { 'sources': 'sources.json', 'logs': 'logs.json' } config = {} for desc, filename in conf_files.iteritems(): with open(os.path.join(conf_dir, filename)) as data: try: config[desc] = json.load(data, object_pairs_hook=OrderedDict) except ValueError: raise ConfigError('Invalid JSON format for {}.json'.format(desc)) if validate_config(config): return config def validate_config(config): """Validate the StreamAlert configuration contains a valid structure. Checks for `logs.json`: - each log has a schema and parser declared Checks for `sources.json` - the sources contains either kinesis or s3 keys - each sources has a list of logs declared """ for config_key, settings in config.iteritems(): # check log declarations if config_key == 'logs': for log, attrs in settings.iteritems(): if not {'schema', 'parser'}.issubset(set(attrs.keys())): raise ConfigError('Schema or parser missing for {}'.format(log)) # check sources attributes elif config_key == 'sources': if not set(settings.keys()).issubset({'kinesis', 's3', 'sns'}): raise ConfigError('Sources missing \'kinesis\', \'s3\', or \'sns\' keys') for log, attrs in settings.iteritems(): for entity, entity_attrs in attrs.iteritems(): if 'logs' not in set(entity_attrs.keys()): raise ConfigError('Logs are not declared for {}'.format(entity)) if len(entity_attrs['logs']) == 0: raise ConfigError('Log list is empty for {}'.format(entity)) return True def load_env(context): """Get the current environment for the running Lambda function. Parses the invoked_function_arn from the given context object to get the name of the currently running alias (either production or staging) and the name of the function. Example: arn:aws:lambda:aws-region:acct-id:function:stream_alert:production Args: context: The AWS Lambda context object. Returns: {'lambda_region': 'region_name', 'account_id': <ACCOUNT_ID>, 'lambda_function_name': 'function_name', 'lambda_alias': 'qualifier'} """ env = {} if context: arn = context.invoked_function_arn.split(':') env['lambda_region'] = arn[3] env['account_id'] = arn[4] env['lambda_function_name'] = arn[6] env['lambda_alias'] = arn[7] else: env['lambda_region'] = 'us-east-1' env['account_id'] = '123456789012' env['lambda_function_name'] = 'test_streamalert_rule_processor' env['lambda_alias'] = 'development' return env
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import datetime import os import sys import time import traceback import uuid import testtools import xvfbwrapper from openstack_dashboard.test.integration_tests import config from openstack_dashboard.test.integration_tests.pages import loginpage from openstack_dashboard.test.integration_tests import webdriver ROOT_PATH = os.path.dirname(os.path.abspath(__file__)) if ROOT_PATH not in sys.path: sys.path.append(ROOT_PATH) def gen_random_resource_name(resource="", timestamp=True): """Generate random resource name using uuid and timestamp. Input fields are usually limited to 255 or 80 characters hence their provide enough space for quite long resource names, but it might be the case that maximum field length is quite restricted, it is then necessary to consider using shorter resource argument or avoid using timestamp by setting timestamp argument to False. """ fields = ["horizon"] if resource: fields.append(resource) if timestamp: tstamp = time.strftime("%d-%m-%H-%M-%S") fields.append(tstamp) fields.append(str(uuid.uuid4()).replace("-", "")) return "_".join(fields) class BaseTestCase(testtools.TestCase): CONFIG = config.get_config() def setUp(self): if os.environ.get('INTEGRATION_TESTS', False): # Start a virtual display server for running the tests headless. if os.environ.get('SELENIUM_HEADLESS', False): self.vdisplay = xvfbwrapper.Xvfb(width=1280, height=720) args = [] # workaround for memory leak in Xvfb taken from: # http://blog.jeffterrace.com/2012/07/xvfb-memory-leak-workaround.html args.append("-noreset") # disables X access control args.append("-ac") if hasattr(self.vdisplay, 'extra_xvfb_args'): # xvfbwrapper 0.2.8 or newer self.vdisplay.extra_xvfb_args.extend(args) else: self.vdisplay.xvfb_cmd.extend(args) self.vdisplay.start() # Start the Selenium webdriver and setup configuration. self.driver = webdriver.WebDriverWrapper() self.driver.maximize_window() self.driver.implicitly_wait(self.CONFIG.selenium.implicit_wait) self.driver.set_page_load_timeout( self.CONFIG.selenium.page_timeout) self.addOnException(self._dump_page_html_source) self.addOnException(self._save_screenshot) else: msg = "The INTEGRATION_TESTS env variable is not set." raise self.skipException(msg) super(BaseTestCase, self).setUp() def _dump_page_html_source(self, exc_info): content = None try: pg_source = self._get_page_html_source() content = testtools.content.Content( testtools.content_type.ContentType('text', 'html'), lambda: pg_source) except Exception: exc_traceback = traceback.format_exc() content = testtools.content.text_content(exc_traceback) finally: self.addDetail("PageHTMLSource.html", content) def _save_screenshot(self, exc_info): screenshot_dir = os.path.join( ROOT_PATH, self.CONFIG.selenium.screenshots_directory) if not os.path.exists(screenshot_dir): os.makedirs(screenshot_dir) date_string = datetime.datetime.now().strftime( '%Y.%m.%d-%H%M%S') test_name = self._testMethodName name = '%s_%s.png' % (test_name, date_string) filename = os.path.join(screenshot_dir, name) self.driver.get_screenshot_as_file(filename) content = testtools.content.text_content(filename) self.addDetail("Screenshot", content) def _get_page_html_source(self): """Gets html page source. self.driver.page_source is not used on purpose because it does not display html code generated/changed by javascript. """ html_elem = self.driver.find_element_by_tag_name("html") return html_elem.get_attribute("innerHTML").encode("UTF-8") def tearDown(self): if os.environ.get('INTEGRATION_TESTS', False): self.driver.quit() if hasattr(self, 'vdisplay'): self.vdisplay.stop() super(BaseTestCase, self).tearDown() class TestCase(BaseTestCase): TEST_USER_NAME = BaseTestCase.CONFIG.identity.username TEST_PASSWORD = BaseTestCase.CONFIG.identity.password def setUp(self): super(TestCase, self).setUp() self.login_pg = loginpage.LoginPage(self.driver, self.CONFIG) self.login_pg.go_to_login_page() self.home_pg = self.login_pg.login(self.TEST_USER_NAME, self.TEST_PASSWORD) def tearDown(self): try: if self.home_pg.is_logged_in: self.home_pg.go_to_home_page() self.home_pg.log_out() finally: super(TestCase, self).tearDown() class AdminTestCase(TestCase): TEST_USER_NAME = TestCase.CONFIG.identity.admin_username TEST_PASSWORD = TestCase.CONFIG.identity.admin_password
# Generated by Django 2.2.12 on 2020-05-01 03:52 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('issues', '0005_auto_20200501_0350'), ] operations = [ migrations.AlterField( model_name='issue', name='assignee', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='assigned_to', to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='issue', name='linked_to', field=models.ManyToManyField(blank=True, related_name='_issue_linked_to_+', to='issues.Issue'), ), ]
# -*- coding: utf-8 -*- import xml.etree.ElementTree as ET import unittest from context import xml_bibs as xb class TestGetSubjectFields(unittest.TestCase): """Tests parsing of subjects from marcxml""" def setUp(self): tree = ET.parse("sample_marcxml.xml") self.data1 = tree.getroot() tree = ET.parse("missing_tags_sample_marcxml.xml") self.data2 = tree.getroot() def test_none(self): self.assertEqual(xb.get_subject_fields(None), {}) def test_missing_tag(self): self.assertEqual(xb.get_subject_fields(self.data2), {}) def test_present_600_tag(self): self.assertEqual(xb.get_subject_fields(self.data1), {"600": "Elizabeth II"}) class TestGetTag082(unittest.TestCase): """Tests parsing 082 tag subfield a""" def setUp(self): tree = ET.parse("sample_marcxml.xml") self.data1 = tree.getroot() tree = ET.parse("missing_tags_sample_marcxml.xml") self.data2 = tree.getroot() def test_none(self): self.assertIsNone(xb.get_tag_082(None)) def test_missing_tag(self): self.assertIsNone(xb.get_tag_082(self.data2)) def test_found_tag(self): self.assertEqual(xb.get_tag_082(self.data1), "973.9/092/2") if __name__ == "__main__": unittest.main()
import pickle import argparse import pandas as pd import numpy as np import math from tqdm import tqdm from sklearn import decomposition CENTER_X = int(960 / 3 / 2) CENTER_Y = int(540 / 3 / 2) # CENTER_X = 0 # CENTER_Y = 0 def load_data(path, data_size=None): with open(path, 'rb') as f: data = pickle.load(f) if data_size != -1: dataset = data[:data_size] else: dataset = data[:] return dataset def save_data(path, data): with open(path, 'wb') as f: pickle.dump(data, f) ''' filling empty coordination, relocate landmark position, and filtering landmarks which have abnormal pulpil coordination ''' def run_fill_filter(eye_dataset): for ed in tqdm(eye_dataset): # preprocessing landmarks # print('[INFO] Current video: {}'.format(ed['vid'])) for clip_info in ed['clip_info']: landmarks = clip_info['landmarks'] filled_landmarks = [] for landmark in landmarks: ci_df = pd.DataFrame(np.array(landmark)) ci_df = ci_df.replace(0, np.nan) ci_df = ci_df.fillna(method='ffill') # fill NaN values in dataset ci_df = ci_df.rolling(3).mean() # moving average filtering temp_lm = [] for landmark in ci_df.values.tolist(): filled = [int(lm) for lm in landmark if not(np.isnan(lm))] if len(filled) == 50: # centering diff_x = CENTER_X - filled[48] diff_y = CENTER_Y - filled[49] for f_i in range(0, len(filled), 2): filled[f_i] += diff_x filled[f_i+1] += diff_y # check right pupil is outside of eye region condition1 = filled[0] > filled[4] and filled[0] < filled[10] condition2 = filled[1] > filled[7] and filled[1] > filled[9] condition3 = filled[1] < filled[13] and filled[1] < filled[14] if condition1 and condition2 and condition3: temp_lm.append(filled) filled_landmarks.append(temp_lm) clip_info['landmarks'] = filled_landmarks return eye_dataset ''' Normalize eye expression motion scale over whole dataset. To avoid pulpil dislocation, we use same vector on right and left pulpil. ''' def run_normalization(eye_dataset): eb_standard_len = 100 def get_dist(x1, y1, x2, y2): return np.sqrt((x1-x2) ** 2 + (y1- y2) ** 2) def get_theta(var_x, var_y, fix_x, fix_y): return math.atan2(var_y - fix_y, var_x - fix_x) def get_new_coor(theta, dist, point): return dist * np.array([math.cos(theta), math.sin(theta)]) + np.array([point[0], point[1]]) def run_len_norm(var_x, var_y, fix_x, fix_y, expected_len): angle = get_theta(var_x, var_y, fix_x, fix_y) new_coor = get_new_coor(angle, expected_len, [fix_x, fix_y]) return new_coor for ed in tqdm(eye_dataset): # preprocessing landmarks # print('[INFO] Current video: {}'.format(ed['vid'])) for clip_info in ed['clip_info']: tmp_landmarks = [] for landmark in clip_info['landmarks']: tmp_landmark = [] for lm in landmark: # calculate different ratio with standard length right_len_ratio = eb_standard_len / get_dist(lm[46], lm[47], lm[48], lm[49]) left_len_ratio = eb_standard_len / get_dist(lm[28], lm[29], lm[48], lm[49]) len_ratio = (right_len_ratio + left_len_ratio) / 2 fix_x, fix_y = lm[48], lm[49] new_coor_list = [] for lm_i in range(0, len(lm[:48]), 2): new_coor = run_len_norm(lm[lm_i], lm[lm_i+1], fix_x, fix_y, get_dist(lm[lm_i], lm[lm_i+1], fix_x, fix_y) * len_ratio) new_coor_list += [int(new_coor[0]), int(new_coor[1])] # pupil preprocessing right_theta = get_theta(lm[0], lm[1], lm[6], lm[7]) right_dist = get_dist(lm[0], lm[1], lm[6], lm[7]) left_new_pulpil = get_new_coor(right_theta, right_dist, [lm[18], lm[19]]) lm[2] = int(left_new_pulpil[0]) lm[3] = int(left_new_pulpil[1]) new_coor_list += [fix_x, fix_y] tmp_landmark.append(new_coor_list) tmp_landmarks.append(tmp_landmark) clip_info['landmarks'] = tmp_landmarks return eye_dataset ''' Run PCA. We set 7 components to run pca. ''' def run_estimator(eye_dataset, opt): landmark_list = [] for ed in eye_dataset: for clip_info in ed['clip_info']: for clip_landmarks in clip_info['landmarks']: for landmarks in clip_landmarks: landmark_list.append(landmarks) landmark_array = np.array(landmark_list) n_samples, n_features = landmark_array.shape print('[INFO] n_samples:{}, n_features:{}'.format(n_samples, n_features)) print('[INFO] Estimated running time: {:0.2f} hrs with {} fps'.format(n_samples/opt.fps/60/60, opt.fps)) data = landmark_array[:, :-2] estimator = decomposition.PCA(opt.n_components, svd_solver='randomized', whiten=True) estimator.fit(data) var_ratio = estimator.explained_variance_ratio_ print('[INFO] {} number of components explain {:0.2f} of original dataset.'.format(opt.n_components, np.sum(var_ratio))) print('[INFO] Without first and seconde axis, rest of hyperplain consists of {:0.2f} of original dataset.'.format(np.sum(var_ratio[3:]))) return estimator ''' Based on learned PCA eigen vectors (7 hyperplanes that can explain original dataset), We transform 50 dimention to 7 dimention to represent eye expression. Due to first and second egien vectors represent rotating motion in our pca space, we make these values to zero. ''' def run_transform(eye_dataset, estimator, opt): for ed in tqdm(eye_dataset): for clip_info in ed['clip_info']: landmarks = clip_info['landmarks'] transformed_landmarks = [] for landmark in landmarks: tmp_trans = [] for lm in landmark: transformed_array = estimator.transform(np.array([lm[:-2]])) transformed_list = transformed_array.tolist()[0] if opt.is_rotation_killed: # we killed pca hyperplanes which have a rotation # transformed_list[0] = int(transformed_list[0]/3) # transformed_list[1] = int(transformed_list[1]/3) transformed_list[0] = 0 transformed_list[1] = 0 tmp_trans.append(transformed_list) transformed_landmarks.append(tmp_trans) clip_info['landmarks'] = transformed_landmarks return eye_dataset def main(): parser = argparse.ArgumentParser() parser.add_argument('-dataset_path', default='./dataset') parser.add_argument('-data_size', type=int, default=-1) # -1 means whole dataset parser.add_argument('-fps', type=int, default=10) parser.add_argument('-n_components', type=int, default=7) parser.add_argument('-is_rotation_killed', type=bool, default=True) opt = parser.parse_args() eye_dataset = load_data('{}/eye_motion_dataset.pickle'.format(opt.dataset_path), opt.data_size) print('[INFO] Dataset length: {}'.format(len(eye_dataset))) print('[INFO] Filling, filtering and centering is now processing.') eye_dataset = run_fill_filter(eye_dataset) print('[INFO] Normalization is now processing.') eye_dataset = run_normalization(eye_dataset) print('[INFO] Estimator is now running.') estimator = run_estimator(eye_dataset, opt) print('[INFO] Landmarks are now transforming.') eye_dataset = run_transform(eye_dataset, estimator, opt) # save processed dataset processed_dataset = {'eye_dataset': eye_dataset, 'estimator': estimator, } save_path = '{}/processed_eye_motion_dataset_pca_{}.pickle'.format(opt.dataset_path, estimator.n_components) print('[INFO] Save preprocessed dataset at {}'.format(save_path)) save_data(save_path, processed_dataset) if __name__ == '__main__': main()
#!/usr/bin/env python3 ## How many clusters have more than one organisms as it's members import sys import pandas as pd import logging def main(): clstr_table = sys.argv[1] output = sys.argv[2] clstr_df = pd.read_table(clstr_table, header=0) clstr_df["organism"] = clstr_df["id"].apply(lambda x: x.split(":")[2].split("_")[0]) summ_df = clstr_df.groupby("clstr").agg( num_organisms=("organism", pd.Series.nunique), organism_list=("organism", set) ) close_strains = set() for row in summ_df.query("num_organisms > 1").itertuples(index=False): close_strains.update(row.organism_list) logging.info( f"There are {len(close_strains)} strains in the community for which another strain exists with an identical V3-V4 region" ) summ_df["organism_list"] = summ_df["organism_list"].apply( lambda x: "; ".join(set(x)) ) summ_df = summ_df.sort_values("num_organisms", ascending=False) summ_df.to_csv(output) if __name__ == "__main__": logging.basicConfig( level=logging.INFO, format="%(asctime)s\t[%(levelname)s]:\t%(message)s", ) main()
from http import HTTPStatus from rest_framework import views, viewsets from rest_framework.exceptions import ParseError from rest_framework.request import Request from rest_framework.response import Response from scraper import models, serializers, tasks from scraper.utils import get_random_working_proxy class WebsiteViewSet(viewsets.ModelViewSet): queryset = models.Website.objects.all() serializer_class = serializers.WebsiteSerializer filterset_fields = ("is_active",) search_field = ("name", "code", "url") ordering_fields = ("name", "code", "id") class PageViewSet(viewsets.ModelViewSet): queryset = models.Page.objects.all() serializer_class = serializers.PageSerializer filterset_fields = ("is_active", "has_js") search_field = ("site__name", "site__code", "path") ordering_fields = ("site", "id") class ProxyViewSet(viewsets.ModelViewSet): queryset = models.Proxy.objects.all() serializer_class = serializers.ProxySerializer filterset_fields = ("is_active", "is_dead", "anonymity", "protocol") search_field = ("ip", "port", "country") ordering_fields = ("id", "ip", "port", "country") class ScrapeSitesAPI(views.APIView): def post(self, request): task = tasks.scrape_sites.apply_async() return Response({"task_id": task.id, "status": task.status}) class CheckProxiesAPI(views.APIView): def post(self, request): task = tasks.check_proxies.apply_async() return Response({"task_id": task.id, "status": task.status}) class GetProxyAPI(views.APIView): def get_proxy( self, output: str = "dict", test_urls: list or tuple = None ) -> Response: result = get_random_working_proxy(output="dict", test_urls=test_urls) if result: return Response( {"result": result, "status": "SUCCESS"}, status=HTTPStatus.OK ) # 200 OK else: return Response( {"status": "NO PROXY FOUND"}, status=HTTPStatus.NO_CONTENT ) # 204 No content def get(self, request: Request): return self.get_proxy() def post(self, request: Request): test_urls = request.POST.get("test_urls", None) if not test_urls: raise ParseError("Must provide test_urls for proxy check") if isinstance(test_urls, str): test_urls = (test_urls,) return self.get_proxy(test_urls=test_urls)
from ..apibits import * from ..endpoints import GeneratorsEndpoint from ..endpoints import GeneratorRowsEndpoint class Generator(ApiResource): @classmethod def all(cls, params={}, headers={}): res = cls.default_client().generators().all(params, headers) return res @classmethod def retrieve(cls, generator_id, params={}, headers={}): res = cls.default_client().generators().retrieve(generator_id, params, headers) return res @classmethod def update(cls, generator_id, params={}, headers={}): res = cls.default_client().generators().update(generator_id, params, headers) return res @classmethod def create(cls, params={}, headers={}): res = cls.default_client().generators().create(params, headers) return res def refresh(self, params={}, headers={}): res = self.get_client().generators().retrieve(self.id, params, headers) return self.refresh_from(res.json, res.api_method, res.client) def delete(self, params={}, headers={}): res = self.get_client().generators().delete(self.id, params, headers) return res def rows(self): from ..endpoints import GeneratorRowsEndpoint return GeneratorRowsEndpoint(self.client, self) # Everything below here is used behind the scenes. def __init__(self, *args, **kwargs): super(Generator, self).__init__(*args, **kwargs) ApiResource.register_api_subclass(self, "generator") _api_attributes = { "columns" : {}, "created_at" : {}, "data" : {}, "description" : {}, "generator_type" : {}, "id" : {}, "name" : {}, "row_count" : {}, }
### # Copyright (c) 2005, Jeremiah Fincher # Copyright (c) 2010-2021, The Limnoria Contributors # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions, and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the author of this software nor the name of # contributors to this software may be used to endorse or promote products # derived from this software without specific prior written consent. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ### """ Handles relaying between networks. """ import supybot import supybot.world as world # Use this for the version of this plugin. You may wish to put a CVS keyword # in here if you're keeping the plugin in CVS or some similar system. __version__ = "%%VERSION%%" __author__ = supybot.authors.jemfinch __maintainer__ = supybot.authors.limnoria_core # This is a dictionary mapping supybot.Author instances to lists of # contributions. __contributors__ = {} from . import config from . import plugin from importlib import reload reload(plugin) # In case we're being reloaded. # Add more reloads here if you add third-party modules and want them to be # reloaded when this plugin is reloaded. Don't forget to import them as well! if world.testing: from . import test Class = plugin.Class configure = config.configure # vim:set shiftwidth=4 softtabstop=4 expandtab textwidth=79:
__copyright__ = "Copyright (c) 2020 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" # do not change this line manually # this is managed by git tag and updated on every release __version__ = '0.6.8' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.0.65' import platform import sys # do some os-wise patches if sys.version_info < (3, 7, 0): raise OSError('Jina requires Python 3.7 and above, but yours is %s' % sys.version_info) if sys.version_info >= (3, 8, 0) and platform.system() == 'Darwin': # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method set_start_method('fork') from datetime import datetime from types import SimpleNamespace import os # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' __uptime__ = datetime.now().strftime('%Y%m%d%H%M%S') # update on MacOS # 1. clean this tuple, # 2. grep -ohE "\'JINA_.*?\'" **/*.py | sort -u | sed "s/$/,/g" # 3. copy all lines EXCEPT the first (which is the grep command in the last line) __jina_env__ = ('JINA_ARRAY_QUANT', 'JINA_BINARY_DELIMITER', 'JINA_CONTRIB_MODULE', 'JINA_CONTRIB_MODULE_IS_LOADING', 'JINA_CONTROL_PORT', 'JINA_DB_COLLECTION', 'JINA_DB_HOSTNAME', 'JINA_DB_NAME', 'JINA_DB_PASSWORD', 'JINA_DB_USERNAME', 'JINA_DEFAULT_HOST', 'JINA_DISABLE_UVLOOP', 'JINA_EXECUTOR_WORKDIR', 'JINA_FULL_CLI', 'JINA_IPC_SOCK_TMP', 'JINA_LOG_CONFIG', 'JINA_LOG_NO_COLOR', 'JINA_POD_NAME', 'JINA_PROFILING', 'JINA_RANDOM_PORTS', 'JINA_SOCKET_HWM', 'JINA_TEST_GPU', 'JINA_TEST_PRETRAINED', 'JINA_VCS_VERSION', 'JINA_WARN_UNNAMED') __default_host__ = os.environ.get('JINA_DEFAULT_HOST', '0.0.0.0') __ready_msg__ = 'ready and listening' __stop_msg__ = 'terminated' __unable_to_load_pretrained_model_msg__ = 'Executor depending on pretrained model file could not find the pretrained model' __binary_delimiter__ = os.environ.get('JINA_BINARY_DELIMITER', '460841a0a8a430ae25d9ad7c1f048c57').encode() JINA_GLOBAL = SimpleNamespace() JINA_GLOBAL.imported = SimpleNamespace() JINA_GLOBAL.imported.executors = False JINA_GLOBAL.imported.drivers = False JINA_GLOBAL.imported.hub = False JINA_GLOBAL.logserver = SimpleNamespace() def import_classes(namespace: str, targets=None, show_import_table: bool = False, import_once: bool = False): """ Import all or selected executors into the runtime. This is called when Jina is first imported for registering the YAML constructor beforehand. It can be also used to import third-part or external executors. :param namespace: the namespace to import :param targets: the list of executor names to import :param show_import_table: show the import result as a table :param import_once: import everything only once, to avoid repeated import """ import os, re from .logging import default_logger if namespace == 'jina.executors': import_type = 'ExecutorType' if import_once and JINA_GLOBAL.imported.executors: return elif namespace == 'jina.drivers': import_type = 'DriverType' if import_once and JINA_GLOBAL.imported.drivers: return elif namespace == 'jina.hub': import_type = 'ExecutorType' if import_once and JINA_GLOBAL.imported.hub: return else: raise TypeError(f'namespace: {namespace} is unrecognized') from setuptools import find_packages import pkgutil from pkgutil import iter_modules try: path = os.path.dirname(pkgutil.get_loader(namespace).path) except AttributeError: if namespace == 'jina.hub': default_logger.debug(f'hub submodule is not initialized. Please try "git submodule update --init"') return {} modules = set() for info in iter_modules([path]): if (namespace != 'jina.hub' and not info.ispkg) or (namespace == 'jina.hub' and info.ispkg): modules.add('.'.join([namespace, info.name])) for pkg in find_packages(path): modules.add('.'.join([namespace, pkg])) pkgpath = path + '/' + pkg.replace('.', '/') for info in iter_modules([pkgpath]): if (namespace != 'jina.hub' and not info.ispkg) or (namespace == 'jina.hub' and info.ispkg): modules.add('.'.join([namespace, pkg, info.name])) # filter ignored_module_pattern = r'\.tests|\.api|\.bump_version' modules = {m for m in modules if not re.findall(ignored_module_pattern, m)} from collections import defaultdict load_stat = defaultdict(list) bad_imports = [] if isinstance(targets, str): targets = {targets} elif isinstance(targets, list): targets = set(targets) elif targets is None: targets = {} else: raise TypeError(f'target must be a set, but received {targets!r}') depend_tree = {} import importlib from .helper import colored for m in modules: try: mod = importlib.import_module(m) for k in dir(mod): # import the class if (getattr(mod, k).__class__.__name__ == import_type) and (not targets or k in targets): try: _c = getattr(mod, k) load_stat[m].append( (k, True, colored('▸', 'green').join(f'{vvv.__name__}' for vvv in _c.mro()[:-1][::-1]))) d = depend_tree for vvv in _c.mro()[:-1][::-1]: if vvv.__name__ not in d: d[vvv.__name__] = {} d = d[vvv.__name__] d['module'] = m if k in targets: targets.remove(k) if not targets: return # target execs are all found and loaded, return try: # load the default request for this executor if possible from .executors.requests import get_default_reqs get_default_reqs(type.mro(getattr(mod, k))) except ValueError: pass except Exception as ex: load_stat[m].append((k, False, ex)) bad_imports.append('.'.join([m, k])) if k in targets: raise ex # target class is found but not loaded, raise return except Exception as ex: load_stat[m].append(('', False, ex)) bad_imports.append(m) if targets: raise ImportError(f'{targets} can not be found in jina') if show_import_table: from .helper import print_load_table, print_dep_tree_rst print_load_table(load_stat) else: if bad_imports: if namespace != 'jina.hub': default_logger.error( f'theses modules or classes can not be imported {bad_imports}. ' f'You can use `jina check` to list all executors and drivers') else: default_logger.warning( f'due to the missing dependencies or bad implementations, {bad_imports} can not be imported ' f'if you are using these executors/drivers, they wont work. ' f'You can use `jina check` to list all executors and drivers') if namespace == 'jina.executors': JINA_GLOBAL.imported.executors = True elif namespace == 'jina.drivers': JINA_GLOBAL.imported.drivers = True elif namespace == 'jina.hub': JINA_GLOBAL.imported.hub = True return depend_tree # driver first, as executor may contain driver import_classes('jina.drivers', show_import_table=False, import_once=True) import_classes('jina.executors', show_import_table=False, import_once=True) import_classes('jina.hub', show_import_table=False, import_once=True) # manually install the default signal handler import signal signal.signal(signal.SIGINT, signal.default_int_handler) def set_nofile(nofile_atleast=4096): """ sets nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. """ try: import resource as res except ImportError: # Windows res = None from .logging import default_logger if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft default_logger.debug(f'setting soft & hard ulimit -n {soft} {hard}') try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft default_logger.warning(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: default_logger.warning('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) default_logger.debug(f'ulimit -n soft,hard: {soft} {hard}') return soft, hard set_nofile()
########################################################################### # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ########################################################################### contentCategory_Schema = [{ 'description': '', 'name': 'accountId', 'type': 'INT64', 'mode': 'NULLABLE' }, { 'description': '', 'name': 'id', 'type': 'INT64', 'mode': 'NULLABLE' }, { 'description': '', 'name': 'kind', 'type': 'STRING', 'mode': 'NULLABLE' }, { 'description': '', 'name': 'name', 'type': 'STRING', 'mode': 'NULLABLE' }]
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import time import numpy as np from arch.api.utils import log_utils from federatedml.evaluation import Evaluation from federatedml.ftl.data_util.common_data_util import overlapping_samples_converter, load_model_parameters, \ save_model_parameters, create_table, convert_instance_table_to_dict, convert_instance_table_to_array, \ add_random_mask_for_list_of_values, remove_random_mask_from_list_of_values from federatedml.ftl.data_util.log_util import create_shape_msg from federatedml.ftl.eggroll_computation.helper import decrypt_matrix from federatedml.ftl.encrypted_ftl import EncryptedFTLHostModel from federatedml.ftl.encryption.encryption import generate_encryption_key_pair, decrypt_scalar, decrypt_array from federatedml.ftl.faster_encrypted_ftl import FasterEncryptedFTLHostModel from federatedml.ftl.hetero_ftl.hetero_ftl_base import HeteroFTLParty from federatedml.ftl.plain_ftl import PlainFTLHostModel from federatedml.param.param import FTLModelParam from federatedml.util import consts from federatedml.util.transfer_variable import HeteroFTLTransferVariable LOGGER = log_utils.getLogger() class HeteroFTLHost(HeteroFTLParty): def __init__(self, host: PlainFTLHostModel, model_param: FTLModelParam, transfer_variable: HeteroFTLTransferVariable): super(HeteroFTLHost, self).__init__() self.host_model = host self.model_param = model_param self.transfer_variable = transfer_variable self.max_iter = model_param.max_iter self.n_iter_ = 0 def prepare_data(self, host_data): LOGGER.info("@ start host prepare data") host_features_dict, _, host_sample_indexes = convert_instance_table_to_dict(host_data) host_sample_indexes = np.array(host_sample_indexes) self._do_remote(host_sample_indexes, name=self.transfer_variable.host_sample_indexes.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.host_sample_indexes), role=consts.GUEST, idx=-1) guest_sample_indexes = self._do_get(name=self.transfer_variable.guest_sample_indexes.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.guest_sample_indexes), idx=-1)[0] host_features, overlap_indexes, _ = overlapping_samples_converter(host_features_dict, host_sample_indexes, guest_sample_indexes) return host_features, overlap_indexes def classified(self, prob_table, threshold): """ convert a probability table into a predicted class table. """ predict_table = prob_table.mapValues(lambda x: 1 if x > threshold else 0) return predict_table def evaluate(self, labels, pred_prob, pred_labels, evaluate_param): LOGGER.info("@ start host evaluate") predict_res = None if evaluate_param.classi_type == consts.BINARY: predict_res = pred_prob elif evaluate_param.classi_type == consts.MULTY: predict_res = pred_labels else: LOGGER.warning("unknown classification type, return None as evaluation results") eva = Evaluation(evaluate_param.classi_type) eva_report = eva.report(labels, predict_res, evaluate_param.metrics, evaluate_param.thresholds, evaluate_param.pos_label) LOGGER.info("@ evaluation report:" + str(eva_report)) return eva_report def predict(self, host_data, predict_param): LOGGER.info("@ start host predict") features, labels, instances_indexes = convert_instance_table_to_array(host_data) host_x = np.squeeze(features) LOGGER.debug("host_x: " + str(host_x.shape)) host_prob = self.host_model.predict(host_x) self._do_remote(host_prob, name=self.transfer_variable.host_prob.name, tag=self.transfer_variable.generate_transferid( self.transfer_variable.host_prob), role=consts.GUEST, idx=-1) pred_prob = self._do_get(name=self.transfer_variable.pred_prob.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.pred_prob), idx=-1)[0] pred_prob = np.squeeze(pred_prob) LOGGER.debug("pred_prob: " + str(pred_prob.shape)) pred_prob_table = create_table(pred_prob, instances_indexes) actual_label_table = create_table(labels, instances_indexes) pred_label_table = self.classified(pred_prob_table, predict_param.threshold) if predict_param.with_proba: predict_result = actual_label_table.join(pred_prob_table, lambda label, prob: (label if label > 0 else 0, prob)) predict_result = predict_result.join(pred_label_table, lambda x, y: (x[0], x[1], y)) else: predict_result = actual_label_table.join(pred_label_table, lambda a_label, p_label: (a_label, None, p_label)) return predict_result def load_model(self, model_table_name, model_namespace): LOGGER.info("@ load host model from name/ns" + ", " + str(model_table_name) + ", " + str(model_namespace)) model_parameters = load_model_parameters(model_table_name, model_namespace) self.host_model.restore_model(model_parameters) def save_model(self, model_table_name, model_namespace): LOGGER.info("@ save host model to name/ns" + ", " + str(model_table_name) + ", " + str(model_namespace)) _ = save_model_parameters(self.host_model.get_model_parameters(), model_table_name, model_namespace) class HeteroPlainFTLHost(HeteroFTLHost): def __init__(self, host: PlainFTLHostModel, model_param: FTLModelParam, transfer_variable: HeteroFTLTransferVariable): super(HeteroPlainFTLHost, self).__init__(host, model_param, transfer_variable) def fit(self, host_data): LOGGER.info("@ start host fit") host_x, overlap_indexes = self.prepare_data(host_data) LOGGER.debug("host_x: " + str(host_x.shape)) LOGGER.debug("overlap_indexes: " + str(len(overlap_indexes))) self.host_model.set_batch(host_x, overlap_indexes) while self.n_iter_ < self.max_iter: host_comp = self.host_model.send_components() self._do_remote(host_comp, name=self.transfer_variable.host_component_list.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.host_component_list, self.n_iter_), role=consts.GUEST, idx=-1) guest_comp = self._do_get(name=self.transfer_variable.guest_component_list.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.guest_component_list, self.n_iter_), idx=-1)[0] self.host_model.receive_components(guest_comp) is_stop = self._do_get(name=self.transfer_variable.is_stopped.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.is_stopped, self.n_iter_), idx=-1)[0] LOGGER.info("@ time: " + str(time.time()) + ", ep: " + str(self.n_iter_) + ", converged: " + str(is_stop)) self.n_iter_ += 1 if is_stop: break """ Centralized encryption scheme with an arbiter in the loop for decryption. """ class HeteroEncryptFTLHost(HeteroFTLHost): def __init__(self, host, model_param: FTLModelParam, transfer_variable: HeteroFTLTransferVariable): super(HeteroEncryptFTLHost, self).__init__(host, model_param, transfer_variable) self.host_model: EncryptedFTLHostModel = host def _precompute(self): pass def fit(self, host_data): LOGGER.info("@ start host fit") # get public key from arbiter public_key = self._do_get(name=self.transfer_variable.paillier_pubkey.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.paillier_pubkey), idx=-1)[0] host_x, overlap_indexes = self.prepare_data(host_data) LOGGER.debug("host_x: " + str(host_x.shape)) LOGGER.debug("overlap_indexes: " + str(len(overlap_indexes))) self.host_model.set_batch(host_x, overlap_indexes) self.host_model.set_public_key(public_key) start_time = time.time() while self.n_iter_ < self.max_iter: host_comp = self.host_model.send_components() self._do_remote(host_comp, name=self.transfer_variable.host_component_list.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.host_component_list, self.n_iter_), role=consts.GUEST, idx=-1) guest_comp = self._do_get(name=self.transfer_variable.guest_component_list.name, tag=self.transfer_variable.generate_transferid( self.transfer_variable.guest_component_list, self.n_iter_), idx=-1)[0] self.host_model.receive_components(guest_comp) self._precompute() encrypt_host_gradients = self.host_model.send_gradients() self._do_remote(encrypt_host_gradients, name=self.transfer_variable.encrypt_host_gradient.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.encrypt_host_gradient, self.n_iter_), role=consts.ARBITER, idx=-1) decrypt_host_gradients = self._do_get(name=self.transfer_variable.decrypt_host_gradient.name, tag=self.transfer_variable.generate_transferid( self.transfer_variable.decrypt_host_gradient, self.n_iter_), idx=-1)[0] self.host_model.receive_gradients(decrypt_host_gradients) is_stop = self._do_get(name=self.transfer_variable.is_encrypted_ftl_stopped.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.is_encrypted_ftl_stopped, self.n_iter_), idx=-1)[0] LOGGER.info("@ time: " + str(time.time()) + ", ep: " + str(self.n_iter_) + ", converged: " + str(is_stop)) self.n_iter_ += 1 if is_stop: break end_time = time.time() LOGGER.info("@ running time: " + str(end_time - start_time)) class FasterHeteroEncryptFTLHost(HeteroEncryptFTLHost): def __init__(self, host, model_param: FTLModelParam, transfer_variable: HeteroFTLTransferVariable): super(FasterHeteroEncryptFTLHost, self).__init__(host, model_param, transfer_variable) self.host_model: FasterEncryptedFTLHostModel = host def _precompute(self): LOGGER.info("@ start host precompute") host_precomputed_comp = self.host_model.send_precomputed_components() self._do_remote(host_precomputed_comp, name=self.transfer_variable.host_precomputed_comp_list.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.host_precomputed_comp_list, self.n_iter_), role=consts.GUEST, idx=-1) guest_precomputed_comp = self._do_get(name=self.transfer_variable.guest_precomputed_comp_list.name, tag=self.transfer_variable.generate_transferid( self.transfer_variable.guest_precomputed_comp_list, self.n_iter_), idx=-1)[0] self.host_model.receive_precomputed_components(guest_precomputed_comp) """ Decentralized encryption scheme without arbiter in the loop. """ class HeteroDecentralizedEncryptFTLHost(HeteroFTLHost): def __init__(self, host, model_param: FTLModelParam, transfer_variable: HeteroFTLTransferVariable): super(HeteroDecentralizedEncryptFTLHost, self).__init__(host, model_param, transfer_variable) self.host_model: EncryptedFTLHostModel = host self.public_key = None self.private_key = None self.guest_public_key = None def _precompute(self): pass def prepare_encryption_key_pair(self): LOGGER.info("@ start host prepare encryption key pair") self.public_key, self.private_key = generate_encryption_key_pair() # exchange public_key with guest self._do_remote(self.public_key, name=self.transfer_variable.host_public_key.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.host_public_key, self.n_iter_), role=consts.GUEST, idx=-1) self.guest_public_key = self._do_get(name=self.transfer_variable.guest_public_key.name, tag=self.transfer_variable.generate_transferid( self.transfer_variable.guest_public_key, self.n_iter_), idx=-1)[0] def fit(self, host_data): LOGGER.info("@ start host fit") self.prepare_encryption_key_pair() host_x, overlap_indexes = self.prepare_data(host_data) LOGGER.debug("host_x: " + str(host_x.shape)) LOGGER.debug("overlap_indexes: " + str(len(overlap_indexes))) self.host_model.set_batch(host_x, overlap_indexes) self.host_model.set_public_key(self.public_key) self.host_model.set_guest_public_key(self.guest_public_key) self.host_model.set_private_key(self.private_key) start_time = time.time() while self.n_iter_ < self.max_iter: # Stage 1: compute and encrypt components (using host public key) required by guest to # calculate gradients and loss. LOGGER.debug("@ Stage 1: ") host_comp = self.host_model.send_components() LOGGER.debug("send enc host_comp: " + create_shape_msg(host_comp)) self._do_remote(host_comp, name=self.transfer_variable.host_component_list.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.host_component_list, self.n_iter_), role=consts.GUEST, idx=-1) # Stage 2: receive guest components in encrypted form (encrypted by guest public key), # and calculate host gradients in encrypted form (encrypted by guest public key), # and send them to guest for decryption LOGGER.debug("@ Stage 2: ") guest_comp = self._do_get(name=self.transfer_variable.guest_component_list.name, tag=self.transfer_variable.generate_transferid( self.transfer_variable.guest_component_list, self.n_iter_), idx=-1)[0] LOGGER.debug("receive enc guest_comp: " + create_shape_msg(guest_comp)) self.host_model.receive_components(guest_comp) self._precompute() # calculate host gradients in encrypted form (encrypted by guest public key) encrypt_host_gradients = self.host_model.send_gradients() LOGGER.debug("send encrypt_guest_gradients: " + create_shape_msg(encrypt_host_gradients)) # add random mask to encrypt_host_gradients and send them to guest for decryption masked_enc_host_gradients, gradients_masks = add_random_mask_for_list_of_values(encrypt_host_gradients) LOGGER.debug("send masked_enc_host_gradients: " + create_shape_msg(masked_enc_host_gradients)) self._do_remote(masked_enc_host_gradients, name=self.transfer_variable.masked_enc_host_gradients.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.masked_enc_host_gradients, self.n_iter_), role=consts.GUEST, idx=-1) # Stage 3: receive and then decrypt masked encrypted guest gradients and masked encrypted guest loss, # and send them to guest LOGGER.debug("@ Stage 3: ") masked_enc_guest_gradients = self._do_get(name=self.transfer_variable.masked_enc_guest_gradients.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.masked_enc_guest_gradients, self.n_iter_), idx=-1)[0] masked_enc_guest_loss = self._do_get(name=self.transfer_variable.masked_enc_loss.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.masked_enc_loss, self.n_iter_), idx=-1)[0] masked_dec_guest_gradients = self.__decrypt_gradients(masked_enc_guest_gradients) masked_dec_guest_loss = self.__decrypt_loss(masked_enc_guest_loss) LOGGER.debug("send masked_dec_guest_gradients: " + create_shape_msg(masked_dec_guest_gradients)) self._do_remote(masked_dec_guest_gradients, name=self.transfer_variable.masked_dec_guest_gradients.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.masked_dec_guest_gradients, self.n_iter_), role=consts.GUEST, idx=-1) LOGGER.debug("send masked_dec_guest_loss: " + str(masked_dec_guest_loss)) self._do_remote(masked_dec_guest_loss, name=self.transfer_variable.masked_dec_loss.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.masked_dec_loss, self.n_iter_), role=consts.GUEST, idx=-1) # Stage 4: receive masked but decrypted host gradients from guest and remove mask, # and update host model parameters using these gradients. LOGGER.debug("@ Stage 4: ") masked_dec_host_gradients = self._do_get(name=self.transfer_variable.masked_dec_host_gradients.name, tag=self.transfer_variable.generate_transferid( self.transfer_variable.masked_dec_host_gradients, self.n_iter_), idx=-1)[0] LOGGER.debug("receive masked_dec_host_gradients: " + create_shape_msg(masked_dec_host_gradients)) cleared_dec_host_gradients = remove_random_mask_from_list_of_values(masked_dec_host_gradients, gradients_masks) # update host model parameters using these gradients. self.host_model.receive_gradients(cleared_dec_host_gradients) # Stage 5: determine whether training is terminated. LOGGER.debug("@ Stage 5: ") is_stop = self._do_get(name=self.transfer_variable.is_decentralized_enc_ftl_stopped.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.is_decentralized_enc_ftl_stopped, self.n_iter_), idx=-1)[0] LOGGER.info("@ time: " + str(time.time()) + ", ep: " + str(self.n_iter_) + ", converged: " + str(is_stop)) self.n_iter_ += 1 if is_stop: break end_time = time.time() LOGGER.info("@ running time: " + str(end_time - start_time)) def __decrypt_gradients(self, encrypt_gradients): return decrypt_matrix(self.private_key, encrypt_gradients[0]), decrypt_array(self.private_key, encrypt_gradients[1]) def __decrypt_loss(self, encrypt_loss): return decrypt_scalar(self.private_key, encrypt_loss) class FasterHeteroDecentralizedEncryptFTLHost(HeteroDecentralizedEncryptFTLHost): def __init__(self, host, model_param: FTLModelParam, transfer_variable: HeteroFTLTransferVariable): super(FasterHeteroDecentralizedEncryptFTLHost, self).__init__(host, model_param, transfer_variable) self.host_model: FasterEncryptedFTLHostModel = host def _precompute(self): LOGGER.debug("@ start precompute") host_precomputed_comp = self.host_model.send_precomputed_components() self._do_remote(host_precomputed_comp, name=self.transfer_variable.host_precomputed_comp_list.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.host_precomputed_comp_list, self.n_iter_), role=consts.GUEST, idx=-1) guest_precomputed_comp = self._do_get(name=self.transfer_variable.guest_precomputed_comp_list.name, tag=self.transfer_variable.generate_transferid( self.transfer_variable.guest_precomputed_comp_list, self.n_iter_), idx=-1)[0] self.host_model.receive_precomputed_components(guest_precomputed_comp) class HostFactory(object): @classmethod def create(cls, ftl_model_param: FTLModelParam, transfer_variable: HeteroFTLTransferVariable, ftl_local_model): if ftl_model_param.is_encrypt: if ftl_model_param.enc_ftl == "dct_enc_ftl": # decentralized encrypted ftl host LOGGER.debug("@ create decentralized encrypted ftl_host") host_model = EncryptedFTLHostModel(local_model=ftl_local_model, model_param=ftl_model_param) host = HeteroDecentralizedEncryptFTLHost(host_model, ftl_model_param, transfer_variable) elif ftl_model_param.enc_ftl == "dct_enc_ftl2": # decentralized encrypted faster ftl host LOGGER.debug("@ create decentralized encrypted faster ftl_host") host_model = FasterEncryptedFTLHostModel(local_model=ftl_local_model, model_param=ftl_model_param) host = FasterHeteroDecentralizedEncryptFTLHost(host_model, ftl_model_param, transfer_variable) elif ftl_model_param.enc_ftl == "enc_ftl2": # encrypted faster ftl host LOGGER.debug("@ create encrypted faster ftl_host") host_model = FasterEncryptedFTLHostModel(local_model=ftl_local_model, model_param=ftl_model_param) host = FasterHeteroEncryptFTLHost(host_model, ftl_model_param, transfer_variable) else: # encrypted ftl host LOGGER.debug("@ create encrypted ftl_host") host_model = EncryptedFTLHostModel(local_model=ftl_local_model, model_param=ftl_model_param) host = HeteroEncryptFTLHost(host_model, ftl_model_param, transfer_variable) else: # plain ftl host LOGGER.debug("@ create plain ftl_host") host_model = PlainFTLHostModel(local_model=ftl_local_model, model_param=ftl_model_param) host = HeteroPlainFTLHost(host_model, ftl_model_param, transfer_variable) return host
#!/usr/bin/env python #*-----------------------------------------------------------------------* #| | #| Copyright (c) 2013 by Paul Scherrer Institute (http://www.psi.ch) | #| | #| Author Thierry Zamofing (thierry.zamofing@psi.ch) | #*-----------------------------------------------------------------------* ''' implements an image view to show a colored image of a hdf5 dataset. ''' if __name__ == '__main__': #Used to guarantee to use at least Wx2.8 import wxversion wxversion.ensureMinimal('2.8') import wx import matplotlib as mpl if __name__ == '__main__': mpl.use('WXAgg') #or mpl.use('WX') #matplotlib.get_backend() import os,h5py import numpy as np import utilities as ut from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas import os,h5py from GLCanvasImg import * import pyFAI from hdfImageGL import HdfImageGLFrame from glumpy.image.texture import Texture from scipy import ndimage as ndi def FindCenter(arr): m=ndi.median_filter(arr, 5) sx=m.sum(1) sy=m.sum(0) shape=arr.shape xx=np.arange(shape[0]) yy=np.arange(shape[1]) x=(xx*sx).sum()/sx.sum() y=(yy*sy).sum()/sy.sum() #print x,y #import pylab as plt #used for the colormaps #plt.figure() #plt.subplot(211) #plt.plot(sx) #plt.subplot(212) #plt.plot(sy) #plt.show(block=False) return (x,y) class MPLCanvasPyFAI1D(FigureCanvas): def __init__(self,parent,SetStatusCB=None): if SetStatusCB: self.SetStatusCB=SetStatusCB fig = mpl.figure.Figure() ax = fig.add_axes([0.075,0.1,0.75,0.85]) FigureCanvas.__init__(self,parent, -1, fig) #self.mpl_connect('motion_notify_event', self.OnMotion) #self.mpl_connect('button_press_event', self.OnBtnPress) #self.mpl_connect('button_release_event', self.OnBtnRelease) #self.mpl_connect('scroll_event', self.OnBtnScroll) #self.mpl_connect('key_press_event',self.OnKeyPress) self.fig=fig self.ax=ax def InitChild(self,data): fig=self.fig ax=self.ax ctrX,ctrY=self.center=FindCenter(data) self.ai = pyFAI.AzimuthalIntegrator(1.e3, ctrX, ctrY, 0.0, 0.0, 0.0, 1.e0, 1.e0) #canvas=self.canvas self.numPtTh=int(np.average(data.shape)/2.) out=self.ai.xrpd(data,self.numPtTh) self.hl=ax.plot(*out) ax.set_yscale('log') #canvas.data=imgPolar #print imgPolar.shape #out=ai.xrpd(imgData,1000) #out=ai.xrpd_OpenCL(imgData,1000) #import pylab #pylab.plot(*out) #pylab.yscale("log") #pylab.show() class HdfPyFAI1DFrame(wx.Frame): def __init__(self, parent,lbl,hid): wx.Frame.__init__(self, parent, title=lbl, size=wx.Size(850, 650)) imgDir=ut.Path.GetImage() icon = wx.Icon(os.path.join(imgDir,'h5pyViewer.ico'), wx.BITMAP_TYPE_ICO) self.SetIcon(icon) t=type(hid) if t==h5py.h5d.DatasetID: data=h5py.Dataset(hid) canvas = MPLCanvasPyFAI1D(self,self.SetStatusCB) sizer = wx.BoxSizer(wx.VERTICAL) sizer.Add(canvas, 1, wx.LEFT | wx.TOP | wx.GROW) self.SetSizer(sizer) toolbar=ut.AddToolbar(canvas,sizer) wxAxCtrlLst=[] l=len(data.shape) idxXY=(l-2,l-1) for idx,l in enumerate(data.shape): if idx in idxXY: continue wxAxCtrl=ut.SliderGroup(self, label='Axis:%d'%idx,range=(0,l-1)) wxAxCtrl.idx=idx wxAxCtrlLst.append(wxAxCtrl) sizer.Add(wxAxCtrl.sizer, 0, wx.EXPAND | wx.ALIGN_CENTER | wx.ALL, border=5) wxAxCtrl.SetCallback(HdfPyFAI1DFrame.OnSetView,wxAxCtrl) sl=ut.GetSlice(idxXY,data.shape,wxAxCtrlLst) canvas.InitChild(data[sl]) #self.Fit() self.Centre() self.BuildMenu() self.canvas=canvas self.sizer=sizer self.toolbar=toolbar self.data=data self.idxXY=idxXY self.wxAxCtrlLst=wxAxCtrlLst def BuildMenu(self): mnBar = wx.MenuBar() #-------- Edit Menu -------- mn = wx.Menu() #mnItem=mn.Append(wx.ID_ANY, 'Setup Colormap', 'Setup the color mapping ');self.Bind(wx.EVT_MENU, self.OnColmapSetup, mnItem) #mnItem=mn.Append(wx.ID_ANY, 'Linear Mapping', 'Use a linear values to color mapping ');self.Bind(wx.EVT_MENU, self.OnMapLin, mnItem) #mnItem=mn.Append(wx.ID_ANY, 'Log Mapping', 'Use a logarithmic values to color mapping ');self.Bind(wx.EVT_MENU, self.OnMapLog, mnItem) #mnItem=mn.Append(wx.ID_ANY, 'Invert X-Axis', kind=wx.ITEM_CHECK);self.Bind(wx.EVT_MENU, self.OnInvertAxis, mnItem) #self.mnIDxAxis=mnItem.GetId() #mnItem=mn.Append(wx.ID_ANY, 'Invert Y-Axis', kind=wx.ITEM_CHECK);self.Bind(wx.EVT_MENU, self.OnInvertAxis, mnItem) mnBar.Append(mn, '&Edit') mn = wx.Menu() #mnItem=mn.Append(wx.ID_ANY, 'Help', 'How to use the image viewer');self.Bind(wx.EVT_MENU, self.OnHelp, mnItem) mnBar.Append(mn, '&Help') self.SetMenuBar(mnBar) self.CreateStatusBar() def SetIdxXY(self,x,y): self.idxXY=(x,y) @staticmethod def SetStatusCB(obj,mode,v): if mode==0: obj.SetStatusText( "x= %d y=%d val=%g"%v,0) elif mode==1: obj.SetStatusText( "Colormap Value %d (drag to scale)"%v,0) else: raise KeyError('wrong mode') @staticmethod def OnSetView(usrData,value,msg): 'called when a slice is selected with the slider controls' imgFrm=usrData.slider.Parent #imgFrm.img.set_array(imgFrm.data[usrData.value,...]) data=imgFrm.data sl=ut.GetSlice(imgFrm.idxXY,data.shape,imgFrm.wxAxCtrlLst) hl=imgFrm.canvas.hl ai=imgFrm.canvas.ai numPtTh=imgFrm.canvas.numPtTh out=ai.xrpd(data[sl],numPtTh) hl[0].set_ydata(out[1]) imgFrm.canvas.draw() pass ########################################### class HdfPyFAIFrame(HdfImageGLFrame): def __init__(self, parent, title, hid): HdfImageGLFrame.__init__(self, parent, title, hid) #HdfPyFAI1DFrame(self, title, hid) canvas=self.canvas raw=canvas.data ctrX,ctrY=FindCenter(raw) self.ai = pyFAI.AzimuthalIntegrator(1.e3, ctrX, ctrY, 0.0, 0.0, 0.0, 1.e0, 1.e0) raw self.numPtTh=int(np.average(raw.shape)/2.) self.numPtCh=360 imgPolar,theta,chi=self.ai.xrpd2(raw,self.numPtTh,self.numPtCh) canvas.data=imgPolar print (imgPolar.shape) def BuildMenu(self): HdfImageGLFrame.BuildMenu(self) mnBar=self.GetMenuBar() mn=mnBar.GetMenu(0) itemLst=mn.GetMenuItems() it=itemLst[0] it.GetItemLabel() mnItem=mn.Append(wx.ID_ANY, 'Setup FAI', 'Setup fast azimutal integration ');self.Bind(wx.EVT_MENU, self.OnFAISetup, mnItem) @staticmethod def OnSetView(usrData,value,msg): 'called when a slice is selected with the slider controls' frm=usrData.slider.Parent ds=frm.dataSet canvas=frm.canvas glImg=canvas.glImg sl=ut.GetSlice(frm.idxXY,ds.shape,frm.wxAxCtrlLst) imgPolar,theta,chi=frm.ai.xrpd2(ds[sl],frm.numPtTh,frm.numPtCh) canvas.data[:]=imgPolar[:] glImg.data[:]=canvas.GetTxrData() glImg.update() canvas.OnPaint(None)#force to repaint, Refresh and Update do not force ! #canvas.Refresh(False) #canvas.Update() pass def OnFAISetup(self, event): dlg=DlgSetupPyFAI(self) if dlg.ShowModal()==wx.ID_OK: pass dlg.Destroy() class DlgSetupPyFAI(wx.Dialog): def __init__(self,parent): wx.Dialog.__init__(self,parent,-1,'pyFAI Setup') ai=parent.ai #glColBar=parent.glColBar #dataRange=parent.dataRange txtCtrX=wx.StaticText(self,-1,'center X') txtCtrY=wx.StaticText(self,-1,'center Y') txtNumPtTh=wx.StaticText(self,-1,'number of pt in Theta') txtNumPtCh=wx.StaticText(self,-1,'number of pt in Chi') txtMethod=wx.StaticText(self,-1,'method') self.edCtrX=edCtrX=wx.TextCtrl(self,-1,'%g'%ai.get_poni1(),style=wx.TE_PROCESS_ENTER) self.edCtrY=edCtrY=wx.TextCtrl(self,-1,'%g'%ai.get_poni2(),style=wx.TE_PROCESS_ENTER) self.edNumPtTh=edNumPtTh=wx.TextCtrl(self,-1,'%g'%parent.numPtTh,style=wx.TE_PROCESS_ENTER) self.edNumPtCh=edNumPtCh=wx.TextCtrl(self,-1,'%g'%parent.numPtCh,style=wx.TE_PROCESS_ENTER) self.cbMethod=cbMethod=wx.ComboBox(self, -1, choices=('default','numny'), style=wx.CB_READONLY) #cbtxrFunc.SetSelection(parent.txrTrfFunc) sizer=wx.BoxSizer(wx.VERTICAL) fgs=wx.FlexGridSizer(5,2,5,5) fgs.Add(txtCtrX,0,wx.ALIGN_RIGHT) fgs.Add(edCtrX,0,wx.EXPAND) fgs.Add(txtCtrY,0,wx.ALIGN_RIGHT) fgs.Add(edCtrY,0,wx.EXPAND) fgs.Add(txtNumPtTh,0,wx.ALIGN_RIGHT) fgs.Add(edNumPtTh,0,wx.EXPAND) fgs.Add(txtNumPtCh,0,wx.ALIGN_RIGHT) fgs.Add(edNumPtCh,0,wx.EXPAND) fgs.Add(txtMethod,0,wx.ALIGN_RIGHT) fgs.Add(cbMethod,0,wx.EXPAND) sizer.Add(fgs,0,wx.EXPAND|wx.ALL,5) #edVMin.SetFocus() btns = self.CreateButtonSizer(wx.OK|wx.CANCEL) btnApply=wx.Button(self, -1, 'Apply') btns.Add(btnApply, 0, wx.ALL, 5) sizer.Add(btns,0,wx.EXPAND|wx.ALL,5) self.Bind(wx.EVT_BUTTON, self.OnModify, id=wx.ID_OK) self.Bind(wx.EVT_BUTTON, self.OnModify, btnApply) #self.Bind(wx.EVT_TEXT, self.OnModify, edCtrX) #self.Bind(wx.EVT_TEXT, self.OnModify, edCtrY) #self.Bind(wx.EVT_TEXT, self.OnModify, edNumSector) self.Bind(wx.EVT_COMBOBOX, self.OnModify, cbMethod) self.SetSizer(sizer) sizer.Fit(self) def OnModify(self, event): print ('OnModify') frm=self.GetParent() ds=frm.dataSet canvas=frm.canvas glImg=canvas.glImg ai=frm.ai ai.set_poni1(float(self.edCtrX.Value)) ai.set_poni2(float(self.edCtrY.Value)) frm.numPtTh=int(self.edNumPtTh.Value) frm.numPtCh=int(self.edNumPtCh.Value) sl=ut.GetSlice(frm.idxXY,ds.shape,frm.wxAxCtrlLst) imgPolar,theta,chi=frm.ai.xrpd2(ds[sl],frm.numPtTh,frm.numPtCh) if canvas.data.shape==imgPolar.shape: canvas.data[:]=imgPolar[:] glImg.data[:]=canvas.GetTxrData() else: canvas.data=imgPolar; glImg._data=canvas.GetTxrData() glImg._texture=Texture(glImg._data) #self.glImg=glImg=glumpy.image.Image(txrData, colormap=colMap,vmin=txrRng[0], vmax=txrRng[1]) print (canvas.data.shape,glImg.data.shape) glImg.update() canvas.OnPaint(None)#force to repaint, Refresh and Update do not force ! frm.Refresh(False) if event.GetId()==wx.ID_OK: event.Skip()#do not consume (use event to close the window and sent return code) if __name__ == '__main__': import os,sys,argparse #since python 2.7 def GetParser(required=True): fnHDF='/scratch/detectorData/e14472_00033.hdf5' #lbl='mcs' lbl='pilatus_1' #lbl='spec' elem='/entry/data/'+lbl exampleCmd='--hdfFile='+fnHDF+' --elem='+elem parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__, epilog='Example:\n'+os.path.basename(sys.argv[0])+' '+exampleCmd+'\n ') parser.add_argument('--hdfFile', required=required, default=fnHDF, help='the hdf5 to show') parser.add_argument('--elem', required=required, default=elem, help='the path to the element in the hdf5 file') return parser args = parser.parse_args() return args class App(wx.App): def OnInit(self): parser=GetParser() #parser=GetParser(False) # debug with exampleCmd args = parser.parse_args() try: self.fid=fid=h5py.h5f.open(args.hdfFile) except IOError as e: sys.stderr.write('Unable to open File: '+args.hdfFile+'\n') parser.print_usage(sys.stderr) return True try: hid = h5py.h5o.open(fid,args.elem) except KeyError as e: sys.stderr.write('Unable to open Object: '+args.elem+'\n') parser.print_usage(sys.stderr) return True frame = HdfPyFAIFrame(None,args.elem,hid) #frame = HdfPyFAI1DFrame(None,args.elem,hid) frame.Show() self.SetTopWindow(frame) return True def OnExit(self): self.fid.close() ut.StopWatch.Start() app = App() app.MainLoop()
import gym from gym import logger from core.states import StateSerializer from core.runner import Runner from agents.dqn_agent import DQNAgent logger.set_level(logger.INFO) env_name = 'CartPole-v0' env = gym.make(env_name) env._max_episode_steps = 500 serializer = StateSerializer(env.observation_space.shape) agent = DQNAgent.from_h5(file_path=env_name+'.h5') runner = Runner(env, serializer, agent, epsilon_policy = lambda e: 0, max_episode_steps = 500) runner.render() runner.demonstrate(num_episodes=100)
__author__ = 'luke.beer' import subprocess import threading import logging import socket import time import questions import states class Executor(threading.Thread): def __init__(self, r, channel): threading.Thread.__init__(self) self.redis = r self.channel = channel self.pubsub = self.redis.pubsub() self.pubsub.subscribe([channel]) self.state = states.State.INIT self.name = socket.gethostname() self.hosts = [] def communicate(self, msg='Sup?'): msg = '%s :: %s :: %s' % (socket.gethostname(), self.state, msg) logging.info(msg) self.redis.publish(self.channel, msg) def set_state(self, state): state_msg = 'State changed from %s to %s' % (self.state, state) logging.info(state_msg) self.communicate(state_msg) def archive(self): self.set_state(states.State.ARCHIVE) time.sleep(5) def compress(self): self.set_state(states.State.COMPRESS) time.sleep(5) def file_sync(self, host): self.set_state(states.State.COLLECT) self.communicate("%s: Valid config." % host.hostname) try: destination = "%s/%s" % (host.destination, host.hostname) src = "%s@%s:%s/" % (host.username, host.address, host.source) result = subprocess.check_output(['/usr/bin/rsync', '-pvvctrz', '--include=\"%s\"' % host.match, src, destination], stderr=subprocess.STDOUT) self.communicate(result) except Exception as e: self.communicate(e.message) def stop(self): self.pubsub.unsubscribe() self.communicate('Goodbye....') def ready(self, item): hostname, state, msg = item['data'].split(' :: ', 3) if hostname == self.name: return if msg == questions.Questions.WHAT: self.communicate("Hey friend, I'm %s" % self.state) else: if state == states.State.IDLE: return True if state in [states.State.COLLECT, states.State.ARCHIVE, states.State.COMPRESS]: return False
import re import json from color_print import * # read rules from json file with open("rules.json", "r", encoding="utf-8") as json_data: rules = json.load(json_data) # create new rules by replacing 'is' to 'was', 'has been', ... def augment(sentence): """change 'is' in the sentence to was, has been, should be ... to augment some new sentences Args: sentence: str, candidate sentence to be removed/replaced Return: augmented_strs: array of new candidates """ pad_sentence = " " + sentence + " " augmented_str = [pad_sentence] if 'is' in pad_sentence: index = pad_sentence.find("is") reps = ["was", "have been", "has been", "had been", "should be"] for replace_candidate in reps: new_str = pad_sentence[:index] new_str += replace_candidate new_str += pad_sentence[index+2:] augmented_str.append(new_str) return augmented_str def get_context(src_text, index): '''get the full sentence that contain the position index''' stop_puncs = ['.', ',', '!', '?', ';', ':', '\n'] istart = max([src_text[:index].rfind(st) for st in stop_puncs]) iend = min([src_text[index:].find(st) for st in stop_puncs if src_text[index:].find(st)!=-1]) return istart, iend # create suggestions for sentences to remove def suggest_remove(file_path, to_remove, verbose=True): with open(file_path, "r", encoding="utf-8") as fsrc: src_text = fsrc.read().lower() suggestions = [] for item in to_remove: for s in augment(item): if s not in src_text: continue suggestions.append(color_red("remove: "+s)) if verbose: indices = [m.start() for m in re.finditer(s, src_text)] for index in indices: istart, iend = get_context(src_text, index) ctx = src_text[istart+1:index]+color_red(src_text[index:index+len(s)]) ctx += src_text[index+len(s):index+iend] suggestions.append(ctx) return suggestions # create suggestions for sentences to replace def suggest_replace(file_path, to_replace, verbose=True): with open(file_path, "r", encoding="utf-8") as fsrc: src_text = fsrc.read().lower() suggestions = [] for key, value in to_replace.items(): for s in augment(key): if s not in src_text: continue suggestions.append(color_red("replace: "+s)+" ---> "+color_magenta(value)) if verbose: indices = [m.start() for m in re.finditer(s, src_text)] for index in indices: istart, iend = get_context(src_text, index) ctx = src_text[istart+1:index]+color_red(src_text[index:index+len(s)]) ctx += src_text[index+len(s):index+iend] suggestions.append(ctx) return suggestions def report_wrong_words(fname, verbose=True): '''report problematic words that are not simple, not precise, sexial, or needless''' to_remove = rules["to_remove"] to_replace = rules["to_replace"] sug1 = suggest_remove(fname, to_remove, verbose) sug2 = suggest_replace(fname, to_replace, verbose) suggestions = sug1 + sug2 # if no suggestions, continue to process next file if len(suggestions) == 0: return # otherwise print suggestions to screen print(color_blue("******************************************************")) print("Words suggestions for ", color_cyan(fname.split('/')[-1])) for suggestion in suggestions: print(suggestion) print("")
# -*- coding: utf-8 -*- import pyqtgraph as pg from pyqtgraph.Qt import QtGui, QtCore import numpy as np import csv, gzip, os from pyqtgraph import Point class GlassDB: """ Database of dispersion coefficients for Schott glasses + Corning 7980 """ def __init__(self, fileName='schott_glasses.csv'): path = os.path.dirname(__file__) fh = gzip.open(os.path.join(path, 'schott_glasses.csv.gz'), 'rb') r = csv.reader(map(str, fh.readlines())) lines = [x for x in r] self.data = {} header = lines[0] for l in lines[1:]: info = {} for i in range(1, len(l)): info[header[i]] = l[i] self.data[l[0]] = info self.data['Corning7980'] = { ## Thorlabs UV fused silica--not in schott catalog. 'B1': 0.68374049400, 'B2': 0.42032361300, 'B3': 0.58502748000, 'C1': 0.00460352869, 'C2': 0.01339688560, 'C3': 64.49327320000, 'TAUI25/250': 0.95, ## transmission data is fabricated, but close. 'TAUI25/1400': 0.98, } for k in self.data: self.data[k]['ior_cache'] = {} def ior(self, glass, wl): """ Return the index of refraction for *glass* at wavelength *wl*. The *glass* argument must be a key in self.data. """ info = self.data[glass] cache = info['ior_cache'] if wl not in cache: B = list(map(float, [info['B1'], info['B2'], info['B3']])) C = list(map(float, [info['C1'], info['C2'], info['C3']])) w2 = (wl/1000.)**2 n = np.sqrt(1.0 + (B[0]*w2 / (w2-C[0])) + (B[1]*w2 / (w2-C[1])) + (B[2]*w2 / (w2-C[2]))) cache[wl] = n return cache[wl] def transmissionCurve(self, glass): data = self.data[glass] keys = [int(x[7:]) for x in data.keys() if 'TAUI25' in x] keys.sort() curve = np.empty((2,len(keys))) for i in range(len(keys)): curve[0][i] = keys[i] key = 'TAUI25/%d' % keys[i] val = data[key] if val == '': val = 0 else: val = float(val) curve[1][i] = val return curve GLASSDB = GlassDB() def wlPen(wl): """Return a pen representing the given wavelength""" l1 = 400 l2 = 700 hue = np.clip(((l2-l1) - (wl-l1)) * 0.8 / (l2-l1), 0, 0.8) val = 1.0 if wl > 700: val = 1.0 * (((700-wl)/700.) + 1) elif wl < 400: val = wl * 1.0/400. #print hue, val color = pg.hsvColor(hue, 1.0, val) pen = pg.mkPen(color) return pen class ParamObj(object): # Just a helper for tracking parameters and responding to changes def __init__(self): self.__params = {} def __setitem__(self, item, val): self.setParam(item, val) def setParam(self, param, val): self.setParams(**{param:val}) def setParams(self, **params): """Set parameters for this optic. This is a good function to override for subclasses.""" self.__params.update(params) self.paramStateChanged() def paramStateChanged(self): pass def __getitem__(self, item): # bug in pyside 1.2.2 causes getitem to be called inside QGraphicsObject.parentItem: return self.getParam(item) # PySide bug: https://bugreports.qt.io/browse/PYSIDE-671 def __len__(self): # Workaround for PySide bug: https://bugreports.qt.io/browse/PYSIDE-671 return 0 def getParam(self, param): return self.__params[param] class Optic(pg.GraphicsObject, ParamObj): sigStateChanged = QtCore.Signal() def __init__(self, gitem, **params): ParamObj.__init__(self) pg.GraphicsObject.__init__(self) #, [0,0], [1,1]) self.gitem = gitem self.surfaces = gitem.surfaces gitem.setParentItem(self) self.roi = pg.ROI([0,0], [1,1]) self.roi.addRotateHandle([1, 1], [0.5, 0.5]) self.roi.setParentItem(self) defaults = { 'pos': Point(0,0), 'angle': 0, } defaults.update(params) self._ior_cache = {} self.roi.sigRegionChanged.connect(self.roiChanged) self.setParams(**defaults) def updateTransform(self): self.setPos(0, 0) tr = QtGui.QTransform() self.setTransform(tr.translate(Point(self['pos'])).rotate(self['angle'])) def setParam(self, param, val): ParamObj.setParam(self, param, val) def paramStateChanged(self): """Some parameters of the optic have changed.""" # Move graphics item self.gitem.setPos(Point(self['pos'])) self.gitem.resetTransform() self.gitem.setRotation(self['angle']) # Move ROI to match try: self.roi.sigRegionChanged.disconnect(self.roiChanged) br = self.gitem.boundingRect() o = self.gitem.mapToParent(br.topLeft()) self.roi.setAngle(self['angle']) self.roi.setPos(o) self.roi.setSize([br.width(), br.height()]) finally: self.roi.sigRegionChanged.connect(self.roiChanged) self.sigStateChanged.emit() def roiChanged(self, *args): pos = self.roi.pos() # rotate gitem temporarily so we can decide where it will need to move self.gitem.resetTransform() self.gitem.setRotation(self.roi.angle()) br = self.gitem.boundingRect() o1 = self.gitem.mapToParent(br.topLeft()) self.setParams(angle=self.roi.angle(), pos=pos + (self.gitem.pos() - o1)) def boundingRect(self): return QtCore.QRectF() def paint(self, p, *args): pass def ior(self, wavelength): return GLASSDB.ior(self['glass'], wavelength) class Lens(Optic): def __init__(self, **params): defaults = { 'dia': 25.4, ## diameter of lens 'r1': 50., ## positive means convex, use 0 for planar 'r2': 0, ## negative means convex 'd': 4.0, 'glass': 'N-BK7', 'reflect': False, } defaults.update(params) d = defaults.pop('d') defaults['x1'] = -d/2. defaults['x2'] = d/2. gitem = CircularSolid(brush=(100, 100, 130, 100), **defaults) Optic.__init__(self, gitem, **defaults) def propagateRay(self, ray): """Refract, reflect, absorb, and/or scatter ray. This function may create and return new rays""" """ NOTE:: We can probably use this to compute refractions faster: (from GLSL 120 docs) For the incident vector I and surface normal N, and the ratio of indices of refraction eta, return the refraction vector. The result is computed by k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I)) if (k < 0.0) return genType(0.0) else return eta * I - (eta * dot(N, I) + sqrt(k)) * N The input parameters for the incident vector I and the surface normal N must already be normalized to get the desired results. eta == ratio of IORs For reflection: For the incident vector I and surface orientation N, returns the reflection direction: I – 2 ∗ dot(N, I) ∗ N N must already be normalized in order to achieve the desired result. """ iors = [self.ior(ray['wl']), 1.0] for i in [0,1]: surface = self.surfaces[i] ior = iors[i] p1, ai = surface.intersectRay(ray) if p1 is None: ray.setEnd(None) break p1 = surface.mapToItem(ray, p1) rd = ray['dir'] a1 = np.arctan2(rd[1], rd[0]) ar = a1 - ai + np.arcsin((np.sin(ai) * ray['ior'] / ior)) ray.setEnd(p1) dp = Point(np.cos(ar), np.sin(ar)) ray = Ray(parent=ray, ior=ior, dir=dp) return [ray] class Mirror(Optic): def __init__(self, **params): defaults = { 'r1': 0, 'r2': 0, 'd': 0.01, } defaults.update(params) d = defaults.pop('d') defaults['x1'] = -d/2. defaults['x2'] = d/2. gitem = CircularSolid(brush=(100,100,100,255), **defaults) Optic.__init__(self, gitem, **defaults) def propagateRay(self, ray): """Refract, reflect, absorb, and/or scatter ray. This function may create and return new rays""" surface = self.surfaces[0] p1, ai = surface.intersectRay(ray) if p1 is not None: p1 = surface.mapToItem(ray, p1) rd = ray['dir'] a1 = np.arctan2(rd[1], rd[0]) ar = a1 + np.pi - 2*ai ray.setEnd(p1) dp = Point(np.cos(ar), np.sin(ar)) ray = Ray(parent=ray, dir=dp) else: ray.setEnd(None) return [ray] class CircularSolid(pg.GraphicsObject, ParamObj): """GraphicsObject with two circular or flat surfaces.""" def __init__(self, pen=None, brush=None, **opts): """ Arguments for each surface are: x1,x2 - position of center of _physical surface_ r1,r2 - radius of curvature d1,d2 - diameter of optic """ defaults = dict(x1=-2, r1=100, d1=25.4, x2=2, r2=100, d2=25.4) defaults.update(opts) ParamObj.__init__(self) self.surfaces = [CircleSurface(defaults['r1'], defaults['d1']), CircleSurface(-defaults['r2'], defaults['d2'])] pg.GraphicsObject.__init__(self) for s in self.surfaces: s.setParentItem(self) if pen is None: self.pen = pg.mkPen((220,220,255,200), width=1, cosmetic=True) else: self.pen = pg.mkPen(pen) if brush is None: self.brush = pg.mkBrush((230, 230, 255, 30)) else: self.brush = pg.mkBrush(brush) self.setParams(**defaults) def paramStateChanged(self): self.updateSurfaces() def updateSurfaces(self): self.surfaces[0].setParams(self['r1'], self['d1']) self.surfaces[1].setParams(-self['r2'], self['d2']) self.surfaces[0].setPos(self['x1'], 0) self.surfaces[1].setPos(self['x2'], 0) self.path = QtGui.QPainterPath() self.path.connectPath(self.surfaces[0].path.translated(self.surfaces[0].pos())) self.path.connectPath(self.surfaces[1].path.translated(self.surfaces[1].pos()).toReversed()) self.path.closeSubpath() def boundingRect(self): return self.path.boundingRect() def shape(self): return self.path def paint(self, p, *args): p.setRenderHints(p.renderHints() | p.Antialiasing) p.setPen(self.pen) p.fillPath(self.path, self.brush) p.drawPath(self.path) class CircleSurface(pg.GraphicsObject): def __init__(self, radius=None, diameter=None): """center of physical surface is at 0,0 radius is the radius of the surface. If radius is None, the surface is flat. diameter is of the optic's edge.""" pg.GraphicsObject.__init__(self) self.r = radius self.d = diameter self.mkPath() def setParams(self, r, d): self.r = r self.d = d self.mkPath() def mkPath(self): self.prepareGeometryChange() r = self.r d = self.d h2 = d/2. self.path = QtGui.QPainterPath() if r == 0: ## flat surface self.path.moveTo(0, h2) self.path.lineTo(0, -h2) else: ## half-height of surface can't be larger than radius h2 = min(h2, abs(r)) arc = QtCore.QRectF(0, -r, r*2, r*2) a1 = np.arcsin(h2/r) * 180. / np.pi a2 = -2*a1 a1 += 180. self.path.arcMoveTo(arc, a1) self.path.arcTo(arc, a1, a2) self.h2 = h2 def boundingRect(self): return self.path.boundingRect() def paint(self, p, *args): return ## usually we let the optic draw. def intersectRay(self, ray): ## return the point of intersection and the angle of incidence #print "intersect ray" h = self.h2 r = self.r p, dir = ray.currentState(relativeTo=self) # position and angle of ray in local coords. #print " ray: ", p, dir p = p - Point(r, 0) ## move position so center of circle is at 0,0 #print " adj: ", p, r if r == 0: #print " flat" if dir[0] == 0: y = 0 else: y = p[1] - p[0] * dir[1]/dir[0] if abs(y) > h: return None, None else: return (Point(0, y), np.arctan2(dir[1], dir[0])) else: #print " curve" ## find intersection of circle and line (quadratic formula) dx = dir[0] dy = dir[1] dr = (dx**2 + dy**2) ** 0.5 D = p[0] * (p[1]+dy) - (p[0]+dx) * p[1] idr2 = 1.0 / dr**2 disc = r**2 * dr**2 - D**2 if disc < 0: return None, None disc2 = disc**0.5 if dy < 0: sgn = -1 else: sgn = 1 br = self.path.boundingRect() x1 = (D*dy + sgn*dx*disc2) * idr2 y1 = (-D*dx + abs(dy)*disc2) * idr2 if br.contains(x1+r, y1): pt = Point(x1, y1) else: x2 = (D*dy - sgn*dx*disc2) * idr2 y2 = (-D*dx - abs(dy)*disc2) * idr2 pt = Point(x2, y2) if not br.contains(x2+r, y2): return None, None raise Exception("No intersection!") norm = np.arctan2(pt[1], pt[0]) if r < 0: norm += np.pi #print " norm:", norm*180/3.1415 dp = p - pt #print " dp:", dp ang = np.arctan2(dp[1], dp[0]) #print " ang:", ang*180/3.1415 #print " ai:", (ang-norm)*180/3.1415 #print " intersection:", pt return pt + Point(r, 0), ang-norm class Ray(pg.GraphicsObject, ParamObj): """Represents a single straight segment of a ray""" sigStateChanged = QtCore.Signal() def __init__(self, **params): ParamObj.__init__(self) defaults = { 'ior': 1.0, 'wl': 500, 'end': None, 'dir': Point(1,0), } self.params = {} pg.GraphicsObject.__init__(self) self.children = [] parent = params.get('parent', None) if parent is not None: defaults['start'] = parent['end'] defaults['wl'] = parent['wl'] self['ior'] = parent['ior'] self['dir'] = parent['dir'] parent.addChild(self) defaults.update(params) defaults['dir'] = Point(defaults['dir']) self.setParams(**defaults) self.mkPath() def clearChildren(self): for c in self.children: c.clearChildren() c.setParentItem(None) self.scene().removeItem(c) self.children = [] def paramStateChanged(self): pass def addChild(self, ch): self.children.append(ch) ch.setParentItem(self) def currentState(self, relativeTo=None): pos = self['start'] dir = self['dir'] if relativeTo is None: return pos, dir else: trans = self.itemTransform(relativeTo)[0] p1 = trans.map(pos) p2 = trans.map(pos + dir) return Point(p1), Point(p2-p1) def setEnd(self, end): self['end'] = end self.mkPath() def boundingRect(self): return self.path.boundingRect() def paint(self, p, *args): #p.setPen(pg.mkPen((255,0,0, 150))) p.setRenderHints(p.renderHints() | p.Antialiasing) p.setCompositionMode(p.CompositionMode_Plus) p.setPen(wlPen(self['wl'])) p.drawPath(self.path) def mkPath(self): self.prepareGeometryChange() self.path = QtGui.QPainterPath() self.path.moveTo(self['start']) if self['end'] is not None: self.path.lineTo(self['end']) else: self.path.lineTo(self['start']+500*self['dir']) def trace(rays, optics): if len(optics) < 1 or len(rays) < 1: return for r in rays: r.clearChildren() o = optics[0] r2 = o.propagateRay(r) trace(r2, optics[1:]) class Tracer(QtCore.QObject): """ Simple ray tracer. Initialize with a list of rays and optics; calling trace() will cause rays to be extended by propagating them through each optic in sequence. """ def __init__(self, rays, optics): QtCore.QObject.__init__(self) self.optics = optics self.rays = rays for o in self.optics: o.sigStateChanged.connect(self.trace) self.trace() def trace(self): trace(self.rays, self.optics)
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/cloud/tasks_v2/proto/task.proto import sys _b = sys.version_info[0] < 3 and (lambda x: x) or (lambda x: x.encode("latin1")) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import resource_pb2 as google_dot_api_dot_resource__pb2 from ..proto import ( target_pb2 as google_dot_cloud_dot_tasks__v2_dot_proto_dot_target__pb2, ) from google.protobuf import duration_pb2 as google_dot_protobuf_dot_duration__pb2 from google.protobuf import timestamp_pb2 as google_dot_protobuf_dot_timestamp__pb2 from google.rpc import status_pb2 as google_dot_rpc_dot_status__pb2 from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name="google/cloud/tasks_v2/proto/task.proto", package="google.cloud.tasks.v2", syntax="proto3", serialized_options=_b( "\n\031com.google.cloud.tasks.v2B\tTaskProtoP\001Z:google.golang.org/genproto/googleapis/cloud/tasks/v2;tasks" ), serialized_pb=_b( '\n&google/cloud/tasks_v2/proto/task.proto\x12\x15google.cloud.tasks.v2\x1a\x19google/api/resource.proto\x1a(google/cloud/tasks_v2/proto/target.proto\x1a\x1egoogle/protobuf/duration.proto\x1a\x1fgoogle/protobuf/timestamp.proto\x1a\x17google/rpc/status.proto\x1a\x1cgoogle/api/annotations.proto"\xb4\x05\n\x04Task\x12\x0c\n\x04name\x18\x01 \x01(\t\x12N\n\x17\x61pp_engine_http_request\x18\x02 \x01(\x0b\x32+.google.cloud.tasks.v2.AppEngineHttpRequestH\x00\x12:\n\x0chttp_request\x18\x03 \x01(\x0b\x32".google.cloud.tasks.v2.HttpRequestH\x00\x12\x31\n\rschedule_time\x18\x04 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12/\n\x0b\x63reate_time\x18\x05 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12\x34\n\x11\x64ispatch_deadline\x18\x06 \x01(\x0b\x32\x19.google.protobuf.Duration\x12\x16\n\x0e\x64ispatch_count\x18\x07 \x01(\x05\x12\x16\n\x0eresponse_count\x18\x08 \x01(\x05\x12\x35\n\rfirst_attempt\x18\t \x01(\x0b\x32\x1e.google.cloud.tasks.v2.Attempt\x12\x34\n\x0clast_attempt\x18\n \x01(\x0b\x32\x1e.google.cloud.tasks.v2.Attempt\x12.\n\x04view\x18\x0b \x01(\x0e\x32 .google.cloud.tasks.v2.Task.View"1\n\x04View\x12\x14\n\x10VIEW_UNSPECIFIED\x10\x00\x12\t\n\x05\x42\x41SIC\x10\x01\x12\x08\n\x04\x46ULL\x10\x02:h\xea\x41\x65\n\x1e\x63loudtasks.googleapis.com/Task\x12\x43projects/{project}/locations/{location}/queues/{queue}/tasks/{task}B\x0e\n\x0cmessage_type"\xcf\x01\n\x07\x41ttempt\x12\x31\n\rschedule_time\x18\x01 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12\x31\n\rdispatch_time\x18\x02 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12\x31\n\rresponse_time\x18\x03 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12+\n\x0fresponse_status\x18\x04 \x01(\x0b\x32\x12.google.rpc.StatusBd\n\x19\x63om.google.cloud.tasks.v2B\tTaskProtoP\x01Z:google.golang.org/genproto/googleapis/cloud/tasks/v2;tasksb\x06proto3' ), dependencies=[ google_dot_api_dot_resource__pb2.DESCRIPTOR, google_dot_cloud_dot_tasks__v2_dot_proto_dot_target__pb2.DESCRIPTOR, google_dot_protobuf_dot_duration__pb2.DESCRIPTOR, google_dot_protobuf_dot_timestamp__pb2.DESCRIPTOR, google_dot_rpc_dot_status__pb2.DESCRIPTOR, google_dot_api_dot_annotations__pb2.DESCRIPTOR, ], ) _TASK_VIEW = _descriptor.EnumDescriptor( name="View", full_name="google.cloud.tasks.v2.Task.View", filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name="VIEW_UNSPECIFIED", index=0, number=0, serialized_options=None, type=None, ), _descriptor.EnumValueDescriptor( name="BASIC", index=1, number=1, serialized_options=None, type=None ), _descriptor.EnumValueDescriptor( name="FULL", index=2, number=2, serialized_options=None, type=None ), ], containing_type=None, serialized_options=None, serialized_start=776, serialized_end=825, ) _sym_db.RegisterEnumDescriptor(_TASK_VIEW) _TASK = _descriptor.Descriptor( name="Task", full_name="google.cloud.tasks.v2.Task", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="name", full_name="google.cloud.tasks.v2.Task.name", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="app_engine_http_request", full_name="google.cloud.tasks.v2.Task.app_engine_http_request", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="http_request", full_name="google.cloud.tasks.v2.Task.http_request", index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="schedule_time", full_name="google.cloud.tasks.v2.Task.schedule_time", index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="create_time", full_name="google.cloud.tasks.v2.Task.create_time", index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="dispatch_deadline", full_name="google.cloud.tasks.v2.Task.dispatch_deadline", index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="dispatch_count", full_name="google.cloud.tasks.v2.Task.dispatch_count", index=6, number=7, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="response_count", full_name="google.cloud.tasks.v2.Task.response_count", index=7, number=8, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="first_attempt", full_name="google.cloud.tasks.v2.Task.first_attempt", index=8, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="last_attempt", full_name="google.cloud.tasks.v2.Task.last_attempt", index=9, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="view", full_name="google.cloud.tasks.v2.Task.view", index=10, number=11, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[_TASK_VIEW], serialized_options=_b( "\352Ae\n\036cloudtasks.googleapis.com/Task\022Cprojects/{project}/locations/{location}/queues/{queue}/tasks/{task}" ), is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name="message_type", full_name="google.cloud.tasks.v2.Task.message_type", index=0, containing_type=None, fields=[], ) ], serialized_start=255, serialized_end=947, ) _ATTEMPT = _descriptor.Descriptor( name="Attempt", full_name="google.cloud.tasks.v2.Attempt", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="schedule_time", full_name="google.cloud.tasks.v2.Attempt.schedule_time", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="dispatch_time", full_name="google.cloud.tasks.v2.Attempt.dispatch_time", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="response_time", full_name="google.cloud.tasks.v2.Attempt.response_time", index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="response_status", full_name="google.cloud.tasks.v2.Attempt.response_status", index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=950, serialized_end=1157, ) _TASK.fields_by_name[ "app_engine_http_request" ].message_type = ( google_dot_cloud_dot_tasks__v2_dot_proto_dot_target__pb2._APPENGINEHTTPREQUEST ) _TASK.fields_by_name[ "http_request" ].message_type = google_dot_cloud_dot_tasks__v2_dot_proto_dot_target__pb2._HTTPREQUEST _TASK.fields_by_name[ "schedule_time" ].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _TASK.fields_by_name[ "create_time" ].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _TASK.fields_by_name[ "dispatch_deadline" ].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _TASK.fields_by_name["first_attempt"].message_type = _ATTEMPT _TASK.fields_by_name["last_attempt"].message_type = _ATTEMPT _TASK.fields_by_name["view"].enum_type = _TASK_VIEW _TASK_VIEW.containing_type = _TASK _TASK.oneofs_by_name["message_type"].fields.append( _TASK.fields_by_name["app_engine_http_request"] ) _TASK.fields_by_name["app_engine_http_request"].containing_oneof = _TASK.oneofs_by_name[ "message_type" ] _TASK.oneofs_by_name["message_type"].fields.append(_TASK.fields_by_name["http_request"]) _TASK.fields_by_name["http_request"].containing_oneof = _TASK.oneofs_by_name[ "message_type" ] _ATTEMPT.fields_by_name[ "schedule_time" ].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _ATTEMPT.fields_by_name[ "dispatch_time" ].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _ATTEMPT.fields_by_name[ "response_time" ].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _ATTEMPT.fields_by_name[ "response_status" ].message_type = google_dot_rpc_dot_status__pb2._STATUS DESCRIPTOR.message_types_by_name["Task"] = _TASK DESCRIPTOR.message_types_by_name["Attempt"] = _ATTEMPT _sym_db.RegisterFileDescriptor(DESCRIPTOR) Task = _reflection.GeneratedProtocolMessageType( "Task", (_message.Message,), dict( DESCRIPTOR=_TASK, __module__="google.cloud.tasks_v2.proto.task_pb2", __doc__="""A unit of scheduled work. Attributes: name: Optionally caller-specified in [CreateTask][google.cloud.tasks.v2.CloudTasks.CreateTask]. The task name. The task name must have the following format: ``projects/PROJECT_ID/locations/LOCATION_ID/queues/QUEUE_ID/ta sks/TASK_ID`` - ``PROJECT_ID`` can contain letters ([A-Za-z]), numbers ([0-9]), hyphens (-), colons (:), or periods (.). For more information, see `Identifying projects <https://cloud.google.com/resource- manager/docs/creating-managing- projects#identifying_projects>`_ - ``LOCATION_ID`` is the canonical ID for the task's location. The list of available locations can be obtained by calling [ListLocations][google .cloud.location.Locations.ListLocations]. For more information, see https://cloud.google.com/about/locations/. - ``QUEUE_ID`` can contain letters ([A-Za-z]), numbers ([0-9]), or hyphens (-). The maximum length is 100 characters. - ``TASK_ID`` can contain only letters ([A-Za-z]), numbers ([0-9]), hyphens (-), or underscores (\_). The maximum length is 500 characters. message_type: Required. The message to send to the worker. app_engine_http_request: HTTP request that is sent to the App Engine app handler. An App Engine task is a task that has [AppEngineHttpRequest][goog le.cloud.tasks.v2.AppEngineHttpRequest] set. http_request: HTTP request that is sent to the worker. An HTTP task is a task that has [HttpRequest][google.cloud.tasks.v2.HttpRequest] set. schedule_time: The time when the task is scheduled to be attempted or retried. ``schedule_time`` will be truncated to the nearest microsecond. create_time: Output only. The time that the task was created. ``create_time`` will be truncated to the nearest second. dispatch_deadline: The deadline for requests sent to the worker. If the worker does not respond by this deadline then the request is cancelled and the attempt is marked as a ``DEADLINE_EXCEEDED`` failure. Cloud Tasks will retry the task according to the [RetryConfig][google.cloud.tasks.v2.RetryConfig]. Note that when the request is cancelled, Cloud Tasks will stop listing for the response, but whether the worker stops processing depends on the worker. For example, if the worker is stuck, it may not react to cancelled requests. The default and maximum values depend on the type of request: - For [HTTP tasks][google.cloud.tasks.v2.HttpRequest], the default is 10 minutes. The deadline must be in the interval [15 seconds, 30 minutes]. - For [App Engine tasks][google.cloud.tasks.v2.AppEngineHttpRequest], 0 indicates that the request has the default deadline. The default deadline depends on the `scaling type <https://cloud.google.com/appengine/docs/standard/go/how- instances-are-managed#instance_scaling>`_ of the service: 10 minutes for standard apps with automatic scaling, 24 hours for standard apps with manual and basic scaling, and 60 minutes for flex apps. If the request deadline is set, it must be in the interval [15 seconds, 24 hours 15 seconds]. Regardless of the task's ``dispatch_deadline``, the app handler will not run for longer than than the service's timeout. We recommend setting the ``dispatch_deadline`` to at most a few seconds more than the app handler's timeout. For more information see `Timeouts <https://cloud.google.com/tasks/docs/creating-appengine- handlers#timeouts>`_. ``dispatch_deadline`` will be truncated to the nearest millisecond. The deadline is an approximate deadline. dispatch_count: Output only. The number of attempts dispatched. This count includes attempts which have been dispatched but haven't received a response. response_count: Output only. The number of attempts which have received a response. first_attempt: Output only. The status of the task's first attempt. Only [dispatch\_time][google.cloud.tasks.v2.Attempt.dispatch\_time] will be set. The other [Attempt][google.cloud.tasks.v2.Attempt] information is not retained by Cloud Tasks. last_attempt: Output only. The status of the task's last attempt. view: Output only. The view specifies which subset of the [Task][google.cloud.tasks.v2.Task] has been returned. """, # @@protoc_insertion_point(class_scope:google.cloud.tasks.v2.Task) ), ) _sym_db.RegisterMessage(Task) Attempt = _reflection.GeneratedProtocolMessageType( "Attempt", (_message.Message,), dict( DESCRIPTOR=_ATTEMPT, __module__="google.cloud.tasks_v2.proto.task_pb2", __doc__="""The status of a task attempt. Attributes: schedule_time: Output only. The time that this attempt was scheduled. ``schedule_time`` will be truncated to the nearest microsecond. dispatch_time: Output only. The time that this attempt was dispatched. ``dispatch_time`` will be truncated to the nearest microsecond. response_time: Output only. The time that this attempt response was received. ``response_time`` will be truncated to the nearest microsecond. response_status: Output only. The response from the worker for this attempt. If ``response_time`` is unset, then the task has not been attempted or is currently running and the ``response_status`` field is meaningless. """, # @@protoc_insertion_point(class_scope:google.cloud.tasks.v2.Attempt) ), ) _sym_db.RegisterMessage(Attempt) DESCRIPTOR._options = None _TASK._options = None # @@protoc_insertion_point(module_scope)
# Copyright Tom SF Haines, Reinier de Blois, Aaron Snoswell # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from panda3d.core import VBase4 from panda3d.core import AmbientLight as PAmbientLight class AmbLight: """Creates a simple ambient light""" def __init__(self,manager,xml): self.light = PAmbientLight('alight') self.lightNode = render.attachNewNode(self.light) self.reload(manager,xml) def reload(self,manager,xml): color = xml.find('color') if color!=None: self.light.setColor(VBase4(float(color.get('r')), float(color.get('g')), float(color.get('b')), 1.0)) def start(self): render.setLight(self.lightNode) def stop(self): render.clearLight(self.lightNode)
# # Run NN, multinomial logistic regression using simple gradient descent. # import config import numpy as np import tensorflow as tf from tensorflow import (Variable, constant, global_variables_initializer, truncated_normal, zeros) from tf_training_helper import TrainingHelper class TF_notMNIST_Training_Gradient_Descent: def __init__(self, each_object_size_width=config.TRAIN_OBJECT_WIDTH, each_object_size_height=config.TRAIN_OBJECT_HEIGHT, train_batch=10000, train_steps=800, train_learning_rate=0.5): """ Constructor. """ self.each_object_size_width = each_object_size_width self.each_object_size_height = each_object_size_height self.train_batch = train_batch self.train_steps = train_steps self.train_learning_rate = train_learning_rate helper = TrainingHelper() self.__print_predications__ = helper.print_predications self.__print_test_accuracy__ = helper.print_test_accuracy self.__activation__ = helper.activation self.__loss_optimizer__ = helper.loss_optimizer def start_with(self, train_dataset, train_labels, valid_dataset, valid_labels, test_dataset, test_labels, count_classes, beta_for_regularizer=0.01): """ Start multinomial logistic regression using simple gradient descent. """ # # Fixed values while training # tf_train_dataset = constant(train_dataset[:self.train_batch, :]) tf_train_labels = constant(train_labels[:self.train_batch]) tf_valid_dataset = constant(valid_dataset) tf_test_dataset = constant(test_dataset) # # Variables should be trained. # Classical weight and biases. # tf_weights = Variable(truncated_normal( [self.each_object_size_width * self.each_object_size_height, count_classes])) tf_biases = Variable(zeros([count_classes])) logits = self.__activation__(tf_train_dataset, tf_weights, tf_biases) loss, optimizer = self.__loss_optimizer__( tf_train_labels, logits, self.train_learning_rate, beta_for_regularizer, [tf_weights]) # # Convert dataset to predication # The actual problem is transformed into a probabilistic problem. # predication_for_train = tf.nn.softmax(logits) predication_for_valid = tf.nn.softmax( self.__activation__(tf_valid_dataset, tf_weights, tf_biases)) predication_for_test = tf.nn.softmax( self.__activation__(tf_test_dataset, tf_weights, tf_biases)) # # Training # print("\n") with tf.Session() as sess: init = global_variables_initializer() sess.run(init) for step in range(self.train_steps): _, ls, predications = sess.run( [optimizer, loss, predication_for_train]) self.__print_predications__( step, ls, predications, train_labels[:self.train_batch, :], predication_for_valid, valid_labels) self.__print_test_accuracy__(predication_for_test, test_labels)
import inspect import math import re from functools import singledispatch, partial from itertools import chain, cycle from .api import ( always_break, annotate, concat, contextual, flat_choice, fill, group, nest, NIL, LINE, SOFTLINE, HARDLINE ) from .doc import ( Annotated, Doc ) from .layout import layout_smart from .syntax import Token from .utils import identity, intersperse UNSET_SENTINEL = object() COMMA = annotate(Token.PUNCTUATION, ',') COLON = annotate(Token.PUNCTUATION, ':') ELLIPSIS = annotate(Token.PUNCTUATION, '...') LPAREN = annotate(Token.PUNCTUATION, '(') RPAREN = annotate(Token.PUNCTUATION, ')') LBRACKET = annotate(Token.PUNCTUATION, '[') RBRACKET = annotate(Token.PUNCTUATION, ']') LBRACE = annotate(Token.PUNCTUATION, '{') RBRACE = annotate(Token.PUNCTUATION, '}') NEG_OP = annotate(Token.OPERATOR, '-') MUL_OP = annotate(Token.OPERATOR, '*') ADD_OP = annotate(Token.OPERATOR, '+') ASSIGN_OP = annotate(Token.OPERATOR, '=') WHITESPACE_PATTERN_TEXT = re.compile(r'(\s+)') WHITESPACE_PATTERN_BYTES = re.compile(rb'(\s+)') NONWORD_PATTERN_TEXT = re.compile(r'(\W+)') NONWORD_PATTERN_BYTES = re.compile(rb'(\W+)') # For dict keys """ ( 'aaaaaaaaaa' 'aaaaaa' ) """ MULTILINE_STATEGY_PARENS = 'MULTILINE_STATEGY_PARENS' # For dict values """ 'aaaaaaaaaa' 'aaaaa' """ MULTILINE_STATEGY_INDENTED = 'MULTILINE_STATEGY_INDENTED' # For sequence elements """ 'aaaaaaaaa' 'aaaaaa' """ MULTILINE_STATEGY_HANG = 'MULTILINE_STATEGY_HANG' # For top level strs """ 'aaaaaaaaa' 'aaaaaa' """ MULTILINE_STATEGY_PLAIN = 'MULTILINE_STATEGY_PLAIN' IMPLICIT_MODULES = { '__main__', 'builtins', } class CommentAnnotation: def __init__(self, value): assert isinstance(value, str) self.value = value def __repr__(self): return f'ValueComment({repr(self.value)})' class _CommentedValue: def __init__(self, value, comment): self.value = value self.comment = comment class _TrailingCommentedValue: def __init__(self, value, comment): self.value = value self.comment = comment def annotate_comment(comment, doc): """Annotate ``doc`` with ``comment`` text. Peprint will make sure the parent (or top-level) handler will render the comment in a proper way. E.g. if ``doc`` represents an element in a list, then the ``list`` pretty printer will handle where to place the comment. Differs from ``comment`` and ``trailing_comment`` by operating only on Docs, not normal values. """ return annotate(CommentAnnotation(comment), doc) def comment(comment_str, value): """Annotates a value with a comment str. Allows you to insert comments into Peprint output by annotating them on the values directly, instead of first having to render them into a Doc and then annotating the Doc with ``annotate_comment``. Generally, you want to use this to annotate arguments to ``prettycall``. """ return _CommentedValue(value, comment_str) def trailing_comment(comment_str, value): """Annotates a value with a comment str, so that the comment will be rendered "trailing", e.g. in place of the last element in a list, set or tuple, or after the last argument in a function. This will force the rendering of `value` to be broken to multple lines as Python does not have inline comments. """ return _TrailingCommentedValue(value, comment_str) def unwrap_comments(value): comment = None trailing_comment = None while isinstance(value, (_CommentedValue, _TrailingCommentedValue)): if isinstance(value, _CommentedValue): comment = value.comment value = value.value elif isinstance(value, _TrailingCommentedValue): trailing_comment = value.comment value = value.value return (value, comment, trailing_comment) def is_commented(value): return ( isinstance(value, Annotated) and isinstance(value.annotation, CommentAnnotation) ) def builtin_identifier(s): return annotate(Token.NAME_BUILTIN, s) def identifier(s): return annotate(Token.NAME_FUNCTION, s) def general_identifier(s): if callable(s): module, qualname = s.__module__, s.__qualname__ if module in IMPLICIT_MODULES: if module == 'builtins': return builtin_identifier(qualname) return identifier(qualname) return identifier(f'{module}.{qualname}') return identifier(s) def classattr(cls, attrname): return concat([ general_identifier(cls), identifier(f'.{attrname}') ]) class PrettyContext: __slots__ = ( 'indent', 'depth_left', 'visited', 'multiline_strategy', 'user_ctx' ) def __init__( self, indent, depth_left, visited=None, multiline_strategy=MULTILINE_STATEGY_PLAIN, user_ctx=None, ): self.indent = indent self.depth_left = depth_left self.multiline_strategy = multiline_strategy if visited is None: visited = set() self.visited = visited if user_ctx is None: user_ctx = {} self.user_ctx = user_ctx def _replace(self, **kwargs): passed_keys = set(kwargs.keys()) fieldnames = type(self).__slots__ assert passed_keys.issubset(set(fieldnames)) return PrettyContext( **{ k: ( kwargs[k] if k in passed_keys else getattr(self, k) ) for k in fieldnames } ) def use_multiline_strategy(self, strategy): return self._replace(multiline_strategy=strategy) def set(self, key, value): return self._replace(user_ctx={ **self.user_ctx, key: value, }) def get(self, key, default=None): return self.user_ctx.get(key, default) def nested_call(self): return self._replace(depth_left=self.depth_left - 1) def start_visit(self, value): self.visited.add(id(value)) def end_visit(self, value): self.visited.remove(id(value)) def is_visited(self, value): return id(value) in self.visited def _run_pretty(pretty_fn, value, ctx, trailing_comment=None): if ctx.is_visited(value): return _pretty_recursion(value) ctx.start_visit(value) if trailing_comment: doc = pretty_fn(value, ctx, trailing_comment=trailing_comment) else: doc = pretty_fn(value, ctx) if not ( isinstance(doc, str) or isinstance(doc, Doc) ): fnname = f'{pretty_fn.__module__}.{pretty_fn.__qualname__}' raise ValueError( 'Functions decorated with register_pretty must return ' f'an instance of str or Doc. {fnname} returned ' f'{repr(doc)} instead.' ) ctx.end_visit(value) return doc _PREDICATE_REGISTRY = [] def _repr_pretty(value, ctx): for predicate, fn in _PREDICATE_REGISTRY: if predicate(value): return fn(value, ctx) return repr(value) pretty_dispatch = singledispatch(partial(_run_pretty, _repr_pretty)) def pretty_python_value(value, ctx): comment = None trailing_comment = None value, comment, trailing_comment = unwrap_comments(value) if trailing_comment: doc = pretty_dispatch( value, ctx, trailing_comment=trailing_comment ) else: doc = pretty_dispatch( value, ctx ) if comment: return annotate_comment( comment, doc ) return doc def register_pretty(type=None, predicate=None): """Returns a decorator that registers the decorated function as the pretty printer for instances of ``type``. """ if type is None and predicate is None: raise ValueError( "You must provide either the 'type' or 'predicate' argument." ) if type is not None and predicate is not None: raise ValueError( "You must provide either the 'type' or 'predicate' argument," "but not both" ) if predicate is not None: if not callable(predicate): raise ValueError( f"Expected a callable for 'predicate', got {repr(predicate)}" ) def decorator(fn): sig = inspect.signature(fn) value = None ctx = None try: sig.bind(value, ctx) except TypeError: fnname = f'{fn.__module__}.{fn.__qualname__}' raise ValueError( "Functions decorated with register_pretty must accept " "exactly two positional parameters: 'value' and 'ctx'. " f"The function signature for {fnname} was not compatible." ) if type: pretty_dispatch.register(type, partial(_run_pretty, fn)) else: assert callable(predicate) _PREDICATE_REGISTRY.append((predicate, fn)) return fn return decorator def bracket(ctx, left, child, right): return concat([ left, nest(ctx.indent, concat([SOFTLINE, child])), SOFTLINE, right ]) def commentdoc(text): """Returns a Doc representing a comment `text`. `text` is treated as words, and any whitespace may be used to break the comment to multiple lines.""" if not text: raise ValueError( f'Expected non-empty comment str, got {repr(text)}' ) commentlines = [] for line in text.splitlines(): alternating_words_ws = list(filter(None, WHITESPACE_PATTERN_TEXT.split(line))) starts_with_whitespace = bool( WHITESPACE_PATTERN_TEXT.match(alternating_words_ws[0]) ) if starts_with_whitespace: prefix = alternating_words_ws[0] alternating_words_ws = alternating_words_ws[1:] else: prefix = NIL if len(alternating_words_ws) % 2 == 0: # The last part must be whitespace. alternating_words_ws = alternating_words_ws[:-1] for idx, tup in enumerate(zip(alternating_words_ws, cycle([False, True]))): part, is_ws = tup if is_ws: alternating_words_ws[idx] = flat_choice( when_flat=part, when_broken=always_break( concat([ HARDLINE, '# ', ]) ) ) commentlines.append( concat([ '# ', prefix, fill(alternating_words_ws) ]) ) outer = identity if len(commentlines) > 1: outer = always_break return annotate( Token.COMMENT_SINGLE, outer(concat(intersperse(HARDLINE, commentlines))) ) def sequence_of_docs(ctx, left, docs, right, dangle=False): docs = list(docs) # Performance optimization: # in case of really long sequences, # the layout algorithm can be quite slow. # No branching here is needed if the sequence # is long enough that even with the shortest # element output, it does not fit the ribbon width. minimum_output_len = ( 2 + # Assume left and right are one character each len(', ') * (len(docs) - 1) + len(docs) # each element must take at least one character ) MAX_PRACTICAL_RIBBON_WIDTH = 150 will_break = minimum_output_len > MAX_PRACTICAL_RIBBON_WIDTH has_comment = any(is_commented(doc) for doc in docs) parts = [] for idx, doc in enumerate(docs): last = idx == len(docs) - 1 if is_commented(doc): comment_str = doc.annotation.value # Try to fit the comment at the end of the same line. flat_version = concat([ doc, COMMA if not last else NIL, ' ', commentdoc(comment_str), HARDLINE if not last else NIL ]) # If the value is broken to multiple lines, add # comment on the line above. broken_version = concat([ commentdoc(comment_str), HARDLINE, doc, COMMA if not last else NIL, HARDLINE if not last else NIL ]) parts.append( group( flat_choice( when_flat=flat_version, when_broken=broken_version, ) ) ) else: parts.append(doc) if not last: parts.append( concat([COMMA, LINE]) ) if dangle: parts.append(COMMA) outer = ( always_break if will_break or has_comment else group ) return outer(bracket(ctx, left, concat(parts), right)) def prettycall(ctx, fn, *args, **kwargs): """Returns a Doc that represents a function call to :keyword:`fn` with the remaining positional and keyword arguments. Given an arbitrary context ``ctx``,:: prettycall(ctx, sorted, [7, 4, 5], reverse=True) Will result in output:: sorted([7, 4, 5], reverse=True) The layout algorithm will automatically break the call to multiple lines if needed:: sorted( [7, 4, 5], reverse=True ) ``prettycall`` automatically handles syntax highlighting. :param ctx: a context value :type ctx: peprint.peprint.PrettyContext :param fn: a callable :param args: positional arguments to render to the call :param kwargs: keyword arguments to render to the call :returns: :class:`~peprint.doc.Doc` """ fndoc = general_identifier(fn) if ctx.depth_left <= 0: return concat([fndoc, LPAREN, ELLIPSIS, RPAREN]) if not kwargs and len(args) == 1: sole_arg = args[0] unwrapped_sole_arg, _comment, _trailing_comment = unwrap_comments(args[0]) if type(unwrapped_sole_arg) in (list, dict, tuple): return build_fncall( ctx, fndoc, argdocs=[pretty_python_value(sole_arg, ctx)], hug_sole_arg=True, ) nested_ctx = ( ctx .nested_call() .use_multiline_strategy(MULTILINE_STATEGY_HANG) ) return build_fncall( ctx, fndoc, argdocs=( pretty_python_value(arg, nested_ctx) for arg in args ), kwargdocs=( (kwarg, pretty_python_value(v, nested_ctx)) for kwarg, v in kwargs.items() ), ) def build_fncall( ctx, fndoc, argdocs=(), kwargdocs=(), hug_sole_arg=False, trailing_comment=None, ): """Builds a doc that looks like a function call, from docs that represent the function, arguments and keyword arguments. If ``hug_sole_arg`` is True, and the represented functional call is done with a single non-keyword argument, the function call parentheses will hug the sole argument doc without newlines and indentation in break mode. This makes a difference in calls like this:: > hug_sole_arg = False frozenset( [ 1, 2, 3, 4, 5 ] ) > hug_sole_arg = True frozenset([ 1, 2, 3, 4, 5, ]) If ``trailing_comment`` is provided, the text is rendered as a comment after the last argument and before the closing parenthesis. This will force the function call to be broken to multiple lines. """ if callable(fndoc): fndoc = general_identifier(fndoc) has_comment = bool(trailing_comment) argdocs = list(argdocs) kwargdocs = list(kwargdocs) kwargdocs = [ # Propagate any comments to the kwarg doc. ( annotate_comment( doc.annotation.value, concat([binding, ASSIGN_OP, doc.doc]) ) if is_commented(doc) else concat([binding, ASSIGN_OP, doc]) ) for binding, doc in kwargdocs ] if not (argdocs or kwargdocs): return concat([ fndoc, LPAREN, RPAREN, ]) if ( hug_sole_arg and not kwargdocs and len(argdocs) == 1 and not is_commented(argdocs[0]) ): return group( concat([ fndoc, LPAREN, argdocs[0], RPAREN ]) ) allarg_docs = [*argdocs, *kwargdocs] if trailing_comment: allarg_docs.append(commentdoc(trailing_comment)) parts = [] for idx, doc in enumerate(allarg_docs): last = idx == len(allarg_docs) - 1 if is_commented(doc): has_comment = True comment_str = doc.annotation.value doc = doc.doc else: comment_str = None part = concat([doc, NIL if last else COMMA]) if comment_str: part = group( flat_choice( when_flat=concat([ part, ' ', commentdoc(comment_str) ]), when_broken=concat([ commentdoc(comment_str), HARDLINE, part, ]), ) ) if not last: part = concat([part, HARDLINE if has_comment else LINE]) parts.append(part) outer = ( always_break if has_comment else group ) return outer( concat([ fndoc, LPAREN, nest( ctx.indent, concat([ SOFTLINE, concat(parts), ]) ), SOFTLINE, RPAREN ]) ) @register_pretty(tuple) @register_pretty(list) @register_pretty(set) def pretty_bracketable_iterable(value, ctx, trailing_comment=None): dangle = False if isinstance(value, list): left, right = LBRACKET, RBRACKET elif isinstance(value, tuple): left, right = LPAREN, RPAREN if len(value) == 1: dangle = True elif isinstance(value, set): left, right = LBRACE, RBRACE if not value: if isinstance(value, (list, tuple)): return concat([left, right]) else: assert isinstance(value, set) return prettycall(ctx, set) if ctx.depth_left == 0: return concat([left, ELLIPSIS, right]) if len(value) == 1: sole_value = list(value)[0] els = [ pretty_python_value( sole_value, ctx=( ctx .nested_call() .use_multiline_strategy(MULTILINE_STATEGY_PLAIN) ) ) ] else: els = ( pretty_python_value( el, ctx=( ctx .nested_call() .use_multiline_strategy(MULTILINE_STATEGY_HANG) ) ) for el in value ) if trailing_comment: els = chain(els, [commentdoc(trailing_comment)]) dangle = False return sequence_of_docs(ctx, left, els, right, dangle=dangle) @register_pretty(frozenset) def pretty_frozenset(value, ctx): if value: return prettycall(ctx, frozenset, list(value)) return prettycall(ctx, frozenset) class _AlwaysSortable(object): __slots__ = ('value', ) def __init__(self, value): self.value = value def sortable_value(self): return (str(type(self)), id(self)) def __lt__(self, other): try: return self.value < other.value except TypeError: return self.sortable_value() < other.sortable_value() @register_pretty(dict) def pretty_dict(d, ctx): if ctx.depth_left == 0: return concat([LBRACE, ELLIPSIS, RBRACE]) has_comment = False pairs = [] for k in sorted(d.keys(), key=_AlwaysSortable): v = d[k] if isinstance(k, (str, bytes)): kdoc = pretty_str( k, # not a nested call on purpose ctx=ctx.use_multiline_strategy(MULTILINE_STATEGY_PARENS), ) else: kdoc = pretty_python_value( k, ctx=ctx.nested_call() ) vdoc = pretty_python_value( v, ctx=( ctx .nested_call() .use_multiline_strategy(MULTILINE_STATEGY_INDENTED) ), ) kcomment = None if is_commented(kdoc): has_comment = True kcomment = kdoc.annotation.value kdoc = kdoc.doc vcomment = None if is_commented(vdoc): has_comment = True vcomment = vdoc.annotation.value vdoc = vdoc.doc pairs.append((k, v, kdoc, vdoc, kcomment, vcomment)) parts = [] for idx, tup in enumerate(pairs): last = idx == len(pairs) - 1 k, v, kdoc, vdoc, kcomment, vcomment = tup if not (kcomment or vcomment): parts.append( concat([ kdoc, concat([COLON, ' ']), vdoc, NIL if last else COMMA, NIL if last else LINE, ]), ) continue if kcomment: kcommented = concat([ commentdoc(kcomment), HARDLINE, kdoc, ]) else: kcommented = kdoc if vcomment: vcommented = group( flat_choice( # Add comment at the end of the line when_flat=concat([ vdoc, NIL if last else COMMA, ' ', commentdoc(vcomment), NIL if last else HARDLINE, ]), # Put comment above the value # on its own line when_broken=concat([ nest( ctx.indent, concat([ HARDLINE, commentdoc(vcomment), HARDLINE, # Rerender vdoc with plain multiline strategy, # since we already have an indentation. pretty_python_value( v, ctx=( ctx .nested_call() .use_multiline_strategy(MULTILINE_STATEGY_PLAIN) ), ), COMMA if not last else NIL, HARDLINE if not last else NIL ]) ), ]) ) ) else: vcommented = concat([ vdoc, COMMA if not last else NIL, LINE if not last else NIL ]) parts.append( concat([ kcommented, concat([COLON, ' ']), vcommented ]) ) doc = bracket( ctx, LBRACE, concat(parts), RBRACE, ) if len(pairs) > 2 or has_comment: doc = always_break(doc) else: doc = group(doc) return doc INF_FLOAT = float('inf') NEG_INF_FLOAT = float('-inf') @register_pretty(float) def pretty_float(value, ctx): if ctx.depth_left == 0: return prettycall(ctx, float, ...) if value == INF_FLOAT: return prettycall(ctx, float, 'inf') elif value == NEG_INF_FLOAT: return prettycall(ctx, float, '-inf') elif math.isnan(value): return prettycall(ctx, float, 'nan') return annotate(Token.NUMBER_FLOAT, repr(value)) @register_pretty(int) def pretty_int(value, ctx): if ctx.depth_left == 0: return prettycall(ctx, int, ...) return annotate(Token.NUMBER_INT, repr(value)) @register_pretty(type(...)) def pretty_ellipsis(value, ctx): return ELLIPSIS @register_pretty(bool) @register_pretty(type(None)) def pretty_singletons(value, ctx): return annotate(Token.KEYWORD_CONSTANT, repr(value)) SINGLE_QUOTE_TEXT = "'" SINGLE_QUOTE_BYTES = b"'" DOUBLE_QUOTE_TEXT = '"' DOUBLE_QUOTE_BYTES = b'"' def determine_quote_strategy(s): if isinstance(s, str): single_quote = SINGLE_QUOTE_TEXT double_quote = DOUBLE_QUOTE_TEXT else: single_quote = SINGLE_QUOTE_BYTES double_quote = DOUBLE_QUOTE_BYTES contains_single = single_quote in s contains_double = double_quote in s if not contains_single: return SINGLE_QUOTE_TEXT if not contains_double: return DOUBLE_QUOTE_TEXT assert contains_single and contains_double single_count = s.count(single_quote) double_count = s.count(double_quote) if single_count <= double_count: return SINGLE_QUOTE_TEXT return DOUBLE_QUOTE_TEXT def escape_str_for_quote(use_quote, s): escaped_with_quotes = repr(s) repr_used_quote = escaped_with_quotes[-1] # string may have a prefix first_quote_at_index = escaped_with_quotes.find(repr_used_quote) repr_escaped = escaped_with_quotes[first_quote_at_index + 1:-1] if repr_used_quote == use_quote: # repr produced the quotes we wanted - # escaping is correct. return repr_escaped # repr produced different quotes, which escapes # alternate quotes. if use_quote == SINGLE_QUOTE_TEXT: # repr used double quotes return ( repr_escaped .replace('\\"', DOUBLE_QUOTE_TEXT) .replace(SINGLE_QUOTE_TEXT, "\\'") ) else: # repr used single quotes return ( repr_escaped .replace("\\'", SINGLE_QUOTE_TEXT) .replace(DOUBLE_QUOTE_TEXT, '\\"') ) STR_LITERAL_ESCAPES = re.compile( r'''((?:\\[\\abfnrtv"'])|''' r'(?:\\N\{.*?\})|' r'(?:\\u[a-fA-F0-9]{4})|' r'(?:\\U[a-fA-F0-9]{8})|' r'(?:\\x[a-fA-F0-9]{2})|' r'(?:\\[0-7]{1,3}))' ) def highlight_escapes(s): if not s: return NIL matches = STR_LITERAL_ESCAPES.split(s) starts_with_match = bool(STR_LITERAL_ESCAPES.match(matches[0])) docs = [] for part, is_escaped in zip( matches, cycle([starts_with_match, not starts_with_match]) ): if not part: continue docs.append( annotate( ( Token.STRING_ESCAPE if is_escaped else Token.LITERAL_STRING ), part ) ) return concat(docs) def pretty_single_line_str(s, indent, use_quote=None): prefix = ( annotate(Token.STRING_AFFIX, 'b') if isinstance(s, bytes) else '' ) if use_quote is None: use_quote = determine_quote_strategy(s) escaped = escape_str_for_quote(use_quote, s) escapes_highlighted = highlight_escapes(escaped) return concat([ prefix, annotate( Token.LITERAL_STRING, concat([ use_quote, escapes_highlighted, use_quote ]) ) ]) def split_at(idx, sequence): return (sequence[:idx], sequence[idx:]) def escaped_len(s, use_quote): return len(escape_str_for_quote(use_quote, s)) def str_to_lines(max_len, use_quote, s): if isinstance(s, str): whitespace_pattern = WHITESPACE_PATTERN_TEXT nonword_pattern = NONWORD_PATTERN_TEXT empty = '' else: assert isinstance(s, bytes) whitespace_pattern = WHITESPACE_PATTERN_BYTES nonword_pattern = NONWORD_PATTERN_BYTES empty = b'' alternating_words_ws = whitespace_pattern.split(s) if len(alternating_words_ws) <= 1: # no whitespace: try splitting with nonword pattern. alternating_words_ws = nonword_pattern.split(s) starts_with_whitespace = bool(nonword_pattern.match(alternating_words_ws[0])) else: starts_with_whitespace = bool(whitespace_pattern.match(alternating_words_ws[0])) # List[Tuple[str, bool]] # The boolean associated with each part indicates if it is a # whitespce/non-word part or not. tagged_alternating = list( zip( alternating_words_ws, cycle([starts_with_whitespace, not starts_with_whitespace]) ) ) remaining_stack = list(reversed(tagged_alternating)) curr_line_parts = [] curr_line_len = 0 while remaining_stack: curr, is_whitespace = remaining_stack.pop() curr_line_parts.append(curr) curr_line_len += escaped_len(curr, use_quote) if curr_line_len == max_len: if not is_whitespace and len(curr_line_parts) > 2: curr_line_parts.pop() yield empty.join(curr_line_parts) curr_line_parts = [] curr_line_len = 0 remaining_stack.append((curr, is_whitespace)) else: yield empty.join(curr_line_parts) curr_line_parts = [] curr_line_len = 0 continue elif curr_line_len > max_len: if not is_whitespace and len(curr_line_parts) > 1: curr_line_parts.pop() yield empty.join(curr_line_parts) remaining_stack.append((curr, is_whitespace)) curr_line_parts = [] curr_line_len = 0 continue curr_line_parts.pop() remaining_len = max_len - (curr_line_len - escaped_len(curr, use_quote)) this_line_part, next_line_part = split_at(max(remaining_len, 0), curr) curr_line_parts.append(this_line_part) yield empty.join(curr_line_parts) curr_line_parts = [] curr_line_len = 0 if next_line_part: remaining_stack.append((next_line_part, is_whitespace)) if curr_line_parts: yield empty.join(curr_line_parts) @register_pretty(str) @register_pretty(bytes) def pretty_str(s, ctx): # Subclasses of str/bytes # will be printed as StrSubclass('the actual string') constructor = type(s) is_native_type = constructor in (str, bytes) if ctx.depth_left == 0: if isinstance(s, str): return prettycall(ctx, constructor, ...) else: assert isinstance(s, bytes) return prettycall(ctx, constructor, ...) multiline_strategy = ctx.multiline_strategy peprint_indent = ctx.indent def evaluator(indent, column, page_width, ribbon_width): nonlocal multiline_strategy columns_left_in_line = page_width - column columns_left_in_ribbon = indent + ribbon_width - column available_width = min(columns_left_in_line, columns_left_in_ribbon) singleline_str_chars = len(s) + len('""') flat_version = pretty_single_line_str(s, peprint_indent) if singleline_str_chars <= available_width: if is_native_type: return flat_version return build_fncall(ctx, constructor, argdocs=[flat_version]) # multiline string each_line_starts_on_col = indent + peprint_indent each_line_ends_on_col = min(page_width, each_line_starts_on_col + ribbon_width) each_line_max_str_len = each_line_ends_on_col - each_line_starts_on_col - 2 use_quote = determine_quote_strategy(s) lines = str_to_lines( max_len=each_line_max_str_len, use_quote=use_quote, s=s, ) parts = intersperse( HARDLINE, ( pretty_single_line_str( line, indent=peprint_indent, use_quote=use_quote, ) for line in lines ) ) if not is_native_type: multiline_strategy = MULTILINE_STATEGY_PLAIN if multiline_strategy == MULTILINE_STATEGY_PLAIN: res = always_break(concat(parts)) if is_native_type: return res return build_fncall(ctx, constructor, argdocs=[res]) elif multiline_strategy == MULTILINE_STATEGY_HANG: return always_break( nest( peprint_indent, concat(parts) ) ) else: if multiline_strategy == MULTILINE_STATEGY_PARENS: left_paren, right_paren = LPAREN, RPAREN else: assert multiline_strategy == MULTILINE_STATEGY_INDENTED left_paren, right_paren = '', '' return always_break( concat([ left_paren, nest( peprint_indent, concat([ HARDLINE, *parts, ]) ), ( HARDLINE if multiline_strategy == MULTILINE_STATEGY_PARENS else NIL ), right_paren ]) ) return contextual(evaluator) def _pretty_recursion(value): return f'<Recursion on {type(value).__name__} with id={id(value)}>' def python_to_sdocs(value, indent, width, depth, ribbon_width=71): if depth is None: depth = float('inf') doc = pretty_python_value( value, ctx=PrettyContext(indent=indent, depth_left=depth, visited=set()) ) if is_commented(doc): doc = group( flat_choice( when_flat=concat([ doc, ' ', commentdoc(doc.annotation.value), ]), when_broken=concat([ commentdoc(doc.annotation.value), HARDLINE, doc ]) ) ) ribbon_frac = min(1.0, ribbon_width / width) return layout_smart(doc, width=width, ribbon_frac=ribbon_frac)
#!/usr/bin/python2.7 #coding:utf-8 def getFunc(n): return lambda x, y: x**n + y**n f = getFunc(2) print '1**2 + 2**2 = ', f(1,2) print '2**2 + 3**2 = ', f(2,3) f = getFunc(3) print '1**3 + 2**3 = ', f(1,2) print '2**3 + 3**3 = ', f(2,3)
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/71_callback.tensorboard.ipynb (unless otherwise specified). __all__ = ['TensorBoardCallback'] # Cell from ..basics import * # Cell import tensorboard from torch.utils.tensorboard import SummaryWriter from .fp16 import ModelToHalf # Cell class TensorBoardCallback(Callback): "Saves model topology, losses & metrics" def __init__(self, log_dir=None, trace_model=True, log_preds=True, n_preds=9): store_attr(self, 'log_dir,trace_model,log_preds,n_preds') def before_fit(self): self.run = not hasattr(self.learn, 'lr_finder') and not hasattr(self, "gather_preds") and rank_distrib()==0 self.writer = SummaryWriter(log_dir=self.log_dir) if self.trace_model: if hasattr(self.learn, 'mixed_precision'): raise Exception("Can't trace model in mixed precision, pass `trace_model=False` or don't use FP16.") b = self.dls.one_batch() self.learn._split(b) self.writer.add_graph(self.model, *self.xb) def after_batch(self): self.writer.add_scalar('train_loss', self.smooth_loss, self.train_iter) for i,h in enumerate(self.opt.hypers): for k,v in h.items(): self.writer.add_scalar(f'{k}_{i}', v, self.train_iter) def after_epoch(self): for n,v in zip(self.recorder.metric_names[2:-1], self.recorder.log[2:-1]): self.writer.add_scalar(n, v, self.train_iter) if self.log_preds: b = self.dls.valid.one_batch() self.learn.one_batch(0, b) preds = getattr(self.loss_func, 'activation', noop)(self.pred) out = getattr(self.loss_func, 'decodes', noop)(preds) x,y,its,outs = self.dls.valid.show_results(b, out, show=False, max_n=self.n_preds) tensorboard_log(x, y, its, outs, self.writer, self.train_iter) def after_fit(self): self.writer.close() # Cell from ..vision.data import * # Cell @typedispatch def tensorboard_log(x:TensorImage, y: TensorCategory, samples, outs, writer, step): fig,axs = get_grid(len(samples), add_vert=1, return_fig=True) for i in range(2): axs = [b.show(ctx=c) for b,c in zip(samples.itemgot(i),axs)] axs = [r.show(ctx=c, color='green' if b==r else 'red') for b,r,c in zip(samples.itemgot(1),outs.itemgot(0),axs)] writer.add_figure('Sample results', fig, step) # Cell from ..vision.core import TensorPoint,TensorBBox # Cell @typedispatch def tensorboard_log(x:TensorImage, y: (TensorImageBase, TensorPoint, TensorBBox), samples, outs, writer, step): fig,axs = get_grid(len(samples), add_vert=1, return_fig=True, double=True) for i in range(2): axs[::2] = [b.show(ctx=c) for b,c in zip(samples.itemgot(i),axs[::2])] for x in [samples,outs]: axs[1::2] = [b.show(ctx=c) for b,c in zip(x.itemgot(0),axs[1::2])] writer.add_figure('Sample results', fig, step)
from __future__ import (absolute_import, division, print_function) __metaclass__ = type from ansible.plugins.action import ActionBase try: from ansible_collections.ansible.utils.plugins.module_utils.common.argspec_validate import ( AnsibleArgSpecValidator, ) except ImportError: ANSIBLE_UTILS_IS_INSTALLED = False else: ANSIBLE_UTILS_IS_INSTALLED = True from ansible.errors import AnsibleActionFail from ansible_collections.cisco.ise.plugins.module_utils.ise import ( ISESDK, ise_argument_spec, ) # Get common arguements specification argument_spec = ise_argument_spec() # Add arguments specific for this module argument_spec.update(dict( name=dict(type="str"), id=dict(type="str"), page=dict(type="int"), size=dict(type="int"), )) required_if = [] required_one_of = [] mutually_exclusive = [] required_together = [] class ActionModule(ActionBase): def __init__(self, *args, **kwargs): if not ANSIBLE_UTILS_IS_INSTALLED: raise AnsibleActionFail("ansible.utils is not installed. Execute 'ansible-galaxy collection install ansible.utils'") super(ActionModule, self).__init__(*args, **kwargs) self._supports_async = True self._result = None # Checks the supplied parameters against the argument spec for this module def _check_argspec(self): aav = AnsibleArgSpecValidator( data=self._task.args, schema=dict(argument_spec=argument_spec), schema_format="argspec", schema_conditionals=dict( required_if=required_if, required_one_of=required_one_of, mutually_exclusive=mutually_exclusive, required_together=required_together, ), name=self._task.action, ) valid, errors, self._task.args = aav.validate() if not valid: raise AnsibleActionFail(errors) def get_object(self, params): new_object = dict( name=params.get("name"), id=params.get("id"), page=params.get("page"), size=params.get("size"), ) return new_object def run(self, tmp=None, task_vars=None): self._task.diff = False self._result = super(ActionModule, self).run(tmp, task_vars) self._result["changed"] = False self._check_argspec() ise = ISESDK(params=self._task.args) id = self._task.args.get("id") name = self._task.args.get("name") if id: response = ise.exec( family="psn_node_details_with_radius_service", function='get_session_service_node_by_id', params=self.get_object(self._task.args) ).response['SessionServiceNode'] self._result.update(dict(ise_response=response)) self._result.update(ise.exit_json()) return self._result if name: response = ise.exec( family="psn_node_details_with_radius_service", function='get_session_service_node_by_name', params=self.get_object(self._task.args) ).response['SessionServiceNode'] self._result.update(dict(ise_response=response)) self._result.update(ise.exit_json()) return self._result if not name and not id: response = [] generator = ise.exec( family="psn_node_details_with_radius_service", function='get_session_service_node_generator', params=self.get_object(self._task.args), ) for item in generator: tmp_response = item.response['SearchResult']['resources'] if isinstance(tmp_response, list): response += tmp_response else: response.append(tmp_response) self._result.update(dict(ise_response=response)) self._result.update(ise.exit_json()) return self._result
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class CloudPool(Model): """ A pool in the Azure Batch service. :param id: A string that uniquely identifies the pool within the account. The id can contain any combination of alphanumeric characters including hyphens and underscores, and cannot contain more than 64 characters. :type id: str :param display_name: The display name for the pool. :type display_name: str :param url: The URL of the pool. :type url: str :param e_tag: The ETag of the pool. :type e_tag: str :param last_modified: The last modified time of the pool. :type last_modified: datetime :param creation_time: The creation time of the pool. :type creation_time: datetime :param state: The current state of the pool. Possible values include: 'active', 'deleting', 'upgrading' :type state: str or :class:`PoolState <azure.batch.models.PoolState>` :param state_transition_time: The time at which the pool entered its current state. :type state_transition_time: datetime :param allocation_state: Whether the pool is resizing. Possible values include: 'steady', 'resizing', 'stopping' :type allocation_state: str or :class:`AllocationState <azure.batch.models.AllocationState>` :param allocation_state_transition_time: The time at which the pool entered its current allocation state. :type allocation_state_transition_time: datetime :param vm_size: The size of virtual machines in the pool. All virtual machines in a pool are the same size. :type vm_size: str :param cloud_service_configuration: The cloud service configuration for the pool. This property and VirtualMachineConfiguration are mutually exclusive and one of the properties must be specified. :type cloud_service_configuration: :class:`CloudServiceConfiguration <azure.batch.models.CloudServiceConfiguration>` :param virtual_machine_configuration: The virtual machine configuration for the pool. This property and CloudServiceConfiguration are mutually exclusive and one of the properties must be specified. :type virtual_machine_configuration: :class:`VirtualMachineConfiguration <azure.batch.models.VirtualMachineConfiguration>` :param resize_timeout: The timeout for allocation of compute nodes to the pool. In a Get Pool operation, this is the timeout for the most recent resize operation. The default value is 10 minutes. :type resize_timeout: timedelta :param resize_error: Details of any error encountered while performing the last resize on the pool. This property is set only if an error occurred during the last pool resize, and only when the pool AllocationState is Steady. :type resize_error: :class:`ResizeError <azure.batch.models.ResizeError>` :param current_dedicated: The number of compute nodes currently in the pool. :type current_dedicated: int :param target_dedicated: The desired number of compute nodes in the pool. This property must have the default value if EnableAutoScale is true. It is required if EnableAutoScale is false. :type target_dedicated: int :param enable_auto_scale: Whether the pool size should automatically adjust over time. If true, the AutoScaleFormula property must be set. If false, the TargetDedicated property must be set. :type enable_auto_scale: bool :param auto_scale_formula: A formula for the desired number of compute nodes in the pool. :type auto_scale_formula: str :param auto_scale_evaluation_interval: A time interval for the desired AutoScale evaluation period in the pool. :type auto_scale_evaluation_interval: timedelta :param auto_scale_run: The results and errors from the last execution of the autoscale formula. :type auto_scale_run: :class:`AutoScaleRun <azure.batch.models.AutoScaleRun>` :param enable_inter_node_communication: Whether the pool permits direct communication between nodes. :type enable_inter_node_communication: bool :param start_task: A task specified to run on each compute node as it joins the pool. :type start_task: :class:`StartTask <azure.batch.models.StartTask>` :param certificate_references: The list of certificates to be installed on each compute node in the pool. :type certificate_references: list of :class:`CertificateReference <azure.batch.models.CertificateReference>` :param application_package_references: The list of application packages to be installed on each compute node in the pool. :type application_package_references: list of :class:`ApplicationPackageReference <azure.batch.models.ApplicationPackageReference>` :param max_tasks_per_node: The maximum number of tasks that can run concurrently on a single compute node in the pool. :type max_tasks_per_node: int :param task_scheduling_policy: How the Batch service distributes tasks between compute nodes in the pool. :type task_scheduling_policy: :class:`TaskSchedulingPolicy <azure.batch.models.TaskSchedulingPolicy>` :param metadata: A list of name-value pairs associated with the pool as metadata. :type metadata: list of :class:`MetadataItem <azure.batch.models.MetadataItem>` :param stats: Utilization and resource usage statistics for the entire lifetime of the pool. :type stats: :class:`PoolStatistics <azure.batch.models.PoolStatistics>` """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'e_tag': {'key': 'eTag', 'type': 'str'}, 'last_modified': {'key': 'lastModified', 'type': 'iso-8601'}, 'creation_time': {'key': 'creationTime', 'type': 'iso-8601'}, 'state': {'key': 'state', 'type': 'PoolState'}, 'state_transition_time': {'key': 'stateTransitionTime', 'type': 'iso-8601'}, 'allocation_state': {'key': 'allocationState', 'type': 'AllocationState'}, 'allocation_state_transition_time': {'key': 'allocationStateTransitionTime', 'type': 'iso-8601'}, 'vm_size': {'key': 'vmSize', 'type': 'str'}, 'cloud_service_configuration': {'key': 'cloudServiceConfiguration', 'type': 'CloudServiceConfiguration'}, 'virtual_machine_configuration': {'key': 'virtualMachineConfiguration', 'type': 'VirtualMachineConfiguration'}, 'resize_timeout': {'key': 'resizeTimeout', 'type': 'duration'}, 'resize_error': {'key': 'resizeError', 'type': 'ResizeError'}, 'current_dedicated': {'key': 'currentDedicated', 'type': 'int'}, 'target_dedicated': {'key': 'targetDedicated', 'type': 'int'}, 'enable_auto_scale': {'key': 'enableAutoScale', 'type': 'bool'}, 'auto_scale_formula': {'key': 'autoScaleFormula', 'type': 'str'}, 'auto_scale_evaluation_interval': {'key': 'autoScaleEvaluationInterval', 'type': 'duration'}, 'auto_scale_run': {'key': 'autoScaleRun', 'type': 'AutoScaleRun'}, 'enable_inter_node_communication': {'key': 'enableInterNodeCommunication', 'type': 'bool'}, 'start_task': {'key': 'startTask', 'type': 'StartTask'}, 'certificate_references': {'key': 'certificateReferences', 'type': '[CertificateReference]'}, 'application_package_references': {'key': 'applicationPackageReferences', 'type': '[ApplicationPackageReference]'}, 'max_tasks_per_node': {'key': 'maxTasksPerNode', 'type': 'int'}, 'task_scheduling_policy': {'key': 'taskSchedulingPolicy', 'type': 'TaskSchedulingPolicy'}, 'metadata': {'key': 'metadata', 'type': '[MetadataItem]'}, 'stats': {'key': 'stats', 'type': 'PoolStatistics'}, } def __init__(self, id=None, display_name=None, url=None, e_tag=None, last_modified=None, creation_time=None, state=None, state_transition_time=None, allocation_state=None, allocation_state_transition_time=None, vm_size=None, cloud_service_configuration=None, virtual_machine_configuration=None, resize_timeout=None, resize_error=None, current_dedicated=None, target_dedicated=None, enable_auto_scale=None, auto_scale_formula=None, auto_scale_evaluation_interval=None, auto_scale_run=None, enable_inter_node_communication=None, start_task=None, certificate_references=None, application_package_references=None, max_tasks_per_node=None, task_scheduling_policy=None, metadata=None, stats=None): self.id = id self.display_name = display_name self.url = url self.e_tag = e_tag self.last_modified = last_modified self.creation_time = creation_time self.state = state self.state_transition_time = state_transition_time self.allocation_state = allocation_state self.allocation_state_transition_time = allocation_state_transition_time self.vm_size = vm_size self.cloud_service_configuration = cloud_service_configuration self.virtual_machine_configuration = virtual_machine_configuration self.resize_timeout = resize_timeout self.resize_error = resize_error self.current_dedicated = current_dedicated self.target_dedicated = target_dedicated self.enable_auto_scale = enable_auto_scale self.auto_scale_formula = auto_scale_formula self.auto_scale_evaluation_interval = auto_scale_evaluation_interval self.auto_scale_run = auto_scale_run self.enable_inter_node_communication = enable_inter_node_communication self.start_task = start_task self.certificate_references = certificate_references self.application_package_references = application_package_references self.max_tasks_per_node = max_tasks_per_node self.task_scheduling_policy = task_scheduling_policy self.metadata = metadata self.stats = stats
import os import yaml import pandas as pd import xml.etree.ElementTree as ET from types import SimpleNamespace from sklearn.model_selection import train_test_split from utils.experiment_utils import create_linspace from utils.preprocess import * SOURCE_PATH = './source_data' DATA_PATH = './data' CONFIG_PATH = './conf' DATASETS = ['ami', 'emoevent', 'haternet', 'hateval2019', 'mex-a3t', 'universal_joy', 'tass2019', 'detoxis'] class Colors: BLACK = '\033[1;30m' RED = '\033[1;31m' GREEN = '\033[1;32m' YELLOW = '\033[1;33m' BLUE = '\033[1;34m' PURPLE = '\033[1;35m' CYAN = '\033[1;36m' WHITE = '\033[1;37m' ENDC = '\033[0m' def colored(text, color): return f'{color}{text}{Colors.ENDC}' def write_split_files(dataset, trn, dev, tst): trn.to_csv(os.path.join(DATA_PATH, dataset, 'train_es.tsv'), index=False, sep='\t', mode='w') dev.to_csv(os.path.join(DATA_PATH, dataset, 'dev_es.tsv'), index=False, sep='\t', mode='w') tst.to_csv(os.path.join(DATA_PATH, dataset, 'test_es.tsv'), index=False, sep='\t', mode='w') def prepare_files(): seed = 100 test_ratio = 0.2 # EmoEvent and HaterNet filename = 'original_es.tsv' data = {'emoevent': pd.read_csv(os.path.join(SOURCE_PATH, 'emoevent', filename), sep='\t'), 'haternet': pd.read_csv(os.path.join(SOURCE_PATH, 'haternet', filename), sep=';\\|\\|;', names=['id', 'text', 'hateful'], header=None, engine="python")} labels = {'emoevent': 'offensive', 'haternet': 'hateful'} for dataset in data: data[dataset].text = basic_text_normalization(data[dataset].text) y = data[dataset][labels[dataset]] trn, tst = train_test_split(data[dataset], shuffle=True, test_size=test_ratio, stratify=y, random_state=seed) y = trn[labels[dataset]] trn, dev = train_test_split(trn, shuffle=True, test_size=test_ratio, stratify=y, random_state=seed) write_split_files(dataset, trn, dev, tst) print(f'Dataset: {dataset} --> N. Instances: {data[dataset].shape[0]} --> Train, Dev., Test: ' f'{trn.shape[0]}, {dev.shape[0]}, {tst.shape[0]}') # HatEval 2019 dataset = 'hateval2019' n_instances = {} for phase in ['train', 'dev', 'test']: data = pd.read_csv(os.path.join(SOURCE_PATH, dataset, f'original_{phase}_es.csv'), sep=',') data.text = basic_text_normalization(data.text) data.to_csv(os.path.join(DATA_PATH, dataset, f'{phase}_es.tsv'), index=False, sep='\t', mode='w') n_instances[phase] = data.shape[0] print(f'Dataset: {dataset} --> N. Instances: {sum(n_instances.values())} --> Train, Dev., Test: ' f'{n_instances["train"]}, {n_instances["dev"]}, {n_instances["test"]}') # MEX-A3T dataset = 'mex-a3t' columns = ['text', 'aggressiveness'] trn = pd.read_csv(os.path.join(SOURCE_PATH, dataset, 'original_train.tsv'), sep='\t', names=columns) tst = pd.read_csv(os.path.join(SOURCE_PATH, dataset, 'original_test.tsv'), sep='\t', names=columns) trn, dev = train_test_split(trn, shuffle=True, test_size=test_ratio, stratify=trn.aggressiveness, random_state=seed) for subset in [trn, dev, tst]: subset.text = basic_text_normalization(subset.text) write_split_files(dataset, trn, dev, tst) print(f'Dataset: {dataset} --> N. Instances: {trn.shape[0] + dev.shape[0] + tst.shape[0]} --> Train, Dev., Test: ' f'{trn.shape[0]}, {dev.shape[0]}, {tst.shape[0]}') # TASS 2019 dataset = 'tass2019' n_instances = {} for phase in ['train', 'dev', 'test']: phase_data = pd.DataFrame() for country in ['ES', 'CR', 'MX', 'PE', 'UY']: root = ET.parse(os.path.join(SOURCE_PATH, dataset, f'TASS2019_country_{country}_{phase}.xml')).getroot() tweets = [] for item in root.iter('tweet'): tweet = {'country': country} for tweet_field in item.iter(): if tweet_field.tag not in ['tweet', 'sentiment', 'polarity']: tweet[tweet_field.tag] = tweet_field.text tweets.append(tweet) phase_data = phase_data.append(tweets) new_cols = {'tweetid': 'tweet_id', 'content': 'text', 'user': 'user_id', 'value': 'polarity'} phase_data.rename(columns=new_cols, inplace=True) phase_data = phase_data[['tweet_id', 'user_id', 'country', 'date', 'text', 'polarity']] phase_data.text = basic_text_normalization(phase_data.text) phase_data.to_csv(os.path.join(DATA_PATH, dataset, f'{phase}_es.tsv'), index=False, sep='\t', mode='w') n_instances[phase] = phase_data.shape[0] print(f'Dataset: {dataset} --> N. Instances: {sum(n_instances.values())} --> Train, Dev., Test: ' f'{n_instances["train"]}, {n_instances["dev"]}, {n_instances["test"]}') # Universal Joy dataset = 'universal_joy' trn_data = {} for filename in ['small', 'large', 'combi']: trn_data[filename] = pd.read_csv(os.path.join(SOURCE_PATH, dataset, filename + '.csv')) trn_data[filename] = trn_data[filename][trn_data[filename].language == 'es'] trn_data[filename].text = trn_data[filename].text.apply(universal_joy_cleaning) # Apparently, spanish comments in 'large' and 'combi' are the same and 'small' is created using a subset of those trn = pd.concat(trn_data.values(), axis=0, ignore_index=True) trn.drop_duplicates(inplace=True, subset='text') # There is no overlapping between training, validation and test (also, they do not contain duplicates) dev = pd.read_csv(os.path.join(SOURCE_PATH, dataset, 'val.csv')) dev.drop_duplicates(inplace=True, subset='text') tst = pd.read_csv(os.path.join(SOURCE_PATH, dataset, 'test.csv')) tst.drop_duplicates(inplace=True, subset='text') # The test set approximately represents 12.5% of the total data # print(tst.shape[0]/(trn.shape[0] + dev.shape[0] + tst.shape[0])) # DETOXIS dataset = 'detoxis' trn = pd.read_csv(os.path.join(SOURCE_PATH, dataset, f'train.csv'), sep=',') tst = pd.read_csv(os.path.join(SOURCE_PATH, dataset, f'test.csv'), sep=',') trn, dev = train_test_split(trn, shuffle=True, test_size=test_ratio, stratify=trn.toxicity_level, random_state=seed) for subset in [trn, dev, tst]: subset.rename(columns={'comment': 'text'}, inplace=True) subset.text = basic_text_normalization(subset.text) write_split_files(dataset, trn, dev, tst) print(f'Dataset: {dataset} --> N. Instances: {trn.shape[0] + dev.shape[0] + tst.shape[0]} --> Train, Dev., Test: ' f'{trn.shape[0]}, {dev.shape[0]}, {tst.shape[0]}') def read_datasets(datasets, tasks, lang='es'): data = {} for dataset in datasets: if dataset not in DATASETS: raise Exception(f'Dataset {dataset} is not in the list of available datasets!') data[dataset] = { 'trn': pd.read_csv(os.path.join(DATA_PATH, dataset, f'train_{lang}.tsv'), sep='\t'), 'dev': pd.read_csv(os.path.join(DATA_PATH, dataset, f'dev_{lang}.tsv'), sep='\t'), 'tst': pd.read_csv(os.path.join(DATA_PATH, dataset, f'test_{lang}.tsv'), sep='\t') } for phase in data[dataset]: data[dataset][phase] = data[dataset][phase][['text'] + tasks[dataset]] return data def create_namespace_from_dict(dic, name=None): for k, v in dic.items(): if isinstance(v, dict): dic[k] = create_namespace_from_dict(v, k) ns = SimpleNamespace(**dic) ns.__name__ = name return ns def process_config(dic, name=None): for k, v in dic.items(): if k not in ['transfer_learning', 'optimization']: if isinstance(v, dict): dic[k] = process_config(v, k) elif isinstance(v, list): for vi in v: if isinstance(vi, dict): dic[k] += create_linspace(vi) dic[k] = dic[k][1:] else: dic[k] = [v] return dic def load_config(config_file): with open(os.path.join(CONFIG_PATH, config_file), 'r') as f: config = yaml.load(f, Loader=yaml.FullLoader) return process_config(config) # create_namespace_from_dict(config) def log(string, indent=0): start = '\t' * indent print(f'{start}{string}')
from django import template from django.contrib.admin.models import LogEntry register = template.Library() class AdminLogNode(template.Node): def __init__(self, limit, varname, user): self.limit, self.varname, self.user = limit, varname, user def __repr__(self): return "<GetAdminLog Node>" def render(self, context): if self.user is None: context[self.varname] = LogEntry.objects.all().select_related('content_type', 'user')[:self.limit] else: user_id = self.user if not user_id.isdigit(): user_id = context[self.user].pk context[self.varname] = LogEntry.objects.filter(user__pk__exact=user_id).select_related('content_type', 'user')[:int(self.limit)] return '' @register.tag def get_admin_log(parser, token): """ Populates a template variable with the admin log for the given criteria. Usage:: {% get_admin_log [limit] as [varname] for_user [context_var_containing_user_obj] %} Examples:: {% get_admin_log 10 as admin_log for_user 23 %} {% get_admin_log 10 as admin_log for_user user %} {% get_admin_log 10 as admin_log %} Note that ``context_var_containing_user_obj`` can be a hard-coded integer (user ID) or the name of a template context variable containing the user object whose ID you want. """ tokens = token.contents.split() if len(tokens) < 4: raise template.TemplateSyntaxError( "'get_admin_log' statements require two arguments") if not tokens[1].isdigit(): raise template.TemplateSyntaxError( "First argument to 'get_admin_log' must be an integer") if tokens[2] != 'as': raise template.TemplateSyntaxError( "Second argument to 'get_admin_log' must be 'as'") if len(tokens) > 4: if tokens[4] != 'for_user': raise template.TemplateSyntaxError( "Fourth argument to 'get_admin_log' must be 'for_user'") return AdminLogNode(limit=tokens[1], varname=tokens[3], user=(len(tokens) > 5 and tokens[5] or None))
# -*- coding: utf-8 -*- """ Created on Tue Aug 21 15:53:46 2018 @author: Eric S. Russell Laboratory for Atmospheric Research Dept. of Civil and Environmental Engineering Washington State University eric.s.russell@wsu.edu Not all of these functions are used in the column rename script; these are potentially to be used with this processing depending on other's thoughts. This is a trial run of dealing with code across sites. """ import numpy as np import pandas as pd import datetime """ QA/QC processing for flux data: Inputs: data: Full input data grade: Maximum QA/QC grade as assigned by the flux calculation code LE_B: Two number array with the highest (LE_B[1]) and lowest (LE_B[0]) hard limit LE value H_B: Same as LE_B but for H F_B: Same as LE-B but for Fc cls: gg: Outputs: data: Dataframe with the filtered data; does not track reason for removing data. Conditional for door_is_open_Hst since not all sites will/do have enclosure door sensors installed """ # This function not implemented into the script; still thinking about how I want to format this and integrate so user doesn't have to do a lot to make work def Grade_cs(df,info, Site, site=False): if site == True: grade = int(info['grade'][Site]) LE_B = [float(info['LEL'][Site]),float(info['LEU'][Site])] H_B = [float(info['HL'][Site]),float(info['HU'][Site])] F_B = [float(info['FCL'][Site]),float(info['FCU'][Site])] T_B = [float(info['TL'][Site]),float(info['TU'][Site])] elif site == False: grade = int(info['Val_L']['grade']) LE_B = [float(info['Val_L']['LE_B']),float(info['Val_U']['LE_B'])] H_B = [float(info['Val_L']['H_B']),float(info['Val_U']['H_B'])] F_B = [float(info['Val_L']['F_B']),float(info['Val_U']['F_B'])] T_B = [float(info['Val_L']['T_B']),float(info['Val_U']['T_B'])] gg = ['H_SSITC_TEST','LE_SSITC_TEST','FC_SSITC_TEST','TAU_SSITC_TEST'] cls =['H','LE','FC', 'TAU'] # var = ['H_Flags','LE_Flags','Fc_Flags'] Needs flagging system for QC pd.options.mode.chained_assignment = None if (grade >9) | (grade<1): print('Grade number must be between 0-9.') return # 'exit' function and return error Good = None data = []; data=pd.DataFrame(data,index=df.index) if cls[1] in df.columns: HL = (df[cls[1]].astype(float) < LE_B[0]) | (df[cls[1]].astype(float)>LE_B[1]) | df[cls[1]].astype(float).isnull() if gg[1] in df.columns: Grade = (df[gg[1]].astype(float) <= grade) & (~HL) else: Grade = ~HL df[cls[1]][~Grade] = np.NaN data[cls[1]+'_Flag'] = 0 data[cls[1]+'_Flag'][~Grade] = 1 if cls[0] in df.columns: HL = (df[cls[0]].astype(float) < H_B[0]) | (df[cls[0]].astype(float)> H_B[1]) | df[cls[0]].astype(float).isnull() if gg[0] in df.columns: Grade = (df[gg[0]].astype(float) <= grade) & (~HL) else: Grade = ~HL df[cls[0]][~Grade] = np.NaN data[cls[0]+'_Flag'] = 0 data[cls[0]+'_Flag'][~Grade] = 1 if cls[2] in df.columns: HL = (df[cls[2]].astype(float) < F_B[0])|(df[cls[2]].astype(float) > F_B[1]) | df[cls[2]].astype(float).isnull() if gg[2] in df.columns: Grade = (df[gg[2]].astype(float) <= grade) & (~HL) else: Grade = ~HL df[cls[2]][~Grade] = np.NaN data[cls[2]+'_Flag'] = 0 data[cls[2]+'_Flag'][~Grade] = 1 if cls[3] in df.columns: HL = (df[cls[3]].astype(float) < T_B[0])|(df[cls[3]].astype(float) > T_B[1]) | df[cls[3]].astype(float).isnull() if gg[3] in df.columns: Grade = (df[gg[3]].astype(float) <= grade) & (~HL) else: Grade = ~HL data[cls[3]+'_Flag'] = 0 data[cls[3]+'_Flag'][~Grade] = 1 # Rain Mask if 'P' in df.columns: Precip = (df['P'].astype(float) == 0) | (df['P'].astype(float) == -9999) precip = True data['P_Flag'] = 0 data['P_Flag'][~Precip] = 1 else: precip = False if 'CO2_sig_strgth_Min' in df.columns: c_sig_strength = df['CO2_sig_strgth_Min'] > 0.7 data['CO2_Signal_Strength'] = 0 data['CO2_Signal_Strength'][~c_sig_strength] = 1 if 'H2O_sig_strgth_Min' in df.columns: w_sig_strength = df['H2O_sig_strgth_Min'] > 0.7 data['H2O_Signal_Strength'] = 0 data['H2O_Signal_Strength'][~w_sig_strength] = 1 if 'CO2_samples_Tot' in df.columns: Samp_Good_IRGA = df['CO2_samples_Tot'].astype(float)>14400 data['CO2_Samples_Flag'] = 0 data['CO2_Samples_Flag'][~Samp_Good_IRGA] = 1 irga = True else: irga=False if 'sonic_samples_Tot' in df.columns: Samp_Good_Sonic = df['sonic_samples_Tot'].astype(float) > 14400 data['Sonic_Samples_Flag'] = 0 data['Sonic_Samples_Flag'][~Samp_Good_Sonic] = 1 sonic = True else: sonic=False if 'used_records' in df.columns: Samp_Good_Sonic = df['used_records'].astype(float)>14400 sonic = True else: sonic=False if 'door_is_open_Hst' in df.columns: Door_Closed = df['door_is_open_Hst'].astype(float) == 0 pc = True else: pc = False if precip&irga&sonic&pc: Good = Door_Closed &Samp_Good_Sonic&Samp_Good_IRGA&Precip&w_sig_strength&c_sig_strength elif precip&irga&sonic&~pc: Good = Samp_Good_Sonic&Samp_Good_IRGA&Precip&w_sig_strength&c_sig_strength elif precip&~irga&~sonic&~pc: Good = Precip&w_sig_strength&c_sig_strength elif precip&~irga&sonic&~pc: Good = Samp_Good_Sonic&Precip&w_sig_strength&c_sig_strength elif ~precip&~irga&sonic&~pc: Good = Samp_Good_Sonic&w_sig_strength&c_sig_strength elif ~precip&irga&sonic&pc: Good = Samp_Good_Sonic&Samp_Good_IRGA&w_sig_strength&c_sig_strength if Good is not None: if cls[3] in df.columns: df[cls[3]][~Good] = np.NaN if cls[2] in df.columns: df[cls[2]][~Good] = np.NaN if cls[1] in df.columns: df[cls[1]][~Good] = np.NaN if cls[0] in df.columns: df[cls[0]][~Good] = np.NaN return df, data #Fills in the blanks spaces with NaN's so the time index is continuous def indx_fill(df, time): df.index = pd.to_datetime(df.index) # Sort index in case it came in out of order, a possibility depending on filenames and naming scheme df = df.sort_index() # Remove any duplicate times, can occur if files from mixed sources and have overlapping endpoints df = df[~df.index.duplicated(keep='first')] for k in range (0,len(df)): if str(df.index[k])=='NaT': df = df.drop(df.index[k]) # Fill in missing times due to tower being down and pad dataframe to midnight of the first and last day idx = pd.date_range(df.index[0].floor('D'),df.index[len(df.index)-1].ceil('D'),freq = time) df = df.reindex(idx, fill_value=np.NaN) return df # Used to format EddyPro data by combining the date and time into a common index and dropping the filename column def format_ep(df): df.index = df['date']+' '+df['time'] df = df.drop(['filename'],1) df.index = pd.to_datetime(df.index) return df # This function not used in main script; potential to be used with QC function def ReadIn_Initial(info): # Values pulled in from a separate *.csv file because easier and flexible grade = int(info['Val_L']['grade']) LE_B = [float(info['Val_L']['LE_B']),float(info['Val_U']['LE_B'])] H_B = [float(info['Val_L']['H_B']),float(info['Val_U']['H_B'])] F_B = [float(info['Val_L']['F_B']),float(info['Val_U']['F_B'])] gg = [(info['Val_L']['gg']),(info['Val_U']['gg']),(info['Val_3']['gg'])] cls = [(info['Val_L']['cls']),(info['Val_U']['cls']),(info['Val_3']['cls']), (info['Val_4']['cls'])] return grade, LE_B,H_B,F_B,gg,cls # Reads in a directory of files based on the format for either EddyPro or EasyFlux def Fast_Read(filenames, time, form): if len(filenames) == 0: print('No Files in directory, check the path name.') return # 'exit' function and return error else: #Initialize dataframe used within function Final = [];Final = pd.DataFrame(Final) if form == 'EF': for k in range (0,len(filenames)): df = pd.read_csv(filenames[k],index_col = 'TIMESTAMP',header= 1,skiprows=[2,3],low_memory=False) Final = pd.concat([Final,df], sort = False) elif form == 'EP': for k in range (0,len(filenames)): df = pd.read_csv(filenames[k],header= 1,skiprows=[2],sep=',',low_memory=False) Final = pd.concat([Final,df]) Final.index = Final['date']+' '+Final['time'] # Eddypro outputs both time and date as separate columns Final =Final.drop(['filename'],1) # not needed string-based column; gets in the way of converting to floating point elif form == 'Biomet': for k in range (0,len(filenames)): df = pd.read_csv(filenames[k],header= 0,skiprows=[1],sep=',',low_memory=False) Final = pd.concat([Final,df]) Final.index = Final['date']+' '+Final['time'] # Eddypro outputs both time and date as separate columns else: print('Format must be either EF or EP') return # Convert time index Final = Final.sort_index() Out = indx_fill(Final, time) return Out # Return dataframe to main function. def Despike_7(s,ss,x,lab,delta_time, multi): an,Tim = [],[] while ss < x.index[-1]: x_m = np.nanmean(x[ss:s]) x_s = np.nanstd(x[ss:s]) x_d = x[ss:s] an.append((x_d > (x_m-(multi*x_s))) & (x_d < (x_m+(multi*x_s)))) ss+= datetime.timedelta(days=delta_time) Tim.append((x_d.index)) s+= datetime.timedelta(days=delta_time) qq = np.hstack(an) an = pd.DataFrame(qq, columns = [lab]) an.index = np.hstack(Tim) an = an[~an.index.duplicated(keep='first')] # x[an[lab]==False] = np.NaN return an def Met_QAQC(**kwargs): Q = None if 'Tair' in kwargs.keys(): Tair = pd.DataFrame(kwargs['Tair']) Q = Tair; Q = pd.DataFrame(Q); Q['Tair_Hard_Limit'] = (Q[Tair.columns[0]].astype(float) <= 50) & (Q[Tair.columns[0]].astype(float) >= -40) Q['Tair_Change'] = ~(np.abs(Q[Tair.columns[0]].diff() >= 25)) & (np.abs(Q[Tair.columns[0]].diff() != 0)) # (~np.isnan(Q[Tair.columns[0]].diff())) & Q['Tair_Day_Change'] = (Tair.resample('D').mean().diff !=0) Q['Tair_Filtered'] = Q[Tair.columns[0]][Q['Tair_Hard_Limit'] & Q['Tair_Change'] & Q['Tair_Day_Change']] else: print('**** Temperature not present ****') if 'RH' in kwargs.keys(): RH = pd.DataFrame(kwargs['RH']) if Q is None: Q = RH; Q = pd.DataFrame(Q) else: Q= Q.join(RH) Q['RH_Hard_Limit'] = (Q[RH.columns[0]].astype(float) <= 100) & (Q[RH.columns[0]].astype(float) >= 0) Q['RH_gt_100'] = (Q[RH.columns[0]].astype(float) >= 100) & (Q[RH.columns[0]].astype(float) <= 110) Q['RH_Change'] = (np.abs(Q[RH.columns[0]].astype(float).diff() <= 50)) & (np.abs(Q[RH.columns[0]].diff() != 0)) # & (~np.isnan(Q[RH.columns[0]].astype(float).diff())) Q['RH_Day_Change'] = (RH.resample('D').mean().diff !=0) Q['RH_Filtered'] = Q[RH.columns[0]][Q['RH_Hard_Limit']&Q['RH_Change']& Q['RH_Day_Change']] Q['RH_Filtered'] = Q['RH_Filtered'].replace(to_replace=Q['RH_Filtered'][Q['RH_gt_100']], value = 100) # Q['RH_Filtered'][Q['RH_gt_100']]=100 else: print('**** RH not present ****') if 'P' in kwargs.keys(): P = pd.DataFrame(kwargs['P']); if Q is None: Q = P; Q = pd.DataFrame(Q) else: Q= Q.join(P) Q['P_Hard_Limit'] = (Q[P.columns[0]].astype(float) <= 100) &(Q[P.columns[0]].astype(float) >= 70) Q['P_Change'] = (np.abs(Q[P.columns[0]].diff() <= 3.1)) & (np.abs(Q[P.columns[0]].diff() != 0)) # & (~np.isnan(Q[P.columns[0]].diff())) Q['P_Filtered'] = Q[P.columns[0]][Q['P_Hard_Limit'] & Q['P_Change']] if ('Tair' in kwargs.keys()) & ('z' in kwargs.keys()): MSLP = []; H = pd.DataFrame((8.314*(Tair[Tair.columns[0]]+273.15))/(0.029*9.81)/1000) # Scale height x = pd.DataFrame(-kwargs['z']/H[H.columns[0]]); MSLP = P[P.columns[0]]/np.exp(x[x.columns[0]]) # Mean Sea Level Pressure MSLP = pd.DataFrame(MSLP);MSLP = MSLP.rename(columns={MSLP.columns[0]:"MSLP"}) Q= Q.join(MSLP) Q['MSLP_Hard_Limit'] = (Q[MSLP.columns[0]].astype(float) <= 110) &(Q[MSLP.columns[0]].astype(float) >= 80) Q['MSLP_Change'] = (np.abs(Q[MSLP.columns[0]].diff() <= 31)) & (np.abs(Q[MSLP.columns[0]].diff() != 0)) #& (~np.isnan(Q[MSLP.columns[0]].diff())) Q['MSLP_Filtered'] = Q[MSLP.columns[0]][Q['MSLP_Hard_Limit'] & Q['MSLP_Change']] else: print('**** Mean sea level pressure not present ****') else: print('**** Pressure not present ****') if 'WS' in kwargs.keys(): WS = pd.DataFrame(kwargs['WS']) if Q is None: Q = WS; Q = pd.DataFrame(Q) else: Q= Q.join(WS) Q['WS_Hard_Limit'] = (Q[WS.columns[0]].astype(float) < 60) & (Q[WS.columns[0]].astype(float) >= 0) Q['WS_Change'] = (np.abs(Q[WS.columns[0]].diff() <= 15)) & (np.abs(Q[WS.columns[0]].diff() != 0)) #& (~np.isnan(Q[WS.columns[0]].diff())) Q['WS_Day_Change'] = (WS.resample('D').mean().diff !=0) Q['WS_Filtered'] = Q[WS.columns[0]][Q['WS_Hard_Limit']&Q['WS_Change']&Q['WS_Day_Change']] else: print('**** Wind Speed not present ****') if 'WD' in kwargs.keys(): WD = pd.DataFrame(kwargs['WD']) if Q is None: Q = WD; Q = pd.DataFrame(Q) else: Q= Q.join(WD) Q['WD_Hard_Limit'] = (Q[WD.columns[0]].astype(float) < 360) & (Q[WD.columns[0]].astype(float) >= 0) Q['WD_Change'] = (np.abs(Q[WD.columns[0]].diff() != 0)) # (~np.isnan(Q[WD.columns[0]].diff())) & Q['WD_Filtered'] = Q[WD.columns[0]][Q['WD_Hard_Limit']&Q['WD_Change']] else: print('**** Wind Direction not present ****') if 'PAR' in kwargs.keys(): PAR = pd.DataFrame(kwargs['PAR']); if Q is None: Q = PAR; Q = pd.DataFrame(Q) else: Q= Q.join(PAR) Q['PAR_Hard_Limit'] = (Q[PAR.columns[0]].astype(float) >= 0) & (Q[PAR.columns[0]].astype(float) < 5000) Q['PAR_Change'] = (np.abs(Q[PAR.columns[0]].diff() <= 1500))# & (~np.isnan(Q[PAR.columns[0]].diff())) Q['PAR_Day_Change'] = (PAR.resample('D').mean().diff != 0) # Causing problems for some reason Q['PAR_Filtered'] = Q[PAR.columns[0]][Q['PAR_Hard_Limit']&Q['PAR_Change']&Q['PAR_Day_Change']] else: print('**** PAR not present ****') if 'Rn' in kwargs.keys(): Rn = pd.DataFrame(kwargs['Rn']) if Q is None: Q = Rn; Q = pd.DataFrame(Q) else: Q= Q.join(Rn) Q['Rn_Hard_Limit'] = (Q[Rn.columns[0]].astype(float) >= -150) & (Q[Rn.columns[0]].astype(float) <= 1500) Q['Rn_Change'] = (np.abs(Q[Rn.columns[0]].astype(float).diff() <= 500)) & (np.abs(Q[Rn.columns[0]].diff() != 0)) #& (~np.isnan(Q[Rn.columns[0]].astype(float).diff())) Q['Rn_Day_Change'] = (Rn.resample('D').mean().diff !=0) Q['Rn_Filtered'] = Q[Rn.columns[0]][Q['Rn_Hard_Limit']&Q['Rn_Change']&Q['Rn_Day_Change']] else: print('**** Net Radiations not present ****') if 'Precip' in kwargs.keys(): Precip = pd.DataFrame(kwargs['Precip']) if Q is None: Q = P; Q = pd.DataFrame(Q) else: Q= Q.join(Precip) Q['Precip_Hard_Limit'] = (Q[Precip.columns[0]].astype(float) < 100) & (Q[Precip.columns[0]].astype(float) >= 0) Z_Precip = Q[Precip.columns[0]].astype(float) ==0 # if ('RH' in kwargs.keys()) & ('Tair' in kwargs.keys()): # Q['Precip_RH_gt_90'] = (Q[Precip.columns[0]].astype(float) > 0) & (Q['RH_Filtered'].astype(float) >= 90) # Q['Precip_Tair_lt_Zero'] = (Q[Precip.columns[0]].astype(float) > 0) & (Q['Tair_Filtered'] < 0) # Q['Precip_Filtered'] = Q[Precip.columns[0]][Q['Precip_Hard_Limit']&Q['Precip_RH_gt_90']&~Q['Precip_Tair_lt_Zero']] # Q['Precip_Filtered'] = Q['Precip_Filtered'].replace(to_replace=Q['Precip_Filtered'][Z_Precip], value = 0) # elif ('RH' in kwargs.keys()) & ('Tair' not in kwargs.keys()): # Q['Precip_RH_gt_90'] = (Q[Precip.columns[0]].astype(float) > 0) & (Q['RH_Filtered'].astype(float) >= 90) # Q['Precip_Filtered'] = Q[Precip.columns[0]][Q['Precip_Hard_Limit']&Q['Precip_RH']] # Q['Precip_Filtered'] = Q['Precip_Filtered'].replace(to_replace=Q['Precip_Filtered'][Z_Precip], value = 0) if 'Tair' in kwargs.keys(): Q['Precip_Tair_lt_Zero'] = (Q[Precip.columns[0]].astype(float) > 0) & (Q['Tair_Filtered'] < 0) Q['Precip_Filtered'] = Q[Precip.columns[0]][Q['Precip_Hard_Limit']& ~Q['Precip_Tair_lt_Zero']] Q['Precip_Filtered'] = Q['Precip_Filtered'].replace(to_replace=Q['Precip_Filtered'][Z_Precip], value = 0) else: Q['Precip_Filtered'] = Q[Precip.columns[0]][Q['Precip_Hard_Limit']] Q['Precip_Filtered'] = Q['Precip_Filtered'].replace(to_replace=Q['Precip_Filtered'][Z_Precip], value = 0) else: print('**** Precipitation not present ****') if 'VPD' in kwargs.keys(): VPD = pd.DataFrame(kwargs['VPD']) if Q is None: Q = VPD; Q = pd.DataFrame(Q) else: Q= Q.join(VPD) Q['VPD_Hard_Limit'] = (Q[VPD.columns[0]].astype(float) < 50) & (Q[VPD.columns[0]].astype(float) >= 0) Q['VPD_Change'] = (np.abs(Q[VPD.columns[0]].astype(float).diff() <= 10)) & (np.abs(Q[VPD.columns[0]].diff() != 0)) Q['VPD_Day_Change'] = (VPD.resample('D').mean().diff !=0) Q['VPD_Filtered'] = Q[VPD.columns[0]][Q['VPD_Hard_Limit']&Q['VPD_Change']&Q['VPD_Day_Change']] if 'e' in kwargs.keys(): e = pd.DataFrame(kwargs['e']) if Q is None: Q = e; Q = pd.DataFrame(Q) else: Q= Q.join(e) Q['e_Hard_Limit'] = (Q[e.columns[0]].astype(float) < 50) & (Q[e.columns[0]].astype(float) >= 0) Q['e_Change'] = (np.abs(Q[e.columns[0]].astype(float).diff() <= 10)) & (np.abs(Q[e.columns[0]].diff() != 0)) Q['e_Day_Change'] = (e.resample('D').mean().diff !=0) Q['e_Filtered'] = Q[e.columns[0]][Q['e_Hard_Limit']&Q['e_Change']&Q['e_Day_Change']] if 'e_s' in kwargs.keys(): e_s = pd.DataFrame(kwargs['e_s']) if Q is None: Q = e_s; Q = pd.DataFrame(Q) else: Q= Q.join(e_s) Q['e_s_Hard_Limit'] = (Q[e_s.columns[0]].astype(float) < 50) & (Q[e_s.columns[0]].astype(float) >= 0) Q['e_s_Change'] = (np.abs(Q[e_s.columns[0]].astype(float).diff() <= 10)) & (np.abs(Q[e_s.columns[0]].diff() != 0)) Q['e_s_Day_Change'] = (e_s.resample('D').mean().diff !=0) Q['e_s_Filtered'] = Q[e_s.columns[0]][Q['e_s_Hard_Limit']&Q['e_s_Change']&Q['e_s_Day_Change']] return Q
#!/usr/bin/env python ph = float(input('enter pH level: ')) if ph < 7.0: print(ph, "is acidic")
import os import pytest def test_wrong_select_db_index(cli): cli.sendline("select 1") cli.expect(["OK", "127.0.0.1"]) cli.sendline("select 128") cli.expect(["DB index is out of range", "127.0.0.1:6379[1]>"]) if int(os.environ["REDIS_VERSION"]) > 5: text = "value is not an integer or out of range" else: text = "invalid DB index" cli.sendline("select abc") cli.expect([text, "127.0.0.1:6379[1]>"]) cli.sendline("select 15") cli.expect("OK") def test_set_command_with_shash(clean_redis, cli): cli.sendline("set a \\hello\\") # legal redis command cli.expect("OK") cli.sendline("get a") cli.expect(r"hello") def test_enter_key_binding(clean_redis, cli): cli.send("set") cli.expect("set") cli.send("\033[B") # down cli.sendline() # enter cli.sendline(" a 'hello'") cli.expect("OK") cli.sendline("get a") cli.expect(r"hello") @pytest.mark.skipif("int(os.environ['REDIS_VERSION']) < 6") def test_auth_hidden_password_with_username(clean_redis, cli): cli.send("auth default hello-world") cli.expect("default") cli.expect(r"\*{11}") @pytest.mark.skipif("int(os.environ['REDIS_VERSION']) > 5") def test_auth_hidden_password(clean_redis, cli): cli.send("auth hello-world") cli.expect("auth") cli.expect(r"\*{11}") def test_hello_command_is_not_supported(cli): cli.sendline("hello 3") cli.expect("IRedis currently not support RESP3") def test_abort_reading_connection(cli): cli.sendline("blpop mylist 30") cli.send(chr(3)) cli.expect( r"KeyboardInterrupt received! User canceled reading response!", timeout=10 ) cli.sendline("set foo bar") cli.expect("OK") cli.sendline("get foo") cli.expect("bar")
import sys from distutils.version import LooseVersion if sys.version_info.major < 3: print('[!] You are running an old version of Python. ' 'This tutorial requires Python 3.') sys.exit(1) with open('requirements.txt') as f: reqs = f.readlines() reqs = [(pkg, ver) for (pkg, _, ver) in (req.split() for req in reqs if req.strip())] pkg_names = { 'scikit-image': 'skimage', 'scikit-learn': 'sklearn' } for (pkg, version_wanted) in reqs: module_name = pkg_names.get(pkg, pkg) try: m = __import__(module_name) status = '✓' except ImportError as e: m = None if (pkg != 'numpy' and 'numpy' in str(e)): status = '?' version_installed = 'Needs NumPy' else: version_installed = 'Not installed' status = 'X' if m is not None: version_installed = m.__version__ if LooseVersion(version_wanted) > LooseVersion(version_installed): status = 'X' print('[{}] {:<11} {}'.format( status, pkg.ljust(13), version_installed) )
from math import ceil S, D = [int(i) for i in input().split()] cont = [0 for i in range(S)] for d in range(D): t = [int(i) for i in input().split()] for i in range(S): cont[i] += t[i] media = ceil(sum(cont) / D) pref = cont.index(max(cont)) print(str(media)) print(str(pref + 1))
#!/scratch_net/nudel/esandstroem/venvs/tsdf_fusion_env/bin/python import os app_path = '/scratch_net/nudel/esandstroem/venvs/tsdf_fusion_env/bin' os.environ["PATH"] = app_path + os.pathsep + os.environ["PATH"] from TSDFHandle import * import numpy as np import cv2 from utils import extract_mesh_marching_cubes from visualization import plot_mesh import plyfile from sys import argv import pathlib if (len(argv) < 3): print('Usage: {0} <name of depth directory> <save mode>'.format(argv[0])) exit(0) CURRENT_DIR = str(pathlib.Path().absolute()) depth_path = CURRENT_DIR + '/' + argv[1] campose_path = CURRENT_DIR + '/' + 'left_camera_matrix' box = np.array([[-4,4],[-4,4],[-4,4]]) # each cell depicts the interval where we will reconstruct the shape i.e. # [[-xmin,xmax],[-ymin,ymax],[-zmin,zmax]] tsdf = TSDF(bbox=box, resolution=0.025, resolution_factor=1) depth_dir = os.listdir(depth_path) sortOrder_depth = [int(x[:-4]) for x in depth_dir] depth_dir = [x for _, x in sorted(zip(sortOrder_depth, depth_dir))] campose_dir = os.listdir(campose_path) sortOrder_pose = [int(x[:-4]) for x in campose_dir] campose_dir = [x for _, x in sorted(zip(sortOrder_pose, campose_dir))] camera_intrinsics = np.array([[256, 0, 256], [0, 256, 256], [0, 0, 1]]).astype(np.float32) # apparently, the tsdf fusion code expects that the camera coordinate system is such that z is in the # camera viewing direction, y is down and x is to the right. This is achieved by a serie of rotations rot_180_around_y = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, -1]]).astype(np.float32) rot_180_around_z = np.array([[-1, 0, 0], [0, -1, 0], [0, 0, 1]]).astype(np.float32) rotation = np.matmul(rot_180_around_z, rot_180_around_y) for i in range(len(depth_dir)): depth = cv2.imread(depth_path + '/' + depth_dir[i], -1) depth = depth / 1000 weight_map = np.ones(depth.shape) campose = np.linalg.inv(np.loadtxt(campose_path + '/' + campose_dir[i]).astype(np.float32)) campose = np.matmul(camera_intrinsics, np.matmul(rotation,campose[0:3, 0:4])) tsdf.fuse(campose, depth.astype(np.float32), weight_map.astype(np.float32)) mesh = extract_mesh_marching_cubes(tsdf.get_volume()[:, :, :, 0]) if argv[2]: mesh.write('tsdf_fusion_' + argv[1] + '.ply') plot_mesh(mesh)
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from msrest.serialization import Model class AddProcessWorkItemTypeFieldRequest(Model): """AddProcessWorkItemTypeFieldRequest. :param allow_groups: Allow setting field value to a group identity. Only applies to identity fields. :type allow_groups: bool :param default_value: The default value of the field. :type default_value: object :param read_only: If true the field cannot be edited. :type read_only: bool :param reference_name: Reference name of the field. :type reference_name: str :param required: If true the field cannot be empty. :type required: bool """ _attribute_map = { 'allow_groups': {'key': 'allowGroups', 'type': 'bool'}, 'default_value': {'key': 'defaultValue', 'type': 'object'}, 'read_only': {'key': 'readOnly', 'type': 'bool'}, 'reference_name': {'key': 'referenceName', 'type': 'str'}, 'required': {'key': 'required', 'type': 'bool'} } def __init__(self, allow_groups=None, default_value=None, read_only=None, reference_name=None, required=None): super(AddProcessWorkItemTypeFieldRequest, self).__init__() self.allow_groups = allow_groups self.default_value = default_value self.read_only = read_only self.reference_name = reference_name self.required = required class Control(Model): """Control. :param contribution: Contribution for the control. :type contribution: :class:`WitContribution <azure.devops.v5_1.work_item_tracking.models.WitContribution>` :param control_type: Type of the control. :type control_type: str :param height: Height of the control, for html controls. :type height: int :param id: The id for the layout node. :type id: str :param inherited: A value indicating whether this layout node has been inherited. from a parent layout. This is expected to only be only set by the combiner. :type inherited: bool :param is_contribution: A value indicating if the layout node is contribution or not. :type is_contribution: bool :param label: Label for the field. :type label: str :param metadata: Inner text of the control. :type metadata: str :param order: Order in which the control should appear in its group. :type order: int :param overridden: A value indicating whether this layout node has been overridden . by a child layout. :type overridden: bool :param read_only: A value indicating if the control is readonly. :type read_only: bool :param visible: A value indicating if the control should be hidden or not. :type visible: bool :param watermark: Watermark text for the textbox. :type watermark: str """ _attribute_map = { 'contribution': {'key': 'contribution', 'type': 'WitContribution'}, 'control_type': {'key': 'controlType', 'type': 'str'}, 'height': {'key': 'height', 'type': 'int'}, 'id': {'key': 'id', 'type': 'str'}, 'inherited': {'key': 'inherited', 'type': 'bool'}, 'is_contribution': {'key': 'isContribution', 'type': 'bool'}, 'label': {'key': 'label', 'type': 'str'}, 'metadata': {'key': 'metadata', 'type': 'str'}, 'order': {'key': 'order', 'type': 'int'}, 'overridden': {'key': 'overridden', 'type': 'bool'}, 'read_only': {'key': 'readOnly', 'type': 'bool'}, 'visible': {'key': 'visible', 'type': 'bool'}, 'watermark': {'key': 'watermark', 'type': 'str'} } def __init__(self, contribution=None, control_type=None, height=None, id=None, inherited=None, is_contribution=None, label=None, metadata=None, order=None, overridden=None, read_only=None, visible=None, watermark=None): super(Control, self).__init__() self.contribution = contribution self.control_type = control_type self.height = height self.id = id self.inherited = inherited self.is_contribution = is_contribution self.label = label self.metadata = metadata self.order = order self.overridden = overridden self.read_only = read_only self.visible = visible self.watermark = watermark class CreateProcessModel(Model): """CreateProcessModel. :param description: Description of the process :type description: str :param name: Name of the process :type name: str :param parent_process_type_id: The ID of the parent process :type parent_process_type_id: str :param reference_name: Reference name of process being created. If not specified, server will assign a unique reference name :type reference_name: str """ _attribute_map = { 'description': {'key': 'description', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'parent_process_type_id': {'key': 'parentProcessTypeId', 'type': 'str'}, 'reference_name': {'key': 'referenceName', 'type': 'str'} } def __init__(self, description=None, name=None, parent_process_type_id=None, reference_name=None): super(CreateProcessModel, self).__init__() self.description = description self.name = name self.parent_process_type_id = parent_process_type_id self.reference_name = reference_name class CreateProcessRuleRequest(Model): """CreateProcessRuleRequest. :param actions: List of actions to take when the rule is triggered. :type actions: list of :class:`RuleAction <azure.devops.v5_1.work_item_tracking.models.RuleAction>` :param conditions: List of conditions when the rule should be triggered. :type conditions: list of :class:`RuleCondition <azure.devops.v5_1.work_item_tracking.models.RuleCondition>` :param is_disabled: Indicates if the rule is disabled. :type is_disabled: bool :param name: Name for the rule. :type name: str """ _attribute_map = { 'actions': {'key': 'actions', 'type': '[RuleAction]'}, 'conditions': {'key': 'conditions', 'type': '[RuleCondition]'}, 'is_disabled': {'key': 'isDisabled', 'type': 'bool'}, 'name': {'key': 'name', 'type': 'str'} } def __init__(self, actions=None, conditions=None, is_disabled=None, name=None): super(CreateProcessRuleRequest, self).__init__() self.actions = actions self.conditions = conditions self.is_disabled = is_disabled self.name = name class CreateProcessWorkItemTypeRequest(Model): """CreateProcessWorkItemTypeRequest. :param color: Color hexadecimal code to represent the work item type :type color: str :param description: Description of the work item type :type description: str :param icon: Icon to represent the work item type :type icon: str :param inherits_from: Parent work item type for work item type :type inherits_from: str :param is_disabled: True if the work item type need to be disabled :type is_disabled: bool :param name: Name of work item type :type name: str """ _attribute_map = { 'color': {'key': 'color', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'icon': {'key': 'icon', 'type': 'str'}, 'inherits_from': {'key': 'inheritsFrom', 'type': 'str'}, 'is_disabled': {'key': 'isDisabled', 'type': 'bool'}, 'name': {'key': 'name', 'type': 'str'} } def __init__(self, color=None, description=None, icon=None, inherits_from=None, is_disabled=None, name=None): super(CreateProcessWorkItemTypeRequest, self).__init__() self.color = color self.description = description self.icon = icon self.inherits_from = inherits_from self.is_disabled = is_disabled self.name = name class Extension(Model): """Extension. :param id: Id of the extension :type id: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'} } def __init__(self, id=None): super(Extension, self).__init__() self.id = id class FieldModel(Model): """FieldModel. :param description: :type description: str :param id: :type id: str :param is_identity: :type is_identity: bool :param name: :type name: str :param type: :type type: object :param url: :type url: str """ _attribute_map = { 'description': {'key': 'description', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'is_identity': {'key': 'isIdentity', 'type': 'bool'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'object'}, 'url': {'key': 'url', 'type': 'str'} } def __init__(self, description=None, id=None, is_identity=None, name=None, type=None, url=None): super(FieldModel, self).__init__() self.description = description self.id = id self.is_identity = is_identity self.name = name self.type = type self.url = url class FieldRuleModel(Model): """FieldRuleModel. :param actions: :type actions: list of :class:`RuleActionModel <azure.devops.v5_1.work_item_tracking.models.RuleActionModel>` :param conditions: :type conditions: list of :class:`RuleConditionModel <azure.devops.v5_1.work_item_tracking.models.RuleConditionModel>` :param friendly_name: :type friendly_name: str :param id: :type id: str :param is_disabled: :type is_disabled: bool :param is_system: :type is_system: bool """ _attribute_map = { 'actions': {'key': 'actions', 'type': '[RuleActionModel]'}, 'conditions': {'key': 'conditions', 'type': '[RuleConditionModel]'}, 'friendly_name': {'key': 'friendlyName', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'is_disabled': {'key': 'isDisabled', 'type': 'bool'}, 'is_system': {'key': 'isSystem', 'type': 'bool'} } def __init__(self, actions=None, conditions=None, friendly_name=None, id=None, is_disabled=None, is_system=None): super(FieldRuleModel, self).__init__() self.actions = actions self.conditions = conditions self.friendly_name = friendly_name self.id = id self.is_disabled = is_disabled self.is_system = is_system class FormLayout(Model): """FormLayout. :param extensions: Gets and sets extensions list. :type extensions: list of :class:`Extension <azure.devops.v5_1.work_item_tracking.models.Extension>` :param pages: Top level tabs of the layout. :type pages: list of :class:`Page <azure.devops.v5_1.work_item_tracking.models.Page>` :param system_controls: Headers controls of the layout. :type system_controls: list of :class:`Control <azure.devops.v5_1.work_item_tracking.models.Control>` """ _attribute_map = { 'extensions': {'key': 'extensions', 'type': '[Extension]'}, 'pages': {'key': 'pages', 'type': '[Page]'}, 'system_controls': {'key': 'systemControls', 'type': '[Control]'} } def __init__(self, extensions=None, pages=None, system_controls=None): super(FormLayout, self).__init__() self.extensions = extensions self.pages = pages self.system_controls = system_controls class Group(Model): """Group. :param contribution: Contribution for the group. :type contribution: :class:`WitContribution <azure.devops.v5_1.work_item_tracking.models.WitContribution>` :param controls: Controls to be put in the group. :type controls: list of :class:`Control <azure.devops.v5_1.work_item_tracking.models.Control>` :param height: The height for the contribution. :type height: int :param id: The id for the layout node. :type id: str :param inherited: A value indicating whether this layout node has been inherited from a parent layout. This is expected to only be only set by the combiner. :type inherited: bool :param is_contribution: A value indicating if the layout node is contribution are not. :type is_contribution: bool :param label: Label for the group. :type label: str :param order: Order in which the group should appear in the section. :type order: int :param overridden: A value indicating whether this layout node has been overridden by a child layout. :type overridden: bool :param visible: A value indicating if the group should be hidden or not. :type visible: bool """ _attribute_map = { 'contribution': {'key': 'contribution', 'type': 'WitContribution'}, 'controls': {'key': 'controls', 'type': '[Control]'}, 'height': {'key': 'height', 'type': 'int'}, 'id': {'key': 'id', 'type': 'str'}, 'inherited': {'key': 'inherited', 'type': 'bool'}, 'is_contribution': {'key': 'isContribution', 'type': 'bool'}, 'label': {'key': 'label', 'type': 'str'}, 'order': {'key': 'order', 'type': 'int'}, 'overridden': {'key': 'overridden', 'type': 'bool'}, 'visible': {'key': 'visible', 'type': 'bool'} } def __init__(self, contribution=None, controls=None, height=None, id=None, inherited=None, is_contribution=None, label=None, order=None, overridden=None, visible=None): super(Group, self).__init__() self.contribution = contribution self.controls = controls self.height = height self.id = id self.inherited = inherited self.is_contribution = is_contribution self.label = label self.order = order self.overridden = overridden self.visible = visible class HideStateModel(Model): """HideStateModel. :param hidden: Returns 'true', if workitem state is hidden, 'false' otherwise. :type hidden: bool """ _attribute_map = { 'hidden': {'key': 'hidden', 'type': 'bool'} } def __init__(self, hidden=None): super(HideStateModel, self).__init__() self.hidden = hidden class Page(Model): """Page. :param contribution: Contribution for the page. :type contribution: :class:`WitContribution <azure.devops.v5_1.work_item_tracking.models.WitContribution>` :param id: The id for the layout node. :type id: str :param inherited: A value indicating whether this layout node has been inherited from a parent layout. This is expected to only be only set by the combiner. :type inherited: bool :param is_contribution: A value indicating if the layout node is contribution are not. :type is_contribution: bool :param label: The label for the page. :type label: str :param locked: A value indicating whether any user operations are permitted on this page and the contents of this page :type locked: bool :param order: Order in which the page should appear in the layout. :type order: int :param overridden: A value indicating whether this layout node has been overridden by a child layout. :type overridden: bool :param page_type: The icon for the page. :type page_type: object :param sections: The sections of the page. :type sections: list of :class:`Section <azure.devops.v5_1.work_item_tracking.models.Section>` :param visible: A value indicating if the page should be hidden or not. :type visible: bool """ _attribute_map = { 'contribution': {'key': 'contribution', 'type': 'WitContribution'}, 'id': {'key': 'id', 'type': 'str'}, 'inherited': {'key': 'inherited', 'type': 'bool'}, 'is_contribution': {'key': 'isContribution', 'type': 'bool'}, 'label': {'key': 'label', 'type': 'str'}, 'locked': {'key': 'locked', 'type': 'bool'}, 'order': {'key': 'order', 'type': 'int'}, 'overridden': {'key': 'overridden', 'type': 'bool'}, 'page_type': {'key': 'pageType', 'type': 'object'}, 'sections': {'key': 'sections', 'type': '[Section]'}, 'visible': {'key': 'visible', 'type': 'bool'} } def __init__(self, contribution=None, id=None, inherited=None, is_contribution=None, label=None, locked=None, order=None, overridden=None, page_type=None, sections=None, visible=None): super(Page, self).__init__() self.contribution = contribution self.id = id self.inherited = inherited self.is_contribution = is_contribution self.label = label self.locked = locked self.order = order self.overridden = overridden self.page_type = page_type self.sections = sections self.visible = visible class PickListMetadata(Model): """PickListMetadata. :param id: ID of the picklist :type id: str :param is_suggested: Indicates whether items outside of suggested list are allowed :type is_suggested: bool :param name: Name of the picklist :type name: str :param type: DataType of picklist :type type: str :param url: Url of the picklist :type url: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'is_suggested': {'key': 'isSuggested', 'type': 'bool'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'} } def __init__(self, id=None, is_suggested=None, name=None, type=None, url=None): super(PickListMetadata, self).__init__() self.id = id self.is_suggested = is_suggested self.name = name self.type = type self.url = url class ProcessBehavior(Model): """ProcessBehavior. :param color: Color. :type color: str :param customization: Indicates the type of customization on this work item. System behaviors are inherited from parent process but not modified. Inherited behaviors are modified modified behaviors that were inherited from parent process. Custom behaviors are behaviors created by user in current process. :type customization: object :param description: . Description :type description: str :param fields: Process Behavior Fields. :type fields: list of :class:`ProcessBehaviorField <azure.devops.v5_1.work_item_tracking.models.ProcessBehaviorField>` :param inherits: Parent behavior reference. :type inherits: :class:`ProcessBehaviorReference <azure.devops.v5_1.work_item_tracking.models.ProcessBehaviorReference>` :param name: Behavior Name. :type name: str :param rank: Rank of the behavior :type rank: int :param reference_name: Behavior Id :type reference_name: str :param url: Url of the behavior. :type url: str """ _attribute_map = { 'color': {'key': 'color', 'type': 'str'}, 'customization': {'key': 'customization', 'type': 'object'}, 'description': {'key': 'description', 'type': 'str'}, 'fields': {'key': 'fields', 'type': '[ProcessBehaviorField]'}, 'inherits': {'key': 'inherits', 'type': 'ProcessBehaviorReference'}, 'name': {'key': 'name', 'type': 'str'}, 'rank': {'key': 'rank', 'type': 'int'}, 'reference_name': {'key': 'referenceName', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'} } def __init__(self, color=None, customization=None, description=None, fields=None, inherits=None, name=None, rank=None, reference_name=None, url=None): super(ProcessBehavior, self).__init__() self.color = color self.customization = customization self.description = description self.fields = fields self.inherits = inherits self.name = name self.rank = rank self.reference_name = reference_name self.url = url class ProcessBehaviorCreateRequest(Model): """ProcessBehaviorCreateRequest. :param color: Color. :type color: str :param inherits: Parent behavior id. :type inherits: str :param name: Name of the behavior. :type name: str :param reference_name: ReferenceName is optional, if not specified will be auto-generated. :type reference_name: str """ _attribute_map = { 'color': {'key': 'color', 'type': 'str'}, 'inherits': {'key': 'inherits', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'reference_name': {'key': 'referenceName', 'type': 'str'} } def __init__(self, color=None, inherits=None, name=None, reference_name=None): super(ProcessBehaviorCreateRequest, self).__init__() self.color = color self.inherits = inherits self.name = name self.reference_name = reference_name class ProcessBehaviorField(Model): """ProcessBehaviorField. :param name: Name of the field. :type name: str :param reference_name: Reference name of the field. :type reference_name: str :param url: Url to field. :type url: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'reference_name': {'key': 'referenceName', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'} } def __init__(self, name=None, reference_name=None, url=None): super(ProcessBehaviorField, self).__init__() self.name = name self.reference_name = reference_name self.url = url class ProcessBehaviorReference(Model): """ProcessBehaviorReference. :param behavior_ref_name: Id of a Behavior. :type behavior_ref_name: str :param url: Url to behavior. :type url: str """ _attribute_map = { 'behavior_ref_name': {'key': 'behaviorRefName', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'} } def __init__(self, behavior_ref_name=None, url=None): super(ProcessBehaviorReference, self).__init__() self.behavior_ref_name = behavior_ref_name self.url = url class ProcessBehaviorUpdateRequest(Model): """ProcessBehaviorUpdateRequest. :param color: Color. :type color: str :param name: Behavior Name. :type name: str """ _attribute_map = { 'color': {'key': 'color', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'} } def __init__(self, color=None, name=None): super(ProcessBehaviorUpdateRequest, self).__init__() self.color = color self.name = name class ProcessInfo(Model): """ProcessInfo. :param customization_type: Indicates the type of customization on this process. System Process is default process. Inherited Process is modified process that was System process before. :type customization_type: object :param description: Description of the process. :type description: str :param is_default: Is the process default. :type is_default: bool :param is_enabled: Is the process enabled. :type is_enabled: bool :param name: Name of the process. :type name: str :param parent_process_type_id: ID of the parent process. :type parent_process_type_id: str :param projects: Projects in this process to which the user is subscribed to. :type projects: list of :class:`ProjectReference <azure.devops.v5_1.work_item_tracking.models.ProjectReference>` :param reference_name: Reference name of the process. :type reference_name: str :param type_id: The ID of the process. :type type_id: str """ _attribute_map = { 'customization_type': {'key': 'customizationType', 'type': 'object'}, 'description': {'key': 'description', 'type': 'str'}, 'is_default': {'key': 'isDefault', 'type': 'bool'}, 'is_enabled': {'key': 'isEnabled', 'type': 'bool'}, 'name': {'key': 'name', 'type': 'str'}, 'parent_process_type_id': {'key': 'parentProcessTypeId', 'type': 'str'}, 'projects': {'key': 'projects', 'type': '[ProjectReference]'}, 'reference_name': {'key': 'referenceName', 'type': 'str'}, 'type_id': {'key': 'typeId', 'type': 'str'} } def __init__(self, customization_type=None, description=None, is_default=None, is_enabled=None, name=None, parent_process_type_id=None, projects=None, reference_name=None, type_id=None): super(ProcessInfo, self).__init__() self.customization_type = customization_type self.description = description self.is_default = is_default self.is_enabled = is_enabled self.name = name self.parent_process_type_id = parent_process_type_id self.projects = projects self.reference_name = reference_name self.type_id = type_id class ProcessModel(Model): """ProcessModel. :param description: Description of the process :type description: str :param name: Name of the process :type name: str :param projects: Projects in this process :type projects: list of :class:`ProjectReference <azure.devops.v5_1.work_item_tracking.models.ProjectReference>` :param properties: Properties of the process :type properties: :class:`ProcessProperties <azure.devops.v5_1.work_item_tracking.models.ProcessProperties>` :param reference_name: Reference name of the process :type reference_name: str :param type_id: The ID of the process :type type_id: str """ _attribute_map = { 'description': {'key': 'description', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'projects': {'key': 'projects', 'type': '[ProjectReference]'}, 'properties': {'key': 'properties', 'type': 'ProcessProperties'}, 'reference_name': {'key': 'referenceName', 'type': 'str'}, 'type_id': {'key': 'typeId', 'type': 'str'} } def __init__(self, description=None, name=None, projects=None, properties=None, reference_name=None, type_id=None): super(ProcessModel, self).__init__() self.description = description self.name = name self.projects = projects self.properties = properties self.reference_name = reference_name self.type_id = type_id class ProcessProperties(Model): """ProcessProperties. :param class_: Class of the process. :type class_: object :param is_default: Is the process default process. :type is_default: bool :param is_enabled: Is the process enabled. :type is_enabled: bool :param parent_process_type_id: ID of the parent process. :type parent_process_type_id: str :param version: Version of the process. :type version: str """ _attribute_map = { 'class_': {'key': 'class', 'type': 'object'}, 'is_default': {'key': 'isDefault', 'type': 'bool'}, 'is_enabled': {'key': 'isEnabled', 'type': 'bool'}, 'parent_process_type_id': {'key': 'parentProcessTypeId', 'type': 'str'}, 'version': {'key': 'version', 'type': 'str'} } def __init__(self, class_=None, is_default=None, is_enabled=None, parent_process_type_id=None, version=None): super(ProcessProperties, self).__init__() self.class_ = class_ self.is_default = is_default self.is_enabled = is_enabled self.parent_process_type_id = parent_process_type_id self.version = version class ProcessRule(CreateProcessRuleRequest): """ProcessRule. :param actions: List of actions to take when the rule is triggered. :type actions: list of :class:`RuleAction <azure.devops.v5_1.work_item_tracking.models.RuleAction>` :param conditions: List of conditions when the rule should be triggered. :type conditions: list of :class:`RuleCondition <azure.devops.v5_1.work_item_tracking.models.RuleCondition>` :param is_disabled: Indicates if the rule is disabled. :type is_disabled: bool :param name: Name for the rule. :type name: str :param customization_type: Indicates if the rule is system generated or created by user. :type customization_type: object :param id: Id to uniquely identify the rule. :type id: str :param url: Resource Url. :type url: str """ _attribute_map = { 'actions': {'key': 'actions', 'type': '[RuleAction]'}, 'conditions': {'key': 'conditions', 'type': '[RuleCondition]'}, 'is_disabled': {'key': 'isDisabled', 'type': 'bool'}, 'name': {'key': 'name', 'type': 'str'}, 'customization_type': {'key': 'customizationType', 'type': 'object'}, 'id': {'key': 'id', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'} } def __init__(self, actions=None, conditions=None, is_disabled=None, name=None, customization_type=None, id=None, url=None): super(ProcessRule, self).__init__(actions=actions, conditions=conditions, is_disabled=is_disabled, name=name) self.customization_type = customization_type self.id = id self.url = url class ProcessWorkItemType(Model): """ProcessWorkItemType. :param behaviors: :type behaviors: list of :class:`WorkItemTypeBehavior <azure.devops.v5_1.work_item_tracking.models.WorkItemTypeBehavior>` :param color: Color hexadecimal code to represent the work item type :type color: str :param customization: Indicates the type of customization on this work item System work item types are inherited from parent process but not modified Inherited work item types are modified work item that were inherited from parent process Custom work item types are work item types that were created in the current process :type customization: object :param description: Description of the work item type :type description: str :param icon: Icon to represent the work item typ :type icon: str :param inherits: Reference name of the parent work item type :type inherits: str :param is_disabled: Indicates if a work item type is disabled :type is_disabled: bool :param layout: :type layout: :class:`FormLayout <azure.devops.v5_1.work_item_tracking.models.FormLayout>` :param name: Name of the work item type :type name: str :param reference_name: Reference name of work item type :type reference_name: str :param states: :type states: list of :class:`WorkItemStateResultModel <azure.devops.v5_1.work_item_tracking.models.WorkItemStateResultModel>` :param url: Url of the work item type :type url: str """ _attribute_map = { 'behaviors': {'key': 'behaviors', 'type': '[WorkItemTypeBehavior]'}, 'color': {'key': 'color', 'type': 'str'}, 'customization': {'key': 'customization', 'type': 'object'}, 'description': {'key': 'description', 'type': 'str'}, 'icon': {'key': 'icon', 'type': 'str'}, 'inherits': {'key': 'inherits', 'type': 'str'}, 'is_disabled': {'key': 'isDisabled', 'type': 'bool'}, 'layout': {'key': 'layout', 'type': 'FormLayout'}, 'name': {'key': 'name', 'type': 'str'}, 'reference_name': {'key': 'referenceName', 'type': 'str'}, 'states': {'key': 'states', 'type': '[WorkItemStateResultModel]'}, 'url': {'key': 'url', 'type': 'str'} } def __init__(self, behaviors=None, color=None, customization=None, description=None, icon=None, inherits=None, is_disabled=None, layout=None, name=None, reference_name=None, states=None, url=None): super(ProcessWorkItemType, self).__init__() self.behaviors = behaviors self.color = color self.customization = customization self.description = description self.icon = icon self.inherits = inherits self.is_disabled = is_disabled self.layout = layout self.name = name self.reference_name = reference_name self.states = states self.url = url class ProcessWorkItemTypeField(Model): """ProcessWorkItemTypeField. :param allow_groups: Allow setting field value to a group identity. Only applies to identity fields. :type allow_groups: bool :param customization: Indicates the type of customization on this work item. :type customization: object :param default_value: The default value of the field. :type default_value: object :param description: Description of the field. :type description: str :param name: Name of the field. :type name: str :param read_only: If true the field cannot be edited. :type read_only: bool :param reference_name: Reference name of the field. :type reference_name: str :param required: If true the field cannot be empty. :type required: bool :param type: Type of the field. :type type: object :param url: Resource URL of the field. :type url: str """ _attribute_map = { 'allow_groups': {'key': 'allowGroups', 'type': 'bool'}, 'customization': {'key': 'customization', 'type': 'object'}, 'default_value': {'key': 'defaultValue', 'type': 'object'}, 'description': {'key': 'description', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'read_only': {'key': 'readOnly', 'type': 'bool'}, 'reference_name': {'key': 'referenceName', 'type': 'str'}, 'required': {'key': 'required', 'type': 'bool'}, 'type': {'key': 'type', 'type': 'object'}, 'url': {'key': 'url', 'type': 'str'} } def __init__(self, allow_groups=None, customization=None, default_value=None, description=None, name=None, read_only=None, reference_name=None, required=None, type=None, url=None): super(ProcessWorkItemTypeField, self).__init__() self.allow_groups = allow_groups self.customization = customization self.default_value = default_value self.description = description self.name = name self.read_only = read_only self.reference_name = reference_name self.required = required self.type = type self.url = url class ProjectReference(Model): """ProjectReference. :param description: Description of the project :type description: str :param id: The ID of the project :type id: str :param name: Name of the project :type name: str :param url: Url of the project :type url: str """ _attribute_map = { 'description': {'key': 'description', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'} } def __init__(self, description=None, id=None, name=None, url=None): super(ProjectReference, self).__init__() self.description = description self.id = id self.name = name self.url = url class RuleAction(Model): """RuleAction. :param action_type: Type of action to take when the rule is triggered. :type action_type: object :param target_field: Field on which the action should be taken. :type target_field: str :param value: Value to apply on target field, once the action is taken. :type value: str """ _attribute_map = { 'action_type': {'key': 'actionType', 'type': 'object'}, 'target_field': {'key': 'targetField', 'type': 'str'}, 'value': {'key': 'value', 'type': 'str'} } def __init__(self, action_type=None, target_field=None, value=None): super(RuleAction, self).__init__() self.action_type = action_type self.target_field = target_field self.value = value class RuleActionModel(Model): """RuleActionModel. :param action_type: :type action_type: str :param target_field: :type target_field: str :param value: :type value: str """ _attribute_map = { 'action_type': {'key': 'actionType', 'type': 'str'}, 'target_field': {'key': 'targetField', 'type': 'str'}, 'value': {'key': 'value', 'type': 'str'} } def __init__(self, action_type=None, target_field=None, value=None): super(RuleActionModel, self).__init__() self.action_type = action_type self.target_field = target_field self.value = value class RuleCondition(Model): """RuleCondition. :param condition_type: Type of condition. $When. This condition limits the execution of its children to cases when another field has a particular value, i.e. when the Is value of the referenced field is equal to the given literal value. $WhenNot.This condition limits the execution of its children to cases when another field does not have a particular value, i.e.when the Is value of the referenced field is not equal to the given literal value. $WhenChanged.This condition limits the execution of its children to cases when another field has changed, i.e.when the Is value of the referenced field is not equal to the Was value of that field. $WhenNotChanged.This condition limits the execution of its children to cases when another field has not changed, i.e.when the Is value of the referenced field is equal to the Was value of that field. :type condition_type: object :param field: Field that defines condition. :type field: str :param value: Value of field to define the condition for rule. :type value: str """ _attribute_map = { 'condition_type': {'key': 'conditionType', 'type': 'object'}, 'field': {'key': 'field', 'type': 'str'}, 'value': {'key': 'value', 'type': 'str'} } def __init__(self, condition_type=None, field=None, value=None): super(RuleCondition, self).__init__() self.condition_type = condition_type self.field = field self.value = value class RuleConditionModel(Model): """RuleConditionModel. :param condition_type: :type condition_type: str :param field: :type field: str :param value: :type value: str """ _attribute_map = { 'condition_type': {'key': 'conditionType', 'type': 'str'}, 'field': {'key': 'field', 'type': 'str'}, 'value': {'key': 'value', 'type': 'str'} } def __init__(self, condition_type=None, field=None, value=None): super(RuleConditionModel, self).__init__() self.condition_type = condition_type self.field = field self.value = value class Section(Model): """Section. :param groups: List of child groups in this section :type groups: list of :class:`Group <azure.devops.v5_1.work_item_tracking.models.Group>` :param id: The id for the layout node. :type id: str :param overridden: A value indicating whether this layout node has been overridden by a child layout. :type overridden: bool """ _attribute_map = { 'groups': {'key': 'groups', 'type': '[Group]'}, 'id': {'key': 'id', 'type': 'str'}, 'overridden': {'key': 'overridden', 'type': 'bool'} } def __init__(self, groups=None, id=None, overridden=None): super(Section, self).__init__() self.groups = groups self.id = id self.overridden = overridden class UpdateProcessModel(Model): """UpdateProcessModel. :param description: New description of the process :type description: str :param is_default: If true new projects will use this process by default :type is_default: bool :param is_enabled: If false the process will be disabled and cannot be used to create projects :type is_enabled: bool :param name: New name of the process :type name: str """ _attribute_map = { 'description': {'key': 'description', 'type': 'str'}, 'is_default': {'key': 'isDefault', 'type': 'bool'}, 'is_enabled': {'key': 'isEnabled', 'type': 'bool'}, 'name': {'key': 'name', 'type': 'str'} } def __init__(self, description=None, is_default=None, is_enabled=None, name=None): super(UpdateProcessModel, self).__init__() self.description = description self.is_default = is_default self.is_enabled = is_enabled self.name = name class UpdateProcessRuleRequest(CreateProcessRuleRequest): """UpdateProcessRuleRequest. :param actions: List of actions to take when the rule is triggered. :type actions: list of :class:`RuleAction <azure.devops.v5_1.work_item_tracking.models.RuleAction>` :param conditions: List of conditions when the rule should be triggered. :type conditions: list of :class:`RuleCondition <azure.devops.v5_1.work_item_tracking.models.RuleCondition>` :param is_disabled: Indicates if the rule is disabled. :type is_disabled: bool :param name: Name for the rule. :type name: str :param id: Id to uniquely identify the rule. :type id: str """ _attribute_map = { 'actions': {'key': 'actions', 'type': '[RuleAction]'}, 'conditions': {'key': 'conditions', 'type': '[RuleCondition]'}, 'is_disabled': {'key': 'isDisabled', 'type': 'bool'}, 'name': {'key': 'name', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'} } def __init__(self, actions=None, conditions=None, is_disabled=None, name=None, id=None): super(UpdateProcessRuleRequest, self).__init__(actions=actions, conditions=conditions, is_disabled=is_disabled, name=name) self.id = id class UpdateProcessWorkItemTypeFieldRequest(Model): """UpdateProcessWorkItemTypeFieldRequest. :param allow_groups: Allow setting field value to a group identity. Only applies to identity fields. :type allow_groups: bool :param default_value: The default value of the field. :type default_value: object :param read_only: If true the field cannot be edited. :type read_only: bool :param required: The default value of the field. :type required: bool """ _attribute_map = { 'allow_groups': {'key': 'allowGroups', 'type': 'bool'}, 'default_value': {'key': 'defaultValue', 'type': 'object'}, 'read_only': {'key': 'readOnly', 'type': 'bool'}, 'required': {'key': 'required', 'type': 'bool'} } def __init__(self, allow_groups=None, default_value=None, read_only=None, required=None): super(UpdateProcessWorkItemTypeFieldRequest, self).__init__() self.allow_groups = allow_groups self.default_value = default_value self.read_only = read_only self.required = required class UpdateProcessWorkItemTypeRequest(Model): """UpdateProcessWorkItemTypeRequest. :param color: Color of the work item type :type color: str :param description: Description of the work item type :type description: str :param icon: Icon of the work item type :type icon: str :param is_disabled: If set will disable the work item type :type is_disabled: bool """ _attribute_map = { 'color': {'key': 'color', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'icon': {'key': 'icon', 'type': 'str'}, 'is_disabled': {'key': 'isDisabled', 'type': 'bool'} } def __init__(self, color=None, description=None, icon=None, is_disabled=None): super(UpdateProcessWorkItemTypeRequest, self).__init__() self.color = color self.description = description self.icon = icon self.is_disabled = is_disabled class WitContribution(Model): """WitContribution. :param contribution_id: The id for the contribution. :type contribution_id: str :param height: The height for the contribution. :type height: int :param inputs: A dictionary holding key value pairs for contribution inputs. :type inputs: dict :param show_on_deleted_work_item: A value indicating if the contribution should be show on deleted workItem. :type show_on_deleted_work_item: bool """ _attribute_map = { 'contribution_id': {'key': 'contributionId', 'type': 'str'}, 'height': {'key': 'height', 'type': 'int'}, 'inputs': {'key': 'inputs', 'type': '{object}'}, 'show_on_deleted_work_item': {'key': 'showOnDeletedWorkItem', 'type': 'bool'} } def __init__(self, contribution_id=None, height=None, inputs=None, show_on_deleted_work_item=None): super(WitContribution, self).__init__() self.contribution_id = contribution_id self.height = height self.inputs = inputs self.show_on_deleted_work_item = show_on_deleted_work_item class WorkItemBehavior(Model): """WorkItemBehavior. :param abstract: :type abstract: bool :param color: :type color: str :param description: :type description: str :param fields: :type fields: list of :class:`WorkItemBehaviorField <azure.devops.v5_1.work_item_tracking.models.WorkItemBehaviorField>` :param id: :type id: str :param inherits: :type inherits: :class:`WorkItemBehaviorReference <azure.devops.v5_1.work_item_tracking.models.WorkItemBehaviorReference>` :param name: :type name: str :param overriden: :type overriden: bool :param rank: :type rank: int :param url: :type url: str """ _attribute_map = { 'abstract': {'key': 'abstract', 'type': 'bool'}, 'color': {'key': 'color', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'fields': {'key': 'fields', 'type': '[WorkItemBehaviorField]'}, 'id': {'key': 'id', 'type': 'str'}, 'inherits': {'key': 'inherits', 'type': 'WorkItemBehaviorReference'}, 'name': {'key': 'name', 'type': 'str'}, 'overriden': {'key': 'overriden', 'type': 'bool'}, 'rank': {'key': 'rank', 'type': 'int'}, 'url': {'key': 'url', 'type': 'str'} } def __init__(self, abstract=None, color=None, description=None, fields=None, id=None, inherits=None, name=None, overriden=None, rank=None, url=None): super(WorkItemBehavior, self).__init__() self.abstract = abstract self.color = color self.description = description self.fields = fields self.id = id self.inherits = inherits self.name = name self.overriden = overriden self.rank = rank self.url = url class WorkItemBehaviorField(Model): """WorkItemBehaviorField. :param behavior_field_id: :type behavior_field_id: str :param id: :type id: str :param url: :type url: str """ _attribute_map = { 'behavior_field_id': {'key': 'behaviorFieldId', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'} } def __init__(self, behavior_field_id=None, id=None, url=None): super(WorkItemBehaviorField, self).__init__() self.behavior_field_id = behavior_field_id self.id = id self.url = url class WorkItemBehaviorReference(Model): """WorkItemBehaviorReference. :param id: The ID of the reference behavior. :type id: str :param url: The url of the reference behavior. :type url: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'} } def __init__(self, id=None, url=None): super(WorkItemBehaviorReference, self).__init__() self.id = id self.url = url class WorkItemStateInputModel(Model): """WorkItemStateInputModel. :param color: Color of the state :type color: str :param name: Name of the state :type name: str :param order: Order in which state should appear :type order: int :param state_category: Category of the state :type state_category: str """ _attribute_map = { 'color': {'key': 'color', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'order': {'key': 'order', 'type': 'int'}, 'state_category': {'key': 'stateCategory', 'type': 'str'} } def __init__(self, color=None, name=None, order=None, state_category=None): super(WorkItemStateInputModel, self).__init__() self.color = color self.name = name self.order = order self.state_category = state_category class WorkItemStateResultModel(Model): """WorkItemStateResultModel. :param color: Work item state color. :type color: str :param customization_type: Work item state customization type. :type customization_type: object :param hidden: If the Work item state is hidden. :type hidden: bool :param id: Id of the Workitemstate. :type id: str :param name: Work item state name. :type name: str :param order: Work item state order. :type order: int :param state_category: Work item state statecategory. :type state_category: str :param url: Work item state url. :type url: str """ _attribute_map = { 'color': {'key': 'color', 'type': 'str'}, 'customization_type': {'key': 'customizationType', 'type': 'object'}, 'hidden': {'key': 'hidden', 'type': 'bool'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'order': {'key': 'order', 'type': 'int'}, 'state_category': {'key': 'stateCategory', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'} } def __init__(self, color=None, customization_type=None, hidden=None, id=None, name=None, order=None, state_category=None, url=None): super(WorkItemStateResultModel, self).__init__() self.color = color self.customization_type = customization_type self.hidden = hidden self.id = id self.name = name self.order = order self.state_category = state_category self.url = url class WorkItemTypeBehavior(Model): """WorkItemTypeBehavior. :param behavior: Reference to the behavior of a work item type :type behavior: :class:`WorkItemBehaviorReference <azure.devops.v5_1.work_item_tracking.models.WorkItemBehaviorReference>` :param is_default: If true the work item type is the default work item type in the behavior :type is_default: bool :param url: URL of the work item type behavior :type url: str """ _attribute_map = { 'behavior': {'key': 'behavior', 'type': 'WorkItemBehaviorReference'}, 'is_default': {'key': 'isDefault', 'type': 'bool'}, 'url': {'key': 'url', 'type': 'str'} } def __init__(self, behavior=None, is_default=None, url=None): super(WorkItemTypeBehavior, self).__init__() self.behavior = behavior self.is_default = is_default self.url = url class WorkItemTypeModel(Model): """WorkItemTypeModel. :param behaviors: :type behaviors: list of :class:`WorkItemTypeBehavior <azure.devops.v5_1.work_item_tracking.models.WorkItemTypeBehavior>` :param class_: :type class_: object :param color: :type color: str :param description: :type description: str :param icon: :type icon: str :param id: :type id: str :param inherits: Parent WIT Id/Internal ReferenceName that it inherits from :type inherits: str :param is_disabled: :type is_disabled: bool :param layout: :type layout: :class:`FormLayout <azure.devops.v5_1.work_item_tracking.models.FormLayout>` :param name: :type name: str :param states: :type states: list of :class:`WorkItemStateResultModel <azure.devops.v5_1.work_item_tracking.models.WorkItemStateResultModel>` :param url: :type url: str """ _attribute_map = { 'behaviors': {'key': 'behaviors', 'type': '[WorkItemTypeBehavior]'}, 'class_': {'key': 'class', 'type': 'object'}, 'color': {'key': 'color', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'icon': {'key': 'icon', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'inherits': {'key': 'inherits', 'type': 'str'}, 'is_disabled': {'key': 'isDisabled', 'type': 'bool'}, 'layout': {'key': 'layout', 'type': 'FormLayout'}, 'name': {'key': 'name', 'type': 'str'}, 'states': {'key': 'states', 'type': '[WorkItemStateResultModel]'}, 'url': {'key': 'url', 'type': 'str'} } def __init__(self, behaviors=None, class_=None, color=None, description=None, icon=None, id=None, inherits=None, is_disabled=None, layout=None, name=None, states=None, url=None): super(WorkItemTypeModel, self).__init__() self.behaviors = behaviors self.class_ = class_ self.color = color self.description = description self.icon = icon self.id = id self.inherits = inherits self.is_disabled = is_disabled self.layout = layout self.name = name self.states = states self.url = url class PickList(PickListMetadata): """PickList. :param id: ID of the picklist :type id: str :param is_suggested: Indicates whether items outside of suggested list are allowed :type is_suggested: bool :param name: Name of the picklist :type name: str :param type: DataType of picklist :type type: str :param url: Url of the picklist :type url: str :param items: A list of PicklistItemModel. :type items: list of str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'is_suggested': {'key': 'isSuggested', 'type': 'bool'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'items': {'key': 'items', 'type': '[str]'} } def __init__(self, id=None, is_suggested=None, name=None, type=None, url=None, items=None): super(PickList, self).__init__(id=id, is_suggested=is_suggested, name=name, type=type, url=url) self.items = items __all__ = [ 'AddProcessWorkItemTypeFieldRequest', 'Control', 'CreateProcessModel', 'CreateProcessRuleRequest', 'CreateProcessWorkItemTypeRequest', 'Extension', 'FieldModel', 'FieldRuleModel', 'FormLayout', 'Group', 'HideStateModel', 'Page', 'PickListMetadata', 'ProcessBehavior', 'ProcessBehaviorCreateRequest', 'ProcessBehaviorField', 'ProcessBehaviorReference', 'ProcessBehaviorUpdateRequest', 'ProcessInfo', 'ProcessModel', 'ProcessProperties', 'ProcessRule', 'ProcessWorkItemType', 'ProcessWorkItemTypeField', 'ProjectReference', 'RuleAction', 'RuleActionModel', 'RuleCondition', 'RuleConditionModel', 'Section', 'UpdateProcessModel', 'UpdateProcessRuleRequest', 'UpdateProcessWorkItemTypeFieldRequest', 'UpdateProcessWorkItemTypeRequest', 'WitContribution', 'WorkItemBehavior', 'WorkItemBehaviorField', 'WorkItemBehaviorReference', 'WorkItemStateInputModel', 'WorkItemStateResultModel', 'WorkItemTypeBehavior', 'WorkItemTypeModel', 'PickList', ]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from edward.models import Bernoulli, Normal from edward.util import get_descendants class test_get_descendants_class(tf.test.TestCase): def test_v_structure(self): """a -> b -> e <- d <- c""" with self.test_session(): a = Normal(0.0, 1.0) b = Normal(a, 1.0) c = Normal(0.0, 1.0) d = Normal(c, 1.0) e = Normal(b * d, 1.0) self.assertEqual(set(get_descendants(a)), set([b, e])) self.assertEqual(get_descendants(b), [e]) self.assertEqual(set(get_descendants(c)), set([d, e])) self.assertEqual(get_descendants(d), [e]) self.assertEqual(get_descendants(e), []) def test_a_structure(self): """e <- d <- a -> b -> c""" with self.test_session(): a = Normal(0.0, 1.0) b = Normal(a, 1.0) c = Normal(b, 1.0) d = Normal(a, 1.0) e = Normal(d, 1.0) self.assertEqual(set(get_descendants(a)), set([b, c, d, e])) self.assertEqual(get_descendants(b), [c]) self.assertEqual(get_descendants(c), []) self.assertEqual(get_descendants(d), [e]) self.assertEqual(get_descendants(e), []) def test_chain_structure(self): """a -> b -> c -> d -> e""" with self.test_session(): a = Normal(0.0, 1.0) b = Normal(a, 1.0) c = Normal(b, 1.0) d = Normal(c, 1.0) e = Normal(d, 1.0) self.assertEqual(set(get_descendants(a)), set([b, c, d, e])) self.assertEqual(set(get_descendants(b)), set([c, d, e])) self.assertEqual(set(get_descendants(c)), set([d, e])) self.assertEqual(get_descendants(d), [e]) self.assertEqual(get_descendants(e), []) def test_tensor(self): with self.test_session(): a = Normal(0.0, 1.0) b = tf.constant(2.0) c = a + b d = Normal(c, 1.0) self.assertEqual(get_descendants(a), [d]) self.assertEqual(get_descendants(b), [d]) self.assertEqual(get_descendants(c), [d]) self.assertEqual(get_descendants(d), []) def test_control_flow(self): with self.test_session(): a = Bernoulli(0.5) b = Normal(0.0, 1.0) c = tf.constant(0.0) d = tf.cond(tf.cast(a, tf.bool), lambda: b, lambda: c) e = Normal(d, 1.0) self.assertEqual(get_descendants(a), [e]) self.assertEqual(get_descendants(b), [e]) self.assertEqual(get_descendants(c), [e]) self.assertEqual(get_descendants(d), [e]) self.assertEqual(get_descendants(e), []) def test_scan(self): """copied from test_chain_structure""" def cumsum(x): return tf.scan(lambda a, x: a + x, x) with self.test_session(): a = Normal(tf.ones([3]), tf.ones([3])) b = Normal(cumsum(a), tf.ones([3])) c = Normal(cumsum(b), tf.ones([3])) d = Normal(cumsum(c), tf.ones([3])) e = Normal(cumsum(d), tf.ones([3])) self.assertEqual(set(get_descendants(a)), set([b, c, d, e])) self.assertEqual(set(get_descendants(b)), set([c, d, e])) self.assertEqual(set(get_descendants(c)), set([d, e])) self.assertEqual(get_descendants(d), [e]) self.assertEqual(get_descendants(e), []) if __name__ == '__main__': tf.test.main()
# Copyright 2017 Google Inc. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Utility library for working with protobufs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from google.protobuf.internal import api_implementation def uses_fast_cpp_protos_or_die(): if api_implementation.Type() != 'cpp': raise ValueError('Expected to be using C++ protobuf implementation ' '(api_implementation.Type() == "cpp") but it is {}'.format( api_implementation.Type()))
import os import pytest import sqlalchemy as sa from libweasyl.configuration import configure_libweasyl from libweasyl.models.meta import registry from libweasyl.models.tables import metadata from libweasyl.test.common import NotFound from libweasyl.test.common import media_link_formatter from libweasyl import cache engine = sa.create_engine(os.environ.get('WEASYL_TEST_SQLALCHEMY_URL', 'postgresql+psycopg2cffi:///weasyl_test')) sessionmaker = sa.orm.scoped_session(sa.orm.sessionmaker(bind=engine)) @pytest.fixture(scope='session', autouse=True) def setup(request): db = sessionmaker() db.execute('DROP SCHEMA public CASCADE') db.execute('CREATE SCHEMA public') db.execute('CREATE EXTENSION HSTORE') db.commit() metadata.create_all(engine) cache.region.configure('dogpile.cache.memory') @pytest.fixture(autouse=True) def staticdir(tmpdir): tmpdir = tmpdir.join('libweasyl-staticdir') configure_libweasyl( dbsession=sessionmaker, not_found_exception=NotFound, base_file_path=tmpdir.strpath, staff_config_dict={}, media_link_formatter_callback=media_link_formatter.format_media_link, ) return tmpdir @pytest.fixture def db(request): db = sessionmaker() # If a previous test has failed due to an SQL problem, the session will be # in a broken state, requiring a rollback. It's not harmful to # unconditionally rollback, so just do that. db.rollback() def tear_down(): "Clears all rows from the test database." for k, cls in registry.items(): if not k[0].isupper(): continue db.query(cls).delete() db.flush() db.commit() request.addfinalizer(tear_down) return db
#!/usr/bin/env python import time import sys import iothub_client from iothub_client import IoTHubClient, IoTHubClientError, IoTHubTransportProvider, IoTHubClientResult from iothub_client import IoTHubMessage, IoTHubMessageDispositionResult, IoTHubError # String containing Hostname, Device Id & Device Key in the format: # "HostName=<host_name>;DeviceId=<device_id>;SharedAccessKey=<device_key>" CONNECTION_STRING = "[Device Connection String]" MSG_TXT = "{\"msg\": \"%s\"}" RECEIVE_CONTEXT = 0 SEND_CONTEXT = 0 SLEEP_TIME = 15 def receive_message_callback(message, user_context): message_buffer = message.get_bytearray() size = len(message_buffer) print ( "Received Message: data = \"%s\" size=%d" % (message_buffer[:size].decode('utf-8'), size) ) return IoTHubMessageDispositionResult.ACCEPTED def send_confirmation_callback(message, result, user_context): print ( "Confirmation received for message with result = %s" % result ) def iothub_client_sample_run(): try: # prepare iothub client client = IoTHubClient(CONNECTION_STRING, IoTHubTransportProvider.MQTT) # to enable MQTT logging set to 1 client.set_option("logtrace", 0) client.set_message_callback(receive_message_callback, RECEIVE_CONTEXT) while True: # send a few messages every minute print ( "IoTHubClient sending message" ) msg_txt_formatted = MSG_TXT % "This is a test" message = IoTHubMessage(msg_txt_formatted) client.send_event_async(message, send_confirmation_callback, SEND_CONTEXT) print ( "IoTHubClient.send_event_async accepted message for transmission to IoT Hub." ) time.sleep(SLEEP_TIME) except IoTHubError as iothub_error: print ( "Unexpected error %s from IoTHub" % iothub_error ) return except KeyboardInterrupt: print ( "IoTHubClient sample stopped" ) if __name__ == '__main__': print ( "\nPython %s" % sys.version ) print ( "IoT Hub Client for Python" ) iothub_client_sample_run()
import sys time = input().strip() splitted = time.split(':') hours_12 = int(splitted[0]) mins = splitted[1] secs = splitted[2][:2] is_pm = splitted[2].endswith("PM") if (is_pm): if (hours_12 >= 1 and hours_12 < 12): # between 1pm and 11:59pm hours_12 += 12 else: if (hours_12 == 12): hours_12 -= 12 print(':'.join(list((str(hours_12).zfill(2), mins, secs))))
""" Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os from resource_management import * def setup_hadoop(): """ Setup hadoop files and directories """ import params Execute("/bin/echo 0 > /selinux/enforce", only_if="test -f /selinux/enforce" ) install_snappy() #directories if params.has_namenode: Directory(params.hdfs_log_dir_prefix, recursive=True, owner='root', group=params.user_group, mode=0775 ) Directory(params.hadoop_pid_dir_prefix, recursive=True, owner='root', group='root' ) #this doesn't needed with stack 1 Directory(params.hadoop_tmp_dir, recursive=True, owner=params.hdfs_user, ) #files if params.security_enabled: tc_owner = "root" else: tc_owner = params.hdfs_user File(os.path.join(params.hadoop_conf_dir, 'commons-logging.properties'), owner=tc_owner, content=Template('commons-logging.properties.j2') ) health_check_template = "health_check-v2" #for stack 1 use 'health_check' File(os.path.join(params.hadoop_conf_dir, "health_check"), owner=tc_owner, content=Template(health_check_template + ".j2") ) log4j_filename = os.path.join(params.hadoop_conf_dir, "log4j.properties") if (params.log4j_props != None): File(log4j_filename, mode=0644, group=params.user_group, owner=params.hdfs_user, content=params.log4j_props ) elif (os.path.exists(format("{params.hadoop_conf_dir}/log4j.properties"))): File(log4j_filename, mode=0644, group=params.user_group, owner=params.hdfs_user, ) File(os.path.join(params.hadoop_conf_dir, "hadoop-metrics2.properties"), owner=params.hdfs_user, content=Template("hadoop-metrics2.properties.j2") ) def setup_database(): """ Load DB """ import params db_driver_dload_cmd = "" environment = { "no_proxy": format("{ambari_server_hostname}") } if params.server_db_name == 'oracle' and params.oracle_driver_url != "": db_driver_dload_cmd = format( "curl -kf -x \"\" \ --retry 5 {oracle_driver_symlink_url} -o {hadoop_lib_home}/{db_driver_filename}",) elif params.server_db_name == 'mysql' and params.mysql_driver_url != "": db_driver_dload_cmd = format( "curl -kf -x \"\" \ --retry 5 {mysql_driver_symlink_url} -o {hadoop_lib_home}/{db_driver_filename}") if db_driver_dload_cmd: Execute(db_driver_dload_cmd, not_if =format("test -e {hadoop_lib_home}/{db_driver_filename}"), environment = environment ) def setup_configs(): """ Creates configs for services HDFS mapred """ import params if params.has_namenode: File(params.task_log4j_properties_location, content=StaticFile("task-log4j.properties"), mode=0755 ) if os.path.exists(os.path.join(params.hadoop_conf_dir, 'configuration.xsl')): File(os.path.join(params.hadoop_conf_dir, 'configuration.xsl'), owner=params.hdfs_user, group=params.user_group ) if os.path.exists(os.path.join(params.hadoop_conf_dir, 'masters')): File(os.path.join(params.hadoop_conf_dir, 'masters'), owner=params.hdfs_user, group=params.user_group ) generate_include_file() def generate_include_file(): import params if params.has_namenode and params.dfs_hosts and params.has_slaves: include_hosts_list = params.slave_hosts File(params.dfs_hosts, content=Template("include_hosts_list.j2"), owner=params.hdfs_user, group=params.user_group ) def install_snappy(): import params snappy_so = "libsnappy.so" so_target_dir_x86 = format("{hadoop_lib_home}/native/Linux-i386-32") so_target_dir_x64 = format("{hadoop_lib_home}/native/Linux-amd64-64") so_target_x86 = format("{so_target_dir_x86}/{snappy_so}") so_target_x64 = format("{so_target_dir_x64}/{snappy_so}") so_src_dir_x86 = format("{hadoop_home}/lib") so_src_dir_x64 = format("{hadoop_home}/lib64") so_src_x86 = format("{so_src_dir_x86}/{snappy_so}") so_src_x64 = format("{so_src_dir_x64}/{snappy_so}") if params.has_namenode: Execute( format("mkdir -p {so_target_dir_x86}; ln -sf {so_src_x86} {so_target_x86}")) Execute( format("mkdir -p {so_target_dir_x64}; ln -sf {so_src_x64} {so_target_x64}")) def create_javahome_symlink(): if os.path.exists("/usr/jdk/jdk1.6.0_31") and not os.path.exists("/usr/jdk64/jdk1.6.0_31"): Execute("mkdir -p /usr/jdk64/") Execute("ln -s /usr/jdk/jdk1.6.0_31 /usr/jdk64/jdk1.6.0_31")
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Transformer Agents. """ from typing import Optional from parlai.core.params import ParlaiParser from parlai.core.opt import Opt from parlai.core.agents import Agent from parlai.utils.torch import padded_3d from parlai.core.torch_classifier_agent import TorchClassifierAgent from parlai.core.torch_ranker_agent import TorchRankerAgent from parlai.core.torch_generator_agent import TorchGeneratorAgent from parlai.utils.misc import recursive_getattr from parlai.utils.logging import logging from .modules import ( TransformerMemNetModel, TransformerGeneratorModel, TransformerLinearWrapper, MixerModel, MixerGeneratorModel, ) import torch def add_common_cmdline_args(parser): """ Add common command line args. """ parser.add_argument( '-esz', '--embedding-size', type=int, default=300, help='Size of all embedding layers. Must be a multiple of --n-heads.', ) parser.add_argument( '-nl', '--n-layers', type=int, default=2, help='Number of transformer layers.' ) parser.add_argument( '-hid', '--ffn-size', type=int, default=300, help='Hidden size of the FFN layers', ) parser.add_argument( '--dropout', type=float, default=0.0, help='Dropout used around embeddings and before layer layer normalizations. ' 'This is used in Vaswani 2017 and works well on large datasets.', ) parser.add_argument( '--attention-dropout', type=float, default=0.0, help='Dropout used after attention softmax. This is not used in Vaswani 2017.', ) parser.add_argument( '--relu-dropout', type=float, default=0.0, help='Dropout used after the ReLU in the FFN. Not used in Vaswani 2017, ' 'but used in Tensor2Tensor.', ) parser.add_argument( '--n-heads', type=int, default=2, help='Number of multihead attention heads' ) parser.add_argument( '--learn-positional-embeddings', type='bool', default=False, help='If off, sinusoidal embeddings are used. If on, position embeddings are ' 'learned from scratch.', ) parser.add_argument('--embeddings-scale', type='bool', default=True) parser.add_argument( '--n-positions', type=int, default=None, hidden=True, help='Number of positional embeddings to learn. Defaults ' 'to truncate or 1024 if not provided.', ) parser.add_argument( '--n-segments', type=int, default=0, help='The number of segments that support the model. ' 'If zero no segment and no langs_embedding.', ) parser.add_argument( '--variant', choices={'aiayn', 'xlm', 'prelayernorm', 'bart'}, default='aiayn', help='Chooses locations of layer norms, etc. prelayernorm ' 'is used to match some fairseq models', recommended='xlm', ) parser.add_argument( '--activation', choices={'relu', 'gelu'}, default='relu', help='Nonlinear activation to use. AIAYN uses relu, but ' 'more recent papers prefer gelu.', recommended='gelu', ) parser.add_argument( '--output-scaling', type=float, default=1.0, help='scale the output of every transformer by this quantity.', ) parser.add_argument( '--share-word-embeddings', type='bool', default=True, help='Share word embeddings table for candidate and context' 'in the memory network', ) parser.add_argument( '-nel', '--n-encoder-layers', type=int, default=-1, help='This will overide the n-layers for asymmetrical transformers', ) parser.add_argument( '-ndl', '--n-decoder-layers', type=int, default=-1, help='This will overide the n-layers for asymmetrical transformers', ) parser.add_argument( '--model-parallel', type='bool', default=False, help='Shard the layers across multiple GPUs.', ) class Transformer(Agent): """ Placeholder Transformer Agent. Placeholder class, which just throws an error telling the user to specify whether they want the ranker or the generator. """ def __init__(self, opt, shared=None): raise RuntimeError( "`--model transformer` is not a valid choice. Please select either " "`--model transformer/ranker` or `--model transformer/generator" ) class TransformerRankerAgent(TorchRankerAgent): """ Transformer Ranker Agent. Implementation of a TorchRankerAgent, where the model is a Transformer """ @classmethod def add_cmdline_args( cls, parser: ParlaiParser, partial_opt: Optional[Opt] = None ) -> ParlaiParser: """ Add command-line arguments specifically for this agent. """ super().add_cmdline_args(parser, partial_opt=partial_opt) agent = parser.add_argument_group('Transformer Arguments') add_common_cmdline_args(agent) # memory and knowledge arguments agent.add_argument( '--use-memories', type='bool', default=False, help='use memories: must implement the function ' '`_vectorize_memories` to use this', ) agent.add_argument( '--wrap-memory-encoder', type='bool', default=False, help='wrap memory encoder with MLP', ) agent.add_argument( '--memory-attention', type=str, default='sqrt', choices=['cosine', 'dot', 'sqrt'], help='similarity for basic attention mechanism ' 'when using transformer to encode memories', ) # model specific arguments agent.add_argument('--normalize-sent-emb', type='bool', default=False) agent.add_argument('--share-encoders', type='bool', default=True) parser.add_argument( '--share-word-embeddings', type='bool', default=True, help='Share word embeddings table for candidate and context' 'in the memory network', ) agent.add_argument( '--learn-embeddings', type='bool', default=True, help='learn embeddings' ) agent.add_argument( '--data-parallel', type='bool', default=False, help='use model in data parallel, requires ' 'multiple gpus', ) agent.add_argument( '--reduction-type', type=str, default='mean', choices=['first', 'max', 'mean'], help='Type of reduction at the end of transformer', ) parser.set_defaults(learningrate=0.0001, optimizer='adamax', truncate=1024) cls.dictionary_class().add_cmdline_args(parser, partial_opt=partial_opt) return agent def _score(self, output, cands): if cands.dim() == 2: return torch.matmul(output, cands.t()) elif cands.dim() == 3: return torch.bmm(output.unsqueeze(1), cands.transpose(1, 2)).squeeze(1) else: raise RuntimeError( 'Unexpected candidate dimensions {}' ''.format(cands.dim()) ) def build_model(self, states=None): """ Build and return model. """ model = MixerModel(self.opt, self.dict) if self.opt['embedding_type'] != 'random': self._copy_embeddings(model.embeddings.weight, self.opt['embedding_type']) return model def batchify(self, obs_batch, sort=False): """ Override so that we can add memories to the Batch object. """ batch = super().batchify(obs_batch, sort) if self.opt['use_memories']: valid_obs = [(i, ex) for i, ex in enumerate(obs_batch) if self.is_valid(ex)] valid_inds, exs = zip(*valid_obs) mems = None if any('memory_vecs' in ex for ex in exs): mems = [ex.get('memory_vecs', None) for ex in exs] batch.memory_vecs = mems return batch def _vectorize_memories(self, obs): # TODO: move this to Torch Ranker Agent raise NotImplementedError( 'Abstract class: user must implement this function to use memories' ) def vectorize(self, *args, **kwargs): """ Override to include vectorization of memories. """ kwargs['add_start'] = False kwargs['add_end'] = False obs = super().vectorize(*args, **kwargs) if self.opt['use_memories']: obs = self._vectorize_memories(obs) return obs def encode_candidates(self, padded_cands): """ Encode candidates. """ _, cands = self.model(xs=None, mems=None, cands=padded_cands) return cands def score_candidates(self, batch, cand_vecs, cand_encs=None): """ Score candidates. """ # convoluted check that not all memories are empty if ( self.opt['use_memories'] and batch.memory_vecs is not None and sum(len(m) for m in batch.memory_vecs) ): mems = padded_3d(batch.memory_vecs, pad_idx=self.NULL_IDX) else: mems = None if cand_encs is not None: # we pre-encoded the candidates, do not re-encode here cand_vecs = None context_h, cands_h = self.model(xs=batch.text_vec, mems=mems, cands=cand_vecs) if cand_encs is not None: cands_h = cand_encs scores = self._score(context_h, cands_h) return scores class TransformerGeneratorAgent(TorchGeneratorAgent): """ TransformerGeneratorAgent. Implementation of TorchGeneratorAgent, where the model is a Transformer """ @classmethod def add_cmdline_args( cls, parser: ParlaiParser, partial_opt: Optional[Opt] = None ) -> ParlaiParser: """ Add command-line arguments specifically for this agent. """ agent = parser.add_argument_group('Transformer Arguments') add_common_cmdline_args(agent) cls.dictionary_class().add_cmdline_args(parser, partial_opt=partial_opt) super().add_cmdline_args(parser, partial_opt=partial_opt) return agent def build_model(self, states=None): """ Build and return model. """ model = MixerGeneratorModel(self.opt, self.dict) if self.opt['embedding_type'] != 'random': self._copy_embeddings( model.encoder.embeddings.weight, self.opt['embedding_type'] ) return model def _resize_token_embeddings(self, state_dict, msg=None): """ Resize the token embeddings when are adding extra special tokens. """ # map extra special tokens carefully new_size = self.model.embeddings.weight.size()[0] orig_size = state_dict['embeddings.weight'].size()[0] logging.info(f'Resizing token embeddings from {orig_size} to {new_size}') if new_size <= orig_size: # new size should be greater than original size, # as we are adding special tokens raise RuntimeError(msg) for emb_weights in [ 'embeddings.weight', 'encoder.embeddings.weight', 'decoder.embeddings.weight', ]: # get new_embs old_embs = state_dict[emb_weights] new_embs = recursive_getattr(self.model, emb_weights).to(old_embs.device) # copy over old weights new_embs.data[:orig_size, :] = old_embs.data[:orig_size, :] # reset in state dict state_dict[emb_weights] = new_embs return state_dict class TransformerClassifierAgent(TorchClassifierAgent): """ Classifier based on Transformer. """ @classmethod def add_cmdline_args( cls, parser: ParlaiParser, partial_opt: Optional[Opt] = None ) -> ParlaiParser: TransformerRankerAgent.add_cmdline_args( parser, partial_opt=partial_opt ) # add transformer args super().add_cmdline_args(parser, partial_opt=partial_opt) parser.add_argument( '--load-from-pretrained-ranker', type='bool', default=False, help='load model from base transformer ranking model ' '(used for pretraining)', ) parser.set_defaults(reduction_type='first') return parser def build_model(self): num_classes = len(self.class_list) self.base_model = MixerModel(self.opt, self.dict) return TransformerLinearWrapper(self.base_model.context_encoder, num_classes) def vectorize(self, *args, **kwargs): """ Add the start and end token to the text. """ kwargs['add_start'] = True kwargs['add_end'] = True obs = super().vectorize(*args, **kwargs) return obs def _set_text_vec(self, *args, **kwargs): """ Add the start and end token to the text. """ obs = super()._set_text_vec(*args, **kwargs) if 'text_vec' in obs and 'added_start_end' not in obs: obs.force_set( 'text_vec', self._add_start_end_tokens(obs['text_vec'], True, True) ) obs['added_start_end'] = True # check truncation after adding start end tokens if obs.get('text_vec') is not None: truncated_vec = self._check_truncate( obs['text_vec'], self.text_truncate, True ) obs.force_set('text_vec', torch.LongTensor(truncated_vec)) return obs def score(self, batch): return self.model(batch.text_vec) def load_state_dict(self, state_dict): """ Load the state dict into model. This is easily overridable to facilitate transfer of state dicts. """ if self.is_finetune and self.opt['load_from_pretrained_ranker']: self.base_model.load_state_dict(state_dict, strict=False) else: self.model.load_state_dict(state_dict)
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: tensorflow/core/protobuf/config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from tensorflow.core.framework import cost_graph_pb2 as tensorflow_dot_core_dot_framework_dot_cost__graph__pb2 from tensorflow.core.framework import graph_pb2 as tensorflow_dot_core_dot_framework_dot_graph__pb2 from tensorflow.core.framework import step_stats_pb2 as tensorflow_dot_core_dot_framework_dot_step__stats__pb2 from tensorflow.core.protobuf import debug_pb2 as tensorflow_dot_core_dot_protobuf_dot_debug__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='tensorflow/core/protobuf/config.proto', package='tensorflow', syntax='proto3', serialized_pb=_b('\n%tensorflow/core/protobuf/config.proto\x12\ntensorflow\x1a*tensorflow/core/framework/cost_graph.proto\x1a%tensorflow/core/framework/graph.proto\x1a*tensorflow/core/framework/step_stats.proto\x1a$tensorflow/core/protobuf/debug.proto\"\xa1\x01\n\nGPUOptions\x12\'\n\x1fper_process_gpu_memory_fraction\x18\x01 \x01(\x01\x12\x16\n\x0e\x61llocator_type\x18\x02 \x01(\t\x12\x1f\n\x17\x64\x65\x66\x65rred_deletion_bytes\x18\x03 \x01(\x03\x12\x14\n\x0c\x61llow_growth\x18\x04 \x01(\x08\x12\x1b\n\x13visible_device_list\x18\x05 \x01(\t\"\xdf\x02\n\x10OptimizerOptions\x12+\n#do_common_subexpression_elimination\x18\x01 \x01(\x08\x12\x1b\n\x13\x64o_constant_folding\x18\x02 \x01(\x08\x12\x1c\n\x14\x64o_function_inlining\x18\x04 \x01(\x08\x12\x35\n\topt_level\x18\x03 \x01(\x0e\x32\".tensorflow.OptimizerOptions.Level\x12\x45\n\x10global_jit_level\x18\x05 \x01(\x0e\x32+.tensorflow.OptimizerOptions.GlobalJitLevel\" \n\x05Level\x12\x06\n\x02L1\x10\x00\x12\x0f\n\x02L0\x10\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\"C\n\x0eGlobalJitLevel\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x00\x12\x10\n\x03OFF\x10\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x12\x08\n\x04ON_1\x10\x01\x12\x08\n\x04ON_2\x10\x02\"\xb9\x02\n\x0cGraphOptions\x12\x1e\n\x16\x65nable_recv_scheduling\x18\x02 \x01(\x08\x12\x37\n\x11optimizer_options\x18\x03 \x01(\x0b\x32\x1c.tensorflow.OptimizerOptions\x12\x18\n\x10\x62uild_cost_model\x18\x04 \x01(\x03\x12\x1e\n\x16\x62uild_cost_model_after\x18\t \x01(\x03\x12\x14\n\x0cinfer_shapes\x18\x05 \x01(\x08\x12\x1a\n\x12place_pruned_graph\x18\x06 \x01(\x08\x12 \n\x18\x65nable_bfloat16_sendrecv\x18\x07 \x01(\x08\x12\x15\n\rtimeline_step\x18\x08 \x01(\x05J\x04\x08\x01\x10\x02R%skip_common_subexpression_elimination\",\n\x15ThreadPoolOptionProto\x12\x13\n\x0bnum_threads\x18\x01 \x01(\x05\"2\n\nRPCOptions\x12$\n\x1cuse_rpc_for_inprocess_master\x18\x01 \x01(\x08\"\xd1\x04\n\x0b\x43onfigProto\x12>\n\x0c\x64\x65vice_count\x18\x01 \x03(\x0b\x32(.tensorflow.ConfigProto.DeviceCountEntry\x12$\n\x1cintra_op_parallelism_threads\x18\x02 \x01(\x05\x12$\n\x1cinter_op_parallelism_threads\x18\x05 \x01(\x05\x12\x1f\n\x17use_per_session_threads\x18\t \x01(\x08\x12G\n\x1csession_inter_op_thread_pool\x18\x0c \x03(\x0b\x32!.tensorflow.ThreadPoolOptionProto\x12\x18\n\x10placement_period\x18\x03 \x01(\x05\x12\x16\n\x0e\x64\x65vice_filters\x18\x04 \x03(\t\x12+\n\x0bgpu_options\x18\x06 \x01(\x0b\x32\x16.tensorflow.GPUOptions\x12\x1c\n\x14\x61llow_soft_placement\x18\x07 \x01(\x08\x12\x1c\n\x14log_device_placement\x18\x08 \x01(\x08\x12/\n\rgraph_options\x18\n \x01(\x0b\x32\x18.tensorflow.GraphOptions\x12\x1f\n\x17operation_timeout_in_ms\x18\x0b \x01(\x03\x12+\n\x0brpc_options\x18\r \x01(\x0b\x32\x16.tensorflow.RPCOptions\x1a\x32\n\x10\x44\x65viceCountEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x05:\x02\x38\x01\"\xa5\x02\n\nRunOptions\x12\x36\n\x0btrace_level\x18\x01 \x01(\x0e\x32!.tensorflow.RunOptions.TraceLevel\x12\x15\n\rtimeout_in_ms\x18\x02 \x01(\x03\x12\x1c\n\x14inter_op_thread_pool\x18\x03 \x01(\x05\x12\x1f\n\x17output_partition_graphs\x18\x05 \x01(\x08\x12/\n\rdebug_options\x18\x06 \x01(\x0b\x32\x18.tensorflow.DebugOptions\"R\n\nTraceLevel\x12\x0c\n\x08NO_TRACE\x10\x00\x12\x12\n\x0eSOFTWARE_TRACE\x10\x01\x12\x12\n\x0eHARDWARE_TRACE\x10\x02\x12\x0e\n\nFULL_TRACE\x10\x03J\x04\x08\x04\x10\x05\"\x96\x01\n\x0bRunMetadata\x12)\n\nstep_stats\x18\x01 \x01(\x0b\x32\x15.tensorflow.StepStats\x12,\n\ncost_graph\x18\x02 \x01(\x0b\x32\x18.tensorflow.CostGraphDef\x12.\n\x10partition_graphs\x18\x03 \x03(\x0b\x32\x14.tensorflow.GraphDefB-\n\x18org.tensorflow.frameworkB\x0c\x43onfigProtosP\x01\xf8\x01\x01\x62\x06proto3') , dependencies=[tensorflow_dot_core_dot_framework_dot_cost__graph__pb2.DESCRIPTOR,tensorflow_dot_core_dot_framework_dot_graph__pb2.DESCRIPTOR,tensorflow_dot_core_dot_framework_dot_step__stats__pb2.DESCRIPTOR,tensorflow_dot_core_dot_protobuf_dot_debug__pb2.DESCRIPTOR,]) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _OPTIMIZEROPTIONS_LEVEL = _descriptor.EnumDescriptor( name='Level', full_name='tensorflow.OptimizerOptions.Level', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='L1', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='L0', index=1, number=-1, options=None, type=None), ], containing_type=None, options=None, serialized_start=633, serialized_end=665, ) _sym_db.RegisterEnumDescriptor(_OPTIMIZEROPTIONS_LEVEL) _OPTIMIZEROPTIONS_GLOBALJITLEVEL = _descriptor.EnumDescriptor( name='GlobalJitLevel', full_name='tensorflow.OptimizerOptions.GlobalJitLevel', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='DEFAULT', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='OFF', index=1, number=-1, options=None, type=None), _descriptor.EnumValueDescriptor( name='ON_1', index=2, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='ON_2', index=3, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=667, serialized_end=734, ) _sym_db.RegisterEnumDescriptor(_OPTIMIZEROPTIONS_GLOBALJITLEVEL) _RUNOPTIONS_TRACELEVEL = _descriptor.EnumDescriptor( name='TraceLevel', full_name='tensorflow.RunOptions.TraceLevel', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='NO_TRACE', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='SOFTWARE_TRACE', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='HARDWARE_TRACE', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='FULL_TRACE', index=3, number=3, options=None, type=None), ], containing_type=None, options=None, serialized_start=1952, serialized_end=2034, ) _sym_db.RegisterEnumDescriptor(_RUNOPTIONS_TRACELEVEL) _GPUOPTIONS = _descriptor.Descriptor( name='GPUOptions', full_name='tensorflow.GPUOptions', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='per_process_gpu_memory_fraction', full_name='tensorflow.GPUOptions.per_process_gpu_memory_fraction', index=0, number=1, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='allocator_type', full_name='tensorflow.GPUOptions.allocator_type', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='deferred_deletion_bytes', full_name='tensorflow.GPUOptions.deferred_deletion_bytes', index=2, number=3, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='allow_growth', full_name='tensorflow.GPUOptions.allow_growth', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='visible_device_list', full_name='tensorflow.GPUOptions.visible_device_list', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=219, serialized_end=380, ) _OPTIMIZEROPTIONS = _descriptor.Descriptor( name='OptimizerOptions', full_name='tensorflow.OptimizerOptions', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='do_common_subexpression_elimination', full_name='tensorflow.OptimizerOptions.do_common_subexpression_elimination', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='do_constant_folding', full_name='tensorflow.OptimizerOptions.do_constant_folding', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='do_function_inlining', full_name='tensorflow.OptimizerOptions.do_function_inlining', index=2, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='opt_level', full_name='tensorflow.OptimizerOptions.opt_level', index=3, number=3, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='global_jit_level', full_name='tensorflow.OptimizerOptions.global_jit_level', index=4, number=5, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _OPTIMIZEROPTIONS_LEVEL, _OPTIMIZEROPTIONS_GLOBALJITLEVEL, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=383, serialized_end=734, ) _GRAPHOPTIONS = _descriptor.Descriptor( name='GraphOptions', full_name='tensorflow.GraphOptions', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='enable_recv_scheduling', full_name='tensorflow.GraphOptions.enable_recv_scheduling', index=0, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='optimizer_options', full_name='tensorflow.GraphOptions.optimizer_options', index=1, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='build_cost_model', full_name='tensorflow.GraphOptions.build_cost_model', index=2, number=4, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='build_cost_model_after', full_name='tensorflow.GraphOptions.build_cost_model_after', index=3, number=9, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='infer_shapes', full_name='tensorflow.GraphOptions.infer_shapes', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='place_pruned_graph', full_name='tensorflow.GraphOptions.place_pruned_graph', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='enable_bfloat16_sendrecv', full_name='tensorflow.GraphOptions.enable_bfloat16_sendrecv', index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='timeline_step', full_name='tensorflow.GraphOptions.timeline_step', index=7, number=8, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=737, serialized_end=1050, ) _THREADPOOLOPTIONPROTO = _descriptor.Descriptor( name='ThreadPoolOptionProto', full_name='tensorflow.ThreadPoolOptionProto', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='num_threads', full_name='tensorflow.ThreadPoolOptionProto.num_threads', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1052, serialized_end=1096, ) _RPCOPTIONS = _descriptor.Descriptor( name='RPCOptions', full_name='tensorflow.RPCOptions', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='use_rpc_for_inprocess_master', full_name='tensorflow.RPCOptions.use_rpc_for_inprocess_master', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1098, serialized_end=1148, ) _CONFIGPROTO_DEVICECOUNTENTRY = _descriptor.Descriptor( name='DeviceCountEntry', full_name='tensorflow.ConfigProto.DeviceCountEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='tensorflow.ConfigProto.DeviceCountEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='tensorflow.ConfigProto.DeviceCountEntry.value', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1694, serialized_end=1744, ) _CONFIGPROTO = _descriptor.Descriptor( name='ConfigProto', full_name='tensorflow.ConfigProto', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='device_count', full_name='tensorflow.ConfigProto.device_count', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='intra_op_parallelism_threads', full_name='tensorflow.ConfigProto.intra_op_parallelism_threads', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='inter_op_parallelism_threads', full_name='tensorflow.ConfigProto.inter_op_parallelism_threads', index=2, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='use_per_session_threads', full_name='tensorflow.ConfigProto.use_per_session_threads', index=3, number=9, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='session_inter_op_thread_pool', full_name='tensorflow.ConfigProto.session_inter_op_thread_pool', index=4, number=12, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='placement_period', full_name='tensorflow.ConfigProto.placement_period', index=5, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='device_filters', full_name='tensorflow.ConfigProto.device_filters', index=6, number=4, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='gpu_options', full_name='tensorflow.ConfigProto.gpu_options', index=7, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='allow_soft_placement', full_name='tensorflow.ConfigProto.allow_soft_placement', index=8, number=7, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='log_device_placement', full_name='tensorflow.ConfigProto.log_device_placement', index=9, number=8, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='graph_options', full_name='tensorflow.ConfigProto.graph_options', index=10, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='operation_timeout_in_ms', full_name='tensorflow.ConfigProto.operation_timeout_in_ms', index=11, number=11, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='rpc_options', full_name='tensorflow.ConfigProto.rpc_options', index=12, number=13, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_CONFIGPROTO_DEVICECOUNTENTRY, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1151, serialized_end=1744, ) _RUNOPTIONS = _descriptor.Descriptor( name='RunOptions', full_name='tensorflow.RunOptions', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='trace_level', full_name='tensorflow.RunOptions.trace_level', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='timeout_in_ms', full_name='tensorflow.RunOptions.timeout_in_ms', index=1, number=2, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='inter_op_thread_pool', full_name='tensorflow.RunOptions.inter_op_thread_pool', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='output_partition_graphs', full_name='tensorflow.RunOptions.output_partition_graphs', index=3, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='debug_options', full_name='tensorflow.RunOptions.debug_options', index=4, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _RUNOPTIONS_TRACELEVEL, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1747, serialized_end=2040, ) _RUNMETADATA = _descriptor.Descriptor( name='RunMetadata', full_name='tensorflow.RunMetadata', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='step_stats', full_name='tensorflow.RunMetadata.step_stats', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='cost_graph', full_name='tensorflow.RunMetadata.cost_graph', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='partition_graphs', full_name='tensorflow.RunMetadata.partition_graphs', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2043, serialized_end=2193, ) _OPTIMIZEROPTIONS.fields_by_name['opt_level'].enum_type = _OPTIMIZEROPTIONS_LEVEL _OPTIMIZEROPTIONS.fields_by_name['global_jit_level'].enum_type = _OPTIMIZEROPTIONS_GLOBALJITLEVEL _OPTIMIZEROPTIONS_LEVEL.containing_type = _OPTIMIZEROPTIONS _OPTIMIZEROPTIONS_GLOBALJITLEVEL.containing_type = _OPTIMIZEROPTIONS _GRAPHOPTIONS.fields_by_name['optimizer_options'].message_type = _OPTIMIZEROPTIONS _CONFIGPROTO_DEVICECOUNTENTRY.containing_type = _CONFIGPROTO _CONFIGPROTO.fields_by_name['device_count'].message_type = _CONFIGPROTO_DEVICECOUNTENTRY _CONFIGPROTO.fields_by_name['session_inter_op_thread_pool'].message_type = _THREADPOOLOPTIONPROTO _CONFIGPROTO.fields_by_name['gpu_options'].message_type = _GPUOPTIONS _CONFIGPROTO.fields_by_name['graph_options'].message_type = _GRAPHOPTIONS _CONFIGPROTO.fields_by_name['rpc_options'].message_type = _RPCOPTIONS _RUNOPTIONS.fields_by_name['trace_level'].enum_type = _RUNOPTIONS_TRACELEVEL _RUNOPTIONS.fields_by_name['debug_options'].message_type = tensorflow_dot_core_dot_protobuf_dot_debug__pb2._DEBUGOPTIONS _RUNOPTIONS_TRACELEVEL.containing_type = _RUNOPTIONS _RUNMETADATA.fields_by_name['step_stats'].message_type = tensorflow_dot_core_dot_framework_dot_step__stats__pb2._STEPSTATS _RUNMETADATA.fields_by_name['cost_graph'].message_type = tensorflow_dot_core_dot_framework_dot_cost__graph__pb2._COSTGRAPHDEF _RUNMETADATA.fields_by_name['partition_graphs'].message_type = tensorflow_dot_core_dot_framework_dot_graph__pb2._GRAPHDEF DESCRIPTOR.message_types_by_name['GPUOptions'] = _GPUOPTIONS DESCRIPTOR.message_types_by_name['OptimizerOptions'] = _OPTIMIZEROPTIONS DESCRIPTOR.message_types_by_name['GraphOptions'] = _GRAPHOPTIONS DESCRIPTOR.message_types_by_name['ThreadPoolOptionProto'] = _THREADPOOLOPTIONPROTO DESCRIPTOR.message_types_by_name['RPCOptions'] = _RPCOPTIONS DESCRIPTOR.message_types_by_name['ConfigProto'] = _CONFIGPROTO DESCRIPTOR.message_types_by_name['RunOptions'] = _RUNOPTIONS DESCRIPTOR.message_types_by_name['RunMetadata'] = _RUNMETADATA GPUOptions = _reflection.GeneratedProtocolMessageType('GPUOptions', (_message.Message,), dict( DESCRIPTOR = _GPUOPTIONS, __module__ = 'tensorflow.core.protobuf.config_pb2' # @@protoc_insertion_point(class_scope:tensorflow.GPUOptions) )) _sym_db.RegisterMessage(GPUOptions) OptimizerOptions = _reflection.GeneratedProtocolMessageType('OptimizerOptions', (_message.Message,), dict( DESCRIPTOR = _OPTIMIZEROPTIONS, __module__ = 'tensorflow.core.protobuf.config_pb2' # @@protoc_insertion_point(class_scope:tensorflow.OptimizerOptions) )) _sym_db.RegisterMessage(OptimizerOptions) GraphOptions = _reflection.GeneratedProtocolMessageType('GraphOptions', (_message.Message,), dict( DESCRIPTOR = _GRAPHOPTIONS, __module__ = 'tensorflow.core.protobuf.config_pb2' # @@protoc_insertion_point(class_scope:tensorflow.GraphOptions) )) _sym_db.RegisterMessage(GraphOptions) ThreadPoolOptionProto = _reflection.GeneratedProtocolMessageType('ThreadPoolOptionProto', (_message.Message,), dict( DESCRIPTOR = _THREADPOOLOPTIONPROTO, __module__ = 'tensorflow.core.protobuf.config_pb2' # @@protoc_insertion_point(class_scope:tensorflow.ThreadPoolOptionProto) )) _sym_db.RegisterMessage(ThreadPoolOptionProto) RPCOptions = _reflection.GeneratedProtocolMessageType('RPCOptions', (_message.Message,), dict( DESCRIPTOR = _RPCOPTIONS, __module__ = 'tensorflow.core.protobuf.config_pb2' # @@protoc_insertion_point(class_scope:tensorflow.RPCOptions) )) _sym_db.RegisterMessage(RPCOptions) ConfigProto = _reflection.GeneratedProtocolMessageType('ConfigProto', (_message.Message,), dict( DeviceCountEntry = _reflection.GeneratedProtocolMessageType('DeviceCountEntry', (_message.Message,), dict( DESCRIPTOR = _CONFIGPROTO_DEVICECOUNTENTRY, __module__ = 'tensorflow.core.protobuf.config_pb2' # @@protoc_insertion_point(class_scope:tensorflow.ConfigProto.DeviceCountEntry) )) , DESCRIPTOR = _CONFIGPROTO, __module__ = 'tensorflow.core.protobuf.config_pb2' # @@protoc_insertion_point(class_scope:tensorflow.ConfigProto) )) _sym_db.RegisterMessage(ConfigProto) _sym_db.RegisterMessage(ConfigProto.DeviceCountEntry) RunOptions = _reflection.GeneratedProtocolMessageType('RunOptions', (_message.Message,), dict( DESCRIPTOR = _RUNOPTIONS, __module__ = 'tensorflow.core.protobuf.config_pb2' # @@protoc_insertion_point(class_scope:tensorflow.RunOptions) )) _sym_db.RegisterMessage(RunOptions) RunMetadata = _reflection.GeneratedProtocolMessageType('RunMetadata', (_message.Message,), dict( DESCRIPTOR = _RUNMETADATA, __module__ = 'tensorflow.core.protobuf.config_pb2' # @@protoc_insertion_point(class_scope:tensorflow.RunMetadata) )) _sym_db.RegisterMessage(RunMetadata) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\030org.tensorflow.frameworkB\014ConfigProtosP\001\370\001\001')) _CONFIGPROTO_DEVICECOUNTENTRY.has_options = True _CONFIGPROTO_DEVICECOUNTENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) # @@protoc_insertion_point(module_scope)
"""This package contains interfaces and functionality to compute pair-wise document similarities within a corpus of documents. """ from gensim import parsing, corpora, matutils, interfaces, models, similarities, summarization, utils # noqa:F401 import logging __version__ = '3.5.0' class NullHandler(logging.Handler): """For python versions <= 2.6; same as `logging.NullHandler` in 2.7.""" def emit(self, record): pass logger = logging.getLogger('gensim') if len(logger.handlers) == 0: # To ensure reload() doesn't add another one logger.addHandler(NullHandler())
# coding: utf-8 """ Intersight REST API This is Intersight REST API OpenAPI spec version: 1.0.9-262 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class BootSanRef(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'moid': 'str', 'object_type': 'str' } attribute_map = { 'moid': 'Moid', 'object_type': 'ObjectType' } def __init__(self, moid=None, object_type=None): """ BootSanRef - a model defined in Swagger """ self._moid = None self._object_type = None if moid is not None: self.moid = moid if object_type is not None: self.object_type = object_type @property def moid(self): """ Gets the moid of this BootSanRef. :return: The moid of this BootSanRef. :rtype: str """ return self._moid @moid.setter def moid(self, moid): """ Sets the moid of this BootSanRef. :param moid: The moid of this BootSanRef. :type: str """ self._moid = moid @property def object_type(self): """ Gets the object_type of this BootSanRef. :return: The object_type of this BootSanRef. :rtype: str """ return self._object_type @object_type.setter def object_type(self, object_type): """ Sets the object_type of this BootSanRef. :param object_type: The object_type of this BootSanRef. :type: str """ self._object_type = object_type def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, BootSanRef): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
import json import configparser import re import logging from modules.exceptions import SettingsError log = logging.getLogger(__name__) def readjson(jfile): """... just for reading json file and return data :)""" with open(jfile) as descriptor: data = json.load(descriptor) return data def read_ini_to_dict(inifile): """read ini file to parsed dictionary""" log.debug("Reading %s", inifile) return parseINI(readINI(inifile)) def parseINI(inidict): """... just for transform value into right type""" initype = {} for k in inidict.keys(): i = inidict[k].split("#")[0] if i in ["True", "False"]: initype[k] = i == "True" elif re.match("^[0-9]+$", i): initype[k] = int(i) elif re.match("^[0-9]+\.[0-9]+$", i): initype[k] = float(i) else: initype[k] = str(i) return initype def readINI(inifile): """... just for reading .ini file and return data""" config = configparser.ConfigParser() try: config.read(inifile) except configparser.DuplicateOptionError as err: log.error("Error while reading ini file %s", err) raise SettingsError(f"Duplicate Option in Settings File: {err}") from err return config._sections
# -*- coding:utf-8 -*- import base64 bs='iVBORw0KGgoAAAANSUhEUg....' imgdata=base64.b64decode(bs) file=open('2.jpg','wb') file.write(imgdata) file.close()
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._enums import * __all__ = [ 'AddressSpaceResponse', 'ApplicationGatewayAuthenticationCertificateResponse', 'ApplicationGatewayBackendAddressPoolResponse', 'ApplicationGatewayBackendAddressResponse', 'ApplicationGatewayBackendHttpSettingsResponse', 'ApplicationGatewayFrontendIPConfigurationResponse', 'ApplicationGatewayFrontendPortResponse', 'ApplicationGatewayHttpListenerResponse', 'ApplicationGatewayIPConfigurationResponse', 'ApplicationGatewayPathRuleResponse', 'ApplicationGatewayProbeResponse', 'ApplicationGatewayRequestRoutingRuleResponse', 'ApplicationGatewaySkuResponse', 'ApplicationGatewaySslCertificateResponse', 'ApplicationGatewaySslPolicyResponse', 'ApplicationGatewayUrlPathMapResponse', 'ApplicationGatewayWebApplicationFirewallConfigurationResponse', 'BackendAddressPoolResponse', 'BgpPeerStatusResponseResult', 'BgpSettingsResponse', 'DhcpOptionsResponse', 'ExpressRouteCircuitAuthorizationResponse', 'ExpressRouteCircuitPeeringConfigResponse', 'ExpressRouteCircuitPeeringResponse', 'ExpressRouteCircuitServiceProviderPropertiesResponse', 'ExpressRouteCircuitSkuResponse', 'ExpressRouteCircuitStatsResponse', 'FrontendIPConfigurationResponse', 'GatewayRouteResponseResult', 'IPConfigurationResponse', 'InboundNatPoolResponse', 'InboundNatRuleResponse', 'LoadBalancingRuleResponse', 'LocalNetworkGatewayResponse', 'NetworkInterfaceDnsSettingsResponse', 'NetworkInterfaceIPConfigurationResponse', 'NetworkInterfaceResponse', 'NetworkSecurityGroupResponse', 'OutboundNatRuleResponse', 'PacketCaptureFilterResponse', 'PacketCaptureStorageLocationResponse', 'ProbeResponse', 'PublicIPAddressDnsSettingsResponse', 'PublicIPAddressResponse', 'ResourceNavigationLinkResponse', 'RouteResponse', 'RouteTableResponse', 'SecurityRuleResponse', 'SubResourceResponse', 'SubnetResponse', 'TunnelConnectionHealthResponse', 'VirtualNetworkGatewayIPConfigurationResponse', 'VirtualNetworkGatewayResponse', 'VirtualNetworkGatewaySkuResponse', 'VirtualNetworkPeeringResponse', 'VpnClientConfigurationResponse', 'VpnClientRevokedCertificateResponse', 'VpnClientRootCertificateResponse', ] @pulumi.output_type class AddressSpaceResponse(dict): """ AddressSpace contains an array of IP address ranges that can be used by subnets of the virtual network. """ def __init__(__self__, *, address_prefixes: Optional[Sequence[str]] = None): """ AddressSpace contains an array of IP address ranges that can be used by subnets of the virtual network. :param Sequence[str] address_prefixes: A list of address blocks reserved for this virtual network in CIDR notation. """ if address_prefixes is not None: pulumi.set(__self__, "address_prefixes", address_prefixes) @property @pulumi.getter(name="addressPrefixes") def address_prefixes(self) -> Optional[Sequence[str]]: """ A list of address blocks reserved for this virtual network in CIDR notation. """ return pulumi.get(self, "address_prefixes") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ApplicationGatewayAuthenticationCertificateResponse(dict): """ Authentication certificates of an application gateway. """ def __init__(__self__, *, data: Optional[str] = None, etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, provisioning_state: Optional[str] = None): """ Authentication certificates of an application gateway. :param str data: Certificate public data. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: Name of the resource that is unique within a resource group. This name can be used to access the resource. :param str provisioning_state: Provisioning state of the authentication certificate resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ if data is not None: pulumi.set(__self__, "data", data) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) @property @pulumi.getter def data(self) -> Optional[str]: """ Certificate public data. """ return pulumi.get(self, "data") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ Name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Provisioning state of the authentication certificate resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ApplicationGatewayBackendAddressPoolResponse(dict): """ Backend Address Pool of an application gateway. """ def __init__(__self__, *, backend_addresses: Optional[Sequence['outputs.ApplicationGatewayBackendAddressResponse']] = None, backend_ip_configurations: Optional[Sequence['outputs.NetworkInterfaceIPConfigurationResponse']] = None, etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, provisioning_state: Optional[str] = None): """ Backend Address Pool of an application gateway. :param Sequence['ApplicationGatewayBackendAddressResponseArgs'] backend_addresses: Backend addresses :param Sequence['NetworkInterfaceIPConfigurationResponseArgs'] backend_ip_configurations: Collection of references to IPs defined in network interfaces. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: Resource that is unique within a resource group. This name can be used to access the resource. :param str provisioning_state: Provisioning state of the backend address pool resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ if backend_addresses is not None: pulumi.set(__self__, "backend_addresses", backend_addresses) if backend_ip_configurations is not None: pulumi.set(__self__, "backend_ip_configurations", backend_ip_configurations) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) @property @pulumi.getter(name="backendAddresses") def backend_addresses(self) -> Optional[Sequence['outputs.ApplicationGatewayBackendAddressResponse']]: """ Backend addresses """ return pulumi.get(self, "backend_addresses") @property @pulumi.getter(name="backendIPConfigurations") def backend_ip_configurations(self) -> Optional[Sequence['outputs.NetworkInterfaceIPConfigurationResponse']]: """ Collection of references to IPs defined in network interfaces. """ return pulumi.get(self, "backend_ip_configurations") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ Resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Provisioning state of the backend address pool resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ApplicationGatewayBackendAddressResponse(dict): """ Backend address of an application gateway. """ def __init__(__self__, *, fqdn: Optional[str] = None, ip_address: Optional[str] = None): """ Backend address of an application gateway. :param str fqdn: Fully qualified domain name (FQDN). :param str ip_address: IP address """ if fqdn is not None: pulumi.set(__self__, "fqdn", fqdn) if ip_address is not None: pulumi.set(__self__, "ip_address", ip_address) @property @pulumi.getter def fqdn(self) -> Optional[str]: """ Fully qualified domain name (FQDN). """ return pulumi.get(self, "fqdn") @property @pulumi.getter(name="ipAddress") def ip_address(self) -> Optional[str]: """ IP address """ return pulumi.get(self, "ip_address") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ApplicationGatewayBackendHttpSettingsResponse(dict): """ Backend address pool settings of an application gateway. """ def __init__(__self__, *, authentication_certificates: Optional[Sequence['outputs.SubResourceResponse']] = None, cookie_based_affinity: Optional[str] = None, etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, port: Optional[int] = None, probe: Optional['outputs.SubResourceResponse'] = None, protocol: Optional[str] = None, provisioning_state: Optional[str] = None, request_timeout: Optional[int] = None): """ Backend address pool settings of an application gateway. :param Sequence['SubResourceResponseArgs'] authentication_certificates: Array of references to application gateway authentication certificates. :param str cookie_based_affinity: Cookie based affinity. Possible values are: 'Enabled' and 'Disabled'. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: Name of the resource that is unique within a resource group. This name can be used to access the resource. :param int port: Port :param 'SubResourceResponseArgs' probe: Probe resource of an application gateway. :param str protocol: Protocol. Possible values are: 'Http' and 'Https'. :param str provisioning_state: Provisioning state of the backend http settings resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param int request_timeout: Request timeout in seconds. Application Gateway will fail the request if response is not received within RequestTimeout. Acceptable values are from 1 second to 86400 seconds. """ if authentication_certificates is not None: pulumi.set(__self__, "authentication_certificates", authentication_certificates) if cookie_based_affinity is not None: pulumi.set(__self__, "cookie_based_affinity", cookie_based_affinity) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if port is not None: pulumi.set(__self__, "port", port) if probe is not None: pulumi.set(__self__, "probe", probe) if protocol is not None: pulumi.set(__self__, "protocol", protocol) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if request_timeout is not None: pulumi.set(__self__, "request_timeout", request_timeout) @property @pulumi.getter(name="authenticationCertificates") def authentication_certificates(self) -> Optional[Sequence['outputs.SubResourceResponse']]: """ Array of references to application gateway authentication certificates. """ return pulumi.get(self, "authentication_certificates") @property @pulumi.getter(name="cookieBasedAffinity") def cookie_based_affinity(self) -> Optional[str]: """ Cookie based affinity. Possible values are: 'Enabled' and 'Disabled'. """ return pulumi.get(self, "cookie_based_affinity") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ Name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def port(self) -> Optional[int]: """ Port """ return pulumi.get(self, "port") @property @pulumi.getter def probe(self) -> Optional['outputs.SubResourceResponse']: """ Probe resource of an application gateway. """ return pulumi.get(self, "probe") @property @pulumi.getter def protocol(self) -> Optional[str]: """ Protocol. Possible values are: 'Http' and 'Https'. """ return pulumi.get(self, "protocol") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Provisioning state of the backend http settings resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="requestTimeout") def request_timeout(self) -> Optional[int]: """ Request timeout in seconds. Application Gateway will fail the request if response is not received within RequestTimeout. Acceptable values are from 1 second to 86400 seconds. """ return pulumi.get(self, "request_timeout") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ApplicationGatewayFrontendIPConfigurationResponse(dict): """ Frontend IP configuration of an application gateway. """ def __init__(__self__, *, etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, private_ip_address: Optional[str] = None, private_ip_allocation_method: Optional[str] = None, provisioning_state: Optional[str] = None, public_ip_address: Optional['outputs.SubResourceResponse'] = None, subnet: Optional['outputs.SubResourceResponse'] = None): """ Frontend IP configuration of an application gateway. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: Name of the resource that is unique within a resource group. This name can be used to access the resource. :param str private_ip_address: PrivateIPAddress of the network interface IP Configuration. :param str private_ip_allocation_method: PrivateIP allocation method. Possible values are: 'Static' and 'Dynamic'. :param str provisioning_state: Provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param 'SubResourceResponseArgs' public_ip_address: Reference of the PublicIP resource. :param 'SubResourceResponseArgs' subnet: Reference of the subnet resource. """ if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if private_ip_address is not None: pulumi.set(__self__, "private_ip_address", private_ip_address) if private_ip_allocation_method is not None: pulumi.set(__self__, "private_ip_allocation_method", private_ip_allocation_method) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if public_ip_address is not None: pulumi.set(__self__, "public_ip_address", public_ip_address) if subnet is not None: pulumi.set(__self__, "subnet", subnet) @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ Name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="privateIPAddress") def private_ip_address(self) -> Optional[str]: """ PrivateIPAddress of the network interface IP Configuration. """ return pulumi.get(self, "private_ip_address") @property @pulumi.getter(name="privateIPAllocationMethod") def private_ip_allocation_method(self) -> Optional[str]: """ PrivateIP allocation method. Possible values are: 'Static' and 'Dynamic'. """ return pulumi.get(self, "private_ip_allocation_method") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="publicIPAddress") def public_ip_address(self) -> Optional['outputs.SubResourceResponse']: """ Reference of the PublicIP resource. """ return pulumi.get(self, "public_ip_address") @property @pulumi.getter def subnet(self) -> Optional['outputs.SubResourceResponse']: """ Reference of the subnet resource. """ return pulumi.get(self, "subnet") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ApplicationGatewayFrontendPortResponse(dict): """ Frontend port of an application gateway. """ def __init__(__self__, *, etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, port: Optional[int] = None, provisioning_state: Optional[str] = None): """ Frontend port of an application gateway. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: Name of the resource that is unique within a resource group. This name can be used to access the resource. :param int port: Frontend port :param str provisioning_state: Provisioning state of the frontend port resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if port is not None: pulumi.set(__self__, "port", port) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ Name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def port(self) -> Optional[int]: """ Frontend port """ return pulumi.get(self, "port") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Provisioning state of the frontend port resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ApplicationGatewayHttpListenerResponse(dict): """ Http listener of an application gateway. """ def __init__(__self__, *, etag: Optional[str] = None, frontend_ip_configuration: Optional['outputs.SubResourceResponse'] = None, frontend_port: Optional['outputs.SubResourceResponse'] = None, host_name: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, protocol: Optional[str] = None, provisioning_state: Optional[str] = None, require_server_name_indication: Optional[bool] = None, ssl_certificate: Optional['outputs.SubResourceResponse'] = None): """ Http listener of an application gateway. :param str etag: A unique read-only string that changes whenever the resource is updated. :param 'SubResourceResponseArgs' frontend_ip_configuration: Frontend IP configuration resource of an application gateway. :param 'SubResourceResponseArgs' frontend_port: Frontend port resource of an application gateway. :param str host_name: Host name of HTTP listener. :param str id: Resource ID. :param str name: Name of the resource that is unique within a resource group. This name can be used to access the resource. :param str protocol: Protocol. Possible values are: 'Http' and 'Https'. :param str provisioning_state: Provisioning state of the HTTP listener resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param bool require_server_name_indication: Applicable only if protocol is https. Enables SNI for multi-hosting. :param 'SubResourceResponseArgs' ssl_certificate: SSL certificate resource of an application gateway. """ if etag is not None: pulumi.set(__self__, "etag", etag) if frontend_ip_configuration is not None: pulumi.set(__self__, "frontend_ip_configuration", frontend_ip_configuration) if frontend_port is not None: pulumi.set(__self__, "frontend_port", frontend_port) if host_name is not None: pulumi.set(__self__, "host_name", host_name) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if protocol is not None: pulumi.set(__self__, "protocol", protocol) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if require_server_name_indication is not None: pulumi.set(__self__, "require_server_name_indication", require_server_name_indication) if ssl_certificate is not None: pulumi.set(__self__, "ssl_certificate", ssl_certificate) @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="frontendIPConfiguration") def frontend_ip_configuration(self) -> Optional['outputs.SubResourceResponse']: """ Frontend IP configuration resource of an application gateway. """ return pulumi.get(self, "frontend_ip_configuration") @property @pulumi.getter(name="frontendPort") def frontend_port(self) -> Optional['outputs.SubResourceResponse']: """ Frontend port resource of an application gateway. """ return pulumi.get(self, "frontend_port") @property @pulumi.getter(name="hostName") def host_name(self) -> Optional[str]: """ Host name of HTTP listener. """ return pulumi.get(self, "host_name") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ Name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def protocol(self) -> Optional[str]: """ Protocol. Possible values are: 'Http' and 'Https'. """ return pulumi.get(self, "protocol") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Provisioning state of the HTTP listener resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="requireServerNameIndication") def require_server_name_indication(self) -> Optional[bool]: """ Applicable only if protocol is https. Enables SNI for multi-hosting. """ return pulumi.get(self, "require_server_name_indication") @property @pulumi.getter(name="sslCertificate") def ssl_certificate(self) -> Optional['outputs.SubResourceResponse']: """ SSL certificate resource of an application gateway. """ return pulumi.get(self, "ssl_certificate") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ApplicationGatewayIPConfigurationResponse(dict): """ IP configuration of an application gateway. Currently 1 public and 1 private IP configuration is allowed. """ def __init__(__self__, *, etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, provisioning_state: Optional[str] = None, subnet: Optional['outputs.SubResourceResponse'] = None): """ IP configuration of an application gateway. Currently 1 public and 1 private IP configuration is allowed. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: Name of the resource that is unique within a resource group. This name can be used to access the resource. :param str provisioning_state: Provisioning state of the application gateway subnet resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param 'SubResourceResponseArgs' subnet: Reference of the subnet resource. A subnet from where application gateway gets its private address. """ if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if subnet is not None: pulumi.set(__self__, "subnet", subnet) @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ Name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Provisioning state of the application gateway subnet resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def subnet(self) -> Optional['outputs.SubResourceResponse']: """ Reference of the subnet resource. A subnet from where application gateway gets its private address. """ return pulumi.get(self, "subnet") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ApplicationGatewayPathRuleResponse(dict): """ Path rule of URL path map of an application gateway. """ def __init__(__self__, *, backend_address_pool: Optional['outputs.SubResourceResponse'] = None, backend_http_settings: Optional['outputs.SubResourceResponse'] = None, etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, paths: Optional[Sequence[str]] = None, provisioning_state: Optional[str] = None): """ Path rule of URL path map of an application gateway. :param 'SubResourceResponseArgs' backend_address_pool: Backend address pool resource of URL path map. :param 'SubResourceResponseArgs' backend_http_settings: Backend http settings resource of URL path map. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: Name of the resource that is unique within a resource group. This name can be used to access the resource. :param Sequence[str] paths: Path rules of URL path map. :param str provisioning_state: Path rule of URL path map resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ if backend_address_pool is not None: pulumi.set(__self__, "backend_address_pool", backend_address_pool) if backend_http_settings is not None: pulumi.set(__self__, "backend_http_settings", backend_http_settings) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if paths is not None: pulumi.set(__self__, "paths", paths) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) @property @pulumi.getter(name="backendAddressPool") def backend_address_pool(self) -> Optional['outputs.SubResourceResponse']: """ Backend address pool resource of URL path map. """ return pulumi.get(self, "backend_address_pool") @property @pulumi.getter(name="backendHttpSettings") def backend_http_settings(self) -> Optional['outputs.SubResourceResponse']: """ Backend http settings resource of URL path map. """ return pulumi.get(self, "backend_http_settings") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ Name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def paths(self) -> Optional[Sequence[str]]: """ Path rules of URL path map. """ return pulumi.get(self, "paths") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Path rule of URL path map resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ApplicationGatewayProbeResponse(dict): """ Probe of the application gateway. """ def __init__(__self__, *, etag: Optional[str] = None, host: Optional[str] = None, id: Optional[str] = None, interval: Optional[int] = None, name: Optional[str] = None, path: Optional[str] = None, protocol: Optional[str] = None, provisioning_state: Optional[str] = None, timeout: Optional[int] = None, unhealthy_threshold: Optional[int] = None): """ Probe of the application gateway. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str host: Host name to send the probe to. :param str id: Resource ID. :param int interval: The probing interval in seconds. This is the time interval between two consecutive probes. Acceptable values are from 1 second to 86400 seconds. :param str name: Name of the resource that is unique within a resource group. This name can be used to access the resource. :param str path: Relative path of probe. Valid path starts from '/'. Probe is sent to <Protocol>://<host>:<port><path> :param str protocol: Protocol. Possible values are: 'Http' and 'Https'. :param str provisioning_state: Provisioning state of the backend http settings resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param int timeout: the probe timeout in seconds. Probe marked as failed if valid response is not received with this timeout period. Acceptable values are from 1 second to 86400 seconds. :param int unhealthy_threshold: The probe retry count. Backend server is marked down after consecutive probe failure count reaches UnhealthyThreshold. Acceptable values are from 1 second to 20. """ if etag is not None: pulumi.set(__self__, "etag", etag) if host is not None: pulumi.set(__self__, "host", host) if id is not None: pulumi.set(__self__, "id", id) if interval is not None: pulumi.set(__self__, "interval", interval) if name is not None: pulumi.set(__self__, "name", name) if path is not None: pulumi.set(__self__, "path", path) if protocol is not None: pulumi.set(__self__, "protocol", protocol) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if timeout is not None: pulumi.set(__self__, "timeout", timeout) if unhealthy_threshold is not None: pulumi.set(__self__, "unhealthy_threshold", unhealthy_threshold) @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def host(self) -> Optional[str]: """ Host name to send the probe to. """ return pulumi.get(self, "host") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def interval(self) -> Optional[int]: """ The probing interval in seconds. This is the time interval between two consecutive probes. Acceptable values are from 1 second to 86400 seconds. """ return pulumi.get(self, "interval") @property @pulumi.getter def name(self) -> Optional[str]: """ Name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def path(self) -> Optional[str]: """ Relative path of probe. Valid path starts from '/'. Probe is sent to <Protocol>://<host>:<port><path> """ return pulumi.get(self, "path") @property @pulumi.getter def protocol(self) -> Optional[str]: """ Protocol. Possible values are: 'Http' and 'Https'. """ return pulumi.get(self, "protocol") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Provisioning state of the backend http settings resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def timeout(self) -> Optional[int]: """ the probe timeout in seconds. Probe marked as failed if valid response is not received with this timeout period. Acceptable values are from 1 second to 86400 seconds. """ return pulumi.get(self, "timeout") @property @pulumi.getter(name="unhealthyThreshold") def unhealthy_threshold(self) -> Optional[int]: """ The probe retry count. Backend server is marked down after consecutive probe failure count reaches UnhealthyThreshold. Acceptable values are from 1 second to 20. """ return pulumi.get(self, "unhealthy_threshold") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ApplicationGatewayRequestRoutingRuleResponse(dict): """ Request routing rule of an application gateway. """ def __init__(__self__, *, backend_address_pool: Optional['outputs.SubResourceResponse'] = None, backend_http_settings: Optional['outputs.SubResourceResponse'] = None, etag: Optional[str] = None, http_listener: Optional['outputs.SubResourceResponse'] = None, id: Optional[str] = None, name: Optional[str] = None, provisioning_state: Optional[str] = None, rule_type: Optional[str] = None, url_path_map: Optional['outputs.SubResourceResponse'] = None): """ Request routing rule of an application gateway. :param 'SubResourceResponseArgs' backend_address_pool: Backend address pool resource of the application gateway. :param 'SubResourceResponseArgs' backend_http_settings: Frontend port resource of the application gateway. :param str etag: A unique read-only string that changes whenever the resource is updated. :param 'SubResourceResponseArgs' http_listener: Http listener resource of the application gateway. :param str id: Resource ID. :param str name: Name of the resource that is unique within a resource group. This name can be used to access the resource. :param str provisioning_state: Provisioning state of the request routing rule resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param str rule_type: Rule type. Possible values are: 'Basic' and 'PathBasedRouting'. :param 'SubResourceResponseArgs' url_path_map: URL path map resource of the application gateway. """ if backend_address_pool is not None: pulumi.set(__self__, "backend_address_pool", backend_address_pool) if backend_http_settings is not None: pulumi.set(__self__, "backend_http_settings", backend_http_settings) if etag is not None: pulumi.set(__self__, "etag", etag) if http_listener is not None: pulumi.set(__self__, "http_listener", http_listener) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if rule_type is not None: pulumi.set(__self__, "rule_type", rule_type) if url_path_map is not None: pulumi.set(__self__, "url_path_map", url_path_map) @property @pulumi.getter(name="backendAddressPool") def backend_address_pool(self) -> Optional['outputs.SubResourceResponse']: """ Backend address pool resource of the application gateway. """ return pulumi.get(self, "backend_address_pool") @property @pulumi.getter(name="backendHttpSettings") def backend_http_settings(self) -> Optional['outputs.SubResourceResponse']: """ Frontend port resource of the application gateway. """ return pulumi.get(self, "backend_http_settings") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="httpListener") def http_listener(self) -> Optional['outputs.SubResourceResponse']: """ Http listener resource of the application gateway. """ return pulumi.get(self, "http_listener") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ Name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Provisioning state of the request routing rule resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="ruleType") def rule_type(self) -> Optional[str]: """ Rule type. Possible values are: 'Basic' and 'PathBasedRouting'. """ return pulumi.get(self, "rule_type") @property @pulumi.getter(name="urlPathMap") def url_path_map(self) -> Optional['outputs.SubResourceResponse']: """ URL path map resource of the application gateway. """ return pulumi.get(self, "url_path_map") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ApplicationGatewaySkuResponse(dict): """ SKU of an application gateway """ def __init__(__self__, *, capacity: Optional[int] = None, name: Optional[str] = None, tier: Optional[str] = None): """ SKU of an application gateway :param int capacity: Capacity (instance count) of an application gateway. :param str name: Name of an application gateway SKU. Possible values are: 'Standard_Small', 'Standard_Medium', 'Standard_Large', 'WAF_Medium', and 'WAF_Large'. :param str tier: Tier of an application gateway. Possible values are: 'Standard' and 'WAF'. """ if capacity is not None: pulumi.set(__self__, "capacity", capacity) if name is not None: pulumi.set(__self__, "name", name) if tier is not None: pulumi.set(__self__, "tier", tier) @property @pulumi.getter def capacity(self) -> Optional[int]: """ Capacity (instance count) of an application gateway. """ return pulumi.get(self, "capacity") @property @pulumi.getter def name(self) -> Optional[str]: """ Name of an application gateway SKU. Possible values are: 'Standard_Small', 'Standard_Medium', 'Standard_Large', 'WAF_Medium', and 'WAF_Large'. """ return pulumi.get(self, "name") @property @pulumi.getter def tier(self) -> Optional[str]: """ Tier of an application gateway. Possible values are: 'Standard' and 'WAF'. """ return pulumi.get(self, "tier") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ApplicationGatewaySslCertificateResponse(dict): """ SSL certificates of an application gateway. """ def __init__(__self__, *, data: Optional[str] = None, etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, password: Optional[str] = None, provisioning_state: Optional[str] = None, public_cert_data: Optional[str] = None): """ SSL certificates of an application gateway. :param str data: Base-64 encoded pfx certificate. Only applicable in PUT Request. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: Name of the resource that is unique within a resource group. This name can be used to access the resource. :param str password: Password for the pfx file specified in data. Only applicable in PUT request. :param str provisioning_state: Provisioning state of the SSL certificate resource Possible values are: 'Updating', 'Deleting', and 'Failed'. :param str public_cert_data: Base-64 encoded Public cert data corresponding to pfx specified in data. Only applicable in GET request. """ if data is not None: pulumi.set(__self__, "data", data) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if password is not None: pulumi.set(__self__, "password", password) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if public_cert_data is not None: pulumi.set(__self__, "public_cert_data", public_cert_data) @property @pulumi.getter def data(self) -> Optional[str]: """ Base-64 encoded pfx certificate. Only applicable in PUT Request. """ return pulumi.get(self, "data") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ Name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def password(self) -> Optional[str]: """ Password for the pfx file specified in data. Only applicable in PUT request. """ return pulumi.get(self, "password") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Provisioning state of the SSL certificate resource Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="publicCertData") def public_cert_data(self) -> Optional[str]: """ Base-64 encoded Public cert data corresponding to pfx specified in data. Only applicable in GET request. """ return pulumi.get(self, "public_cert_data") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ApplicationGatewaySslPolicyResponse(dict): """ Application gateway SSL policy. """ def __init__(__self__, *, disabled_ssl_protocols: Optional[Sequence[str]] = None): """ Application gateway SSL policy. :param Sequence[str] disabled_ssl_protocols: SSL protocols to be disabled on application gateway. Possible values are: 'TLSv1_0', 'TLSv1_1', and 'TLSv1_2'. """ if disabled_ssl_protocols is not None: pulumi.set(__self__, "disabled_ssl_protocols", disabled_ssl_protocols) @property @pulumi.getter(name="disabledSslProtocols") def disabled_ssl_protocols(self) -> Optional[Sequence[str]]: """ SSL protocols to be disabled on application gateway. Possible values are: 'TLSv1_0', 'TLSv1_1', and 'TLSv1_2'. """ return pulumi.get(self, "disabled_ssl_protocols") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ApplicationGatewayUrlPathMapResponse(dict): """ UrlPathMaps give a url path to the backend mapping information for PathBasedRouting. """ def __init__(__self__, *, default_backend_address_pool: Optional['outputs.SubResourceResponse'] = None, default_backend_http_settings: Optional['outputs.SubResourceResponse'] = None, etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, path_rules: Optional[Sequence['outputs.ApplicationGatewayPathRuleResponse']] = None, provisioning_state: Optional[str] = None): """ UrlPathMaps give a url path to the backend mapping information for PathBasedRouting. :param 'SubResourceResponseArgs' default_backend_address_pool: Default backend address pool resource of URL path map. :param 'SubResourceResponseArgs' default_backend_http_settings: Default backend http settings resource of URL path map. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: Name of the resource that is unique within a resource group. This name can be used to access the resource. :param Sequence['ApplicationGatewayPathRuleResponseArgs'] path_rules: Path rule of URL path map resource. :param str provisioning_state: Provisioning state of the backend http settings resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ if default_backend_address_pool is not None: pulumi.set(__self__, "default_backend_address_pool", default_backend_address_pool) if default_backend_http_settings is not None: pulumi.set(__self__, "default_backend_http_settings", default_backend_http_settings) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if path_rules is not None: pulumi.set(__self__, "path_rules", path_rules) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) @property @pulumi.getter(name="defaultBackendAddressPool") def default_backend_address_pool(self) -> Optional['outputs.SubResourceResponse']: """ Default backend address pool resource of URL path map. """ return pulumi.get(self, "default_backend_address_pool") @property @pulumi.getter(name="defaultBackendHttpSettings") def default_backend_http_settings(self) -> Optional['outputs.SubResourceResponse']: """ Default backend http settings resource of URL path map. """ return pulumi.get(self, "default_backend_http_settings") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ Name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="pathRules") def path_rules(self) -> Optional[Sequence['outputs.ApplicationGatewayPathRuleResponse']]: """ Path rule of URL path map resource. """ return pulumi.get(self, "path_rules") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Provisioning state of the backend http settings resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ApplicationGatewayWebApplicationFirewallConfigurationResponse(dict): """ Application gateway web application firewall configuration. """ def __init__(__self__, *, enabled: bool, firewall_mode: Optional[str] = None): """ Application gateway web application firewall configuration. :param bool enabled: Whether the web application firewall is enabled. :param str firewall_mode: Web application firewall mode. Possible values are: 'Detection' and 'Prevention'. """ pulumi.set(__self__, "enabled", enabled) if firewall_mode is not None: pulumi.set(__self__, "firewall_mode", firewall_mode) @property @pulumi.getter def enabled(self) -> bool: """ Whether the web application firewall is enabled. """ return pulumi.get(self, "enabled") @property @pulumi.getter(name="firewallMode") def firewall_mode(self) -> Optional[str]: """ Web application firewall mode. Possible values are: 'Detection' and 'Prevention'. """ return pulumi.get(self, "firewall_mode") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class BackendAddressPoolResponse(dict): """ Pool of backend IP addresses. """ def __init__(__self__, *, backend_ip_configurations: Sequence['outputs.NetworkInterfaceIPConfigurationResponse'], load_balancing_rules: Sequence['outputs.SubResourceResponse'], outbound_nat_rule: 'outputs.SubResourceResponse', etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, provisioning_state: Optional[str] = None): """ Pool of backend IP addresses. :param Sequence['NetworkInterfaceIPConfigurationResponseArgs'] backend_ip_configurations: Gets collection of references to IP addresses defined in network interfaces. :param Sequence['SubResourceResponseArgs'] load_balancing_rules: Gets load balancing rules that use this backend address pool. :param 'SubResourceResponseArgs' outbound_nat_rule: Gets outbound rules that use this backend address pool. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: Gets name of the resource that is unique within a resource group. This name can be used to access the resource. :param str provisioning_state: Get provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ pulumi.set(__self__, "backend_ip_configurations", backend_ip_configurations) pulumi.set(__self__, "load_balancing_rules", load_balancing_rules) pulumi.set(__self__, "outbound_nat_rule", outbound_nat_rule) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) @property @pulumi.getter(name="backendIPConfigurations") def backend_ip_configurations(self) -> Sequence['outputs.NetworkInterfaceIPConfigurationResponse']: """ Gets collection of references to IP addresses defined in network interfaces. """ return pulumi.get(self, "backend_ip_configurations") @property @pulumi.getter(name="loadBalancingRules") def load_balancing_rules(self) -> Sequence['outputs.SubResourceResponse']: """ Gets load balancing rules that use this backend address pool. """ return pulumi.get(self, "load_balancing_rules") @property @pulumi.getter(name="outboundNatRule") def outbound_nat_rule(self) -> 'outputs.SubResourceResponse': """ Gets outbound rules that use this backend address pool. """ return pulumi.get(self, "outbound_nat_rule") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ Gets name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Get provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class BgpPeerStatusResponseResult(dict): def __init__(__self__, *, asn: int, connected_duration: str, local_address: str, messages_received: float, messages_sent: float, neighbor: str, routes_received: float, state: str): """ :param int asn: The autonomous system number of the remote BGP peer :param str connected_duration: For how long the peering has been up :param str local_address: The virtual network gateway's local address :param float messages_received: The number of BGP messages received :param float messages_sent: The number of BGP messages sent :param str neighbor: The remote BGP peer :param float routes_received: The number of routes learned from this peer :param str state: The BGP peer state """ pulumi.set(__self__, "asn", asn) pulumi.set(__self__, "connected_duration", connected_duration) pulumi.set(__self__, "local_address", local_address) pulumi.set(__self__, "messages_received", messages_received) pulumi.set(__self__, "messages_sent", messages_sent) pulumi.set(__self__, "neighbor", neighbor) pulumi.set(__self__, "routes_received", routes_received) pulumi.set(__self__, "state", state) @property @pulumi.getter def asn(self) -> int: """ The autonomous system number of the remote BGP peer """ return pulumi.get(self, "asn") @property @pulumi.getter(name="connectedDuration") def connected_duration(self) -> str: """ For how long the peering has been up """ return pulumi.get(self, "connected_duration") @property @pulumi.getter(name="localAddress") def local_address(self) -> str: """ The virtual network gateway's local address """ return pulumi.get(self, "local_address") @property @pulumi.getter(name="messagesReceived") def messages_received(self) -> float: """ The number of BGP messages received """ return pulumi.get(self, "messages_received") @property @pulumi.getter(name="messagesSent") def messages_sent(self) -> float: """ The number of BGP messages sent """ return pulumi.get(self, "messages_sent") @property @pulumi.getter def neighbor(self) -> str: """ The remote BGP peer """ return pulumi.get(self, "neighbor") @property @pulumi.getter(name="routesReceived") def routes_received(self) -> float: """ The number of routes learned from this peer """ return pulumi.get(self, "routes_received") @property @pulumi.getter def state(self) -> str: """ The BGP peer state """ return pulumi.get(self, "state") @pulumi.output_type class BgpSettingsResponse(dict): def __init__(__self__, *, asn: Optional[float] = None, bgp_peering_address: Optional[str] = None, peer_weight: Optional[int] = None): """ :param float asn: The BGP speaker's ASN. :param str bgp_peering_address: The BGP peering address and BGP identifier of this BGP speaker. :param int peer_weight: The weight added to routes learned from this BGP speaker. """ if asn is not None: pulumi.set(__self__, "asn", asn) if bgp_peering_address is not None: pulumi.set(__self__, "bgp_peering_address", bgp_peering_address) if peer_weight is not None: pulumi.set(__self__, "peer_weight", peer_weight) @property @pulumi.getter def asn(self) -> Optional[float]: """ The BGP speaker's ASN. """ return pulumi.get(self, "asn") @property @pulumi.getter(name="bgpPeeringAddress") def bgp_peering_address(self) -> Optional[str]: """ The BGP peering address and BGP identifier of this BGP speaker. """ return pulumi.get(self, "bgp_peering_address") @property @pulumi.getter(name="peerWeight") def peer_weight(self) -> Optional[int]: """ The weight added to routes learned from this BGP speaker. """ return pulumi.get(self, "peer_weight") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class DhcpOptionsResponse(dict): """ DhcpOptions contains an array of DNS servers available to VMs deployed in the virtual network. Standard DHCP option for a subnet overrides VNET DHCP options. """ def __init__(__self__, *, dns_servers: Optional[Sequence[str]] = None): """ DhcpOptions contains an array of DNS servers available to VMs deployed in the virtual network. Standard DHCP option for a subnet overrides VNET DHCP options. :param Sequence[str] dns_servers: The list of DNS servers IP addresses. """ if dns_servers is not None: pulumi.set(__self__, "dns_servers", dns_servers) @property @pulumi.getter(name="dnsServers") def dns_servers(self) -> Optional[Sequence[str]]: """ The list of DNS servers IP addresses. """ return pulumi.get(self, "dns_servers") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ExpressRouteCircuitAuthorizationResponse(dict): """ Authorization in an ExpressRouteCircuit resource. """ def __init__(__self__, *, authorization_key: Optional[str] = None, authorization_use_status: Optional[str] = None, etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, provisioning_state: Optional[str] = None): """ Authorization in an ExpressRouteCircuit resource. :param str authorization_key: The authorization key. :param str authorization_use_status: AuthorizationUseStatus. Possible values are: 'Available' and 'InUse'. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: Gets name of the resource that is unique within a resource group. This name can be used to access the resource. :param str provisioning_state: Gets the provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ if authorization_key is not None: pulumi.set(__self__, "authorization_key", authorization_key) if authorization_use_status is not None: pulumi.set(__self__, "authorization_use_status", authorization_use_status) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) @property @pulumi.getter(name="authorizationKey") def authorization_key(self) -> Optional[str]: """ The authorization key. """ return pulumi.get(self, "authorization_key") @property @pulumi.getter(name="authorizationUseStatus") def authorization_use_status(self) -> Optional[str]: """ AuthorizationUseStatus. Possible values are: 'Available' and 'InUse'. """ return pulumi.get(self, "authorization_use_status") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ Gets name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Gets the provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ExpressRouteCircuitPeeringConfigResponse(dict): """ Specifies the peering configuration. """ def __init__(__self__, *, advertised_public_prefixes: Optional[Sequence[str]] = None, advertised_public_prefixes_state: Optional[str] = None, customer_asn: Optional[int] = None, routing_registry_name: Optional[str] = None): """ Specifies the peering configuration. :param Sequence[str] advertised_public_prefixes: The reference of AdvertisedPublicPrefixes. :param str advertised_public_prefixes_state: AdvertisedPublicPrefixState of the Peering resource. Possible values are 'NotConfigured', 'Configuring', 'Configured', and 'ValidationNeeded'. :param int customer_asn: The CustomerASN of the peering. :param str routing_registry_name: The RoutingRegistryName of the configuration. """ if advertised_public_prefixes is not None: pulumi.set(__self__, "advertised_public_prefixes", advertised_public_prefixes) if advertised_public_prefixes_state is not None: pulumi.set(__self__, "advertised_public_prefixes_state", advertised_public_prefixes_state) if customer_asn is not None: pulumi.set(__self__, "customer_asn", customer_asn) if routing_registry_name is not None: pulumi.set(__self__, "routing_registry_name", routing_registry_name) @property @pulumi.getter(name="advertisedPublicPrefixes") def advertised_public_prefixes(self) -> Optional[Sequence[str]]: """ The reference of AdvertisedPublicPrefixes. """ return pulumi.get(self, "advertised_public_prefixes") @property @pulumi.getter(name="advertisedPublicPrefixesState") def advertised_public_prefixes_state(self) -> Optional[str]: """ AdvertisedPublicPrefixState of the Peering resource. Possible values are 'NotConfigured', 'Configuring', 'Configured', and 'ValidationNeeded'. """ return pulumi.get(self, "advertised_public_prefixes_state") @property @pulumi.getter(name="customerASN") def customer_asn(self) -> Optional[int]: """ The CustomerASN of the peering. """ return pulumi.get(self, "customer_asn") @property @pulumi.getter(name="routingRegistryName") def routing_registry_name(self) -> Optional[str]: """ The RoutingRegistryName of the configuration. """ return pulumi.get(self, "routing_registry_name") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ExpressRouteCircuitPeeringResponse(dict): """ Peering in an ExpressRouteCircuit resource. """ def __init__(__self__, *, azure_asn: Optional[int] = None, etag: Optional[str] = None, gateway_manager_etag: Optional[str] = None, id: Optional[str] = None, last_modified_by: Optional[str] = None, microsoft_peering_config: Optional['outputs.ExpressRouteCircuitPeeringConfigResponse'] = None, name: Optional[str] = None, peer_asn: Optional[int] = None, peering_type: Optional[str] = None, primary_azure_port: Optional[str] = None, primary_peer_address_prefix: Optional[str] = None, provisioning_state: Optional[str] = None, secondary_azure_port: Optional[str] = None, secondary_peer_address_prefix: Optional[str] = None, shared_key: Optional[str] = None, state: Optional[str] = None, stats: Optional['outputs.ExpressRouteCircuitStatsResponse'] = None, vlan_id: Optional[int] = None): """ Peering in an ExpressRouteCircuit resource. :param int azure_asn: The Azure ASN. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str gateway_manager_etag: The GatewayManager Etag. :param str id: Resource ID. :param str last_modified_by: Gets whether the provider or the customer last modified the peering. :param 'ExpressRouteCircuitPeeringConfigResponseArgs' microsoft_peering_config: The Microsoft peering configuration. :param str name: Gets name of the resource that is unique within a resource group. This name can be used to access the resource. :param int peer_asn: The peer ASN. :param str peering_type: The PeeringType. Possible values are: 'AzurePublicPeering', 'AzurePrivatePeering', and 'MicrosoftPeering'. :param str primary_azure_port: The primary port. :param str primary_peer_address_prefix: The primary address prefix. :param str provisioning_state: Gets the provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param str secondary_azure_port: The secondary port. :param str secondary_peer_address_prefix: The secondary address prefix. :param str shared_key: The shared key. :param str state: The state of peering. Possible values are: 'Disabled' and 'Enabled' :param 'ExpressRouteCircuitStatsResponseArgs' stats: Gets peering stats. :param int vlan_id: The VLAN ID. """ if azure_asn is not None: pulumi.set(__self__, "azure_asn", azure_asn) if etag is not None: pulumi.set(__self__, "etag", etag) if gateway_manager_etag is not None: pulumi.set(__self__, "gateway_manager_etag", gateway_manager_etag) if id is not None: pulumi.set(__self__, "id", id) if last_modified_by is not None: pulumi.set(__self__, "last_modified_by", last_modified_by) if microsoft_peering_config is not None: pulumi.set(__self__, "microsoft_peering_config", microsoft_peering_config) if name is not None: pulumi.set(__self__, "name", name) if peer_asn is not None: pulumi.set(__self__, "peer_asn", peer_asn) if peering_type is not None: pulumi.set(__self__, "peering_type", peering_type) if primary_azure_port is not None: pulumi.set(__self__, "primary_azure_port", primary_azure_port) if primary_peer_address_prefix is not None: pulumi.set(__self__, "primary_peer_address_prefix", primary_peer_address_prefix) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if secondary_azure_port is not None: pulumi.set(__self__, "secondary_azure_port", secondary_azure_port) if secondary_peer_address_prefix is not None: pulumi.set(__self__, "secondary_peer_address_prefix", secondary_peer_address_prefix) if shared_key is not None: pulumi.set(__self__, "shared_key", shared_key) if state is not None: pulumi.set(__self__, "state", state) if stats is not None: pulumi.set(__self__, "stats", stats) if vlan_id is not None: pulumi.set(__self__, "vlan_id", vlan_id) @property @pulumi.getter(name="azureASN") def azure_asn(self) -> Optional[int]: """ The Azure ASN. """ return pulumi.get(self, "azure_asn") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="gatewayManagerEtag") def gateway_manager_etag(self) -> Optional[str]: """ The GatewayManager Etag. """ return pulumi.get(self, "gateway_manager_etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter(name="lastModifiedBy") def last_modified_by(self) -> Optional[str]: """ Gets whether the provider or the customer last modified the peering. """ return pulumi.get(self, "last_modified_by") @property @pulumi.getter(name="microsoftPeeringConfig") def microsoft_peering_config(self) -> Optional['outputs.ExpressRouteCircuitPeeringConfigResponse']: """ The Microsoft peering configuration. """ return pulumi.get(self, "microsoft_peering_config") @property @pulumi.getter def name(self) -> Optional[str]: """ Gets name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="peerASN") def peer_asn(self) -> Optional[int]: """ The peer ASN. """ return pulumi.get(self, "peer_asn") @property @pulumi.getter(name="peeringType") def peering_type(self) -> Optional[str]: """ The PeeringType. Possible values are: 'AzurePublicPeering', 'AzurePrivatePeering', and 'MicrosoftPeering'. """ return pulumi.get(self, "peering_type") @property @pulumi.getter(name="primaryAzurePort") def primary_azure_port(self) -> Optional[str]: """ The primary port. """ return pulumi.get(self, "primary_azure_port") @property @pulumi.getter(name="primaryPeerAddressPrefix") def primary_peer_address_prefix(self) -> Optional[str]: """ The primary address prefix. """ return pulumi.get(self, "primary_peer_address_prefix") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Gets the provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="secondaryAzurePort") def secondary_azure_port(self) -> Optional[str]: """ The secondary port. """ return pulumi.get(self, "secondary_azure_port") @property @pulumi.getter(name="secondaryPeerAddressPrefix") def secondary_peer_address_prefix(self) -> Optional[str]: """ The secondary address prefix. """ return pulumi.get(self, "secondary_peer_address_prefix") @property @pulumi.getter(name="sharedKey") def shared_key(self) -> Optional[str]: """ The shared key. """ return pulumi.get(self, "shared_key") @property @pulumi.getter def state(self) -> Optional[str]: """ The state of peering. Possible values are: 'Disabled' and 'Enabled' """ return pulumi.get(self, "state") @property @pulumi.getter def stats(self) -> Optional['outputs.ExpressRouteCircuitStatsResponse']: """ Gets peering stats. """ return pulumi.get(self, "stats") @property @pulumi.getter(name="vlanId") def vlan_id(self) -> Optional[int]: """ The VLAN ID. """ return pulumi.get(self, "vlan_id") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ExpressRouteCircuitServiceProviderPropertiesResponse(dict): """ Contains ServiceProviderProperties in an ExpressRouteCircuit. """ def __init__(__self__, *, bandwidth_in_mbps: Optional[int] = None, peering_location: Optional[str] = None, service_provider_name: Optional[str] = None): """ Contains ServiceProviderProperties in an ExpressRouteCircuit. :param int bandwidth_in_mbps: The BandwidthInMbps. :param str peering_location: The peering location. :param str service_provider_name: The serviceProviderName. """ if bandwidth_in_mbps is not None: pulumi.set(__self__, "bandwidth_in_mbps", bandwidth_in_mbps) if peering_location is not None: pulumi.set(__self__, "peering_location", peering_location) if service_provider_name is not None: pulumi.set(__self__, "service_provider_name", service_provider_name) @property @pulumi.getter(name="bandwidthInMbps") def bandwidth_in_mbps(self) -> Optional[int]: """ The BandwidthInMbps. """ return pulumi.get(self, "bandwidth_in_mbps") @property @pulumi.getter(name="peeringLocation") def peering_location(self) -> Optional[str]: """ The peering location. """ return pulumi.get(self, "peering_location") @property @pulumi.getter(name="serviceProviderName") def service_provider_name(self) -> Optional[str]: """ The serviceProviderName. """ return pulumi.get(self, "service_provider_name") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ExpressRouteCircuitSkuResponse(dict): """ Contains SKU in an ExpressRouteCircuit. """ def __init__(__self__, *, family: Optional[str] = None, name: Optional[str] = None, tier: Optional[str] = None): """ Contains SKU in an ExpressRouteCircuit. :param str family: The family of the SKU. Possible values are: 'UnlimitedData' and 'MeteredData'. :param str name: The name of the SKU. :param str tier: The tier of the SKU. Possible values are 'Standard' and 'Premium'. """ if family is not None: pulumi.set(__self__, "family", family) if name is not None: pulumi.set(__self__, "name", name) if tier is not None: pulumi.set(__self__, "tier", tier) @property @pulumi.getter def family(self) -> Optional[str]: """ The family of the SKU. Possible values are: 'UnlimitedData' and 'MeteredData'. """ return pulumi.get(self, "family") @property @pulumi.getter def name(self) -> Optional[str]: """ The name of the SKU. """ return pulumi.get(self, "name") @property @pulumi.getter def tier(self) -> Optional[str]: """ The tier of the SKU. Possible values are 'Standard' and 'Premium'. """ return pulumi.get(self, "tier") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ExpressRouteCircuitStatsResponse(dict): """ Contains stats associated with the peering. """ def __init__(__self__, *, primarybytes_in: Optional[float] = None, primarybytes_out: Optional[float] = None, secondarybytes_in: Optional[float] = None, secondarybytes_out: Optional[float] = None): """ Contains stats associated with the peering. :param float primarybytes_in: Gets BytesIn of the peering. :param float primarybytes_out: Gets BytesOut of the peering. :param float secondarybytes_in: Gets BytesIn of the peering. :param float secondarybytes_out: Gets BytesOut of the peering. """ if primarybytes_in is not None: pulumi.set(__self__, "primarybytes_in", primarybytes_in) if primarybytes_out is not None: pulumi.set(__self__, "primarybytes_out", primarybytes_out) if secondarybytes_in is not None: pulumi.set(__self__, "secondarybytes_in", secondarybytes_in) if secondarybytes_out is not None: pulumi.set(__self__, "secondarybytes_out", secondarybytes_out) @property @pulumi.getter(name="primarybytesIn") def primarybytes_in(self) -> Optional[float]: """ Gets BytesIn of the peering. """ return pulumi.get(self, "primarybytes_in") @property @pulumi.getter(name="primarybytesOut") def primarybytes_out(self) -> Optional[float]: """ Gets BytesOut of the peering. """ return pulumi.get(self, "primarybytes_out") @property @pulumi.getter(name="secondarybytesIn") def secondarybytes_in(self) -> Optional[float]: """ Gets BytesIn of the peering. """ return pulumi.get(self, "secondarybytes_in") @property @pulumi.getter(name="secondarybytesOut") def secondarybytes_out(self) -> Optional[float]: """ Gets BytesOut of the peering. """ return pulumi.get(self, "secondarybytes_out") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class FrontendIPConfigurationResponse(dict): """ Frontend IP address of the load balancer. """ def __init__(__self__, *, inbound_nat_pools: Sequence['outputs.SubResourceResponse'], inbound_nat_rules: Sequence['outputs.SubResourceResponse'], load_balancing_rules: Sequence['outputs.SubResourceResponse'], outbound_nat_rules: Sequence['outputs.SubResourceResponse'], etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, private_ip_address: Optional[str] = None, private_ip_allocation_method: Optional[str] = None, provisioning_state: Optional[str] = None, public_ip_address: Optional['outputs.PublicIPAddressResponse'] = None, subnet: Optional['outputs.SubnetResponse'] = None): """ Frontend IP address of the load balancer. :param Sequence['SubResourceResponseArgs'] inbound_nat_pools: Read only. Inbound pools URIs that use this frontend IP. :param Sequence['SubResourceResponseArgs'] inbound_nat_rules: Read only. Inbound rules URIs that use this frontend IP. :param Sequence['SubResourceResponseArgs'] load_balancing_rules: Gets load balancing rules URIs that use this frontend IP. :param Sequence['SubResourceResponseArgs'] outbound_nat_rules: Read only. Outbound rules URIs that use this frontend IP. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :param str private_ip_address: The private IP address of the IP configuration. :param str private_ip_allocation_method: The Private IP allocation method. Possible values are: 'Static' and 'Dynamic'. :param str provisioning_state: Gets the provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param 'PublicIPAddressResponseArgs' public_ip_address: The reference of the Public IP resource. :param 'SubnetResponseArgs' subnet: The reference of the subnet resource. """ pulumi.set(__self__, "inbound_nat_pools", inbound_nat_pools) pulumi.set(__self__, "inbound_nat_rules", inbound_nat_rules) pulumi.set(__self__, "load_balancing_rules", load_balancing_rules) pulumi.set(__self__, "outbound_nat_rules", outbound_nat_rules) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if private_ip_address is not None: pulumi.set(__self__, "private_ip_address", private_ip_address) if private_ip_allocation_method is not None: pulumi.set(__self__, "private_ip_allocation_method", private_ip_allocation_method) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if public_ip_address is not None: pulumi.set(__self__, "public_ip_address", public_ip_address) if subnet is not None: pulumi.set(__self__, "subnet", subnet) @property @pulumi.getter(name="inboundNatPools") def inbound_nat_pools(self) -> Sequence['outputs.SubResourceResponse']: """ Read only. Inbound pools URIs that use this frontend IP. """ return pulumi.get(self, "inbound_nat_pools") @property @pulumi.getter(name="inboundNatRules") def inbound_nat_rules(self) -> Sequence['outputs.SubResourceResponse']: """ Read only. Inbound rules URIs that use this frontend IP. """ return pulumi.get(self, "inbound_nat_rules") @property @pulumi.getter(name="loadBalancingRules") def load_balancing_rules(self) -> Sequence['outputs.SubResourceResponse']: """ Gets load balancing rules URIs that use this frontend IP. """ return pulumi.get(self, "load_balancing_rules") @property @pulumi.getter(name="outboundNatRules") def outbound_nat_rules(self) -> Sequence['outputs.SubResourceResponse']: """ Read only. Outbound rules URIs that use this frontend IP. """ return pulumi.get(self, "outbound_nat_rules") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="privateIPAddress") def private_ip_address(self) -> Optional[str]: """ The private IP address of the IP configuration. """ return pulumi.get(self, "private_ip_address") @property @pulumi.getter(name="privateIPAllocationMethod") def private_ip_allocation_method(self) -> Optional[str]: """ The Private IP allocation method. Possible values are: 'Static' and 'Dynamic'. """ return pulumi.get(self, "private_ip_allocation_method") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Gets the provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="publicIPAddress") def public_ip_address(self) -> Optional['outputs.PublicIPAddressResponse']: """ The reference of the Public IP resource. """ return pulumi.get(self, "public_ip_address") @property @pulumi.getter def subnet(self) -> Optional['outputs.SubnetResponse']: """ The reference of the subnet resource. """ return pulumi.get(self, "subnet") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class GatewayRouteResponseResult(dict): def __init__(__self__, *, as_path: str, local_address: str, network: str, next_hop: str, origin: str, source_peer: str, weight: int): """ :param str as_path: The route's AS path sequence :param str local_address: The gateway's local address :param str network: The route's network prefix :param str next_hop: The route's next hop :param str origin: The source this route was learned from :param str source_peer: The peer this route was learned from :param int weight: The route's weight """ pulumi.set(__self__, "as_path", as_path) pulumi.set(__self__, "local_address", local_address) pulumi.set(__self__, "network", network) pulumi.set(__self__, "next_hop", next_hop) pulumi.set(__self__, "origin", origin) pulumi.set(__self__, "source_peer", source_peer) pulumi.set(__self__, "weight", weight) @property @pulumi.getter(name="asPath") def as_path(self) -> str: """ The route's AS path sequence """ return pulumi.get(self, "as_path") @property @pulumi.getter(name="localAddress") def local_address(self) -> str: """ The gateway's local address """ return pulumi.get(self, "local_address") @property @pulumi.getter def network(self) -> str: """ The route's network prefix """ return pulumi.get(self, "network") @property @pulumi.getter(name="nextHop") def next_hop(self) -> str: """ The route's next hop """ return pulumi.get(self, "next_hop") @property @pulumi.getter def origin(self) -> str: """ The source this route was learned from """ return pulumi.get(self, "origin") @property @pulumi.getter(name="sourcePeer") def source_peer(self) -> str: """ The peer this route was learned from """ return pulumi.get(self, "source_peer") @property @pulumi.getter def weight(self) -> int: """ The route's weight """ return pulumi.get(self, "weight") @pulumi.output_type class IPConfigurationResponse(dict): """ IPConfiguration """ def __init__(__self__, *, etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, private_ip_address: Optional[str] = None, private_ip_allocation_method: Optional[str] = None, provisioning_state: Optional[str] = None, public_ip_address: Optional['outputs.PublicIPAddressResponse'] = None, subnet: Optional['outputs.SubnetResponse'] = None): """ IPConfiguration :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :param str private_ip_address: The private IP address of the IP configuration. :param str private_ip_allocation_method: The private IP allocation method. Possible values are 'Static' and 'Dynamic'. :param str provisioning_state: Gets the provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param 'PublicIPAddressResponseArgs' public_ip_address: The reference of the public IP resource. :param 'SubnetResponseArgs' subnet: The reference of the subnet resource. """ if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if private_ip_address is not None: pulumi.set(__self__, "private_ip_address", private_ip_address) if private_ip_allocation_method is not None: pulumi.set(__self__, "private_ip_allocation_method", private_ip_allocation_method) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if public_ip_address is not None: pulumi.set(__self__, "public_ip_address", public_ip_address) if subnet is not None: pulumi.set(__self__, "subnet", subnet) @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="privateIPAddress") def private_ip_address(self) -> Optional[str]: """ The private IP address of the IP configuration. """ return pulumi.get(self, "private_ip_address") @property @pulumi.getter(name="privateIPAllocationMethod") def private_ip_allocation_method(self) -> Optional[str]: """ The private IP allocation method. Possible values are 'Static' and 'Dynamic'. """ return pulumi.get(self, "private_ip_allocation_method") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Gets the provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="publicIPAddress") def public_ip_address(self) -> Optional['outputs.PublicIPAddressResponse']: """ The reference of the public IP resource. """ return pulumi.get(self, "public_ip_address") @property @pulumi.getter def subnet(self) -> Optional['outputs.SubnetResponse']: """ The reference of the subnet resource. """ return pulumi.get(self, "subnet") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class InboundNatPoolResponse(dict): """ Inbound NAT pool of the load balancer. """ def __init__(__self__, *, backend_port: int, frontend_port_range_end: int, frontend_port_range_start: int, protocol: str, etag: Optional[str] = None, frontend_ip_configuration: Optional['outputs.SubResourceResponse'] = None, id: Optional[str] = None, name: Optional[str] = None, provisioning_state: Optional[str] = None): """ Inbound NAT pool of the load balancer. :param int backend_port: The port used for internal connections on the endpoint. Acceptable values are between 1 and 65535. :param int frontend_port_range_end: The last port number in the range of external ports that will be used to provide Inbound Nat to NICs associated with a load balancer. Acceptable values range between 1 and 65535. :param int frontend_port_range_start: The first port number in the range of external ports that will be used to provide Inbound Nat to NICs associated with a load balancer. Acceptable values range between 1 and 65534. :param str protocol: The transport protocol for the endpoint. Possible values are: 'Udp' or 'Tcp'. :param str etag: A unique read-only string that changes whenever the resource is updated. :param 'SubResourceResponseArgs' frontend_ip_configuration: A reference to frontend IP addresses. :param str id: Resource ID. :param str name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :param str provisioning_state: Gets the provisioning state of the PublicIP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ pulumi.set(__self__, "backend_port", backend_port) pulumi.set(__self__, "frontend_port_range_end", frontend_port_range_end) pulumi.set(__self__, "frontend_port_range_start", frontend_port_range_start) pulumi.set(__self__, "protocol", protocol) if etag is not None: pulumi.set(__self__, "etag", etag) if frontend_ip_configuration is not None: pulumi.set(__self__, "frontend_ip_configuration", frontend_ip_configuration) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) @property @pulumi.getter(name="backendPort") def backend_port(self) -> int: """ The port used for internal connections on the endpoint. Acceptable values are between 1 and 65535. """ return pulumi.get(self, "backend_port") @property @pulumi.getter(name="frontendPortRangeEnd") def frontend_port_range_end(self) -> int: """ The last port number in the range of external ports that will be used to provide Inbound Nat to NICs associated with a load balancer. Acceptable values range between 1 and 65535. """ return pulumi.get(self, "frontend_port_range_end") @property @pulumi.getter(name="frontendPortRangeStart") def frontend_port_range_start(self) -> int: """ The first port number in the range of external ports that will be used to provide Inbound Nat to NICs associated with a load balancer. Acceptable values range between 1 and 65534. """ return pulumi.get(self, "frontend_port_range_start") @property @pulumi.getter def protocol(self) -> str: """ The transport protocol for the endpoint. Possible values are: 'Udp' or 'Tcp'. """ return pulumi.get(self, "protocol") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="frontendIPConfiguration") def frontend_ip_configuration(self) -> Optional['outputs.SubResourceResponse']: """ A reference to frontend IP addresses. """ return pulumi.get(self, "frontend_ip_configuration") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Gets the provisioning state of the PublicIP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class InboundNatRuleResponse(dict): """ Inbound NAT rule of the load balancer. """ def __init__(__self__, *, backend_ip_configuration: 'outputs.NetworkInterfaceIPConfigurationResponse', backend_port: Optional[int] = None, enable_floating_ip: Optional[bool] = None, etag: Optional[str] = None, frontend_ip_configuration: Optional['outputs.SubResourceResponse'] = None, frontend_port: Optional[int] = None, id: Optional[str] = None, idle_timeout_in_minutes: Optional[int] = None, name: Optional[str] = None, protocol: Optional[str] = None, provisioning_state: Optional[str] = None): """ Inbound NAT rule of the load balancer. :param 'NetworkInterfaceIPConfigurationResponseArgs' backend_ip_configuration: A reference to a private IP address defined on a network interface of a VM. Traffic sent to the frontend port of each of the frontend IP configurations is forwarded to the backed IP. :param int backend_port: The port used for the internal endpoint. Acceptable values range from 1 to 65535. :param bool enable_floating_ip: Configures a virtual machine's endpoint for the floating IP capability required to configure a SQL AlwaysOn Availability Group. This setting is required when using the SQL AlwaysOn Availability Groups in SQL server. This setting can't be changed after you create the endpoint. :param str etag: A unique read-only string that changes whenever the resource is updated. :param 'SubResourceResponseArgs' frontend_ip_configuration: A reference to frontend IP addresses. :param int frontend_port: The port for the external endpoint. Port numbers for each rule must be unique within the Load Balancer. Acceptable values range from 1 to 65534. :param str id: Resource ID. :param int idle_timeout_in_minutes: The timeout for the TCP idle connection. The value can be set between 4 and 30 minutes. The default value is 4 minutes. This element is only used when the protocol is set to TCP. :param str name: Gets name of the resource that is unique within a resource group. This name can be used to access the resource. :param str protocol: The transport protocol for the endpoint. Possible values are: 'Udp' or 'Tcp' :param str provisioning_state: Gets the provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ pulumi.set(__self__, "backend_ip_configuration", backend_ip_configuration) if backend_port is not None: pulumi.set(__self__, "backend_port", backend_port) if enable_floating_ip is not None: pulumi.set(__self__, "enable_floating_ip", enable_floating_ip) if etag is not None: pulumi.set(__self__, "etag", etag) if frontend_ip_configuration is not None: pulumi.set(__self__, "frontend_ip_configuration", frontend_ip_configuration) if frontend_port is not None: pulumi.set(__self__, "frontend_port", frontend_port) if id is not None: pulumi.set(__self__, "id", id) if idle_timeout_in_minutes is not None: pulumi.set(__self__, "idle_timeout_in_minutes", idle_timeout_in_minutes) if name is not None: pulumi.set(__self__, "name", name) if protocol is not None: pulumi.set(__self__, "protocol", protocol) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) @property @pulumi.getter(name="backendIPConfiguration") def backend_ip_configuration(self) -> 'outputs.NetworkInterfaceIPConfigurationResponse': """ A reference to a private IP address defined on a network interface of a VM. Traffic sent to the frontend port of each of the frontend IP configurations is forwarded to the backed IP. """ return pulumi.get(self, "backend_ip_configuration") @property @pulumi.getter(name="backendPort") def backend_port(self) -> Optional[int]: """ The port used for the internal endpoint. Acceptable values range from 1 to 65535. """ return pulumi.get(self, "backend_port") @property @pulumi.getter(name="enableFloatingIP") def enable_floating_ip(self) -> Optional[bool]: """ Configures a virtual machine's endpoint for the floating IP capability required to configure a SQL AlwaysOn Availability Group. This setting is required when using the SQL AlwaysOn Availability Groups in SQL server. This setting can't be changed after you create the endpoint. """ return pulumi.get(self, "enable_floating_ip") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="frontendIPConfiguration") def frontend_ip_configuration(self) -> Optional['outputs.SubResourceResponse']: """ A reference to frontend IP addresses. """ return pulumi.get(self, "frontend_ip_configuration") @property @pulumi.getter(name="frontendPort") def frontend_port(self) -> Optional[int]: """ The port for the external endpoint. Port numbers for each rule must be unique within the Load Balancer. Acceptable values range from 1 to 65534. """ return pulumi.get(self, "frontend_port") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter(name="idleTimeoutInMinutes") def idle_timeout_in_minutes(self) -> Optional[int]: """ The timeout for the TCP idle connection. The value can be set between 4 and 30 minutes. The default value is 4 minutes. This element is only used when the protocol is set to TCP. """ return pulumi.get(self, "idle_timeout_in_minutes") @property @pulumi.getter def name(self) -> Optional[str]: """ Gets name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def protocol(self) -> Optional[str]: """ The transport protocol for the endpoint. Possible values are: 'Udp' or 'Tcp' """ return pulumi.get(self, "protocol") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Gets the provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class LoadBalancingRuleResponse(dict): """ A load balancing rule for a load balancer. """ def __init__(__self__, *, frontend_port: int, protocol: str, backend_address_pool: Optional['outputs.SubResourceResponse'] = None, backend_port: Optional[int] = None, enable_floating_ip: Optional[bool] = None, etag: Optional[str] = None, frontend_ip_configuration: Optional['outputs.SubResourceResponse'] = None, id: Optional[str] = None, idle_timeout_in_minutes: Optional[int] = None, load_distribution: Optional[str] = None, name: Optional[str] = None, probe: Optional['outputs.SubResourceResponse'] = None, provisioning_state: Optional[str] = None): """ A load balancing rule for a load balancer. :param int frontend_port: The port for the external endpoint. Port numbers for each rule must be unique within the Load Balancer. Acceptable values are between 1 and 65534. :param str protocol: The transport protocol for the external endpoint. Possible values are 'Udp' or 'Tcp' :param 'SubResourceResponseArgs' backend_address_pool: A reference to a pool of DIPs. Inbound traffic is randomly load balanced across IPs in the backend IPs. :param int backend_port: The port used for internal connections on the endpoint. Acceptable values are between 1 and 65535. :param bool enable_floating_ip: Configures a virtual machine's endpoint for the floating IP capability required to configure a SQL AlwaysOn Availability Group. This setting is required when using the SQL AlwaysOn Availability Groups in SQL server. This setting can't be changed after you create the endpoint. :param str etag: A unique read-only string that changes whenever the resource is updated. :param 'SubResourceResponseArgs' frontend_ip_configuration: A reference to frontend IP addresses. :param str id: Resource ID. :param int idle_timeout_in_minutes: The timeout for the TCP idle connection. The value can be set between 4 and 30 minutes. The default value is 4 minutes. This element is only used when the protocol is set to TCP. :param str load_distribution: The load distribution policy for this rule. Possible values are 'Default', 'SourceIP', and 'SourceIPProtocol'. :param str name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :param 'SubResourceResponseArgs' probe: The reference of the load balancer probe used by the load balancing rule. :param str provisioning_state: Gets the provisioning state of the PublicIP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ pulumi.set(__self__, "frontend_port", frontend_port) pulumi.set(__self__, "protocol", protocol) if backend_address_pool is not None: pulumi.set(__self__, "backend_address_pool", backend_address_pool) if backend_port is not None: pulumi.set(__self__, "backend_port", backend_port) if enable_floating_ip is not None: pulumi.set(__self__, "enable_floating_ip", enable_floating_ip) if etag is not None: pulumi.set(__self__, "etag", etag) if frontend_ip_configuration is not None: pulumi.set(__self__, "frontend_ip_configuration", frontend_ip_configuration) if id is not None: pulumi.set(__self__, "id", id) if idle_timeout_in_minutes is not None: pulumi.set(__self__, "idle_timeout_in_minutes", idle_timeout_in_minutes) if load_distribution is not None: pulumi.set(__self__, "load_distribution", load_distribution) if name is not None: pulumi.set(__self__, "name", name) if probe is not None: pulumi.set(__self__, "probe", probe) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) @property @pulumi.getter(name="frontendPort") def frontend_port(self) -> int: """ The port for the external endpoint. Port numbers for each rule must be unique within the Load Balancer. Acceptable values are between 1 and 65534. """ return pulumi.get(self, "frontend_port") @property @pulumi.getter def protocol(self) -> str: """ The transport protocol for the external endpoint. Possible values are 'Udp' or 'Tcp' """ return pulumi.get(self, "protocol") @property @pulumi.getter(name="backendAddressPool") def backend_address_pool(self) -> Optional['outputs.SubResourceResponse']: """ A reference to a pool of DIPs. Inbound traffic is randomly load balanced across IPs in the backend IPs. """ return pulumi.get(self, "backend_address_pool") @property @pulumi.getter(name="backendPort") def backend_port(self) -> Optional[int]: """ The port used for internal connections on the endpoint. Acceptable values are between 1 and 65535. """ return pulumi.get(self, "backend_port") @property @pulumi.getter(name="enableFloatingIP") def enable_floating_ip(self) -> Optional[bool]: """ Configures a virtual machine's endpoint for the floating IP capability required to configure a SQL AlwaysOn Availability Group. This setting is required when using the SQL AlwaysOn Availability Groups in SQL server. This setting can't be changed after you create the endpoint. """ return pulumi.get(self, "enable_floating_ip") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="frontendIPConfiguration") def frontend_ip_configuration(self) -> Optional['outputs.SubResourceResponse']: """ A reference to frontend IP addresses. """ return pulumi.get(self, "frontend_ip_configuration") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter(name="idleTimeoutInMinutes") def idle_timeout_in_minutes(self) -> Optional[int]: """ The timeout for the TCP idle connection. The value can be set between 4 and 30 minutes. The default value is 4 minutes. This element is only used when the protocol is set to TCP. """ return pulumi.get(self, "idle_timeout_in_minutes") @property @pulumi.getter(name="loadDistribution") def load_distribution(self) -> Optional[str]: """ The load distribution policy for this rule. Possible values are 'Default', 'SourceIP', and 'SourceIPProtocol'. """ return pulumi.get(self, "load_distribution") @property @pulumi.getter def name(self) -> Optional[str]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def probe(self) -> Optional['outputs.SubResourceResponse']: """ The reference of the load balancer probe used by the load balancing rule. """ return pulumi.get(self, "probe") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Gets the provisioning state of the PublicIP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class LocalNetworkGatewayResponse(dict): """ A common class for general resource information """ def __init__(__self__, *, local_network_address_space: 'outputs.AddressSpaceResponse', name: str, provisioning_state: str, type: str, bgp_settings: Optional['outputs.BgpSettingsResponse'] = None, etag: Optional[str] = None, gateway_ip_address: Optional[str] = None, id: Optional[str] = None, location: Optional[str] = None, resource_guid: Optional[str] = None, tags: Optional[Mapping[str, str]] = None): """ A common class for general resource information :param 'AddressSpaceResponseArgs' local_network_address_space: Local network site address space. :param str name: Resource name. :param str provisioning_state: The provisioning state of the LocalNetworkGateway resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param str type: Resource type. :param 'BgpSettingsResponseArgs' bgp_settings: Local network gateway's BGP speaker settings. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str gateway_ip_address: IP address of local network gateway. :param str id: Resource ID. :param str location: Resource location. :param str resource_guid: The resource GUID property of the LocalNetworkGateway resource. :param Mapping[str, str] tags: Resource tags. """ pulumi.set(__self__, "local_network_address_space", local_network_address_space) pulumi.set(__self__, "name", name) pulumi.set(__self__, "provisioning_state", provisioning_state) pulumi.set(__self__, "type", type) if bgp_settings is not None: pulumi.set(__self__, "bgp_settings", bgp_settings) if etag is not None: pulumi.set(__self__, "etag", etag) if gateway_ip_address is not None: pulumi.set(__self__, "gateway_ip_address", gateway_ip_address) if id is not None: pulumi.set(__self__, "id", id) if location is not None: pulumi.set(__self__, "location", location) if resource_guid is not None: pulumi.set(__self__, "resource_guid", resource_guid) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="localNetworkAddressSpace") def local_network_address_space(self) -> 'outputs.AddressSpaceResponse': """ Local network site address space. """ return pulumi.get(self, "local_network_address_space") @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The provisioning state of the LocalNetworkGateway resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="bgpSettings") def bgp_settings(self) -> Optional['outputs.BgpSettingsResponse']: """ Local network gateway's BGP speaker settings. """ return pulumi.get(self, "bgp_settings") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="gatewayIpAddress") def gateway_ip_address(self) -> Optional[str]: """ IP address of local network gateway. """ return pulumi.get(self, "gateway_ip_address") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> Optional[str]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter(name="resourceGuid") def resource_guid(self) -> Optional[str]: """ The resource GUID property of the LocalNetworkGateway resource. """ return pulumi.get(self, "resource_guid") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class NetworkInterfaceDnsSettingsResponse(dict): """ DNS settings of a network interface. """ def __init__(__self__, *, applied_dns_servers: Optional[Sequence[str]] = None, dns_servers: Optional[Sequence[str]] = None, internal_dns_name_label: Optional[str] = None, internal_domain_name_suffix: Optional[str] = None, internal_fqdn: Optional[str] = None): """ DNS settings of a network interface. :param Sequence[str] applied_dns_servers: If the VM that uses this NIC is part of an Availability Set, then this list will have the union of all DNS servers from all NICs that are part of the Availability Set. This property is what is configured on each of those VMs. :param Sequence[str] dns_servers: List of DNS servers IP addresses. Use 'AzureProvidedDNS' to switch to azure provided DNS resolution. 'AzureProvidedDNS' value cannot be combined with other IPs, it must be the only value in dnsServers collection. :param str internal_dns_name_label: Relative DNS name for this NIC used for internal communications between VMs in the same virtual network. :param str internal_domain_name_suffix: Even if internalDnsNameLabel is not specified, a DNS entry is created for the primary NIC of the VM. This DNS name can be constructed by concatenating the VM name with the value of internalDomainNameSuffix. :param str internal_fqdn: Fully qualified DNS name supporting internal communications between VMs in the same virtual network. """ if applied_dns_servers is not None: pulumi.set(__self__, "applied_dns_servers", applied_dns_servers) if dns_servers is not None: pulumi.set(__self__, "dns_servers", dns_servers) if internal_dns_name_label is not None: pulumi.set(__self__, "internal_dns_name_label", internal_dns_name_label) if internal_domain_name_suffix is not None: pulumi.set(__self__, "internal_domain_name_suffix", internal_domain_name_suffix) if internal_fqdn is not None: pulumi.set(__self__, "internal_fqdn", internal_fqdn) @property @pulumi.getter(name="appliedDnsServers") def applied_dns_servers(self) -> Optional[Sequence[str]]: """ If the VM that uses this NIC is part of an Availability Set, then this list will have the union of all DNS servers from all NICs that are part of the Availability Set. This property is what is configured on each of those VMs. """ return pulumi.get(self, "applied_dns_servers") @property @pulumi.getter(name="dnsServers") def dns_servers(self) -> Optional[Sequence[str]]: """ List of DNS servers IP addresses. Use 'AzureProvidedDNS' to switch to azure provided DNS resolution. 'AzureProvidedDNS' value cannot be combined with other IPs, it must be the only value in dnsServers collection. """ return pulumi.get(self, "dns_servers") @property @pulumi.getter(name="internalDnsNameLabel") def internal_dns_name_label(self) -> Optional[str]: """ Relative DNS name for this NIC used for internal communications between VMs in the same virtual network. """ return pulumi.get(self, "internal_dns_name_label") @property @pulumi.getter(name="internalDomainNameSuffix") def internal_domain_name_suffix(self) -> Optional[str]: """ Even if internalDnsNameLabel is not specified, a DNS entry is created for the primary NIC of the VM. This DNS name can be constructed by concatenating the VM name with the value of internalDomainNameSuffix. """ return pulumi.get(self, "internal_domain_name_suffix") @property @pulumi.getter(name="internalFqdn") def internal_fqdn(self) -> Optional[str]: """ Fully qualified DNS name supporting internal communications between VMs in the same virtual network. """ return pulumi.get(self, "internal_fqdn") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class NetworkInterfaceIPConfigurationResponse(dict): """ IPConfiguration in a network interface. """ def __init__(__self__, *, application_gateway_backend_address_pools: Optional[Sequence['outputs.ApplicationGatewayBackendAddressPoolResponse']] = None, etag: Optional[str] = None, id: Optional[str] = None, load_balancer_backend_address_pools: Optional[Sequence['outputs.BackendAddressPoolResponse']] = None, load_balancer_inbound_nat_rules: Optional[Sequence['outputs.InboundNatRuleResponse']] = None, name: Optional[str] = None, primary: Optional[bool] = None, private_ip_address: Optional[str] = None, private_ip_address_version: Optional[str] = None, private_ip_allocation_method: Optional[str] = None, provisioning_state: Optional[str] = None, public_ip_address: Optional['outputs.PublicIPAddressResponse'] = None, subnet: Optional['outputs.SubnetResponse'] = None): """ IPConfiguration in a network interface. :param Sequence['ApplicationGatewayBackendAddressPoolResponseArgs'] application_gateway_backend_address_pools: The reference of ApplicationGatewayBackendAddressPool resource. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param Sequence['BackendAddressPoolResponseArgs'] load_balancer_backend_address_pools: The reference of LoadBalancerBackendAddressPool resource. :param Sequence['InboundNatRuleResponseArgs'] load_balancer_inbound_nat_rules: A list of references of LoadBalancerInboundNatRules. :param str name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :param bool primary: Gets whether this is a primary customer address on the network interface. :param str private_ip_address_version: Available from Api-Version 2016-03-30 onwards, it represents whether the specific ipconfiguration is IPv4 or IPv6. Default is taken as IPv4. Possible values are: 'IPv4' and 'IPv6'. :param str private_ip_allocation_method: Defines how a private IP address is assigned. Possible values are: 'Static' and 'Dynamic'. :param 'PublicIPAddressResponseArgs' public_ip_address: Public IP address resource. :param 'SubnetResponseArgs' subnet: Subnet in a virtual network resource. """ if application_gateway_backend_address_pools is not None: pulumi.set(__self__, "application_gateway_backend_address_pools", application_gateway_backend_address_pools) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if load_balancer_backend_address_pools is not None: pulumi.set(__self__, "load_balancer_backend_address_pools", load_balancer_backend_address_pools) if load_balancer_inbound_nat_rules is not None: pulumi.set(__self__, "load_balancer_inbound_nat_rules", load_balancer_inbound_nat_rules) if name is not None: pulumi.set(__self__, "name", name) if primary is not None: pulumi.set(__self__, "primary", primary) if private_ip_address is not None: pulumi.set(__self__, "private_ip_address", private_ip_address) if private_ip_address_version is not None: pulumi.set(__self__, "private_ip_address_version", private_ip_address_version) if private_ip_allocation_method is not None: pulumi.set(__self__, "private_ip_allocation_method", private_ip_allocation_method) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if public_ip_address is not None: pulumi.set(__self__, "public_ip_address", public_ip_address) if subnet is not None: pulumi.set(__self__, "subnet", subnet) @property @pulumi.getter(name="applicationGatewayBackendAddressPools") def application_gateway_backend_address_pools(self) -> Optional[Sequence['outputs.ApplicationGatewayBackendAddressPoolResponse']]: """ The reference of ApplicationGatewayBackendAddressPool resource. """ return pulumi.get(self, "application_gateway_backend_address_pools") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter(name="loadBalancerBackendAddressPools") def load_balancer_backend_address_pools(self) -> Optional[Sequence['outputs.BackendAddressPoolResponse']]: """ The reference of LoadBalancerBackendAddressPool resource. """ return pulumi.get(self, "load_balancer_backend_address_pools") @property @pulumi.getter(name="loadBalancerInboundNatRules") def load_balancer_inbound_nat_rules(self) -> Optional[Sequence['outputs.InboundNatRuleResponse']]: """ A list of references of LoadBalancerInboundNatRules. """ return pulumi.get(self, "load_balancer_inbound_nat_rules") @property @pulumi.getter def name(self) -> Optional[str]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def primary(self) -> Optional[bool]: """ Gets whether this is a primary customer address on the network interface. """ return pulumi.get(self, "primary") @property @pulumi.getter(name="privateIPAddress") def private_ip_address(self) -> Optional[str]: return pulumi.get(self, "private_ip_address") @property @pulumi.getter(name="privateIPAddressVersion") def private_ip_address_version(self) -> Optional[str]: """ Available from Api-Version 2016-03-30 onwards, it represents whether the specific ipconfiguration is IPv4 or IPv6. Default is taken as IPv4. Possible values are: 'IPv4' and 'IPv6'. """ return pulumi.get(self, "private_ip_address_version") @property @pulumi.getter(name="privateIPAllocationMethod") def private_ip_allocation_method(self) -> Optional[str]: """ Defines how a private IP address is assigned. Possible values are: 'Static' and 'Dynamic'. """ return pulumi.get(self, "private_ip_allocation_method") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="publicIPAddress") def public_ip_address(self) -> Optional['outputs.PublicIPAddressResponse']: """ Public IP address resource. """ return pulumi.get(self, "public_ip_address") @property @pulumi.getter def subnet(self) -> Optional['outputs.SubnetResponse']: """ Subnet in a virtual network resource. """ return pulumi.get(self, "subnet") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class NetworkInterfaceResponse(dict): """ A network interface in a resource group. """ def __init__(__self__, *, name: str, type: str, dns_settings: Optional['outputs.NetworkInterfaceDnsSettingsResponse'] = None, enable_accelerated_networking: Optional[bool] = None, enable_ip_forwarding: Optional[bool] = None, etag: Optional[str] = None, id: Optional[str] = None, ip_configurations: Optional[Sequence['outputs.NetworkInterfaceIPConfigurationResponse']] = None, location: Optional[str] = None, mac_address: Optional[str] = None, network_security_group: Optional['outputs.NetworkSecurityGroupResponse'] = None, primary: Optional[bool] = None, provisioning_state: Optional[str] = None, resource_guid: Optional[str] = None, tags: Optional[Mapping[str, str]] = None, virtual_machine: Optional['outputs.SubResourceResponse'] = None): """ A network interface in a resource group. :param str name: Resource name. :param str type: Resource type. :param 'NetworkInterfaceDnsSettingsResponseArgs' dns_settings: The DNS settings in network interface. :param bool enable_accelerated_networking: If the network interface is accelerated networking enabled. :param bool enable_ip_forwarding: Indicates whether IP forwarding is enabled on this network interface. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param Sequence['NetworkInterfaceIPConfigurationResponseArgs'] ip_configurations: A list of IPConfigurations of the network interface. :param str location: Resource location. :param str mac_address: The MAC address of the network interface. :param 'NetworkSecurityGroupResponseArgs' network_security_group: The reference of the NetworkSecurityGroup resource. :param bool primary: Gets whether this is a primary network interface on a virtual machine. :param str provisioning_state: The provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param str resource_guid: The resource GUID property of the network interface resource. :param Mapping[str, str] tags: Resource tags. :param 'SubResourceResponseArgs' virtual_machine: The reference of a virtual machine. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "type", type) if dns_settings is not None: pulumi.set(__self__, "dns_settings", dns_settings) if enable_accelerated_networking is not None: pulumi.set(__self__, "enable_accelerated_networking", enable_accelerated_networking) if enable_ip_forwarding is not None: pulumi.set(__self__, "enable_ip_forwarding", enable_ip_forwarding) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if ip_configurations is not None: pulumi.set(__self__, "ip_configurations", ip_configurations) if location is not None: pulumi.set(__self__, "location", location) if mac_address is not None: pulumi.set(__self__, "mac_address", mac_address) if network_security_group is not None: pulumi.set(__self__, "network_security_group", network_security_group) if primary is not None: pulumi.set(__self__, "primary", primary) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if resource_guid is not None: pulumi.set(__self__, "resource_guid", resource_guid) if tags is not None: pulumi.set(__self__, "tags", tags) if virtual_machine is not None: pulumi.set(__self__, "virtual_machine", virtual_machine) @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="dnsSettings") def dns_settings(self) -> Optional['outputs.NetworkInterfaceDnsSettingsResponse']: """ The DNS settings in network interface. """ return pulumi.get(self, "dns_settings") @property @pulumi.getter(name="enableAcceleratedNetworking") def enable_accelerated_networking(self) -> Optional[bool]: """ If the network interface is accelerated networking enabled. """ return pulumi.get(self, "enable_accelerated_networking") @property @pulumi.getter(name="enableIPForwarding") def enable_ip_forwarding(self) -> Optional[bool]: """ Indicates whether IP forwarding is enabled on this network interface. """ return pulumi.get(self, "enable_ip_forwarding") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter(name="ipConfigurations") def ip_configurations(self) -> Optional[Sequence['outputs.NetworkInterfaceIPConfigurationResponse']]: """ A list of IPConfigurations of the network interface. """ return pulumi.get(self, "ip_configurations") @property @pulumi.getter def location(self) -> Optional[str]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter(name="macAddress") def mac_address(self) -> Optional[str]: """ The MAC address of the network interface. """ return pulumi.get(self, "mac_address") @property @pulumi.getter(name="networkSecurityGroup") def network_security_group(self) -> Optional['outputs.NetworkSecurityGroupResponse']: """ The reference of the NetworkSecurityGroup resource. """ return pulumi.get(self, "network_security_group") @property @pulumi.getter def primary(self) -> Optional[bool]: """ Gets whether this is a primary network interface on a virtual machine. """ return pulumi.get(self, "primary") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ The provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="resourceGuid") def resource_guid(self) -> Optional[str]: """ The resource GUID property of the network interface resource. """ return pulumi.get(self, "resource_guid") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="virtualMachine") def virtual_machine(self) -> Optional['outputs.SubResourceResponse']: """ The reference of a virtual machine. """ return pulumi.get(self, "virtual_machine") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class NetworkSecurityGroupResponse(dict): """ NetworkSecurityGroup resource. """ def __init__(__self__, *, name: str, network_interfaces: Sequence['outputs.NetworkInterfaceResponse'], subnets: Sequence['outputs.SubnetResponse'], type: str, default_security_rules: Optional[Sequence['outputs.SecurityRuleResponse']] = None, etag: Optional[str] = None, id: Optional[str] = None, location: Optional[str] = None, provisioning_state: Optional[str] = None, resource_guid: Optional[str] = None, security_rules: Optional[Sequence['outputs.SecurityRuleResponse']] = None, tags: Optional[Mapping[str, str]] = None): """ NetworkSecurityGroup resource. :param str name: Resource name. :param Sequence['NetworkInterfaceResponseArgs'] network_interfaces: A collection of references to network interfaces. :param Sequence['SubnetResponseArgs'] subnets: A collection of references to subnets. :param str type: Resource type. :param Sequence['SecurityRuleResponseArgs'] default_security_rules: The default security rules of network security group. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str location: Resource location. :param str provisioning_state: The provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param str resource_guid: The resource GUID property of the network security group resource. :param Sequence['SecurityRuleResponseArgs'] security_rules: A collection of security rules of the network security group. :param Mapping[str, str] tags: Resource tags. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "network_interfaces", network_interfaces) pulumi.set(__self__, "subnets", subnets) pulumi.set(__self__, "type", type) if default_security_rules is not None: pulumi.set(__self__, "default_security_rules", default_security_rules) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if location is not None: pulumi.set(__self__, "location", location) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if resource_guid is not None: pulumi.set(__self__, "resource_guid", resource_guid) if security_rules is not None: pulumi.set(__self__, "security_rules", security_rules) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="networkInterfaces") def network_interfaces(self) -> Sequence['outputs.NetworkInterfaceResponse']: """ A collection of references to network interfaces. """ return pulumi.get(self, "network_interfaces") @property @pulumi.getter def subnets(self) -> Sequence['outputs.SubnetResponse']: """ A collection of references to subnets. """ return pulumi.get(self, "subnets") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="defaultSecurityRules") def default_security_rules(self) -> Optional[Sequence['outputs.SecurityRuleResponse']]: """ The default security rules of network security group. """ return pulumi.get(self, "default_security_rules") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> Optional[str]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ The provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="resourceGuid") def resource_guid(self) -> Optional[str]: """ The resource GUID property of the network security group resource. """ return pulumi.get(self, "resource_guid") @property @pulumi.getter(name="securityRules") def security_rules(self) -> Optional[Sequence['outputs.SecurityRuleResponse']]: """ A collection of security rules of the network security group. """ return pulumi.get(self, "security_rules") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class OutboundNatRuleResponse(dict): """ Outbound NAT pool of the load balancer. """ def __init__(__self__, *, backend_address_pool: 'outputs.SubResourceResponse', allocated_outbound_ports: Optional[int] = None, etag: Optional[str] = None, frontend_ip_configurations: Optional[Sequence['outputs.SubResourceResponse']] = None, id: Optional[str] = None, name: Optional[str] = None, provisioning_state: Optional[str] = None): """ Outbound NAT pool of the load balancer. :param 'SubResourceResponseArgs' backend_address_pool: A reference to a pool of DIPs. Outbound traffic is randomly load balanced across IPs in the backend IPs. :param int allocated_outbound_ports: The number of outbound ports to be used for NAT. :param str etag: A unique read-only string that changes whenever the resource is updated. :param Sequence['SubResourceResponseArgs'] frontend_ip_configurations: The Frontend IP addresses of the load balancer. :param str id: Resource ID. :param str name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :param str provisioning_state: Gets the provisioning state of the PublicIP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ pulumi.set(__self__, "backend_address_pool", backend_address_pool) if allocated_outbound_ports is not None: pulumi.set(__self__, "allocated_outbound_ports", allocated_outbound_ports) if etag is not None: pulumi.set(__self__, "etag", etag) if frontend_ip_configurations is not None: pulumi.set(__self__, "frontend_ip_configurations", frontend_ip_configurations) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) @property @pulumi.getter(name="backendAddressPool") def backend_address_pool(self) -> 'outputs.SubResourceResponse': """ A reference to a pool of DIPs. Outbound traffic is randomly load balanced across IPs in the backend IPs. """ return pulumi.get(self, "backend_address_pool") @property @pulumi.getter(name="allocatedOutboundPorts") def allocated_outbound_ports(self) -> Optional[int]: """ The number of outbound ports to be used for NAT. """ return pulumi.get(self, "allocated_outbound_ports") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="frontendIPConfigurations") def frontend_ip_configurations(self) -> Optional[Sequence['outputs.SubResourceResponse']]: """ The Frontend IP addresses of the load balancer. """ return pulumi.get(self, "frontend_ip_configurations") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Gets the provisioning state of the PublicIP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class PacketCaptureFilterResponse(dict): """ Filter that is applied to packet capture request. Multiple filters can be applied. """ def __init__(__self__, *, local_ip_address: Optional[str] = None, local_port: Optional[str] = None, protocol: Optional[str] = None, remote_ip_address: Optional[str] = None, remote_port: Optional[str] = None): """ Filter that is applied to packet capture request. Multiple filters can be applied. :param str local_ip_address: Local IP Address to be filtered on. Notation: "127.0.0.1" for single address entry. "127.0.0.1-127.0.0.255" for range. "127.0.0.1;127.0.0.5"? for multiple entries. Multiple ranges not currently supported. Mixing ranges with multiple entries not currently supported. Default = null. :param str local_port: Local port to be filtered on. Notation: "80" for single port entry."80-85" for range. "80;443;" for multiple entries. Multiple ranges not currently supported. Mixing ranges with multiple entries not currently supported. Default = null. :param str protocol: Protocol to be filtered on. :param str remote_ip_address: Local IP Address to be filtered on. Notation: "127.0.0.1" for single address entry. "127.0.0.1-127.0.0.255" for range. "127.0.0.1;127.0.0.5;" for multiple entries. Multiple ranges not currently supported. Mixing ranges with multiple entries not currently supported. Default = null. :param str remote_port: Remote port to be filtered on. Notation: "80" for single port entry."80-85" for range. "80;443;" for multiple entries. Multiple ranges not currently supported. Mixing ranges with multiple entries not currently supported. Default = null. """ if local_ip_address is not None: pulumi.set(__self__, "local_ip_address", local_ip_address) if local_port is not None: pulumi.set(__self__, "local_port", local_port) if protocol is None: protocol = 'Any' if protocol is not None: pulumi.set(__self__, "protocol", protocol) if remote_ip_address is not None: pulumi.set(__self__, "remote_ip_address", remote_ip_address) if remote_port is not None: pulumi.set(__self__, "remote_port", remote_port) @property @pulumi.getter(name="localIPAddress") def local_ip_address(self) -> Optional[str]: """ Local IP Address to be filtered on. Notation: "127.0.0.1" for single address entry. "127.0.0.1-127.0.0.255" for range. "127.0.0.1;127.0.0.5"? for multiple entries. Multiple ranges not currently supported. Mixing ranges with multiple entries not currently supported. Default = null. """ return pulumi.get(self, "local_ip_address") @property @pulumi.getter(name="localPort") def local_port(self) -> Optional[str]: """ Local port to be filtered on. Notation: "80" for single port entry."80-85" for range. "80;443;" for multiple entries. Multiple ranges not currently supported. Mixing ranges with multiple entries not currently supported. Default = null. """ return pulumi.get(self, "local_port") @property @pulumi.getter def protocol(self) -> Optional[str]: """ Protocol to be filtered on. """ return pulumi.get(self, "protocol") @property @pulumi.getter(name="remoteIPAddress") def remote_ip_address(self) -> Optional[str]: """ Local IP Address to be filtered on. Notation: "127.0.0.1" for single address entry. "127.0.0.1-127.0.0.255" for range. "127.0.0.1;127.0.0.5;" for multiple entries. Multiple ranges not currently supported. Mixing ranges with multiple entries not currently supported. Default = null. """ return pulumi.get(self, "remote_ip_address") @property @pulumi.getter(name="remotePort") def remote_port(self) -> Optional[str]: """ Remote port to be filtered on. Notation: "80" for single port entry."80-85" for range. "80;443;" for multiple entries. Multiple ranges not currently supported. Mixing ranges with multiple entries not currently supported. Default = null. """ return pulumi.get(self, "remote_port") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class PacketCaptureStorageLocationResponse(dict): """ Describes the storage location for a packet capture session. """ def __init__(__self__, *, file_path: Optional[str] = None, storage_id: Optional[str] = None, storage_path: Optional[str] = None): """ Describes the storage location for a packet capture session. :param str file_path: A valid local path on the targeting VM. Must include the name of the capture file (*.cap). For linux virtual machine it must start with /var/captures. Required if no storage ID is provided, otherwise optional. :param str storage_id: The ID of the storage account to save the packet capture session. Required if no local file path is provided. :param str storage_path: The URI of the storage path to save the packet capture. Must be a well-formed URI describing the location to save the packet capture. """ if file_path is not None: pulumi.set(__self__, "file_path", file_path) if storage_id is not None: pulumi.set(__self__, "storage_id", storage_id) if storage_path is not None: pulumi.set(__self__, "storage_path", storage_path) @property @pulumi.getter(name="filePath") def file_path(self) -> Optional[str]: """ A valid local path on the targeting VM. Must include the name of the capture file (*.cap). For linux virtual machine it must start with /var/captures. Required if no storage ID is provided, otherwise optional. """ return pulumi.get(self, "file_path") @property @pulumi.getter(name="storageId") def storage_id(self) -> Optional[str]: """ The ID of the storage account to save the packet capture session. Required if no local file path is provided. """ return pulumi.get(self, "storage_id") @property @pulumi.getter(name="storagePath") def storage_path(self) -> Optional[str]: """ The URI of the storage path to save the packet capture. Must be a well-formed URI describing the location to save the packet capture. """ return pulumi.get(self, "storage_path") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ProbeResponse(dict): """ A load balancer probe. """ def __init__(__self__, *, load_balancing_rules: Sequence['outputs.SubResourceResponse'], port: int, protocol: str, etag: Optional[str] = None, id: Optional[str] = None, interval_in_seconds: Optional[int] = None, name: Optional[str] = None, number_of_probes: Optional[int] = None, provisioning_state: Optional[str] = None, request_path: Optional[str] = None): """ A load balancer probe. :param Sequence['SubResourceResponseArgs'] load_balancing_rules: The load balancer rules that use this probe. :param int port: The port for communicating the probe. Possible values range from 1 to 65535, inclusive. :param str protocol: The protocol of the end point. Possible values are: 'Http' or 'Tcp'. If 'Tcp' is specified, a received ACK is required for the probe to be successful. If 'Http' is specified, a 200 OK response from the specifies URI is required for the probe to be successful. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param int interval_in_seconds: The interval, in seconds, for how frequently to probe the endpoint for health status. Typically, the interval is slightly less than half the allocated timeout period (in seconds) which allows two full probes before taking the instance out of rotation. The default value is 15, the minimum value is 5. :param str name: Gets name of the resource that is unique within a resource group. This name can be used to access the resource. :param int number_of_probes: The number of probes where if no response, will result in stopping further traffic from being delivered to the endpoint. This values allows endpoints to be taken out of rotation faster or slower than the typical times used in Azure. :param str provisioning_state: Gets the provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param str request_path: The URI used for requesting health status from the VM. Path is required if a protocol is set to http. Otherwise, it is not allowed. There is no default value. """ pulumi.set(__self__, "load_balancing_rules", load_balancing_rules) pulumi.set(__self__, "port", port) pulumi.set(__self__, "protocol", protocol) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if interval_in_seconds is not None: pulumi.set(__self__, "interval_in_seconds", interval_in_seconds) if name is not None: pulumi.set(__self__, "name", name) if number_of_probes is not None: pulumi.set(__self__, "number_of_probes", number_of_probes) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if request_path is not None: pulumi.set(__self__, "request_path", request_path) @property @pulumi.getter(name="loadBalancingRules") def load_balancing_rules(self) -> Sequence['outputs.SubResourceResponse']: """ The load balancer rules that use this probe. """ return pulumi.get(self, "load_balancing_rules") @property @pulumi.getter def port(self) -> int: """ The port for communicating the probe. Possible values range from 1 to 65535, inclusive. """ return pulumi.get(self, "port") @property @pulumi.getter def protocol(self) -> str: """ The protocol of the end point. Possible values are: 'Http' or 'Tcp'. If 'Tcp' is specified, a received ACK is required for the probe to be successful. If 'Http' is specified, a 200 OK response from the specifies URI is required for the probe to be successful. """ return pulumi.get(self, "protocol") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter(name="intervalInSeconds") def interval_in_seconds(self) -> Optional[int]: """ The interval, in seconds, for how frequently to probe the endpoint for health status. Typically, the interval is slightly less than half the allocated timeout period (in seconds) which allows two full probes before taking the instance out of rotation. The default value is 15, the minimum value is 5. """ return pulumi.get(self, "interval_in_seconds") @property @pulumi.getter def name(self) -> Optional[str]: """ Gets name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="numberOfProbes") def number_of_probes(self) -> Optional[int]: """ The number of probes where if no response, will result in stopping further traffic from being delivered to the endpoint. This values allows endpoints to be taken out of rotation faster or slower than the typical times used in Azure. """ return pulumi.get(self, "number_of_probes") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Gets the provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="requestPath") def request_path(self) -> Optional[str]: """ The URI used for requesting health status from the VM. Path is required if a protocol is set to http. Otherwise, it is not allowed. There is no default value. """ return pulumi.get(self, "request_path") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class PublicIPAddressDnsSettingsResponse(dict): """ Contains FQDN of the DNS record associated with the public IP address """ def __init__(__self__, *, domain_name_label: Optional[str] = None, fqdn: Optional[str] = None, reverse_fqdn: Optional[str] = None): """ Contains FQDN of the DNS record associated with the public IP address :param str domain_name_label: Gets or sets the Domain name label.The concatenation of the domain name label and the regionalized DNS zone make up the fully qualified domain name associated with the public IP address. If a domain name label is specified, an A DNS record is created for the public IP in the Microsoft Azure DNS system. :param str fqdn: Gets the FQDN, Fully qualified domain name of the A DNS record associated with the public IP. This is the concatenation of the domainNameLabel and the regionalized DNS zone. :param str reverse_fqdn: Gets or Sets the Reverse FQDN. A user-visible, fully qualified domain name that resolves to this public IP address. If the reverseFqdn is specified, then a PTR DNS record is created pointing from the IP address in the in-addr.arpa domain to the reverse FQDN. """ if domain_name_label is not None: pulumi.set(__self__, "domain_name_label", domain_name_label) if fqdn is not None: pulumi.set(__self__, "fqdn", fqdn) if reverse_fqdn is not None: pulumi.set(__self__, "reverse_fqdn", reverse_fqdn) @property @pulumi.getter(name="domainNameLabel") def domain_name_label(self) -> Optional[str]: """ Gets or sets the Domain name label.The concatenation of the domain name label and the regionalized DNS zone make up the fully qualified domain name associated with the public IP address. If a domain name label is specified, an A DNS record is created for the public IP in the Microsoft Azure DNS system. """ return pulumi.get(self, "domain_name_label") @property @pulumi.getter def fqdn(self) -> Optional[str]: """ Gets the FQDN, Fully qualified domain name of the A DNS record associated with the public IP. This is the concatenation of the domainNameLabel and the regionalized DNS zone. """ return pulumi.get(self, "fqdn") @property @pulumi.getter(name="reverseFqdn") def reverse_fqdn(self) -> Optional[str]: """ Gets or Sets the Reverse FQDN. A user-visible, fully qualified domain name that resolves to this public IP address. If the reverseFqdn is specified, then a PTR DNS record is created pointing from the IP address in the in-addr.arpa domain to the reverse FQDN. """ return pulumi.get(self, "reverse_fqdn") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class PublicIPAddressResponse(dict): """ Public IP address resource. """ def __init__(__self__, *, ip_configuration: 'outputs.IPConfigurationResponse', name: str, type: str, dns_settings: Optional['outputs.PublicIPAddressDnsSettingsResponse'] = None, etag: Optional[str] = None, id: Optional[str] = None, idle_timeout_in_minutes: Optional[int] = None, ip_address: Optional[str] = None, location: Optional[str] = None, provisioning_state: Optional[str] = None, public_ip_address_version: Optional[str] = None, public_ip_allocation_method: Optional[str] = None, resource_guid: Optional[str] = None, tags: Optional[Mapping[str, str]] = None): """ Public IP address resource. :param 'IPConfigurationResponseArgs' ip_configuration: IPConfiguration :param str name: Resource name. :param str type: Resource type. :param 'PublicIPAddressDnsSettingsResponseArgs' dns_settings: The FQDN of the DNS record associated with the public IP address. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param int idle_timeout_in_minutes: The idle timeout of the public IP address. :param str location: Resource location. :param str provisioning_state: The provisioning state of the PublicIP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param str public_ip_address_version: The public IP address version. Possible values are: 'IPv4' and 'IPv6'. :param str public_ip_allocation_method: The public IP allocation method. Possible values are: 'Static' and 'Dynamic'. :param str resource_guid: The resource GUID property of the public IP resource. :param Mapping[str, str] tags: Resource tags. """ pulumi.set(__self__, "ip_configuration", ip_configuration) pulumi.set(__self__, "name", name) pulumi.set(__self__, "type", type) if dns_settings is not None: pulumi.set(__self__, "dns_settings", dns_settings) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if idle_timeout_in_minutes is not None: pulumi.set(__self__, "idle_timeout_in_minutes", idle_timeout_in_minutes) if ip_address is not None: pulumi.set(__self__, "ip_address", ip_address) if location is not None: pulumi.set(__self__, "location", location) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if public_ip_address_version is not None: pulumi.set(__self__, "public_ip_address_version", public_ip_address_version) if public_ip_allocation_method is not None: pulumi.set(__self__, "public_ip_allocation_method", public_ip_allocation_method) if resource_guid is not None: pulumi.set(__self__, "resource_guid", resource_guid) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="ipConfiguration") def ip_configuration(self) -> 'outputs.IPConfigurationResponse': """ IPConfiguration """ return pulumi.get(self, "ip_configuration") @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="dnsSettings") def dns_settings(self) -> Optional['outputs.PublicIPAddressDnsSettingsResponse']: """ The FQDN of the DNS record associated with the public IP address. """ return pulumi.get(self, "dns_settings") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter(name="idleTimeoutInMinutes") def idle_timeout_in_minutes(self) -> Optional[int]: """ The idle timeout of the public IP address. """ return pulumi.get(self, "idle_timeout_in_minutes") @property @pulumi.getter(name="ipAddress") def ip_address(self) -> Optional[str]: return pulumi.get(self, "ip_address") @property @pulumi.getter def location(self) -> Optional[str]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ The provisioning state of the PublicIP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="publicIPAddressVersion") def public_ip_address_version(self) -> Optional[str]: """ The public IP address version. Possible values are: 'IPv4' and 'IPv6'. """ return pulumi.get(self, "public_ip_address_version") @property @pulumi.getter(name="publicIPAllocationMethod") def public_ip_allocation_method(self) -> Optional[str]: """ The public IP allocation method. Possible values are: 'Static' and 'Dynamic'. """ return pulumi.get(self, "public_ip_allocation_method") @property @pulumi.getter(name="resourceGuid") def resource_guid(self) -> Optional[str]: """ The resource GUID property of the public IP resource. """ return pulumi.get(self, "resource_guid") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ResourceNavigationLinkResponse(dict): """ ResourceNavigationLink resource. """ def __init__(__self__, *, etag: str, provisioning_state: str, id: Optional[str] = None, link: Optional[str] = None, linked_resource_type: Optional[str] = None, name: Optional[str] = None): """ ResourceNavigationLink resource. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str provisioning_state: Provisioning state of the ResourceNavigationLink resource. :param str id: Resource ID. :param str link: Link to the external resource :param str linked_resource_type: Resource type of the linked resource. :param str name: Name of the resource that is unique within a resource group. This name can be used to access the resource. """ pulumi.set(__self__, "etag", etag) pulumi.set(__self__, "provisioning_state", provisioning_state) if id is not None: pulumi.set(__self__, "id", id) if link is not None: pulumi.set(__self__, "link", link) if linked_resource_type is not None: pulumi.set(__self__, "linked_resource_type", linked_resource_type) if name is not None: pulumi.set(__self__, "name", name) @property @pulumi.getter def etag(self) -> str: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ Provisioning state of the ResourceNavigationLink resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def link(self) -> Optional[str]: """ Link to the external resource """ return pulumi.get(self, "link") @property @pulumi.getter(name="linkedResourceType") def linked_resource_type(self) -> Optional[str]: """ Resource type of the linked resource. """ return pulumi.get(self, "linked_resource_type") @property @pulumi.getter def name(self) -> Optional[str]: """ Name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class RouteResponse(dict): """ Route resource """ def __init__(__self__, *, next_hop_type: str, address_prefix: Optional[str] = None, etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, next_hop_ip_address: Optional[str] = None, provisioning_state: Optional[str] = None): """ Route resource :param str next_hop_type: The type of Azure hop the packet should be sent to. Possible values are: 'VirtualNetworkGateway', 'VnetLocal', 'Internet', 'VirtualAppliance', and 'None' :param str address_prefix: The destination CIDR to which the route applies. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :param str next_hop_ip_address: The IP address packets should be forwarded to. Next hop values are only allowed in routes where the next hop type is VirtualAppliance. :param str provisioning_state: The provisioning state of the resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ pulumi.set(__self__, "next_hop_type", next_hop_type) if address_prefix is not None: pulumi.set(__self__, "address_prefix", address_prefix) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if next_hop_ip_address is not None: pulumi.set(__self__, "next_hop_ip_address", next_hop_ip_address) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) @property @pulumi.getter(name="nextHopType") def next_hop_type(self) -> str: """ The type of Azure hop the packet should be sent to. Possible values are: 'VirtualNetworkGateway', 'VnetLocal', 'Internet', 'VirtualAppliance', and 'None' """ return pulumi.get(self, "next_hop_type") @property @pulumi.getter(name="addressPrefix") def address_prefix(self) -> Optional[str]: """ The destination CIDR to which the route applies. """ return pulumi.get(self, "address_prefix") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="nextHopIpAddress") def next_hop_ip_address(self) -> Optional[str]: """ The IP address packets should be forwarded to. Next hop values are only allowed in routes where the next hop type is VirtualAppliance. """ return pulumi.get(self, "next_hop_ip_address") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ The provisioning state of the resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class RouteTableResponse(dict): """ Route table resource. """ def __init__(__self__, *, name: str, subnets: Sequence['outputs.SubnetResponse'], type: str, etag: Optional[str] = None, id: Optional[str] = None, location: Optional[str] = None, provisioning_state: Optional[str] = None, routes: Optional[Sequence['outputs.RouteResponse']] = None, tags: Optional[Mapping[str, str]] = None): """ Route table resource. :param str name: Resource name. :param Sequence['SubnetResponseArgs'] subnets: A collection of references to subnets. :param str type: Resource type. :param str etag: Gets a unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str location: Resource location. :param str provisioning_state: The provisioning state of the resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param Sequence['RouteResponseArgs'] routes: Collection of routes contained within a route table. :param Mapping[str, str] tags: Resource tags. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "subnets", subnets) pulumi.set(__self__, "type", type) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if location is not None: pulumi.set(__self__, "location", location) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if routes is not None: pulumi.set(__self__, "routes", routes) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter def subnets(self) -> Sequence['outputs.SubnetResponse']: """ A collection of references to subnets. """ return pulumi.get(self, "subnets") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter def etag(self) -> Optional[str]: """ Gets a unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> Optional[str]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ The provisioning state of the resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def routes(self) -> Optional[Sequence['outputs.RouteResponse']]: """ Collection of routes contained within a route table. """ return pulumi.get(self, "routes") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class SecurityRuleResponse(dict): """ Network security rule. """ def __init__(__self__, *, access: str, destination_address_prefix: str, direction: str, protocol: str, source_address_prefix: str, description: Optional[str] = None, destination_port_range: Optional[str] = None, etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, priority: Optional[int] = None, provisioning_state: Optional[str] = None, source_port_range: Optional[str] = None): """ Network security rule. :param str access: The network traffic is allowed or denied. Possible values are: 'Allow' and 'Deny'. :param str destination_address_prefix: The destination address prefix. CIDR or source IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. :param str direction: The direction of the rule. The direction specifies if rule will be evaluated on incoming or outgoing traffic. Possible values are: 'Inbound' and 'Outbound'. :param str protocol: Network protocol this rule applies to. Possible values are 'Tcp', 'Udp', and '*'. :param str source_address_prefix: The CIDR or source IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. If this is an ingress rule, specifies where network traffic originates from. :param str description: A description for this rule. Restricted to 140 chars. :param str destination_port_range: The destination port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :param int priority: The priority of the rule. The value can be between 100 and 4096. The priority number must be unique for each rule in the collection. The lower the priority number, the higher the priority of the rule. :param str provisioning_state: The provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param str source_port_range: The source port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. """ pulumi.set(__self__, "access", access) pulumi.set(__self__, "destination_address_prefix", destination_address_prefix) pulumi.set(__self__, "direction", direction) pulumi.set(__self__, "protocol", protocol) pulumi.set(__self__, "source_address_prefix", source_address_prefix) if description is not None: pulumi.set(__self__, "description", description) if destination_port_range is not None: pulumi.set(__self__, "destination_port_range", destination_port_range) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if priority is not None: pulumi.set(__self__, "priority", priority) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if source_port_range is not None: pulumi.set(__self__, "source_port_range", source_port_range) @property @pulumi.getter def access(self) -> str: """ The network traffic is allowed or denied. Possible values are: 'Allow' and 'Deny'. """ return pulumi.get(self, "access") @property @pulumi.getter(name="destinationAddressPrefix") def destination_address_prefix(self) -> str: """ The destination address prefix. CIDR or source IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. """ return pulumi.get(self, "destination_address_prefix") @property @pulumi.getter def direction(self) -> str: """ The direction of the rule. The direction specifies if rule will be evaluated on incoming or outgoing traffic. Possible values are: 'Inbound' and 'Outbound'. """ return pulumi.get(self, "direction") @property @pulumi.getter def protocol(self) -> str: """ Network protocol this rule applies to. Possible values are 'Tcp', 'Udp', and '*'. """ return pulumi.get(self, "protocol") @property @pulumi.getter(name="sourceAddressPrefix") def source_address_prefix(self) -> str: """ The CIDR or source IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. If this is an ingress rule, specifies where network traffic originates from. """ return pulumi.get(self, "source_address_prefix") @property @pulumi.getter def description(self) -> Optional[str]: """ A description for this rule. Restricted to 140 chars. """ return pulumi.get(self, "description") @property @pulumi.getter(name="destinationPortRange") def destination_port_range(self) -> Optional[str]: """ The destination port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. """ return pulumi.get(self, "destination_port_range") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def priority(self) -> Optional[int]: """ The priority of the rule. The value can be between 100 and 4096. The priority number must be unique for each rule in the collection. The lower the priority number, the higher the priority of the rule. """ return pulumi.get(self, "priority") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ The provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="sourcePortRange") def source_port_range(self) -> Optional[str]: """ The source port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. """ return pulumi.get(self, "source_port_range") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class SubResourceResponse(dict): def __init__(__self__, *, id: Optional[str] = None): """ :param str id: Resource ID. """ if id is not None: pulumi.set(__self__, "id", id) @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class SubnetResponse(dict): """ Subnet in a virtual network resource. """ def __init__(__self__, *, ip_configurations: Sequence['outputs.IPConfigurationResponse'], address_prefix: Optional[str] = None, etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, network_security_group: Optional['outputs.NetworkSecurityGroupResponse'] = None, provisioning_state: Optional[str] = None, resource_navigation_links: Optional[Sequence['outputs.ResourceNavigationLinkResponse']] = None, route_table: Optional['outputs.RouteTableResponse'] = None): """ Subnet in a virtual network resource. :param Sequence['IPConfigurationResponseArgs'] ip_configurations: Gets an array of references to the network interface IP configurations using subnet. :param str address_prefix: The address prefix for the subnet. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :param 'NetworkSecurityGroupResponseArgs' network_security_group: The reference of the NetworkSecurityGroup resource. :param str provisioning_state: The provisioning state of the resource. :param Sequence['ResourceNavigationLinkResponseArgs'] resource_navigation_links: Gets an array of references to the external resources using subnet. :param 'RouteTableResponseArgs' route_table: The reference of the RouteTable resource. """ pulumi.set(__self__, "ip_configurations", ip_configurations) if address_prefix is not None: pulumi.set(__self__, "address_prefix", address_prefix) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if network_security_group is not None: pulumi.set(__self__, "network_security_group", network_security_group) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if resource_navigation_links is not None: pulumi.set(__self__, "resource_navigation_links", resource_navigation_links) if route_table is not None: pulumi.set(__self__, "route_table", route_table) @property @pulumi.getter(name="ipConfigurations") def ip_configurations(self) -> Sequence['outputs.IPConfigurationResponse']: """ Gets an array of references to the network interface IP configurations using subnet. """ return pulumi.get(self, "ip_configurations") @property @pulumi.getter(name="addressPrefix") def address_prefix(self) -> Optional[str]: """ The address prefix for the subnet. """ return pulumi.get(self, "address_prefix") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="networkSecurityGroup") def network_security_group(self) -> Optional['outputs.NetworkSecurityGroupResponse']: """ The reference of the NetworkSecurityGroup resource. """ return pulumi.get(self, "network_security_group") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ The provisioning state of the resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="resourceNavigationLinks") def resource_navigation_links(self) -> Optional[Sequence['outputs.ResourceNavigationLinkResponse']]: """ Gets an array of references to the external resources using subnet. """ return pulumi.get(self, "resource_navigation_links") @property @pulumi.getter(name="routeTable") def route_table(self) -> Optional['outputs.RouteTableResponse']: """ The reference of the RouteTable resource. """ return pulumi.get(self, "route_table") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class TunnelConnectionHealthResponse(dict): """ VirtualNetworkGatewayConnection properties """ def __init__(__self__, *, connection_status: str, egress_bytes_transferred: float, ingress_bytes_transferred: float, last_connection_established_utc_time: str, tunnel: str): """ VirtualNetworkGatewayConnection properties :param str connection_status: Virtual network Gateway connection status :param float egress_bytes_transferred: The Egress Bytes Transferred in this connection :param float ingress_bytes_transferred: The Ingress Bytes Transferred in this connection :param str last_connection_established_utc_time: The time at which connection was established in Utc format. :param str tunnel: Tunnel name. """ pulumi.set(__self__, "connection_status", connection_status) pulumi.set(__self__, "egress_bytes_transferred", egress_bytes_transferred) pulumi.set(__self__, "ingress_bytes_transferred", ingress_bytes_transferred) pulumi.set(__self__, "last_connection_established_utc_time", last_connection_established_utc_time) pulumi.set(__self__, "tunnel", tunnel) @property @pulumi.getter(name="connectionStatus") def connection_status(self) -> str: """ Virtual network Gateway connection status """ return pulumi.get(self, "connection_status") @property @pulumi.getter(name="egressBytesTransferred") def egress_bytes_transferred(self) -> float: """ The Egress Bytes Transferred in this connection """ return pulumi.get(self, "egress_bytes_transferred") @property @pulumi.getter(name="ingressBytesTransferred") def ingress_bytes_transferred(self) -> float: """ The Ingress Bytes Transferred in this connection """ return pulumi.get(self, "ingress_bytes_transferred") @property @pulumi.getter(name="lastConnectionEstablishedUtcTime") def last_connection_established_utc_time(self) -> str: """ The time at which connection was established in Utc format. """ return pulumi.get(self, "last_connection_established_utc_time") @property @pulumi.getter def tunnel(self) -> str: """ Tunnel name. """ return pulumi.get(self, "tunnel") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class VirtualNetworkGatewayIPConfigurationResponse(dict): """ IP configuration for virtual network gateway """ def __init__(__self__, *, provisioning_state: str, public_ip_address: 'outputs.SubResourceResponse', subnet: 'outputs.SubResourceResponse', etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, private_ip_allocation_method: Optional[str] = None): """ IP configuration for virtual network gateway :param str provisioning_state: The provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param 'SubResourceResponseArgs' public_ip_address: The reference of the public IP resource. :param 'SubResourceResponseArgs' subnet: The reference of the subnet resource. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :param str private_ip_allocation_method: The private IP allocation method. Possible values are: 'Static' and 'Dynamic'. """ pulumi.set(__self__, "provisioning_state", provisioning_state) pulumi.set(__self__, "public_ip_address", public_ip_address) pulumi.set(__self__, "subnet", subnet) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if private_ip_allocation_method is not None: pulumi.set(__self__, "private_ip_allocation_method", private_ip_allocation_method) @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="publicIPAddress") def public_ip_address(self) -> 'outputs.SubResourceResponse': """ The reference of the public IP resource. """ return pulumi.get(self, "public_ip_address") @property @pulumi.getter def subnet(self) -> 'outputs.SubResourceResponse': """ The reference of the subnet resource. """ return pulumi.get(self, "subnet") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="privateIPAllocationMethod") def private_ip_allocation_method(self) -> Optional[str]: """ The private IP allocation method. Possible values are: 'Static' and 'Dynamic'. """ return pulumi.get(self, "private_ip_allocation_method") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class VirtualNetworkGatewayResponse(dict): """ A common class for general resource information """ def __init__(__self__, *, gateway_type: str, ip_configurations: Sequence['outputs.VirtualNetworkGatewayIPConfigurationResponse'], name: str, provisioning_state: str, type: str, vpn_type: str, active_active: Optional[bool] = None, bgp_settings: Optional['outputs.BgpSettingsResponse'] = None, enable_bgp: Optional[bool] = None, etag: Optional[str] = None, gateway_default_site: Optional['outputs.SubResourceResponse'] = None, id: Optional[str] = None, location: Optional[str] = None, resource_guid: Optional[str] = None, sku: Optional['outputs.VirtualNetworkGatewaySkuResponse'] = None, tags: Optional[Mapping[str, str]] = None, vpn_client_configuration: Optional['outputs.VpnClientConfigurationResponse'] = None): """ A common class for general resource information :param str gateway_type: The type of this virtual network gateway. Possible values are: 'Vpn' and 'ExpressRoute'. :param Sequence['VirtualNetworkGatewayIPConfigurationResponseArgs'] ip_configurations: IP configurations for virtual network gateway. :param str name: Resource name. :param str provisioning_state: The provisioning state of the VirtualNetworkGateway resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param str type: Resource type. :param str vpn_type: The type of this virtual network gateway. Possible values are: 'PolicyBased' and 'RouteBased'. :param bool active_active: ActiveActive flag :param 'BgpSettingsResponseArgs' bgp_settings: Virtual network gateway's BGP speaker settings. :param bool enable_bgp: Whether BGP is enabled for this virtual network gateway or not. :param str etag: Gets a unique read-only string that changes whenever the resource is updated. :param 'SubResourceResponseArgs' gateway_default_site: The reference of the LocalNetworkGateway resource which represents local network site having default routes. Assign Null value in case of removing existing default site setting. :param str id: Resource ID. :param str location: Resource location. :param str resource_guid: The resource GUID property of the VirtualNetworkGateway resource. :param 'VirtualNetworkGatewaySkuResponseArgs' sku: The reference of the VirtualNetworkGatewaySku resource which represents the SKU selected for Virtual network gateway. :param Mapping[str, str] tags: Resource tags. :param 'VpnClientConfigurationResponseArgs' vpn_client_configuration: The reference of the VpnClientConfiguration resource which represents the P2S VpnClient configurations. """ pulumi.set(__self__, "gateway_type", gateway_type) pulumi.set(__self__, "ip_configurations", ip_configurations) pulumi.set(__self__, "name", name) pulumi.set(__self__, "provisioning_state", provisioning_state) pulumi.set(__self__, "type", type) pulumi.set(__self__, "vpn_type", vpn_type) if active_active is not None: pulumi.set(__self__, "active_active", active_active) if bgp_settings is not None: pulumi.set(__self__, "bgp_settings", bgp_settings) if enable_bgp is not None: pulumi.set(__self__, "enable_bgp", enable_bgp) if etag is not None: pulumi.set(__self__, "etag", etag) if gateway_default_site is not None: pulumi.set(__self__, "gateway_default_site", gateway_default_site) if id is not None: pulumi.set(__self__, "id", id) if location is not None: pulumi.set(__self__, "location", location) if resource_guid is not None: pulumi.set(__self__, "resource_guid", resource_guid) if sku is not None: pulumi.set(__self__, "sku", sku) if tags is not None: pulumi.set(__self__, "tags", tags) if vpn_client_configuration is not None: pulumi.set(__self__, "vpn_client_configuration", vpn_client_configuration) @property @pulumi.getter(name="gatewayType") def gateway_type(self) -> str: """ The type of this virtual network gateway. Possible values are: 'Vpn' and 'ExpressRoute'. """ return pulumi.get(self, "gateway_type") @property @pulumi.getter(name="ipConfigurations") def ip_configurations(self) -> Sequence['outputs.VirtualNetworkGatewayIPConfigurationResponse']: """ IP configurations for virtual network gateway. """ return pulumi.get(self, "ip_configurations") @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The provisioning state of the VirtualNetworkGateway resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="vpnType") def vpn_type(self) -> str: """ The type of this virtual network gateway. Possible values are: 'PolicyBased' and 'RouteBased'. """ return pulumi.get(self, "vpn_type") @property @pulumi.getter(name="activeActive") def active_active(self) -> Optional[bool]: """ ActiveActive flag """ return pulumi.get(self, "active_active") @property @pulumi.getter(name="bgpSettings") def bgp_settings(self) -> Optional['outputs.BgpSettingsResponse']: """ Virtual network gateway's BGP speaker settings. """ return pulumi.get(self, "bgp_settings") @property @pulumi.getter(name="enableBgp") def enable_bgp(self) -> Optional[bool]: """ Whether BGP is enabled for this virtual network gateway or not. """ return pulumi.get(self, "enable_bgp") @property @pulumi.getter def etag(self) -> Optional[str]: """ Gets a unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="gatewayDefaultSite") def gateway_default_site(self) -> Optional['outputs.SubResourceResponse']: """ The reference of the LocalNetworkGateway resource which represents local network site having default routes. Assign Null value in case of removing existing default site setting. """ return pulumi.get(self, "gateway_default_site") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> Optional[str]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter(name="resourceGuid") def resource_guid(self) -> Optional[str]: """ The resource GUID property of the VirtualNetworkGateway resource. """ return pulumi.get(self, "resource_guid") @property @pulumi.getter def sku(self) -> Optional['outputs.VirtualNetworkGatewaySkuResponse']: """ The reference of the VirtualNetworkGatewaySku resource which represents the SKU selected for Virtual network gateway. """ return pulumi.get(self, "sku") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="vpnClientConfiguration") def vpn_client_configuration(self) -> Optional['outputs.VpnClientConfigurationResponse']: """ The reference of the VpnClientConfiguration resource which represents the P2S VpnClient configurations. """ return pulumi.get(self, "vpn_client_configuration") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class VirtualNetworkGatewaySkuResponse(dict): """ VirtualNetworkGatewaySku details """ def __init__(__self__, *, name: str, tier: str, capacity: Optional[int] = None): """ VirtualNetworkGatewaySku details :param str name: Gateway SKU name. Possible values are: 'Basic', 'HighPerformance','Standard', and 'UltraPerformance'. :param str tier: Gateway SKU tier. Possible values are: 'Basic', 'HighPerformance','Standard', and 'UltraPerformance'. :param int capacity: The capacity. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "tier", tier) if capacity is not None: pulumi.set(__self__, "capacity", capacity) @property @pulumi.getter def name(self) -> str: """ Gateway SKU name. Possible values are: 'Basic', 'HighPerformance','Standard', and 'UltraPerformance'. """ return pulumi.get(self, "name") @property @pulumi.getter def tier(self) -> str: """ Gateway SKU tier. Possible values are: 'Basic', 'HighPerformance','Standard', and 'UltraPerformance'. """ return pulumi.get(self, "tier") @property @pulumi.getter def capacity(self) -> Optional[int]: """ The capacity. """ return pulumi.get(self, "capacity") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class VirtualNetworkPeeringResponse(dict): """ Peerings in a virtual network resource. """ def __init__(__self__, *, allow_forwarded_traffic: Optional[bool] = None, allow_gateway_transit: Optional[bool] = None, allow_virtual_network_access: Optional[bool] = None, etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, peering_state: Optional[str] = None, provisioning_state: Optional[str] = None, remote_virtual_network: Optional['outputs.SubResourceResponse'] = None, use_remote_gateways: Optional[bool] = None): """ Peerings in a virtual network resource. :param bool allow_forwarded_traffic: Whether the forwarded traffic from the VMs in the remote virtual network will be allowed/disallowed. :param bool allow_gateway_transit: If gateway links can be used in remote virtual networking to link to this virtual network. :param bool allow_virtual_network_access: Whether the VMs in the linked virtual network space would be able to access all the VMs in local Virtual network space. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :param str peering_state: The status of the virtual network peering. Possible values are 'Initiated', 'Connected', and 'Disconnected'. :param str provisioning_state: The provisioning state of the resource. :param 'SubResourceResponseArgs' remote_virtual_network: The reference of the remote virtual network. :param bool use_remote_gateways: If remote gateways can be used on this virtual network. If the flag is set to true, and allowGatewayTransit on remote peering is also true, virtual network will use gateways of remote virtual network for transit. Only one peering can have this flag set to true. This flag cannot be set if virtual network already has a gateway. """ if allow_forwarded_traffic is not None: pulumi.set(__self__, "allow_forwarded_traffic", allow_forwarded_traffic) if allow_gateway_transit is not None: pulumi.set(__self__, "allow_gateway_transit", allow_gateway_transit) if allow_virtual_network_access is not None: pulumi.set(__self__, "allow_virtual_network_access", allow_virtual_network_access) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if peering_state is not None: pulumi.set(__self__, "peering_state", peering_state) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) if remote_virtual_network is not None: pulumi.set(__self__, "remote_virtual_network", remote_virtual_network) if use_remote_gateways is not None: pulumi.set(__self__, "use_remote_gateways", use_remote_gateways) @property @pulumi.getter(name="allowForwardedTraffic") def allow_forwarded_traffic(self) -> Optional[bool]: """ Whether the forwarded traffic from the VMs in the remote virtual network will be allowed/disallowed. """ return pulumi.get(self, "allow_forwarded_traffic") @property @pulumi.getter(name="allowGatewayTransit") def allow_gateway_transit(self) -> Optional[bool]: """ If gateway links can be used in remote virtual networking to link to this virtual network. """ return pulumi.get(self, "allow_gateway_transit") @property @pulumi.getter(name="allowVirtualNetworkAccess") def allow_virtual_network_access(self) -> Optional[bool]: """ Whether the VMs in the linked virtual network space would be able to access all the VMs in local Virtual network space. """ return pulumi.get(self, "allow_virtual_network_access") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="peeringState") def peering_state(self) -> Optional[str]: """ The status of the virtual network peering. Possible values are 'Initiated', 'Connected', and 'Disconnected'. """ return pulumi.get(self, "peering_state") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ The provisioning state of the resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="remoteVirtualNetwork") def remote_virtual_network(self) -> Optional['outputs.SubResourceResponse']: """ The reference of the remote virtual network. """ return pulumi.get(self, "remote_virtual_network") @property @pulumi.getter(name="useRemoteGateways") def use_remote_gateways(self) -> Optional[bool]: """ If remote gateways can be used on this virtual network. If the flag is set to true, and allowGatewayTransit on remote peering is also true, virtual network will use gateways of remote virtual network for transit. Only one peering can have this flag set to true. This flag cannot be set if virtual network already has a gateway. """ return pulumi.get(self, "use_remote_gateways") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class VpnClientConfigurationResponse(dict): """ VpnClientConfiguration for P2S client. """ def __init__(__self__, *, vpn_client_address_pool: Optional['outputs.AddressSpaceResponse'] = None, vpn_client_revoked_certificates: Optional[Sequence['outputs.VpnClientRevokedCertificateResponse']] = None, vpn_client_root_certificates: Optional[Sequence['outputs.VpnClientRootCertificateResponse']] = None): """ VpnClientConfiguration for P2S client. :param 'AddressSpaceResponseArgs' vpn_client_address_pool: The reference of the address space resource which represents Address space for P2S VpnClient. :param Sequence['VpnClientRevokedCertificateResponseArgs'] vpn_client_revoked_certificates: VpnClientRevokedCertificate for Virtual network gateway. :param Sequence['VpnClientRootCertificateResponseArgs'] vpn_client_root_certificates: VpnClientRootCertificate for virtual network gateway. """ if vpn_client_address_pool is not None: pulumi.set(__self__, "vpn_client_address_pool", vpn_client_address_pool) if vpn_client_revoked_certificates is not None: pulumi.set(__self__, "vpn_client_revoked_certificates", vpn_client_revoked_certificates) if vpn_client_root_certificates is not None: pulumi.set(__self__, "vpn_client_root_certificates", vpn_client_root_certificates) @property @pulumi.getter(name="vpnClientAddressPool") def vpn_client_address_pool(self) -> Optional['outputs.AddressSpaceResponse']: """ The reference of the address space resource which represents Address space for P2S VpnClient. """ return pulumi.get(self, "vpn_client_address_pool") @property @pulumi.getter(name="vpnClientRevokedCertificates") def vpn_client_revoked_certificates(self) -> Optional[Sequence['outputs.VpnClientRevokedCertificateResponse']]: """ VpnClientRevokedCertificate for Virtual network gateway. """ return pulumi.get(self, "vpn_client_revoked_certificates") @property @pulumi.getter(name="vpnClientRootCertificates") def vpn_client_root_certificates(self) -> Optional[Sequence['outputs.VpnClientRootCertificateResponse']]: """ VpnClientRootCertificate for virtual network gateway. """ return pulumi.get(self, "vpn_client_root_certificates") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class VpnClientRevokedCertificateResponse(dict): """ VPN client revoked certificate of virtual network gateway. """ def __init__(__self__, *, provisioning_state: str, etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None, thumbprint: Optional[str] = None): """ VPN client revoked certificate of virtual network gateway. :param str provisioning_state: The provisioning state of the VPN client revoked certificate resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :param str thumbprint: The revoked VPN client certificate thumbprint. """ pulumi.set(__self__, "provisioning_state", provisioning_state) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if thumbprint is not None: pulumi.set(__self__, "thumbprint", thumbprint) @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The provisioning state of the VPN client revoked certificate resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def thumbprint(self) -> Optional[str]: """ The revoked VPN client certificate thumbprint. """ return pulumi.get(self, "thumbprint") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class VpnClientRootCertificateResponse(dict): """ VPN client root certificate of virtual network gateway """ def __init__(__self__, *, provisioning_state: str, public_cert_data: str, etag: Optional[str] = None, id: Optional[str] = None, name: Optional[str] = None): """ VPN client root certificate of virtual network gateway :param str provisioning_state: The provisioning state of the VPN client root certificate resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param str public_cert_data: The certificate public data. :param str etag: A unique read-only string that changes whenever the resource is updated. :param str id: Resource ID. :param str name: The name of the resource that is unique within a resource group. This name can be used to access the resource. """ pulumi.set(__self__, "provisioning_state", provisioning_state) pulumi.set(__self__, "public_cert_data", public_cert_data) if etag is not None: pulumi.set(__self__, "etag", etag) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The provisioning state of the VPN client root certificate resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="publicCertData") def public_cert_data(self) -> str: """ The certificate public data. """ return pulumi.get(self, "public_cert_data") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> Optional[str]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop
from .BasicTypeAttr import BasicTypeAttr class StringAttr(BasicTypeAttr): def __init__(self, attr): BasicTypeAttr.__init__(self, attr) if self.get('Max') is not None: self['Max'] = int(self['Max']) if self.get('Min') is not None: self['Min'] = int(self['Min']) def printWarnings(self, out): if self.get('Max') in (None, '') and not self.get('SQLType'): out.write('warning: model %s: class %s: attr %s: max string length unspecified\n' % ( self.model().name(), self.klass().name(), self.name()))
import datetime from django.conf import settings from django.contrib.auth.decorators import user_passes_test from django.http import HttpResponse, Http404, HttpResponseRedirect from django.shortcuts import render_to_response from django.template import loader, Context from equipment.models import ItemType, Item, ItemError, Penalty, Transaction, TransactionError from infobase.models import Person, STUDENT_KIND, PHASE_END_DATES, phase_for_cohort_and_date def recent_transactions(person, number=6, hours=1, kind=None): """Fetch recent transactions by this person""" cutoff_datetime = datetime.datetime.now() - datetime.timedelta(hours=hours) checkouts = person.transaction_set.filter(kind=kind, timestamp__gte=cutoff_datetime) items = [c.item for c in checkouts[:number]] return items def admin_access_allowed(user): """Does the user have the right permissions to be using this app?""" if user: return bool(user.groups.filter(name="equipment_tracker").count()) def render_response(template, var_dict, mimetype, filename): """Simple substitute for render_to_response (backporting some Django-1.0 stuff)""" t = loader.get_template(template) c = Context(var_dict) response = HttpResponse(t.render(c), mimetype=mimetype) response['Content-Disposition'] = "attachment; filename=%s" % filename return response @user_passes_test(admin_access_allowed) def home(request): """Equipment app home page""" title = "Main Menu" message = "Welcome to the equipment tracker." return render_to_response("home.html", locals()) @user_passes_test(admin_access_allowed) def check_in(request): """ GET: Show check-in form. POST: Check in the scanned item. """ title = "Check in" if request.method == "POST": number = request.POST['number'] try: item = Item.find_by_number(number) person = item.checked_out_by title = "Checked in %s" % item if item.days_overdue(): title += " (OVERDUE)" item.check_in() message = item.transaction_set.latest() recent_checkins = recent_transactions(person, kind=Transaction.CHECKIN) except (ItemError, TransactionError), error_message: pass return render_to_response("checkin.html", locals()) def checkout_url(request, due_timestamp, person_id): """ Helper method that builds a URL to be used in a redirect. It will either have both due-timestamp and user ID number, or just user ID number. If GET values are provided in `request`, for `due_timestamp` or `person_id`, they override the corresponding passed arguments. """ if set(["due_date", "due_time"]).issubset(request.GET): due_timestamp = (request.GET['due_date'] + "-" + request.GET['due_time']).replace(":", "-") if due_timestamp: url_template = "/equipment/checkout/%s/%%s/" % due_timestamp else: url_template = "/equipment/checkout/%s/" if "person_id" in request.GET: person_id = request.GET['person_id'] if Person.objects.filter(id_number=person_id).count() == 0: raise Person.DoesNotExist("UNKNOWN") url = url_template % person_id return url @user_passes_test(admin_access_allowed) def check_out(request, person_id=None, due_timestamp=None): """ This view handles all stages of the checkout operation. In order for checkout to begin, a person_id must be in the URL. Optional due_timestamp is also in the URL. Those are designed to persist; i.e. if you change the person the custom due date (if any) is kept, and if you change the due date the person (if any) is kept. """ # Set default due date values for use in "Change due date" form dummy_item = Item() dummy_item.set_due_datetime() example_due_date = dummy_item.due.date() example_due_time = dummy_item.due.time() # If a specific due-date was requested, set it if due_timestamp: custom_due_datetime = datetime.datetime.strptime(due_timestamp, "%Y-%m-%d-%H-%M") else: custom_due_datetime = None title = "Scan ID" try: # If a change is requested for person or due date, update the URL if set(["due_date", "due_time", "person_id"]).intersection(request.GET): url = checkout_url(request, due_timestamp, person_id) return HttpResponseRedirect(url) if person_id: person = Person.objects.get(id_number=person_id) if not person.is_active(): raise Person.DoesNotExist("ID EXPIRED") title = "Checking out equipment to %s" % person recent_checkouts = recent_transactions(person, kind=Transaction.CHECKOUT) if request.method == "POST" and request.POST['number']: try: item = Item.find_by_number(request.POST['number']) item.check_out(person, custom_due_datetime) message = "Checked out %s" % item soundfile = "Glass.aiff" except (ItemError, TransactionError), error_message: soundfile = "error.mp3" except Person.DoesNotExist, reason: title = "Bad ID" id_number = person_id or request.GET['person_id'] error_message = "%s: %s" % (id_number, reason) person = None soundfile = "error.mp3" return render_to_response("checkout.html", locals()) @user_passes_test(admin_access_allowed) def item(request): """Display information on the specified item, with some editing options.""" title = "Find an item" if 'number' in request.GET: number = request.GET['number'] try: item = Item.find_by_number(number) title = unicode(item) history = item.transaction_set.all() except ItemError, error_message: pass else: message = "Type or scan the item's HIP number or serial number" return render_to_response("item.html", locals()) @user_passes_test(admin_access_allowed) def person(request): """ Display information on the specified borrower (person) """ title = "Find a person" if 'person_id' in request.GET: person_id = request.GET['person_id'] try: person = Person.objects.get(id_number=person_id) title = unicode(person) checked_out_items = person.item_set.all() transaction_history = person.transaction_set.all() except Person.DoesNotExist: error_message = "No person with id number %s" % person_id else: message = "Enter or scan the person's ID number" people = Person.objects.enrolled() # For clickable list of names return render_to_response("person.html", locals()) def _penalty_report_data(cohort, phase=None): """ Data rows for late-equipment report """ if phase is None: phase = phase_for_cohort_and_date(cohort, datetime.date.today()) else: phase = int(phase) if phase < 2 or phase > 4: raise ValueError start_date = PHASE_END_DATES[cohort][phase-1] end_date = PHASE_END_DATES[cohort][phase] all_penalties = Penalty.objects.filter(when_levied__range=(start_date, end_date)) rows = [("Firstname", "Lastname", "ID number", "Date", "Amount")] rows += [(p.student.firstname, p.student.lastname, p.student.id_number, p.when_levied, 0-p.amount) for p in all_penalties] return rows @user_passes_test(admin_access_allowed) def report(request, report_kind=None, number=None): """ General-purpose reporting view. To add a new report type, add an appropriate `if` clause here, and a corresponding `{% if ... %}` clause in the template for display. """ if report_kind: now = datetime.datetime.now() title = "%s Report" % report_kind.title() try: if report_kind == "kits": kits = Item.objects.filter(itemtype__kit=True) if report_kind == "item": item = Item.find_by_number(number) title = item if report_kind == "instock": itemtypes = [i for i in ItemType.objects.all() if i.how_many_in_stock()] if report_kind == "latepenalties": try: report_rows = _penalty_report_data(cohort=1, phase=number) csv_link = "/equipment/report/latepenalties-csv/" filename = "late_equipment.csv" except ValueError: report_rows = None error_message = "Can't generate report (incorrect phase?)" if report_kind.startswith("out-"): items = Item.objects.filter(status=Item.OUT, part_of_kit__isnull=True).order_by("due") if report_kind.startswith("overdue-"): items = Item.objects.filter(status=Item.OUT, due__lt=now, part_of_kit__isnull=True).order_by("due","checked_out_by") if report_kind.endswith("-student"): items = items.filter(checked_out_by__kind=STUDENT_KIND) if report_kind.endswith("-staff"): items = items.exclude(checked_out_by__kind=STUDENT_KIND) except ItemError, error_message: pass # Letting error_message get picked up by the template else: title = "Reports" if report_kind and report_kind.endswith("-csv") and report_rows: return render_response("csv.html", locals(), mimetype="text/csv", filename=filename) else: return render_to_response("report.html", locals()) @user_passes_test(admin_access_allowed) def find(request): """Control panel for finding items""" return render_to_response("find.html", locals()) @user_passes_test(admin_access_allowed) def add(request): """Interface for adding new items to the system.""" title = "Add, edit, or delete equipment items" return render_to_response("add.html", locals()) @user_passes_test(admin_access_allowed) def buildkit(request, kit_id=None): """ Helper view for building up kits. If no kit ID is passed, we ask for a kit. If a kit ID is passed (via URL), we ask for items to add. Workflow: Create (empty) kits in admin; come to this view and add items """ if "kit_id" in request.GET: return HttpResponseRedirect("/equipment/buildkit/%s/" % request.GET['kit_id']) title = "Enter/scan kit ID number" if kit_id: try: kit = Item.find_by_number(kit_id) assert(kit.itemtype.kit==True) title = "Adding equipment to %s" % kit except (Item.DoesNotExist, AssertionError): raise Http404 if request.method == "POST": number = request.POST['number'] item = Item.find_by_number(number) try: assert(item.itemtype.kit==False) # Don't add a kit to a kit assert(item.part_of_kit==None) # Item must not already be in a kit kit.contents.add(item) message = "Added %s" % item except ItemError, error_message: pass return render_to_response("buildkit.html", locals()) @user_passes_test(admin_access_allowed) def penalty_statement(request, person_id): """ Present a printable statement of dollar-credit penalties accrued due to late equipment. Also helps create that statement (presenting list of overdue equipment with a submit button). """ if person_id: try: person = Person.objects.get(id_number=person_id) except Person.DoesNotExist: return Http404 if request.method == "POST": new_penalty = Penalty.levy(person) message = "$%s penalty levied" % new_penalty.amount else: current_phase = phase_for_cohort_and_date(person.student_cohort, datetime.date.today()) phase_start = PHASE_END_DATES[person.student_cohort][current_phase - 1] penalties = person.penalty_set.filter(when_levied__gte=phase_start) total = sum(p.amount for p in penalties) overduesies = Item.objects.filter(status=Item.OUT, due__lt=datetime.datetime.now(), checked_out_by=person).order_by("due") # If overdue items have already been charged in a penalty, don't show them for penalty in penalties: if set(i.id for i in overduesies) == set(i.id for i in penalty.items.all()): overduesies = None break else: # If no person_id is passed, template can display a list people = Person.objects.enrolled() return render_to_response("penalty_statement.html", locals())
from numba import jit import sys @jit def fib(n): return 1 if n < 3 else fib(n-1) + fib(n-2) if __name__ == "__main__": n = int(sys.argv[1]) print("{}".format(fib(n)))
import contextlib import json import os import pprint import shutil import signal import socket import subprocess import sys import tempfile import time from cytoolz import ( merge, valmap, ) from eth_utils.curried import ( apply_formatter_if, is_bytes, is_checksum_address, is_dict, is_same_address, remove_0x_prefix, to_hex, to_text, to_wei, ) from webu import Webu from webu.utils.module_testing.emitter_contract import ( EMITTER_ABI, EMITTER_BYTECODE, EMITTER_ENUM, ) from webu.utils.module_testing.math_contract import ( MATH_ABI, MATH_BYTECODE, ) COINBASE = '0xdc544d1aa88ff8bbd2f2aec754b1f1e99e1812fd' COINBASE_PK = '0x58d23b55bc9cdce1f18c2500f40ff4ab7245df9a89505e9b1fa4851f623d241d' KEYFILE_DATA = '{"address":"dc544d1aa88ff8bbd2f2aec754b1f1e99e1812fd","crypto":{"cipher":"aes-128-ctr","ciphertext":"52e06bc9397ea9fa2f0dae8de2b3e8116e92a2ecca9ad5ff0061d1c449704e98","cipherparams":{"iv":"aa5d0a5370ef65395c1a6607af857124"},"kdf":"scrypt","kdfparams":{"dklen":32,"n":262144,"p":1,"r":8,"salt":"9fdf0764eb3645ffc184e166537f6fe70516bf0e34dc7311dea21f100f0c9263"},"mac":"4e0b51f42b865c15c485f4faefdd1f01a38637e5247f8c75ffe6a8c0eba856f6"},"id":"5a6124e0-10f1-4c1c-ae3e-d903eacb740a","version":3}' # noqa: E501 KEYFILE_PW = 'webupy-test' KEYFILE_FILENAME = 'UTC--2017-08-24T19-42-47.517572178Z--dc544d1aa88ff8bbd2f2aec754b1f1e99e1812fd' # noqa: E501 RAW_TXN_ACCOUNT = '0x39EEed73fb1D3855E90Cbd42f348b3D7b340aAA6' UNLOCKABLE_PRIVATE_KEY = '0x392f63a79b1ff8774845f3fa69de4a13800a59e7083f5187f1558f0797ad0f01' UNLOCKABLE_ACCOUNT = '0x12efdc31b1a8fa1a1e756dfd8a1601055c971e13' UNLOCKABLE_ACCOUNT_PW = KEYFILE_PW GENESIS_DATA = { "nonce": "0xdeadbeefdeadbeef", "timestamp": "0x0", "parentHash": "0x0000000000000000000000000000000000000000000000000000000000000000", # noqa: E501 "extraData": "0x7765623370792d746573742d636861696e", "gasLimit": "0x47d5cc", "difficulty": "0x01", "mixhash": "0x0000000000000000000000000000000000000000000000000000000000000000", # noqa: E501 "coinbase": "0x3333333333333333333333333333333333333333", "alloc": { remove_0x_prefix(COINBASE): { 'balance': str(to_wei(1000000000, 'huc')), }, remove_0x_prefix(RAW_TXN_ACCOUNT): { 'balance': str(to_wei(10, 'huc')), }, remove_0x_prefix(UNLOCKABLE_ACCOUNT): { 'balance': str(to_wei(10, 'huc')), }, }, "config": { "chainId": 131277322940537, # the string 'webupy' as an integer "homesteadBlock": 0, "eip155Block": 0, "eip158Block": 0 }, } def ensure_path_exists(dir_path): """ Make sure that a path exists """ if not os.path.exists(dir_path): os.makedirs(dir_path) return True return False @contextlib.contextmanager def tempdir(): dir_path = tempfile.mkdtemp() try: yield dir_path finally: shutil.rmtree(dir_path) def get_open_port(): sock = socket.socket() sock.bind(('127.0.0.1', 0)) port = sock.getsockname()[1] sock.close() return str(port) def get_ghuc_binary(): from ghuc.install import ( get_executable_path, install_ghuc, ) if 'GETH_BINARY' in os.environ: return os.environ['GETH_BINARY'] elif 'GETH_VERSION' in os.environ: ghuc_version = os.environ['GETH_VERSION'] _ghuc_binary = get_executable_path(ghuc_version) if not os.path.exists(_ghuc_binary): install_ghuc(ghuc_version) assert os.path.exists(_ghuc_binary) return _ghuc_binary else: return 'ghuc' def wait_for_popen(proc, timeout): start = time.time() while time.time() < start + timeout: if proc.poll() is None: time.sleep(0.01) else: break def kill_proc_gracefully(proc): if proc.poll() is None: proc.send_signal(signal.SIGINT) wait_for_popen(proc, 13) if proc.poll() is None: proc.terminate() wait_for_popen(proc, 5) if proc.poll() is None: proc.kill() wait_for_popen(proc, 2) def wait_for_socket(ipc_path, timeout=30): start = time.time() while time.time() < start + timeout: try: sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) sock.connect(ipc_path) sock.settimeout(timeout) except (FileNotFoundError, socket.error): time.sleep(0.01) else: break @contextlib.contextmanager def graceful_kill_on_exit(proc): try: yield proc finally: kill_proc_gracefully(proc) @contextlib.contextmanager def get_ghuc_process(ghuc_binary, datadir, genesis_file_path, ghuc_ipc_path, ghuc_port): init_datadir_command = ( ghuc_binary, '--datadir', datadir, 'init', genesis_file_path, ) subprocess.check_output( init_datadir_command, stdin=subprocess.PIPE, stderr=subprocess.PIPE, ) run_ghuc_command = ( ghuc_binary, '--datadir', datadir, '--ipcpath', ghuc_ipc_path, '--ethash.dagsondisk', '1', '--gcmode', 'archive', '--nodiscover', '--port', ghuc_port, '--coinbase', COINBASE[2:], ) popen_proc = subprocess.Popen( run_ghuc_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=1, ) with popen_proc as proc: with graceful_kill_on_exit(proc) as graceful_proc: yield graceful_proc output, errors = proc.communicate() print( "Ghuc Process Exited:\n" "stdout:{0}\n\n" "stderr:{1}\n\n".format( to_text(output), to_text(errors), ) ) def write_config_json(config, datadir): bytes_to_hex = apply_formatter_if(is_bytes, to_hex) config_json_dict = valmap(bytes_to_hex, config) config_path = os.path.join(datadir, 'config.json') with open(config_path, 'w') as config_file: config_file.write(json.dumps(config_json_dict)) config_file.write('\n') def generate_go_happyuc_fixture(destination_dir): with contextlib.ExitStack() as stack: datadir = stack.enter_context(tempdir()) keystore_dir = os.path.join(datadir, 'keystore') ensure_path_exists(keystore_dir) keyfile_path = os.path.join(keystore_dir, KEYFILE_FILENAME) with open(keyfile_path, 'w') as keyfile: keyfile.write(KEYFILE_DATA) genesis_file_path = os.path.join(datadir, 'genesis.json') with open(genesis_file_path, 'w') as genesis_file: genesis_file.write(json.dumps(GENESIS_DATA)) ghuc_ipc_path_dir = stack.enter_context(tempdir()) ghuc_ipc_path = os.path.join(ghuc_ipc_path_dir, 'ghuc.ipc') ghuc_port = get_open_port() ghuc_binary = get_ghuc_binary() with get_ghuc_process( ghuc_binary=ghuc_binary, datadir=datadir, genesis_file_path=genesis_file_path, ghuc_ipc_path=ghuc_ipc_path, ghuc_port=ghuc_port): wait_for_socket(ghuc_ipc_path) webu = Webu(Webu.IPCProvider(ghuc_ipc_path)) chain_data = setup_chain_state(webu) # close ghuc by exiting context # must be closed before copying data dir verify_chain_state(webu, chain_data) # verify that chain state is still valid after closing # and re-opening ghuc with get_ghuc_process( ghuc_binary=ghuc_binary, datadir=datadir, genesis_file_path=genesis_file_path, ghuc_ipc_path=ghuc_ipc_path, ghuc_port=ghuc_port): wait_for_socket(ghuc_ipc_path) webu = Webu(Webu.IPCProvider(ghuc_ipc_path)) verify_chain_state(webu, chain_data) static_data = { 'raw_txn_account': RAW_TXN_ACCOUNT, 'keyfile_pw': KEYFILE_PW, } config = merge(chain_data, static_data) pprint.pprint(config) write_config_json(config, datadir) shutil.copytree(datadir, destination_dir) def verify_chain_state(webu, chain_data): receipt = webu.eth.getTransactionReceipt(chain_data['mined_txn_hash']) latest = webu.eth.getBlock('latest') assert receipt.blockNumber <= latest.number def mine_transaction_hash(webu, txn_hash): start_time = time.time() webu.miner.start(1) while time.time() < start_time + 60: receipt = webu.eth.getTransactionReceipt(txn_hash) if receipt is not None: webu.miner.stop() return receipt else: time.sleep(0.1) else: raise ValueError("Math contract deploy transaction not mined during wait period") def mine_block(webu): origin_block_number = webu.eth.blockNumber start_time = time.time() webu.miner.start(1) while time.time() < start_time + 60: block_number = webu.eth.blockNumber if block_number > origin_block_number: webu.miner.stop() return block_number else: time.sleep(0.1) else: raise ValueError("No block mined during wait period") def deploy_contract(webu, name, factory): webu.personal.unlockAccount(webu.eth.coinbase, KEYFILE_PW) deploy_txn_hash = factory.deploy({'from': webu.eth.coinbase}) print('{0}_CONTRACT_DEPLOY_HASH: '.format(name.upper()), deploy_txn_hash) deploy_receipt = mine_transaction_hash(webu, deploy_txn_hash) print('{0}_CONTRACT_DEPLOY_TRANSACTION_MINED'.format(name.upper())) contract_address = deploy_receipt['contractAddress'] assert is_checksum_address(contract_address) print('{0}_CONTRACT_ADDRESS:'.format(name.upper()), contract_address) return deploy_receipt def setup_chain_state(webu): coinbase = webu.eth.coinbase assert is_same_address(coinbase, COINBASE) # # Math Contract # math_contract_factory = webu.eth.contract( abi=MATH_ABI, bytecode=MATH_BYTECODE, ) math_deploy_receipt = deploy_contract(webu, 'math', math_contract_factory) assert is_dict(math_deploy_receipt) # # Emitter Contract # emitter_contract_factory = webu.eth.contract( abi=EMITTER_ABI, bytecode=EMITTER_BYTECODE, ) emitter_deploy_receipt = deploy_contract(webu, 'emitter', emitter_contract_factory) emitter_contract = emitter_contract_factory(emitter_deploy_receipt['contractAddress']) txn_hash_with_log = emitter_contract.transact({ 'from': webu.eth.coinbase, }).logDouble(which=EMITTER_ENUM['LogDoubleWithIndex'], arg0=12345, arg1=54321) print('TXN_HASH_WITH_LOG:', txn_hash_with_log) txn_receipt_with_log = mine_transaction_hash(webu, txn_hash_with_log) block_with_log = webu.eth.getBlock(txn_receipt_with_log['blockHash']) print('BLOCK_HASH_WITH_LOG:', block_with_log['hash']) # # Empty Block # empty_block_number = mine_block(webu) print('MINED_EMPTY_BLOCK') empty_block = webu.eth.getBlock(empty_block_number) assert is_dict(empty_block) assert not empty_block['transactions'] print('EMPTY_BLOCK_HASH:', empty_block['hash']) # # Block with Transaction # webu.personal.unlockAccount(coinbase, KEYFILE_PW) webu.miner.start(1) mined_txn_hash = webu.eth.sendTransaction({ 'from': coinbase, 'to': coinbase, 'value': 1, 'gas': 21000, 'gas_price': webu.eth.gasPrice, }) mined_txn_receipt = mine_transaction_hash(webu, mined_txn_hash) print('MINED_TXN_HASH:', mined_txn_hash) block_with_txn = webu.eth.getBlock(mined_txn_receipt['blockHash']) print('BLOCK_WITH_TXN_HASH:', block_with_txn['hash']) ghuc_fixture = { 'math_deploy_txn_hash': math_deploy_receipt['transactionHash'], 'math_address': math_deploy_receipt['contractAddress'], 'emitter_deploy_txn_hash': emitter_deploy_receipt['transactionHash'], 'emitter_address': emitter_deploy_receipt['contractAddress'], 'txn_hash_with_log': txn_hash_with_log, 'block_hash_with_log': block_with_log['hash'], 'empty_block_hash': empty_block['hash'], 'mined_txn_hash': mined_txn_hash, 'block_with_txn_hash': block_with_txn['hash'], } return ghuc_fixture if __name__ == '__main__': fixture_dir = sys.argv[1] generate_go_happyuc_fixture(fixture_dir)
import networkx as nx class FeatureExtractor: """ Extracting some hand-crafted x1_features for the x1_graphs - Number of (effective nodes) - Average """ def __init__(self, g: nx.Graph, node_attr_name='op_name', s='input', t='output'): """ g: a valid networkx graph node_attr_name: the tag of the node attribute. default is 'op_name' s, t: the tag of the two special input and output nodes. Note that there can be more than one input node (s), but only one output node (t) """ self.g = g self.input_index = [] self.output_index = None for n in range(g.number_of_nodes()): assert node_attr_name in list(dict(g.nodes[n]).keys()), node_attr_name + " is not found in " + str( g.nodes[n]) if str(g.nodes[n][node_attr_name]) == str(s): self.input_index.append(n) elif str(g.nodes[n][node_attr_name]) == str(t): self.output_index = n self.node_attr_name = node_attr_name if len(self.input_index) == 0: raise ValueError("Unknown input node!") elif self.output_index is None: raise ValueError("Unknown output node!") # Specify the special nodes (i.e. the input and output, source and sink) if isinstance(self.g, nx.DiGraph): self.undirected_g = self.g.to_undirected() else: self.undirected_g = self.g def __getattr__(self, item): """Identify the feature already implemented in the graph class""" try: res = getattr(self.g, item) except AttributeError: raise AttributeError("Item" + str(item) + ' is not found either in the feature extractor nor the graph' 'instance!') if callable(res): return res() return res def _paths(self) -> list: """Enumerate all paths from input to output. Return a list of lists with each sub-list the node indices from the input to output Data shape: (N_input x2 N_path x2 length of each path) for SISO graph, the data shape is (1 x2 N_path x2 length of each path) """ if not isinstance(self.g, nx.DiGraph): raise TypeError("Longest path is only applicable for directed graph!") result = [] for i in self.input_index: result.append(list(nx.all_simple_paths(self.g, i, self.output_index))) return result @property def number_of_paths(self): paths = self._paths() if len(paths) == 1: return len(paths[0]) return [len(i) for i in paths] @property def longest_path(self): """Return the longest path from input to output. the return type is a list in case when there is more than one input node.""" paths = self._paths() if len(paths) == 1: # if the list is a singlet (i.e. the S-T style graph), then return a scalar output only return len(max(paths[0], key=lambda x: len(x))) return [len(max(i, key=lambda x: len(x))) for i in paths] @property def degree_distribution(self, normalize=False): """ return the degree distribution of the *undirected* counterpart of the graph, if the graph is directed. return a dictionary in the form of ((D1, N1), (D2, N2)... ) where Di is the degree and Ni is the frequency """ from collections import Counter degree_seq = sorted([d for d, n in dict(self.undirected_g.degree)], reverse=True) degree_count = Counter(degree_seq) deg, cnt = zip(*degree_count.items()) if normalize: n = self.undirected_g.number_of_nodes() cnt //= n return deg, cnt @property def laplacian_spectrum(self, ): return nx.normalized_laplacian_spectrum(self.undirected_g) @property def average_undirected_degree(self): return sum(dict(self.undirected_g.degree).values()) / (self.undirected_g.number_of_nodes() + 0.0) @property def number_of_conv3x3(self): i = 0 for node, attr in self.g.nodes(data=True): if attr['op_name'] == 'conv3x3-bn-relu': i += 1 return i
import os import sys import numpy as np import pandas as pd from torch.utils.data import Subset from torch.utils.data.dataset import Dataset # For custom datasets from torchvision import transforms PROJECT_PATH = os.path.abspath( os.path.join(os.path.dirname(__file__), '..', '..')) sys.path.append(PROJECT_PATH) from src.base.torchvision_dataset import TorchvisionDataset from src.datasets.preprocessing import get_target_label_idx from src.datasets.data_splitter import DatasetDivider from src.datasets.data_set_generic import Dataset class HitsDataset(TorchvisionDataset): def __init__(self, root: str, normal_class=1): super().__init__(root) self.n_classes = 2 # 0: normal, 1: outlier self.normal_classes = tuple([normal_class]) self.outlier_classes = list(range(0, 2)) self.outlier_classes.remove(normal_class) self.data_dict = pd.read_pickle(self.root) # hardcoded selected channel images = self.normalize_by_image(self.data_dict['images'])[..., 3][ ..., np.newaxis] labels = np.array(self.data_dict['labels']) dataset = Dataset(data_array=images, data_label=labels, batch_size=50) data_splitter = DatasetDivider(test_size=0.3, validation_size=0.1) data_splitter.set_dataset_obj(dataset) train_dataset, test_dataset, val_dataset = \ data_splitter.get_train_test_val_set_objs() transform = transforms.Compose([transforms.ToTensor()]) target_transform = transforms.Lambda( lambda x: int(x in self.outlier_classes)) train_set = Hits(train_dataset.data_array, train_dataset.data_label, transform=transform, target_transform=target_transform) train_idx_normal = get_target_label_idx( np.array(train_set.label_arr), self.normal_classes) self.train_set = Subset(train_set, train_idx_normal) print(self.train_set.__len__()) self.val_all_set = Hits(val_dataset.data_array, val_dataset.data_label, transform=transform, target_transform=target_transform) val_idx_normal = get_target_label_idx( np.array(self.val_all_set.label_arr), self.normal_classes) self.val_normal_set = Subset(self.val_all_set, val_idx_normal) print(self.val_normal_set.__len__()) self.test_set = Hits(test_dataset.data_array, test_dataset.data_label, transform=transform, target_transform=target_transform) def normalize_by_image(self, images): images -= np.nanmin(images, axis=(1, 2))[:, np.newaxis, np.newaxis, :] images = images / np.nanmax(images, axis=(1, 2))[ :, np.newaxis, np.newaxis, :] return images class Hits(Dataset): def __init__(self, images, labels, transform, target_transform): """ """ # Transforms self.transform = transform self.target_transform = target_transform self.image_arr = images self.label_arr = labels print(self.image_arr.shape) self.data_len = self.label_arr.shape[0] def __getitem__(self, index): single_image = self.image_arr[index] single_image_label = self.label_arr[index] if self.transform is not None: img = self.transform(single_image) if self.target_transform is not None: target = self.target_transform(single_image_label) return img, target, index # only line changed def __len__(self): return self.data_len
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities __all__ = ['TeamsArgs', 'Teams'] @pulumi.input_type class TeamsArgs: def __init__(__self__, *, org_id: pulumi.Input[str], usernames: pulumi.Input[Sequence[pulumi.Input[str]]], name: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a Teams resource. """ pulumi.set(__self__, "org_id", org_id) pulumi.set(__self__, "usernames", usernames) if name is not None: pulumi.set(__self__, "name", name) @property @pulumi.getter(name="orgId") def org_id(self) -> pulumi.Input[str]: return pulumi.get(self, "org_id") @org_id.setter def org_id(self, value: pulumi.Input[str]): pulumi.set(self, "org_id", value) @property @pulumi.getter def usernames(self) -> pulumi.Input[Sequence[pulumi.Input[str]]]: return pulumi.get(self, "usernames") @usernames.setter def usernames(self, value: pulumi.Input[Sequence[pulumi.Input[str]]]): pulumi.set(self, "usernames", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @pulumi.input_type class _TeamsState: def __init__(__self__, *, name: Optional[pulumi.Input[str]] = None, org_id: Optional[pulumi.Input[str]] = None, team_id: Optional[pulumi.Input[str]] = None, usernames: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None): """ Input properties used for looking up and filtering Teams resources. """ if name is not None: pulumi.set(__self__, "name", name) if org_id is not None: pulumi.set(__self__, "org_id", org_id) if team_id is not None: pulumi.set(__self__, "team_id", team_id) if usernames is not None: pulumi.set(__self__, "usernames", usernames) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="orgId") def org_id(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "org_id") @org_id.setter def org_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "org_id", value) @property @pulumi.getter(name="teamId") def team_id(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "team_id") @team_id.setter def team_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "team_id", value) @property @pulumi.getter def usernames(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: return pulumi.get(self, "usernames") @usernames.setter def usernames(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "usernames", value) class Teams(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, name: Optional[pulumi.Input[str]] = None, org_id: Optional[pulumi.Input[str]] = None, usernames: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, __props__=None): """ Create a Teams resource with the given unique name, props, and options. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. """ ... @overload def __init__(__self__, resource_name: str, args: TeamsArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Create a Teams resource with the given unique name, props, and options. :param str resource_name: The name of the resource. :param TeamsArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(TeamsArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, name: Optional[pulumi.Input[str]] = None, org_id: Optional[pulumi.Input[str]] = None, usernames: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = TeamsArgs.__new__(TeamsArgs) __props__.__dict__["name"] = name if org_id is None and not opts.urn: raise TypeError("Missing required property 'org_id'") __props__.__dict__["org_id"] = org_id if usernames is None and not opts.urn: raise TypeError("Missing required property 'usernames'") __props__.__dict__["usernames"] = usernames __props__.__dict__["team_id"] = None super(Teams, __self__).__init__( 'mongodbatlas:index/teams:Teams', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, name: Optional[pulumi.Input[str]] = None, org_id: Optional[pulumi.Input[str]] = None, team_id: Optional[pulumi.Input[str]] = None, usernames: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None) -> 'Teams': """ Get an existing Teams resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _TeamsState.__new__(_TeamsState) __props__.__dict__["name"] = name __props__.__dict__["org_id"] = org_id __props__.__dict__["team_id"] = team_id __props__.__dict__["usernames"] = usernames return Teams(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def name(self) -> pulumi.Output[str]: return pulumi.get(self, "name") @property @pulumi.getter(name="orgId") def org_id(self) -> pulumi.Output[str]: return pulumi.get(self, "org_id") @property @pulumi.getter(name="teamId") def team_id(self) -> pulumi.Output[str]: return pulumi.get(self, "team_id") @property @pulumi.getter def usernames(self) -> pulumi.Output[Sequence[str]]: return pulumi.get(self, "usernames")
from .. import Provider as LoremProvider class Provider(LoremProvider): """Implement lorem provider for ``hy_AM`` locale. Sources: - https://www.101languages.net/armenian/armenian-word-list """ word_list = ( "ես", "դու", "նա", "մենք", "դուք", "նրանք", "այս", "այն", "այստեղ", "այնտեղ", "ով", "ինչ", "որտեղ", "ուր", "երբ", "ինչպես", "ոչ", "բոլոր", "շատ", "որոշ", "քիչ", "այլ", "ուրիշ", "մեկ", "երկու", "երեք", "չորս", "հինգ", "մեծ", "երկար", "լայն", "հաստ", "ծանր", "փոքր", "կարճ", "նեղ", "բարակ", "կին", "տղամարդ", "մարդ", "երեխա", "կին", "ամուսին", "մայր", "հայր", "կենդանի", "ձուկ", "թռչուն", "շուն", "ոջիլ", "օձ", "ճիճու", "ծառ", "անտառ", "փայտ", "պտուղ", "սերմ", "տերև", "արմատ", "կեղև", "ծաղիկ", "խոտ", "պարան", "մաշկ", "կաշի", "միս", "արյուն", "ոսկոր", "ճարպ", "ձու", "եղջյուր", "պոզ", "պոչ", "փետուր", "մազ", "գլուխ", "ականջ", "աչք", "քիթ", "բերան", "ատամ", "լեզու", "եղունգ", "ոտք", "ծունկ", "ձեռք", "թև", "փոր", "փորոտիք", "աղիք", "վիզ", "մեջք", "կուրծք", "սիրտ", "լյարդ", "խմել", "ուտել", "կծել", "ծծել", "թքել", "ործկալ", "փչել", "շնչել", "ծիծաղել", "տեսնել", "լսել", "իմանալ", "գիտենալ", "մտածել", "զգալ", "վախենալ", "քնել", "ապրել", "մեռնել", "սպանել", "կռվել", "որսալ", "խփել", "հարվածել", "կտրել", "բաժանել", "խոցել", "քերծել", "քորել", "փորել", "լողալ", "թռչել", "քայլել", "գալ", "պառկել", "նստել", "կանգնել", "շրջվել", "ընկնել", "տալ", "պահել", "բռնել", "սեղմել", "շփել", "լվալ", "սրբել", "ձգել", "քաշել", "հրել", "նետել", "կապել", "կարել", "հաշվել", "ասել", "երգել", "խաղալ", "լողալ", "հոսել", "սառչել", "ուռել", "արև", "լուսին", "աստղ", "ջուր", "անձրև", "գետ", "լիճ", "ծով", "աղ", "քար", "ավազ", "փոշի", "հող", "ամպ", "մառախուղ", "մշուշ", "երկինք", "քամի", "ձյուն", "սառույց", "ծուխ", "հուր", "կրակ", "մոխիր", "վառվել", "այրվել", "ճամփա", "ճանապարհ", "լեռ", "սար", "կարմիր", "կանաչ", "դեղին", "սպիտակ", "սև", "գիշեր", "օր", "տարի", "տաք", "ցուրտ", "լիքը", "նոր", "հին", "լավ", "վատ", "փտած", "կեղտոտ", "ուղիղ", "կլոր", "սուր", "բութ", "հարթ", "թաց", "չոր", "ճիշտ", "մոտ", "հեռու", "աջ", )
""" support for skip/xfail functions and markers. """ from _pytest.config import hookimpl from _pytest.mark.evaluate import MarkEvaluator from _pytest.outcomes import fail from _pytest.outcomes import skip from _pytest.outcomes import xfail def pytest_addoption(parser): group = parser.getgroup("general") group.addoption( "--runxfail", action="store_true", dest="runxfail", default=False, help="report the results of xfail tests as if they were not marked", ) parser.addini( "xfail_strict", "default for the strict parameter of xfail " "markers when not given explicitly (default: False)", default=False, type="bool", ) def pytest_configure(config): if config.option.runxfail: # yay a hack import pytest old = pytest.xfail config._cleanup.append(lambda: setattr(pytest, "xfail", old)) def nop(*args, **kwargs): pass nop.Exception = xfail.Exception setattr(pytest, "xfail", nop) config.addinivalue_line( "markers", "skip(reason=None): skip the given test function with an optional reason. " 'Example: skip(reason="no way of currently testing this") skips the ' "test.", ) config.addinivalue_line( "markers", "skipif(condition): skip the given test function if eval(condition) " "results in a True value. Evaluation happens within the " "module global context. Example: skipif('sys.platform == \"win32\"') " "skips the test if we are on the win32 platform. see " "https://docs.pytest.org/en/latest/skipping.html", ) config.addinivalue_line( "markers", "xfail(condition, reason=None, run=True, raises=None, strict=False): " "mark the test function as an expected failure if eval(condition) " "has a True value. Optionally specify a reason for better reporting " "and run=False if you don't even want to execute the test function. " "If only specific exception(s) are expected, you can list them in " "raises, and if the test fails in other ways, it will be reported as " "a true failure. See https://docs.pytest.org/en/latest/skipping.html", ) @hookimpl(tryfirst=True) def pytest_runtest_setup(item): # Check if skip or skipif are specified as pytest marks item._skipped_by_mark = False eval_skipif = MarkEvaluator(item, "skipif") if eval_skipif.istrue(): item._skipped_by_mark = True skip(eval_skipif.getexplanation()) for skip_info in item.iter_markers(name="skip"): item._skipped_by_mark = True if "reason" in skip_info.kwargs: skip(skip_info.kwargs["reason"]) elif skip_info.args: skip(skip_info.args[0]) else: skip("unconditional skip") item._evalxfail = MarkEvaluator(item, "xfail") check_xfail_no_run(item) @hookimpl(hookwrapper=True) def pytest_pyfunc_call(pyfuncitem): check_xfail_no_run(pyfuncitem) outcome = yield passed = outcome.excinfo is None if passed: check_strict_xfail(pyfuncitem) def check_xfail_no_run(item): """check xfail(run=False)""" if not item.config.option.runxfail: evalxfail = item._evalxfail if evalxfail.istrue(): if not evalxfail.get("run", True): xfail("[NOTRUN] " + evalxfail.getexplanation()) def check_strict_xfail(pyfuncitem): """check xfail(strict=True) for the given PASSING test""" evalxfail = pyfuncitem._evalxfail if evalxfail.istrue(): strict_default = pyfuncitem.config.getini("xfail_strict") is_strict_xfail = evalxfail.get("strict", strict_default) if is_strict_xfail: del pyfuncitem._evalxfail explanation = evalxfail.getexplanation() fail("[XPASS(strict)] " + explanation, pytrace=False) @hookimpl(hookwrapper=True) def pytest_runtest_makereport(item, call): outcome = yield rep = outcome.get_result() evalxfail = getattr(item, "_evalxfail", None) # unittest special case, see setting of _unexpectedsuccess if hasattr(item, "_unexpectedsuccess") and rep.when == "call": if item._unexpectedsuccess: rep.longrepr = "Unexpected success: {}".format(item._unexpectedsuccess) else: rep.longrepr = "Unexpected success" rep.outcome = "failed" elif item.config.option.runxfail: pass # don't interfere elif call.excinfo and call.excinfo.errisinstance(xfail.Exception): rep.wasxfail = "reason: " + call.excinfo.value.msg rep.outcome = "skipped" elif evalxfail and not rep.skipped and evalxfail.wasvalid() and evalxfail.istrue(): if call.excinfo: if evalxfail.invalidraise(call.excinfo.value): rep.outcome = "failed" else: rep.outcome = "skipped" rep.wasxfail = evalxfail.getexplanation() elif call.when == "call": strict_default = item.config.getini("xfail_strict") is_strict_xfail = evalxfail.get("strict", strict_default) explanation = evalxfail.getexplanation() if is_strict_xfail: rep.outcome = "failed" rep.longrepr = "[XPASS(strict)] {}".format(explanation) else: rep.outcome = "passed" rep.wasxfail = explanation elif ( getattr(item, "_skipped_by_mark", False) and rep.skipped and type(rep.longrepr) is tuple ): # skipped by mark.skipif; change the location of the failure # to point to the item definition, otherwise it will display # the location of where the skip exception was raised within pytest _, _, reason = rep.longrepr filename, line = item.location[:2] rep.longrepr = filename, line + 1, reason # called by terminalreporter progress reporting def pytest_report_teststatus(report): if hasattr(report, "wasxfail"): if report.skipped: return "xfailed", "x", "XFAIL" elif report.passed: return "xpassed", "X", "XPASS"
import torch import torch.nn as nn import os from common import base_data_path from typing import List import pandas as pd CONTEXT_SIZE = 1 # 1 words to the left, 1 to the right EMDEDDING_DIM = 3 word_to_ix = {} ix_to_word = {} def make_context_vector(context, word_to_ix): idxs = [word_to_ix[w] for w in context] return torch.tensor(idxs, dtype=torch.long) def get_index_of_max(input): index = 0 for i in range(1, len(input)): if input[i] > input[index]: index = i return index def get_max_prob_result(input, ix_to_word): return ix_to_word[get_index_of_max(input)] def split_smiles_repr(smile_repr: str) -> List[str]: element_list = [] skip_next = False for i in range(len(smile_repr)): if skip_next: skip_next = False continue element = smile_repr[i] if (i < (len(smile_repr) - 1)) and (smile_repr[i].isalpha()): possible_element = element + smile_repr[i+1] if possible_element in word_to_ix: element = possible_element skip_next = True if element in word_to_ix: element_list.append(element) else: raise ValueError('Inappropriate argument to function get_elements_from_smiles_data of Vocab class') return element_list def get_data(sequence_list: List[str]): _sequence_list = [] sequence_elements_list = [] for s in sequence_list: split_elements = split_smiles_repr(s) _sequence_list.append(s) sequence_elements_list.append(split_elements) return sequence_elements_list filepath = os.path.join(base_data_path, "vocab.txt") f = open(filepath, "r") elements_list = f.read().splitlines() elements_list.append(' ') f.close() vocab = elements_list vocab_size = len(elements_list) for i, word in enumerate(vocab): word_to_ix[word] = i ix_to_word[i] = word filepath = os.path.join(base_data_path, "dataset_v1.csv") df = pd.read_csv(filepath, sep=",", header=0) smiles_data = get_data(df.SMILES.tolist()) class CBOW(torch.nn.Module): def __init__(self, vocab_size, embedding_dim): super(CBOW, self).__init__() self.embeddings = nn.Embedding(vocab_size, embedding_dim) self.linear1 = nn.Linear(embedding_dim, 128) self.activation_function1 = nn.ReLU() self.linear2 = nn.Linear(128, vocab_size) self.activation_function2 = nn.LogSoftmax(dim=-1) def forward(self, inputs): embeds = sum(self.embeddings(inputs)).view(1, -1) out = self.linear1(embeds) out = self.activation_function1(out) out = self.linear2(out) out = self.activation_function2(out) return out def get_word_emdedding(self, word): word = torch.LongTensor([word_to_ix[word]]) return self.embeddings(word).view(1, -1) model = CBOW(vocab_size, EMDEDDING_DIM) loss_function = nn.NLLLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001) for epoch in range(50): total_loss = 0 for smiles_element_list in smiles_data: for i in range(1, len(smiles_element_list) - 1): context = [smiles_element_list[i - 1], smiles_element_list[i + 1]] target = smiles_element_list[i] context_vector = make_context_vector(context, word_to_ix) model.zero_grad() log_probs = model(context_vector) loss = loss_function(log_probs, torch.tensor([word_to_ix[target]], dtype=torch.long)) total_loss += loss.item() loss.backward() optimizer.step() print(f"Epoch - {epoch}, Loss - {total_loss}")
import functionality.planets as planets import assets.tools as tools from assets.variables import * # TODO: Also add logger to code and display errors correctly # TODO: Make one pixel correspond to 1/10 au so that acceleration works more realistic class SolarSystem(metaclass=tools.Singleton): """This creates the space in which the planets interact with each other. It is a singleton so it can be used in different functions and keeps all its information Attributes ----------- planets_list: list this list contains all planet class objects max_objects: int this sets the max object count allowed in the planets list system_time: int the starting time for the simulation error: bool set to True, if error occurs Methods ---------- add_planet(*args): Adds planets to the planet list remove_planet(planet): Removes planet from the solar system get_planet(planet): Gets a specific planet from planet list number_of_intrastellar_objects(): Returns the number of objects in list planetary_interaction(): Calculates the new accelerations of each of the planets planetary_position(): Utilizes verlet integration to get the next positions of all planets for a certain time step period update(): Updates the calculated data and stores it inside the planets itself reset(): This resets the class back to its empty state """ def __init__(self) -> None: """Initializes the intra-stellar objects and the class attributes Returns ---------- None """ self.planets_list = [] self.max_objects = 10 self.system_time = 0 # To display error messages self.error = False def add_planet(self, *args) -> None: """Adds planets to the planet list Parameters ---------- *args: Planet takes in Planet class objects Returns ---------- None """ # TODO: Display some error message if self.number_of_intrastellar_objects() < self.max_objects: for i in args: self.planets_list.append(i) else: self.error = True def remove_planet(self, planet) -> None: """Removes planet from the solar system Parameters ---------- planet: Planet planet to be removed from the planet list Returns ---------- None """ self.planets_list.remove(planet) def get_planet(self, planet): """Gets a specific planet from planet list Parameters ---------- planet: Planet planet to be get from planet list Returns ---------- planet: Planet planet from planet list or None if not found """ return planet if planet in self.planets_list else None def number_of_intrastellar_objects(self): """Returns the number of objects in list Returns ---------- planet_list_length: int the length of the planet list """ return len(self.planets_list) def planetary_interaction(self): """Calculates the new accelerations of each of the planets Returns ---------- acceleration_list: list the calculated acceleration of all the planets in the planet list """ acceleration_list = [] for i in self.planets_list: a_x, a_y = 0, 0 for j in self.planets_list: if i != j: a_x += i.alien_acceleration(j)[0] a_y += i.alien_acceleration(j)[1] acceleration_list.append([a_x, a_y]) return acceleration_list def planetary_positions(self): """Utilizes verlet integration to get the next positions of all planets for a certain time step period Returns ----------- temp_pos_list: list the positions of the planets after the verlet integration temp_vel_list: list the velocity of the planets after the verlet integration """ temp_pos_list, temp_vel_list = [], [] for i, o in enumerate(self.planets_list): # Calculates the position and velocity for each step and saves it to the planet temp_pos_x, temp_v_x = tools.verlet_algorithm(o.pos_x_real, o.v_x, self.planetary_interaction()[i][0]) temp_pos_y, temp_v_y = tools.verlet_algorithm(o.pos_y_real, o.v_y, self.planetary_interaction()[i][1]) # Saves it to a temporary list as to not corrupt positional data for each step temp_pos_list.append([temp_pos_x, temp_pos_y]) temp_vel_list.append([temp_v_x, temp_v_y]) return temp_pos_list, temp_vel_list def update(self) -> None: """"Updates the calculated data and stores it inside the planets itself Returns ---------- None """ for i, o in enumerate(self.planets_list): o.pos_x_real, o.pos_y_real = self.planetary_positions()[0][i] o.v_x, o.v_y = self.planetary_positions()[1][i] # o.trace.append(o.rect.center) def reset(self) -> None: """This resets the class back to its empty state Returns ----------- None """ self.planets_list = [] self.system_time = 0 if __name__ == "__main__": earth = planets.Planet(1e20, 5, 0) satellite = planets.Planet(1e20, 10, 0) moon = planets.Planet(1e20, 15, 0) ss = SolarSystem() ss.add_planet(earth, satellite, moon) print(ss.planetary_interaction()) print(ss.planets_list) for i in ss.planets_list: print(i.pos_x, i.pos_y) for i in ss.planets_list: print(i.pos_x, i.pos_y)
import pytest from katrain.core.constants import AI_STRATEGIES_RECOMMENDED_ORDER, AI_STRATEGIES class TestAI: def test_order(self): assert set(AI_STRATEGIES_RECOMMENDED_ORDER) == set(AI_STRATEGIES)
""" Enums used in different API endpoints """ from enum import Enum class PluginStatusState(str, Enum): """State of the plugin""" NOTRUNNING = "NotRunning" STARTING = "Starting" RUNNING = "Running" FAILEDTOSTART = "FailedToStart" FAILEDTOSTAYRUNNING = "FailedToStayRunning" STOPPING = "Stopping" def __str__(self) -> str: return str(self.value) class SidebarCategoryType(str, Enum): """None""" CHANNELS = "channels" CUSTOM = "custom" DIRECT_MESSAGES = "direct_messages" FAVORITES = "favorites" def __str__(self) -> str: return str(self.value) class SidebarCategoryWithChannelsType(str, Enum): """None""" CHANNELS = "channels" CUSTOM = "custom" DIRECT_MESSAGES = "direct_messages" FAVORITES = "favorites" def __str__(self) -> str: return str(self.value) class UploadSessionType(str, Enum): """The type of the upload.""" ATTACHMENT = "attachment" IMPORT_ = "import" def __str__(self) -> str: return str(self.value) class PostMetadataEmbedsItemType(str, Enum): """The type of content that is embedded in this point.""" IMAGE = "image" MESSAGE_ATTACHMENT = "message_attachment" OPENGRAPH = "opengraph" LINK = "link" def __str__(self) -> str: return str(self.value)
from __future__ import absolute_import, division, print_function import sys import pathlib import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers EPOCHS = 1000 # The patience parameter is the amount of epochs to check for improvement EARLY_STOP = keras.callbacks.EarlyStopping(monitor='val_loss', patience=30) class PrintDot(keras.callbacks.Callback): def on_epoch_end(self, epoch, logs): if epoch % 100 == 0: print('') print('.', end='') def plot_history(history): hist = pd.DataFrame(history.history) hist['epoch'] = history.epoch plt.figure() plt.xlabel('Epoch') plt.ylabel('Mean Abs Error [cost]') plt.plot(hist['epoch'], hist['mean_absolute_error'], label='Train Error') plt.plot(hist['epoch'], hist['val_mean_absolute_error'], label = 'Val Error') plt.ylim([0,5]) plt.legend() plt.figure() plt.xlabel('Epoch') plt.ylabel('Mean Square Error [$cost^2$]') plt.plot(hist['epoch'], hist['mean_squared_error'], label='Train Error') plt.plot(hist['epoch'], hist['val_mean_squared_error'], label = 'Val Error') plt.ylim([0,20]) plt.legend() plt.show() # we hard-code the values instead of using stats so that integration with # predictor using the model is easier scaling = pd.DataFrame(data={ 'min': [-10000, -10000, -10000, -2300, -2300, -2300, -6.0, -6.0, -6.0, -3.2, -3.2, -3.2], 'max': [ 10000, 10000, 10000, 2300, 2300, 2300, 6.0, 6.0, 6.0, 3.2, 3.2, 3.2], }, index=[ 'x', 'y', 'z', 'vx', 'vy', 'vz', 'avx', 'avy', 'avz', 'roll', 'pitch', 'yaw']) # scale to range [0, 1] # TODO try polar coordinates. for velocity: https://math.stackexchange.com/questions/2444965/relationship-between-cartesian-velocity-and-polar-velocity def scale(x): return (x - scaling['min']) / (scaling['max'] - scaling['min']) def build_model(): model = keras.Sequential([ layers.Dense(128, activation=tf.nn.relu, input_shape=[len(train_dataset.keys())]), layers.Dense(128, activation=tf.nn.relu), # these extra layers seem to hurt more than they help! #layers.Dropout(0.01), #layers.Dense(64, activation=tf.nn.relu), # this doesn't work as well as a single 64-wide layer #layers.Dense(12, activation=tf.nn.relu, input_shape=[len(train_dataset.keys())]), #layers.Dense(12, activation=tf.nn.relu), #layers.Dense(12, activation=tf.nn.relu), #layers.Dense(12, activation=tf.nn.relu), #layers.Dense(12, activation=tf.nn.relu), layers.Dense(1) ]) #optimizer = tf.keras.optimizers.RMSprop(0.001) optimizer = tf.train.AdamOptimizer(0.001) model.compile(loss='mean_squared_error', optimizer=optimizer, metrics=['mean_absolute_error', 'mean_squared_error']) return model # should be the time.csv from generate-data's time binary dataset_path = sys.argv[1] column_names = ['cost', 'x', 'y', 'z', 'vx', 'vy', 'vz', 'avx', 'avy', 'avz', 'roll', 'pitch', 'yaw'] raw_dataset = pd.read_csv(dataset_path, names=column_names, na_values = "", #comment='\t', sep=",", skipinitialspace=True) # visualize the data! pos_plot = sns.pairplot(raw_dataset[["cost", "x", "y", "z"]], diag_kind="kde") pos_plot.savefig("./pos.fig.png") vel_plot = sns.pairplot(raw_dataset[["cost", "vx", "vy", "vz"]], diag_kind="kde") vel_plot.savefig("./vel.fig.png") avel_plot = sns.pairplot(raw_dataset[["cost", "avx", "avy", "avz"]], diag_kind="kde") avel_plot.savefig("./avel.fig.png") rot_plot = sns.pairplot(raw_dataset[["cost", "roll", "pitch", "yaw"]], diag_kind="kde") rot_plot.savefig("./rot.fig.png") pos_rot_plot = sns.pairplot(raw_dataset[["cost", "x", "y", "yaw"]], diag_kind="kde") pos_rot_plot.savefig("./pos_rot.fig.png") dataset = raw_dataset.copy() dataset.tail() # we don't have missing data # dataset.isna().sum() # dataset = dataset.dropna() # split into training vs test datasets train_dataset = dataset.sample(frac=0.95,random_state=0) test_dataset = dataset.drop(train_dataset.index) # using stats from full dataset stats = raw_dataset.describe() stats.pop("cost") stats = stats.transpose() stats train_labels = train_dataset.pop('cost') test_labels = test_dataset.pop('cost') scaled_train_dataset = scale(train_dataset) scaled_test_dataset = scale(test_dataset) # build and train moddel model = build_model() model.summary() history = model.fit(scaled_train_dataset, train_labels, epochs=EPOCHS, validation_split = 0.2, verbose=0, callbacks=[EARLY_STOP, PrintDot()]) plot_history(history) # check against test set loss, mae, mse = model.evaluate(scaled_test_dataset, test_labels, verbose=0) print("Testing set Mean Abs Error: {:5.2f} cost".format(mae)) # plot all test predictions test_predictions = model.predict(scaled_test_dataset).flatten() plt.scatter(test_labels, test_predictions) plt.xlabel('True Values [cost]') plt.ylabel('Predictions [cost]') plt.axis('equal') plt.axis('square') plt.xlim([0,plt.xlim()[1]]) plt.ylim([0,plt.ylim()[1]]) plt.plot([-100, 100], [-100, 100]) plt.show() # error distribution error = test_predictions - test_labels plt.hist(error, bins = 25) plt.xlabel("Prediction Error [cost]") plt.ylabel("Count") plt.show() model.save('./simple_throttle_cost_model.h5') saved_model_path = tf.contrib.saved_model.save_keras_model(model, "./simple_throttle_cost_saved_model")
#!/usr/bin/env python # # test_probe_ports.py # """Shows how to probe for available MIDI input and output ports.""" import sys from rtmidi import * try: raw_input except NameError: # Python 3 raw_input = input apis = { API_MACOSX_CORE: "OS X CoreMIDI", API_LINUX_ALSA: "Linux ALSA", API_UNIX_JACK: "Jack Client", API_WINDOWS_MM: "Windows MultiMedia", API_WINDOWS_KS: "Windows Kernel Streaming", API_RTMIDI_DUMMY: "RtMidi Dummy" } available_apis = get_compiled_api() for api, desc in sorted(apis.items()): if api in available_apis: try: r = raw_input("Probe ports using the %s API? (Y/n) " % desc).strip() if r and r.lower() != "y": continue except (KeyboardInterrupt, EOFError): print('') break for name, class_ in (("input", MidiIn), ("output", MidiOut)): try: midi = class_(api) ports = midi.get_ports(encoding='latin1' if sys.platform.startswith('win') else 'utf-8') except RuntimeError as exc: print("Could not probe MIDI %s ports: %s" % (name, exc)) continue if not ports: print("No MIDI %s ports found." % name) else: print("Available MIDI %s ports:\n" % name) for port, name in enumerate(ports): print("[%i] %s" % (port, name)) print('') del midi
#- # Copyright (c) 2015 Khilan Gudka # All rights reserved. # # This software was developed by SRI International and the University of # Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237 # ("CTSRD"), as part of the DARPA CRASH research programme. # # @BERI_LICENSE_HEADER_START@ # # Licensed to BERI Open Systems C.I.C. (BERI) under one or more contributor # license agreements. See the NOTICE file distributed with this work for # additional information regarding copyright ownership. BERI licenses this # file to you under the BERI Hardware-Software License, Version 1.0 (the # "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at: # # http://www.beri-open-systems.org/legal/license-1-0.txt # # Unless required by applicable law or agreed to in writing, Work distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # # @BERI_LICENSE_HEADER_END@ # #- # Copyright (c) 2015 Khilan Gudka # All rights reserved. # # This software was developed by SRI International and the University of # Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237 # ("CTSRD"), as part of the DARPA CRASH research programme. # # @BERI_LICENSE_HEADER_START@ # # Licensed to BERI Open Systems C.I.C. (BERI) under one or more contributor # license agreements. See the NOTICE file distributed with this work for # additional information regarding copyright ownership. BERI licenses this # file to you under the BERI Hardware-Software License, Version 1.0 (the # "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at: # # http://www.beri-open-systems.org/legal/license-1-0.txt # # Unless required by applicable law or agreed to in writing, Work distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # # @BERI_LICENSE_HEADER_END@ # # cat the contents of test-output.txt f = open('test-output.txt', 'r') print f.read()
import logging import typing import web3 from util import constants from web3tools import web3util, account logger = logging.getLogger(__name__) def randomWeb3Wallet(): private_key = account.randomPrivateKey() return Web3Wallet(private_key=private_key) class Web3Wallet: """Signs txs and msgs with an account's private key.""" _last_tx_count = dict() MIN_GAS_PRICE = 1000000000 def __init__(self, private_key:str): self._private_key = private_key self._address = account.privateKeyToAddress(self._private_key) #give this wallet a bunch of ETH for gas fees @property def address(self): return self._address @property def private_key(self): return self._private_key @property def account(self): return account.Account(private_key=self.private_key) @staticmethod def reset_tx_count(): Web3Wallet._last_tx_count = dict() def __get_key(self): return self._private_key def validate(self): _web3 = web3util.get_web3() key = self.__get_key() account = _web3.eth.account.from_key(key) return account.address == self._address @staticmethod def _get_nonce(address): # We cannot rely on `web3.eth.getTransactionCount` because when sending multiple # transactions in a row without wait in between the network may not get the chance to # update the transaction count for the account address in time. # So we have to manage this internally per account address. _web3 = web3util.get_web3() if address not in Web3Wallet._last_tx_count: Web3Wallet._last_tx_count[address] = _web3.eth.getTransactionCount(address) else: Web3Wallet._last_tx_count[address] += 1 return Web3Wallet._last_tx_count[address] def sign_tx(self, tx): _web3 = web3util.get_web3() account = _web3.eth.account.from_key(self._private_key) nonce = Web3Wallet._get_nonce(account.address) gas_price = int(_web3.eth.gasPrice / 100) gas_price = max(gas_price, self.MIN_GAS_PRICE) tx['nonce'] = nonce tx['gasPrice'] = gas_price signed_tx = _web3.eth.account.sign_transaction(tx, private_key) return signed_tx.rawTransaction def sign(self, msg_hash): account = web3.eth.account.from_key(self._private_key) return account.signHash(msg_hash) def ETH_base(self) -> int: #returns ETH, in base 18 (i.e. num wei) _web3 = web3util.get_web3() return _web3.eth.getBalance(self._address) def fundFromAbove(self, num_wei: int): #Give the this wallet ETH to pay gas fees #Use funds given to 'TEST_PRIVATE_KEY1' from ganache (see deploy.py) network = web3util.get_network() god_key = web3util.confFileValue(network, 'TEST_PRIVATE_KEY1') god_wallet = Web3Wallet(god_key) god_wallet.sendEth(self.address, num_wei) def sendEth(self, to_address:str, num_wei:int): return buildAndSendTx( function=None, from_wallet=self, num_wei=num_wei, to_address=to_address) def buildAndSendTx(function, from_wallet: Web3Wallet, gaslimit: int = constants.GASLIMIT_DEFAULT, num_wei: int = 0, to_address=None): assert isinstance(from_wallet.address, str) #assert isinstance(from_wallet.private_key, str) _web3 = web3util.get_web3() nonce = _web3.eth.getTransactionCount(from_wallet.address) network = web3util.get_network() gas_price = int(web3util.confFileValue(network, 'GAS_PRICE')) tx_params = { "from": from_wallet.address, "value": num_wei, "nonce": nonce, "gas": gaslimit, "gasPrice": gas_price, } if function is None: #just send ETH, versus smart contract call? assert to_address is not None assert isinstance(to_address, str) tx = tx_params tx["to"] = to_address else: assert to_address is None tx = function.buildTransaction(tx_params) signed_tx = _web3.eth.account.sign_transaction( tx, private_key=from_wallet.private_key) tx_hash = _web3.eth.sendRawTransaction(signed_tx.rawTransaction) tx_receipt = _web3.eth.waitForTransactionReceipt(tx_hash) if tx_receipt['status'] == 0: # did tx fail? raise Exception("The tx failed. tx_receipt: {tx_receipt}") return (tx_hash, tx_receipt)
import asyncio import codecs import dataclasses import functools import io import re import sys import traceback import warnings from hashlib import md5, sha1, sha256 from http.cookies import CookieError, Morsel, SimpleCookie from types import MappingProxyType, TracebackType from typing import ( TYPE_CHECKING, Any, Dict, Iterable, List, Mapping, Optional, Tuple, Type, Union, cast, ) from multidict import CIMultiDict, CIMultiDictProxy, MultiDict, MultiDictProxy from yarl import URL from . import hdrs, helpers, http, multipart, payload from .abc import AbstractStreamWriter from .client_exceptions import ( ClientConnectionError, ClientOSError, ClientResponseError, ContentTypeError, InvalidURL, ServerFingerprintMismatch, ) from .formdata import FormData from .hdrs import CONTENT_TYPE from .helpers import ( BaseTimerContext, BasicAuth, HeadersMixin, TimerNoop, is_expected_content_type, noop, parse_mimetype, reify, set_result, ) from .http import SERVER_SOFTWARE, HttpVersion10, HttpVersion11, StreamWriter from .http_parser import HAS_BROTLI from .log import client_logger from .streams import StreamReader from .typedefs import ( DEFAULT_JSON_DECODER, JSONDecoder, LooseCookies, LooseHeaders, RawHeaders, ) try: import ssl from ssl import SSLContext except ImportError: # pragma: no cover ssl = None # type: ignore[assignment] SSLContext = object # type: ignore[misc,assignment] try: import cchardet as chardet except ImportError: # pragma: no cover import charset_normalizer as chardet # type: ignore[no-redef] __all__ = ("ClientRequest", "ClientResponse", "RequestInfo", "Fingerprint") if TYPE_CHECKING: # pragma: no cover from .client import ClientSession from .connector import Connection from .tracing import Trace def _gen_default_accept_encoding() -> str: return "gzip, deflate, br" if HAS_BROTLI else "gzip, deflate" @dataclasses.dataclass(frozen=True) class ContentDisposition: type: Optional[str] parameters: "MappingProxyType[str, str]" filename: Optional[str] @dataclasses.dataclass(frozen=True) class RequestInfo: url: URL method: str headers: "CIMultiDictProxy[str]" real_url: URL class Fingerprint: HASHFUNC_BY_DIGESTLEN = { 16: md5, 20: sha1, 32: sha256, } def __init__(self, fingerprint: bytes) -> None: digestlen = len(fingerprint) hashfunc = self.HASHFUNC_BY_DIGESTLEN.get(digestlen) if not hashfunc: raise ValueError("fingerprint has invalid length") elif hashfunc is md5 or hashfunc is sha1: raise ValueError( "md5 and sha1 are insecure and " "not supported. Use sha256." ) self._hashfunc = hashfunc self._fingerprint = fingerprint @property def fingerprint(self) -> bytes: return self._fingerprint def check(self, transport: asyncio.Transport) -> None: if not transport.get_extra_info("sslcontext"): return sslobj = transport.get_extra_info("ssl_object") cert = sslobj.getpeercert(binary_form=True) got = self._hashfunc(cert).digest() if got != self._fingerprint: host, port, *_ = transport.get_extra_info("peername") raise ServerFingerprintMismatch(self._fingerprint, got, host, port) if ssl is not None: SSL_ALLOWED_TYPES = (ssl.SSLContext, bool, Fingerprint, type(None)) else: # pragma: no cover SSL_ALLOWED_TYPES = type(None) @dataclasses.dataclass(frozen=True) class ConnectionKey: # the key should contain an information about used proxy / TLS # to prevent reusing wrong connections from a pool host: str port: Optional[int] is_ssl: bool ssl: Union[SSLContext, None, bool, Fingerprint] proxy: Optional[URL] proxy_auth: Optional[BasicAuth] proxy_headers_hash: Optional[int] # hash(CIMultiDict) class ClientRequest: GET_METHODS = { hdrs.METH_GET, hdrs.METH_HEAD, hdrs.METH_OPTIONS, hdrs.METH_TRACE, } POST_METHODS = {hdrs.METH_PATCH, hdrs.METH_POST, hdrs.METH_PUT} ALL_METHODS = GET_METHODS.union(POST_METHODS).union({hdrs.METH_DELETE}) DEFAULT_HEADERS = { hdrs.ACCEPT: "*/*", hdrs.ACCEPT_ENCODING: _gen_default_accept_encoding(), } body = b"" auth = None response = None _writer = None # async task for streaming data _continue = None # waiter future for '100 Continue' response # N.B. # Adding __del__ method with self._writer closing doesn't make sense # because _writer is instance method, thus it keeps a reference to self. # Until writer has finished finalizer will not be called. def __init__( self, method: str, url: URL, *, params: Optional[Mapping[str, str]] = None, headers: Optional[LooseHeaders] = None, skip_auto_headers: Iterable[str] = frozenset(), data: Any = None, cookies: Optional[LooseCookies] = None, auth: Optional[BasicAuth] = None, version: http.HttpVersion = http.HttpVersion11, compress: Optional[str] = None, chunked: Optional[bool] = None, expect100: bool = False, loop: asyncio.AbstractEventLoop, response_class: Optional[Type["ClientResponse"]] = None, proxy: Optional[URL] = None, proxy_auth: Optional[BasicAuth] = None, timer: Optional[BaseTimerContext] = None, session: Optional["ClientSession"] = None, ssl: Union[SSLContext, bool, Fingerprint, None] = None, proxy_headers: Optional[LooseHeaders] = None, traces: Optional[List["Trace"]] = None, ): assert isinstance(url, URL), url assert isinstance(proxy, (URL, type(None))), proxy # FIXME: session is None in tests only, need to fix tests # assert session is not None self._session = cast("ClientSession", session) if params: q = MultiDict(url.query) url2 = url.with_query(params) q.extend(url2.query) url = url.with_query(q) self.original_url = url self.url = url.with_fragment(None) self.method = method.upper() self.chunked = chunked self.compress = compress self.loop = loop self.length = None if response_class is None: real_response_class = ClientResponse else: real_response_class = response_class self.response_class = real_response_class # type: Type[ClientResponse] self._timer = timer if timer is not None else TimerNoop() self._ssl = ssl if loop.get_debug(): self._source_traceback = traceback.extract_stack(sys._getframe(1)) self.update_version(version) self.update_host(url) self.update_headers(headers) self.update_auto_headers(skip_auto_headers) self.update_cookies(cookies) self.update_content_encoding(data) self.update_auth(auth) self.update_proxy(proxy, proxy_auth, proxy_headers) self.update_body_from_data(data) if data is not None or self.method not in self.GET_METHODS: self.update_transfer_encoding() self.update_expect_continue(expect100) if traces is None: traces = [] self._traces = traces def is_ssl(self) -> bool: return self.url.scheme in ("https", "wss") @property def ssl(self) -> Union["SSLContext", None, bool, Fingerprint]: return self._ssl @property def connection_key(self) -> ConnectionKey: proxy_headers = self.proxy_headers if proxy_headers: h = hash( tuple((k, v) for k, v in proxy_headers.items()) ) # type: Optional[int] else: h = None return ConnectionKey( self.host, self.port, self.is_ssl(), self.ssl, self.proxy, self.proxy_auth, h, ) @property def host(self) -> str: ret = self.url.raw_host assert ret is not None return ret @property def port(self) -> Optional[int]: return self.url.port @property def request_info(self) -> RequestInfo: headers = CIMultiDictProxy(self.headers) # type: CIMultiDictProxy[str] return RequestInfo(self.url, self.method, headers, self.original_url) def update_host(self, url: URL) -> None: """Update destination host, port and connection type (ssl).""" # get host/port if not url.raw_host: raise InvalidURL(url) # basic auth info username, password = url.user, url.password if username: self.auth = helpers.BasicAuth(username, password or "") def update_version(self, version: Union[http.HttpVersion, str]) -> None: """Convert request version to two elements tuple. parser HTTP version '1.1' => (1, 1) """ if isinstance(version, str): v = [part.strip() for part in version.split(".", 1)] try: version = http.HttpVersion(int(v[0]), int(v[1])) except ValueError: raise ValueError( f"Can not parse http version number: {version}" ) from None self.version = version def update_headers(self, headers: Optional[LooseHeaders]) -> None: """Update request headers.""" self.headers = CIMultiDict() # type: CIMultiDict[str] # add host netloc = cast(str, self.url.raw_host) if helpers.is_ipv6_address(netloc): netloc = f"[{netloc}]" if self.url.port is not None and not self.url.is_default_port(): netloc += ":" + str(self.url.port) self.headers[hdrs.HOST] = netloc if headers: if isinstance(headers, (dict, MultiDictProxy, MultiDict)): headers = headers.items() # type: ignore[assignment] for key, value in headers: # type: ignore[misc] # A special case for Host header if key.lower() == "host": self.headers[key] = value else: self.headers.add(key, value) def update_auto_headers(self, skip_auto_headers: Iterable[str]) -> None: self.skip_auto_headers = CIMultiDict( (hdr, None) for hdr in sorted(skip_auto_headers) ) used_headers = self.headers.copy() used_headers.extend(self.skip_auto_headers) # type: ignore[arg-type] for hdr, val in self.DEFAULT_HEADERS.items(): if hdr not in used_headers: self.headers.add(hdr, val) if hdrs.USER_AGENT not in used_headers: self.headers[hdrs.USER_AGENT] = SERVER_SOFTWARE def update_cookies(self, cookies: Optional[LooseCookies]) -> None: """Update request cookies header.""" if not cookies: return c = SimpleCookie() # type: SimpleCookie[str] if hdrs.COOKIE in self.headers: c.load(self.headers.get(hdrs.COOKIE, "")) del self.headers[hdrs.COOKIE] if isinstance(cookies, Mapping): iter_cookies = cookies.items() else: iter_cookies = cookies # type: ignore[assignment] for name, value in iter_cookies: if isinstance(value, Morsel): # Preserve coded_value mrsl_val = value.get(value.key, Morsel()) mrsl_val.set(value.key, value.value, value.coded_value) c[name] = mrsl_val else: c[name] = value # type: ignore[assignment] self.headers[hdrs.COOKIE] = c.output(header="", sep=";").strip() def update_content_encoding(self, data: Any) -> None: """Set request content encoding.""" if data is None: return enc = self.headers.get(hdrs.CONTENT_ENCODING, "").lower() if enc: if self.compress: raise ValueError( "compress can not be set " "if Content-Encoding header is set" ) elif self.compress: if not isinstance(self.compress, str): self.compress = "deflate" self.headers[hdrs.CONTENT_ENCODING] = self.compress self.chunked = True # enable chunked, no need to deal with length def update_transfer_encoding(self) -> None: """Analyze transfer-encoding header.""" te = self.headers.get(hdrs.TRANSFER_ENCODING, "").lower() if "chunked" in te: if self.chunked: raise ValueError( "chunked can not be set " 'if "Transfer-Encoding: chunked" header is set' ) elif self.chunked: if hdrs.CONTENT_LENGTH in self.headers: raise ValueError( "chunked can not be set " "if Content-Length header is set" ) self.headers[hdrs.TRANSFER_ENCODING] = "chunked" else: if hdrs.CONTENT_LENGTH not in self.headers: self.headers[hdrs.CONTENT_LENGTH] = str(len(self.body)) def update_auth(self, auth: Optional[BasicAuth]) -> None: """Set basic auth.""" if auth is None: auth = self.auth if auth is None: return if not isinstance(auth, helpers.BasicAuth): raise TypeError("BasicAuth() tuple is required instead") self.headers[hdrs.AUTHORIZATION] = auth.encode() def update_body_from_data(self, body: Any) -> None: if body is None: return # FormData if isinstance(body, FormData): body = body() try: body = payload.PAYLOAD_REGISTRY.get(body, disposition=None) except payload.LookupError: boundary = None if CONTENT_TYPE in self.headers: boundary = parse_mimetype(self.headers[CONTENT_TYPE]).parameters.get( "boundary" ) body = FormData(body, boundary=boundary)() self.body = body # enable chunked encoding if needed if not self.chunked: if hdrs.CONTENT_LENGTH not in self.headers: size = body.size if size is None: self.chunked = True else: if hdrs.CONTENT_LENGTH not in self.headers: self.headers[hdrs.CONTENT_LENGTH] = str(size) # copy payload headers assert body.headers for (key, value) in body.headers.items(): if key in self.headers: continue if key in self.skip_auto_headers: continue self.headers[key] = value def update_expect_continue(self, expect: bool = False) -> None: if expect: self.headers[hdrs.EXPECT] = "100-continue" elif self.headers.get(hdrs.EXPECT, "").lower() == "100-continue": expect = True if expect: self._continue = self.loop.create_future() def update_proxy( self, proxy: Optional[URL], proxy_auth: Optional[BasicAuth], proxy_headers: Optional[LooseHeaders], ) -> None: if proxy_auth and not isinstance(proxy_auth, helpers.BasicAuth): raise ValueError("proxy_auth must be None or BasicAuth() tuple") self.proxy = proxy self.proxy_auth = proxy_auth self.proxy_headers = proxy_headers def keep_alive(self) -> bool: if self.version < HttpVersion10: # keep alive not supported at all return False if self.version == HttpVersion10: if self.headers.get(hdrs.CONNECTION) == "keep-alive": return True else: # no headers means we close for Http 1.0 return False elif self.headers.get(hdrs.CONNECTION) == "close": return False return True async def write_bytes( self, writer: AbstractStreamWriter, conn: "Connection" ) -> None: """Support coroutines that yields bytes objects.""" # 100 response if self._continue is not None: await writer.drain() await self._continue protocol = conn.protocol assert protocol is not None try: if isinstance(self.body, payload.Payload): await self.body.write(writer) else: if isinstance(self.body, (bytes, bytearray)): self.body = (self.body,) # type: ignore[assignment] for chunk in self.body: await writer.write(chunk) # type: ignore[arg-type] await writer.write_eof() except OSError as exc: new_exc = ClientOSError( exc.errno, "Can not write request body for %s" % self.url ) new_exc.__context__ = exc new_exc.__cause__ = exc protocol.set_exception(new_exc) except asyncio.CancelledError as exc: if not conn.closed: protocol.set_exception(exc) except Exception as exc: protocol.set_exception(exc) finally: self._writer = None async def send(self, conn: "Connection") -> "ClientResponse": # Specify request target: # - CONNECT request must send authority form URI # - not CONNECT proxy must send absolute form URI # - most common is origin form URI if self.method == hdrs.METH_CONNECT: connect_host = self.url.raw_host assert connect_host is not None if helpers.is_ipv6_address(connect_host): connect_host = f"[{connect_host}]" path = f"{connect_host}:{self.url.port}" elif self.proxy and not self.is_ssl(): path = str(self.url) else: path = self.url.raw_path if self.url.raw_query_string: path += "?" + self.url.raw_query_string protocol = conn.protocol assert protocol is not None writer = StreamWriter( protocol, self.loop, on_chunk_sent=functools.partial( self._on_chunk_request_sent, self.method, self.url ), on_headers_sent=functools.partial( self._on_headers_request_sent, self.method, self.url ), ) if self.compress: writer.enable_compression(self.compress) if self.chunked is not None: writer.enable_chunking() # set default content-type if ( self.method in self.POST_METHODS and hdrs.CONTENT_TYPE not in self.skip_auto_headers and hdrs.CONTENT_TYPE not in self.headers ): self.headers[hdrs.CONTENT_TYPE] = "application/octet-stream" # set the connection header connection = self.headers.get(hdrs.CONNECTION) if not connection: if self.keep_alive(): if self.version == HttpVersion10: connection = "keep-alive" else: if self.version == HttpVersion11: connection = "close" if connection is not None: self.headers[hdrs.CONNECTION] = connection # status + headers status_line = "{0} {1} HTTP/{2[0]}.{2[1]}".format( self.method, path, self.version ) await writer.write_headers(status_line, self.headers) self._writer = self.loop.create_task(self.write_bytes(writer, conn)) response_class = self.response_class assert response_class is not None self.response = response_class( self.method, self.original_url, writer=self._writer, continue100=self._continue, timer=self._timer, request_info=self.request_info, traces=self._traces, loop=self.loop, session=self._session, ) return self.response async def close(self) -> None: if self._writer is not None: try: await self._writer finally: self._writer = None def terminate(self) -> None: if self._writer is not None: if not self.loop.is_closed(): self._writer.cancel() self._writer = None async def _on_chunk_request_sent(self, method: str, url: URL, chunk: bytes) -> None: for trace in self._traces: await trace.send_request_chunk_sent(method, url, chunk) async def _on_headers_request_sent( self, method: str, url: URL, headers: "CIMultiDict[str]" ) -> None: for trace in self._traces: await trace.send_request_headers(method, url, headers) class ClientResponse(HeadersMixin): # from the Status-Line of the response version = None # HTTP-Version status = None # type: int # Status-Code reason = None # Reason-Phrase content = None # type: StreamReader # Payload stream _headers = None # type: CIMultiDictProxy[str] # Response headers _raw_headers = None # type: RawHeaders # Response raw headers _connection = None # current connection _source_traceback = None # setted up by ClientRequest after ClientResponse object creation # post-init stage allows to not change ctor signature _closed = True # to allow __del__ for non-initialized properly response _released = False def __init__( self, method: str, url: URL, *, writer: "asyncio.Task[None]", continue100: Optional["asyncio.Future[bool]"], timer: BaseTimerContext, request_info: RequestInfo, traces: List["Trace"], loop: asyncio.AbstractEventLoop, session: "ClientSession", ) -> None: assert isinstance(url, URL) super().__init__() self.method = method self.cookies = SimpleCookie() # type: SimpleCookie[str] self._real_url = url self._url = url.with_fragment(None) self._body = None # type: Optional[bytes] self._writer = writer # type: Optional[asyncio.Task[None]] self._continue = continue100 # None by default self._closed = True self._history = () # type: Tuple[ClientResponse, ...] self._request_info = request_info self._timer = timer if timer is not None else TimerNoop() self._cache = {} # type: Dict[str, Any] self._traces = traces self._loop = loop # store a reference to session #1985 self._session = session # type: Optional[ClientSession] if loop.get_debug(): self._source_traceback = traceback.extract_stack(sys._getframe(1)) @reify def url(self) -> URL: return self._url @reify def real_url(self) -> URL: return self._real_url @reify def host(self) -> str: assert self._url.host is not None return self._url.host @reify def headers(self) -> "CIMultiDictProxy[str]": return self._headers @reify def raw_headers(self) -> RawHeaders: return self._raw_headers @reify def request_info(self) -> RequestInfo: return self._request_info @reify def content_disposition(self) -> Optional[ContentDisposition]: raw = self._headers.get(hdrs.CONTENT_DISPOSITION) if raw is None: return None disposition_type, params_dct = multipart.parse_content_disposition(raw) params = MappingProxyType(params_dct) filename = multipart.content_disposition_filename(params) return ContentDisposition(disposition_type, params, filename) def __del__(self, _warnings: Any = warnings) -> None: if self._closed: return if self._connection is not None: self._connection.release() self._cleanup_writer() if self._loop.get_debug(): _warnings.warn( f"Unclosed response {self!r}", ResourceWarning, source=self ) context = {"client_response": self, "message": "Unclosed response"} if self._source_traceback: context["source_traceback"] = self._source_traceback self._loop.call_exception_handler(context) def __repr__(self) -> str: out = io.StringIO() ascii_encodable_url = str(self.url) if self.reason: ascii_encodable_reason = self.reason.encode( "ascii", "backslashreplace" ).decode("ascii") else: ascii_encodable_reason = self.reason print( "<ClientResponse({}) [{} {}]>".format( ascii_encodable_url, self.status, ascii_encodable_reason ), file=out, ) print(self.headers, file=out) return out.getvalue() @property def connection(self) -> Optional["Connection"]: return self._connection @reify def history(self) -> Tuple["ClientResponse", ...]: """A sequence of responses, if redirects occurred.""" return self._history @reify def links(self) -> "MultiDictProxy[MultiDictProxy[Union[str, URL]]]": links_str = ", ".join(self.headers.getall("link", [])) if not links_str: return MultiDictProxy(MultiDict()) links = MultiDict() # type: MultiDict[MultiDictProxy[Union[str, URL]]] for val in re.split(r",(?=\s*<)", links_str): match = re.match(r"\s*<(.*)>(.*)", val) if match is None: # pragma: no cover # the check exists to suppress mypy error continue url, params_str = match.groups() params = params_str.split(";")[1:] link = MultiDict() # type: MultiDict[Union[str, URL]] for param in params: match = re.match(r"^\s*(\S*)\s*=\s*(['\"]?)(.*?)(\2)\s*$", param, re.M) if match is None: # pragma: no cover # the check exists to suppress mypy error continue key, _, value, _ = match.groups() link.add(key, value) key = link.get("rel", url) # type: ignore[assignment] link.add("url", self.url.join(URL(url))) links.add(key, MultiDictProxy(link)) return MultiDictProxy(links) async def start(self, connection: "Connection") -> "ClientResponse": """Start response processing.""" self._closed = False self._protocol = connection.protocol self._connection = connection with self._timer: while True: # read response try: protocol = self._protocol message, payload = await protocol.read() # type: ignore[union-attr] except http.HttpProcessingError as exc: raise ClientResponseError( self.request_info, self.history, status=exc.code, message=exc.message, headers=exc.headers, ) from exc if message.code < 100 or message.code > 199 or message.code == 101: break if self._continue is not None: set_result(self._continue, True) self._continue = None # payload eof handler payload.on_eof(self._response_eof) # response status self.version = message.version self.status = message.code self.reason = message.reason # headers self._headers = message.headers # type is CIMultiDictProxy self._raw_headers = message.raw_headers # type is Tuple[bytes, bytes] # payload self.content = payload # cookies for hdr in self.headers.getall(hdrs.SET_COOKIE, ()): try: self.cookies.load(hdr) except CookieError as exc: client_logger.warning("Can not load response cookies: %s", exc) return self def _response_eof(self) -> None: if self._closed: return if self._connection is not None: # websocket, protocol could be None because # connection could be detached if ( self._connection.protocol is not None and self._connection.protocol.upgraded ): return self._connection.release() self._connection = None self._closed = True self._cleanup_writer() @property def closed(self) -> bool: return self._closed def close(self) -> None: if not self._released: self._notify_content() if self._closed: return self._closed = True if self._loop is None or self._loop.is_closed(): return if self._connection is not None: self._connection.close() self._connection = None self._cleanup_writer() def release(self) -> Any: if not self._released: self._notify_content() if self._closed: return noop() self._closed = True if self._connection is not None: self._connection.release() self._connection = None self._cleanup_writer() return noop() @property def ok(self) -> bool: """Returns ``True`` if ``status`` is less than ``400``, ``False`` if not. This is **not** a check for ``200 OK`` but a check that the response status is under 400. """ return 400 > self.status def raise_for_status(self) -> None: if not self.ok: # reason should always be not None for a started response assert self.reason is not None self.release() raise ClientResponseError( self.request_info, self.history, status=self.status, message=self.reason, headers=self.headers, ) def _cleanup_writer(self) -> None: if self._writer is not None: self._writer.cancel() self._writer = None self._session = None def _notify_content(self) -> None: content = self.content if content and content.exception() is None: content.set_exception(ClientConnectionError("Connection closed")) self._released = True async def wait_for_close(self) -> None: if self._writer is not None: try: await self._writer finally: self._writer = None self.release() async def read(self) -> bytes: """Read response payload.""" if self._body is None: try: self._body = await self.content.read() for trace in self._traces: await trace.send_response_chunk_received( self.method, self.url, self._body ) except BaseException: self.close() raise elif self._released: raise ClientConnectionError("Connection closed") return self._body def get_encoding(self) -> str: ctype = self.headers.get(hdrs.CONTENT_TYPE, "").lower() mimetype = helpers.parse_mimetype(ctype) encoding = mimetype.parameters.get("charset") if encoding: try: codecs.lookup(encoding) except LookupError: encoding = None if not encoding: if mimetype.type == "application" and ( mimetype.subtype == "json" or mimetype.subtype == "rdap" ): # RFC 7159 states that the default encoding is UTF-8. # RFC 7483 defines application/rdap+json encoding = "utf-8" elif self._body is None: raise RuntimeError( "Cannot guess the encoding of " "a not yet read body" ) else: encoding = chardet.detect(self._body)["encoding"] if not encoding: encoding = "utf-8" return encoding async def text(self, encoding: Optional[str] = None, errors: str = "strict") -> str: """Read response payload and decode.""" if self._body is None: await self.read() if encoding is None: encoding = self.get_encoding() return self._body.decode(encoding, errors=errors) # type: ignore[union-attr] async def json( self, *, encoding: Optional[str] = None, loads: JSONDecoder = DEFAULT_JSON_DECODER, content_type: Optional[str] = "application/json", ) -> Any: """Read and decodes JSON response.""" if self._body is None: await self.read() if content_type: ctype = self.headers.get(hdrs.CONTENT_TYPE, "").lower() if not is_expected_content_type(ctype, content_type): raise ContentTypeError( self.request_info, self.history, message=( "Attempt to decode JSON with " "unexpected mimetype: %s" % ctype ), headers=self.headers, ) if encoding is None: encoding = self.get_encoding() return loads(self._body.decode(encoding)) # type: ignore[union-attr] async def __aenter__(self) -> "ClientResponse": return self async def __aexit__( self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType], ) -> None: # similar to _RequestContextManager, we do not need to check # for exceptions, response object can close connection # if state is broken self.release()
from django.contrib import admin from .models import Document admin.site.register(Document)
#!/usr/bin/env python2.4 import sys from z3c.rml import rml2pdf for arg in sys.argv[1:]: rml2pdf.go(arg)
from django.contrib import admin from .models import Receipt, Item, User, Cover, Payment admin.site.register(Receipt) admin.site.register(Item) admin.site.register(User) admin.site.register(Cover) admin.site.register(Payment)
from pathlib import Path import subprocess root_path = Path(__file__).parent.parent.resolve() extensions = [ 'sphinx.ext.todo', 'sphinxcontrib.drawio', ] version = (root_path / 'VERSION').read_text().strip() project = 'hat-stc' copyright = '2020-2021, Hat Open AUTHORS' master_doc = 'index' html_theme = 'furo' html_static_path = ['static'] html_css_files = ['custom.css'] html_use_index = False html_show_sourcelink = False html_show_sphinx = False html_sidebars = {'**': ["sidebar/brand.html", "sidebar/scroll-start.html", "sidebar/navigation.html", "sidebar/scroll-end.html"]} todo_include_todos = True p = subprocess.run(['which', 'drawio'], capture_output=True, check=True) drawio_binary_path = p.stdout.decode('utf-8').strip()
"""*********************************************************************** This file was created by Astraea, Inc., 2018 from an excerpt of the original: Copyright (c) 2013-2018 Commonwealth Computer Research, Inc. All rights reserved. This program and the accompanying materials are made available under the terms of the Apache License, Version 2.0 which accompanies this distribution and is available at http://www.opensource.org/licenses/apache2.0.php. + ***********************************************************************/""" from pyspark.sql.types import UserDefinedType from pyspark.sql import Row from pyspark.sql.types import * from pyrasterframes.context import RFContext class GeometryUDT(UserDefinedType): @classmethod def sqlType(self): # return StructField("wkb", BinaryType(), False) return StructType([StructField("wkb", BinaryType(), True)]) @classmethod def module(cls): return 'geomesa_pyspark.types' @classmethod def scalaUDT(cls): return 'org.apache.spark.sql.jts.' + cls.__name__ def serialize(self, obj): if (obj is None): return None return Row(obj.toBytes) def deserialize(self, datum): return RFContext._jvm_mirror().generate_geometry(datum[0]) class PointUDT(GeometryUDT): pass class LineStringUDT(GeometryUDT): pass class PolygonUDT(GeometryUDT): pass class MultiPointUDT(GeometryUDT): pass class MultiLineStringUDT(GeometryUDT): pass class MultiPolygonUDT(GeometryUDT): pass class GeometryUDT(GeometryUDT): pass class GeometryCollectionUDT(GeometryUDT): pass
"""Joystick action space for controlling agent avatars.""" from . import abstract_action_space from dm_env import specs import numpy as np class Joystick(abstract_action_space.AbstractActionSpace): """Joystick action space.""" def __init__(self, scaling_factor=1., action_layers='agent', constrained_lr=False, control_velocity=False, momentum=0.): """Constructor. Args: scaling_factor: Scalar. Scaling factor multiplied to the action. agent_layer: String or iterable of strings. Elements (or itself if string) must be keys in the environment state. All sprites in these layers will be acted upon by this action space. control_velocity: Bool. Whether to control velocity (True) or force (False). constrained_lr: Bool. If True, joystick is contrained to actions parallel to the x-axis, by zeroing out the y-axis (component 1) of the action. momentum: Float in [0, 1]. Discount factor for previous action. This should be zero if control_velocity is False, because imparting forces automatically gives momentum to the agent(s) being controlled. If control_velocity is True, setting this greater than zero gives the controlled agent(s) momentum. However, the velocity is clipped at scaling_factor, so the agent only retains momentum when stopping or changing direction and does not accelerate. """ self._scaling_factor = scaling_factor if not isinstance(action_layers, (list, tuple)): action_layers = (action_layers,) self._action_layers = action_layers self._constrained_lr = constrained_lr self._control_velocity = control_velocity self._momentum = momentum self._action_spec = specs.BoundedArray( shape=(2,), dtype=np.float32, minimum=-1, maximum=1) def step(self, state, action): """Apply action to environment state. Args: state: OrderedDict. Environment state. action: Numpy float array of size (2) in [-1, 1]. Force to apply. """ if self._constrained_lr: action[1] = 0. self._action *= self._momentum self._action += self._scaling_factor * action self._action = np.clip( self._action, -self._scaling_factor, self._scaling_factor) for action_layer in self._action_layers: for sprite in state[action_layer]: if self._control_velocity: sprite.velocity = self._action / sprite.mass else: sprite.velocity += self._action / sprite.mass def reset(self, state): """Reset action space at start of new episode.""" del state self._action = np.zeros(2) def random_action(self): """Return randomly sampled action.""" return np.random.uniform(-1., 1., size=(2,)) def action_spec(self): return self._action_spec
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_geocodio ---------------------------------- Tests for `geocodio.data` module. """ import json import os import unittest from geocodio.data import Address from geocodio.data import Location from geocodio.data import LocationCollection class TestDataTypes(unittest.TestCase): def setUp(self): """ Read the test data from JSON files which are modified from actual service response only for formatting. This makes this file much easier to read, the data easier to inspect, and ensures that the data matches what the service actually replies with. """ fixtures = os.path.join(os.path.dirname(os.path.abspath(__file__)), "response/") with open(os.path.join(fixtures, "single.json"), "r") as single_json: self.single_response = json.loads(single_json.read()) with open(os.path.join(fixtures, "batch.json"), "r") as batch_json: self.batch_response = json.loads(batch_json.read()) with open(os.path.join(fixtures, "address.json"), "r") as address_json: self.address_response = json.loads(address_json.read()) with open(os.path.join(fixtures, "missing_results.json"), "r") as missing_json: self.missing_results = json.loads(missing_json.read()) with open( os.path.join(fixtures, "batch_reverse.json"), "r" ) as batch_reverse_json: self.batch_reverse_response = json.loads(batch_reverse_json.read()) def test_address_coords(self): """Ensure Address.coords property returns None when no location""" x = Address(self.address_response) self.assertEqual(None, x.coords) def test_address_accuracy(self): """Ensure Address.accuracy property returns None when no location""" x = Address(self.address_response) self.assertEqual(None, x.accuracy) def test_location_coords(self): """Ensure Location.coords property returns a suitable tuple""" x = Location(self.single_response) self.assertEqual(x.coords, (37.554895702703, -77.457561054054)) # Do the same with the order changed x = Location(self.single_response, order="lng") self.assertEqual(x.coords, (-77.457561054054, 37.554895702703)) def test_location_results_missing(self): """Ensure empty results are processed as a missing address""" bad_results = Location(self.missing_results) self.assertEqual(bad_results.coords, None) def test_collection(self): """Ensure that the LocationCollection stores as a list of Locations""" self.assertTrue(isinstance(self.batch_response, dict)) locations = LocationCollection(self.batch_response["results"]) self.assertTrue(isinstance(locations[0], Location)) locations = LocationCollection(self.batch_reverse_response["results"]) self.assertTrue(isinstance(locations[0], Location)) def test_collection_coords(self): """Ensure the coords property returns a list of suitable tuples""" locations = LocationCollection(self.batch_response["results"]) self.assertEqual( locations.coords, [ (37.560890255102, -77.477400571429), (37.554895702703, -77.457561054054), None, ], ) # Do the same with the order changed locations = LocationCollection(self.batch_response["results"], order="lng") self.assertEqual( locations.coords, [ (-77.477400571429, 37.560890255102), (-77.457561054054, 37.554895702703), None, ], ) def test_collection_addresses(self): """Ensure that formatted addresses are returned""" locations = LocationCollection(self.batch_response["results"]) self.assertEqual( locations.formatted_addresses, [ "3101 Patterson Ave, Richmond VA, 23221", "1657 W Broad St, Richmond VA, 23220", "", ], ) def test_collection_get(self): """Ensure 'get' performs a key based lookup""" locations = LocationCollection(self.batch_response["results"]) self.assertEqual( locations.get("3101 patterson ave, richmond, va").coords, (37.560890255102, -77.477400571429), ) # Case sensitive on the specific query self.assertRaises(KeyError, locations.get, "3101 Patterson Ave, richmond, va") locations = LocationCollection(self.batch_reverse_response["results"]) # The rendred query string value is acceptable self.assertEqual( locations.get("37.538758,-77.433594").coords, (37.538758, -77.433594) ) # A tuple of floats is acceptable self.assertEqual( locations.get((37.538758, -77.433594)).coords, (37.538758, -77.433594) ) # If it can be coerced to a float it is acceptable self.assertEqual( locations.get(("37.538758", "-77.433594")).coords, (37.538758, -77.433594) ) # This is unacceptable self.assertRaises(ValueError, locations.get, ("37.538758 N", "-77.433594 W")) if __name__ == "__main__": unittest.main()
# -*- coding: utf-8 -*- # # Sphinx configuration # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys import time import aiida_nwchem from aiida.manage.configuration import load_documentation_profile # -- AiiDA-related setup -------------------------------------------------- # Load the dummy profile even if we are running locally, this way the documentation will succeed even if the current # default profile of the AiiDA installation does not use a Django backend. load_documentation_profile() # If we are not on READTHEDOCS load the Sphinx theme manually if not os.environ.get('READTHEDOCS', None): import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # -- General configuration ------------------------------------------------ # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # If your documentation needs a minimal Sphinx version, state it here. needs_sphinx = '1.5' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.mathjax', 'sphinx.ext.intersphinx', 'sphinx.ext.viewcode', 'sphinxcontrib.contentui', 'aiida.sphinxext', 'sphinxcontrib.napoleon', ] intersphinx_mapping = { 'python': ('https://docs.python.org/3', None), 'aiida': ('https://aiida-core.readthedocs.io/en/latest', None), } nitpick_ignore = [('py:obj', 'module')] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. #~ master_doc = 'index' master_doc = 'index' # General information about the project. project = u'aiida-nwchem' copyright_first_year = "2021" copyright_owners = "The AiiDA Team" current_year = str(time.localtime().tm_year) copyright_year_string = current_year if current_year == copyright_first_year else "{}-{}".format( copyright_first_year, current_year) # pylint: disable=redefined-builtin copyright = u'{}, {}. All rights reserved'.format(copyright_year_string, copyright_owners) # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The full version, including alpha/beta/rc tags. release = aiida_nwchem.__version__ # The short X.Y version. version = '.'.join(release.split('.')[:2]) # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # exclude_patterns = ['doc.rst'] #~ exclude_patterns = ['index.rst'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. show_authors = True # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. #~ html_theme = 'basicstrap' ## SET BELOW # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'display_version': True, } # Add any paths that contain custom themes here, relative to this directory. #~ html_theme_path = ["."] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = "images/.png" # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = "images/favicon.ico" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". #html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = False # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #~ html_show_copyright = False # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. html_use_opensearch = 'http://aiida-nwchem.readthedocs.io' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'aiida-nwchem-doc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). # latex_documents = [ # ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # NOTE: Diabling API docs # def run_apidoc(_): # """Runs sphinx-apidoc when building the documentation. # Needs to be done in conf.py in order to include the APIdoc in the # build on readthedocs. # See also https://github.com/rtfd/readthedocs.org/issues/1139 # """ # source_dir = os.path.abspath(os.path.dirname(__file__)) # apidoc_dir = os.path.join(source_dir, 'apidoc') # package_dir = os.path.join(source_dir, os.pardir, os.pardir, 'aiida_nwchem') # # In #1139, they suggest the route below, but this ended up # # calling sphinx-build, not sphinx-apidoc # #from sphinx.apidoc import main # #main([None, '-e', '-o', apidoc_dir, package_dir, '--force']) # import subprocess # cmd_path = 'sphinx-apidoc' # if hasattr(sys, 'real_prefix'): # Check to see if we are in a virtualenv # # If we are, assemble the path manually # cmd_path = os.path.abspath( # os.path.join(sys.prefix, 'bin', 'sphinx-apidoc')) # options = [ # '-o', # apidoc_dir, # package_dir, # '--private', # '--force', # '--no-toc', # ] # # See https://stackoverflow.com/a/30144019 # env = os.environ.copy() # env["SPHINX_APIDOC_OPTIONS"] = 'members,special-members,private-members,undoc-members,show-inheritance' # subprocess.check_call([cmd_path] + options, env=env) # def setup(app): # app.connect('builder-inited', run_apidoc) # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). # man_pages = [ # ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) # texinfo_documents = [ # ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # Warnings to ignore when using the -n (nitpicky) option # We should ignore any python built-in exception, for instance nitpick_ignore = []
from machinetranslation import translator from flask import Flask, render_template, request import json app = Flask("Web Translator") @app.route("/englishToFrench") def englishToFrench(): textToTranslate = request.args.get('textToTranslate') translation = translator.englishToFrench(englishText=textToTranslate) return f"{translation} (Translated text to French)" @app.route("/frenchToEnglish") def frenchToEnglish(): textToTranslate = request.args.get('textToTranslate') translation = translator.frenchToEnglish(frenchText=textToTranslate) return f"{translation} (Translated text to English)" @app.route("/") def renderIndexPage(): return render_template('index.html') if __name__ == "__main__": app.run(host="0.0.0.0", port=8080)
import os import pprint import inspect import tensorflow as tf pp = pprint.PrettyPrinter().pprint def class_vars(obj): return (k:v for k, v in inspect.getmembers(obj)) if not k.startswith("__") and not callable() class base_model(object): def __init__(self, config): self._saver = None self.config = config try: self._attrs = config.__dict__["__flag"] except: self._attrs = class_vars(config) pp(self._attrs) self.config = config for attr in self._attrs: name = attr if not attr.startswith("_") else attr[1:] setattr(self, name, getattr(self.config, attr)) def save_model(self, step=None): print(" [*] Saving checkpoint --->>") model_name = type(self).__name__ if not os.path.exists(self.checkpoint_dir): os.makedirs(self.checkpoint_dir) self.saver.save(self.sess, self.checkpoint_dir, global_step=step) def load_model(self): print(" [*] Loading checkpoint <<--- ") ckpt = tf.train.get_checkpoint_state(self.checkpoint) if ckpt and ckpt.model_checkpooint_path: ckpt_name = os.path.basename(ckpt.model_checkpoint_path) fname = os.path.jin(self.checkpoint_dir, ckpt_name) self.saver.restore(self.sess, fname) print(" [*] Load sucessed :D : %s" % fname) return True else: print(" [*] Load failed :( : %s " % self.checkpoint_dir) return False @property def model_dir(self): model_dir = self.config.env_name for k, v in self._attrs.items(): if not k.startswith("_") and k not in ["display"]: model_dir += "/%s-%s" % (k, ",".join([str(i) for i in v ]) if type(v) == list else v) return model_dir + "/" @property def saver(self): if self._saver == None: self._saver = tf.train.Saver(max_to_keep=10) return self._saver
""" This file offers the methods to automatically retrieve the graph Lachnospiraceae bacterium NK4A144. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def LachnospiraceaeBacteriumNk4a144( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Lachnospiraceae bacterium NK4A144 graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.0 - homology.v11.5 - physical.links.v11.0 - physical.links.v11.5 - links.v11.0 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Lachnospiraceae bacterium NK4A144 graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="LachnospiraceaeBacteriumNk4a144", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
# # Copyright 2019 Xilinx Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import xir_extra_ops def jit(graph): graph.set_attr("xmodel_preprocessor", "libxmodel_preprocessor_efficientnet.so.1") graph.set_attr("need_preprocess", True) graph.set_attr("mean", [127.0, 127.0, 127.0]) graph.set_attr("scale", [0.0078125, 0.0078125, 0.0078125]) graph.set_attr("is_rgb_input", True) labels_list = open(os.path.join( graph.get_attr("__dir__"), "word_list.txt"), "r").read().splitlines() labels_list_1001 = ["background,"] labels_list_1001.extend(labels_list) graph.set_attr("labels", labels_list_1001) xir_extra_ops.set_postprocessor( graph, "libxmodel_postprocessor_classification.so.1", {"input": ["my_topk"]}) graph.remove_op(graph.get_op( "logits_fix")) conf_op = graph.get_op("efficientnet-edgetpu-S/model/head/dense/BiasAdd/aquant_logits") graph.create_op("aquant_logits_softmax", "softmax", attrs={"axis": -1}, input_ops={"input": [conf_op]}, subgraph=graph.get_leaf_subgraph(conf_op)) graph.create_op("my_topk", "topk", attrs={"K": 5}, input_ops={"input": [graph.get_op("aquant_logits_softmax")]}, subgraph=graph.get_leaf_subgraph(graph.get_op("aquant_logits_softmax"))) #graph.save_as_image(os.path.join(graph.get_attr("__dir__"), graph.get_attr("__basename__") + ".jit.svg"), "svg") #graph.serialize(os.path.join(graph.get_attr("__dir__"), graph.get_attr("__basename__") + ".jit.xmodel")) print(graph.get_name())
# -*- coding: utf-8 -*- from typing import Any, Iterable, List, Optional from aiohttp import FormData as _FormData import aiohttp.multipart as multipart class FormData(_FormData): def __init__( self, fields: Iterable[Any] = (), quote_fields: bool = True, charset: Optional[str] = None, boundary: Optional[str] = None ) -> None: self._writer = multipart.MultipartWriter("form-data", boundary=boundary) self._fields = [] # type: List[Any] self._is_multipart = False self._is_processed = False self._quote_fields = quote_fields self._charset = charset if isinstance(fields, dict): fields = list(fields.items()) elif not isinstance(fields, (list, tuple)): fields = (fields,) self.add_fields(*fields)
# podd_utils.py # Utility functions for Podd SCons build import os from SCons.Action import ActionFactory from SCons.Script.SConscript import SConsEnvironment SConsEnvironment.OSCommand = ActionFactory(os.system, lambda command : 'os.system("%s")' % command) import SCons.Util def list_to_path(lst): result = '' if SCons.Util.is_List(lst): for element in lst: result += str(element) if len(lst) > 1 and element != lst[-1]: result += ':' else: result = lst return result def InstallWithRPATH(env, dest, files, rpath): obj = env.Install(dest, files) if env['PLATFORM'] == 'posix': rpathstr = list_to_path(rpath) if env.WhereIs('patchelf'): if env.subst('$ADD_INSTALL_RPATH') and rpathstr: patch_cmd = "patchelf --force-rpath --set-rpath '"+rpathstr+"' " else: patch_cmd = "patchelf --remove-rpath " for i in obj: env.AddPostAction(i, env.OSCommand(patch_cmd+str(i))) elif env.WhereIs('chrpath') \ and not (env.subst('$ADD_INSTALL_RPATH') and rpathstr): # chrpath can only reliably delete RPATH for i in obj: env.AddPostAction(i, env.OSCommand('chrpath -d '+str(i))) else: print('WARNING: patchelf not found, cannot set RPATH') elif env['PLATFORM'] == 'darwin': for i in obj: env.AddPostAction(i, env.OSCommand("site_scons/clear_macos_rpath.sh "+str(i))) if env.subst('$ADD_INSTALL_RPATH') and rpath: tool_cmd = "install_name_tool" # rpath could contain empty strings or be [''] add_to_cmd = '' for rp in rpath: if rp: add_to_cmd += " -add_rpath "+str(rp) if add_to_cmd: tool_cmd += add_to_cmd+" "+str(i) env.AddPostAction(i, env.OSCommand(tool_cmd)) return obj def create_uninstall_target(env, path, is_glob = False): if is_glob: all_files = env.Glob(path,strings=True) for filei in all_files: print('Delete(%s)' % filei) env.Alias("uninstall", os.remove(filei)) else: print('Delete(%s)' % path) if os.path.exists(path): env.Alias("uninstall", os.remove(path)) import SCons.Script import re def build_library(env, sotarget, src, extrahdrs = [], extradicthdrs = [], dictname = None, useenv = True, versioned = False, install_rpath = []): """ Build shared library lib<sotarget> of ROOT classes from given sources "src" (space separated string). For each .cxx source file, a .h header file is expected. A ROOT dictionary is generated from the headers and compiled into the library. The otional "extradicthdrs" headers will be added to the list of headers used for generating the dictionary. If the dictionary source file should have a different name than <sotarget>Dict.cxx, specify that name as "dictname". The dictionary will expect a link definition file <dictname>_LinkDef.h. All sources and corresponding headers and the "extradicthdrs" will be installed in the source and include file installation locations. If any additional headers should be installed, specify them in "extrahdrs". "extrahdrs" will not passed to the ROOT dictionary generator, which is useful e.g. for non-ROOT class standalone headers such as local utility classes or global definitions. If "useenv" is True, the library will link against libraries in $LIB and search for libraires in $LIBPATH. Otherwise, no external libraries will be linked. Other environment variables (compiler flags, include directives, RPATH etc.) are not affected by this flag "install_rpath" is a list of directories that will be set on the installed library if RPATH installation is globally enabled with $ADD_INSTALL_RPATH. Literal "$" signs in any of these list elements (e.g. $ORIGIN) need to be given as "$$" (e.g. $$ORIGIN). """ # Current location relative to top directory thisdir_fullpath = env.Dir('.').path thisdir = os.path.basename(os.path.normpath(thisdir_fullpath)) if not dictname: dictname = sotarget if useenv: linklibs = env['LIBS'] linklibpath = env['LIBPATH'] else: linklibs = [''] linklibpath = [''] # Sources and headers srclist = env.Split(src) hdr = re.sub(r'\.cxx','.h',src) installhdrs = env.Split(hdr) installhdrs.extend(extradicthdrs) installhdrs.extend(extrahdrs) dicthdrs = env.Split(hdr) dicthdrs.extend(extradicthdrs) dicthdrs.append(dictname+'_LinkDef.h') # ROOT dictionary for this library rootdict = dictname+'Dict.cxx' libbase = env.subst('$SHLIBPREFIX')+sotarget thedict = env.RootCint(rootdict, dicthdrs, PCMNAME=libbase) # Versioned shared library symlink names libname_so = libbase+env.subst('$SHLIBSUFFIX') if env['PLATFORM'] == 'posix': # Linux if versioned: libname_soname = libname_so+'.'+env.subst('$SOVERSION') libname_versioned = libname_so+'.'+env.subst('$VERSION') shlibsuffix = env.subst('$SHLIBSUFFIX')+'.'+env.subst('$VERSION') else: libname_soname = libname_so shlibsuffix = env.subst('$SHLIBSUFFIX') shlinkflags = ['-Wl,-soname='+libname_soname] elif env['PLATFORM'] == 'darwin': # macOS if versioned: libname_soname = libbase+'.'+env.subst('$SOVERSION')+env.subst('$SHLIBSUFFIX') libname_versioned = libbase+'.'+env.subst('$VERSION')+env.subst('$SHLIBSUFFIX') shlibsuffix = '.'+env.subst('$VERSION')+env.subst('$SHLIBSUFFIX') else: libname_soname = libname_so shlibsuffix = env.subst('$SHLIBSUFFIX') shlinkflags = ['-Wl,-install_name,'+'@rpath/'+libname_soname] if versioned: shlinkflags.append(['-Wl,-compatibility_version,'+env.subst('$SOVERSION'), '-Wl,-current_version,'+env.subst('$VERSION')]) try: for rp in env['RPATH']: shlinkflags.append('-Wl,-rpath,'+rp) except KeyError: pass else: print('build_library: Error: unsupported platform') Exit(3) # Build the library thislib = env.SharedLibrary(target = sotarget, source = srclist+[rootdict], LIBS = linklibs, LIBPATH = linklibpath, SHLIBSUFFIX = shlibsuffix, SONAME = libname_soname, SHLINKFLAGS = env['SHLINKFLAGS']+shlinkflags) if versioned: # Create symlinks env.SymLink(libname_soname,thislib) env.SymLink(libname_so,libname_soname) # Installation install_prefix = env.subst('$INSTALLDIR') lib_dir = os.path.join(install_prefix,env.subst('$LIBSUBDIR')) #bin_dir = os.path.join(install_prefix,'bin') inc_dir = os.path.join(install_prefix,'include') src_dir = os.path.join(install_prefix,'src',thisdir) InstallWithRPATH(env,lib_dir,thislib,install_rpath) # Install PCM file generated by RootCint, if any if len(thedict) > 1: env.Install(lib_dir,thedict[1]) env.Install(inc_dir,installhdrs) env.Install(src_dir,srclist) libname_so_installpath = os.path.join(lib_dir,libname_so) if versioned: libname_soname_installpath = os.path.join(lib_dir,libname_soname) libname_versioned_installpath = os.path.join(lib_dir,libname_versioned) #Kludge for SCons's inability to install symlinks env.SymLink(libname_soname_installpath,libname_versioned_installpath) env.SymLink(libname_so_installpath,libname_soname_installpath) if 'uninstall' in SCons.Script.COMMAND_LINE_TARGETS: create_uninstall_target(env, libname_so_installpath) create_uninstall_target(env, libname_soname_installpath) return thislib import sys import subprocess import platform import time def write_compiledata(env, compiledata): if sys.version_info >= (2, 7): try: cmd = "git rev-parse HEAD 2>/dev/null" gitrev = subprocess.check_output(cmd, shell=True).rstrip() except: gitrev = '' try: cmd = env.subst('$CXX') + " --version 2>/dev/null | head -1" cxxver = subprocess.check_output(cmd, shell=True).rstrip() except: cxxver = '' # subprocess gives us byte string literals in Python 3, but we'd like # Unicode strings if sys.version_info >= (3, 0): gitrev = gitrev.decode() cxxver = cxxver.decode() else: fnull = open(os.devnull, 'w') try: gitrev = subprocess.Popen(['git', 'rev-parse', 'HEAD', '2>dev/null'], stdout=subprocess.PIPE, stderr=fnull).communicate()[0].rstrip() except: gitrev ='' try: outp = subprocess.Popen([env.subst('$CXX'), '--version'], stdout=subprocess.PIPE, stderr=fnull).communicate()[0] lines = outp.splitlines() cxxver = lines[0] except: cxxver = '' f=open(compiledata,'w') f.write('#ifndef ANALYZER_COMPILEDATA_H\n') f.write('#define ANALYZER_COMPILEDATA_H\n') f.write('\n') f.write('#define HA_INCLUDEPATH "%s %s %s"\n' % (env.subst('$HA_HallA'), env.subst('$HA_Podd'), env.subst('$HA_DC'))) f.write('#define HA_VERSION "%s"\n' % env.subst('$HA_VERSION')) f.write('#define HA_DATE "%s"\n' % time.strftime("%b %d %Y")) f.write('#define HA_DATETIME "%s"\n' % time.strftime("%a %b %d %Y")) #f.write('#define HA_DATETIME "%s"\n' % time.strftime("%a %b %d %H:%M:%S %Z %Y")) f.write('#define HA_PLATFORM "%s"\n' % platform.platform()) f.write('#define HA_BUILDNODE "%s"\n' % platform.node()) f.write('#define HA_BUILDDIR "%s"\n' % os.getcwd()) try: builduser = env['ENV']['LOGNAME'] except: builduser = '' f.write('#define HA_BUILDUSER "%s"\n' % builduser) f.write('#define HA_GITREV "%s"\n' % gitrev[:7]) f.write('#define HA_CXXVERS "%s"\n' % cxxver) f.write('#define HA_ROOTVERS "%s"\n' % env.subst('$ROOTVERS')) f.write('#define ANALYZER_VERSION_CODE %s\n' % env.subst('$VERCODE')) f.write('#define ANALYZER_VERSION(a,b,c) (((a) << 16) + ((b) << 8) + (c))\n') f.write('\n') f.write('#endif\n') f.close()
import os import math import torch import argparse import numpy as np from tqdm import tqdm from medpy import metric import torch.nn.functional as F from Configs.config import config from Model.Vnet import VNet as Vnet from cc3d import connected_components from Dataloader.dataset import LAHeartDataset """ # https://github.com/kleinzcy/SASSnet/blob/master/code/test_util.py def getLargestCC(segmentation): # from skimage.measure import label as sm_label labels = sm_label(segmentation) assert (labels.max() != 0) # assume at least 1 CC largestCC = labels == np.argmax(np.bincount(labels.flat)[1:]) + 1 return largestCC """ def cct(pseudo_label): labels_out, N = connected_components(pseudo_label, connectivity=26, return_N=True) for segid in range(1, N + 1): extracted_image = labels_out * (labels_out == segid) if extracted_image.sum() < 8000: pseudo_label[labels_out == segid] = 0 return pseudo_label def test_all_case(net, val_set, num_classes, patch_size=(112, 112, 80), stride_xy=18, stride_z=4, post_process=False, visual=False): total_metric = 0.0 assert val_set.aug is False, ">> no augmentation for test set" dataloader = iter(val_set) tbar = range(len(val_set)) tbar = tqdm(tbar, ncols=135) for (idx, _) in enumerate(tbar): image, label = next(dataloader) prediction, score_map = test_single_case(net, image, stride_xy, stride_z, patch_size, num_classes=num_classes, post_process=post_process) if np.sum(prediction) == 0: single_metric = (0, 0, 0, 0) else: single_metric = calculate_metric_percase(np.array(prediction), np.array(label[:])) total_metric += np.asarray(single_metric) if visual: # import nibabel as nib # struggle for where to save; modify it if you need. raise NotImplementedError avg_metric = total_metric / len(val_set) print("|dice={:.4f}|mIoU={:.4f}|95HD={:.4f}|ASD={:.4f}|".format(avg_metric[0], avg_metric[1], avg_metric[3], avg_metric[2])) return avg_metric def test_single_case(net, image, stride_xy, stride_z, patch_size, num_classes=1, post_process=False): image = image.squeeze() w, h, d = image.shape # if the size of image is less than patch_size, then padding it add_pad = False if w < patch_size[0]: w_pad = patch_size[0] - w add_pad = True else: w_pad = 0 if h < patch_size[1]: h_pad = patch_size[1] - h add_pad = True else: h_pad = 0 if d < patch_size[2]: d_pad = patch_size[2] - d add_pad = True else: d_pad = 0 wl_pad, wr_pad = w_pad // 2, w_pad - w_pad // 2 hl_pad, hr_pad = h_pad // 2, h_pad - h_pad // 2 dl_pad, dr_pad = d_pad // 2, d_pad - d_pad // 2 if add_pad: image = np.pad(image, [(wl_pad, wr_pad), (hl_pad, hr_pad), (dl_pad, dr_pad)], mode='constant', constant_values=0) ww, hh, dd = image.shape sx = math.ceil((ww - patch_size[0]) / stride_xy) + 1 sy = math.ceil((hh - patch_size[1]) / stride_xy) + 1 sz = math.ceil((dd - patch_size[2]) / stride_z) + 1 score_map = np.zeros((num_classes,) + image.shape).astype(np.float32) cnt = np.zeros(image.shape).astype(np.float32) for x in range(0, sx): xs = min(stride_xy * x, ww - patch_size[0]) for y in range(0, sy): ys = min(stride_xy * y, hh - patch_size[1]) for z in range(0, sz): zs = min(stride_z * z, dd - patch_size[2]) test_patch = image[xs:xs + patch_size[0], ys:ys + patch_size[1], zs:zs + patch_size[2]] test_patch = np.expand_dims(np.expand_dims(test_patch, axis=0), axis=0).astype(np.float32) test_patch = torch.from_numpy(test_patch).cuda(non_blocking=True) y1, _ = net(test_patch) y = F.softmax(y1, dim=1) y = y.cpu().data.numpy() y = y[0, :, :, :, :] score_map[:, xs:xs + patch_size[0], ys:ys + patch_size[1], zs:zs + patch_size[2]] \ = score_map[:, xs:xs + patch_size[0], ys:ys + patch_size[1], zs:zs + patch_size[2]] + y cnt[xs:xs + patch_size[0], ys:ys + patch_size[1], zs:zs + patch_size[2]] \ = cnt[xs:xs + patch_size[0], ys:ys + patch_size[1], zs:zs + patch_size[2]] + 1 score_map = score_map / np.expand_dims(cnt, axis=0) label_map = np.argmax(score_map, axis=0) if post_process: label_map = cct(label_map) # label_map = getLargestCC(label_map) feel free to change the post-process approach if add_pad: label_map = label_map[wl_pad:wl_pad + w, hl_pad:hl_pad + h, dl_pad:dl_pad + d] score_map = score_map[:, wl_pad:wl_pad + w, hl_pad:hl_pad + h, dl_pad:dl_pad + d] return label_map, score_map def calculate_metric_percase(pred, gt): dice = metric.binary.dc(pred, gt) jc = metric.binary.jc(pred, gt) hd = metric.binary.hd95(pred, gt) asd = metric.binary.asd(pred, gt) return dice, jc, hd, asd def test_calculate_metric(ckpt_path, vis=False, post=False): net = Vnet(n_channels=1, n_classes=2, normalization='batchnorm', has_dropout=True).cuda() net.load_state_dict(torch.load(ckpt_path)) net.eval() val_dataset = LAHeartDataset(os.path.join(config.code_path, "Dataloader"), config.data_path, split="eval", config=config) # follows the previous works' setting avg_metric = test_all_case(net, val_dataset, num_classes=2, patch_size=(112, 112, 80), stride_xy=18, stride_z=4, post_process=post, visual=vis) return avg_metric if __name__ == '__main__': parser = argparse.ArgumentParser(description='Medical Semi-supervised Semantic Segmentation (valid)') parser.add_argument("--env_name", default="traCoCo(8-label,spatial_weight(kl)=0.3,hyp=0.1,iters=9000)", type=str, help="your environment folder name for training") parser.add_argument("--visual", action="store_true", help="your environment folder name for training") parser.add_argument("--post", action="store_true", help="implement post process or not") cmd_line = parser.parse_args() default_path = os.path.join(config.code_path, "saved", cmd_line.env_name) ckpt = os.listdir(default_path) ckpt = [i for i in ckpt if ".pth" in str(i)][0] print("validate {} for LA dataset ...".format(str(ckpt))) metric = test_calculate_metric(os.path.join(default_path, ckpt), vis=cmd_line.visual, post=cmd_line.post)
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._enums import * from ._inputs import * __all__ = ['LoadBalancer'] class LoadBalancer(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, backend_address_pools: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['BackendAddressPoolArgs']]]]] = None, etag: Optional[pulumi.Input[str]] = None, frontend_ip_configurations: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FrontendIPConfigurationArgs']]]]] = None, id: Optional[pulumi.Input[str]] = None, inbound_nat_pools: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['InboundNatPoolArgs']]]]] = None, inbound_nat_rules: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['InboundNatRuleArgs']]]]] = None, load_balancer_name: Optional[pulumi.Input[str]] = None, load_balancing_rules: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['LoadBalancingRuleArgs']]]]] = None, location: Optional[pulumi.Input[str]] = None, outbound_nat_rules: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['OutboundNatRuleArgs']]]]] = None, probes: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ProbeArgs']]]]] = None, provisioning_state: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, resource_guid: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ LoadBalancer resource :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['BackendAddressPoolArgs']]]] backend_address_pools: Collection of backend address pools used by a load balancer :param pulumi.Input[str] etag: A unique read-only string that changes whenever the resource is updated. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FrontendIPConfigurationArgs']]]] frontend_ip_configurations: Object representing the frontend IPs to be used for the load balancer :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['InboundNatPoolArgs']]]] inbound_nat_pools: Defines an external port range for inbound NAT to a single backend port on NICs associated with a load balancer. Inbound NAT rules are created automatically for each NIC associated with the Load Balancer using an external port from this range. Defining an Inbound NAT pool on your Load Balancer is mutually exclusive with defining inbound Nat rules. Inbound NAT pools are referenced from virtual machine scale sets. NICs that are associated with individual virtual machines cannot reference an inbound NAT pool. They have to reference individual inbound NAT rules. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['InboundNatRuleArgs']]]] inbound_nat_rules: Collection of inbound NAT Rules used by a load balancer. Defining inbound NAT rules on your load balancer is mutually exclusive with defining an inbound NAT pool. Inbound NAT pools are referenced from virtual machine scale sets. NICs that are associated with individual virtual machines cannot reference an Inbound NAT pool. They have to reference individual inbound NAT rules. :param pulumi.Input[str] load_balancer_name: The name of the load balancer. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['LoadBalancingRuleArgs']]]] load_balancing_rules: Object collection representing the load balancing rules Gets the provisioning :param pulumi.Input[str] location: Resource location. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['OutboundNatRuleArgs']]]] outbound_nat_rules: The outbound NAT rules. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ProbeArgs']]]] probes: Collection of probe objects used in the load balancer :param pulumi.Input[str] provisioning_state: Gets the provisioning state of the PublicIP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] resource_guid: The resource GUID property of the load balancer resource. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['backend_address_pools'] = backend_address_pools __props__['etag'] = etag __props__['frontend_ip_configurations'] = frontend_ip_configurations __props__['id'] = id __props__['inbound_nat_pools'] = inbound_nat_pools __props__['inbound_nat_rules'] = inbound_nat_rules __props__['load_balancer_name'] = load_balancer_name __props__['load_balancing_rules'] = load_balancing_rules __props__['location'] = location __props__['outbound_nat_rules'] = outbound_nat_rules __props__['probes'] = probes __props__['provisioning_state'] = provisioning_state if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['resource_guid'] = resource_guid __props__['tags'] = tags __props__['name'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:network:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/latest:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20150501preview:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20150615:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20160330:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20160601:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20160901:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20161201:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20170601:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20170801:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20170901:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20171001:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20171101:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20180101:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20180201:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20180401:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20180601:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20180701:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20180801:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20181001:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20181101:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20181201:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20190201:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20190401:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20190601:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20190701:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20190801:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20190901:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20191101:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20191201:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20200301:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20200401:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20200501:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20200601:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20200701:LoadBalancer"), pulumi.Alias(type_="azure-nextgen:network/v20200801:LoadBalancer")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(LoadBalancer, __self__).__init__( 'azure-nextgen:network/v20170301:LoadBalancer', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'LoadBalancer': """ Get an existing LoadBalancer resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return LoadBalancer(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="backendAddressPools") def backend_address_pools(self) -> pulumi.Output[Optional[Sequence['outputs.BackendAddressPoolResponse']]]: """ Collection of backend address pools used by a load balancer """ return pulumi.get(self, "backend_address_pools") @property @pulumi.getter def etag(self) -> pulumi.Output[Optional[str]]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="frontendIPConfigurations") def frontend_ip_configurations(self) -> pulumi.Output[Optional[Sequence['outputs.FrontendIPConfigurationResponse']]]: """ Object representing the frontend IPs to be used for the load balancer """ return pulumi.get(self, "frontend_ip_configurations") @property @pulumi.getter(name="inboundNatPools") def inbound_nat_pools(self) -> pulumi.Output[Optional[Sequence['outputs.InboundNatPoolResponse']]]: """ Defines an external port range for inbound NAT to a single backend port on NICs associated with a load balancer. Inbound NAT rules are created automatically for each NIC associated with the Load Balancer using an external port from this range. Defining an Inbound NAT pool on your Load Balancer is mutually exclusive with defining inbound Nat rules. Inbound NAT pools are referenced from virtual machine scale sets. NICs that are associated with individual virtual machines cannot reference an inbound NAT pool. They have to reference individual inbound NAT rules. """ return pulumi.get(self, "inbound_nat_pools") @property @pulumi.getter(name="inboundNatRules") def inbound_nat_rules(self) -> pulumi.Output[Optional[Sequence['outputs.InboundNatRuleResponse']]]: """ Collection of inbound NAT Rules used by a load balancer. Defining inbound NAT rules on your load balancer is mutually exclusive with defining an inbound NAT pool. Inbound NAT pools are referenced from virtual machine scale sets. NICs that are associated with individual virtual machines cannot reference an Inbound NAT pool. They have to reference individual inbound NAT rules. """ return pulumi.get(self, "inbound_nat_rules") @property @pulumi.getter(name="loadBalancingRules") def load_balancing_rules(self) -> pulumi.Output[Optional[Sequence['outputs.LoadBalancingRuleResponse']]]: """ Object collection representing the load balancing rules Gets the provisioning """ return pulumi.get(self, "load_balancing_rules") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="outboundNatRules") def outbound_nat_rules(self) -> pulumi.Output[Optional[Sequence['outputs.OutboundNatRuleResponse']]]: """ The outbound NAT rules. """ return pulumi.get(self, "outbound_nat_rules") @property @pulumi.getter def probes(self) -> pulumi.Output[Optional[Sequence['outputs.ProbeResponse']]]: """ Collection of probe objects used in the load balancer """ return pulumi.get(self, "probes") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[Optional[str]]: """ Gets the provisioning state of the PublicIP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="resourceGuid") def resource_guid(self) -> pulumi.Output[Optional[str]]: """ The resource GUID property of the load balancer resource. """ return pulumi.get(self, "resource_guid") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
import re import urllib import time from django.shortcuts import render, redirect, get_object_or_404 from django import http from django.db.utils import DatabaseError from django.db import transaction from django.db.models import Count from django.conf import settings from django.core.urlresolvers import reverse from django.contrib.auth.decorators import login_required from django.contrib import messages from django.views.decorators.http import require_POST from jsonview.decorators import json_view from airmozilla.main.models import Event, Tag, Channel, get_profile_safely from airmozilla.main.views import is_contributor from airmozilla.base.utils import paginator from airmozilla.main.utils import get_event_channels from . import forms from . import utils from .models import LoggedSearch, SavedSearch from .split_search import split_search @transaction.atomic def home(request): context = { 'q': None, 'events_found': None, 'search_error': None, 'tags': None, 'possible_tags': None, 'channels': None, 'possible_channels': None, 'found_channels': [], 'found_channels_count': 0, } if request.GET.get('q'): form = forms.SearchForm(request.GET) else: form = forms.SearchForm() if request.GET.get('q') and form.is_valid(): context['q'] = form.cleaned_data['q'] privacy_filter = {} privacy_exclude = {} qs = Event.objects.scheduled_or_processing() if request.user.is_active: if is_contributor(request.user): privacy_exclude = {'privacy': Event.PRIVACY_COMPANY} else: # privacy_filter = {'privacy': Event.PRIVACY_PUBLIC} privacy_exclude = {'privacy': Event.PRIVACY_COMPANY} qs = qs.approved() extra = {} rest, params = split_search(context['q'], ('tag', 'channel')) if params.get('tag'): tags = Tag.objects.filter(name__iexact=params['tag']) if tags: context['q'] = rest context['tags'] = extra['tags'] = tags else: # is the search term possibly a tag? all_tag_names = Tag.objects.all().values_list('name', flat=True) tags_regex = re.compile( r'\b(%s)\b' % ('|'.join(re.escape(x) for x in all_tag_names),), re.I ) # next we need to turn all of these into a Tag QuerySet # because we can't do `filter(name__in=tags_regex.findall(...))` # because that case sensitive. tag_ids = [] for match in tags_regex.findall(rest): tag_ids.extend( Tag.objects.filter(name__iexact=match) .values_list('id', flat=True) ) possible_tags = Tag.objects.filter( id__in=tag_ids ) for tag in possible_tags: regex = re.compile(re.escape(tag.name), re.I) tag._query_string = regex.sub( '', context['q'], ) tag._query_string += ' tag: %s' % tag.name # reduce all excess whitespace into 1 tag._query_string = re.sub( '\s\s+', ' ', tag._query_string ) tag._query_string = tag._query_string.strip() context['possible_tags'] = possible_tags if params.get('channel'): channels = Channel.objects.filter(name__iexact=params['channel']) if channels: context['q'] = rest context['channels'] = extra['channels'] = channels else: # is the search term possibly a channel? all_channel_names = ( Channel.objects.all().values_list('name', flat=True) ) channels_regex = re.compile( r'\b(%s)\b' % ('|'.join(re.escape(x) for x in all_channel_names),), re.I ) channel_ids = [] for match in channels_regex.findall(rest): channel_ids.extend( Channel.objects .filter(name__iexact=match).values_list('id', flat=True) ) possible_channels = Channel.objects.filter( id__in=channel_ids ) for channel in possible_channels: regex = re.compile(re.escape(channel.name), re.I) channel._query_string = regex.sub( '', context['q'], ) channel._query_string += ' channel: %s' % channel.name # reduce all excess whitespace into 1 channel._query_string = re.sub( '\s\s+', ' ', channel._query_string ) channel._query_string = channel._query_string.strip() context['possible_channels'] = possible_channels events = _search( qs, context['q'], privacy_filter=privacy_filter, privacy_exclude=privacy_exclude, sort=request.GET.get('sort'), **extra ) if not events.count() and utils.possible_to_or_query(context['q']): events = _search( qs, context['q'], privacy_filter=privacy_filter, privacy_exclude=privacy_exclude, sort=request.GET.get('sort'), fuzzy=True ) found_channels = _find_channels(context['q']) context['found_channels'] = found_channels # it's a list context['found_channels_count'] = len(found_channels) elif request.GET.get('ss'): savedsearch = get_object_or_404( SavedSearch, id=request.GET.get('ss') ) context['savedsearch'] = savedsearch events = savedsearch.get_events() # But if you're just browsing we want to make sure you don't # see anything you're not supposed to see. if request.user.is_active: if is_contributor(request.user): events = events.exclude(privacy=Event.PRIVACY_COMPANY) else: events = events.filter(privacy=Event.PRIVACY_PUBLIC) # It's not obvious how to sort these. They all match the saved # search. # Let's keep it simple and sort by start time for now events = events.order_by('-start_time') else: events = None if events is not None: try: page = int(request.GET.get('page', 1)) if page < 1: raise ValueError except ValueError: return http.HttpResponseBadRequest('Invalid page') # we use the paginator() function to get the Paginator # instance so we can avoid calling `events.count()` for the # header of the page where it says "XX events found" try: with transaction.atomic(): pager, events_paged = paginator(events, page, 10) _database_error_happened = False except DatabaseError: _database_error_happened = True # don't feed the trolls, just return nothing found pager, events_paged = paginator(Event.objects.none(), 1, 10) next_page_url = prev_page_url = None def url_maker(page): querystring = {'page': page} if context.get('savedsearch'): querystring['ss'] = context['savedsearch'].id else: querystring['q'] = context['q'].encode('utf-8') querystring = urllib.urlencode(querystring) return '%s?%s' % (reverse('search:home'), querystring) if events_paged.has_next(): next_page_url = url_maker(events_paged.next_page_number()) if events_paged.has_previous(): prev_page_url = url_maker(events_paged.previous_page_number()) context['events_paged'] = events_paged context['next_page_url'] = next_page_url context['prev_page_url'] = prev_page_url context['events_found'] = pager.count context['channels'] = get_event_channels(events_paged) log_searches = settings.LOG_SEARCHES and '_nolog' not in request.GET if ( log_searches and not _database_error_happened and request.GET.get('q', '').strip() ): logged_search = LoggedSearch.objects.create( term=request.GET['q'][:200], results=events.count(), page=page, user=request.user.is_authenticated() and request.user or None ) request.session['logged_search'] = ( logged_search.pk, time.time() ) elif request.GET.get('q'): context['search_error'] = form.errors['q'] else: context['events'] = [] context['form'] = form return render(request, 'search/home.html', context) def _find_channels(q): search_escaped = utils.make_or_query(q) sql = """ to_tsvector('english', name) @@ plainto_tsquery('english', %s) OR slug ILIKE %s """ channels_qs = Channel.objects.all().extra( where=[sql], params=[ search_escaped, search_escaped, ], select={ 'name_highlit': ( "ts_headline('english', name, " "plainto_tsquery('english', %s))" ), 'rank_name': ( "ts_rank_cd(to_tsvector('english', name), " "plainto_tsquery('english', %s))" ), }, select_params=[ search_escaped, search_escaped, ] ) # make a dict of parental counts subchannel_counts = {} qs = ( Channel.objects .filter(parent__isnull=False) .values('parent_id') .order_by() # necessary because the model has a default ordering .annotate(Count('parent')) ) for each in qs: subchannel_counts[each['parent_id']] = each['parent__count'] # make a dict of events counts by channel event_counts = {} qs = ( Event.channels.through.objects.filter(channel__in=channels_qs) .values('channel_id') .annotate(Count('channel')) ) for each in qs: event_counts[each['channel_id']] = each['channel__count'] channels = [] for channel in channels_qs[:5]: channel._event_count = event_counts.get(channel.id, 0) channel._subchannel_count = subchannel_counts.get(channel.id, 0) channels.append(channel) return channels def _search(qs, q, **options): # we only want to find upcoming or archived events # some optional filtering if 'tags' in options: qs = qs.filter(tags__in=options['tags']) if 'channels' in options: qs = qs.filter(channels__in=options['channels']) if options.get('privacy_filter'): qs = qs.filter(**options['privacy_filter']) elif options.get('privacy_exclude'): qs = qs.exclude(**options['privacy_exclude']) if q and options.get('fuzzy'): sql = """ ( to_tsvector('english', title) @@ to_tsquery('english', %s) OR to_tsvector('english', description || ' ' || short_description) @@ to_tsquery('english', %s) OR to_tsvector('english', transcript) @@ to_tsquery('english', %s) ) """ search_escaped = utils.make_or_query(q) elif q: sql = """ ( to_tsvector('english', title) @@ plainto_tsquery('english', %s) OR to_tsvector('english', description || ' ' || short_description) @@ plainto_tsquery('english', %s) OR to_tsvector('english', transcript) @@ plainto_tsquery('english', %s) ) """ search_escaped = q if q: qs = qs.extra( where=[sql], params=[search_escaped, search_escaped, search_escaped], select={ 'title_highlit': ( "ts_headline('english', title, " "plainto_tsquery('english', %s))" ), 'desc_highlit': ( "ts_headline('english', short_description, " "plainto_tsquery('english', %s))" ), 'transcript_highlit': ( "ts_headline('english', transcript, " "plainto_tsquery('english', %s))" ), 'rank_title': ( "ts_rank_cd(to_tsvector('english', title), " "plainto_tsquery('english', %s))" ), 'rank_desc': ( "ts_rank_cd(to_tsvector('english', description " "|| ' ' || short_description), " "plainto_tsquery('english', %s))" ), 'rank_transcript': ( "ts_rank_cd(to_tsvector('english', transcript), " "plainto_tsquery('english', %s))" ), }, select_params=[ search_escaped, search_escaped, search_escaped, search_escaped, search_escaped, search_escaped ], ) qs = qs.order_by('-rank_title', '-start_time', '-rank_desc') else: qs = qs.order_by('-start_time') return qs @require_POST @login_required @transaction.atomic() def savesearch(request): q = request.POST.get('q', '').strip() if not q: return http.HttpResponseBadRequest('no q') form = forms.SearchForm(request.POST) if not form.is_valid(): return http.HttpResponseBadRequest(form.errors) title = form.cleaned_data['q'] rest, params = split_search(title, ('tag', 'channel')) tags = None channels = None if params.get('tag'): tags = Tag.objects.filter(name__iexact=params['tag']) if tags: title = rest if params.get('channel'): channels = Channel.objects.filter( name__iexact=params['channel'] ) if channels: title = rest filters = {} if q: filters['title'] = { 'include': title } if tags: filters['tags'] = { 'include': [tag.id for tag in tags], } if channels: filters['channels'] = { 'include': [channel.id for channel in channels], } for other in SavedSearch.objects.filter(user=request.user): if other.filters == filters: return redirect('search:savedsearch', id=other.id) savedsearch = SavedSearch.objects.create( user=request.user, filters=filters, ) messages.success( request, 'Search saved' ) return redirect('search:savedsearch', id=savedsearch.id) @login_required @transaction.atomic() def savedsearch(request, id=None): savedsearch = get_object_or_404(SavedSearch, id=id) if request.method == 'POST': forked = False if savedsearch.user != request.user: # fork the saved search forked = True savedsearch = SavedSearch.objects.create( user=request.user, name=savedsearch.name, filters=savedsearch.filters, ) form = forms.SavedSearchForm(request.POST) if form.is_valid(): data = form.export_filters() savedsearch.name = form.cleaned_data['name'] savedsearch.filters = data savedsearch.save() if forked: messages.success( request, 'Saved Search forked and saved' ) else: messages.success( request, 'Saved Search saved' ) return redirect('search:savedsearch', id=savedsearch.id) elif request.GET.get('sample'): events = savedsearch.get_events() return http.JsonResponse({'events': events.count()}) else: data = forms.SavedSearchForm.convert_filters( savedsearch.filters, pks=True ) data['name'] = savedsearch.name form = forms.SavedSearchForm(data) context = { 'savedsearch': savedsearch, 'form': form, 'use_findable': True, } return render(request, 'search/savesearch.html', context) @login_required @transaction.atomic() def new_savedsearch(request): if request.method == 'POST': form = forms.SavedSearchForm(request.POST) if form.is_valid(): data = form.export_filters() SavedSearch.objects.create( user=request.user, filters=data, name=form.cleaned_data['name'], ) messages.success( request, 'Saved Search saved' ) return redirect('search:savedsearches') else: form = forms.SavedSearchForm() context = { 'form': form, 'use_findable': False, } return render(request, 'search/savesearch.html', context) @login_required def savedsearches(request): context = {} return render(request, 'search/savedsearches.html', context) @login_required @json_view def savedsearches_data(request): context = {} qs = SavedSearch.objects.filter( user=request.user ).order_by('-created') searches = [] for savedsearch in qs: item = { 'id': savedsearch.id, 'name': savedsearch.name, 'summary': savedsearch.summary, 'modified': savedsearch.modified.isoformat(), } searches.append(item) # We need a general Feed URL that is tailored to this user from airmozilla.main.context_processors import base feed = base(request)['get_feed_data']() if request.user.is_active: profile = get_profile_safely(request.user) if profile and profile.contributor: calendar_privacy = 'contributors' else: calendar_privacy = 'company' else: calendar_privacy = 'public' context['savedsearches'] = searches context['urls'] = { 'search:savedsearch': reverse('search:savedsearch', args=(0,)), 'search:home': reverse('search:home'), 'feed': feed['url'], 'ical': reverse('main:calendar_ical', args=(calendar_privacy,)), } return context @login_required @json_view def delete_savedsearch(request, id): savedsearch = get_object_or_404(SavedSearch, id=id) if savedsearch.user != request.user: return http.HttpResponseForbidden('Not yours to delete') savedsearch.delete() return {'ok': True}
import spacy from textblob import TextBlob import pandas as pd # Import functions from other files from tweet_handlers import pullTweetsFromCSV, tweetPulls ### Declare functions to standardize, identify, and analyze input text # Will ultimately take in a list of tweets and return: # - Word counts # - Split of positive / negative aspects # - Brand identification? #visualizeText() is a funtion to diagram sentences for help troubleshooting # Inputs: # - nlp: an NLP object, # - txt = a string containing the sentence to be diagramed, # - writeFilename: a string containing the filename to write the HTML diagram to # Returns: # - writeFilename: the path of the file that contains the HTML diagram def visualizeText(nlp, txt, writeFilename): doc = nlp(txt) html = spacy.displacy.render(doc, style='dep') filePath = './' + writeFilename + '.html' with open(filePath, 'w') as f: f.write(html) return filePath #extractDescriptors() is a funtion to pull aspects and descriptors from a list of sentences # Inputs: # - nlp: an NLP object, # - sentenceList: a list of strinsg containing the sentences to be analyzed # Outputs: # - list of dictionaries containing 'aspect' and 'description' -- not broken by tweet def extractDescriptors(nlp, sentenceList): #We'll ultimately return this aspects list aspects = [] aspects_lemma = [] attributes = [] attributes_lemma = [] #We will iterate through the sentences for i, aSentence in enumerate( sentenceList ): if i % 100 == 0: print("Tweet# ", str(i)) doc = nlp(aSentence) for token in doc: ###TODO: # Currently there's no standardization that makes it a 1:1 Noun + Adjective, so that needs to be fixed # Also need to add in a case that checks for pronoun resolution and sees what we can do about that # We need to identify each noun, and find its descendants that are (pos_ == 'ADJ' or pos_ == 'VERB') and (dep_ == 'amod' or dep_ == 'acl') # Modifying rule to examine ALL nouns, not just the subject of the sentence #if token.dep_ == 'nsubj' and token.pos_ == 'NOUN': if (token.pos_ == 'ADJ' or token.pos_ == 'VERB') and (token.dep_ == 'amod' or token.dep_ == 'acl'): #Now append the things aspects.append (token.head.text) aspects_lemma.append(token.head.lemma_) attributes.append( token.text ) attributes_lemma.append( token.lemma_ ) return ( aspects , attributes, aspects_lemma, attributes_lemma ) # Need a function that pulls attributes for each keyword in the tweet DF, since we need them to be kept separate # extractTweetAttributes: # Takes a DF of tweets, keywords, etc. and pulls out adjectives for each # Inputs: # - nlp: an NLP object, # - tweet_df: pandas dataframe containing colums: # - Tweet # - Keyword # - Spanish # - Date # Returns: # - attribute_df: dataframe containing the list of... # ...aspects & attributes for each keyword / spanish pair def extractTweetAttributes(nlp, tweet_df): #define return df attribute_df = pd.DataFrame( columns = [ 'Keyword', 'Spanish', 'aspect', 'attribute', 'aspect_lemma', 'attribute_lemma' ]) # Now create a set for the different keywords and spanish words keySet = set( tweet_df['Keyword'] ) for aKey in keySet: print("Extracting ", aKey) spanishWord = tweet_df.loc[ tweet_df['Keyword'] == aKey ]['Spanish'].iloc[0] # And this is where we actually add the various analyses ( aspectList , attributeList, aspectList_lemma, attributeList_lemma ) = extractDescriptors( nlp, tweet_df[ tweet_df['Keyword'] == aKey ]['tweet'] ) # Now that we've got the data, create lookup lists for the Keyword & Spanish words keyList = [aKey] * len(aspectList) spanishList = [spanishWord] * len(aspectList) temp_df = pd.DataFrame({ 'Keyword': keyList, 'Spanish': spanishList, 'aspect': aspectList, 'attribute': attributeList, 'aspect_lemma': aspectList_lemma, 'attribute_lemma': attributeList_lemma }) # Finally, append the data for this keyword to the attribute dataframe attribute_df = attribute_df.append( temp_df ) return attribute_df def countAttributes( aspect_df ): temp_df = pd.DataFrame({ 'Keyword': aspect_df['Keyword'], 'Spanish': aspect_df['Spanish'], 'aspect': aspect_df['aspect_lemma'], 'attribute': aspect_df['attribute_lemma'] }) return temp_df.value_counts() # In the main, this is where the tweet files are loaded... # ...and routed through the analysis functions if __name__ == "__main__": print("In the main") # Create the NLP object that will be used for all the text processing #nlp = spacy.load("en_core_web_sm") # We're actually using a spanish NLP object instead of an English one nlp = spacy.load("es_core_news_sm") # Pull in CSV files that hold all the tweets tweetFileList = [ './tweet_data/tweet_db_08.27.2021.csv' ] # Create the DF of tweets from the CSV File tweet_df = pullTweetsFromCSV( tweetFileList )#, fileEncoding='ANSI' ) # Instead of pulling tweets from a file, we're going to get new tweets # First we need to designate a list of english + spanish keywords to search for keyword_df = pd.read_csv('./keyword_list.csv') #tweet_df = tweetPulls( keyword_df ) #Save the tweet-df because of errors #tweet_df.to_csv('./tweet_data/tweet_db_08.27.2021.csv')#, encoding='ANSI') # Run the tweets through the attribute extractor aspect_df = extractTweetAttributes ( nlp, tweet_df) # Run the aspects & attributes through a modified version of the wordcount function count_df = countAttributes( aspect_df ) # - Not to mention run some sort of pronoun resolution count_df.to_csv('./tweet_data/aspect_count_08.27.2021.csv')
# X10G Development code # UDP Receive with Trailer Recognition # Rob Halsall 23-11-2011 import sys, socket #from msvcrt import * if len(sys.argv) == 3: ip = sys.argv[1] port = int(sys.argv[2]) else: print "use: python udp_rx_ll_mon_trl.py 192.168.9.2 61650" exit(0) sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, 80388608) print "Receiving on ",ip,":",port sock.bind((ip, port)) print"Entering packet receive loop - press 's' to exit....\n" pkt_count = 0 headings = "%8s %8s %8s %8s %23s %23s %3s" % ('Pkt No' , 'Length','FNUM','PNUM', 'First 8', 'Last 8', 'MKR') #print headings chr ="" pkt_num_nxt = 0 try: while chr != "s": #receive packet up to 8K Bytes pkt = sock.recv(9000) pkt_len = len(pkt) pkt_top = pkt_len - 8 frm_num = (ord(pkt[pkt_top+3]) << 24) + (ord(pkt[pkt_top+2]) << 16) + (ord(pkt[pkt_top+1]) << 8) + ord(pkt[pkt_top+0]) pkt_num = (ord(pkt[pkt_top+7]) << 24) + (ord(pkt[pkt_top+6]) << 16) + (ord(pkt[pkt_top+5]) << 8) + ord(pkt[pkt_top+4]) frm_sof = (pkt_num & 0x80000000) >> 31 frm_eof = (pkt_num & 0x40000000) >> 30 pkt_num = pkt_num & 0x3FFFFFFF pkt_num_str = "%08X " % (pkt_num) frm_num_str = "%08X " % (frm_num) pkt_str_tmp = "%08i %08i " % (pkt_count, pkt_len) pkt_str = pkt_str_tmp + frm_num_str + pkt_num_str if frm_sof == 1: print headings #print out first 4 bytes of packet for i in range(8): pkt_str_tmp = "%02X " % ord(pkt[i+8]) pkt_str = pkt_str + pkt_str_tmp pkt_str = pkt_str + '- ' #print out last 4 bytes of packet for i in range(8): pkt_str_tmp = "%02X " % ord(pkt[i+pkt_top]) pkt_str = pkt_str + pkt_str_tmp if frm_sof == 1: pkt_str = pkt_str + "SOF " if frm_eof == 1: pkt_str = pkt_str + "EOF\n" if pkt_num == pkt_num_nxt: #pkt_num_nxt = pkt_num_nxt + 1 pkt_num_nxt = pkt_num + 1 else: #pkt_num_nxt = pkt_num_nxt + 1 pkt_num_nxt = pkt_num + 1 pkt_str = pkt_str + "*" print pkt_str if frm_eof == 1: pkt_count = 0 else: pkt_count = pkt_count + 1 #chr = getch() except: print "closing socket after exception" sock.close() #finally: print "closing socket at end" sock.close()
from anndata import read_h5ad import sys from time import time from scipy import stats, sparse import numpy as np import collections import pickle from sklearn.preprocessing import normalize import os from collections import Counter import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score,accuracy_score,precision_recall_fscore_support, cohen_kappa_score, auc, average_precision_score,f1_score,precision_recall_curve import time import umap import copy from sklearn import preprocessing from fbpca import pca from sklearn.metrics import roc_auc_score, roc_curve from sklearn.metrics.pairwise import cosine_similarity from scanorama import VERBOSE, KNN, ALPHA, APPROX, SIGMA #from libs import * from scanorama import find_alignments,merge_datasets,process_data,transform,vstack from sklearn.utils.graph_shortest_path import graph_shortest_path from scipy.sparse.linalg import svds, eigs nn_nhidden = [1000] rsts = [0.5,0.6,0.7,0.8] dfs_depth = 1 co_dim = 5 keep_prob = 1.0 use_diagonal = True max_iter = 20 niter = 5 def translate_paramter(ps): s = [] for p in ps: if isinstance(p, list): p = [str(i) for i in p] p = '.'.join(p) s.append(p) else: s.append(str(p)) s = '_'.join(s) return s pname = translate_paramter([max_iter]) def make_folder(folder): if not os.path.exists(folder): os.makedirs(folder) return folder def create_propagate_networks(dname, l2i, onto_net, cls2cls, ontology_nlp_file, rsts = [0.5,0.6,0.7,0.8], diss=[2,3], thress=[1,0.8]): ncls = np.shape(cls2cls)[0] if dname != 'allen': onto_net_nlp, onto_net_bin, stack_net_nlp, stack_net_bin, onto_net_nlp_all_pairs = create_nlp_networks(l2i, onto_net, cls2cls, ontology_nlp_file) #network = create_consensus_networks(rsts, stack_net_nlp, onto_net_nlp_all_pairs, cls2cls) network = create_consensus_networks(rsts, stack_net_nlp, onto_net_nlp_all_pairs, cls2cls, diss = diss, thress = thress) else: stack_net_bin = np.zeros((ncls,ncls)) for n1 in onto_net: for n2 in onto_net[n1]: if n1==n2: continue stack_net_bin[n1,n2] = 1 stack_net_bin[n2,n1] = 1 network = [RandomWalkRestart(stack_net_bin, rst) for rst in rsts] return network def fine_nearest_co_using_nlp(sentences,co2emb,obo_file,nlp_mapping_cutoff=0.8): co2name, name2co = get_ontology_name(obo_file = obo_file) from sentence_transformers import SentenceTransformer model = SentenceTransformer('bert-base-nli-mean-tokens') sentences = np.array([sentence.lower() for sentence in sentences]) sentence_embeddings = model.encode(sentences) co_embeddings = [] cos = [] for co in co2emb: co_embeddings.append(co2emb[co]) cos.append(co) co_embeddings = np.array(co_embeddings) sent2co = {} for sentence, embedding, ind in zip(sentences, sentence_embeddings, range(len(sentences))): scs = cosine_similarity(co_embeddings, embedding.reshape(1,-1)) co_id = np.argmax(scs) sc = scs[co_id] if sc>nlp_mapping_cutoff: sent2co[sentence.lower()] = cos[co_id] names = set() for name in name2co: if name2co[name].upper() == cos[co_id]: names.add(name) #print (sentence, cos[co_id], sc, co2name[cos[co_id]],names) return sent2co def ImputeUnseenCls(y_vec, y_raw, cls2cls, nseen, knn=1): nclass = np.shape(cls2cls)[0] seen2unseen_sim = cls2cls[:nseen, nseen:] nngh = np.argsort(seen2unseen_sim*-1, axis = 0)[0,:] ncell = len(y_vec) y_mat = np.zeros((ncell, nclass)) y_mat[:,:nseen] = y_raw[:, :nseen] for i in range(ncell): if y_vec[i] == -1: #kngh = np.argsort(y_raw[i,:nseen]*-1)[0:knn] #if len(kngh) == 0: # continue y_mat[i,nseen:] = y_mat[i,nngh] y_mat[i,:nseen] -= 1000000 return y_mat def ImputeUnseenCls_Backup(y_vec, y_raw, cls2cls, nseen, knn=1): nclass = np.shape(cls2cls)[0] seen2unseen_sim = cls2cls[:nseen, nseen:] ncell = len(y_vec) y_mat = np.zeros((ncell, nclass)) y_mat[:,:nseen] = y_raw[:, :nseen] for i in range(ncell): if y_vec[i] == -1: kngh = np.argsort(y_raw[i,:nseen]*-1)[0:knn] if len(kngh) == 0: continue y_mat[i,:nseen] -= 1000000 y_mat[i,nseen:] = np.dot(y_raw[i,kngh], seen2unseen_sim[kngh,:]) return y_mat def find_gene_ind(genes, common_genes): gid = [] for g in common_genes: gid.append(np.where(genes == g)[0][0]) gid = np.array(gid) return gid def RandomWalkOntology(onto_net, l2i, ontology_nlp_file, ontology_nlp_emb_file, rst = 0.7): ncls = len(l2i) onto_net_nlp, _, onto_nlp_emb = read_cell_ontology_nlp(l2i, ontology_nlp_file, ontology_nlp_emb_file) onto_net_nlp = (cosine_similarity(onto_nlp_emb) + 1 ) /2#1 - spatial.distance.cosine(onto_nlp_emb, onto_nlp_emb) onto_net_mat = np.zeros((ncls, ncls)) for n1 in onto_net: for n2 in onto_net[n1]: if n1==n2: continue onto_net_mat[n1,n2] = onto_net_nlp[n1, n2] onto_net_mat[n2,n1] = onto_net_nlp[n2, n1] onto_net_rwr = RandomWalkRestart(onto_net_mat, rst) return onto_net_rwr def process_expression(c2g_list): #this data process function is motivated by ACTINN, please check ACTINN for more information. c2g = np.vstack(c2g_list) c2g = c2g.T #print ('onclass d0',np.shape(c2g)) c2g = c2g[np.sum(c2g, axis=1)>0, :] #print (c2g) #print ('onclass d1',np.shape(c2g)) c2g = np.divide(c2g, np.sum(c2g, axis=0, keepdims=True)) * 10000 c2g = np.log2(c2g+1) expr = np.sum(c2g, axis=1) #total_set = total_set[np.logical_and(expr >= np.percentile(expr, 1), expr <= np.percentile(expr, 99)),] c2g = c2g[np.logical_and(expr >= np.percentile(expr, 1), expr <= np.percentile(expr, 99)),] #print (c2g) #print ('onclass d2',np.shape(c2g)) cv = np.std(c2g, axis=1) / np.mean(c2g, axis=1) c2g = c2g[np.logical_and(cv >= np.percentile(cv, 1), cv <= np.percentile(cv, 99)),] #print (c2g) #print ('onclass d3',np.shape(c2g)) c2g = c2g.T #print (c2g) #print ('onclass d4',np.shape(c2g)) c2g_list_new = [] index = 0 for c in c2g_list: ncell = np.shape(c)[0] c2g_list_new.append(c2g[index:index+ncell,:]) index = ncell return c2g_list_new def read_ontology_file(dname, data_folder): if 'allen' in dname: cell_type_network_file = data_folder + 'allen.ontology' cell_type_nlp_emb_file = None cl_obo_file = None if not os.path.isfile(cell_type_network_file): sys.error(cell_type_network_file + ' not found!') else: cell_type_network_file = data_folder + 'cl.ontology' cell_type_nlp_emb_file = data_folder + 'cl.ontology.nlp.emb' cl_obo_file = data_folder + 'cl.obo' if not os.path.isfile(cell_type_nlp_emb_file): sys.exit(cell_type_nlp_emb_file + ' not found!') if not os.path.isfile(cell_type_network_file): sys.exit(cell_type_network_file + ' not found!') if not os.path.isfile(cl_obo_file): sys.exit(cl_obo_file + ' not found!') return cell_type_nlp_emb_file, cell_type_network_file, cl_obo_file def read_data_file(dname, data_dir): if 'microcebus' in dname: tech = '10x' feature_file = data_dir + 'Lemur/' + dname +'.h5ad' filter_key={'method':tech } label_file = None gene_file = '' label_key = 'cell_ontology_class' elif 'muris' in dname: tech = dname.split('_')[1] feature_file = data_dir + 'Tabula_Muris_Senis/' + 'tabula-muris-senis-'+tech+'-official-raw-obj.h5ad' filter_key = {} label_file = None gene_file = '' batch_key = '' label_key = 'cell_ontology_class' elif 'sapiens' in dname: feature_file = data_dir + 'sapiens/' + 'Pilot1_Pilot2_decontX_Oct2020.h5ad' filter_key = {} label_file = None gene_file = '' batch_key = '' label_key = 'cell_ontology_type' elif 'allen' in dname: feature_file = data_dir + '/Allen_Brain/features.pkl' label_file = data_dir + '/Allen_Brain/labels.pkl' gene_file = data_dir + '/Allen_Brain/genes.pkl' label_key = '' filter_key = {} elif 'krasnow' in dname: tech = dname.split('_')[1] feature_file = data_dir + '/HLCA/'+tech+'_features.pkl' label_file = data_dir + '/HLCA/'+tech+'_labels.pkl' gene_file = data_dir + '/HLCA/'+tech+'_genes.pkl' label_key = '' filter_key = {} else: sys.exit('wrong dname '+dname) if feature_file.endswith('.pkl'): return feature_file, filter_key, label_key, label_file, gene_file elif feature_file.endswith('.h5ad'): return feature_file, filter_key, label_key, label_file, gene_file sys.exit('wrong file suffix') def read_singlecell_data(dname, data_dir, ontology_dir, nsample = 500000000, read_tissue = False, exclude_non_leaf_ontology = True): if 'microcebus' in dname: tech = '10x' #file = data_dir + 'TMS_official_060520/' + 'tabula-microcebus_smartseq2-10x_combined_annotated_filtered_gene-labels-correct.h5ad' file = data_dir + 'TMS_official_060520/' + dname +'.h5ad' filter_key={'method':tech } batch_key = ''#original_channel ontology_nlp_file = ontology_dir + '/cell_ontology/cl.ontology.nlp' ontology_file = ontology_dir + '/cell_ontology/cl.ontology' cl_obo_file = ontology_dir + '/cell_ontology/cl.obo' if not read_tissue: feature, label, genes = parse_h5ad(file, nsample = nsample, read_tissue = read_tissue, label_key='cell_ontology_class', batch_key = batch_key, filter_key = filter_key, cell_ontology_file = ontology_file, exclude_non_leaf_ontology = exclude_non_leaf_ontology, exclude_non_ontology = True, cl_obo_file = cl_obo_file) else: feature, label, genes, tissues = parse_h5ad(file, nsample = nsample, read_tissue = read_tissue, label_key='cell_ontology_class', batch_key = batch_key, filter_key = filter_key, cell_ontology_file = ontology_file, exclude_non_leaf_ontology = exclude_non_leaf_ontology, exclude_non_ontology = True, cl_obo_file = cl_obo_file) elif 'muris' in dname: tech = dname.split('_')[1] file = data_dir + 'TMS_official_060520/' + 'tabula-muris-senis-'+tech+'-official-raw-obj.h5ad' filter_key = {} batch_key = '' ontology_nlp_file = ontology_dir + '/cell_ontology/cl.ontology.nlp' ontology_file = ontology_dir + '/cell_ontology/cl.ontology' cl_obo_file = ontology_dir + '/cell_ontology/cl.obo' if not read_tissue: feature, label, genes = parse_h5ad(file, nsample = nsample, read_tissue = read_tissue, label_key='cell_ontology_class', batch_key = batch_key, cell_ontology_file = ontology_file, filter_key=filter_key, exclude_non_leaf_ontology = exclude_non_leaf_ontology, exclude_non_ontology = True, cl_obo_file = cl_obo_file) else: feature, label, genes, tissues = parse_h5ad(file, nsample = nsample, read_tissue = read_tissue, label_key='cell_ontology_class', batch_key = batch_key, cell_ontology_file = ontology_file, filter_key=filter_key, exclude_non_leaf_ontology = exclude_non_leaf_ontology, exclude_non_ontology = True, cl_obo_file = cl_obo_file) elif 'allen_part' in dname: feature_file = data_dir + 'Allen/matrix_part.csv' label_file = data_dir + 'Allen/metadata.csv' ontology_file = data_dir + 'Allen/cell_type_ontology' ontology_nlp_file = None feature, label, genes = parse_csv(feature_file, label_file, nsample = nsample, label_key='cell_type_accession_label', exclude_non_ontology = True, exclude_non_leaf_ontology = True, cell_ontology_file=ontology_file) elif 'allen' in dname: feature_file = data_dir + 'Allen/features.pkl' label_file = data_dir + 'Allen/labels.pkl' gene_file = data_dir + 'Allen/genes.pkl' ontology_file = data_dir + 'Allen/cell_type_ontology' ontology_nlp_file = None feature, label, genes = parse_pkl(feature_file, label_file, gene_file, nsample = nsample, exclude_non_leaf_ontology = True, cell_ontology_file=ontology_file) elif 'krasnow' in dname: tech = dname.split('_')[1] feature_file = data_dir + 'Krasnow/'+tech+'_features.pkl' label_file = data_dir + 'Krasnow/'+tech+'_labels.pkl' gene_file = data_dir + 'Krasnow/'+tech+'_genes.pkl' ontology_file = ontology_dir + '/cell_ontology/cl.ontology' ontology_nlp_file = ontology_dir + '/cell_ontology/cl.ontology.nlp' cl_obo_file = ontology_dir + '/cell_ontology/cl.obo' feature, label, genes = parse_pkl(feature_file, label_file, gene_file, nsample = nsample, exclude_non_leaf_ontology = True, cell_ontology_file=ontology_file) else: sys.exit('wrong dname '+dname) if read_tissue: return feature, label, genes, tissues, ontology_nlp_file, ontology_file else: return feature, label, genes, ontology_nlp_file, ontology_file def parse_krasnow(feature_file, label_file, gene_file, seed = 1, nsample = 1000,exclude_non_leaf_ontology = True, exclude_non_ontology = True, cell_ontology_file=None): np.random.seed(seed) if feature_file.endswith('.pkl'): features = pickle.load(open(feature_file, 'rb')) labels = pickle.load(open(label_file, 'rb')) genes = pickle.load(open(gene_file, 'rb')) ncell, ngene = np.shape(features) assert(ncell == len(labels)) assert(ngene == len(genes)) index = np.random.choice(ncell,min(nsample,ncell),replace=False) features = features[index, :] labels = labels[index] if exclude_non_leaf_ontology: new_ids, exclude_terms = exclude_parent_child_nodes(cell_ontology_file, labels) #print (len(exclude_terms),'non leaf terms are excluded') features = features[new_ids, :] labels = labels[new_ids] genes = [x.upper() for x in genes] genes = np.array(genes) return features, labels, genes def parse_pkl(feature_file, label_file, gene_file, seed = 1, nsample = 10000000,exclude_non_leaf_ontology = True, cell_ontology_file=None): np.random.seed(seed) if feature_file.endswith('.pkl'): features = pickle.load(open(feature_file, 'rb')) labels = pickle.load(open(label_file, 'rb')) genes = pickle.load(open(gene_file, 'rb')) ncell, ngene = np.shape(features) assert(ncell == len(labels)) assert(ngene == len(genes)) index = np.random.choice(ncell,ncell,replace=False) features = features[index, :] labels = labels[index] if exclude_non_leaf_ontology: new_ids, exclude_terms = exclude_parent_child_nodes(cell_ontology_file, labels) #print (len(exclude_terms),'non leaf terms are excluded') features = features[new_ids, :] labels = labels[new_ids] genes = [x.upper() for x in genes] genes = np.array(genes) return features, labels, genes def select_high_var_genes(train_X, test_X, ngene = 200): mat = np.vstack((train_X, test_X)) #mat = mat.todense() gstd = np.std(mat, axis=0) best_genes = np.argsort(gstd*-1) best_genes = best_genes[:ngene] return train_X[:, best_genes], test_X[:, best_genes] def emb_cells(train_X, test_X, dim=20): if dim==-1: return np.log1p(train_X.todense()), np.log1p(test_X.todense()) train_X = np.log1p(train_X) test_X = np.log1p(test_X) train_X = preprocessing.normalize(train_X, axis=1) test_X = preprocessing.normalize(test_X, axis=1) ntrain = np.shape(train_X)[0] mat = sparse.vstack((train_X, test_X)) U, s, Vt = pca(mat, k=dim) # Automatically centers. X = U[:, range(dim)] * s[range(dim)] return X[:ntrain,:], X[ntrain:,:] def write_markers(fname, markers): ## Write marker genes to file fmarker_genes = open(fname,'w') for t in markers: fmarker_genes.write(t+'\t') g2pv = sorted(markers[t].items(), key=lambda item: item[1]) for g,pv in g2pv: fmarker_genes.write(g+'(pv:'+'{:.2e}'.format(pv)+')\t') fmarker_genes.write('\n') fmarker_genes.close() def calculate_markers(cell2term, cell2gene, genes, terms, topk_cells=500, only_over_expressed = True, return_k_genes = 100): ncell, nterm = np.shape(cell2term) ngene = np.shape(cell2gene)[1] assert(ncell == np.shape(cell2gene)[0]) markers = collections.defaultdict(dict) for t in range(nterm): scs = np.argsort(cell2term[:,t]) k_bot_cells = scs[:topk_cells] k_top_cells = scs[ncell-topk_cells:] pv = scipy.stats.ttest_ind(cell2gene[k_top_cells,:], cell2gene[k_bot_cells,:], axis=0)[1] #* ngene top_mean = np.mean(cell2gene[k_top_cells,:],axis=0) bot_mean = np.mean(cell2gene[k_bot_cells,:],axis=0) if only_over_expressed: for g in range(ngene): if top_mean[g] < bot_mean[g]: pv[g] = 1. pv_sort = list(np.argsort(pv)) #for i in range(return_k_genes): #markers[terms[t]][genes[pv_sort[i]]] = pv[pv_sort[i]] markers[terms[t]] = pv for i,p in enumerate(pv): if np.isnan(p): pv[i] = 1. #markers[terms[t]][str(pv_sort[i])] = pv[pv_sort[i]] return markers def peak_h5ad(file): ''' peak the number of cells, classes, genes in h5ad file ''' x = read_h5ad(file) #print (np.shape(x.X)) #print (x.X[:10][:10]) #print (x.obs.keys()) ncell, ngene = np.shape(x.X) nclass = len(np.unique(x.obs['free_annotation'])) #print (np.unique(x.obs['free_annotation'])) f2name = {} sel_cell = 0. for i in range(ncell): if x.obs['method'][i]!='10x': continue free = x.obs['free_annotation'][i] name = x.obs['cell_ontology_class'][i] f2name[free] = name sel_cell += 1 #return f2name #for key in x.obs.keys(): # print (key, np.unique(x.obs[key])) return sel_cell, ngene, nclass #for i in range(10): # print (x.obs['method'][i], x.obs['channel_no_10x'][i]) #for key in x.obs.keys(): # print (key, np.unique(x.obs[key])) #return index def get_onotlogy_parents(GO_net, g): term_valid = set() ngh_GO = set() ngh_GO.add(g) while len(ngh_GO) > 0: for GO in list(ngh_GO): for GO1 in GO_net[GO]: ngh_GO.add(GO1) ngh_GO.remove(GO) term_valid.add(GO) return term_valid def exclude_non_ontology_term(cl_obo_file, labels, label_key): co2name, name2co = get_ontology_name(cl_obo_file) new_labs = [] new_ids = [] if label_key!='cell_ontology_class' and label_key!='cell_ontology_id': use_co = False for kk in np.unique(labels): if kk.lower().startswith('cl:'): use_co = True break else: if label_key == 'cell_ontology_class': use_co = False else: use_co = True for i in range(len(labels)): l = labels[i] if not use_co: if l.lower() in name2co.keys(): new_labs.append(name2co[l.lower()]) new_ids.append(i) else: if l.lower() in co2name.keys(): new_labs.append(l.lower()) new_ids.append(i) new_labs = np.array(new_labs) new_ids = np.array(new_ids) return new_ids, new_labs def parse_raw_h5ad(file,seed=1,nsample=1e10,tissue_key='tissue',label_key='cell_ontology_class', read_tissue = True, batch_key = '', filter_key={}, cell_ontology_file = None, exclude_non_leaf_ontology = True, exclude_non_ontology=True, cl_obo_file = None): np.random.seed(seed) x = read_h5ad(file) ncell = np.shape(x.raw.X)[0] select_cells = set(range(ncell)) for key in filter_key: value = filter_key[key] select_cells = select_cells & set(np.where(np.array(x.obs[key])==value)[0]) select_cells = sorted(select_cells) feature = x.raw.X[select_cells, :] labels = np.array(x.obs[label_key].tolist())[select_cells] if read_tissue: tissues = np.array(x.obs[tissue_key].tolist())[select_cells] if batch_key=='' or batch_key not in x.obs.keys(): batch_labels = np.ones(len(labels)) else: batch_labels = np.array(x.obs[batch_key].tolist())[select_cells] genes = x.var.index ncell = len(select_cells) if exclude_non_ontology: new_ids, labels = exclude_non_ontology_term(cl_obo_file, labels, label_key) feature = feature[new_ids, :] batch_labels = batch_labels[new_ids] if exclude_non_leaf_ontology: new_ids, exclude_terms = exclude_parent_child_nodes(cell_ontology_file, labels) #print (len(exclude_terms),'non leaf terms are excluded') feature = feature[new_ids, :] batch_labels = batch_labels[new_ids] labels = labels[new_ids] if read_tissue: tissues = tissues[new_ids] ncell = len(labels) index = np.random.choice(ncell,min(nsample,ncell),replace=False) batch_labels = batch_labels[index] feature = feature[index, :] # cell by gene matrix labels = labels[index] if read_tissue: tissues = tissues[index] genes = x.var.index corrected_feature = run_scanorama_same_genes(feature, batch_labels) corrected_feature = corrected_feature.toarray() genes = [x.upper() for x in genes] genes = np.array(genes) if read_tissue: assert(len(tissues) == len(labels)) return corrected_feature, labels, genes, tissues else: return corrected_feature, labels, genes def select_cells_based_on_keys(x, features, tissues = None, labels = None, filter_key = None): ncell = np.shape(x.X)[0] select_cells = set(range(ncell)) for key in filter_key: value = filter_key[key] select_cells = select_cells & set(np.where(np.array(x.obs[key])==value)[0]) select_cells = sorted(select_cells) features = features[select_cells,: ] if labels is not None: labels = labels[select_cells] if tissues is not None: tissues = tissues[select_cells] x = x[select_cells,:] return features, labels, tissues, x def find_marker_genes(train_X, pred_Y_all, genes, i2l, topk = 50): cor = corr2_coeff(pred_Y_all[:,:].T, train_X[:,:].T) cor = np.nan_to_num(cor) # cell type to gene nl = len(i2l) c2g = {} for i in range(nl): gl = np.argsort(cor[i,:]*-1) c2g[i2l[i]] = {} for j in range(topk): c2g[i2l[i]][genes[gl[j]]] = cor[i, gl[j]] return c2g, cor def use_pretrained_model(OnClass, genes, test_X, models = []): last_l2i = {} last_i2l = {} pred_Y_all_models = 0. ngene = len(genes) for model in models: OnClass.BuildModel(OnClass.co2emb, ngene = ngene, use_pretrain = model) print ('Build model finished for ',model) pred_Y_seen, pred_Y_all, pred_label = OnClass.Predict(test_X, test_genes = genes) print ('Predict for ',model) pred_Y_all = pred_Y_all.T / (pred_Y_all.T.sum(axis=1)[:, np.newaxis] + 1) pred_Y_all = pred_Y_all.T if len(last_l2i)>0: new_ct_ind = [] for i in range(len(last_i2l)): l = last_i2l[i] new_ct_ind.append(OnClass.co2i[l]) pred_Y_all = pred_Y_all[:, np.array(new_ct_ind)] pred_Y_all_models += pred_Y_all else: last_l2i = OnClass.co2i last_i2l = OnClass.i2co pred_Y_all_models = pred_Y_all return pred_Y_all_models def read_data(feature_file, cell_ontology_ids, exclude_non_leaf_ontology = False, ct_mapping_key = {}, tissue_key = None, seed = 1, filter_key = None, AnnData_label_key=None, nlp_mapping = True, nlp_mapping_cutoff = 0.8, co2emb = None, label_file=None, cl_obo_file = None, cell_ontology_file = None): np.random.seed(seed) x = read_h5ad(feature_file) ncell = np.shape(x.X)[0] dataset = x.X.toarray() genes = np.array([x.upper() for x in x.var.index]) if tissue_key is not None: tissues = np.array(x.obs[tissue_key].tolist()) else: tissues = None if AnnData_label_key is None and label_file is None: print ('no label file is provided') labels = None dataset, labels, tissues, x = select_cells_based_on_keys(x, dataset, labels = labels, tissues = tissues, filter_key = filter_key) return dataset, genes, labels, tissues, x if AnnData_label_key is not None: labels = x.obs[AnnData_label_key].tolist() else: fin = open(label_file) labels = [] for line in fin: labels.append(line.strip()) fin.close() labels = np.array(labels) dataset, labels, tissues, x = select_cells_based_on_keys(x, dataset, labels = labels, tissues = tissues, filter_key = filter_key) ind, labels, unfound_labs = map_and_select_labels(labels, cell_ontology_ids, cl_obo_file, ct_mapping_key = ct_mapping_key, nlp_mapping = nlp_mapping, co2emb = co2emb, nlp_mapping_cutoff = nlp_mapping_cutoff, cl_obo_file = cl_obo_file) if tissue_key is not None: tissues = tissues[ind] dataset = dataset[ind, :] x = x[ind, :] if exclude_non_leaf_ontology: new_ids, exclude_terms = exclude_parent_child_nodes(cell_ontology_file, labels) tissues = tissues[new_ids] dataset = dataset[new_ids, :] labels = labels[new_ids] x = x[new_ids, :] ncell = np.shape(dataset)[0] index = np.random.choice(ncell,ncell,replace=False) dataset = dataset[index, :] # cell by gene matrix labels = labels[index] if tissue_key is not None: tissues = tissues[index] return dataset, genes, labels, tissues, x def exact_match_co_name_2_co_id(labels, lab2co, cl_obo_file = None): if cl_obo_file is None: return lab2co co2name, name2co = get_ontology_name(obo_file = cl_obo_file) for label in labels: if label.lower() in name2co: lab2co[label.lower()] = name2co[label.lower()] for name in name2co: lab2co[name.lower()] = name2co[name] return lab2co def map_and_select_labels(labels, cell_ontology_ids, obo_file, ct_mapping_key = {}, nlp_mapping = True, nlp_mapping_cutoff = 0.8, co2emb = None, cl_obo_file = None): lab2co = {} if nlp_mapping: if co2emb is None: sys.exit('Please provide cell type embedding to do NLP-based mapping.') lab2co = fine_nearest_co_using_nlp(np.unique(labels), co2emb, obo_file,nlp_mapping_cutoff = nlp_mapping_cutoff) lab2co = exact_match_co_name_2_co_id(np.unique(labels), lab2co, cl_obo_file = cl_obo_file) for ct in ct_mapping_key: lab2co[ct_mapping_key[ct]] = lab2co[ct] ind = [] lab_id = [] unfound_labs = set() for i,l in enumerate(labels): if l in cell_ontology_ids: ind.append(i) lab_id.append(l) elif l.lower() in lab2co: ind.append(i) lab_id.append(lab2co[l.lower()]) else: unfound_labs.add(l) frac = len(ind) * 1. / len(labels) ind = np.array(ind) labels = np.array(lab_id) unfound_labs = set(unfound_labs) warn_message = 'Warning: Only: %f precentage of labels are in the Cell Ontology. The remaining cells are excluded! Consider using NLP mapping and choose a small mapping cutoff (nlp_mapping_cutoff)' % (frac * 100) if frac < 0.5: print (warn_message) print ('Here are unfound labels:',unfound_labs) return ind, labels, unfound_labs def parse_h5ad(file,seed=1,nsample=1e10,label_key='cell_ontology_class', read_tissue = False, batch_key = '', filter_key={}, cell_ontology_file = None, exclude_non_leaf_ontology = True, exclude_non_ontology=True, cl_obo_file = None): ''' read h5ad file feature: cell by gene expression label: cell ontology class genes: gene names HGNC ''' np.random.seed(seed) x = read_h5ad(file) ncell = np.shape(x.X)[0] select_cells = set(range(ncell)) for key in filter_key: value = filter_key[key] select_cells = select_cells & set(np.where(np.array(x.obs[key])==value)[0]) select_cells = sorted(select_cells) feature = x.X[select_cells, :] labels = np.array(x.obs[label_key].tolist())[select_cells] if read_tissue: tissues = np.array(x.obs['tissue'].tolist())[select_cells] if batch_key=='' or batch_key not in x.obs.keys(): batch_labels = np.ones(len(labels)) else: batch_labels = np.array(x.obs[batch_key].tolist())[select_cells] genes = x.var.index ncell = len(select_cells) if exclude_non_ontology: new_ids, labels = exclude_non_ontology_term(cl_obo_file, labels, label_key) feature = feature[new_ids, :] batch_labels = batch_labels[new_ids] if exclude_non_leaf_ontology: new_ids, exclude_terms = exclude_parent_child_nodes(cell_ontology_file, labels) #print (len(exclude_terms),'non leaf terms are excluded') feature = feature[new_ids, :] batch_labels = batch_labels[new_ids] labels = labels[new_ids] if read_tissue: tissues = tissues[new_ids] ncell = len(labels) index = np.random.choice(ncell,min(nsample,ncell),replace=False) batch_labels = batch_labels[index] feature = feature[index, :] # cell by gene matrix labels = labels[index] if read_tissue: tissues = tissues[index] genes = x.var.index #corrected_feature = run_scanorama_same_genes(feature, batch_labels) corrected_feature = feature.toarray() genes = [x.upper() for x in genes] genes = np.array(genes) if read_tissue: assert(len(tissues) == len(labels)) return corrected_feature, labels, genes, tissues else: return corrected_feature, labels, genes def exclude_parent_child_nodes(cell_ontology_file,labels): uniq_labels = np.unique(labels) excludes = set() net = collections.defaultdict(dict) fin = open(cell_ontology_file) for line in fin: s,p = line.strip().split('\t') net[s][p] = 1 #p is parent fin.close() for n in list(net.keys()): ngh = get_ontology_parents(net, n) for n1 in ngh: net[n][n1] = 1 for l1 in uniq_labels: for l2 in uniq_labels: if l1 in net[l2] and l1!=l2: #l1 is l2 parent excludes.add(l1) #print (excludes) new_ids = [] for i in range(len(labels)): if labels[i] not in excludes: new_ids.append(i) new_ids = np.array(new_ids) return new_ids, excludes def corr2_coeff(A, B): # Rowwise mean of input arrays & subtract from input arrays themeselves A_mA = A - A.mean(1)[:, None] B_mB = B - B.mean(1)[:, None] # Sum of squares across rows ssA = (A_mA**2).sum(1) ssB = (B_mB**2).sum(1) # Finally get corr coeff return np.dot(A_mA, B_mB.T) / np.sqrt(np.dot(ssA[:, None],ssB[None])) def extract_data_based_on_class(feats, labels, sel_labels): ind = [] for l in sel_labels: id = np.where(labels == l)[0] ind.extend(id) np.random.shuffle(ind) X = feats[ind,:] Y = labels[ind] return X, Y, ind def SplitTrainTest(all_X, all_Y, all_tissues = None, random_state=10, nfold_cls = 0.3, nfold_sample = 0.2, nmin_size=10): np.random.seed(random_state) cls = np.unique(all_Y) cls2ct = Counter(all_Y) ncls = len(cls) test_cls = list(np.random.choice(cls, int(ncls * nfold_cls), replace=False)) for c in cls2ct: if cls2ct[c] < nmin_size: test_cls.append(c) test_cls = np.unique(test_cls) #add rare class to test, since they cannot be split into train and test by using train_test_split(stratify=True) train_cls = [x for x in cls if x not in test_cls] train_cls = np.array(train_cls) train_X, train_Y, train_ind = extract_data_based_on_class(all_X, all_Y, train_cls) test_X, test_Y, test_ind = extract_data_based_on_class(all_X, all_Y, test_cls) if all_tissues is not None: train_tissues = all_tissues[train_ind] test_tissues = all_tissues[test_ind] train_X_train, train_X_test, train_Y_train, train_Y_test, train_tissues_train, train_tissues_test = train_test_split( train_X, train_Y, train_tissues, test_size=nfold_sample, stratify = train_Y,random_state=random_state) test_tissues = np.concatenate((test_tissues, train_tissues_test)) train_tissues = train_tissues_train else: train_X_train, train_X_test, train_Y_train, train_Y_test = train_test_split( train_X, train_Y, test_size=nfold_sample, stratify = train_Y,random_state=random_state) test_X = np.vstack((test_X, train_X_test)) test_Y = np.concatenate((test_Y, train_Y_test)) train_X = train_X_train train_Y = train_Y_train if all_tissues is not None: return train_X, train_Y, train_tissues, test_X, test_Y, test_tissues else: return train_X, train_Y, test_X, test_Y ''' def SplitTrainTest(all_X, all_Y, all_tissues = None, random_state=10, nfold_cls = 0.3, nfold_sample = 0.2, nmin_size=10): np.random.seed(random_state) cls = np.unique(all_Y) cls2ct = Counter(all_Y) ncls = len(cls) rare_cls = [] not_rare_cls = [] for c in cls2ct: if cls2ct[c] < 2: continue elif cls2ct[c] < nmin_size: rare_cls.append(c) else: not_rare_cls.append(c) cls = np.concatenate((rare_cls, not_rare_cls)) ncls = len(cls) rare_cls = np.array(rare_cls) not_rare_cls = np.array(not_rare_cls) train_non_rare_cls = list(np.random.choice(not_rare_cls, int(len(not_rare_cls) * (1 - nfold_cls)), replace=False)) train_cls = np.concatenate((train_non_rare_cls, rare_cls)) test_cls = [x for x in cls if x not in train_cls] test_cls = np.array(test_cls) assert(len(test_cls) + len(train_cls) == ncls) assert(len(set(test_cls) & set(train_cls)) == 0) #add rare class to test, since they cannot be split into train and test by using train_test_split(stratify=True) train_X, train_Y, train_ind = extract_data_based_on_class(all_X, all_Y, train_cls) test_X, test_Y, test_ind = extract_data_based_on_class(all_X, all_Y, test_cls) if all_tissues is not None: train_tissues = all_tissues[train_ind] test_tissues = all_tissues[test_ind] train_X_train, train_X_test, train_Y_train, train_Y_test, train_tissues_train, train_tissues_test = train_test_split( train_X, train_Y, train_tissues, test_size=nfold_sample, stratify = train_Y,random_state=random_state) test_tissues = np.concatenate((test_tissues, train_tissues_test)) train_tissues = train_tissues_train else: train_X_train, train_X_test, train_Y_train, train_Y_test = train_test_split( train_X, train_Y, test_size=nfold_sample, stratify = train_Y,random_state=random_state) test_X = np.vstack((test_X, train_X_test)) test_Y = np.concatenate((test_Y, train_Y_test)) train_X = train_X_train train_Y = train_Y_train if all_tissues is not None: return train_X, train_Y, train_tissues, test_X, test_Y, test_tissues else: return train_X, train_Y, test_X, test_Y ''' def LeaveOneOutTrainTest(all_X, all_Y, test_Y, all_tissues = None, random_state=10, nfold_sample = 0.2, nmin_size=10): np.random.seed(random_state) cls = np.unique(all_Y) cls2ct = Counter(all_Y) ncls = len(cls) test_cls = [test_Y] test_cls = np.unique(test_cls) #add rare class to test, since they cannot be split into train and test by using train_test_split(stratify=True) train_cls = [x for x in cls if x not in test_cls] train_cls = np.array(train_cls) train_X, train_Y, train_ind = extract_data_based_on_class(all_X, all_Y, train_cls) test_X, test_Y, test_ind = extract_data_based_on_class(all_X, all_Y, test_cls) if all_tissues is not None: train_tissues = all_tissues[train_ind] test_tissues = all_tissues[test_ind] train_X_train, train_X_test, train_Y_train, train_Y_test, train_tissues_train, train_tissues_test = train_test_split( train_X, train_Y, train_tissues, test_size=nfold_sample, stratify = train_Y,random_state=random_state) test_tissues = np.concatenate((test_tissues, train_tissues_test)) train_tissues = train_tissues_train else: train_X_train, train_X_test, train_Y_train, train_Y_test = train_test_split( train_X, train_Y, test_size=nfold_sample, stratify = train_Y,random_state=random_state) test_X = np.vstack((test_X, train_X_test)) test_Y = np.concatenate((test_Y, train_Y_test)) train_X = train_X_train train_Y = train_Y_train if all_tissues is not None: return train_X, train_Y, train_tissues, test_X, test_Y, test_tissues else: return train_X, train_Y, test_X, test_Y def renorm(X): Y = X.copy() Y = Y.astype(float) ngene,nsample = Y.shape s = np.sum(Y, axis=0) #print s.shape() for i in range(nsample): if s[i]==0: s[i] = 1 if i < ngene: Y[i,i] = 1 else: for j in range(ngene): Y[j,i] = 1. / ngene Y[:,i] = Y[:,i]/s[i] return Y def RandomWalkRestart(A, rst_prob, delta = 1e-4, reset=None, max_iter=50,use_torch=False,return_torch=False): if use_torch: device = torch.device("cuda:0") nnode = A.shape[0] #print nnode if reset is None: reset = np.eye(nnode) nsample,nnode = reset.shape #print nsample,nnode P = renorm(A) P = P.T norm_reset = renorm(reset.T) norm_reset = norm_reset.T if use_torch: norm_reset = torch.from_numpy(norm_reset).float().to(device) P = torch.from_numpy(P).float().to(device) Q = norm_reset for i in range(1,max_iter): #Q = gnp.garray(Q) #P = gnp.garray(P) if use_torch: Q_new = rst_prob*norm_reset + (1-rst_prob) * torch.mm(Q, P)#.as_numpy_array() delta = torch.norm(Q-Q_new, 2) else: Q_new = rst_prob*norm_reset + (1-rst_prob) * np.dot(Q, P)#.as_numpy_array() delta = np.linalg.norm(Q-Q_new, 'fro') Q = Q_new #print (i,Q) sys.stdout.flush() if delta < 1e-4: break if use_torch and not return_torch: Q = Q.cpu().numpy() return Q def DCA_vector(Q, dim): nnode = Q.shape[0] alpha = 1. / (nnode **2) Q = np.log(Q + alpha) - np.log(alpha); #Q = Q * Q'; [U, S, V] = svds(Q, dim); S = np.diag(S) X = np.dot(U, np.sqrt(S)) Y = np.dot(np.sqrt(S), V) Y = np.transpose(Y) return X,U,S,V,Y def read_cell_ontology_nlp(l2i, ontology_nlp_file, ontology_nlp_emb_file): ncls = len(l2i) net = np.zeros((ncls, ncls)) bin_net = np.zeros((ncls, ncls)) fin = open(ontology_nlp_file) for line in fin: s,p,wt = line.upper().strip().split('\t') wt = float(wt) net[l2i[s], l2i[p]] = np.exp(wt) net[l2i[p], l2i[s]] = np.exp(wt) bin_net[l2i[s], l2i[p]] = 1 bin_net[l2i[p], l2i[s]] = 1 fin.close() l2vec = {} fin = open(ontology_nlp_emb_file) for line in fin: w = line.upper().strip().split('\t') l2vec[w[0]] = [] dim = len(w)-1 for i in range(1,len(w)): l2vec[w[0]].append(float(w[i])) fin.close() l2vec_mat = np.zeros((ncls, dim)) for l in l2vec: if l.upper() not in l2i: continue l2vec_mat[l2i[l.upper()],:] = l2vec[l] ''' net_sum = np.sum(net,axis=0) for i in range(ncls): if net_sum[i] == 0: net[i,i] = 1. net[:,i] /= np.sum(net[:,i]) #net = net / net.sum(axis=1)[:, np.newaxis] ''' return net, bin_net, l2vec_mat def GetReverseNet(onto_net): onto_net_rev = collections.defaultdict(dict) for a in onto_net: for b in onto_net[a]: onto_net_rev[b][a] = 1 return onto_net_rev def ParseCLOnto(train_Y, ontology_nlp_file, ontology_file, co_dim=5, co_mi=3, dfs_depth = 1, combine_unseen = False, add_emb_diagonal = True, use_pretrain = None, use_seen_only = True):# unseen_l, l2i, i2l, train_X2Y, onto_net, onto_net_mat = create_labels(train_Y, ontology_nlp_file, ontology_file, dfs_depth = dfs_depth, combine_unseen = combine_unseen) Y_emb = emb_ontology(i2l, ontology_nlp_file, ontology_file, dim = co_dim, mi=co_mi, use_pretrain = use_pretrain, use_seen_only = True, unseen_l = unseen_l) if add_emb_diagonal: Y_emb = np.column_stack((np.eye(len(i2l)), Y_emb)) return unseen_l, l2i, i2l, onto_net, Y_emb, onto_net_mat def graph_embedding(A, i2l, mi=0, dim=20,use_seen_only=True,unseen_l=None): nl = np.shape(A)[0] if use_seen_only: seen_ind = [] unseen_ind = [] for i in range(nl): if i2l[i] in unseen_l: unseen_ind.append(i) else: seen_ind.append(i) seen_ind = np.array(seen_ind) unseen_ind = np.array(unseen_ind) #if len(seen_ind) * 0.8 < dim: # dim = int(len(seen_ind) * 0.8) if mi==0 or mi == 1: sp = graph_shortest_path(A,method='FW',directed =False) else: sp = RandomWalkRestart(A, 0.8) if use_seen_only: sp = sp[seen_ind, :] sp = sp[:,seen_ind] X = np.zeros((np.shape(sp)[0],dim)) svd_dim = min(dim, np.shape(sp)[0]-1) if mi==0 or mi == 2: X[:,:svd_dim] = svd_emb(sp, dim=svd_dim) else: X[:,:svd_dim] = DCA_vector(sp, dim=svd_dim)[0] if use_seen_only: X_ret = np.zeros((nl, dim)) X_ret[seen_ind,:] = X else: X_ret = X if mi==2 or mi == 3: sp *= -1 return sp, X_ret def cal_ontology_emb(ontology_nlp_file, ontology_file, dim=20, mi=3, use_pretrain = None, use_seen_only = True, unseen_l = None): if use_pretrain is None or not os.path.isfile(use_pretrain+'X.npy') or not os.path.isfile(use_pretrain+'sp.npy'): cl_nlp = collections.defaultdict(dict) if ontology_nlp_file is not None: fin = open(ontology_nlp_file) for line in fin: s,p,wt = line.upper().strip().split('\t') cl_nlp[s][p] = float(wt) cl_nlp[p][s] = float(wt) fin.close() fin = open(ontology_file) lset = set() s2p = {} for line in fin: w = line.strip().split('\t') s = w[0] p = w[1] if len(w)==2: if p in cl_nlp and s in cl_nlp[p]: wt = cl_nlp[p][s] else: wt = 1. else: wt = float(w[2]) if s not in s2p: s2p[s] = {} s2p[s][p] = wt lset.add(s) lset.add(p) fin.close() lset = np.sort(list(lset)) nl = len(lset) l2i = dict(zip(lset, range(nl))) i2l = dict(zip(range(nl), lset)) A = np.zeros((nl, nl)) for s in s2p: for p in s2p[s]: A[l2i[s], l2i[p]] = s2p[s][p] A[l2i[p], l2i[s]] = s2p[s][p] sp, X = graph_embedding(A, i2l, mi=mi, dim=dim, use_seen_only=use_seen_only, unseen_l=unseen_l) if use_pretrain is not None: i2l_file = use_pretrain+'i2l.npy' l2i_file = use_pretrain+'l2i.npy' X_file = use_pretrain+'X.npy' sp_file = use_pretrain+'sp.npy' np.save(X_file, X) np.save(i2l_file, i2l) np.save(l2i_file, l2i) np.save(sp_file, sp) else: i2l_file = use_pretrain+'i2l.npy' l2i_file = use_pretrain+'l2i.npy' X_file = use_pretrain+'X.npy' sp_file = use_pretrain+'sp.npy' X = np.load(X_file) i2l = np.load(i2l_file,allow_pickle=True).item() l2i = np.load(l2i_file,allow_pickle=True).item() sp = np.load(sp_file,allow_pickle=True) return X, l2i, i2l, sp def merge_26_datasets(datanames_26datasets, scan_dim = 50): datasets, genes_list, n_cells = load_names(datanames_26datasets,verbose=False,log1p=True) datasets, genes = merge_datasets(datasets, genes_list) datasets_dimred, genes = process_data(datasets, genes, dimred=scan_dim) datasets_dimred, expr_datasets = my_assemble(datasets_dimred, ds_names=datanames_26datasets, expr_datasets = datasets, sigma=150) datasets_dimred = sparse.vstack(expr_datasets).toarray() return datasets_dimred, genes def emb_ontology(i2l, ontology_nlp_file, ontology_file, dim=20, mi=0, use_pretrain = None, use_seen_only = True, unseen_l = None): X, ont_l2i, ont_i2l, A = cal_ontology_emb( ontology_nlp_file, ontology_file, dim=dim, mi=mi, use_pretrain = use_pretrain, use_seen_only = True, unseen_l = unseen_l) i2emb = np.zeros((len(i2l),dim)) nl = len(i2l) for i in range(nl): ant = i2l[i] if ant not in ont_l2i: print (ant, ont_l2i) assert('xxx' in ant.lower() or 'nan' in ant.lower()) continue i2emb[i,:] = X[ont_l2i[ant],:] ''' AA = np.zeros((nl, nl)) for i in range(nl): for j in range(nl): anti, antj = i2l[i], i2l[j] if anti in ont_l2i and antj in ont_l2i: AA[i,j] = A[ont_l2i[anti],ont_l2i[antj]] ''' return i2emb ''' def get_ontology_parents(GO_net, g): term_valid = set() ngh_GO = set() ngh_GO.add(g) while len(ngh_GO) > 0: for GO in list(ngh_GO): for GO1 in GO_net[GO]: ngh_GO.add(GO1) ngh_GO.remove(GO) term_valid.add(GO) return term_valid ''' def get_ontology_parents(GO_net, g, dfs_depth=100): term_valid = set() ngh_GO = set() ngh_GO.add(g) depth = {} depth[g] = 0 while len(ngh_GO) > 0: for GO in list(ngh_GO): for GO1 in GO_net[GO]: ngh_GO.add(GO1) depth[GO1] = depth[GO] + 1 ngh_GO.remove(GO) if depth[GO] < dfs_depth: term_valid.add(GO) return term_valid def create_labels(train_Y, ontology_nlp_file, ontology_file, combine_unseen = False, dfs_depth = 1000): fin = open(ontology_file) lset = set() for line in fin: s,p = line.strip().split('\t') lset.add(s) lset.add(p) fin.close() seen_l = sorted(np.unique(train_Y)) unseen_l = sorted(lset - set(train_Y)) ys = np.concatenate((seen_l, unseen_l)) i2l = {} l2i = {} for l in ys: nl = len(i2l) col = l if combine_unseen and l in unseen_l: nl = len(seen_l) l2i[col] = nl i2l[nl] = col continue l2i[col] = nl i2l[nl] = col train_Y = [l2i[y] for y in train_Y] train_X2Y = ConvertLabels(train_Y, ncls = len(i2l)) onto_net, onto_net_mat = read_ontology(l2i, ontology_nlp_file, ontology_file, dfs_depth = dfs_depth) return unseen_l, l2i, i2l, train_X2Y, onto_net, onto_net_mat def query_depth_ontology(net, node, root='cl:0000000'): depth = 0 while node != root: if len(net[node]) == 0: print (node) node = sorted(list(net[node].keys()))[0] depth += 1 if depth>100: sys.error('root not found') return depth def read_ontology(l2i, ontology_nlp_file, ontology_file, dfs_depth = 1000): nl = len(l2i) net = collections.defaultdict(dict) net_mat = np.zeros((nl,nl)) fin = open(ontology_file) for line in fin: s,p = line.strip().split('\t') si = l2i[s] pi = l2i[p] net[si][pi] = 1 net_mat[si][pi] = 1 fin.close() for n in range(nl): ngh = get_ontology_parents(net, n, dfs_depth = dfs_depth) net[n][n] = 1 for n1 in ngh: net[n][n1] = 1 return net, net_mat def extract_label_propagate_tree(onto_net, ncls): tree = np.zeros((ncls,ncls)) for n1 in onto_net: for n2 in onto_net[n1]: tree[n1,n2] = 1 return tree def ConvertLabels(labels, ncls=-1): ncell = np.shape(labels)[0] if len(np.shape(labels)) ==1 : #bin to mat if ncls == -1: ncls = np.max(labels) mat = np.zeros((ncell, ncls)) for i in range(ncell): mat[i, labels[i]] = 1 return mat else: if ncls == -1: ncls = np.shape(labels)[1] vec = np.zeros(ncell) for i in range(ncell): ind = np.where(labels[i,:]!=0)[0] assert(len(ind)<=1) # not multlabel classification if len(ind)==0: vec[i] = -1 else: vec[i] = ind[0] return vec def MapLabel2CL(test_Y, l2i): test_Y_new = np.array([l2i[y] for y in test_Y]) return test_Y_new def get_ontology_name(obo_file, lower=True): fin = open(obo_file) co2name = {} name2co = {} tag_is_syn = {} for line in fin: if line.startswith('id: '): co = line.strip().split('id: ')[1] if line.startswith('name: '): if lower: name = line.strip().lower().split('name: ')[1] else: name = line.strip().split('name: ')[1] co2name[co] = name name2co[name] = co if line.startswith('synonym: '): if lower: syn = line.strip().lower().split('synonym: "')[1].split('" ')[0] else: syn = line.strip().split('synonym: "')[1].split('" ')[0] if syn in name2co: continue name2co[syn] = co fin.close() return co2name, name2co def knn_ngh(Y2Y): ind = np.argsort(Y2Y*-1, axis=1) return ind def extend_prediction_2unseen_normalize(pred_Y_seen, onto_net_rwr, nseen, ratio=200): sys.exit(-1)#NOT USED ncls = np.shape(onto_net_rwr)[0] onto_net_rwr = onto_net_rwr - np.tile(np.mean(onto_net_rwr, axis = 1), (ncls, 1)) pred_Y_seen_norm = pred_Y_seen / pred_Y_seen.sum(axis=1)[:, np.newaxis] pred_Y_all = np.dot(pred_Y_seen_norm, onto_net_rwr[:nseen,:]) pred_Y_all[:,:nseen] = normalize(pred_Y_all[:,:nseen],norm='l1',axis=1) pred_Y_all[:,nseen:] = normalize(pred_Y_all[:,nseen:],norm='l1',axis=1) * ratio return pred_Y_all def create_nlp_networks(l2i, onto_net, cls2cls, ontology_nlp_file, ontology_nlp_emb_file): ncls = np.shape(cls2cls)[0] _, _, onto_nlp_emb = read_cell_ontology_nlp(l2i, ontology_nlp_file = ontology_nlp_file, ontology_nlp_emb_file = ontology_nlp_emb_file) onto_net_nlp_all_pairs = (cosine_similarity(onto_nlp_emb) + 1 ) /2#1 - spatial.distance.cosine(onto_nlp_emb, onto_nlp_emb) onto_net_nlp = np.zeros((ncls, ncls)) onto_net_bin = np.zeros((ncls, ncls)) stack_net_bin = np.zeros((ncls, ncls)) stack_net_nlp = np.zeros((ncls, ncls)) for n1 in onto_net: for n2 in onto_net[n1]: if n1==n2: continue stack_net_nlp[n2,n1] = onto_net_nlp_all_pairs[n2, n1] stack_net_nlp[n1,n2] = onto_net_nlp_all_pairs[n1, n2] stack_net_bin[n1,n2] = 1 stack_net_bin[n2,n1] = 1 for n1 in range(ncls): for n2 in range(ncls): if cls2cls[n1,n2] == 1 or cls2cls[n2,n1] == 1: onto_net_nlp[n1,n2] = onto_net_nlp_all_pairs[n1, n2] onto_net_nlp[n2,n1] = onto_net_nlp_all_pairs[n2, n1] onto_net_bin[n1,n2] = 1 onto_net_bin[n2,n1] = 1 return onto_net_nlp, onto_net_bin, stack_net_nlp, stack_net_bin, onto_net_nlp_all_pairs def create_consensus_networks(rsts, onto_net_mat, onto_net_nlp_all_pairs, cls2cls, diss=[2,3], thress=[1,0.8]): cls2cls_sp = graph_shortest_path(cls2cls,method='FW',directed =False) ncls = np.shape(onto_net_mat)[0] networks = [] for rst in rsts: for dis in diss: for thres in thress: use_net = np.copy(onto_net_mat) use_net[(cls2cls_sp<=dis)&(onto_net_nlp_all_pairs > thres)] = onto_net_nlp_all_pairs[(cls2cls_sp<=dis)&(onto_net_nlp_all_pairs > thres)] onto_net_rwr = RandomWalkRestart(use_net, rst) networks.append(onto_net_rwr) return networks def extend_prediction_2unseen(pred_Y_seen, networks, nseen, ratio=200, use_normalize=False): if not isinstance(networks, list): networks = [networks] pred_Y_all_totoal = 0. for onto_net_rwr in networks: if use_normalize: onto_net_rwr = onto_net_rwr - np.tile(np.mean(onto_net_rwr, axis = 1), (np.shape(onto_net_rwr)[0], 1)) pred_Y_seen_norm = pred_Y_seen / pred_Y_seen.sum(axis=1)[:, np.newaxis] pred_Y_all = np.dot(pred_Y_seen_norm, onto_net_rwr[:nseen,:]) pred_Y_all[:,:nseen] = normalize(pred_Y_all[:,:nseen],norm='l1',axis=1) pred_Y_all[:,nseen:] = normalize(pred_Y_all[:,nseen:],norm='l1',axis=1) * ratio pred_Y_all_totoal += pred_Y_all return pred_Y_all_totoal def my_auprc(y_true, y_pred): precision, recall, thresholds = precision_recall_curve(y_true, y_pred) area = auc(recall, precision) return area def sampled_auprc(truths,preds): pos = np.where(truths == 1)[0] neg = np.where(truths == 0)[0] assert(len(pos) + len(neg) == len(truths)) nneg = len(neg) npos = len(pos) select_neg = np.random.choice(nneg, npos*3, replace = True) select_ind = np.concatenate((pos, select_neg)) return average_precision_score(truths[select_ind], preds[select_ind]) def evaluate(Y_pred_mat, Y_truth_vec, unseen_l, nseen, Y_truth_bin_mat = None, Y_pred_vec = None, Y_ind=None, Y_net = None, Y_net_mat = None, write_screen = True, write_to_file = None, combine_unseen = False, prefix='', metrics = ['AUROC(seen)','AUPRC(seen)','AUROC','AUPRC','AUROC(unseen)', 'AUPRC(unseen)','Accuracy@3','Accuracy@5']): #preprocess scores unseen_l = np.array(list(unseen_l)) ncell,nclass = np.shape(Y_pred_mat) nseen = nclass - len(unseen_l) if Y_ind is not None: non_Y_ind = np.array(list(set(range(nclass)) - set(Y_ind))) if len(non_Y_ind)>0: Y_pred_mat[:,non_Y_ind] = -1 * np.inf if Y_pred_vec is None: Y_pred_vec = np.argmax(Y_pred_mat, axis=1) if Y_truth_bin_mat is None: Y_truth_bin_mat = ConvertLabels(Y_truth_vec, nclass) Y_pred_bin_mat = ConvertLabels(Y_pred_vec, nclass) #class-based metrics class_auc_macro = np.full(nclass, np.nan) class_auprc_macro = np.full(nclass, np.nan) class_f1 = np.full(nclass, np.nan) for i in range(nclass): if len(np.unique(Y_truth_bin_mat[:,i]))==2 and np.sum(Y_truth_bin_mat[:,i])>=10: class_auc_macro[i] = roc_auc_score(Y_truth_bin_mat[:,i], Y_pred_mat[:,i]) class_auprc_macro[i] = sampled_auprc(Y_truth_bin_mat[:,i], Y_pred_mat[:,i]) class_f1[i] = f1_score(Y_truth_bin_mat[:,i], Y_pred_bin_mat[:,i]) #sample-based metrics extend_acc, extend_Y = extend_accuracy(Y_truth_vec, Y_pred_vec, Y_net, unseen_l) kappa = cohen_kappa_score(Y_pred_vec, Y_truth_vec) extend_kappa = cohen_kappa_score(extend_Y, Y_truth_vec) accuracy = accuracy_score(Y_truth_vec, Y_pred_vec) prec_at_k_3 = precision_at_k(Y_pred_mat, Y_truth_vec, 3) prec_at_k_5 = precision_at_k(Y_pred_mat, Y_truth_vec, 5) #print ([(x,np.sum(Y_truth_bin_mat[:,unseen_l[i]])) for i,x in enumerate(class_auprc_macro[unseen_l]) if not np.isnan(x)]) seen_auc_macro = np.nanmean(class_auc_macro[:nseen]) seen_auprc_macro = np.nanmean(class_auprc_macro[:nseen]) seen_f1 = np.nanmean(class_f1[:nseen]) if len(unseen_l) == 0: unseen_auc_macro = 0 unseen_auprc_macro = 0 unseen_f1 = 0 else: unseen_auc_macro = np.nanmean(class_auc_macro[unseen_l]) #unseen_auprc_macro = np.nanmean([x for i,x in enumerate(class_auprc_macro[unseen_l]) if np.sum(Y_truth_bin_mat[:,unseen_l[i]])>100])# unseen_auprc_macro = np.nanmean(class_auprc_macro[unseen_l]) unseen_f1 = np.nanmean(class_f1[unseen_l]) #metrics = ['AUROC','AUPRC','unseen_AUROC', 'unseen_AUPRC','Cohens Kappa','Accuracy@3','Accuracy@5'] #res_v = [seen_auc_macro, seen_auprc_macro, np.nanmean(class_auc_macro), np.nanmean(class_auprc_macro), extend_kappa, prec_at_k_3, prec_at_k_5, unseen_auc_macro, unseen_auprc_macro] all_v = {'AUROC':np.nanmean(class_auc_macro), 'AUPRC': np.nanmean(class_auprc_macro), 'AUROC(seen)':seen_auc_macro, 'AUPRC(seen)': seen_auprc_macro, 'AUROC(unseen)':unseen_auc_macro, 'AUPRC(unseen)': unseen_auprc_macro, 'Cohens Kappa':extend_kappa, 'Accuracy@3':prec_at_k_3, 'Accuracy@5':prec_at_k_5} res_v = {} for metric in metrics: res_v[metric] = all_v[metric] #res_v = [seen_auc_macro, seen_auprc_macro, seen_f1, np.nanmean(class_auc_macro), np.nanmean(class_auprc_macro), np.nanmean(class_f1), unseen_auc_macro, unseen_auprc_macro, unseen_f1] if write_screen: print (prefix, end='\t') for v in metrics: print ('%.4f'%res_v[v], end='\t') print ('') sys.stdout.flush() if write_to_file is not None: write_to_file.write(prefix+'\t') for v in metrics: write_to_file.write('%.2f\t'%res_v[v]) write_to_file.write('\n') write_to_file.flush() return res_v def precision_at_k(pred,truth,k): ncell, nclass = np.shape(pred) hit = 0. for i in range(ncell): x = np.argsort(pred[i,:]*-1) rank = np.where(x==truth[i])[0][0] if rank < k: hit += 1. prec = hit / ncell return prec def write_anndata_data(test_label, test_AnnData, cl_obo_file, label_name): if len(np.shape(test_label))==2: test_label = np.argmax(test_label, axis = 1) co2name, name2co = get_ontology_name(cl_obo_file) x = test_AnnData ncell = np.shape(x.X)[0] print (ncell, len(test_label)) assert(ncell == len(test_label)) test_name = [] test_label_id = [] for i in range(ncell): xx = i2tp[test_label[i]] test_label_id.append(xx) test_name.append(co2name[xx]) test_name = np.array(test_name) test_label_id = np.array(test_label_id) x.obs['OnClass_annotation_ontology_ID'] = test_label x.obs['OnClass_annotation_ontology_name'] = test_name return x def read_type2genes(g2i, marker_gene,cl_obo_file): co2name, name2co = get_ontology_name(cl_obo_file) c2cnew = {} c2cnew['cd4+ t cell'] = 'CD4-positive, CXCR3-negative, CCR6-negative, alpha-beta T cell'.lower() c2cnew['chromaffin cells (enterendocrine)'] = 'chromaffin cell'.lower() c2cnew['mature NK T cell'] = 'mature NK T cell'.lower() c2cnew['cd8+ t cell'] = 'CD8-positive, alpha-beta cytotoxic T cell'.lower() fin = open(marker_gene) fin.readline() tp2genes = {} unfound = set() for line in fin: w = line.strip().split('\t') c1 = w[1].lower() c2 = w[2].lower() genes = [] for ww in w[8:]: if ww.upper() in g2i: genes.append(ww.upper()) if len(genes)==0: continue if c1.endswith('s') and c1[:-1] in name2co: c1 = c1[:-1] if c2.endswith('s') and c2[:-1] in name2co: c2 = c2[:-1] if c1 + ' cell' in name2co: c1 +=' cell' if c2 + ' cell' in name2co: c2 +=' cell' if c1 in c2cnew: c1 = c2cnew[c1] if c2 in c2cnew: c2 = c2cnew[c2] if c1 in name2co: tp2genes[name2co[c1]] = genes else: unfound.add(c1) if c2 in name2co: tp2genes[name2co[c2]] = genes else: unfound.add(c2) fin.close() return tp2genes def extend_accuracy(test_Y, test_Y_pred_vec, Y_net, unseen_l): unseen_l = set(unseen_l) n = len(test_Y) acc = 0. ntmp = 0. new_pred = [] for i in range(n): if test_Y[i] in unseen_l and test_Y_pred_vec[i] in unseen_l: if test_Y_pred_vec[i] in Y_net[test_Y[i]] and Y_net[test_Y[i]][test_Y_pred_vec[i]] == 1: acc += 1 ntmp += 1 new_pred.append(test_Y[i]) else: new_pred.append(test_Y_pred_vec[i]) else: if test_Y[i] == test_Y_pred_vec[i]: acc += 1 new_pred.append(test_Y_pred_vec[i]) new_pred = np.array(new_pred) return acc/n, new_pred def run_scanorama_multiply_datasets(datasets, genes, scan_dim = 100): sparse_datasets = [] for dataset in datasets: sparse_datasets.append(sparse.csr_matrix(dataset)) datasets, genes = merge_datasets(sparse_datasets, genes) datasets_dimred, genes = process_data(datasets, genes, dimred=scan_dim) datasets_dimred, sparse_dataset_correct = my_assemble(datasets_dimred, expr_datasets = datasets, sigma=150) dataset_correct = [] for sp in sparse_dataset_correct: dataset_correct.append(np.power(sp.todense(), 2)) return datasets_dimred, dataset_correct def run_scanorama_same_genes(features, batch_labels, scan_dim = 100): batchs = np.unique(batch_labels) nbatch = len(batchs) if nbatch == 1: return features ncell, ngene = np.shape(features) assert(ncell == len(batch_labels)) genes = [] datasets = [] indexs = [] for i in range(nbatch): genes.append(np.array(range(ngene))) index = np.where(batch_labels == batchs[i])[0] dataset = features[index,:] print (batchs[i], np.shape(dataset)) datasets.append(dataset) indexs.append(index) _, dataset_correct = run_scanorama_multiply_datasets(datasets, genes, scan_dim = scan_dim) assert(len(dataset_correct)) == nbatch for i in range(nbatch): features[indexs[i],:] = dataset_correct[i] return features def my_assemble(datasets, verbose=VERBOSE, view_match=False, knn=KNN, sigma=SIGMA, approx=APPROX, alpha=ALPHA, expr_datasets=None, ds_names=None, batch_size=None, geosketch=False, geosketch_max=20000, alignments=None, matches=None): # reimplement part of scanorama to return the corrected expression (instead of low-d vectors) #this code is copy and paste from scanorama in order to output the expression. Please check their tool and cite their paper if you used this function. if len(datasets) == 1: return datasets if alignments is None and matches is None: alignments, matches = find_alignments( datasets, knn=knn, approx=approx, alpha=alpha, verbose=verbose, ) ds_assembled = {} panoramas = [] ct = 0 for i, j in alignments: ct += 1 print (ct) sys.stdout.flush() if verbose: if ds_names is None: print('Processing datasets {}'.format((i, j))) else: print('Processing datasets {} <=> {}'. format(ds_names[i], ds_names[j])) # Only consider a dataset a fixed amount of times. if not i in ds_assembled: ds_assembled[i] = 0 ds_assembled[i] += 1 if not j in ds_assembled: ds_assembled[j] = 0 ds_assembled[j] += 1 if ds_assembled[i] > 3 and ds_assembled[j] > 3: continue # See if datasets are involved in any current panoramas. panoramas_i = [ panoramas[p] for p in range(len(panoramas)) if i in panoramas[p] ] assert(len(panoramas_i) <= 1) panoramas_j = [ panoramas[p] for p in range(len(panoramas)) if j in panoramas[p] ] assert(len(panoramas_j) <= 1) if len(panoramas_i) == 0 and len(panoramas_j) == 0: if datasets[i].shape[0] < datasets[j].shape[0]: i, j = j, i panoramas.append([ i ]) panoramas_i = [ panoramas[-1] ] # Map dataset i to panorama j. if len(panoramas_i) == 0: curr_ds = datasets[i] curr_ref = np.concatenate([ datasets[p] for p in panoramas_j[0] ]) match = [] base = 0 for p in panoramas_j[0]: if i < p and (i, p) in matches: match.extend([ (a, b + base) for a, b in matches[(i, p)] ]) elif i > p and (p, i) in matches: match.extend([ (b, a + base) for a, b in matches[(p, i)] ]) base += datasets[p].shape[0] ds_ind = [ a for a, _ in match ] ref_ind = [ b for _, b in match ] bias = transform(curr_ds, curr_ref, ds_ind, ref_ind, sigma=sigma, batch_size=batch_size) datasets[i] = curr_ds + bias if expr_datasets: curr_ds = expr_datasets[i] curr_ref = vstack([ expr_datasets[p] for p in panoramas_j[0] ]) bias = transform(curr_ds, curr_ref, ds_ind, ref_ind, sigma=sigma, cn=True, batch_size=batch_size) expr_datasets[i] = curr_ds + bias panoramas_j[0].append(i) # Map dataset j to panorama i. elif len(panoramas_j) == 0: curr_ds = datasets[j] curr_ref = np.concatenate([ datasets[p] for p in panoramas_i[0] ]) match = [] base = 0 for p in panoramas_i[0]: if j < p and (j, p) in matches: match.extend([ (a, b + base) for a, b in matches[(j, p)] ]) elif j > p and (p, j) in matches: match.extend([ (b, a + base) for a, b in matches[(p, j)] ]) base += datasets[p].shape[0] ds_ind = [ a for a, _ in match ] ref_ind = [ b for _, b in match ] bias = transform(curr_ds, curr_ref, ds_ind, ref_ind, sigma=sigma, batch_size=batch_size) datasets[j] = curr_ds + bias if expr_datasets: curr_ds = expr_datasets[j] curr_ref = vstack([ expr_datasets[p] for p in panoramas_i[0] ]) bias = transform(curr_ds, curr_ref, ds_ind, ref_ind, sigma=sigma, cn=True, batch_size=batch_size) expr_datasets[j] = curr_ds + bias panoramas_i[0].append(j) # Merge two panoramas together. else: curr_ds = np.concatenate([ datasets[p] for p in panoramas_i[0] ]) curr_ref = np.concatenate([ datasets[p] for p in panoramas_j[0] ]) # Find base indices into each panorama. base_i = 0 for p in panoramas_i[0]: if p == i: break base_i += datasets[p].shape[0] base_j = 0 for p in panoramas_j[0]: if p == j: break base_j += datasets[p].shape[0] # Find matching indices. match = [] base = 0 for p in panoramas_i[0]: if p == i and j < p and (j, p) in matches: match.extend([ (b + base, a + base_j) for a, b in matches[(j, p)] ]) elif p == i and j > p and (p, j) in matches: match.extend([ (a + base, b + base_j) for a, b in matches[(p, j)] ]) base += datasets[p].shape[0] base = 0 for p in panoramas_j[0]: if p == j and i < p and (i, p) in matches: match.extend([ (a + base_i, b + base) for a, b in matches[(i, p)] ]) elif p == j and i > p and (p, i) in matches: match.extend([ (b + base_i, a + base) for a, b in matches[(p, i)] ]) base += datasets[p].shape[0] ds_ind = [ a for a, _ in match ] ref_ind = [ b for _, b in match ] # Apply transformation to entire panorama. bias = transform(curr_ds, curr_ref, ds_ind, ref_ind, sigma=sigma, batch_size=batch_size) curr_ds += bias base = 0 for p in panoramas_i[0]: n_cells = datasets[p].shape[0] datasets[p] = curr_ds[base:(base + n_cells), :] base += n_cells if not expr_datasets is None: curr_ds = vstack([ expr_datasets[p] for p in panoramas_i[0] ]) curr_ref = vstack([ expr_datasets[p] for p in panoramas_j[0] ]) bias = transform(curr_ds, curr_ref, ds_ind, ref_ind, sigma=sigma, cn=True, batch_size=batch_size) curr_ds += bias base = 0 for p in panoramas_i[0]: n_cells = expr_datasets[p].shape[0] expr_datasets[p] = curr_ds[base:(base + n_cells), :] base += n_cells # Merge panoramas i and j and delete one. if panoramas_i[0] != panoramas_j[0]: panoramas_i[0] += panoramas_j[0] panoramas.remove(panoramas_j[0]) # Visualize. if view_match: plot_mapping(curr_ds, curr_ref, ds_ind, ref_ind) return datasets, expr_datasets
import endpoints from google.appengine.ext import ndb def get_by_urlsafe(urlsafe, model): try: key = ndb.Key(urlsafe=urlsafe) except TypeError: raise endpoints.BadRequestException('Invalid Key') except Exception, e: if e.__class__.__name__ == 'ProtocolBufferDecodeError': raise endpoints.BadRequestException('Invalid Key') else: raise entity = key.get() if not entity: return None if not isinstance(entity, model): raise ValueError('Incorrect Kind') return entity def check_placement(ship_placement, ship_number): """Returns true if ship placed inside the board""" ships_position_check = [0,10,20,30,40,50,60,70,80,90] if ship_placement > 99 or ship_placement < 0: return False if ship_number in [2,3,4]: if ship_placement in ships_position_check: return False return True
import glob import os import warnings from datetime import datetime from copy import deepcopy import numpy as np import pyedflib import scipy.io as sio from config import cfg from thirdparty.cerebus import NsxFile, NevFile from thirdparty.nex import Reader as NexReader from .utils import find_nearest_time def _load_neuracle(data_dir): """ neuracle file loader :param data_dir: root data dir for the experiment :return: data: ndarray, (channels, timesteps) ch_name: list, name of channels timestamp: list, index of trigger """ f = { 'data': os.path.join(data_dir, 'data.bdf'), 'evt': os.path.join(data_dir, 'evt.bdf') } # read data f_data = pyedflib.EdfReader(f['data']) ch_names = f_data.getSignalLabels() data = np.array([f_data.readSignal(i) for i in range(f_data.signals_in_file)]) # sample frequiencies sfreq = f_data.getSampleFrequencies() assert np.unique(sfreq).size == 1 if cfg.amp_info.samplerate != sfreq[0]: warnings.warn('Samplerate in config file does not equal to data file record') cfg.amp_info.samplerate = int(sfreq[0]) # read event f_evt = pyedflib.EdfReader(f['evt']) event, _, _ = f_evt.readAnnotations() event = list(map(lambda x: int(x * cfg.amp_info.samplerate), event)) return data, ch_names, event def _load_usbamp(data_dir): """ USBAmp file loader :param data_dir: root dir :return: data: ndarray, (channels, timesteps) ch_name: list, name of channels timestamp: list, index of trigger """ # edf USBAmp files = glob.glob(os.path.join(data_dir, '*.edf')) assert len(files) == 1 f = pyedflib.EdfReader(files[0]) ch_names = f.getSignalLabels() # filter channel # find trigger channel triggers = [] sig = [] for i, chan in enumerate(ch_names): if 'trigger' in chan: triggers.append(i) else: sig.append(i) sigbuf = np.array([f.readSignal(i) for i in range(len(ch_names))]) ch_names = [ch_names[i] for i in sig] trigger = -1 for ch_ind in triggers: if not np.allclose(np.diff(sigbuf[ch_ind]), 0): trigger = ch_ind break diff = np.diff(sigbuf[trigger]) timestamp = np.nonzero(np.logical_and(diff <= 1, diff >= 0.2))[0].tolist() data = sigbuf[sig] return data, ch_names, timestamp def _load_nex(data_dir): """ nex file loader :param data_dir: :return: data: ndarray, shape (ch, timesteps) ch_names: list, name of each channel timestamps: list, stimulation onset """ files = glob.glob(os.path.join(data_dir, '*.nex')) assert len(files) == 1 reader = NexReader(useNumpy=True) data = reader.ReadNexFile(files[0]) var = data['Variables'] ch_names = [] trigger_ch = None con_data = [] samplerate = cfg.amp_info.samplerate for i, ch in enumerate(var): if 'CH' in ch['Header']['Name']: ch_names.append(ch['Header']['Name']) con_data.append(ch['ContinuousValues']) samplerate = ch['Header']['SamplingRate'] if 'digin' == ch['Header']['Name']: trigger_ch = i if samplerate != cfg.amp_info.samplerate: warnings.warn('Samplerate in config file does not equal to data file record, recorded value is %d' % samplerate) assert trigger_ch is not None timestamp = np.round(data['Variables'][trigger_ch]['Timestamps'] * samplerate).astype(np.int32).tolist() con_data = np.array(con_data) return con_data, ch_names, timestamp def _load_cerebus(data_dir): # search data_dir nsx_files = glob.glob(os.path.join(data_dir, '*.ns*')) nev_files = glob.glob(os.path.join(data_dir, '*.nev')) assert len(nsx_files) == len(nev_files) == 1 # loading f_data = NsxFile(nsx_files[0]) f_evt = NevFile(nev_files[0]) data = f_data.getdata() evt = f_evt.getdata() f_data.close() f_evt.close() # some basic information samplerate = data['samp_per_s'] if cfg.amp_info.samplerate != samplerate: warnings.warn('Samplerate in config file does not equal to data file record') cfg.amp_info.samplerate = samplerate timestampresolution = f_evt.basic_header['TimeStampResolution'] ch_names = [] for info in f_data.extended_headers: ch_names.append(info['ElectrodeLabel']) event = evt['dig_events']['TimeStamps'][0] event = list(map(lambda x: int(x / timestampresolution * cfg.amp_info.samplerate), event)) return data['data'], ch_names, event class Dataset: """ for loading data and event order. """ data_format = { 'nex': _load_nex, 'ns3': _load_cerebus, 'nev': _load_cerebus, 'edf': _load_usbamp, 'bdf': _load_neuracle } def __init__(self, subject, date=None, loaddata=True): self.subject = subject self._subj_path = os.path.dirname(__file__) + '/../data/' + subject if date is None: self._date = find_nearest_time(self._subj_path) else: if isinstance(date, datetime): # convert datetime to str self._date = date.strftime("%Y-%m-%d-%H-%M-%S") else: self._date = date print(self._date) self.root_dir = os.path.join(self._subj_path, self._date) # self.montage = OrderedSet(cfg.subj_info.montage) self.montage = deepcopy(cfg.subj_info.montage) # load stim order self.events = self.load_event() if loaddata: self.load_all() else: self.data, self.ch_names, self.timestamp, self.montage_indices, self.events_backup = [None] * 5 def load_all(self): # load data and timestamps dataarray, ch_names, timestamp = self._load_data() timestamp = Dataset.ts_check(timestamp) self.data = dataarray # list to set self.ch_names = ch_names self.timestamp = timestamp self.montage_indices = self.get_channel_indices(self.montage, self.ch_names) self.events_backup = self.events.copy() if cfg.exp_config.bidir: assert 2 * len(timestamp) == self.events.size, print('Dual-directional: ', len(timestamp), self.events.size) self.events = self.events[:, ::2] else: assert len(timestamp) == self.events.size, print('Unidirectional: ', len(timestamp), self.events.size) def _load_data(self): """ Read data according to file format :return: dataext: str, data file name """ walk_path = self.root_dir loader = None for f in os.listdir(walk_path): _ext = f.split('.')[-1] try: loader = Dataset.data_format[_ext] break except KeyError: pass if loader is None: raise FileNotFoundError('No matching data format found') return loader(walk_path) def load_event(self): walk_path = self.root_dir file = glob.glob(os.path.join(walk_path, self.subject) + '*') assert len(file) == 1 file = file[0] if file.endswith('.mat'): raw = sio.loadmat(file) order = raw['stim_order'] order -= 1 return order.reshape((-1, 12)) else: with open(file) as f: stim_order = [[int(x) for x in line.split()] for line in f if len(line) > 1] return np.array(stim_order) @staticmethod def get_channel_indices(target_channels, channels_in_data): """ Get corresponding index number for channels in target channels :param target_channels: list, target channel names :param channels_in_data: list, all channel names in data source. :return: """ indices = [] # build a dictionary for indexing channel_book = {name: i for i, name in enumerate(channels_in_data)} for ch in target_channels: try: indices.append(channel_book[ch]) except ValueError as err: print(err) return indices @staticmethod def ts_check(ts): # check time stamp intervals. # In our experience, sometimes an accidental wrong trigger may appear at the beginning during recording. fs = cfg.amp_info.samplerate while len(ts) % 12 and (not (fs * 0.1 <= ts[1] - ts[0] <= fs * 0.3)): del ts[0] return ts
#!/usr/bin/python # # bitehist.py Block I/O size histogram. # For Linux, uses BCC, eBPF. See .c file. # # USAGE: bitesize # # Ctrl-C will print the partially gathered histogram then exit. # # Copyright (c) 2016 Allan McAleavy # Licensed under the Apache License, Version 2.0 (the "License") # # 05-Feb-2016 Allan McAleavy ran pep8 against file from bcc import BPF from time import sleep bpf_text = """ #include <uapi/linux/ptrace.h> #include <linux/blkdev.h> struct proc_key_t { char name[TASK_COMM_LEN]; u64 slot; }; struct val_t { char name[TASK_COMM_LEN]; }; BPF_HISTOGRAM(dist, struct proc_key_t); BPF_HASH(commbyreq, struct request *, struct val_t); int trace_pid_start(struct pt_regs *ctx, struct request *req) { struct val_t val = {}; if (bpf_get_current_comm(&val.name, sizeof(val.name)) == 0) { commbyreq.update(&req, &val); } return 0; } int do_count(struct pt_regs *ctx, struct request *req) { struct val_t *valp; valp = commbyreq.lookup(&req); if (valp == 0) { return 0; } if (req->__data_len > 0) { struct proc_key_t key = {.slot = bpf_log2l(req->__data_len / 1024)}; bpf_probe_read(&key.name, sizeof(key.name),valp->name); dist.increment(key); } return 0; } """ # load BPF program b = BPF(text=bpf_text) b.attach_kprobe(event="blk_account_io_start", fn_name="trace_pid_start") b.attach_kprobe(event="blk_account_io_completion", fn_name="do_count") print("Tracing... Hit Ctrl-C to end.") # trace until Ctrl-C dist = b.get_table("dist") try: sleep(99999999) except KeyboardInterrupt: dist.print_log2_hist("Kbytes", "Process Name", section_print_fn=bytes.decode)
import torch.nn as nn class LSTMClassifier(nn.Module): """ This is the simple RNN model we will be using to perform Sentiment Analysis. """ def __init__(self, embedding_dim, hidden_dim, vocab_size): """ Initialize the model by settingg up the various layers. """ super(LSTMClassifier, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=0) self.lstmA = nn.LSTM(embedding_dim, hidden_dim) self.lstmB = nn.LSTM(hidden_dim, hidden_dim) self.dense = nn.Linear(in_features=hidden_dim, out_features=1) self.sig = nn.Sigmoid() self.word_dict = None def forward(self, x): """ Perform a forward pass of our model on some input. """ x = x.t() lengths = x[0,:] reviews = x[1:,:] embeds = self.embedding(reviews) lstm_out1, _ = self.lstmA(embeds) lstm_out, _ = self.lstmB(lstm_out1) out = self.dense(lstm_out) out = out[lengths - 1, range(len(lengths))] return self.sig(out.squeeze())
import KratosMultiphysics import KratosMultiphysics.RomApplication as romapp import KratosMultiphysics.StructuralMechanicsApplication from KratosMultiphysics.RomApplication.empirical_cubature_method import EmpiricalCubatureMethod from KratosMultiphysics.RomApplication import python_solvers_wrapper_rom as solver_wrapper from KratosMultiphysics.StructuralMechanicsApplication.structural_mechanics_analysis import StructuralMechanicsAnalysis import json import numpy as np class StructuralMechanicsAnalysisROM(StructuralMechanicsAnalysis): def __init__(self,model,project_parameters, hyper_reduction_element_selector = None): super().__init__(model,project_parameters) if hyper_reduction_element_selector != None : if hyper_reduction_element_selector == "EmpiricalCubature": self.hyper_reduction_element_selector = EmpiricalCubatureMethod() self.time_step_residual_matrix_container = [] else: err_msg = "The requested element selection method \"" + hyper_reduction_element_selector + "\" is not in the rom application\n" err_msg += "Available options are: \"EmpiricalCubature\"" raise Exception(err_msg) else: self.hyper_reduction_element_selector = None #### Internal functions #### def _CreateSolver(self): """ Create the Solver (and create and import the ModelPart if it is not alread in the model) """ ## Solver construction with open('RomParameters.json') as rom_parameters: rom_settings = KratosMultiphysics.Parameters(rom_parameters.read()) self.project_parameters["solver_settings"].AddValue("rom_settings", rom_settings["rom_settings"]) return solver_wrapper.CreateSolverByParameters(self.model, self.project_parameters["solver_settings"],self.project_parameters["problem_data"]["parallel_type"].GetString()) def _GetSimulationName(self): return "::[ROM Simulation]:: " def ModifyAfterSolverInitialize(self): """Here is where the ROM_BASIS is imposed to each node""" super().ModifyAfterSolverInitialize() computing_model_part = self._solver.GetComputingModelPart() with open('RomParameters.json') as f: data = json.load(f) nodal_dofs = len(data["rom_settings"]["nodal_unknowns"]) nodal_modes = data["nodal_modes"] counter = 0 rom_dofs= self.project_parameters["solver_settings"]["rom_settings"]["number_of_rom_dofs"].GetInt() for node in computing_model_part.Nodes: aux = KratosMultiphysics.Matrix(nodal_dofs, rom_dofs) for j in range(nodal_dofs): Counter=str(node.Id) for i in range(rom_dofs): aux[j,i] = nodal_modes[Counter][j][i] node.SetValue(romapp.ROM_BASIS, aux ) # ROM basis counter+=1 if self.hyper_reduction_element_selector != None: if self.hyper_reduction_element_selector.Name == "EmpiricalCubature": self.ResidualUtilityObject = romapp.RomResidualsUtility(self._GetSolver().GetComputingModelPart(), self.project_parameters["solver_settings"]["rom_settings"], self._GetSolver().get_solution_scheme()) def FinalizeSolutionStep(self): if self.hyper_reduction_element_selector != None: if self.hyper_reduction_element_selector.Name == "EmpiricalCubature": print('\n\n\n\nGenerating matrix of residuals') ResMat = self.ResidualUtilityObject.GetResiduals() NP_ResMat = np.array(ResMat, copy=False) self.time_step_residual_matrix_container.append(NP_ResMat) super().FinalizeSolutionStep() def Finalize(self): super().Finalize() if self.hyper_reduction_element_selector != None: if self.hyper_reduction_element_selector.Name == "EmpiricalCubature": OriginalNumberOfElements = self._GetSolver().GetComputingModelPart().NumberOfElements() ModelPartName = self._GetSolver().settings["model_import_settings"]["input_filename"].GetString() self. hyper_reduction_element_selector.SetUp(self.time_step_residual_matrix_container, OriginalNumberOfElements, ModelPartName) self.hyper_reduction_element_selector.Run()
# -*- coding: utf-8 -*- """ JoystickButton is a button with x/y values. When the button is depressed and the mouse dragged, the x/y values change to follow the mouse. When the mouse button is released, the x/y values change to 0,0 (rather like letting go of the joystick). """ import initExample ## Add path to library (just for examples; you do not need this) from pyqtgraph.Qt import QtGui, QtCore import pyqtgraph as pg app = QtGui.QApplication([]) mw = QtGui.QMainWindow() mw.resize(300,50) mw.setWindowTitle('pyqtgraph example: JoystickButton') cw = QtGui.QWidget() mw.setCentralWidget(cw) layout = QtGui.QGridLayout() cw.setLayout(layout) l1 = pg.ValueLabel(siPrefix=True, suffix='m') l2 = pg.ValueLabel(siPrefix=True, suffix='m') jb = pg.JoystickButton() jb.setFixedWidth(30) jb.setFixedHeight(30) layout.addWidget(l1, 0, 0) layout.addWidget(l2, 0, 1) layout.addWidget(jb, 0, 2) x = 0 y = 0 def update(): global x, y, l1, l2, jb dx, dy = jb.getState() x += dx * 1e-3 y += dy * 1e-3 l1.setValue(x) l2.setValue(y) timer = QtCore.QTimer() timer.timeout.connect(update) timer.start(30) #show() moved to end of file to get around this bug: # https://bugreports.qt-project.org/browse/QTBUG-39019 mw.show() ## Start Qt event loop unless running in interactive mode or using pyside. if __name__ == '__main__': import sys if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'): QtGui.QApplication.instance().exec_()