text
stringlengths
2
999k
# """ Texar defined exceptions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division __all__ = [ "TexarError" ] class TexarError(Exception): """ Texar error. """ pass
__author__ = 'patras' from domain_exploreEnv import * from timer import DURATION from state import state, rv DURATION.TIME = { 'survey': 5, 'monitor': 5, 'screen': 5, 'sample': 5, 'process': 5, 'fly': 3, 'deposit': 1, 'transferData': 1, 'take': 2, 'put': 2, 'move': 10, 'charge': 5, 'negotiate': 5, 'handleAlien': 5, } DURATION.COUNTER = { 'survey': 5, 'monitor': 5, 'screen': 5, 'sample': 5, 'process': 5, 'fly': 3, 'deposit': 1, 'transferData': 1, 'take': 2, 'put': 2, 'move': 10, 'charge': 5, 'negotiate': 5, 'handleAlien': 5, } rv.TYPE = {'e1': 'survey', 'e2': 'monitor', 'e3': 'screen', 'e4': 'sample', 'e5':'process'} rv.EQUIPMENT = {'survey': 'e1', 'monitor': 'e2', 'screen': 'e3', 'sample': 'e4', 'process': 'e5'} rv.EQUIPMENTTYPE = {'e1': 'survey', 'e2': 'monitor', 'e3': 'screen', 'e4': 'sample', 'e5':'process'} rv.LOCATIONS = ['base', 'z1', 'z2', 'z3', 'z4'] rv.EDGES = {'base': {'z1': 20, 'z2': 50, 'z3': 20, 'z4': 50}, 'z1': {'base': 20, 'z2': 30, 'z4': 50}, 'z2': {'base': 50, 'z1': 30, 'z3': 30}, 'z3': {'base': 20, 'z2': 30, 'z4': 30}, 'z4': {'base': 50, 'z3': 30, 'z1': 50}} def ResetState(): state.loc = {'r1': 'base', 'r2': 'base', 'UAV': 'base'} state.charge = { 'UAV': 80, 'r1': 50, 'r2': 50} state.data = { 'UAV': 1, 'r1': 3, 'r2': 1} state.pos = {'c1': 'base', 'e1': 'r2', 'e2': 'base', 'e3': 'base', 'e4': 'base', 'e5': 'base', 'o1': 'UAV'} state.load = {'r1': NIL, 'r2': 'e1', 'UAV': 'o1'} state.storm = {'active': False} tasks = { 3: [['doActivities', 'UAV', [['survey', 'z3'], ['survey', 'z4'], ['survey', 'base']]]], 5: [['handleEmergency', 'r2', 'z4']], } eventsEnv = { 5: [alienSpotted, ['z2']] }
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from .services.managed_identities_service import ManagedIdentitiesServiceClient from .services.managed_identities_service import ManagedIdentitiesServiceAsyncClient from .types.managed_identities_service import AttachTrustRequest from .types.managed_identities_service import CreateMicrosoftAdDomainRequest from .types.managed_identities_service import DeleteDomainRequest from .types.managed_identities_service import DetachTrustRequest from .types.managed_identities_service import GetDomainRequest from .types.managed_identities_service import ListDomainsRequest from .types.managed_identities_service import ListDomainsResponse from .types.managed_identities_service import OpMetadata from .types.managed_identities_service import ReconfigureTrustRequest from .types.managed_identities_service import ResetAdminPasswordRequest from .types.managed_identities_service import ResetAdminPasswordResponse from .types.managed_identities_service import UpdateDomainRequest from .types.managed_identities_service import ValidateTrustRequest from .types.resource import Domain from .types.resource import Trust __all__ = ( 'ManagedIdentitiesServiceAsyncClient', 'AttachTrustRequest', 'CreateMicrosoftAdDomainRequest', 'DeleteDomainRequest', 'DetachTrustRequest', 'Domain', 'GetDomainRequest', 'ListDomainsRequest', 'ListDomainsResponse', 'ManagedIdentitiesServiceClient', 'OpMetadata', 'ReconfigureTrustRequest', 'ResetAdminPasswordRequest', 'ResetAdminPasswordResponse', 'Trust', 'UpdateDomainRequest', 'ValidateTrustRequest', )
import os from collections import OrderedDict from typing import Tuple, List, Callable from fs_s3fs import S3FS import numpy as np import pandas as pd import torch from torch.utils.data import Dataset from skimage.exposure import match_histograms from datetime import datetime from eolearn.core import EOPatch def augment( lr: np.ndarray, hr: np.ndarray, flip: bool = True, rotate: bool = True, distribution_shift: bool = False, distribution_scale: bool = False, permute_timestamps: bool = True, max_distribution_shift: float = 0.25, max_distribution_scale_diff: float = 0.25, proba_of_original: float = 0.67 ) -> Tuple[np.ndarray, np.ndarray]: """ Performs a series of image augmentations with specified probability. :param lr: array of low-resolution images, shape is `CxTxHxW` :param hr: array of high-resolution images, shape is `CxHxW` :param flip: whether to randomly flip height or width of arrays :param rotate: whether to randomly rotate the arrays :param distribution_shift: add an offset to the distribution :param distribution_scale: scale the channels distribution :param permute_timestamps: permute timestamps (not desired for HRN) :param max_distribution_shift: set max distribution shift used in distribution shift augmentation :param max_distribution_scale_diff: set max distribution scale used in distribution scale augmentation :param proba_of_original: set probability of not modifying original patch, e.g. 1 means no augmetnations :returns: augmented lr and hr arrays """ # Base probability which, after `n_aug_conditions`, reduces to `proba_of_original` n_aug_conditions = sum(1. for aug_op in (flip, rotate, distribution_shift, distribution_scale, permute_timestamps) if aug_op) rng_threshold = proba_of_original ** (1. / n_aug_conditions) if flip and np.random.random() > rng_threshold: flip_axis = np.random.choice([-2, -1]) lr = np.flip(lr, axis=flip_axis) hr = np.flip(hr, axis=flip_axis) if rotate and np.random.random() > rng_threshold: k = np.random.choice(np.arange(-2, 3)) lr = np.rot90(lr, k=k, axes=(-2, -1)) hr = np.rot90(hr, k=k, axes=(-2, -1)) if distribution_shift and np.random.random() > rng_threshold: d_shift = (np.random.random() - 0.5) * max_distribution_shift lr = lr + d_shift hr = hr + d_shift if distribution_scale and np.random.random() > rng_threshold: d_scale = 1. + (np.random.random() - 0.5) * max_distribution_scale_diff lr_mean = np.mean(lr, axis=(-2, -1))[..., None, None] hr_mean = np.mean(hr, axis=(-2, -1))[..., None, None] lr = (lr - lr_mean) * d_scale + lr_mean hr = (hr - hr_mean) * d_scale + hr_mean if permute_timestamps and np.random.random() > rng_threshold: # expects lr in `CxTxHxW` shape indices = np.random.permutation(lr.shape[1]) lr = lr[:, indices] return lr, hr def pad_to_k(feat: np.ndarray, k: int = 16, pad_to_front: bool = True) -> np.ndarray: """ Create an array with first dimension equal to k, filling with 0s in front or at back """ n_pad = k - len(feat) if n_pad < 0: raise ValueError(f'Can not pad when length of features: {len(feat)} is longer than k: {k}') (_, h, w, c) = feat.shape if pad_to_front: feat = np.concatenate((np.zeros(shape=(n_pad, h, w, c)), feat)) else: feat = np.concatenate((feat, np.zeros(shape=(n_pad, h, w, c)))) return feat class ImageSet(OrderedDict): """ An OrderedDict derived class to group the assets of an imageset, with a pretty-print functionality. """ def __init__(self, *args, **kwargs): super(ImageSet, self).__init__(*args, **kwargs) def __repr__(self): dict_info = f"{'name':>10} : {self['name']}" for name, v in self.items(): if hasattr(v, 'shape'): dict_info += f"\n{name:>10} : {v.shape} {v.__class__.__name__} ({v.dtype})" else: dict_info += f"\n{name:>10} : {v.__class__.__name__} ({v})" return dict_info def read_imageset(imset_file: str, filesystem: S3FS = None, normalize: bool = True, country_norm_df: pd.DataFrame = None, norm_deimos_npz: np.lib.npyio.NpzFile = None, norm_s2_npz: np.lib.npyio.NpzFile = None, n_views: int = 16, padding: str = 'zeros', histogram_matching: bool = False) -> ImageSet: """ Retrieves all assets from the given directory. :param imset_file: name of npz file with sample imageset :param filesystem: S3 filesystem to read files directly from bucket. Default reads from local disk :param normalize: whether to normalize data or not :param country_norm_df: S2 median/std normalization factors stored per country :param norm_deimos_npz: 1st and 99th percentile normalization factors for DEIMOS :param norm_s2_npz: 1st and 99th percentile normalization factors for S2 :param n_views: number of time frames to consider in lrs sequence. If n_views is smaller than the available time frames, `n_views` timeframes from the lrs sequence are taken in reverted order, i.e. last is first :param padding: strategy used to fill lrs sequence if n_views is greater than available timestamps. Supported options are `zeros`, where 0 frames are prepended to features, or `repeat` where random repeats of timeframes are taken :param histogram_matching: whether to match the histogram between the HR and the corresponding LR image """ assert padding in ['zeros', 'repeat'] # Read asset names npz = np.load(filesystem.openbin(imset_file), allow_pickle=True) if filesystem else np.load(imset_file, allow_pickle=True) features = npz['features'] hr = npz['labels'] if normalize: country = npz['countries'] country_stats = country_norm_df[country_norm_df.country == str(country)] norm_median = country_stats[['median_0', 'median_1', 'median_2', 'median_3']].values norm_std = country_stats[['std_0', 'std_1', 'std_2', 'std_3']].values features = (features - norm_median) / norm_std deimos_p1 = norm_deimos_npz['p1'] deimos_p99 = norm_deimos_npz['p99'] s2_p1 = norm_s2_npz['p1'] s2_p99 = norm_s2_npz['p99'] hr = (hr - deimos_p1) / (deimos_p99 - deimos_p1) features = (features - s2_p1) / (s2_p99 - s2_p1) alphas = np.ones(n_views) if histogram_matching: hr = match_histograms(hr, features[-1], multichannel=True) n_feature_timestamps = len(features) if n_feature_timestamps < n_views: if padding == 'zeros': features = pad_to_k(features, n_views, pad_to_front=False) alphas[n_feature_timestamps:] = 0 elif padding == 'repeat': n_pad = n_views - n_feature_timestamps padded = features[-1:].repeat(n_pad, axis=0) features = np.concatenate((features, padded)) else: features = features[-n_views:, ...] # Tensor is `CxTxHxW` features = np.moveaxis(features, -1, 0) hr = np.moveaxis(hr, 2, 0) imageset = ImageSet(name=os.path.basename(imset_file), timestamp_deimos=str(npz['timetamps_deimos'].item()), lr=features, hr=hr, alphas=alphas) return imageset class ImagesetDataset(Dataset): """ Derived Dataset class for loading many imagesets from a list of directories. :param imset_dir: name of directory containing files :param imset_npz_files: list of filenames that constitute the dataset :param time_first: whether returned lrs sequence should have time dimension first or channels. Use `time_first=True` if you are training HRN model (`BxTxCxHxW`), `time_first=False` if you are training RAMS (`BxTxCxHxW`) :param filesystem: S3 filesystem to read files directly from bucket. Default reads from local disk :param normalize: whether to normalize data or not :param country_norm_df: S2 median/std normalization factors stored per country :param norm_deimos_npz: 1st and 99th percentile normalization factors for DEIMOS :param norm_s2_npz: 1st and 99th percentile normalization factors for S2 :param channels_feats: which channels (i.e. indices) are extracted from lrs sequence :param channels_labels: which channels (i.e. indices) are extracted from hr image :param n_views: number of time frames to consider in lrs sequence. If n_views is smaller than the available time frames, `n_views` timeframes from the lrs sequence are taken in reverted order, i.e. last is first :param padding: strategy used to fill lrs sequence if n_views is greater than available timestamps. Supported options are `zeros`, where 0 frames are appended to features, or `repeat` where random repeats of timeframes are taken :param transform: function executed on lr and hr arrays as augmentation :param histogram_matching: whether to match the histogram between the HR and the corresponding LR image """ def __init__( self, imset_dir: str, imset_npz_files: list, time_first: bool, filesystem: object = None, normalize: bool = True, country_norm_df: object = None, norm_deimos_npz: np.ndarray = None, norm_s2_npz: np.ndarray = None, channels_feats: List[int] = [0, 1, 2, 3], channels_labels: List[int] = [0, 1, 2, 3], n_views: int = 16, padding: str = 'zeros', transform: Callable = None, histogram_matching: bool = False ): super().__init__() self.imset_dir = imset_dir self.filesystem = filesystem self.imset_npz_files = imset_npz_files self.time_first = time_first self.normalize = normalize self.country_norm_df = country_norm_df self.norm_deimos_npz = norm_deimos_npz self.norm_s2_npz = norm_s2_npz self.channels_feats = channels_feats self.channels_labels = channels_labels self.n_views = n_views self.padding = padding self.transform = transform self.histogram_matching = histogram_matching def __len__(self): return len(self.imset_npz_files) def __getitem__(self, index: int) -> ImageSet: """ Returns an ImageSet dict of all assets in the directory of the given index.""" if isinstance(index, int): imset_file = os.path.join(self.imset_dir, self.imset_npz_files[index]) else: raise KeyError('Index must be of type `int`.') imset = read_imageset( imset_file=imset_file, filesystem=self.filesystem, normalize=self.normalize, country_norm_df=self.country_norm_df, norm_deimos_npz=self.norm_deimos_npz, norm_s2_npz=self.norm_s2_npz, n_views=self.n_views, padding=self.padding, histogram_matching=self.histogram_matching ) lr = imset['lr'][self.channels_feats] hr = imset['hr'][self.channels_labels] if self.transform is not None: lr, hr = self.transform(lr, hr) if self.time_first: lr = np.swapaxes(lr, 0, 1) imset['lr'] = torch.from_numpy(lr.copy()) imset['hr'] = torch.from_numpy(hr.copy()) imset['alphas'] = torch.from_numpy(imset['alphas']) return imset def filter_cloudy_s2(eop, max_cc): idxs = [] for i, _ in enumerate(eop.timestamp): if (eop.mask['CLM'][i, ...].mean() <= max_cc) and (eop.mask['IS_DATA'].mean() == 1): idxs.append(i) eop.data['BANDS'] = eop.data['BANDS'][idxs, ...] eop.data['CLP'] = eop.data['CLP'][idxs, ...] eop.mask['CLM'] = eop.mask['CLM'][idxs, ...] eop.mask['IS_DATA'] = eop.mask['IS_DATA'][idxs, ...] eop.timestamp = list(np.array(eop.timestamp)[idxs]) return eop def timestamps_within_date(timestamps, start_date, end_date): timestamps = [ts.replace(tzinfo=None) for ts in timestamps] # Remove TZINfo that is present in batch return [i for i, ts in enumerate(timestamps) if ts >= start_date and ts < end_date] def read_imageset_eopatch(imset_file: str, start_date: datetime, end_date: datetime, country: str, filesystem: S3FS = None, normalize: bool = True, country_norm_df: pd.DataFrame = None, norm_s2_npz: np.lib.npyio.NpzFile = None, n_views: int = 16, padding: str = 'zeros', histogram_matching: bool = False) -> ImageSet: """ Retrieves all assets from the given directory. :param imset_file: name of npz file with sample imageset :param filesystem: S3 filesystem to read files directly from bucket. Default reads from local disk :param start_date: specifies the start of the temporal range of the stack of images used for prediction :param end_date: specifies the end of the temporal range of the stack of images used for prediction :param country: specifies the name of the country so it can be matched with the country_norm_df :param normalize: whether to normalize data or not :param country_norm_df: S2 median/std normalization factors stored per country :param norm_s2_npz: 1st and 99th percentile normalization factors for S2 :param n_views: number of time frames to consider in lrs sequence. If n_views is smaller than the available time frames, `n_views` timeframes from the lrs sequence are taken in reverted order, i.e. last is first :param padding: strategy used to fill lrs sequence if n_views is greater than available timestamps. Supported options are `zeros`, where 0 frames are prepended to features, or `repeat` where random repeats of timeframes are taken """ assert padding in ['zeros', 'repeat'] eopatch = EOPatch.load(imset_file, filesystem=filesystem, lazy_loading=True) noncloudy = filter_cloudy_s2(eopatch, max_cc=0.1) ts_idxs = timestamps_within_date(noncloudy.timestamp, start_date, end_date) features = noncloudy.data['BANDS'][ts_idxs, ...] / 10000 filtered_ts = [eopatch.timestamp[tsi] for tsi in ts_idxs] if normalize: country_stats = country_norm_df[country_norm_df.country == str(country)] norm_median = country_stats[['median_0', 'median_1', 'median_2', 'median_3']].values norm_std = country_stats[['std_0', 'std_1', 'std_2', 'std_3']].values features = (features - norm_median) / norm_std s2_p1 = norm_s2_npz['p1'] s2_p99 = norm_s2_npz['p99'] features = (features - s2_p1) / (s2_p99 - s2_p1) alphas = np.ones(n_views) if histogram_matching: hr = match_histograms(hr, features[-1], multichannel=True) n_feature_timestamps = len(features) if n_feature_timestamps < n_views: if padding == 'zeros': features = pad_to_k(features, n_views, pad_to_front=False) alphas[n_feature_timestamps:] = 0 elif padding == 'repeat': n_pad = n_views - n_feature_timestamps padded = features[-1:].repeat(n_pad, axis=0) features = np.concatenate((features, padded)) else: features = features[-n_views:, ...] # Tensor is `CxTxHxW` features = np.moveaxis(features, -1, 0) imageset = ImageSet(name=os.path.basename(imset_file), lr=features, alphas=alphas, ts=filtered_ts[::-1]) return imageset class EopatchPredictionDataset(Dataset): """ Derived Dataset class for loading many imagesets from a list of directories. :param imset_dir: name of directory containing files :param imset_npz_files: list of filenames that constitute the dataset :param time_first: whether returned lrs sequence should have time dimension first or channels. Use `time_first=True` if you are training HRN model (`BxTxCxHxW`), `time_first=False` if you are training RAMS (`BxTxCxHxW`) :param filesystem: S3 filesystem to read files directly from bucket. Default reads from local disk :param start_date: specifies the start of the temporal range of the stack of images used for prediction :param end_date: specifies the end of the temporal range of the stack of images used for prediction :param country: specifies the name of the country so it can be matched with the country_norm_df :param normalize: whether to normalize data or not :param country_norm_df: S2 median/std normalization factors stored per country :param norm_deimos_npz: 1st and 99th percentile normalization factors for DEIMOS :param norm_s2_npz: 1st and 99th percentile normalization factors for S2 :param channels_feats: which channels (i.e. indices) are extracted from lrs sequence :param channels_labels: which channels (i.e. indices) are extracted from hr image :param n_views: number of time frames to consider in lrs sequence. If n_views is smaller than the available time frames, `n_views` timeframes from the lrs sequence are taken in reverted order, i.e. last is first :param padding: strategy used to fill lrs sequence if n_views is greater than available timestamps. Supported options are `zeros`, where 0 frames are appended to features, or `repeat` where random repeats of timeframes are taken :param transform: function executed on lr and hr arrays as augmentation """ def __init__( self, imset_dir: str, imset_npz_files: list, time_first: bool, start_date: datetime, end_date: datetime, country: str, filesystem: object = None, normalize: bool = True, country_norm_df: object = None, norm_deimos_npz: np.ndarray = None, norm_s2_npz: np.ndarray = None, channels_feats: List[int] = [0, 1, 2, 3], n_views: int = 16, padding: str = 'zeros', histogram_matching: bool = False ): super().__init__() self.imset_dir = imset_dir self.filesystem = filesystem self.imset_npz_files = imset_npz_files self.time_first = time_first self.normalize = normalize self.country_norm_df = country_norm_df self.norm_deimos_npz = norm_deimos_npz self.norm_s2_npz = norm_s2_npz self.channels_feats = channels_feats self.n_views = n_views self.padding = padding self.start_date = start_date self.end_date = end_date self.histogram_matching = histogram_matching self.country = country def __len__(self): return len(self.imset_npz_files) def __getitem__(self, index: int) -> ImageSet: """ Returns an ImageSet dict of all assets in the directory of the given index.""" if isinstance(index, int): imset_file = os.path.join(self.imset_dir, self.imset_npz_files[index]) else: raise KeyError('Index must be of type `int`.') imset = read_imageset_eopatch( imset_file=imset_file, filesystem=self.filesystem, normalize=self.normalize, country_norm_df=self.country_norm_df, norm_deimos_npz=self.norm_deimos_npz, norm_s2_npz=self.norm_s2_npz, n_views=self.n_views, padding=self.padding, start_date=self.start_date, end_date=self.end_date, country=self.country, histogram_matching=self.histogram_matching, ) lr = imset['lr'][self.channels_feats] if self.time_first: lr = np.swapaxes(lr, 0, 1) imset['lr'] = torch.from_numpy(lr.copy()) imset['alphas'] = torch.from_numpy(imset['alphas']) return imset
from collections import defaultdict from itertools import product MULTITASK_PENALTY = 1 AUTHOR_PENALTY = 2 RELATION_COST = .05 DEFAULT_FLEXIBILITY = .1 OVERREQ_PENALTY = 0.5 def workload_diff(target, proposed): """ Helper for pitches_cost :param target: <role, load> :param proposed: <role, load> :return: float """ total = 0 for role in target: # flat penalty of -1 if no students are on a target role diff = target[role] - (proposed[role] if role in proposed else -1) # a negative diff means too much student were assigned on the role if diff < 0: # the penalty for going over requirements can be softened diff *= OVERREQ_PENALTY # the squared diff is added to the cost (so that greater discrepencies cost more) total += diff ** 2 return total def author_tasks(pitches, wishes): tasks = {} for pitch in pitches: author = pitches[pitch]["author"] for wpitch, role in wishes[author]: if wpitch == pitch: tasks[(wpitch, role)] = author return tasks class Cost: def __init__(self, pitches, wishes, relations=None, flexibility=DEFAULT_FLEXIBILITY): """ :param pitches: <pitch, <role, load>> :param wishes: <student, [(pitch, role)]> :param relations: <student, <student, cost>> :param flexibility: float in [0, 1] """ self.pitches = pitches self.wishes = wishes self.relations = relations if relations else {} self.flexibility = flexibility self.author_tasks = author_tasks(pitches, wishes) def __call__(self, solution): return ( (1 - self.flexibility) * self.pitches_cost(solution) + self.flexibility * (self.wishes_cost(solution) + RELATION_COST*self.relations_cost(solution)) ) def author_constraint(self, solution): """ cost of the authors not getting their roles on their pitch :param solution: [student, wish index] :return: float """ # <(pitch, role), author> tasks_solution = {task: None for task in self.author_tasks} for student, i in solution: pitch, role = self.wishes[student][i] if (pitch, role) in self.author_tasks: if student == self.author_tasks[(pitch, role)] or tasks_solution[(pitch, role)] is None: tasks_solution[(pitch, role)] = student author_cost = 0 for task, student in tasks_solution.items(): if student != self.author_tasks[task]: author_cost += 1 return author_cost def pitches_cost(self, solution): """ cost of the pitches workload not being respected :param solution: [student, wish index] :return: float """ tasks_per_students = defaultdict(int) for student, _ in solution: tasks_per_students[student] += 1 workloads = defaultdict(lambda: defaultdict(float)) for student, i in solution: pitch, role = self.wishes[student][i] workloads[pitch][role] += 1/tasks_per_students[student] # a penalty per additionnal task per student is added to avoid students multitasking too much return ( # cost of workload diff between requirements and solution sum( workload_diff(self.pitches[pitch] ["workload"], workloads[pitch]) for pitch in self.pitches if pitch in workloads ) # cost of multitasking + MULTITASK_PENALTY * \ sum(tasks-1 for tasks in tasks_per_students.values()) # cost of author not having their roles + AUTHOR_PENALTY*self.author_constraint(solution) ) def wishes_cost(self, solution): """ cost of the wishes not being respected :param solution: [student, wish index] :return: float """ return sum( ((i+1)/len(self.wishes[student]))**2 for student, i in solution ) def relations_cost(self, solution): """ cost of the relations between students :param solution: [student, wish index] :return: float """ groups = defaultdict(list) for student, i in solution: pitch, role = self.wishes[student][i] groups[pitch].append(student) total = 0 for group in groups.values(): for student, other in product(filter(self.relations.__contains__, group), group): if student != other: if other not in self.relations[student]: total += .5 elif self.relations[student][other] == -1: total += 1 return total def cost(pitches, wishes, solution, relations=None, flexibility=DEFAULT_FLEXIBILITY): return Cost(pitches, wishes, relations, flexibility)(solution)
# coding=utf-8 """Maximum trade profit problem dynamic programming solution Python implementation.""" def mx_profit(prices): n = len(prices) profit = [0] * n mxp = prices[n - 1] for i in range(n - 2, -1, -1): mxp = max(mxp, prices[i]) profit[i] = max(profit[i + 1], mxp - prices[i]) mnp = prices[0] for i in range(1, n): mnp = min(mnp, prices[i]) profit[i] = max(profit[i - 1], profit[i] + (prices[i] - mnp)) return profit[n - 1] if __name__ == "__main__": prices = [2, 30, 15, 10, 8, 25, 80] print(mx_profit(prices))
import os from datetime import datetime import pytest from .helpers import tasks from .helpers import assertions from .helpers.env import E2EEnv DIR = os.path.dirname(__file__) TAP_MARIADB_ID = 'mariadb_to_rs' TAP_MARIADB_BUFFERED_STREAM_ID = 'mariadb_to_rs_buffered_stream' TAP_POSTGRES_ID = 'postgres_to_rs' TAP_S3_CSV_ID = 's3_csv_to_rs' TARGET_ID = 'redshift' # pylint: disable=attribute-defined-outside-init class TestTargetRedshift: """ End to end tests for Target Redshift """ def setup_method(self): """Initialise test project by generating YAML files from templates for all the configured connectors""" self.project_dir = os.path.join(DIR, 'test-project') # Init query runner methods self.e2e = E2EEnv(self.project_dir) self.run_query_tap_mysql = self.e2e.run_query_tap_mysql self.run_query_tap_postgres = self.e2e.run_query_tap_postgres self.run_query_target_redshift = self.e2e.run_query_target_redshift def teardown_method(self): """Delete test directories and database objects""" @pytest.mark.dependency(name='import_config') def test_import_project(self): """Import the YAML project with taps and target and do discovery mode to write the JSON files for singer connectors """ # Skip every target_postgres related test if env vars not provided if not self.e2e.env['TARGET_REDSHIFT']['is_configured']: pytest.skip('Target Redshift environment variables are not provided') # Setup and clean source and target databases self.e2e.setup_tap_mysql() self.e2e.setup_tap_postgres() if self.e2e.env['TAP_S3_CSV']['is_configured']: self.e2e.setup_tap_s3_csv() self.e2e.setup_target_redshift() # Import project [return_code, stdout, stderr] = tasks.run_command(f'pipelinewise import_config --dir {self.project_dir}') assertions.assert_command_success(return_code, stdout, stderr) @pytest.mark.dependency(depends=['import_config']) def test_replicate_mariadb_to_rs(self, tap_mariadb_id=TAP_MARIADB_ID): """Replicate data from Postgres to Redshift DWH""" # 1. Run tap first time - both fastsync and a singer should be triggered assertions.assert_run_tap_success(tap_mariadb_id, TARGET_ID, ['fastsync', 'singer']) assertions.assert_row_counts_equal(self.run_query_tap_mysql, self.run_query_target_redshift) #assertions.assert_all_columns_exist(self.run_query_tap_mysql, self.run_query_target_redshift, # mysql_to_redshift.tap_type_to_target_type) # 2. Make changes in MariaDB source database # LOG_BASED self.run_query_tap_mysql('UPDATE weight_unit SET isactive = 0 WHERE weight_unit_id IN (2, 3, 4)') self.run_query_tap_mysql('UPDATE all_datatypes SET c_point = NULL') # INCREMENTAL self.run_query_tap_mysql('INSERT INTO address(isactive, street_number, date_created, date_updated,' ' supplier_supplier_id, zip_code_zip_code_id)' 'VALUES (1, 1234, NOW(), NOW(), 0, 1234)') self.run_query_tap_mysql('UPDATE address SET street_number = 9999, date_updated = NOW()' ' WHERE address_id = 1') # FULL_TABLE self.run_query_tap_mysql('DELETE FROM no_pk_table WHERE id > 10') # 3. Run tap second time - both fastsync and a singer should be triggered, there are some FULL_TABLE assertions.assert_run_tap_success(tap_mariadb_id, TARGET_ID, ['fastsync', 'singer']) assertions.assert_row_counts_equal(self.run_query_tap_mysql, self.run_query_target_redshift) #assertions.assert_all_columns_exist(self.run_query_tap_mysql, self.run_query_target_redshift, # mysql_to_redshift.tap_type_to_target_type) @pytest.mark.dependency(depends=['import_config']) def test_resync_mariadb_to_rs(self, tap_mariadb_id=TAP_MARIADB_ID): """Resync tables from MariaDB to Redshift DWH""" assertions.assert_resync_tables_success(tap_mariadb_id, TARGET_ID) assertions.assert_row_counts_equal(self.run_query_tap_mysql, self.run_query_target_redshift) # assert_all_columns_exist currently not working on Redshift #assertions.assert_all_columns_exist(self.run_query_tap_mysql, self.run_query_target_redshift, # mysql_to_redshift.tap_type_to_target_type) # pylint: disable=invalid-name @pytest.mark.dependency(depends=['import_config']) def test_replicate_mariadb_to_pg_with_custom_buffer_size(self): """Replicate data from MariaDB to Redshift DWH with custom buffer size Same tests cases as test_replicate_mariadb_to_pg but using another tap with custom stream buffer size""" self.test_replicate_mariadb_to_rs(tap_mariadb_id=TAP_MARIADB_BUFFERED_STREAM_ID) @pytest.mark.dependency(depends=['import_config']) def test_replicate_pg_to_rs(self): """Replicate data from Postgres to Redshift DWH""" # 1. Run tap first time - both fastsync and a singer should be triggered assertions.assert_run_tap_success(TAP_POSTGRES_ID, TARGET_ID, ['fastsync', 'singer']) assertions.assert_row_counts_equal(self.run_query_tap_postgres, self.run_query_target_redshift) # assert_all_columns_exist currently not working on Redshift #assertions.assert_all_columns_exist(self.run_query_tap_postgres, self.run_query_target_redshift) assertions.assert_date_column_naive_in_target(self.run_query_target_redshift, 'updated_at', 'ppw_e2e_tap_postgres."table_with_space and uppercase"') # 2. Make changes in MariaDB source database # LOG_BASED self.run_query_tap_postgres('insert into public."table_with_space and UPPERCase" (cvarchar, updated_at) values ' "('M', '2020-01-01 08:53:56.8+10')," "('N', '2020-12-31 12:59:00.148+00')," "('O', null)," "('P', '2020-03-03 12:30:00');") # INCREMENTAL self.run_query_tap_postgres('INSERT INTO public.city (id, name, countrycode, district, population) ' "VALUES (4080, 'Bath', 'GBR', 'England', 88859)") self.run_query_tap_postgres('UPDATE public.edgydata SET ' "cjson = json '{\"data\": 1234}', " "cjsonb = jsonb '{\"data\": 2345}', " "cvarchar = 'Liewe Maatjies UPDATED' WHERE cid = 23") # FULL_TABLE self.run_query_tap_postgres("DELETE FROM public.country WHERE code = 'UMI'") # 3. Run tap second time - both fastsync and a singer should be triggered, there are some FULL_TABLE assertions.assert_run_tap_success(TAP_POSTGRES_ID, TARGET_ID, ['fastsync', 'singer']) assertions.assert_row_counts_equal(self.run_query_tap_postgres, self.run_query_target_redshift) # assert_all_columns_exist currently not working on Redshift #assertions.assert_all_columns_exist(self.run_query_tap_postgres, self.run_query_target_redshift) assertions.assert_date_column_naive_in_target(self.run_query_target_redshift, 'updated_at', 'ppw_e2e_tap_postgres."table_with_space and uppercase"') result = self.run_query_target_redshift( 'SELECT updated_at FROM ppw_e2e_tap_postgres."table_with_space and uppercase" where cvarchar=\'M\';')[0][0] assert result == datetime(2019, 12, 31, 22, 53, 56, 800000) @pytest.mark.dependency(depends=['import_config']) def test_replicate_s3_to_rs(self): """Replicate csv files from s3 to Redshift, check if return code is zero and success log file created""" # Skip tap_s3_csv related test if required env vars not provided if not self.e2e.env['TAP_S3_CSV']['is_configured']: pytest.skip('Tap S3 CSV environment variables are not provided') def assert_columns_exist(): """Helper inner function to test if every table and column exists in target snowflake""" assertions.assert_cols_in_table(self.run_query_target_redshift, 'ppw_e2e_tap_s3_csv', 'countries', ['city', 'country', 'currency', 'id', 'language']) assertions.assert_cols_in_table(self.run_query_target_redshift, 'ppw_e2e_tap_s3_csv', 'people', ['birth_date', 'email', 'first_name', 'gender', 'group', 'id', 'ip_address', 'is_pensioneer', 'last_name']) # 1. Run tap first time - both fastsync and a singer should be triggered assertions.assert_run_tap_success(TAP_S3_CSV_ID, TARGET_ID, ['fastsync', 'singer']) # 2. Run tap second time - both fastsync and a singer should be triggered assertions.assert_run_tap_success(TAP_S3_CSV_ID, TARGET_ID, ['fastsync', 'singer']) assert_columns_exist()
#! /usr/bin/env python # -*- coding: utf-8 -*- ''' Download SQL file of MySQL database by phpMyAdmin ''' import re import os import sys import base64 import urllib import urllib2 import traceback from cookielib import CookieJar, DefaultCookiePolicy from pprint import pprint __author__ = 'furyu (furyutei@gmail.com)' __version__ = '0.0.1e' __copyright__ = 'Copyright (c) 2014 furyu' __license__ = 'New BSD License' def prn(message, linefeed = True): #{ if isinstance(message, unicode): message = message.encode('utf-8', 'replace') if linefeed: print message else: print message, #} // end of def prn() def prn_error(message, linefeed = True): #{ if isinstance(message, unicode): message = message.encode('utf-8', 'replace') if linefeed: print >> sys.stderr, message else: print >> sys.stderr, message, #} // end of def prn_error() class LoadSqlDump(object): #{ #{ class variables DEFAULT_HEADER_DICT = { 'Accept-Charset': 'Shift_JIS,utf-8;q=0.7,*;q=0.7', 'Accept-Language': 'ja,en-us;q=0.7,en;q=0.3', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/31.0.1650.63 Safari/537.36', } DEFAULT_PMA_LOGIN_PARAM_DICT = dict( server = u'1', target = u'index.php', ) DEFAULT_PARAM_DICT = dict( server = u'1', export_type = u'server', export_method = u'quick', quick_or_custom = u'custom', output_format = u'sendit', filename_template = u'@SERVER@', remember_template = u'on', charset_of_file = u'utf-8', compression = u'none', # none, zip, gzip what = u'sql', codegen_structure_or_data = u'data', codegen_format = u'0', csv_separator = u'', csv_enclosed = u'"', csv_escaped = u'"', csv_terminated = u'AUTO', csv_null = u'NULL', csv_structure_or_data = u'data', excel_null = u'NULL', excel_edition = u'win', excel_structure_or_data = u'data', htmlword_structure_or_data = u'structure_and_data', htmlword_null = u'NULL', json_structure_or_data = u'data', latex_caption = u'something', latex_structure_or_data = u'structure_and_data', latex_structure_caption = u'テーブル @TABLE@ の構造', latex_structure_continued_caption = u'テーブル @TABLE@ の構造 (続き)', latex_structure_label = u'tab:@TABLE@-structure', latex_comments = u'something', latex_columns = u'something', latex_data_caption = u'テーブル @TABLE@ の内容', latex_data_continued_caption = u'テーブル @TABLE@ の内容 (続き)', latex_data_label = u'tab:@TABLE@-data', latex_null = u'\textit{NULL}', mediawiki_structure_or_data = u'data', ods_null = u'NULL', ods_structure_or_data = u'data', odt_structure_or_data = u'structure_and_data', odt_comments = u'something', odt_columns = u'something', odt_null = u'NULL', pdf_report_title = u'', pdf_structure_or_data = u'data', php_array_structure_or_data = u'data', sql_include_comments = u'something', sql_header_comment = u'', sql_compatibility = u'NONE', sql_structure_or_data = u'structure_and_data', sql_drop_table = u'something', # "DROP TABLE / VIEW / PROCEDURE / FUNCTION コマンドの追加" にチェック sql_procedure_function = u'something', sql_create_table_statements = u'something', sql_if_not_exists = u'something', sql_auto_increment = u'something', sql_backquotes = u'something', sql_type = u'INSERT', sql_insert_syntax = u'both', sql_max_query_size = u'50000', sql_hex_for_blob = u'something', sql_utc_time = u'something', texytext_structure_or_data = u'structure_and_data', texytext_null = u'NULL', yaml_structure_or_data = u'data', knjenc = u'', ) RE_TOKEN = re.compile(u"token\s*=[^\w]*(\w+)[^\w]") KB = 1024 MB = 1024*1024 BUFSIZE = 256*1024 CODEC_LIST = ('utf_8', 'euc_jp', 'cp932',) # see http://docs.python.org/2.7/library/codecs.html#standard-encodings RE_ESC_SEQ = re.compile('\x1b($B|$@|\(B|\(J| A)') PMA_CODEC = 'utf-8' #} // end of class variables def __init__(self, url_phpmyadmin_top, user=None, passwd=None, pma_username=None, pma_password=None, tgt_dir=None, server_number=1, quiet=False, param_dict=None): #{ ''' url_phpmyadmin_top: URL of phpMyAdmin's toppage user : user name for Basic Authentication passwd : password for Basic Authentication pma_username : user name for phpMyAdmin pma_password : password for phpMyAdmin tgt_dir : directory to save server_number : MySQL server number quiet : (True) quiet mode param_dict : additional parameter's dictionary to export ''' (src_codec, url_phpmyadmin_top) = self._str_decode(url_phpmyadmin_top) url_phpmyadmin_top = re.sub(u'/index\.php(\?.*)?$', ur'', url_phpmyadmin_top) if not re.search(u'/$', url_phpmyadmin_top): url_phpmyadmin_top += '/' self.url_phpmyadmin_top = url_phpmyadmin_top self.pma_username = pma_username self.pma_password = pma_password self.quiet = quiet self.last_url = '' try: self.server_number = unicode(int(server_number)) except: self.server_number = u'1' self.header_dict = self.DEFAULT_HEADER_DICT.copy() if user and passwd: self.header_dict['Authorization'] = 'Basic %s' % (base64.b64encode('%s:%s' % (user, passwd))) self.login_param_dict = self.DEFAULT_PMA_LOGIN_PARAM_DICT.copy() self.login_param_dict['server'] = self.server_number self.param_dict = self.DEFAULT_PARAM_DICT.copy() if isinstance(param_dict, dict): self.param_dict.update(param_dict) self.param_dict['server'] = self.server_number self.url_opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(CookieJar(policy=DefaultCookiePolicy(rfc2965=True, netscape=True)))) self.filename_codec = sys.getfilesystemencoding() if tgt_dir: (src_codec, tgt_dir) = self._str_decode(tgt_dir) else: tgt_dir = '.' tgt_dir_enc = tgt_dir.encode(self.filename_codec, 'ignore') if not os.path.isdir(tgt_dir_enc): try: os.makedirs(tgt_dir_enc) except: prn_error( traceback.format_exc() ) prn_error( u'Error: cannot create "%s"' % (tgt_dir) ) tgt_dir = '.' tgt_dir_enc = tgt_dir.encode(self.filename_codec, 'ignore') self.tgt_dir = tgt_dir self.tgt_dir_enc = tgt_dir_enc if not self.quiet: prn( u'phpMyAdmin: %s' % (self.url_phpmyadmin_top) ) prn( u'directory : %s' % (tgt_dir) ) #} // end of def __init__() def do(self, db_name): #{ """ download "<db_name>.sql" via phpMyAdmin """ (src_codec, db_name) = self._str_decode(db_name) filename = u'%s.sql' % (db_name) if not self.quiet: prn( u'%s' % (filename) ) flg_success = False while True: token = self._get_token() if not token: break url = self.url_phpmyadmin_top + 'export.php' self.param_dict.update( token = token, db_select = [db_name], ) rsp = self._fetch(url, data=self._make_data(self.param_dict)) if rsp.code < 200 or 300 <= rsp.code: prn_error( u'Error: %s => %d: %s' % (url, rsp.code, rsp.msg) ) break filename_enc = os.path.join(self.tgt_dir_enc, filename.encode(self.filename_codec, 'ignore')) fp = open(filename_enc, 'wb') #info = rsp.info() #for key in info.keys(): # prn( '%s=%s' % (key, info.getheader(key)) ) #fp.write(rsp.read()) size = 0 for buf in iter(lambda:rsp.read(self.BUFSIZE),''): fp.write(buf) size += len(buf) if not self.quiet: if size < self.MB: prn( '\r%6d KB' % (size//self.KB), False ) else: prn( '\r%6.2f MB' % (float(size)/self.MB), False ) sys.stdout.flush() fp.close() if not self.quiet: prn( '' ) flg_success = True break return flg_success #} // end of def exec() def _get_token(self): #{ def _get_token_from_rsp(rsp): #{ (token, content) = (None, None) while True: if rsp.code < 200 or 300 <= rsp.code: prn_error( u'Error: %s => %d: %s' % (url, rsp.code, rsp.msg) ) break (src_codec, content) = self._str_decode(rsp.read()) mrslt = self.RE_TOKEN.search(content) if not mrslt: prn_error( u'Error: token not found' ) break token = mrslt.group(1) break return (token, content) #} // end of def _get_token_from_rsp() url = self.url_phpmyadmin_top rsp = self._fetch(url) (token, content) = _get_token_from_rsp(rsp) while token: if not re.search(u'name="pma_username"', content): break (pma_username, pma_password) = (self.pma_username, self.pma_password) if not pma_username or not pma_password: prn_error( u'Error: both pma_username and pma_password required' ) token = None break param_dict = self.login_param_dict param_dict.update(dict( pma_username = pma_username, pma_password = pma_password, token = token, )) rsp = self._fetch(url, data=self._make_data(param_dict)) (token, content) = _get_token_from_rsp(rsp) if re.search(u'name="pma_username"', content): prn_error( u'Error: incorrect pma_username or pma_password' ) token = None break break self.token = token return token #} // end of def _get_token() def _quote(self, param, charset='utf-8'): #{ return urllib.quote(param.encode(charset, 'ignore'), safe='~') #} // end of def _quote() def _make_data(self, param_dict): #{ query_list=[] quote = lambda s: self._quote(s, self.PMA_CODEC) for key in sorted(param_dict.keys()): if isinstance(param_dict[key], list): for param in param_dict[key]: query_list.append('%s[]=%s' % (quote(key), quote(param))) else: query_list.append('%s=%s' % (quote(key), quote(param_dict[key]))) return '&'.join(query_list) #} // end of def _make_data() def _fetch(self, url, data=None, headers=None): #{ mrslt = re.search(u'^(https?://)([^/]+)(.*)$', url) proto = mrslt.group(1).encode(self.PMA_CODEC,'ignore') domain = mrslt.group(2).encode('idna') path = mrslt.group(3).encode(self.PMA_CODEC, 'ignore') url = proto + domain + path if not headers: headers = self.header_dict headers['Referer'] = self.last_url rsp = self.url_opener.open(urllib2.Request(url, data=data, headers=headers)) self.last_url = rsp.geturl() return rsp #} // end of def _fetch() def _str_decode(self, src_str): #{ (src_codec, dec_str) = (None, src_str) while True: if not isinstance(src_str, basestring): break if isinstance(src_str, unicode): src_codec = 'unicode_internal' break try: dec_str = src_str.decode('iso2022_jp') src_codec = self.RE_ESC_SEQ.search(src_str) and 'iso2022_jp' or 'ascii' break except UnicodeDecodeError, s: pass for test_codec in self.CODEC_LIST: try: dec_str = src_str.decode(test_codec) src_codec = test_codec break except UnicodeDecodeError, s: pass break return (src_codec, dec_str) #} // end of def _str_decode() #} // end of class LoadSqlDump() if __name__ == '__main__': #{ import optparse usage = u"./%prog [options] <phpMyAdmin's URL> <database name> [<database name> ...]" optparser = optparse.OptionParser(usage=usage, version=__version__) optparser.add_option( '-u', '--ba-user', action = 'store', metavar = '<BASIC-AUTH USER>', help = u"user name for Basic Authentication", dest = 'user' ) optparser.add_option( '-p', '--ba-passwd', action = 'store', metavar = '<BASIC-AUTH PASSWORD>', help = u"password for Basic Authentication", dest = 'passwd' ) optparser.add_option( '-n', '--pma-user', action = 'store', metavar = '<PMA-USER>', help = u"user password for phpMyAdmin", dest = 'pma_username' ) optparser.add_option( '-w', '--pma-passwd', action = 'store', metavar = '<PMA-PASSWORD>', help = u"user name for phpMyAdmin", dest = 'pma_password' ) optparser.add_option( '-s', '--server-number', type= 'int', #default = 1, metavar = '<SERVER NUMBER>', help = u'MySQL server number(default: 1)', dest = 'server_number', ) optparser.add_option( '-d', '--directory', action = 'store', metavar = '<DIRECTORY>', help = u"directory to save", dest = 'tgt_dir' ) optparser.add_option( '-q','--quiet' , action = 'store_true' , help = u"quiet mode" , dest = 'quiet' ) optparser.add_option( '-f', '--option-list-file', action = 'store', metavar = '<OPTION LIST FILE>', help = u"option list file", dest = 'option_file' ) (options, args) = optparser.parse_args() # --- デフォルト (user, passwd) = (None, None) (pma_username, pma_password) = (None, None) server_number = 1 tgt_dir = None quiet = False if options.option_file: fp = open(options.option_file, 'rb') _argv = [] for line in fp: line = line.strip() mrslt = re.search('^(-\w)\s+(.*)$', line) if mrslt: _argv.append(mrslt.group(1)) _argv.append(mrslt.group(2)) else: _argv.append(line) fp.close() (_options, _args) = optparser.parse_args(_argv) # --- オプションファイルでの指定 if _options.user is not None: user = _options.user if _options.passwd is not None: passwd = _options.passwd if _options.pma_username is not None: pma_username = _options.pma_username if _options.pma_password is not None: pma_password = _options.pma_password if _options.server_number is not None: server_number = _options.server_number if _options.tgt_dir is not None: tgt_dir = _options.tgt_dir if _options.quiet is not None: quiet = _options.quiet # --- ユーザ指定 if options.user is not None: user = options.user if options.passwd is not None: passwd = options.passwd if options.pma_username is not None: pma_username = options.pma_username if options.pma_password is not None: pma_password = options.pma_password if options.server_number is not None: server_number = options.server_number if options.tgt_dir is not None: tgt_dir = options.tgt_dir if options.quiet is not None: quiet = options.quiet if 1 < len(args): exit_code = 0 url_phpmyadmin_top = args[0] load_sqldump = LoadSqlDump(url_phpmyadmin_top, user=user, passwd=passwd, pma_username=pma_username, pma_password=pma_password, tgt_dir=tgt_dir, server_number=server_number, quiet=quiet) for db_name in args[1:]: if not load_sqldump.do(db_name): exit_code += 1 exit(exit_code) else: optparser.print_help() exit(255) #} // end of __main__ # ■ end of file
""" CAR CONFIG This file is read by your car application's manage.py script to change the car performance. EXMAPLE ----------- import dk cfg = dk.load_config(config_path='~/d2/config.py') print(cfg.CAMERA_RESOLUTION) """ import os #pi information PI_USERNAME = "pi" PI_PASSWD = "raspberry" PI_HOSTNAME = "raspberrypi.local" PI_DONKEY_ROOT = "/home/pi/d2" #PATHS CAR_PATH = PACKAGE_PATH = os.path.dirname(os.path.realpath(__file__)) DATA_PATH = os.path.join(CAR_PATH, 'data') MODELS_PATH = os.path.join(CAR_PATH, 'models') #VEHICLE DRIVE_LOOP_HZ = 20 MAX_LOOPS = 100000 #CAMERA CAMERA_TYPE = "PICAM" # (PICAM|WEBCAM|CVCAM) IMAGE_W = 160 IMAGE_H = 120 IMAGE_DEPTH = 3 # default RGB=3, make 1 for mono CAMERA_FRAMERATE = DRIVE_LOOP_HZ #9865, over rides only if needed, ie. TX2.. PCA9685_I2C_ADDR = 0x40 PCA9685_I2C_BUSNUM = None #drivetrain DRIVE_TRAIN_TYPE = "SERVO_ESC" # SERVO_ESC|DC_STEER_THROTTLE|DC_TWO_WHEEL|SERVO_HBRIDGE_PWM #STEERING STEERING_CHANNEL = 1 STEERING_LEFT_PWM = 460 STEERING_RIGHT_PWM = 290 #THROTTLE THROTTLE_CHANNEL = 0 THROTTLE_FORWARD_PWM = 500 THROTTLE_STOPPED_PWM = 370 THROTTLE_REVERSE_PWM = 220 #DC_STEER_THROTTLE with one motor as steering, one as drive HBRIDGE_PIN_LEFT = 18 HBRIDGE_PIN_RIGHT = 16 HBRIDGE_PIN_FWD = 15 HBRIDGE_PIN_BWD = 13 #DC_TWO_WHEEL - with two wheels as drive, left and right. HBRIDGE_PIN_LEFT_FWD = 18 HBRIDGE_PIN_LEFT_BWD = 16 HBRIDGE_PIN_RIGHT_FWD = 15 HBRIDGE_PIN_RIGHT_BWD = 13 #TRAINING BATCH_SIZE = 128 TRAIN_TEST_SPLIT = 0.8 MAX_EPOCHS = 100 SHOW_PLOT = True VEBOSE_TRAIN = True USE_EARLY_STOP = True EARLY_STOP_PATIENCE = 5 MIN_DELTA = .0005 PRINT_MODEL_SUMMARY = True #print layers and weights to stdout OPTIMIZER = None #adam, sgd, rmsprop, etc.. None accepts default LEARNING_RATE = 0.001 #only used when OPTIMIZER specified LEARNING_RATE_DECAY = 0.0 #only used when OPTIMIZER specified SEND_BEST_MODEL_TO_PI = False #change to true to automatically send best model during training #model transfer options FREEZE_LAYERS = False NUM_LAST_LAYERS_TO_TRAIN = 7 #JOYSTICK USE_JOYSTICK_AS_DEFAULT = True JOYSTICK_MAX_THROTTLE = 0.3 JOYSTICK_STEERING_SCALE = 1.0 AUTO_RECORD_ON_THROTTLE = True CONTROLLER_TYPE='ps3' #(ps3|ps4) USE_NETWORKED_JS = False NETWORK_JS_SERVER_IP = "192.168.0.1" #RNN or 3D SEQUENCE_LENGTH = 3 #IMU HAVE_IMU = False #LED HAVE_RGB_LED = False LED_INVERT = False #COMMON ANNODE? #board pin number for pwm outputs LED_PIN_R = 12 LED_PIN_G = 10 LED_PIN_B = 16 #LED status color, 0-100 LED_R = 0 LED_G = 0 LED_B = 1 #BEHAVIORS TRAIN_BEHAVIORS = False BEHAVIOR_LIST = ['Left_Lane', "Right_Lane"] BEHAVIOR_LED_COLORS =[ (0, 10, 0), (10, 0, 0) ] #RGB tuples 0-100 per chanel
from typing import Any, Callable, Dict, Optional, Type, Union from fugue.execution.execution_engine import ExecutionEngine, SQLEngine from fugue.execution.native_execution_engine import NativeExecutionEngine from triad.utils.convert import to_instance from triad import assert_or_throw class _ExecutionEngineFactory(object): def __init__(self): self._funcs: Dict[str, Callable] = {} self._type_funcs: Dict[Type, Callable] = {} self._sql_funcs: Dict[str, Callable] = {} self.register_default(lambda conf, **kwargs: NativeExecutionEngine(conf=conf)) self.register_default_sql_engine(lambda engine, **kwargs: engine.sql_engine) def register( self, name_or_type: Union[str, Type], func: Callable, on_dup="overwrite" ) -> None: if isinstance(name_or_type, str): self._register(self._funcs, name=name_or_type, func=func, on_dup=on_dup) else: self._register( self._type_funcs, name=name_or_type, func=func, on_dup=on_dup ) def register_default(self, func: Callable, on_dup="overwrite") -> None: self.register("", func, on_dup) def register_sql_engine( self, name: str, func: Callable, on_dup="overwrite" ) -> None: self._register(self._sql_funcs, name=name, func=func, on_dup=on_dup) def register_default_sql_engine(self, func: Callable, on_dup="overwrite") -> None: self.register_sql_engine("", func, on_dup) def make( self, engine: Any = None, conf: Any = None, **kwargs: Any ) -> ExecutionEngine: if isinstance(engine, tuple): execution_engine = self.make_execution_engine( engine[0], conf=conf, **kwargs ) sql_engine = self.make_sql_engine(engine[1], execution_engine) execution_engine.set_sql_engine(sql_engine) return execution_engine else: return self.make((engine, None), conf=conf, **kwargs) def make_execution_engine( self, engine: Any = None, conf: Any = None, **kwargs: Any ) -> ExecutionEngine: def make_engine(engine: Any) -> ExecutionEngine: if isinstance(engine, str) and engine in self._funcs: return self._funcs[engine](conf, **kwargs) for k, f in self._type_funcs.items(): if isinstance(engine, k): return f(engine, conf, **kwargs) if isinstance(engine, ExecutionEngine): if conf is not None: engine.compile_conf.update(conf) engine.compile_conf.update(kwargs) return engine return to_instance( engine, ExecutionEngine, kwargs=dict(conf=conf, **kwargs) ) result = make_engine(engine or "") result.compile_conf.update(result.conf) result.compile_conf.update(conf) result.compile_conf.update(kwargs) return result def make_sql_engine( self, engine: Any = None, execution_engine: Optional[ExecutionEngine] = None, **kwargs: Any, ) -> SQLEngine: if engine is None: engine = "" if isinstance(engine, str) and engine in self._sql_funcs: return self._sql_funcs[engine](execution_engine, **kwargs) if isinstance(engine, SQLEngine): assert_or_throw( execution_engine is None and len(kwargs) == 0, lambda: ValueError( f"{engine} is an instance, can't take arguments " f"execution_engine={execution_engine}, kwargs={kwargs}" ), ) return engine return to_instance( engine, SQLEngine, kwargs=dict(execution_engine=execution_engine, **kwargs) ) def _register( self, callables: Dict[Any, Callable], name: Any, func: Callable, on_dup="overwrite", ) -> None: if name not in callables: callables[name] = func if on_dup in ["raise", "throw"]: raise KeyError(f"{name} is already registered") if on_dup == "overwrite": callables[name] = func return if on_dup == "ignore": return raise ValueError(on_dup) _EXECUTION_ENGINE_FACTORY = _ExecutionEngineFactory() def register_execution_engine( name_or_type: Union[str, Type], func: Callable, on_dup="overwrite" ) -> None: """Register :class:`~fugue.execution.execution_engine.ExecutionEngine` with a given name. :param name_or_type: alias of the execution engine, or type of an object that can be converted to an execution engine :param func: a callable taking |ParamsLikeObject| and ``**kwargs`` and returning an :class:`~fugue.execution.execution_engine.ExecutionEngine` instance :param on_dup: action on duplicated ``name``. It can be "overwrite", "ignore" (not overwriting) or "throw" (throw exception), defaults to "overwrite". :raises KeyError: if ``on_dup`` is ``throw`` and the ``name`` already exists .. admonition:: Examples Alias registration examples: .. code-block:: python # create a new engine with name my (overwrites if existed) register_execution_engine("my", lambda conf: MyExecutionEngine(conf)) # 0 make_execution_engine("my") make_execution_engine("my", {"myconfig":"value}) # 1 with FugueWorkflow("my") as dag: dag.create([[0]],"a:int").show() # 2 dag = FugueWorkflow() dag.create([[0]],"a:int").show() dag.run("my", {"myconfig":"value}) # 3 fsql(''' CREATE [[0]] SCHEMA a:int PRINT ''').run("my") Type registration examples: .. code-block:: python from pyspark.sql import SparkSession from fugue_spark import SparkExecutionEngine from fugue_sql import fsql register_execution_engine( SparkSession, lambda session, conf: SparkExecutionEngine(session, conf)) spark_session = SparkSession.builder.getOrCreate() fsql(''' CREATE [[0]] SCHEMA a:int PRINT ''').run(spark_session) """ _EXECUTION_ENGINE_FACTORY.register(name_or_type, func, on_dup) def register_default_execution_engine(func: Callable, on_dup="overwrite") -> None: """Register :class:`~fugue.execution.execution_engine.ExecutionEngine` as the default engine. :param func: a callable taking |ParamsLikeObject| and ``**kwargs`` and returning an :class:`~fugue.execution.execution_engine.ExecutionEngine` instance :param on_dup: action on duplicated ``name``. It can be "overwrite", "ignore" (not overwriting) or "throw" (throw exception), defaults to "overwrite". :raises KeyError: if ``on_dup`` is ``throw`` and the ``name`` already exists .. admonition:: Examples .. code-block:: python # create a new engine with name my (overwrites if existed) register_default_execution_engine(lambda conf: MyExecutionEngine(conf)) # the following examples will use MyExecutionEngine # 0 make_execution_engine() make_execution_engine(None, {"myconfig":"value}) # 1 with FugueWorkflow() as dag: dag.create([[0]],"a:int").show() # 2 dag = FugueWorkflow() dag.create([[0]],"a:int").show() dag.run(None, {"myconfig":"value}) # 3 fsql(''' CREATE [[0]] SCHEMA a:int PRINT ''').run("", {"myconfig":"value}) """ _EXECUTION_ENGINE_FACTORY.register_default(func, on_dup) def register_sql_engine(name: str, func: Callable, on_dup="overwrite") -> None: """Register :class:`~fugue.execution.execution_engine.SQLEngine` with a given name. :param name: name of the SQL engine :param func: a callable taking :class:`~fugue.execution.execution_engine.ExecutionEngine` and ``**kwargs`` and returning a :class:`~fugue.execution.execution_engine.SQLEngine` instance :param on_dup: action on duplicated ``name``. It can be "overwrite", "ignore" (not overwriting) or "throw" (throw exception), defaults to "overwrite". :raises KeyError: if ``on_dup`` is ``throw`` and the ``name`` already exists .. admonition:: Examples .. code-block:: python # create a new engine with name my (overwrites if existed) register_sql_engine("mysql", lambda engine: MySQLEngine(engine)) # create execution engine with MySQLEngine as the default make_execution_engine(("", "mysql")) # create DaskExecutionEngine with MySQLEngine as the default make_execution_engine(("dask", "mysql")) # default execution engine + MySQLEngine with FugueWorkflow(("","mysql")) as dag: dag.create([[0]],"a:int").show() """ _EXECUTION_ENGINE_FACTORY.register_sql_engine(name, func, on_dup) def register_default_sql_engine(func: Callable, on_dup="overwrite") -> None: """Register :class:`~fugue.execution.execution_engine.SQLEngine` as the default engine :param func: a callable taking :class:`~fugue.execution.execution_engine.ExecutionEngine` and ``**kwargs`` and returning a :class:`~fugue.execution.execution_engine.SQLEngine` instance :param on_dup: action on duplicated ``name``. It can be "overwrite", "ignore" (not overwriting) or "throw" (throw exception), defaults to "overwrite". :raises KeyError: if ``on_dup`` is ``throw`` and the ``name`` already exists .. note:: You should be careful to use this function, because when you set a custom SQL engine as default, all execution engines you create will use this SQL engine unless you are explicit. For example if you set the default SQL engine to be a Spark specific one, then if you start a NativeExecutionEngine, it will try to use it and will throw exceptions. So it's always a better idea to use ``register_sql_engine`` instead .. admonition:: Examples .. code-block:: python # create a new engine with name my (overwrites if existed) register_default_sql_engine(lambda engine: MySQLEngine(engine)) # create NativeExecutionEngine with MySQLEngine as the default make_execution_engine() # create SparkExecutionEngine with MySQLEngine instead of SparkSQLEngine make_execution_engine("spark") # NativeExecutionEngine with MySQLEngine with FugueWorkflow() as dag: dag.create([[0]],"a:int").show() """ _EXECUTION_ENGINE_FACTORY.register_default_sql_engine(func, on_dup) def make_execution_engine( engine: Any = None, conf: Any = None, **kwargs: Any ) -> ExecutionEngine: """Create :class:`~fugue.execution.execution_engine.ExecutionEngine` with specified ``engine`` :param engine: it can be empty string or null (use the default execution engine), a string (use the registered execution engine), an :class:`~fugue.execution.execution_engine.ExecutionEngine` type, or the :class:`~fugue.execution.execution_engine.ExecutionEngine` instance , or a tuple of two values where the first value represents execution engine and the second value represents the sql engine (you can use ``None`` for either of them to use the default one), defaults to None :param conf: |ParamsLikeObject|, defaults to None :param kwargs: additional parameters to initialize the execution engine :return: the :class:`~fugue.execution.execution_engine.ExecutionEngine` instance .. admonition:: Examples .. code-block:: python register_default_execution_engine(lambda conf: E1(conf)) register_execution_engine("e2", lambda conf, **kwargs: E2(conf, **kwargs)) register_sql_engine("s", lambda conf: S2(conf)) # E1 + E1.default_sql_engine make_execution_engine() # E2 + E2.default_sql_engine make_execution_engine(e2) # E1 + S2 make_execution_engine((None, "s")) # E2(conf, a=1, b=2) + S2 make_execution_engine(("e2", "s"), conf, a=1, b=2) # SparkExecutionEngine + SparkSQLEngine make_execution_engine(SparkExecutionEngine) make_execution_engine(SparkExecutionEngine(spark_session, conf)) # SparkExecutionEngine + S2 make_execution_engine((SparkExecutionEngine, "s")) """ return _EXECUTION_ENGINE_FACTORY.make(engine, conf, **kwargs) def make_sql_engine( engine: Any = None, execution_engine: Optional[ExecutionEngine] = None, **kwargs: Any, ) -> SQLEngine: """Create :class:`~fugue.execution.execution_engine.SQLEngine` with specified ``engine`` :param engine: it can be empty string or null (use the default SQL engine), a string (use the registered SQL engine), an :class:`~fugue.execution.execution_engine.SQLEngine` type, or the :class:`~fugue.execution.execution_engine.SQLEngine` instance (you can use ``None`` to use the default one), defaults to None :param execution_engine: the :class:`~fugue.execution.execution_engine.ExecutionEngine` instance to create the :class:`~fugue.execution.execution_engine.SQLEngine`. Normally you should always provide this value. :param kwargs: additional parameters to initialize the sql engine :return: the :class:`~fugue.execution.execution_engine.SQLEngine` instance .. note:: For users, you normally don't need to call this function directly. Use ``make_execution_engine`` instead .. admonition:: Examples .. code-block:: python register_default_sql_engine(lambda conf: S1(conf)) register_sql_engine("s2", lambda conf: S2(conf)) engine = NativeExecutionEngine() # S1(engine) make_sql_engine(None, engine) # S1(engine, a=1) make_sql_engine(None, engine, a=1) # S2(engine) make_sql_engine("s2", engine) # SqliteEngine(engine) make_sql_engine(SqliteEngine) """ return _EXECUTION_ENGINE_FACTORY.make_sql_engine(engine, execution_engine, **kwargs)
import matplotlib.pyplot as plt import matplotlib.lines as mlines import numpy as np import os import sys from pprint import pprint from datetime import datetime from datetime import timedelta import pickle import copy from mpl_toolkits.basemap import Basemap import matplotlib.colors timezone = 1 endpointsPARIS = [] clusters = [] cluster_endpoints={} for number in [1,2,3]: cluster_endpoints[number]=[] clusters.append(number) mn_height = [] with open('C:/HYSPLIT_argh/Alert_march2016_working/CLUSLIST_3','r') as f: for line in f: newline = line.split() cluster = int(newline[0]) file = newline[7] tdump_file = open(file, 'r') endpoints = [] data_start = False i=0 for line in tdump_file: newline = line.split() if data_start == True: lat = float(newline[9]) lon = float(newline[10]) height = float(newline[11]) if cluster == 1 and i == 48: mn_height.append(height) endpoint = [lat, lon,height] endpoints.append(endpoint) i+=1 if newline[1] == 'PRESSURE': data_start = True tdump_file.close() cluster_endpoints[cluster].append(endpoints) #plottting ###set up the basemap instance lat_pt = 82. lon_pt = -62. m = Basemap(projection='nplaea',boundinglat=50,lon_0=270,resolution='l') fig, axes = plt.subplots(2,3,figsize=(12, 4), facecolor='w', edgecolor='k') fig.subplots_adjust(hspace = 0.1, wspace=0.25) axs = axes.ravel() for i in [-1,-2,-3]: axes[-1, i].axis('off') axes[-2, i].axis('off') # #axes[-3, i].axis('off') colors = ['b','orange','g','r','c','m','k','y','#DF7401','#585858','grey','#663300'] for cluster_no in clusters: print cluster_no,colors[cluster_no] list = cluster_endpoints[cluster_no] #subplot_num = 4,3,cluster_no axs[cluster_no] = fig.add_subplot(1,3,cluster_no) #m.drawmapboundary(fill_color='white') m.bluemarble() m.drawcoastlines() #m.fillcontinents(color='#FFFFBF',lake_color='#ABD9E9',zorder=0) m.drawcountries() parallels = np.arange(0.,81,10.) m.drawparallels(parallels,labels=[False,True,False,False]) meridians = np.arange(10.,351.,20.) m.drawmeridians(meridians,labels=[False,False,False,True]) plt.text(0.1,0.8,str(cluster_no), fontsize=20, transform=axs[cluster_no].transAxes,color = 'white') for row in list: np_endpoints = np.array(row) lats = np_endpoints[:,0] lons = np_endpoints[:,1] heights = np_endpoints[:,2] x,y = m(lons,lats) bt = m.plot(x,y,color=colors[cluster_no],linewidth=2) #bt = m.scatter(x,y, c=heights, cmap=plt.get_cmap('jet'),edgecolors='none', marker = 'o') #lim = bt.get_clim() #print lim #plt.clim(0,1000) #cb = plt.colorbar() #cb.set_label('height (m)', rotation=270) dir = 'C:/Users/Sarah Hanna/Documents/Data/Alert Data/Alert-March 2016/' os.chdir(dir) plt.savefig('ALERT_cluster_all_trajs_from_HYSPLIT_240hr_backtrajectories-3clusters.png', bbox_inches='tight') plt.show()
#there are many ways we can do random numbers #1. import random #used to produce pseudo-random numbers. # They are called pseudo-random because they are not truly random and can be reproduced. import random a = random.random() #random float between 0 and 1 b = random.uniform(1,10) #random float between 1 and 10 c = random.randrange(1,10) #random integer between 1 and 10 (not including 10) d = random.randint(1,10) #random integer between 1 and 10 (including 10) e = random.choice(['a','b','c']) #random element from a list #sample picks one element one time and choices may pick one element multiple times f = random.sample(range(1,10),3) #3 random elements from a list g = random.choices(range(1,10),k=3) #3 random elements from a list h = random.normalvariate(0,1) #random float from normal distribution with mean 0 and standard deviation 1 random.shuffle(['a','b','c']) #shuffle a list in place random.seed(10) #set the seed for the random number generator to 10 (so that the same sequence of numbers will be generated) import secrets #secrets — Generate secure random numbers for managing secrets (True randomness) # https://docs.python.org/3/library/secrets.html #But this is slower than random module as more complex algorithms are used. a = secrets.randbelow(10) #random integer between 0 and 9 b = secrets.randbits(10) #random integer between 0 and 2**10-1 c = secrets.choice(['a','b','c']) #random element from a list d = secrets.sample(range(1,10),3) #3 random elements from a list #2. import numpy import numpy as np #numpy random generator uses a different generator than random module and also has a different seed np.random.seed(10) #set the seed for the random number generator to 10 (so that the same sequence of numbers will be generated) a = np.random.random() #random float between 0 and 1 b = np.random.uniform(1,10) #random float between 1 and 10 c = np.random.randrange(1,10) #random integer between 1 and 10 (not including 10) d = np.random.randint(1,10) #random integer between 1 and 10 (including 10) e = np.random.choice(['a','b','c']) #random element from a list f = np.random.randn(3) #list of 3 random elements
# Generated by Django 3.2.9 on 2021-11-16 11:37 import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0012_alter_user_first_name_max_length'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=150, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', 'abstract': False, }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), ]
# #!/usr/bin/env python # """Tests for `aa_pbs_exporter` package.""" # from click.testing import CliRunner # from aa_pbs_exporter.cli import aa_pbs_exporter_cli as cli # def test_content(response): # """Sample pytest test function with the pytest fixture as an argument.""" # # from bs4 import BeautifulSoup # # assert 'GitHub' in BeautifulSoup(response.content).title.string # def test_command_line_interface(): # """Test the CLI.""" # runner = CliRunner() # result = runner.invoke(cli.main) # assert result.exit_code == 0 # assert "Console script for aa_pbs_exporter" in result.output # help_result = runner.invoke(cli.main, ["--help"]) # assert help_result.exit_code == 0 # assert "--help Show this message and exit." in help_result.output # def test_hello(): # """Test the hello command.""" # runner = CliRunner() # result = runner.invoke(cli.main, ["hello", "Foo"]) # assert result.exit_code == 0 # assert "Hello Foo" in result.output # help_result = runner.invoke(cli.main, ["--help"]) # assert help_result.exit_code == 0 # assert "--help Show this message and exit." in help_result.output
# -*- coding: utf-8 -*- import json import os import sys import time from echopy import Echo from project import RESOURCES_DIR, BLOCK_RELEASE_INTERVAL if "BASE_URL" not in os.environ: BASE_URL = json.load(open(os.path.join(RESOURCES_DIR, "urls.json")))["BASE_URL"] else: BASE_URL = os.environ["BASE_URL"] categories = [ # API SECTION 'api', 'login_api', 'asset_api', 'history_api', 'network_broadcast_api', 'registration_api', 'database_api', 'connection_to_apis', # database_api section 'database_api_objects', 'database_api_subscriptions', 'database_api_blocks_transactions', 'database_api_globals', 'database_api_keys', 'database_api_accounts', 'database_api_contracts', 'database_api_balances', 'database_api_assets', 'database_api_committee_members', 'database_api_votes', 'database_api_authority_validation', 'database_api_proposed_transactions', 'database_api_sidechain_ethereum', 'database_api_sidechain_erc20', 'database_api_contract_fee_pool', # OPERATIONS SECTION 'operations', 'account_management_operations', 'assert_conditions_operations', 'asset_management_operations', 'balance_object_operations', 'committee_members_operations', 'contract_operations', 'sidechain_operations', 'custom_extension_operations', 'assets_market_operations', 'proposal_operations', 'asset_transfer_operations', 'vesting_balances_operations', 'withdrawal_permissions_operations', 'sidechain', 'sidechain_ethereum', 'sidechain_erc20', 'scenarios', ] types = [ # TEST TYPES "main", "positive", "negative" ] def process_filters(filters): category_filters = [] type_filters = [] for pytests_filter in filters: if pytests_filter in types: type_filters.append(pytests_filter) else: category_filters.append(pytests_filter) command = "" if len(category_filters): command = "{}-a ".format(command) for category_filter in category_filters: command = "{}{} ".format(command, category_filter) if len(type_filters): command = "{}-m ".format(command) for type_filter in type_filters: command = "{}{}:type ".format(command, type_filter) return command PYTESTS_FILTERS = "" if "PYTESTS_FILTERS" not in os.environ else os.environ["PYTESTS_FILTERS"].lower().split(":") PYTESTS_FILTER_COMMAND = process_filters(PYTESTS_FILTERS) def get_head_block_num(echo_connection): return echo_connection.api.database.get_dynamic_global_properties()["head_block_number"] def run(echo_connection, filter_command): if get_head_block_num(echo_connection): execution_status = os.system("if ! lcc run {}--exit-error-on-failure; then lcc report --failed; exit 1; fi" .format(filter_command)) sys.exit(1 if execution_status > 1 else execution_status) else: time.sleep(BLOCK_RELEASE_INTERVAL) run(echo_connection, filter_command) echo = Echo() echo.connect(BASE_URL) run(echo, PYTESTS_FILTER_COMMAND)
#!/usr/bin/python import sys MIN_UDP_SPORT = 2048 if __name__ == "__main__": N_SUBTABLES = int(sys.argv[1]) N_RULES = int(sys.argv[2]) assert N_RULES >= N_SUBTABLES rules_per_subtable = N_RULES / N_SUBTABLES if rules_per_subtable > 100: udp_port_range = 100 ip_dst_range = rules_per_subtable /100 # assert rules_per_subtable % 100 == 0 else: udp_port_range = 1 ip_dst_range = rules_per_subtable for i in range (0, N_SUBTABLES): flow = 'udp,nw_src=' flow = flow + str(i + 1) + '.0.0.0/' + str(8 + i) + ',' for j in range (0, ip_dst_range): a = j / 256 / 256; b = (j / 256) % 256; c = j % 256 flow2 = flow + 'nw_dst=10.' + str(a) + '.' + str(b) + '.' + str(c) + '/32,tp_src=2048,' for k in range (20, 20 + udp_port_range): flow3 = flow2 + 'tp_dst=' + str(k) + ' ' flow3 = flow3 + 'actions=output:2' print flow3
# -*- coding: utf-8 -*- """ Romanization of Thai words based on machine-learnt engine ("thai2rom") """ import random import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from pythainlp.corpus import download, get_corpus_path device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class ThaiTransliterator: def __init__(self): """ Transliteration of Thai words Now supports Thai to Latin (romanization) """ # Download the model, if it's not on your machine. self.__filemodel = get_corpus_path("thai2rom-pytorch-attn") if not self.__filemodel: download("thai2rom-pytorch-attn") self.__filemodel = get_corpus_path("thai2rom-pytorch-attn") loader = torch.load(self.__filemodel, map_location=device) INPUT_DIM, E_EMB_DIM, E_HID_DIM, E_DROPOUT = loader["encoder_params"] OUTPUT_DIM, D_EMB_DIM, D_HID_DIM, D_DROPOUT = loader["decoder_params"] self._maxlength = 100 self._char_to_ix = loader["char_to_ix"] self._ix_to_char = loader["ix_to_char"] self._target_char_to_ix = loader["target_char_to_ix"] self._ix_to_target_char = loader["ix_to_target_char"] # encoder/ decoder # Restore the model and construct the encoder and decoder. self._encoder = Encoder( INPUT_DIM, E_EMB_DIM, E_HID_DIM, E_DROPOUT) self._decoder = AttentionDecoder( OUTPUT_DIM, D_EMB_DIM, D_HID_DIM, D_DROPOUT ) self._network = Seq2Seq( self._encoder, self._decoder, self._target_char_to_ix["<start>"], self._target_char_to_ix["<end>"], self._maxlength, ).to(device) self._network.load_state_dict(loader["model_state_dict"]) self._network.eval() def _prepare_sequence_in(self, text: str): """ Prepare input sequence for PyTorch """ idxs = [] for ch in text: if ch in self._char_to_ix: idxs.append(self._char_to_ix[ch]) else: idxs.append(self._char_to_ix["<UNK>"]) idxs.append(self._char_to_ix["<end>"]) tensor = torch.tensor(idxs, dtype=torch.long) return tensor.to(device) def romanize(self, text: str) -> str: """ :param str text: Thai text to be romanized :return: English (more or less) text that spells out how the Thai text should be pronounced. """ input_tensor = self._prepare_sequence_in(text).view(1, -1) input_length = [len(text) + 1] target_tensor_logits = self._network(input_tensor, input_length, None, 0) # Seq2seq model returns <END> as the first token, # As a result, target_tensor_logits.size() is torch.Size([0]) if target_tensor_logits.size(0) == 0: target = ["<PAD>"] else: target_tensor = ( torch.argmax( target_tensor_logits.squeeze(1), 1).cpu().numpy() ) target = [self._ix_to_target_char[t] for t in target_tensor] return "".join(target) class Encoder(nn.Module): def __init__(self, vocabulary_size, embedding_size, hidden_size, dropout=0.5): """Constructor""" super(Encoder, self).__init__() self.hidden_size = hidden_size self.character_embedding = nn.Embedding(vocabulary_size, embedding_size) self.rnn = nn.LSTM( input_size=embedding_size, hidden_size=hidden_size // 2, bidirectional=True, batch_first=True, ) self.dropout = nn.Dropout(dropout) def forward(self, sequences, sequences_lengths): # sequences: (batch_size, sequence_length=MAX_LENGTH) # sequences_lengths: (batch_size) batch_size = sequences.size(0) self.hidden = self.init_hidden(batch_size) sequences_lengths = np.sort(sequences_lengths)[::-1] index_sorted = np.argsort( -sequences_lengths ) # use negation in sort in descending order index_unsort = np.argsort(index_sorted) # to unsorted sequence index_sorted = torch.from_numpy(index_sorted) sequences = sequences.index_select(0, index_sorted.to(device)) sequences = self.character_embedding(sequences) sequences = self.dropout(sequences) sequences_packed = nn.utils.rnn.pack_padded_sequence( sequences, sequences_lengths.copy(), batch_first=True ) sequences_output, self.hidden = self.rnn(sequences_packed, self.hidden) sequences_output, _ = nn.utils.rnn.pad_packed_sequence( sequences_output, batch_first=True ) index_unsort = torch.from_numpy(index_unsort).to(device) sequences_output = sequences_output.index_select( 0, index_unsort.clone().detach() ) return sequences_output, self.hidden def init_hidden(self, batch_size): h_0 = torch.zeros( [2, batch_size, self.hidden_size // 2], requires_grad=True ).to(device) c_0 = torch.zeros( [2, batch_size, self.hidden_size // 2], requires_grad=True ).to(device) return (h_0, c_0) class Attn(nn.Module): def __init__(self, method, hidden_size): super(Attn, self).__init__() self.method = method self.hidden_size = hidden_size if self.method == "general": self.attn = nn.Linear(self.hidden_size, hidden_size) elif self.method == "concat": self.attn = nn.Linear(self.hidden_size * 2, hidden_size) self.other = nn.Parameter(torch.FloatTensor(1, hidden_size)) def forward(self, hidden, encoder_outputs, mask): # Calculate energies for each encoder output if self.method == "dot": attn_energies = torch.bmm(encoder_outputs, hidden.transpose(1, 2)).squeeze(2) elif self.method == "general": attn_energies = self.attn( encoder_outputs.view(-1, encoder_outputs.size(-1)) ) # (batch_size * sequence_len, hidden_size) attn_energies = torch.bmm( attn_energies.view( *encoder_outputs.size()), hidden.transpose(1, 2) ).squeeze(2) # (batch_size, sequence_len) elif self.method == "concat": attn_energies = self.attn( torch.cat(( hidden.expand(*encoder_outputs.size()), encoder_outputs ), 2) ) # (batch_size, sequence_len, hidden_size) attn_energies = torch.bmm( attn_energies, self.other.unsqueeze(0).expand(*hidden.size()).transpose(1, 2), ).squeeze(2) attn_energies = attn_energies.masked_fill(mask == 0, -1e10) # Normalize energies to weights in range 0 to 1 return F.softmax(attn_energies, 1) class AttentionDecoder(nn.Module): def __init__(self, vocabulary_size, embedding_size, hidden_size, dropout=0.5): """Constructor""" super(AttentionDecoder, self).__init__() self.vocabulary_size = vocabulary_size self.hidden_size = hidden_size self.character_embedding = nn.Embedding(vocabulary_size, embedding_size) self.rnn = nn.LSTM( input_size=embedding_size + self.hidden_size, hidden_size=hidden_size, bidirectional=False, batch_first=True, ) self.attn = Attn(method="general", hidden_size=self.hidden_size) self.linear = nn.Linear(hidden_size, vocabulary_size) self.dropout = nn.Dropout(dropout) def forward(self, input, last_hidden, encoder_outputs, mask): """"Defines the forward computation of the decoder""" # input: (batch_size, 1) # last_hidden: (batch_size, hidden_dim) # encoder_outputs: (batch_size, sequence_len, hidden_dim) # mask: (batch_size, sequence_len) hidden = last_hidden.permute(1, 0, 2) attn_weights = self.attn(hidden, encoder_outputs, mask) context_vector = attn_weights.unsqueeze(1).bmm(encoder_outputs) context_vector = torch.sum(context_vector, dim=1) context_vector = context_vector.unsqueeze(1) embedded = self.character_embedding(input) embedded = self.dropout(embedded) rnn_input = torch.cat((context_vector, embedded), -1) output, hidden = self.rnn(rnn_input) output = output.view(-1, output.size(2)) x = self.linear(output) return x, hidden[0], attn_weights class Seq2Seq(nn.Module): def __init__( self, encoder, decoder, target_start_token, target_end_token, max_length ): super().__init__() self.encoder = encoder self.decoder = decoder self.pad_idx = 0 self.target_start_token = target_start_token self.target_end_token = target_end_token self.max_length = max_length assert encoder.hidden_size == decoder.hidden_size def create_mask(self, source_seq): mask = source_seq != self.pad_idx return mask def forward( self, source_seq, source_seq_len, target_seq, teacher_forcing_ratio=0.5 ): # source_seq: (batch_size, MAX_LENGTH) # source_seq_len: (batch_size, 1) # target_seq: (batch_size, MAX_LENGTH) batch_size = source_seq.size(0) start_token = self.target_start_token end_token = self.target_end_token max_len = self.max_length target_vocab_size = self.decoder.vocabulary_size outputs = torch.zeros(max_len, batch_size, target_vocab_size).to(device) if target_seq is None: assert teacher_forcing_ratio == 0, "Must be zero during inference" inference = True else: inference = False encoder_outputs, encoder_hidden = self.encoder(source_seq, source_seq_len) decoder_input = ( torch.tensor([[start_token] * batch_size]).view(batch_size, 1).to(device) ) encoder_hidden_h_t = torch.cat( [encoder_hidden[0][0], encoder_hidden[0][1]], dim=1 ).unsqueeze(dim=0) decoder_hidden = encoder_hidden_h_t max_source_len = encoder_outputs.size(1) mask = self.create_mask(source_seq[:, 0:max_source_len]) for di in range(max_len): decoder_output, decoder_hidden, _ = self.decoder( decoder_input, decoder_hidden, encoder_outputs, mask ) topv, topi = decoder_output.topk(1) outputs[di] = decoder_output.to(device) teacher_force = random.random() < teacher_forcing_ratio decoder_input = ( target_seq[:, di].reshape(batch_size, 1) if teacher_force else topi.detach() ) if inference and decoder_input == end_token: return outputs[:di] return outputs _THAI_TO_ROM = ThaiTransliterator() def romanize(text: str) -> str: return _THAI_TO_ROM.romanize(text)
# -*- coding: utf-8 -*- import os import re import requests import shutil import time import xml.etree.ElementTree as ET import urllib.parse from collections import namedtuple from dateutil.parser import parse as parsedate from docutils import nodes, utils from sphinx.util.nodes import split_explicit_title from sphinx.util.console import bold, standout from sphinx import __version__ as sphinx_version if sphinx_version >= '1.6.0': from sphinx.util.logging import getLogger from ..doxylink import __version__ from .parsing import normalise, ParseException Entry = namedtuple('Entry', ['kind', 'file']) def report_info(env, msg, docname=None, lineno=None): '''Convenience function for logging an informational Args: msg (str): Message of the warning docname (str): Name of the document on which the error occured lineno (str): Line number in the document on which the error occured ''' if sphinx_version >= '1.6.0': logger = getLogger(__name__) if lineno is not None: logger.info(msg, location=(docname, lineno)) else: logger.info(msg, location=docname) else: env.info(docname, msg, lineno=lineno) def report_warning(env, msg, docname=None, lineno=None): '''Convenience function for logging a warning Args: msg (str): Message of the warning docname (str): Name of the document on which the error occured lineno (str): Line number in the document on which the error occured ''' if sphinx_version >= '1.6.0': logger = getLogger(__name__) if lineno is not None: logger.warning(msg, location=(docname, lineno)) else: logger.warning(msg, location=docname) else: env.warn(docname, msg, lineno=lineno) def is_url(str_to_validate): ''' Helper function to check if string contains URL Args: str_to_validate (str): String to validate as URL Returns: bool: True if given string is a URL, False otherwise ''' regex = re.compile( r'^(?:http|ftp)s?://' # http:// or https:// r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|' #domain... r'localhost|' #localhost... r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # ...or ip r'(?::\d+)?' # optional port r'(?:/?|[/?]\S+)$', re.IGNORECASE) return bool(re.match(regex, str_to_validate)) class FunctionList: """A FunctionList maps argument lists to specific entries""" def __init__(self): self.kind = 'function_list' self._arglist = {} # type: MutableMapping[str, str] def __getitem__(self, arglist: str) -> Entry: # If the user has requested a specific function through specifying an arglist then get the right anchor if arglist: try: filename = self._arglist[arglist] except KeyError: # TODO Offer fuzzy suggestion raise LookupError('Argument list match not found') else: # Otherwise just return the first entry (if they don't care they get whatever comes first) filename = list(self._arglist.values())[0] return Entry(kind='function', file=filename) def add_overload(self, arglist: str, file: str) -> None: self._arglist[arglist] = file class SymbolMap: """A SymbolMap maps symbols to Entries or FunctionLists""" def __init__(self, xml_doc: ET.ElementTree) -> None: self._mapping = parse_tag_file(xml_doc) def _get_symbol_match(self, symbol: str) -> str: if self._mapping.get(symbol): return symbol piecewise_list = match_piecewise(self._mapping.keys(), symbol) # If there is only one match, return it. if len(piecewise_list) == 1: return list(piecewise_list)[0] # If there is more than one item in piecewise_list then there is an ambiguity # Often this is due to the symbol matching the name of the constructor as well as the class name itself # We will prefer the class classes_list = {s for s in piecewise_list if self._mapping[s].kind == 'class'} # If there is only one by here we return it. if len(classes_list) == 1: return list(classes_list)[0] # Now, to disambiguate between ``PolyVox::Array< 1, ElementType >::operator[]`` and ``PolyVox::Array::operator[]`` matching ``operator[]``, # we will ignore templated (as in C++ templates) tag names by removing names containing ``<`` no_templates_list = {s for s in piecewise_list if '<' not in s} if len(no_templates_list) == 1: return list(no_templates_list)[0] # If not found by now, return the shortest match, assuming that's the most specific if no_templates_list: # TODO return a warning here? return min(no_templates_list, key=len) # TODO Offer fuzzy suggestion raise LookupError('Could not find a match') def __getitem__(self, item: str) -> Entry: symbol, normalised_arglist = normalise(item) matched_symbol = self._get_symbol_match(symbol) entry = self._mapping[matched_symbol] if isinstance(entry, FunctionList): entry = entry[normalised_arglist] return entry def parse_tag_file(doc: ET.ElementTree) -> dict: """ Takes in an XML tree from a Doxygen tag file and returns a dictionary that looks something like: .. code-block:: python {'PolyVox': Entry(...), 'PolyVox::Array': Entry(...), 'PolyVox::Array1DDouble': Entry(...), 'PolyVox::Array1DFloat': Entry(...), 'PolyVox::Array1DInt16': Entry(...), 'QScriptContext::throwError': FunctionList(...), 'QScriptContext::toString': FunctionList(...) } Note the different form for functions. This is required to allow for 'overloading by argument type'. :Parameters: doc : xml.etree.ElementTree The XML DOM object :return: a dictionary mapping fully qualified symbols to files """ mapping = {} # type: MutableMapping[str, Union[Entry, FunctionList]] function_list = [] # This is a list of function to be parsed and inserted into mapping at the end of the function. for compound in doc.findall('./compound'): compound_kind = compound.get('kind') if compound_kind not in {'namespace', 'class', 'struct', 'file', 'define', 'group', 'page'}: continue compound_name = compound.findtext('name') compound_filename = compound.findtext('filename') # TODO The following is a hack bug fix I think # Doxygen doesn't seem to include the file extension to <compound kind="file"><filename> entries # If it's a 'file' type, check if it _does_ have an extension, if not append '.html' if compound_kind in ('file', 'page') and not os.path.splitext(compound_filename)[1]: compound_filename = compound_filename + '.html' # If it's a compound we can simply add it mapping[compound_name] = Entry(kind=compound_kind, file=compound_filename) for member in compound.findall('member'): # If the member doesn't have an <anchorfile> element, use the parent compounds <filename> instead # This is the way it is in the qt.tag and is perhaps an artefact of old Doxygen anchorfile = member.findtext('anchorfile') or compound_filename member_symbol = compound_name + '::' + member.findtext('name') member_kind = member.get('kind') arglist_text = member.findtext('./arglist') # If it has an <arglist> then we assume it's a function. Empty <arglist> returns '', not None. Things like typedefs and enums can have empty arglists if arglist_text and member_kind not in {'variable', 'typedef', 'enumeration'}: function_list.append((member_symbol, arglist_text, member_kind, join(anchorfile, '#', member.findtext('anchor')))) else: mapping[member_symbol] = Entry(kind=member.get('kind'), file=join(anchorfile, '#', member.findtext('anchor'))) for member_symbol, arglist, kind, anchor_link in function_list: try: normalised_arglist = normalise(member_symbol + arglist)[1] except ParseException as e: print('Skipping %s %s%s. Error reported from parser was: %s' % (kind, member_symbol, arglist, e)) else: if mapping.get(member_symbol) and isinstance(mapping[member_symbol], FunctionList): mapping[member_symbol].add_overload(normalised_arglist, anchor_link) else: mapping[member_symbol] = FunctionList() mapping[member_symbol].add_overload(normalised_arglist, anchor_link) return mapping def match_piecewise(candidates: set, symbol: str, sep: str='::') -> set: """ Match the requested symbol reverse piecewise (split on ``::``) against the candidates. This allows you to under-specify the base namespace so that ``"MyClass"`` can match ``my_namespace::MyClass`` Args: candidates: set of possible matches for symbol symbol: the symbol to match against sep: the separator between identifier elements Returns: set of matches """ piecewise_list = set() for item in candidates: split_symbol = symbol.split(sep) split_item = item.split(sep) split_symbol.reverse() split_item.reverse() min_length = len(split_symbol) split_item = split_item[:min_length] if split_symbol == split_item: piecewise_list.add(item) return piecewise_list def join(*args): return ''.join(args) def create_role(app, tag_filename, rootdir, cache_name, pdf=""): # Tidy up the root directory path if not rootdir.endswith(('/', '\\')): rootdir = join(rootdir, os.sep) try: if is_url(tag_filename): hresponse = requests.head(tag_filename, allow_redirects=True) if hresponse.status_code != 200: raise FileNotFoundError try: modification_time = parsedate(hresponse.headers['last-modified']).timestamp() except KeyError: # no last-modified header from server modification_time = time.time() def _parse(): response = requests.get(tag_filename, allow_redirects=True) if response.status_code != 200: raise FileNotFoundError return ET.fromstring(response.text) else: modification_time = os.path.getmtime(tag_filename) def _parse(): return ET.parse(tag_filename) report_info(app.env, bold('Checking tag file cache for %s: ' % cache_name)) if not hasattr(app.env, 'doxylink_cache'): # no cache present at all, initialise it report_info(app.env, 'No cache at all, rebuilding...') mapping = SymbolMap(_parse()) app.env.doxylink_cache = {cache_name: {'mapping': mapping, 'mtime': modification_time}} elif not app.env.doxylink_cache.get(cache_name): # Main cache is there but the specific sub-cache for this tag file is not report_info(app.env, 'Sub cache is missing, rebuilding...') mapping = SymbolMap(_parse()) app.env.doxylink_cache[cache_name] = {'mapping': mapping, 'mtime': modification_time} elif app.env.doxylink_cache[cache_name]['mtime'] < modification_time: # tag file has been modified since sub-cache creation report_info(app.env, 'Sub-cache is out of date, rebuilding...') mapping = SymbolMap(_parse()) app.env.doxylink_cache[cache_name] = {'mapping': mapping, 'mtime': modification_time} elif not app.env.doxylink_cache[cache_name].get('version') or app.env.doxylink_cache[cache_name].get('version') != __version__: # sub-cache doesn't have a version or the version doesn't match report_info(app.env, 'Sub-cache schema version doesn\'t match, rebuilding...') mapping = SymbolMap(_parse()) app.env.doxylink_cache[cache_name] = {'mapping': mapping, 'mtime': modification_time} else: # The cache is up to date report_info(app.env, 'Sub-cache is up-to-date') except FileNotFoundError: tag_file_found = False report_warning(app.env, standout('Could not find tag file %s. Make sure your `doxylink` config variable is set correctly.' % tag_filename)) else: tag_file_found = True def find_doxygen_link(name, rawtext, text, lineno, inliner, options={}, content=[]): # from :name:`title <part>` has_explicit_title, title, part = split_explicit_title(text) part = utils.unescape(part) warning_messages = [] if not tag_file_found: warning_messages.append('Could not find match for `%s` because tag file not found' % part) return [nodes.inline(title, title)], [] try: url = app.env.doxylink_cache[cache_name]['mapping'][part] except LookupError as error: inliner.reporter.warning('Could not find match for `%s` in `%s` tag file. Error reported was %s' % (part, tag_filename, error), line=lineno) return [nodes.inline(title, title)], [] except ParseException as error: inliner.reporter.warning('Error while parsing `%s`. Is not a well-formed C++ function call or symbol.' 'If this is not the case, it is a doxylink bug so please report it.' 'Error reported was: %s' % (part, error), line=lineno) return [nodes.inline(title, title)], [] if pdf: full_url = join(pdf, '#', url.file) full_url = full_url.replace('.html#', '_') # for links to variables and functions full_url = full_url.replace('.html', '') # for links to files # If it's an absolute path then the link will work regardless of the document directory # Also check if it is a URL (i.e. it has a 'scheme' like 'http' or 'file') elif os.path.isabs(rootdir) or urllib.parse.urlparse(rootdir).scheme: full_url = join(rootdir, url.file) # But otherwise we need to add the relative path of the current document to the root source directory to the link else: relative_path_to_docsrc = os.path.relpath(app.env.srcdir, os.path.dirname(inliner.document.attributes['source'])) full_url = join(relative_path_to_docsrc, '/', rootdir, url.file) # We always use the '/' here rather than os.sep since this is a web link avoids problems like documentation/.\../library/doc/ (mixed slashes) if url.kind == 'function' and app.config.add_function_parentheses and normalise(title)[1] == '' and not has_explicit_title: title = join(title, '()') pnode = nodes.reference(title, title, internal=False, refuri=full_url) return [pnode], [] return find_doxygen_link def extract_configuration(values): if len(values) == 3: tag_filename, rootdir, pdf_filename = values elif len(values) == 2: tag_filename = values[0] if values[1].endswith('.pdf'): pdf_filename = values[1] rootdir = "" else: rootdir = values[1] pdf_filename = "" else: raise ValueError("Config variable `doxylink` is incorrectly configured. Expected a tuple with 2 to 3 " "elements; got %s" % values) return tag_filename, rootdir, pdf_filename def fetch_file(app, source, output_path): """Fetches file and puts it in the desired location if it does not exist yet. Local files will be copied and remote files will be downloaded. Directories in the ``output_path`` get created if needed. Args: app: Sphinx' application instance source (str): Path to local file or URL to remote file output_path (str): Path with filename to copy/download the source to, relative to Sphinx' output directory """ if not os.path.isabs(output_path): output_path = os.path.join(app.outdir, output_path) if os.path.exists(output_path): return os.makedirs(os.path.dirname(output_path), exist_ok=True) if is_url(source): response = requests.get(source, allow_redirects=True) if response.status_code != 200: report_warning(app.env, standout("Could not find file %r. Make sure your `doxylink_pdf_files` config variable is " "set correctly." % source)) return with open(output_path, 'wb') as file: file.write(response.content) else: if not os.path.isabs(source): source = os.path.join(app.outdir, source) if os.path.exists(source): shutil.copy(source, output_path) else: report_warning(app.env, standout("Expected a URL or a path that exists as value for `doxylink_pdf_files` " "config variable; got %r" % source)) def process_configuration(app, tag_filename, rootdir, pdf_filename): """Processes the configured values for ``doxylink`` and ``doxylink_pdf_files`` and warns about potential issues. The type of builder decides which values shall be used. Args: app: Sphinx' application instance tag_filename (str): Path to the Doxygen tag file rootdir (str): Path to the root directory of Doxygen HTML documentation pdf_filename (str): Path to the pdf file; may be empty when LaTeX builder is not used """ if app.builder.format == 'latex': if not pdf_filename: if is_url(rootdir): report_warning(app.env, "Linking from PDF to remote Doxygen html is not supported yet; got %r." "Consider linking to a Doxygen pdf file instead as " "third element of the tuple in the `doxylink` config variable." % rootdir) else: report_warning(app.env, "Linking from PDF to local Doxygen html is not possible; got %r." "Consider linking to a Doxygen pdf file instead as third element of the tuple in the " "`doxylink` config variable." % rootdir) elif pdf_filename in app.config.doxylink_pdf_files: source = app.config.doxylink_pdf_files[pdf_filename] fetch_file(app, source, pdf_filename) elif pdf_filename and not rootdir: report_warning(app.env, "Linking from HTML to Doxygen pdf (%r) is not supported. Consider setting " "the root directory of Doxygen's HTML output as value instead." % pdf_filename) def setup_doxylink_roles(app): for name, values in app.config.doxylink.items(): tag_filename, rootdir, pdf_filename = extract_configuration(values) process_configuration(app, tag_filename, rootdir, pdf_filename) app.add_role(name, create_role(app, tag_filename, rootdir, name, pdf=pdf_filename))
"""This lobe enables the integration of huggingface pretrained wav2vec2/hubert/wavlm models. Reference: https://arxiv.org/abs/2006.11477 Reference: https://arxiv.org/abs/1904.05862 Reference: https://arxiv.org/abs/2110.13900 Transformer from HuggingFace needs to be installed: https://huggingface.co/transformers/installation.html Authors * Titouan Parcollet 2021 * Boumadane Abdelmoumene 2021 """ import os import torch import logging import pathlib import numpy as np import torch.nn.functional as F from torch import nn from huggingface_hub import model_info from speechbrain.pretrained.fetching import fetch # We check if transformers is installed. try: import transformers from transformers import Wav2Vec2Model, HubertModel, WavLMModel, Data2VecAudioModel from transformers import Wav2Vec2Config, HubertConfig, WavLMConfig, Data2VecAudioConfig from transformers import Wav2Vec2FeatureExtractor from transformers import Wav2Vec2ForPreTraining from transformers.models.wav2vec2.modeling_wav2vec2 import ( _compute_mask_indices, ) except ImportError: MSG = "Please install transformers from HuggingFace to use wav2vec2 / Hubert\n" MSG += "E.G. run: pip install transformers" raise ImportError(MSG) logger = logging.getLogger(__name__) HF_models = { "wav2vec2": Wav2Vec2Model, "hubert": HubertModel, "wavlm": WavLMModel, "data2vec": Data2VecAudioModel } HF_config = { "wav2vec2": Wav2Vec2Config, "hubert": HubertConfig, "wavlm": WavLMConfig, "data2vec": Data2VecAudioConfig } class HuggingFaceWav2Vec2(nn.Module): """This lobe enables the integration of HuggingFace and SpeechBrain pretrained wav2vec2.0/Hubert models. Source paper wav2vec2.0: https://arxiv.org/abs/2006.11477 Source paper Hubert: https://arxiv.org/abs/2106.07447 Transformer from HuggingFace needs to be installed: https://huggingface.co/transformers/installation.html The model can be used as a fixed feature extractor or can be finetuned. It will download automatically the model from HuggingFace or use a local path. Arguments --------- source : str HuggingFace hub name: e.g "facebook/wav2vec2-large-lv60" save_path : str Path (dir) of the downloaded model. output_norm : bool (default: True) If True, a layer_norm (affine) will be applied to the output obtained from the wav2vec model. freeze : bool (default: True) If True, the model is frozen. If False, the model will be trained alongside with the rest of the pipeline. freeze_feature_extractor : bool (default: False) When freeze = False and freeze_feature_extractor True, the featue_extractor module of the model is Frozen. If False all the wav2vec model will be trained including featue_extractor module. apply_spec_augment : bool (default: False) If True, the model will apply spec augment on the output of feature extractor (inside huggingface Wav2VecModel() class). If False, the model will not apply spec augment. We set this to false to prevent from doing it twice. Example ------- >>> inputs = torch.rand([10, 600]) >>> model_hub = "facebook/wav2vec2-base-960h" >>> save_path = "savedir" >>> model = HuggingFaceWav2Vec2(model_hub, save_path) >>> outputs = model(inputs) """ def __init__( self, source, save_path, output_norm=True, freeze=True, freeze_feature_extractor=False, apply_spec_augment=False, load_pretrained_weights=True, ): super().__init__() # Download the extractor from HuggingFace. # The extractor is only used to retrieve the normalisation information self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( source, cache_dir=save_path ) # Select specific self-supervised loader (eg. Wav2Vec2, Hubert) if "hubert" in source: config = HF_config.get("hubert") model = HF_models.get("hubert") elif "wavlm" in source: config = HF_config.get("wavlm") model = HF_models.get("wavlm") elif "data2vec" in source: config = HF_config.get("data2vec") model = HF_models.get("data2vec") else: config = HF_config.get("wav2vec2") model = HF_models.get("wav2vec2") # Download and load the model self._from_pretrained( source, config=config, model=model, save_path=save_path, load_weights=load_pretrained_weights ) # set apply_spec_augment self.model.config.apply_spec_augment = apply_spec_augment # We check if inputs need to be normalized w.r.t pretrained wav2vec2 self.normalize_wav = self.feature_extractor.do_normalize self.freeze = freeze self.freeze_feature_extractor = freeze_feature_extractor self.output_norm = output_norm if self.freeze: logger.warning( "speechbrain.lobes.models.huggingface_wav2vec - wav2vec 2.0 is frozen." ) self.model.eval() for param in self.model.parameters(): param.requires_grad = False else: self.model.train() if self.freeze_feature_extractor: self.model.feature_extractor._freeze_parameters() def _from_pretrained(self, source, config, model, save_path, load_weights): """This function manages the source checking and loading of the params. # 1. Is the model from HF or a local path # 2. Is the model pretrained with HF or SpeechBrain # 3. Download (if appropriate) and load with respect to 1. and 2. """ is_sb, ckpt_file = self._check_model_source(source) if not load_weights: config = config.from_pretrained(source, cache_dir=save_path) self.model = model(config) elif is_sb: config = config.from_pretrained(source, cache_dir=save_path) self.model = model(config) self.model.gradient_checkpointing_disable() # Required by DDP # fetch the checkpoint file ckpt_full_path = fetch( filename=ckpt_file, source=source, savedir=save_path ) # We transfer the parameters from the checkpoint. self._load_sb_pretrained_w2v2_parameters(ckpt_full_path) else: if load_weights: self.model = model.from_pretrained(source, cache_dir=save_path) else: self.model=model() def _load_sb_pretrained_w2v2_parameters(self, path): """Loads the parameter of a w2v2 model pretrained with SpeechBrain and the HuggingFaceWav2Vec2Pretrain Object. It is necessary to perform a custom loading because HuggingFace adds a level to the checkpoint when storing the model breaking the compatibility between HuggingFaceWav2Vec2Pretrain and HuggingFaceWav2Vec2. In practice a typical HuggingFaceWav2Vec2 checkpoint for a given parameter would be: model.conv.weight.data while for HuggingFaceWav2Vec2Pretrain it is: model.wav2vec2.weight.data (wav2vec2 must be removed before loading). """ modified_state_dict = {} orig_state_dict = torch.load(path, map_location="cpu") # We remove the .wav2vec2 in the state dict. for key, params in orig_state_dict.items(): if "wav2vec2." in key: save_key = key.replace("model.wav2vec2.", "") modified_state_dict[save_key] = params incompatible_keys = self.model.load_state_dict( modified_state_dict, strict=False ) for missing_key in incompatible_keys.missing_keys: logger.warning( f"During parameter transfer to {self.model} loading from " + f"{path}, the transferred parameters did not have " + f"parameters for the key: {missing_key}" ) for unexpected_key in incompatible_keys.unexpected_keys: logger.warning( f"The param with the key: {unexpected_key} is discarded as it " + "is useless for wav2vec 2.0 finetuning." ) def _check_model_source(self, path): """Checks if the pretrained model has been trained with SpeechBrain and is hosted locally or on a HuggingFace hub. """ checkpoint_filename = "" source = pathlib.Path(path) is_local = True is_sb = True # If path is a huggingface hub. if not source.exists(): is_local = False if is_local: # Test for HuggingFace model if any(File.endswith(".bin") for File in os.listdir(path)): is_sb = False return is_sb, checkpoint_filename # Test for SpeechBrain model and get the filename. for File in os.listdir(path): if File.endswith(".ckpt"): checkpoint_filename = os.path.join(path, File) is_sb = True return is_sb, checkpoint_filename else: files = model_info( path ).siblings # get the list of files of the Hub # Test if it's an HuggingFace model or a SB one for File in files: if File.rfilename.endswith(".ckpt"): checkpoint_filename = File.rfilename is_sb = True return is_sb, checkpoint_filename for File in files: if File.rfilename.endswith(".bin"): checkpoint_filename = File.rfilename is_sb = False return is_sb, checkpoint_filename err_msg = f"{path} does not contain a .bin or .ckpt checkpoint !" raise FileNotFoundError(err_msg) def forward(self, wav): """Takes an input waveform and return its corresponding wav2vec encoding. Arguments --------- wav : torch.Tensor (signal) A batch of audio signals to transform to features. """ # If we freeze, we simply remove all grads and features from the graph. if self.freeze: with torch.no_grad(): return self.extract_features(wav).detach() return self.extract_features(wav) def extract_features(self, wav): """Takes an input waveform and return its corresponding wav2vec encoding. Arguments --------- wav : torch.Tensor (signal) A batch of audio signals to transform to features. """ if self.normalize_wav: wav = F.layer_norm(wav, wav.shape) # Extract wav2vec output out = self.model(wav)[0] # We normalize the output if required if self.output_norm: out = F.layer_norm(out, out.shape) return out class HuggingFaceWav2Vec2Pretrain(nn.Module): """This lobe enables the integration of HuggingFace wav2vec2.0 models to be pretrained. Source paper: https://arxiv.org/abs/2006.11477 Transformer from HuggingFace needs to be installed: https://huggingface.co/transformers/installation.html The return is an HuggingFace format and the mask indices that contains: https://huggingface.co/transformers/model_doc/wav2vec2.html#wav2vec2forpretraining For instance, it returns the loss that can be accessed with .loss Arguments --------- source : str HuggingFace hub name: e.g "facebook/wav2vec2-large-lv60" save_path : str Path (dir) of the downloaded model. mask_prob : float (default: 0.65) Probability of masking a given frame. Default is taken from the paper. mask_length : float (default: 10) Length (i.e. number of consecutive masked frames). Default is taken from the paper. Example ------- >>> inputs = torch.rand([10, 32000]) >>> model_hub = "facebook/wav2vec2-base-960h" >>> save_path = "savedir" >>> model = HuggingFaceWav2Vec2Pretrain(model_hub, save_path) >>> outputs, _ = model(inputs) """ def __init__( self, source, save_path, mask_prob=0.65, mask_length=10, normalize_wav=True, ): super().__init__() self.mask_prob = mask_prob self.mask_length = mask_length self.normalize_wav = normalize_wav # Download the config of the model from HuggingFace. self.config = Wav2Vec2Config.from_pretrained( source, cache_dir=save_path ) self.config.output_hidden_states = ( True # We want the hidden states as well! ) self.model = Wav2Vec2ForPreTraining(self.config) self.model.gradient_checkpointing_disable() # Required by DDP self.model.train() # We check if inputs need to be normalized w.r.t pretrained wav2vec2 def forward(self, wav): """Takes an input waveform and return its corresponding wav2vec encoding. Arguments --------- wav : torch.Tensor (signal) A batch of audio signals to transform to features. """ batch_size, raw_sequence_length = wav.shape if self.normalize_wav: wav = F.layer_norm(wav, wav.shape) sequence_length = self.model._get_feat_extract_output_lengths( raw_sequence_length ) # 1. Compute the indices that will be masked mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.mask_prob, mask_length=self.mask_length, ) torch_mask_time_indices = torch.tensor( mask_time_indices, device=wav.device, dtype=torch.long, ) # 2. Sample the negative samples from the entire sequence. # Fairseq does it only on the masked indices, but this only work if you # have long sentences. For more versatily, we sample on the entire sequence. # value. full_sentence_indices = np.ones((batch_size, sequence_length)) # print(np.sum(mask_time_indices, axis=1)) negative_sample_indices = torch.tensor( transformers.models.wav2vec2.modeling_wav2vec2._sample_negative_indices( (batch_size, sequence_length), num_negatives=self.config.num_negatives, mask_time_indices=full_sentence_indices, ), device=wav.device, dtype=torch.long, ) return ( self.model( wav, mask_time_indices=torch_mask_time_indices, sampled_negative_indices=negative_sample_indices, ), torch_mask_time_indices, )
newchat_xpath= "//*[@id='side']/header/div[2]/div/span/div[2]" search_xpath= "//*[@id='app']/div/div/div[2]/div[1]/span/div/span/div/div[1]/div/label/div/div[2]" #user_xpath= "//span[@title='{}']" message_xpath= "//*[@id='main']/footer/div[1]/div[2]/div/div[2]" sendbutton_xpath= "//*[@id='main']/footer/div[1]/div[3]"
""" VRChat API Documentation The version of the OpenAPI document: 1.6.8 Contact: me@ruby.js.org Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from vrchatapi.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) from ..model_utils import OpenApiModel from vrchatapi.exceptions import ApiAttributeError def lazy_import(): from vrchatapi.model.release_status import ReleaseStatus from vrchatapi.model.tag import Tag from vrchatapi.model.world_id import WorldID globals()['ReleaseStatus'] = ReleaseStatus globals()['Tag'] = Tag globals()['WorldID'] = WorldID class CreateWorldRequest(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { ('asset_url',): { 'min_length': 1, }, ('image_url',): { 'min_length': 1, }, ('name',): { 'min_length': 1, }, ('asset_version',): { 'inclusive_minimum': 0, }, ('author_name',): { 'min_length': 1, }, ('capacity',): { 'inclusive_maximum': 40, 'inclusive_minimum': 0, }, ('unity_package_url',): { 'min_length': 1, }, ('unity_version',): { 'min_length': 1, }, } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'asset_url': (str,), # noqa: E501 'image_url': (str,), # noqa: E501 'name': (str,), # noqa: E501 'asset_version': (int,), # noqa: E501 'author_id': (str,), # noqa: E501 'author_name': (str,), # noqa: E501 'capacity': (int,), # noqa: E501 'description': (str,), # noqa: E501 'id': (WorldID,), # noqa: E501 'platform': (str,), # noqa: E501 'release_status': (ReleaseStatus,), # noqa: E501 'tags': ([Tag],), # noqa: E501 'unity_package_url': (str,), # noqa: E501 'unity_version': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'asset_url': 'assetUrl', # noqa: E501 'image_url': 'imageUrl', # noqa: E501 'name': 'name', # noqa: E501 'asset_version': 'assetVersion', # noqa: E501 'author_id': 'authorId', # noqa: E501 'author_name': 'authorName', # noqa: E501 'capacity': 'capacity', # noqa: E501 'description': 'description', # noqa: E501 'id': 'id', # noqa: E501 'platform': 'platform', # noqa: E501 'release_status': 'releaseStatus', # noqa: E501 'tags': 'tags', # noqa: E501 'unity_package_url': 'unityPackageUrl', # noqa: E501 'unity_version': 'unityVersion', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, asset_url, image_url, name, *args, **kwargs): # noqa: E501 """CreateWorldRequest - a model defined in OpenAPI Args: asset_url (str): image_url (str): name (str): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) asset_version (int): [optional] # noqa: E501 author_id (str): A users unique ID, usually in the form of `usr_c1644b5b-3ca4-45b4-97c6-a2a0de70d469`. Legacy players can have old IDs in the form of `8JoV9XEdpo`. The ID can never be changed.. [optional] # noqa: E501 author_name (str): [optional] # noqa: E501 capacity (int): [optional] # noqa: E501 description (str): [optional] # noqa: E501 id (WorldID): [optional] # noqa: E501 platform (str): This can be `standalonewindows` or `android`, but can also pretty much be any random Unity verison such as `2019.2.4-801-Release` or `2019.2.2-772-Release` or even `unknownplatform`.. [optional] # noqa: E501 release_status (ReleaseStatus): [optional] # noqa: E501 tags ([Tag]): [optional] # noqa: E501 unity_package_url (str): [optional] # noqa: E501 unity_version (str): [optional] if omitted the server will use the default value of "5.3.4p1" # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.asset_url = asset_url self.image_url = image_url self.name = name for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, asset_url, image_url, name, *args, **kwargs): # noqa: E501 """CreateWorldRequest - a model defined in OpenAPI Args: asset_url (str): image_url (str): name (str): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) asset_version (int): [optional] # noqa: E501 author_id (str): A users unique ID, usually in the form of `usr_c1644b5b-3ca4-45b4-97c6-a2a0de70d469`. Legacy players can have old IDs in the form of `8JoV9XEdpo`. The ID can never be changed.. [optional] # noqa: E501 author_name (str): [optional] # noqa: E501 capacity (int): [optional] # noqa: E501 description (str): [optional] # noqa: E501 id (WorldID): [optional] # noqa: E501 platform (str): This can be `standalonewindows` or `android`, but can also pretty much be any random Unity verison such as `2019.2.4-801-Release` or `2019.2.2-772-Release` or even `unknownplatform`.. [optional] # noqa: E501 release_status (ReleaseStatus): [optional] # noqa: E501 tags ([Tag]): [optional] # noqa: E501 unity_package_url (str): [optional] # noqa: E501 unity_version (str): [optional] if omitted the server will use the default value of "5.3.4p1" # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.asset_url = asset_url self.image_url = image_url self.name = name for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
# ex:ts=4:sw=4:sts=4:et # -*- tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- """ BitBake 'Fetch' implementations Classes for obtaining upstream sources for the BitBake build tools. """ # Copyright (C) 2003, 2004 Chris Larson # Copyright (C) 2012 Intel Corporation # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License version 2 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # Based on functions from the base bb module, Copyright 2003 Holger Schurig import os, re import signal import logging import urllib.request, urllib.parse, urllib.error if 'git' not in urllib.parse.uses_netloc: urllib.parse.uses_netloc.append('git') import operator import collections import subprocess import pickle import errno import bb.persist_data, bb.utils import bb.checksum import bb.process import bb.event __version__ = "2" _checksum_cache = bb.checksum.FileChecksumCache() logger = logging.getLogger("BitBake.Fetcher") class BBFetchException(Exception): """Class all fetch exceptions inherit from""" def __init__(self, message): self.msg = message Exception.__init__(self, message) def __str__(self): return self.msg class UntrustedUrl(BBFetchException): """Exception raised when encountering a host not listed in BB_ALLOWED_NETWORKS""" def __init__(self, url, message=''): if message: msg = message else: msg = "The URL: '%s' is not trusted and cannot be used" % url self.url = url BBFetchException.__init__(self, msg) self.args = (url,) class MalformedUrl(BBFetchException): """Exception raised when encountering an invalid url""" def __init__(self, url, message=''): if message: msg = message else: msg = "The URL: '%s' is invalid and cannot be interpreted" % url self.url = url BBFetchException.__init__(self, msg) self.args = (url,) class FetchError(BBFetchException): """General fetcher exception when something happens incorrectly""" def __init__(self, message, url = None): if url: msg = "Fetcher failure for URL: '%s'. %s" % (url, message) else: msg = "Fetcher failure: %s" % message self.url = url BBFetchException.__init__(self, msg) self.args = (message, url) class ChecksumError(FetchError): """Exception when mismatched checksum encountered""" def __init__(self, message, url = None, checksum = None): self.checksum = checksum FetchError.__init__(self, message, url) class NoChecksumError(FetchError): """Exception when no checksum is specified, but BB_STRICT_CHECKSUM is set""" class UnpackError(BBFetchException): """General fetcher exception when something happens incorrectly when unpacking""" def __init__(self, message, url): msg = "Unpack failure for URL: '%s'. %s" % (url, message) self.url = url BBFetchException.__init__(self, msg) self.args = (message, url) class NoMethodError(BBFetchException): """Exception raised when there is no method to obtain a supplied url or set of urls""" def __init__(self, url): msg = "Could not find a fetcher which supports the URL: '%s'" % url self.url = url BBFetchException.__init__(self, msg) self.args = (url,) class MissingParameterError(BBFetchException): """Exception raised when a fetch method is missing a critical parameter in the url""" def __init__(self, missing, url): msg = "URL: '%s' is missing the required parameter '%s'" % (url, missing) self.url = url self.missing = missing BBFetchException.__init__(self, msg) self.args = (missing, url) class ParameterError(BBFetchException): """Exception raised when a url cannot be proccessed due to invalid parameters.""" def __init__(self, message, url): msg = "URL: '%s' has invalid parameters. %s" % (url, message) self.url = url BBFetchException.__init__(self, msg) self.args = (message, url) class NetworkAccess(BBFetchException): """Exception raised when network access is disabled but it is required.""" def __init__(self, url, cmd): msg = "Network access disabled through BB_NO_NETWORK (or set indirectly due to use of BB_FETCH_PREMIRRORONLY) but access requested with command %s (for url %s)" % (cmd, url) self.url = url self.cmd = cmd BBFetchException.__init__(self, msg) self.args = (url, cmd) class NonLocalMethod(Exception): def __init__(self): Exception.__init__(self) class MissingChecksumEvent(bb.event.Event): def __init__(self, url, md5sum, sha256sum): self.url = url self.checksums = {'md5sum': md5sum, 'sha256sum': sha256sum} bb.event.Event.__init__(self) class URI(object): """ A class representing a generic URI, with methods for accessing the URI components, and stringifies to the URI. It is constructed by calling it with a URI, or setting the attributes manually: uri = URI("http://example.com/") uri = URI() uri.scheme = 'http' uri.hostname = 'example.com' uri.path = '/' It has the following attributes: * scheme (read/write) * userinfo (authentication information) (read/write) * username (read/write) * password (read/write) Note, password is deprecated as of RFC 3986. * hostname (read/write) * port (read/write) * hostport (read only) "hostname:port", if both are set, otherwise just "hostname" * path (read/write) * path_quoted (read/write) A URI quoted version of path * params (dict) (read/write) * query (dict) (read/write) * relative (bool) (read only) True if this is a "relative URI", (e.g. file:foo.diff) It stringifies to the URI itself. Some notes about relative URIs: while it's specified that a URI beginning with <scheme>:// should either be directly followed by a hostname or a /, the old URI handling of the fetch2 library did not comform to this. Therefore, this URI class has some kludges to make sure that URIs are parsed in a way comforming to bitbake's current usage. This URI class supports the following: file:relative/path.diff (IETF compliant) git:relative/path.git (IETF compliant) git:///absolute/path.git (IETF compliant) file:///absolute/path.diff (IETF compliant) file://relative/path.diff (not IETF compliant) But it does not support the following: file://hostname/absolute/path.diff (would be IETF compliant) Note that the last case only applies to a list of "whitelisted" schemes (currently only file://), that requires its URIs to not have a network location. """ _relative_schemes = ['file', 'git'] _netloc_forbidden = ['file'] def __init__(self, uri=None): self.scheme = '' self.userinfo = '' self.hostname = '' self.port = None self._path = '' self.params = {} self.query = {} self.relative = False if not uri: return # We hijack the URL parameters, since the way bitbake uses # them are not quite RFC compliant. uri, param_str = (uri.split(";", 1) + [None])[:2] urlp = urllib.parse.urlparse(uri) self.scheme = urlp.scheme reparse = 0 # Coerce urlparse to make URI scheme use netloc if not self.scheme in urllib.parse.uses_netloc: urllib.parse.uses_params.append(self.scheme) reparse = 1 # Make urlparse happy(/ier) by converting local resources # to RFC compliant URL format. E.g.: # file://foo.diff -> file:foo.diff if urlp.scheme in self._netloc_forbidden: uri = re.sub("(?<=:)//(?!/)", "", uri, 1) reparse = 1 if reparse: urlp = urllib.parse.urlparse(uri) # Identify if the URI is relative or not if urlp.scheme in self._relative_schemes and \ re.compile("^\w+:(?!//)").match(uri): self.relative = True if not self.relative: self.hostname = urlp.hostname or '' self.port = urlp.port self.userinfo += urlp.username or '' if urlp.password: self.userinfo += ':%s' % urlp.password self.path = urllib.parse.unquote(urlp.path) if param_str: self.params = self._param_str_split(param_str, ";") if urlp.query: self.query = self._param_str_split(urlp.query, "&") def __str__(self): userinfo = self.userinfo if userinfo: userinfo += '@' return "%s:%s%s%s%s%s%s" % ( self.scheme, '' if self.relative else '//', userinfo, self.hostport, self.path_quoted, self._query_str(), self._param_str()) def _param_str(self): return ( ''.join([';', self._param_str_join(self.params, ";")]) if self.params else '') def _query_str(self): return ( ''.join(['?', self._param_str_join(self.query, "&")]) if self.query else '') def _param_str_split(self, string, elmdelim, kvdelim="="): ret = collections.OrderedDict() for k, v in [x.split(kvdelim, 1) for x in string.split(elmdelim)]: ret[k] = v return ret def _param_str_join(self, dict_, elmdelim, kvdelim="="): return elmdelim.join([kvdelim.join([k, v]) for k, v in dict_.items()]) @property def hostport(self): if not self.port: return self.hostname return "%s:%d" % (self.hostname, self.port) @property def path_quoted(self): return urllib.parse.quote(self.path) @path_quoted.setter def path_quoted(self, path): self.path = urllib.parse.unquote(path) @property def path(self): return self._path @path.setter def path(self, path): self._path = path if not path or re.compile("^/").match(path): self.relative = False else: self.relative = True @property def username(self): if self.userinfo: return (self.userinfo.split(":", 1))[0] return '' @username.setter def username(self, username): password = self.password self.userinfo = username if password: self.userinfo += ":%s" % password @property def password(self): if self.userinfo and ":" in self.userinfo: return (self.userinfo.split(":", 1))[1] return '' @password.setter def password(self, password): self.userinfo = "%s:%s" % (self.username, password) def decodeurl(url): """Decodes an URL into the tokens (scheme, network location, path, user, password, parameters). """ m = re.compile('(?P<type>[^:]*)://((?P<user>[^/;]+)@)?(?P<location>[^;]+)(;(?P<parm>.*))?').match(url) if not m: raise MalformedUrl(url) type = m.group('type') location = m.group('location') if not location: raise MalformedUrl(url) user = m.group('user') parm = m.group('parm') locidx = location.find('/') if locidx != -1 and type.lower() != 'file': host = location[:locidx] path = location[locidx:] elif type.lower() == 'file': host = "" path = location else: host = location path = "" if user: m = re.compile('(?P<user>[^:]+)(:?(?P<pswd>.*))').match(user) if m: user = m.group('user') pswd = m.group('pswd') else: user = '' pswd = '' p = collections.OrderedDict() if parm: for s in parm.split(';'): if s: if not '=' in s: raise MalformedUrl(url, "The URL: '%s' is invalid: parameter %s does not specify a value (missing '=')" % (url, s)) s1, s2 = s.split('=') p[s1] = s2 return type, host, urllib.parse.unquote(path), user, pswd, p def encodeurl(decoded): """Encodes a URL from tokens (scheme, network location, path, user, password, parameters). """ type, host, path, user, pswd, p = decoded if not type: raise MissingParameterError('type', "encoded from the data %s" % str(decoded)) url = '%s://' % type if user and type != "file": url += "%s" % user if pswd: url += ":%s" % pswd url += "@" if host and type != "file": url += "%s" % host if path: # Standardise path to ensure comparisons work while '//' in path: path = path.replace("//", "/") url += "%s" % urllib.parse.quote(path) if p: for parm in p: url += ";%s=%s" % (parm, p[parm]) return url def uri_replace(ud, uri_find, uri_replace, replacements, d, mirrortarball=None): if not ud.url or not uri_find or not uri_replace: logger.error("uri_replace: passed an undefined value, not replacing") return None uri_decoded = list(decodeurl(ud.url)) uri_find_decoded = list(decodeurl(uri_find)) uri_replace_decoded = list(decodeurl(uri_replace)) logger.debug(2, "For url %s comparing %s to %s" % (uri_decoded, uri_find_decoded, uri_replace_decoded)) result_decoded = ['', '', '', '', '', {}] for loc, i in enumerate(uri_find_decoded): result_decoded[loc] = uri_decoded[loc] regexp = i if loc == 0 and regexp and not regexp.endswith("$"): # Leaving the type unanchored can mean "https" matching "file" can become "files" # which is clearly undesirable. regexp += "$" if loc == 5: # Handle URL parameters if i: # Any specified URL parameters must match for k in uri_replace_decoded[loc]: if uri_decoded[loc][k] != uri_replace_decoded[loc][k]: return None # Overwrite any specified replacement parameters for k in uri_replace_decoded[loc]: for l in replacements: uri_replace_decoded[loc][k] = uri_replace_decoded[loc][k].replace(l, replacements[l]) result_decoded[loc][k] = uri_replace_decoded[loc][k] elif (re.match(regexp, uri_decoded[loc])): if not uri_replace_decoded[loc]: result_decoded[loc] = "" else: for k in replacements: uri_replace_decoded[loc] = uri_replace_decoded[loc].replace(k, replacements[k]) #bb.note("%s %s %s" % (regexp, uri_replace_decoded[loc], uri_decoded[loc])) result_decoded[loc] = re.sub(regexp, uri_replace_decoded[loc], uri_decoded[loc], 1) if loc == 2: # Handle path manipulations basename = None if uri_decoded[0] != uri_replace_decoded[0] and mirrortarball: # If the source and destination url types differ, must be a mirrortarball mapping basename = os.path.basename(mirrortarball) # Kill parameters, they make no sense for mirror tarballs uri_decoded[5] = {} elif ud.localpath and ud.method.supports_checksum(ud): basename = os.path.basename(ud.localpath) if basename and not result_decoded[loc].endswith(basename): result_decoded[loc] = os.path.join(result_decoded[loc], basename) else: return None result = encodeurl(result_decoded) if result == ud.url: return None logger.debug(2, "For url %s returning %s" % (ud.url, result)) return result methods = [] urldata_cache = {} saved_headrevs = {} def fetcher_init(d): """ Called to initialize the fetchers once the configuration data is known. Calls before this must not hit the cache. """ # When to drop SCM head revisions controlled by user policy srcrev_policy = d.getVar('BB_SRCREV_POLICY') or "clear" if srcrev_policy == "cache": logger.debug(1, "Keeping SRCREV cache due to cache policy of: %s", srcrev_policy) elif srcrev_policy == "clear": logger.debug(1, "Clearing SRCREV cache due to cache policy of: %s", srcrev_policy) revs = bb.persist_data.persist('BB_URI_HEADREVS', d) try: bb.fetch2.saved_headrevs = revs.items() except: pass revs.clear() else: raise FetchError("Invalid SRCREV cache policy of: %s" % srcrev_policy) _checksum_cache.init_cache(d) for m in methods: if hasattr(m, "init"): m.init(d) def fetcher_parse_save(): _checksum_cache.save_extras() def fetcher_parse_done(): _checksum_cache.save_merge() def fetcher_compare_revisions(): """ Compare the revisions in the persistant cache with current values and return true/false on whether they've changed. """ data = bb.persist_data.persist('BB_URI_HEADREVS', d).items() data2 = bb.fetch2.saved_headrevs changed = False for key in data: if key not in data2 or data2[key] != data[key]: logger.debug(1, "%s changed", key) changed = True return True else: logger.debug(2, "%s did not change", key) return False def mirror_from_string(data): mirrors = (data or "").replace('\\n',' ').split() # Split into pairs if len(mirrors) % 2 != 0: bb.warn('Invalid mirror data %s, should have paired members.' % data) return list(zip(*[iter(mirrors)]*2)) def verify_checksum(ud, d, precomputed={}): """ verify the MD5 and SHA256 checksum for downloaded src Raises a FetchError if one or both of the SRC_URI checksums do not match the downloaded file, or if BB_STRICT_CHECKSUM is set and there are no checksums specified. Returns a dict of checksums that can be stored in a done stamp file and passed in as precomputed parameter in a later call to avoid re-computing the checksums from the file. This allows verifying the checksums of the file against those in the recipe each time, rather than only after downloading. See https://bugzilla.yoctoproject.org/show_bug.cgi?id=5571. """ _MD5_KEY = "md5" _SHA256_KEY = "sha256" if ud.ignore_checksums or not ud.method.supports_checksum(ud): return {} if _MD5_KEY in precomputed: md5data = precomputed[_MD5_KEY] else: md5data = bb.utils.md5_file(ud.localpath) if _SHA256_KEY in precomputed: sha256data = precomputed[_SHA256_KEY] else: sha256data = bb.utils.sha256_file(ud.localpath) if ud.method.recommends_checksum(ud) and not ud.md5_expected and not ud.sha256_expected: # If strict checking enabled and neither sum defined, raise error strict = d.getVar("BB_STRICT_CHECKSUM") or "0" if strict == "1": logger.error('No checksum specified for %s, please add at least one to the recipe:\n' 'SRC_URI[%s] = "%s"\nSRC_URI[%s] = "%s"' % (ud.localpath, ud.md5_name, md5data, ud.sha256_name, sha256data)) raise NoChecksumError('Missing SRC_URI checksum', ud.url) bb.event.fire(MissingChecksumEvent(ud.url, md5data, sha256data), d) if strict == "ignore": return { _MD5_KEY: md5data, _SHA256_KEY: sha256data } # Log missing sums so user can more easily add them logger.warning('Missing md5 SRC_URI checksum for %s, consider adding to the recipe:\n' 'SRC_URI[%s] = "%s"', ud.localpath, ud.md5_name, md5data) logger.warning('Missing sha256 SRC_URI checksum for %s, consider adding to the recipe:\n' 'SRC_URI[%s] = "%s"', ud.localpath, ud.sha256_name, sha256data) # We want to alert the user if a checksum is defined in the recipe but # it does not match. msg = "" mismatch = False if ud.md5_expected and ud.md5_expected != md5data: msg = msg + "\nFile: '%s' has %s checksum %s when %s was expected" % (ud.localpath, 'md5', md5data, ud.md5_expected) mismatch = True; if ud.sha256_expected and ud.sha256_expected != sha256data: msg = msg + "\nFile: '%s' has %s checksum %s when %s was expected" % (ud.localpath, 'sha256', sha256data, ud.sha256_expected) mismatch = True; if mismatch: msg = msg + '\nIf this change is expected (e.g. you have upgraded to a new version without updating the checksums) then you can use these lines within the recipe:\nSRC_URI[%s] = "%s"\nSRC_URI[%s] = "%s"\nOtherwise you should retry the download and/or check with upstream to determine if the file has become corrupted or otherwise unexpectedly modified.\n' % (ud.md5_name, md5data, ud.sha256_name, sha256data) if len(msg): raise ChecksumError('Checksum mismatch!%s' % msg, ud.url, md5data) return { _MD5_KEY: md5data, _SHA256_KEY: sha256data } def verify_donestamp(ud, d, origud=None): """ Check whether the done stamp file has the right checksums (if the fetch method supports them). If it doesn't, delete the done stamp and force a re-download. Returns True, if the donestamp exists and is valid, False otherwise. When returning False, any existing done stamps are removed. """ if not ud.needdonestamp or (origud and not origud.needdonestamp): return True if not os.path.exists(ud.donestamp): return False if (not ud.method.supports_checksum(ud) or (origud and not origud.method.supports_checksum(origud))): # done stamp exists, checksums not supported; assume the local file is # current return True if not os.path.exists(ud.localpath): # done stamp exists, but the downloaded file does not; the done stamp # must be incorrect, re-trigger the download bb.utils.remove(ud.donestamp) return False precomputed_checksums = {} # Only re-use the precomputed checksums if the donestamp is newer than the # file. Do not rely on the mtime of directories, though. If ud.localpath is # a directory, there will probably not be any checksums anyway. if (os.path.isdir(ud.localpath) or os.path.getmtime(ud.localpath) < os.path.getmtime(ud.donestamp)): try: with open(ud.donestamp, "rb") as cachefile: pickled = pickle.Unpickler(cachefile) precomputed_checksums.update(pickled.load()) except Exception as e: # Avoid the warnings on the upgrade path from emtpy done stamp # files to those containing the checksums. if not isinstance(e, EOFError): # Ignore errors, they aren't fatal logger.warning("Couldn't load checksums from donestamp %s: %s " "(msg: %s)" % (ud.donestamp, type(e).__name__, str(e))) try: checksums = verify_checksum(ud, d, precomputed_checksums) # If the cache file did not have the checksums, compute and store them # as an upgrade path from the previous done stamp file format. if checksums != precomputed_checksums: with open(ud.donestamp, "wb") as cachefile: p = pickle.Pickler(cachefile, 2) p.dump(checksums) return True except ChecksumError as e: # Checksums failed to verify, trigger re-download and remove the # incorrect stamp file. logger.warning("Checksum mismatch for local file %s\n" "Cleaning and trying again." % ud.localpath) if os.path.exists(ud.localpath): rename_bad_checksum(ud, e.checksum) bb.utils.remove(ud.donestamp) return False def update_stamp(ud, d): """ donestamp is file stamp indicating the whole fetching is done this function update the stamp after verifying the checksum """ if not ud.needdonestamp: return if os.path.exists(ud.donestamp): # Touch the done stamp file to show active use of the download try: os.utime(ud.donestamp, None) except: # Errors aren't fatal here pass else: try: checksums = verify_checksum(ud, d) # Store the checksums for later re-verification against the recipe with open(ud.donestamp, "wb") as cachefile: p = pickle.Pickler(cachefile, 2) p.dump(checksums) except ChecksumError as e: # Checksums failed to verify, trigger re-download and remove the # incorrect stamp file. logger.warning("Checksum mismatch for local file %s\n" "Cleaning and trying again." % ud.localpath) if os.path.exists(ud.localpath): rename_bad_checksum(ud, e.checksum) bb.utils.remove(ud.donestamp) raise def subprocess_setup(): # Python installs a SIGPIPE handler by default. This is usually not what # non-Python subprocesses expect. # SIGPIPE errors are known issues with gzip/bash signal.signal(signal.SIGPIPE, signal.SIG_DFL) def get_autorev(d): # only not cache src rev in autorev case if d.getVar('BB_SRCREV_POLICY') != "cache": d.setVar('BB_DONT_CACHE', '1') return "AUTOINC" def get_srcrev(d, method_name='sortable_revision'): """ Return the revision string, usually for use in the version string (PV) of the current package Most packages usually only have one SCM so we just pass on the call. In the multi SCM case, we build a value based on SRCREV_FORMAT which must have been set. The idea here is that we put the string "AUTOINC+" into return value if the revisions are not incremental, other code is then responsible for turning that into an increasing value (if needed) A method_name can be supplied to retrieve an alternatively formatted revision from a fetcher, if that fetcher provides a method with the given name and the same signature as sortable_revision. """ scms = [] fetcher = Fetch(d.getVar('SRC_URI').split(), d) urldata = fetcher.ud for u in urldata: if urldata[u].method.supports_srcrev(): scms.append(u) if len(scms) == 0: raise FetchError("SRCREV was used yet no valid SCM was found in SRC_URI") if len(scms) == 1 and len(urldata[scms[0]].names) == 1: autoinc, rev = getattr(urldata[scms[0]].method, method_name)(urldata[scms[0]], d, urldata[scms[0]].names[0]) if len(rev) > 10: rev = rev[:10] if autoinc: return "AUTOINC+" + rev return rev # # Mutiple SCMs are in SRC_URI so we resort to SRCREV_FORMAT # format = d.getVar('SRCREV_FORMAT') if not format: raise FetchError("The SRCREV_FORMAT variable must be set when multiple SCMs are used.") name_to_rev = {} seenautoinc = False for scm in scms: ud = urldata[scm] for name in ud.names: autoinc, rev = getattr(ud.method, method_name)(ud, d, name) seenautoinc = seenautoinc or autoinc if len(rev) > 10: rev = rev[:10] name_to_rev[name] = rev # Replace names by revisions in the SRCREV_FORMAT string. The approach used # here can handle names being prefixes of other names and names appearing # as substrings in revisions (in which case the name should not be # expanded). The '|' regular expression operator tries matches from left to # right, so we need to sort the names with the longest ones first. names_descending_len = sorted(name_to_rev, key=len, reverse=True) name_to_rev_re = "|".join(re.escape(name) for name in names_descending_len) format = re.sub(name_to_rev_re, lambda match: name_to_rev[match.group(0)], format) if seenautoinc: format = "AUTOINC+" + format return format def localpath(url, d): fetcher = bb.fetch2.Fetch([url], d) return fetcher.localpath(url) def runfetchcmd(cmd, d, quiet=False, cleanup=None, log=None, workdir=None): """ Run cmd returning the command output Raise an error if interrupted or cmd fails Optionally echo command output to stdout Optionally remove the files/directories listed in cleanup upon failure """ # Need to export PATH as binary could be in metadata paths # rather than host provided # Also include some other variables. # FIXME: Should really include all export varaiables? exportvars = ['HOME', 'PATH', 'HTTP_PROXY', 'http_proxy', 'HTTPS_PROXY', 'https_proxy', 'FTP_PROXY', 'ftp_proxy', 'FTPS_PROXY', 'ftps_proxy', 'NO_PROXY', 'no_proxy', 'ALL_PROXY', 'all_proxy', 'GIT_PROXY_COMMAND', 'GIT_SSL_CAINFO', 'GIT_SMART_HTTP', 'SSH_AUTH_SOCK', 'SSH_AGENT_PID', 'SOCKS5_USER', 'SOCKS5_PASSWD', 'DBUS_SESSION_BUS_ADDRESS', 'P4CONFIG'] if not cleanup: cleanup = [] # If PATH contains WORKDIR which contains PV which contains SRCPV we # can end up in circular recursion here so give the option of breaking it # in a data store copy. try: d.getVar("PV") except bb.data_smart.ExpansionError: d = bb.data.createCopy(d) d.setVar("PV", "fetcheravoidrecurse") origenv = d.getVar("BB_ORIGENV", False) for var in exportvars: val = d.getVar(var) or (origenv and origenv.getVar(var)) if val: cmd = 'export ' + var + '=\"%s\"; %s' % (val, cmd) logger.debug(1, "Running %s", cmd) success = False error_message = "" try: (output, errors) = bb.process.run(cmd, log=log, shell=True, stderr=subprocess.PIPE, cwd=workdir) success = True except bb.process.NotFoundError as e: error_message = "Fetch command %s" % (e.command) except bb.process.ExecutionError as e: if e.stdout: output = "output:\n%s\n%s" % (e.stdout, e.stderr) elif e.stderr: output = "output:\n%s" % e.stderr else: output = "no output" error_message = "Fetch command %s failed with exit code %s, %s" % (e.command, e.exitcode, output) except bb.process.CmdError as e: error_message = "Fetch command %s could not be run:\n%s" % (e.command, e.msg) if not success: for f in cleanup: try: bb.utils.remove(f, True) except OSError: pass raise FetchError(error_message) return output def check_network_access(d, info, url): """ log remote network access, and error if BB_NO_NETWORK is set or the given URI is untrusted """ if d.getVar("BB_NO_NETWORK") == "1": raise NetworkAccess(url, info) elif not trusted_network(d, url): raise UntrustedUrl(url, info) else: logger.debug(1, "Fetcher accessed the network with the command %s" % info) def build_mirroruris(origud, mirrors, ld): uris = [] uds = [] replacements = {} replacements["TYPE"] = origud.type replacements["HOST"] = origud.host replacements["PATH"] = origud.path replacements["BASENAME"] = origud.path.split("/")[-1] replacements["MIRRORNAME"] = origud.host.replace(':','.') + origud.path.replace('/', '.').replace('*', '.') def adduri(ud, uris, uds, mirrors, tarballs): for line in mirrors: try: (find, replace) = line except ValueError: continue for tarball in tarballs: newuri = uri_replace(ud, find, replace, replacements, ld, tarball) if not newuri or newuri in uris or newuri == origud.url: continue if not trusted_network(ld, newuri): logger.debug(1, "Mirror %s not in the list of trusted networks, skipping" % (newuri)) continue # Create a local copy of the mirrors minus the current line # this will prevent us from recursively processing the same line # as well as indirect recursion A -> B -> C -> A localmirrors = list(mirrors) localmirrors.remove(line) try: newud = FetchData(newuri, ld) newud.setup_localpath(ld) except bb.fetch2.BBFetchException as e: logger.debug(1, "Mirror fetch failure for url %s (original url: %s)" % (newuri, origud.url)) logger.debug(1, str(e)) try: # setup_localpath of file:// urls may fail, we should still see # if mirrors of the url exist adduri(newud, uris, uds, localmirrors, tarballs) except UnboundLocalError: pass continue uris.append(newuri) uds.append(newud) adduri(newud, uris, uds, localmirrors, tarballs) adduri(origud, uris, uds, mirrors, origud.mirrortarballs or [None]) return uris, uds def rename_bad_checksum(ud, suffix): """ Renames files to have suffix from parameter """ if ud.localpath is None: return new_localpath = "%s_bad-checksum_%s" % (ud.localpath, suffix) bb.warn("Renaming %s to %s" % (ud.localpath, new_localpath)) bb.utils.movefile(ud.localpath, new_localpath) def try_mirror_url(fetch, origud, ud, ld, check = False): # Return of None or a value means we're finished # False means try another url if ud.lockfile and ud.lockfile != origud.lockfile: lf = bb.utils.lockfile(ud.lockfile) try: if check: found = ud.method.checkstatus(fetch, ud, ld) if found: return found return False if not verify_donestamp(ud, ld, origud) or ud.method.need_update(ud, ld): ud.method.download(ud, ld) if hasattr(ud.method,"build_mirror_data"): ud.method.build_mirror_data(ud, ld) if not ud.localpath or not os.path.exists(ud.localpath): return False if ud.localpath == origud.localpath: return ud.localpath # We may be obtaining a mirror tarball which needs further processing by the real fetcher # If that tarball is a local file:// we need to provide a symlink to it dldir = ld.getVar("DL_DIR") if origud.mirrortarballs and os.path.basename(ud.localpath) in origud.mirrortarballs and os.path.basename(ud.localpath) != os.path.basename(origud.localpath): # Create donestamp in old format to avoid triggering a re-download if ud.donestamp: bb.utils.mkdirhier(os.path.dirname(ud.donestamp)) open(ud.donestamp, 'w').close() dest = os.path.join(dldir, os.path.basename(ud.localpath)) if not os.path.exists(dest): # In case this is executing without any file locks held (as is # the case for file:// URLs), two tasks may end up here at the # same time, in which case we do not want the second task to # fail when the link has already been created by the first task. try: os.symlink(ud.localpath, dest) except FileExistsError: pass if not verify_donestamp(origud, ld) or origud.method.need_update(origud, ld): origud.method.download(origud, ld) if hasattr(origud.method, "build_mirror_data"): origud.method.build_mirror_data(origud, ld) return origud.localpath # Otherwise the result is a local file:// and we symlink to it if not os.path.exists(origud.localpath): if os.path.islink(origud.localpath): # Broken symbolic link os.unlink(origud.localpath) # As per above, in case two tasks end up here simultaneously. try: os.symlink(ud.localpath, origud.localpath) except FileExistsError: pass update_stamp(origud, ld) return ud.localpath except bb.fetch2.NetworkAccess: raise except IOError as e: if e.errno in [os.errno.ESTALE]: logger.warning("Stale Error Observed %s." % ud.url) return False raise except bb.fetch2.BBFetchException as e: if isinstance(e, ChecksumError): logger.warning("Mirror checksum failure for url %s (original url: %s)\nCleaning and trying again." % (ud.url, origud.url)) logger.warning(str(e)) if os.path.exists(ud.localpath): rename_bad_checksum(ud, e.checksum) elif isinstance(e, NoChecksumError): raise else: logger.debug(1, "Mirror fetch failure for url %s (original url: %s)" % (ud.url, origud.url)) logger.debug(1, str(e)) try: ud.method.clean(ud, ld) except UnboundLocalError: pass return False finally: if ud.lockfile and ud.lockfile != origud.lockfile: bb.utils.unlockfile(lf) def try_mirrors(fetch, d, origud, mirrors, check = False): """ Try to use a mirrored version of the sources. This method will be automatically called before the fetchers go. d Is a bb.data instance uri is the original uri we're trying to download mirrors is the list of mirrors we're going to try """ ld = d.createCopy() uris, uds = build_mirroruris(origud, mirrors, ld) for index, uri in enumerate(uris): ret = try_mirror_url(fetch, origud, uds[index], ld, check) if ret != False: return ret return None def trusted_network(d, url): """ Use a trusted url during download if networking is enabled and BB_ALLOWED_NETWORKS is set globally or for a specific recipe. Note: modifies SRC_URI & mirrors. """ if d.getVar('BB_NO_NETWORK') == "1": return True pkgname = d.expand(d.getVar('PN', False)) trusted_hosts = d.getVarFlag('BB_ALLOWED_NETWORKS', pkgname, False) if not trusted_hosts: trusted_hosts = d.getVar('BB_ALLOWED_NETWORKS') # Not enabled. if not trusted_hosts: return True scheme, network, path, user, passwd, param = decodeurl(url) if not network: return True network = network.split(':')[0] network = network.lower() for host in trusted_hosts.split(" "): host = host.lower() if host.startswith("*.") and ("." + network).endswith(host[1:]): return True if host == network: return True return False def srcrev_internal_helper(ud, d, name): """ Return: a) a source revision if specified b) latest revision if SRCREV="AUTOINC" c) None if not specified """ srcrev = None pn = d.getVar("PN") attempts = [] if name != '' and pn: attempts.append("SRCREV_%s_pn-%s" % (name, pn)) if name != '': attempts.append("SRCREV_%s" % name) if pn: attempts.append("SRCREV_pn-%s" % pn) attempts.append("SRCREV") for a in attempts: srcrev = d.getVar(a) if srcrev and srcrev != "INVALID": break if 'rev' in ud.parm and 'tag' in ud.parm: raise FetchError("Please specify a ;rev= parameter or a ;tag= parameter in the url %s but not both." % (ud.url)) if 'rev' in ud.parm or 'tag' in ud.parm: if 'rev' in ud.parm: parmrev = ud.parm['rev'] else: parmrev = ud.parm['tag'] if srcrev == "INVALID" or not srcrev: return parmrev if srcrev != parmrev: raise FetchError("Conflicting revisions (%s from SRCREV and %s from the url) found, please specify one valid value" % (srcrev, parmrev)) return parmrev if srcrev == "INVALID" or not srcrev: raise FetchError("Please set a valid SRCREV for url %s (possible key names are %s, or use a ;rev=X URL parameter)" % (str(attempts), ud.url), ud.url) if srcrev == "AUTOINC": srcrev = ud.method.latest_revision(ud, d, name) return srcrev def get_checksum_file_list(d): """ Get a list of files checksum in SRC_URI Returns the resolved local paths of all local file entries in SRC_URI as a space-separated string """ fetch = Fetch([], d, cache = False, localonly = True) dl_dir = d.getVar('DL_DIR') filelist = [] for u in fetch.urls: ud = fetch.ud[u] if ud and isinstance(ud.method, local.Local): paths = ud.method.localpaths(ud, d) for f in paths: pth = ud.decodedurl if '*' in pth: f = os.path.join(os.path.abspath(f), pth) if f.startswith(dl_dir): # The local fetcher's behaviour is to return a path under DL_DIR if it couldn't find the file anywhere else if os.path.exists(f): bb.warn("Getting checksum for %s SRC_URI entry %s: file not found except in DL_DIR" % (d.getVar('PN'), os.path.basename(f))) else: bb.warn("Unable to get checksum for %s SRC_URI entry %s: file could not be found" % (d.getVar('PN'), os.path.basename(f))) filelist.append(f + ":" + str(os.path.exists(f))) return " ".join(filelist) def get_file_checksums(filelist, pn): """Get a list of the checksums for a list of local files Returns the checksums for a list of local files, caching the results as it proceeds """ return _checksum_cache.get_checksums(filelist, pn) class FetchData(object): """ A class which represents the fetcher state for a given URI. """ def __init__(self, url, d, localonly = False): # localpath is the location of a downloaded result. If not set, the file is local. self.donestamp = None self.needdonestamp = True self.localfile = "" self.localpath = None self.lockfile = None self.mirrortarballs = [] self.basename = None self.basepath = None (self.type, self.host, self.path, self.user, self.pswd, self.parm) = decodeurl(d.expand(url)) self.date = self.getSRCDate(d) self.url = url if not self.user and "user" in self.parm: self.user = self.parm["user"] if not self.pswd and "pswd" in self.parm: self.pswd = self.parm["pswd"] self.setup = False if "name" in self.parm: self.md5_name = "%s.md5sum" % self.parm["name"] self.sha256_name = "%s.sha256sum" % self.parm["name"] else: self.md5_name = "md5sum" self.sha256_name = "sha256sum" if self.md5_name in self.parm: self.md5_expected = self.parm[self.md5_name] elif self.type not in ["http", "https", "ftp", "ftps", "sftp", "s3"]: self.md5_expected = None else: self.md5_expected = d.getVarFlag("SRC_URI", self.md5_name) if self.sha256_name in self.parm: self.sha256_expected = self.parm[self.sha256_name] elif self.type not in ["http", "https", "ftp", "ftps", "sftp", "s3"]: self.sha256_expected = None else: self.sha256_expected = d.getVarFlag("SRC_URI", self.sha256_name) self.ignore_checksums = False self.names = self.parm.get("name",'default').split(',') self.method = None for m in methods: if m.supports(self, d): self.method = m break if not self.method: raise NoMethodError(url) if localonly and not isinstance(self.method, local.Local): raise NonLocalMethod() if self.parm.get("proto", None) and "protocol" not in self.parm: logger.warning('Consider updating %s recipe to use "protocol" not "proto" in SRC_URI.', d.getVar('PN')) self.parm["protocol"] = self.parm.get("proto", None) if hasattr(self.method, "urldata_init"): self.method.urldata_init(self, d) if "localpath" in self.parm: # if user sets localpath for file, use it instead. self.localpath = self.parm["localpath"] self.basename = os.path.basename(self.localpath) elif self.localfile: self.localpath = self.method.localpath(self, d) dldir = d.getVar("DL_DIR") if not self.needdonestamp: return # Note: .done and .lock files should always be in DL_DIR whereas localpath may not be. if self.localpath and self.localpath.startswith(dldir): basepath = self.localpath elif self.localpath: basepath = dldir + os.sep + os.path.basename(self.localpath) elif self.basepath or self.basename: basepath = dldir + os.sep + (self.basepath or self.basename) else: bb.fatal("Can't determine lock path for url %s" % url) self.donestamp = basepath + '.done' self.lockfile = basepath + '.lock' def setup_revisions(self, d): self.revisions = {} for name in self.names: self.revisions[name] = srcrev_internal_helper(self, d, name) # add compatibility code for non name specified case if len(self.names) == 1: self.revision = self.revisions[self.names[0]] def setup_localpath(self, d): if not self.localpath: self.localpath = self.method.localpath(self, d) def getSRCDate(self, d): """ Return the SRC Date for the component d the bb.data module """ if "srcdate" in self.parm: return self.parm['srcdate'] pn = d.getVar("PN") if pn: return d.getVar("SRCDATE_%s" % pn) or d.getVar("SRCDATE") or d.getVar("DATE") return d.getVar("SRCDATE") or d.getVar("DATE") class FetchMethod(object): """Base class for 'fetch'ing data""" def __init__(self, urls=None): self.urls = [] def supports(self, urldata, d): """ Check to see if this fetch class supports a given url. """ return 0 def localpath(self, urldata, d): """ Return the local filename of a given url assuming a successful fetch. Can also setup variables in urldata for use in go (saving code duplication and duplicate code execution) """ return os.path.join(d.getVar("DL_DIR"), urldata.localfile) def supports_checksum(self, urldata): """ Is localpath something that can be represented by a checksum? """ # We cannot compute checksums for directories if os.path.isdir(urldata.localpath) == True: return False if urldata.localpath.find("*") != -1: return False return True def recommends_checksum(self, urldata): """ Is the backend on where checksumming is recommended (should warnings be displayed if there is no checksum)? """ return False def _strip_leading_slashes(self, relpath): """ Remove leading slash as os.path.join can't cope """ while os.path.isabs(relpath): relpath = relpath[1:] return relpath def setUrls(self, urls): self.__urls = urls def getUrls(self): return self.__urls urls = property(getUrls, setUrls, None, "Urls property") def need_update(self, ud, d): """ Force a fetch, even if localpath exists? """ if os.path.exists(ud.localpath): return False return True def supports_srcrev(self): """ The fetcher supports auto source revisions (SRCREV) """ return False def download(self, urldata, d): """ Fetch urls Assumes localpath was called first """ raise NoMethodError(url) def unpack(self, urldata, rootdir, data): iterate = False file = urldata.localpath # Localpath can't deal with 'dir/*' entries, so it converts them to '.', # but it must be corrected back for local files copying if urldata.basename == '*' and file.endswith('/.'): file = '%s/%s' % (file.rstrip('/.'), urldata.path) try: unpack = bb.utils.to_boolean(urldata.parm.get('unpack'), True) except ValueError as exc: bb.fatal("Invalid value for 'unpack' parameter for %s: %s" % (file, urldata.parm.get('unpack'))) base, ext = os.path.splitext(file) if ext in ['.gz', '.bz2', '.Z', '.xz', '.lz']: efile = os.path.join(rootdir, os.path.basename(base)) else: efile = file cmd = None if unpack: if file.endswith('.tar'): cmd = 'tar x --no-same-owner -f %s' % file elif file.endswith('.tgz') or file.endswith('.tar.gz') or file.endswith('.tar.Z'): cmd = 'tar xz --no-same-owner -f %s' % file elif file.endswith('.tbz') or file.endswith('.tbz2') or file.endswith('.tar.bz2'): cmd = 'bzip2 -dc %s | tar x --no-same-owner -f -' % file elif file.endswith('.gz') or file.endswith('.Z') or file.endswith('.z'): cmd = 'gzip -dc %s > %s' % (file, efile) elif file.endswith('.bz2'): cmd = 'bzip2 -dc %s > %s' % (file, efile) elif file.endswith('.tar.xz'): cmd = 'xz -dc %s | tar x --no-same-owner -f -' % file elif file.endswith('.xz'): cmd = 'xz -dc %s > %s' % (file, efile) elif file.endswith('.tar.lz'): cmd = 'lzip -dc %s | tar x --no-same-owner -f -' % file elif file.endswith('.lz'): cmd = 'lzip -dc %s > %s' % (file, efile) elif file.endswith('.tar.7z'): cmd = '7z x -so %s | tar x --no-same-owner -f -' % file elif file.endswith('.7z'): cmd = '7za x -y %s 1>/dev/null' % file elif file.endswith('.zip') or file.endswith('.jar'): try: dos = bb.utils.to_boolean(urldata.parm.get('dos'), False) except ValueError as exc: bb.fatal("Invalid value for 'dos' parameter for %s: %s" % (file, urldata.parm.get('dos'))) cmd = 'unzip -q -o' if dos: cmd = '%s -a' % cmd cmd = "%s '%s'" % (cmd, file) elif file.endswith('.rpm') or file.endswith('.srpm'): if 'extract' in urldata.parm: unpack_file = urldata.parm.get('extract') cmd = 'rpm2cpio.sh %s | cpio -id %s' % (file, unpack_file) iterate = True iterate_file = unpack_file else: cmd = 'rpm2cpio.sh %s | cpio -id' % (file) elif file.endswith('.deb') or file.endswith('.ipk'): output = subprocess.check_output('ar -t %s' % file, preexec_fn=subprocess_setup, shell=True) datafile = None if output: for line in output.decode().splitlines(): if line.startswith('data.tar.'): datafile = line break else: raise UnpackError("Unable to unpack deb/ipk package - does not contain data.tar.* file", urldata.url) else: raise UnpackError("Unable to unpack deb/ipk package - could not list contents", urldata.url) cmd = 'ar x %s %s && tar --no-same-owner -xpf %s && rm %s' % (file, datafile, datafile, datafile) # If 'subdir' param exists, create a dir and use it as destination for unpack cmd if 'subdir' in urldata.parm: subdir = urldata.parm.get('subdir') if os.path.isabs(subdir): if not os.path.realpath(subdir).startswith(os.path.realpath(rootdir)): raise UnpackError("subdir argument isn't a subdirectory of unpack root %s" % rootdir, urldata.url) unpackdir = subdir else: unpackdir = os.path.join(rootdir, subdir) bb.utils.mkdirhier(unpackdir) else: unpackdir = rootdir if not unpack or not cmd: # If file == dest, then avoid any copies, as we already put the file into dest! dest = os.path.join(unpackdir, os.path.basename(file)) if file != dest and not (os.path.exists(dest) and os.path.samefile(file, dest)): destdir = '.' # For file:// entries all intermediate dirs in path must be created at destination if urldata.type == "file": # Trailing '/' does a copying to wrong place urlpath = urldata.path.rstrip('/') # Want files places relative to cwd so no leading '/' urlpath = urlpath.lstrip('/') if urlpath.find("/") != -1: destdir = urlpath.rsplit("/", 1)[0] + '/' bb.utils.mkdirhier("%s/%s" % (unpackdir, destdir)) cmd = 'cp -fpPRH %s %s' % (file, destdir) if not cmd: return path = data.getVar('PATH') if path: cmd = "PATH=\"%s\" %s" % (path, cmd) bb.note("Unpacking %s to %s/" % (file, unpackdir)) ret = subprocess.call(cmd, preexec_fn=subprocess_setup, shell=True, cwd=unpackdir) if ret != 0: raise UnpackError("Unpack command %s failed with return value %s" % (cmd, ret), urldata.url) if iterate is True: iterate_urldata = urldata iterate_urldata.localpath = "%s/%s" % (rootdir, iterate_file) self.unpack(urldata, rootdir, data) return def clean(self, urldata, d): """ Clean any existing full or partial download """ bb.utils.remove(urldata.localpath) def try_premirror(self, urldata, d): """ Should premirrors be used? """ return True def checkstatus(self, fetch, urldata, d): """ Check the status of a URL Assumes localpath was called first """ logger.info("URL %s could not be checked for status since no method exists.", url) return True def latest_revision(self, ud, d, name): """ Look in the cache for the latest revision, if not present ask the SCM. """ if not hasattr(self, "_latest_revision"): raise ParameterError("The fetcher for this URL does not support _latest_revision", url) revs = bb.persist_data.persist('BB_URI_HEADREVS', d) key = self.generate_revision_key(ud, d, name) try: return revs[key] except KeyError: revs[key] = rev = self._latest_revision(ud, d, name) return rev def sortable_revision(self, ud, d, name): latest_rev = self._build_revision(ud, d, name) return True, str(latest_rev) def generate_revision_key(self, ud, d, name): key = self._revision_key(ud, d, name) return "%s-%s" % (key, d.getVar("PN") or "") def latest_versionstring(self, ud, d): """ Compute the latest release name like "x.y.x" in "x.y.x+gitHASH" by searching through the tags output of ls-remote, comparing versions and returning the highest match as a (version, revision) pair. """ return ('', '') class Fetch(object): def __init__(self, urls, d, cache = True, localonly = False, connection_cache = None): if localonly and cache: raise Exception("bb.fetch2.Fetch.__init__: cannot set cache and localonly at same time") if len(urls) == 0: urls = d.getVar("SRC_URI").split() self.urls = urls self.d = d self.ud = {} self.connection_cache = connection_cache fn = d.getVar('FILE') mc = d.getVar('__BBMULTICONFIG') or "" if cache and fn and mc + fn in urldata_cache: self.ud = urldata_cache[mc + fn] for url in urls: if url not in self.ud: try: self.ud[url] = FetchData(url, d, localonly) except NonLocalMethod: if localonly: self.ud[url] = None pass if fn and cache: urldata_cache[mc + fn] = self.ud def localpath(self, url): if url not in self.urls: self.ud[url] = FetchData(url, self.d) self.ud[url].setup_localpath(self.d) return self.d.expand(self.ud[url].localpath) def localpaths(self): """ Return a list of the local filenames, assuming successful fetch """ local = [] for u in self.urls: ud = self.ud[u] ud.setup_localpath(self.d) local.append(ud.localpath) return local def download(self, urls=None): """ Fetch all urls """ if not urls: urls = self.urls network = self.d.getVar("BB_NO_NETWORK") premirroronly = (self.d.getVar("BB_FETCH_PREMIRRORONLY") == "1") for u in urls: ud = self.ud[u] ud.setup_localpath(self.d) m = ud.method localpath = "" if ud.lockfile: lf = bb.utils.lockfile(ud.lockfile) try: self.d.setVar("BB_NO_NETWORK", network) if verify_donestamp(ud, self.d) and not m.need_update(ud, self.d): localpath = ud.localpath elif m.try_premirror(ud, self.d): logger.debug(1, "Trying PREMIRRORS") mirrors = mirror_from_string(self.d.getVar('PREMIRRORS')) localpath = try_mirrors(self, self.d, ud, mirrors, False) if localpath: try: # early checksum verification so that if the checksum of the premirror # contents mismatch the fetcher can still try upstream and mirrors update_stamp(ud, self.d) except ChecksumError as e: logger.warning("Checksum failure encountered with premirror download of %s - will attempt other sources." % u) logger.debug(1, str(e)) localpath = "" if premirroronly: self.d.setVar("BB_NO_NETWORK", "1") firsterr = None verified_stamp = verify_donestamp(ud, self.d) if not localpath and (not verified_stamp or m.need_update(ud, self.d)): try: if not trusted_network(self.d, ud.url): raise UntrustedUrl(ud.url) logger.debug(1, "Trying Upstream") m.download(ud, self.d) if hasattr(m, "build_mirror_data"): m.build_mirror_data(ud, self.d) localpath = ud.localpath # early checksum verify, so that if checksum mismatched, # fetcher still have chance to fetch from mirror update_stamp(ud, self.d) except bb.fetch2.NetworkAccess: raise except BBFetchException as e: if isinstance(e, ChecksumError): logger.warning("Checksum failure encountered with download of %s - will attempt other sources if available" % u) logger.debug(1, str(e)) if os.path.exists(ud.localpath): rename_bad_checksum(ud, e.checksum) elif isinstance(e, NoChecksumError): raise else: logger.warning('Failed to fetch URL %s, attempting MIRRORS if available' % u) logger.debug(1, str(e)) firsterr = e # Remove any incomplete fetch if not verified_stamp: m.clean(ud, self.d) logger.debug(1, "Trying MIRRORS") mirrors = mirror_from_string(self.d.getVar('MIRRORS')) localpath = try_mirrors(self, self.d, ud, mirrors) if not localpath or ((not os.path.exists(localpath)) and localpath.find("*") == -1): if firsterr: logger.error(str(firsterr)) raise FetchError("Unable to fetch URL from any source.", u) update_stamp(ud, self.d) except IOError as e: if e.errno in [os.errno.ESTALE]: logger.error("Stale Error Observed %s." % u) raise ChecksumError("Stale Error Detected") except BBFetchException as e: if isinstance(e, ChecksumError): logger.error("Checksum failure fetching %s" % u) raise finally: if ud.lockfile: bb.utils.unlockfile(lf) def checkstatus(self, urls=None): """ Check all urls exist upstream """ if not urls: urls = self.urls for u in urls: ud = self.ud[u] ud.setup_localpath(self.d) m = ud.method logger.debug(1, "Testing URL %s", u) # First try checking uri, u, from PREMIRRORS mirrors = mirror_from_string(self.d.getVar('PREMIRRORS')) ret = try_mirrors(self, self.d, ud, mirrors, True) if not ret: # Next try checking from the original uri, u ret = m.checkstatus(self, ud, self.d) if not ret: # Finally, try checking uri, u, from MIRRORS mirrors = mirror_from_string(self.d.getVar('MIRRORS')) ret = try_mirrors(self, self.d, ud, mirrors, True) if not ret: raise FetchError("URL %s doesn't work" % u, u) def unpack(self, root, urls=None): """ Unpack urls to root """ if not urls: urls = self.urls for u in urls: ud = self.ud[u] ud.setup_localpath(self.d) if ud.lockfile: lf = bb.utils.lockfile(ud.lockfile) ud.method.unpack(ud, root, self.d) if ud.lockfile: bb.utils.unlockfile(lf) def clean(self, urls=None): """ Clean files that the fetcher gets or places """ if not urls: urls = self.urls for url in urls: if url not in self.ud: self.ud[url] = FetchData(url, d) ud = self.ud[url] ud.setup_localpath(self.d) if not ud.localfile and ud.localpath is None: continue if ud.lockfile: lf = bb.utils.lockfile(ud.lockfile) ud.method.clean(ud, self.d) if ud.donestamp: bb.utils.remove(ud.donestamp) if ud.lockfile: bb.utils.unlockfile(lf) class FetchConnectionCache(object): """ A class which represents an container for socket connections. """ def __init__(self): self.cache = {} def get_connection_name(self, host, port): return host + ':' + str(port) def add_connection(self, host, port, connection): cn = self.get_connection_name(host, port) if cn not in self.cache: self.cache[cn] = connection def get_connection(self, host, port): connection = None cn = self.get_connection_name(host, port) if cn in self.cache: connection = self.cache[cn] return connection def remove_connection(self, host, port): cn = self.get_connection_name(host, port) if cn in self.cache: self.cache[cn].close() del self.cache[cn] def close_connections(self): for cn in list(self.cache.keys()): self.cache[cn].close() del self.cache[cn] from . import cvs from . import git from . import gitsm from . import gitannex from . import local from . import svn from . import wget from . import ssh from . import sftp from . import s3 from . import perforce from . import bzr from . import hg from . import osc from . import repo from . import clearcase from . import npm methods.append(local.Local()) methods.append(wget.Wget()) methods.append(svn.Svn()) methods.append(git.Git()) methods.append(gitsm.GitSM()) methods.append(gitannex.GitANNEX()) methods.append(cvs.Cvs()) methods.append(ssh.SSH()) methods.append(sftp.SFTP()) methods.append(s3.S3()) methods.append(perforce.Perforce()) methods.append(bzr.Bzr()) methods.append(hg.Hg()) methods.append(osc.Osc()) methods.append(repo.Repo()) methods.append(clearcase.ClearCase()) methods.append(npm.Npm())
# -*- coding: utf-8 -*- from os.path import dirname, abspath import sys sys.path.insert(0, dirname(dirname(abspath(__file__)))) import utils.config_loader as config import utils.config_loader as config import utils.tools as tools import torch import shutil versions = ['sl', 'alpha'] para_org = True for vv in versions: if config.meta_model_name.endswith(vv): para_org = False def sort_sid2score(sid2score): sid_score_list = sorted(sid2score.items(), key=lambda item: item[1], reverse=True) return sid_score_list def get_rank_records(sid_score_list, sents=None, flat_sents=False): """ optional: display sentence in record :param sid_score_list: :param sents: :param flat_sents: if True, iterate sent directly; if False, need use sid to get doc_idx and sent_idx. :return: """ rank_records = [] for sid, score in sid_score_list: items = [sid, str(score)] if sents: if flat_sents: sent = sents[len(rank_records)] # the current point else: doc_idx, sent_idx = tools.get_sent_info(sid) sent = sents[doc_idx][sent_idx] items.append(sent) record = '\t'.join(items) rank_records.append(record) return rank_records def dump_rank_records(rank_records, out_fp, with_rank_idx): """ each line is ranking sid score sid: config.SEP.join((doc_idx, para_idx, sent_idx)) :param sid_score_list: :param out_fp: :return: """ lines = rank_records if with_rank_idx: lines = ['\t'.join((str(rank), record)) for rank, record in enumerate(rank_records)] with open(out_fp, mode='a', encoding='utf-8') as f: f.write('\n'.join(lines)) return len(lines)
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .server import MarsWebAPI, MarsRequestHandler, register_web_handler, get_jinja_env _jinja_env = get_jinja_env() class DashboardHandler(MarsRequestHandler): def get(self): web_api = MarsWebAPI(self._scheduler) scheduler_infos = web_api.get_schedulers_info() worker_infos = web_api.get_workers_meta() scheduler_summary = { 'count': len(scheduler_infos), 'cpu_used': sum(si['cpu_used'] for si in scheduler_infos.values()), 'cpu_total': sum(si['cpu_total'] for si in scheduler_infos.values()), 'memory_used': sum(si['memory_used'] for si in scheduler_infos.values()), 'memory_total': sum(si['memory_total'] for si in scheduler_infos.values()), 'git_branches': set(si['git_info'] for si in scheduler_infos.values()), } worker_summary = { 'count': len(worker_infos), 'cpu_used': sum(wi['hardware']['cpu_used'] for wi in worker_infos.values()), 'cpu_total': sum(wi['hardware']['cpu_total'] for wi in worker_infos.values()), 'memory_used': sum(wi['hardware']['memory_used'] for wi in worker_infos.values()), 'memory_total': sum(wi['hardware']['memory_total'] for wi in worker_infos.values()), 'git_branches': set(wi['details']['git_info'] for wi in worker_infos.values()), } template = _jinja_env.get_template('dashboard.html') self.write_rendered( template, scheduler_summary=scheduler_summary, worker_summary=worker_summary ) register_web_handler('/', DashboardHandler)
""" Our modification of the OpenAI Gym Continuous Mountain Car by Olivier Sigaud: https://github.com/openai/gym/blob/master/gym/envs/classic_control/continuous_mountain_car.py which was (ultimately) based on Sutton's implementation: http://incompleteideas.net/sutton/MountainCar/MountainCar1.cp """ from pilco.errors import EnvironmentError import gym from gym import spaces from gym.utils import seeding import numpy as np class MountainCar(gym.Env): metadata = {'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': 30} def __init__(self): # State and action bounds self.min_action = -1.0 self.max_action = 1.0 self.min_position = - 3.0 self.max_position = 3.0 self.max_speed = 0.07 self.goal_position = 0.5 # Force per mass the car can output self.power = 0.0015 self.low_state = np.array([self.min_position, -self.max_speed], dtype=np.float32) self.high_state = np.array([self.max_position, self.max_speed], dtype=np.float32) self.viewer = None # Allowed action space self.action_space = spaces.Box(low=self.min_action, high=self.max_action, shape=(1,), dtype=np.float32) self.seed() # Temporary hack to work with rest of library self.env = self def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, action): # Check if action is in permissible space if not self.action_space.contains(action): raise EnvironmentError(f'Expected action in the range of [-1., 1.] ' f'got action {action}.') # Unpack positiion and valocity position, velocity = self.state # Increment position by velocity position_ = position + velocity # Increment velocity by Euler rule and clip velocity_ = velocity + action * self.power - 0.0025 * np.cos(3 * position) velocity_ = np.clip(velocity_, - self.max_speed, self.max_speed) self.state = np.array([position_, velocity_]) return self.state, None, False, {} def reset(self): self.state = np.array([-0.5, 0.]) return np.array(self.state) def _height(self, xs): return 0.55 + 0.45 * np.sin(3 * xs) def render(self, mode='human'): # Set picture size screen_width = 600 screen_height = 400 world_width = self.max_position - self.min_position scale = screen_width/world_width # Set car size carwidth = 40 carheight = 20 if self.viewer is None: from gym.envs.classic_control import rendering # Car constants clearance = 10 # Overall viewer self.viewer = rendering.Viewer(screen_width, screen_height) # Track on which the car moves xs = np.linspace(self.min_position, self.max_position, 200) ys = self._height(xs) xys = list(zip((xs - self.min_position) * scale, ys * scale)) # Add car self.track = rendering.make_polyline(xys) self.track.set_linewidth(4) self.viewer.add_geom(self.track) self.cartrans = rendering.Transform() # Car chasis l, r, t, b = -carwidth / 2, carwidth / 2, carheight, 0 car = rendering.FilledPolygon([(l, b), (l, t), (r, t), (r, b)]) car.add_attr(rendering.Transform(translation=(0, clearance))) car.add_attr(self.cartrans) self.viewer.add_geom(car) # Front wheel frontwheel = rendering.make_circle(carheight / 2.5) frontwheel.set_color(.5, .5, .5) frontwheel.add_attr(rendering.Transform(translation=(carwidth / 4, clearance))) frontwheel.add_attr(self.cartrans) self.viewer.add_geom(frontwheel) # Back wheel backwheel = rendering.make_circle(carheight / 2.5) backwheel.add_attr(rendering.Transform(translation=(-carwidth / 4, clearance))) backwheel.add_attr(self.cartrans) backwheel.set_color(.5, .5, .5) self.viewer.add_geom(backwheel) # Flagpole on mountain peak flagx = scale * (0.5 - self.min_position) flagy1 = scale * self._height(self.goal_position) flagy2 = flagy1 + 50 flagpole = rendering.Line((flagx, flagy1), (flagx, flagy2)) self.viewer.add_geom(flagpole) # Flag on flagpole flag = rendering.FilledPolygon([(flagx, flagy2), (flagx, flagy2 - 10), (flagx + 25, flagy2 - 5)]) flag.set_color(.8, .8, 0) self.viewer.add_geom(flag) # Translate and rotate car self.cartrans.set_translation(scale * (self.state[0] - self.min_position), scale * self._height(self.state[0])) self.cartrans.set_rotation(np.cos(3 * self.state[0])) return self.viewer.render(return_rgb_array=mode=='rgb_array') def close(self): if self.viewer: self.viewer.close() self.viewer = None
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # <pep8-80 compliant> __all__ = ( "mesh_linked_uv_islands", "mesh_linked_triangles", "edge_face_count_dict", "edge_face_count", "edge_loops_from_edges", "ngon_tessellate", "triangle_random_points", ) def mesh_linked_uv_islands(mesh): """ Splits the mesh into connected polygons, use this for separating cubes from other mesh elements within 1 mesh datablock. :arg mesh: the mesh used to group with. :type mesh: :class:`bpy.types.Mesh` :return: lists of lists containing polygon indices :rtype: list """ uv_loops = [luv.uv[:] for luv in mesh.uv_layers.active.data] poly_loops = [poly.loop_indices for poly in mesh.polygons] luv_hash = {} luv_hash_get = luv_hash.get luv_hash_ls = [None] * len(uv_loops) for pi, poly_indices in enumerate(poly_loops): for li in poly_indices: uv = uv_loops[li] uv_hub = luv_hash_get(uv) if uv_hub is None: uv_hub = luv_hash[uv] = [pi] else: uv_hub.append(pi) luv_hash_ls[li] = uv_hub poly_islands = [] # 0 = none, 1 = added, 2 = searched poly_tag = [0] * len(poly_loops) while True: poly_index = -1 for i in range(len(poly_loops)): if poly_tag[i] == 0: poly_index = i break if poly_index != -1: island = [poly_index] poly_tag[poly_index] = 1 poly_islands.append(island) else: break # we're done added = True while added: added = False for poly_index in island[:]: if poly_tag[poly_index] == 1: for li in poly_loops[poly_index]: for poly_index_shared in luv_hash_ls[li]: if poly_tag[poly_index_shared] == 0: added = True poly_tag[poly_index_shared] = 1 island.append(poly_index_shared) poly_tag[poly_index] = 2 return poly_islands def mesh_linked_triangles(mesh): """ Splits the mesh into connected triangles, use this for separating cubes from other mesh elements within 1 mesh datablock. :arg mesh: the mesh used to group with. :type mesh: :class:`bpy.types.Mesh` :return: lists of lists containing triangles. :rtype: list """ # Build vert face connectivity vert_tris = [[] for i in range(len(mesh.vertices))] for t in mesh.loop_triangles: for v in t.vertices: vert_tris[v].append(t) # sort triangles into connectivity groups tri_groups = [[t] for t in mesh.loop_triangles] # map old, new tri location tri_mapping = list(range(len(mesh.loop_triangles))) # Now clump triangles iteratively ok = True while ok: ok = False for t in mesh.loop_triangles: mapped_index = tri_mapping[t.index] mapped_group = tri_groups[mapped_index] for v in t.vertices: for nxt_t in vert_tris[v]: if nxt_t != t: nxt_mapped_index = tri_mapping[nxt_t.index] # We are not a part of the same group if mapped_index != nxt_mapped_index: ok = True # Assign mapping to this group so they # all map to this group for grp_t in tri_groups[nxt_mapped_index]: tri_mapping[grp_t.index] = mapped_index # Move triangles into this group mapped_group.extend(tri_groups[nxt_mapped_index]) # remove reference to the list tri_groups[nxt_mapped_index] = None # return all tri groups that are not null # this is all the triangles that are connected in their own lists. return [tg for tg in tri_groups if tg] def edge_face_count_dict(mesh): """ :return: dict of edge keys with their value set to the number of faces using each edge. :rtype: dict """ face_edge_count = {} loops = mesh.loops edges = mesh.edges for poly in mesh.polygons: for i in poly.loop_indices: key = edges[loops[i].edge_index].key try: face_edge_count[key] += 1 except: face_edge_count[key] = 1 return face_edge_count def edge_face_count(mesh): """ :return: list face users for each item in mesh.edges. :rtype: list """ edge_face_count = edge_face_count_dict(mesh) get = dict.get return [get(edge_face_count, ed.key, 0) for ed in mesh.edges] def edge_loops_from_edges(mesh, edges=None): """ Edge loops defined by edges Takes me.edges or a list of edges and returns the edge loops return a list of vertex indices. [ [1, 6, 7, 2], ...] closed loops have matching start and end values. """ line_polys = [] # Get edges not used by a face if edges is None: edges = mesh.edges if not hasattr(edges, "pop"): edges = edges[:] while edges: current_edge = edges.pop() vert_end, vert_start = current_edge.vertices[:] line_poly = [vert_start, vert_end] ok = True while ok: ok = False # for i, ed in enumerate(edges): i = len(edges) while i: i -= 1 ed = edges[i] v1, v2 = ed.vertices if v1 == vert_end: line_poly.append(v2) vert_end = line_poly[-1] ok = 1 del edges[i] # break elif v2 == vert_end: line_poly.append(v1) vert_end = line_poly[-1] ok = 1 del edges[i] # break elif v1 == vert_start: line_poly.insert(0, v2) vert_start = line_poly[0] ok = 1 del edges[i] # break elif v2 == vert_start: line_poly.insert(0, v1) vert_start = line_poly[0] ok = 1 del edges[i] # break line_polys.append(line_poly) return line_polys def ngon_tessellate(from_data, indices, fix_loops=True, debug_print=True): """ Takes a polyline of indices (ngon) and returns a list of face index lists. Designed to be used for importers that need indices for an ngon to create from existing verts. :arg from_data: either a mesh, or a list/tuple of vectors. :type from_data: list or :class:`bpy.types.Mesh` :arg indices: a list of indices to use this list is the ordered closed polyline to fill, and can be a subset of the data given. :type indices: list :arg fix_loops: If this is enabled polylines that use loops to make multiple polylines are delt with correctly. :type fix_loops: bool """ from mathutils.geometry import tessellate_polygon from mathutils import Vector vector_to_tuple = Vector.to_tuple if not indices: return [] def mlen(co): # Manhatten length of a vector, faster then length. return abs(co[0]) + abs(co[1]) + abs(co[2]) def vert_treplet(v, i): return v, vector_to_tuple(v, 6), i, mlen(v) def ed_key_mlen(v1, v2): if v1[3] > v2[3]: return v2[1], v1[1] else: return v1[1], v2[1] if not fix_loops: # Normal single concave loop filling. if type(from_data) in {tuple, list}: verts = [Vector(from_data[i]) for ii, i in enumerate(indices)] else: verts = [from_data.vertices[i].co for ii, i in enumerate(indices)] # same as reversed(range(1, len(verts))): for i in range(len(verts) - 1, 0, -1): if verts[i][1] == verts[i - 1][0]: verts.pop(i - 1) fill = tessellate_polygon([verts]) else: # Separate this loop into multiple loops be finding edges that are # used twice. This is used by Light-Wave LWO files a lot. if type(from_data) in {tuple, list}: verts = [ vert_treplet(Vector(from_data[i]), ii) for ii, i in enumerate(indices) ] else: verts = [ vert_treplet(from_data.vertices[i].co, ii) for ii, i in enumerate(indices) ] edges = [(i, i - 1) for i in range(len(verts))] if edges: edges[0] = (0, len(verts) - 1) if not verts: return [] edges_used = set() edges_doubles = set() # We need to check if any edges are used twice location based. for ed in edges: edkey = ed_key_mlen(verts[ed[0]], verts[ed[1]]) if edkey in edges_used: edges_doubles.add(edkey) else: edges_used.add(edkey) # Store a list of unconnected loop segments split by double edges. # will join later loop_segments = [] v_prev = verts[0] context_loop = [v_prev] loop_segments = [context_loop] for v in verts: if v != v_prev: # Are we crossing an edge we removed? if ed_key_mlen(v, v_prev) in edges_doubles: context_loop = [v] loop_segments.append(context_loop) else: if context_loop and context_loop[-1][1] == v[1]: pass else: context_loop.append(v) v_prev = v # Now join loop segments def join_seg(s1, s2): if s2[-1][1] == s1[0][1]: s1, s2 = s2, s1 elif s1[-1][1] == s2[0][1]: pass else: return False # If were still here s1 and s2 are 2 segments in the same poly-line. s1.pop() # remove the last vert from s1 s1.extend(s2) # add segment 2 to segment 1 if s1[0][1] == s1[-1][1]: # remove endpoints double s1.pop() del s2[:] # Empty this segment s2 so we don't use it again. return True joining_segments = True while joining_segments: joining_segments = False segcount = len(loop_segments) for j in range(segcount - 1, -1, -1): # reversed(range(segcount)): seg_j = loop_segments[j] if seg_j: for k in range(j - 1, -1, -1): # reversed(range(j)): if not seg_j: break seg_k = loop_segments[k] if seg_k and join_seg(seg_j, seg_k): joining_segments = True loop_list = loop_segments for verts in loop_list: while verts and verts[0][1] == verts[-1][1]: verts.pop() loop_list = [verts for verts in loop_list if len(verts) > 2] # DONE DEALING WITH LOOP FIXING # vert mapping vert_map = [None] * len(indices) ii = 0 for verts in loop_list: if len(verts) > 2: for i, vert in enumerate(verts): vert_map[i + ii] = vert[2] ii += len(verts) fill = tessellate_polygon([[v[0] for v in loop] for loop in loop_list]) # draw_loops(loop_list) #raise Exception("done loop") # map to original indices fill = [[vert_map[i] for i in f] for f in fill] if not fill: if debug_print: print('Warning Cannot scanfill, fallback on a triangle fan.') fill = [[0, i - 1, i] for i in range(2, len(indices))] else: # Use real scan-fill. # See if its flipped the wrong way. flip = None for fi in fill: if flip is not None: break for i, vi in enumerate(fi): if vi == 0 and fi[i - 1] == 1: flip = False break elif vi == 1 and fi[i - 1] == 0: flip = True break if not flip: for i, fi in enumerate(fill): fill[i] = tuple([ii for ii in reversed(fi)]) return fill def triangle_random_points(num_points, loop_triangles): """ Generates a list of random points over mesh loop triangles. :arg num_points: the number of random points to generate on each triangle. :type int: :arg loop_triangles: list of the triangles to generate points on. :type loop_triangles: :class:`bpy.types.MeshLoopTriangle`, sequence :return: list of random points over all triangles. :rtype: list """ from random import random # For each triangle, generate the required number of random points sampled_points = [None] * (num_points * len(loop_triangles)) for i, lt in enumerate(loop_triangles): # Get triangle vertex coordinates verts = lt.id_data.vertices ltv = lt.vertices[:] tv = (verts[ltv[0]].co, verts[ltv[1]].co, verts[ltv[2]].co) for k in range(num_points): u1 = random() u2 = random() u_tot = u1 + u2 if u_tot > 1: u1 = 1.0 - u1 u2 = 1.0 - u2 side1 = tv[1] - tv[0] side2 = tv[2] - tv[0] p = tv[0] + u1 * side1 + u2 * side2 sampled_points[num_points * i + k] = p return sampled_points
from django.conf.urls import include, url from django.contrib import admin from django.conf import settings from django.conf.urls.static import static import profiles.urls import accounts.urls from . import views urlpatterns = [ url(r'^$', views.HomePage.as_view(), name='home'), url(r'^about/$', views.AboutPage.as_view(), name='about'), url(r'^users/', include(profiles.urls, namespace='profiles')), url(r'^admin/', include(admin.site.urls)), url(r'^', include(accounts.urls, namespace='accounts')), url(r'^apis/', include('apis.urls', namespace='apis')), url(r'^weather/', include('secondhome.urls', namespace='pets')), ] # User-uploaded files like profile pics need to be served in development urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) # Include django debug toolbar if DEBUG is on if settings.DEBUG: import debug_toolbar urlpatterns += [ url(r'^__debug__/', include(debug_toolbar.urls)), ]
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this file, # You can obtain one at http://mozilla.org/MPL/2.0/. # # Copyright (c) 2014-2021, Lars Asplund lars.anders.asplund@gmail.com from pathlib import Path from vunit.verilog import VUnit ROOT = Path(__file__).parent VU = VUnit.from_argv() VU.add_library("lib").add_source_files(ROOT / "test" / "*.sv") VU.set_sim_option("modelsim.vsim_flags.gui", ["-novopt"]) VU.main()
# encoding: utf-8 # module System.Drawing.Configuration calls itself Configuration # from System.Drawing, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a # by generator 1.145 # no doc # no imports # no functions # classes class SystemDrawingSection(ConfigurationSection): """ SystemDrawingSection() """ BitmapSuffix = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: BitmapSuffix(self: SystemDrawingSection) -> str Set: BitmapSuffix(self: SystemDrawingSection) = value """ ElementProperty = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Gets the System.Configuration.ConfigurationElementProperty object that represents the System.Configuration.ConfigurationElement object itself. """ EvaluationContext = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Gets the System.Configuration.ContextInformation object for the System.Configuration.ConfigurationElement object. """ HasContext = property(lambda self: object(), lambda self, v: None, lambda self: None) # default Properties = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
num1 = input("Enter the first number:\n ") num2 = input("Enter the second number:\n ") num3 = input("Enter the third number:\n ") num4 = input("Enter the fourth number:\n ") if (num1>num2) and (num2>num3): print("The greatest number is:", num1) elif (num2>num1) and (num1>num3): print("The greatest nymber is:", num2) else: print("The greatest number is:", num3)
""" IRN API v1 Allows users to extract, create, update and configure IRN data. # noqa: E501 The version of the OpenAPI document: 1 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from fds.sdk.IRNContacts.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from fds.sdk.IRNContacts.exceptions import ApiAttributeError class OperationType(ModelSimple): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ('value',): { '0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, }, } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'value': (int,), } @cached_property def discriminator(): return None attribute_map = {} read_only_vars = set() _composed_schemas = None required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): """OperationType - a model defined in OpenAPI Note that value can be passed either in args or in kwargs, but not in both. Args: args[0] (int):, must be one of [0, 1, 2, 3, 4, 5, 6, ] # noqa: E501 Keyword Args: value (int):, must be one of [0, 1, 2, 3, 4, 5, 6, ] # noqa: E501 _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ # required up here when default value is not given _path_to_item = kwargs.pop('_path_to_item', ()) if 'value' in kwargs: value = kwargs.pop('value') elif args: args = list(args) value = args.pop(0) else: raise ApiTypeError( "value is required, but not passed in args or kwargs and doesn't have default", path_to_item=_path_to_item, valid_classes=(self.__class__,), ) _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.value = value if kwargs: raise ApiTypeError( "Invalid named arguments=%s passed to %s. Remove those invalid named arguments." % ( kwargs, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): """OperationType - a model defined in OpenAPI Note that value can be passed either in args or in kwargs, but not in both. Args: args[0] (int):, must be one of [0, 1, 2, 3, 4, 5, 6, ] # noqa: E501 Keyword Args: value (int):, must be one of [0, 1, 2, 3, 4, 5, 6, ] # noqa: E501 _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ # required up here when default value is not given _path_to_item = kwargs.pop('_path_to_item', ()) self = super(OpenApiModel, cls).__new__(cls) if 'value' in kwargs: value = kwargs.pop('value') elif args: args = list(args) value = args.pop(0) else: raise ApiTypeError( "value is required, but not passed in args or kwargs and doesn't have default", path_to_item=_path_to_item, valid_classes=(self.__class__,), ) _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.value = value if kwargs: raise ApiTypeError( "Invalid named arguments=%s passed to %s. Remove those invalid named arguments." % ( kwargs, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) return self
from __future__ import unicode_literals import copy from funcy import merge from schema import Optional from contextlib import contextmanager from dvc.external_repo import external_repo from dvc.utils.compat import str from .local import DependencyLOCAL class DependencyREPO(DependencyLOCAL): PARAM_REPO = "repo" PARAM_URL = "url" PARAM_REV = "rev" PARAM_REV_LOCK = "rev_lock" REPO_SCHEMA = { Optional(PARAM_URL): str, Optional(PARAM_REV): str, Optional(PARAM_REV_LOCK): str, } def __init__(self, def_repo, stage, *args, **kwargs): self.def_repo = def_repo super(DependencyREPO, self).__init__(stage, *args, **kwargs) def _parse_path(self, remote, path): return None @property def is_in_repo(self): return False def __str__(self): return "{} ({})".format(self.def_path, self.def_repo[self.PARAM_URL]) @contextmanager def _make_repo(self, **overrides): with external_repo(**merge(self.def_repo, overrides)) as repo: yield repo def status(self): with self._make_repo() as repo: current = repo.find_out_by_relpath(self.def_path).info with self._make_repo(rev_lock=None) as repo: updated = repo.find_out_by_relpath(self.def_path).info if current != updated: return {str(self): "update available"} return {} def save(self): pass def dumpd(self): return {self.PARAM_PATH: self.def_path, self.PARAM_REPO: self.def_repo} def download(self, to, resume=False): with self._make_repo( cache_dir=self.repo.cache.local.cache_dir ) as repo: self.def_repo[self.PARAM_REV_LOCK] = repo.scm.get_rev() out = repo.find_out_by_relpath(self.def_path) repo.fetch(out.stage.path) to.info = copy.copy(out.info) to.checkout() def update(self): with self._make_repo(rev_lock=None) as repo: self.def_repo[self.PARAM_REV_LOCK] = repo.scm.get_rev()
# encoding=utf8 # This is temporary fix to import module from parent folder # It will be removed when package is published on PyPI import sys sys.path.append('../') import numpy as np from niapy.task import StoppingTask from niapy.problems import Problem from niapy.algorithms.basic import ParticleSwarmAlgorithm class MyProblem(Problem): def __init__(self, dimension, lower=-10, upper=10, *args, **kwargs): super().__init__(dimension, lower, upper, *args, **kwargs) def _evaluate(self, x): return np.sum(x ** 2) # we will run Particle Swarm Algorithm on custom problem task = StoppingTask(problem=MyProblem(dimension=10), max_iters=1000) algo = ParticleSwarmAlgorithm(population_size=40, c1=2.0, c2=2.0, w=0.7, min_velocity=-4, max_velocity=4) best = algo.run(task=task) print('%s -> %s ' % (best[0], best[1]))
from contextlib import contextmanager from logging import getLogger from django.conf import settings from elasticsearch.helpers import bulk as es_bulk from elasticsearch_dsl import analysis, Index from elasticsearch_dsl.connections import connections logger = getLogger(__name__) # Normalises values to improve sorting (by keeping e, E, è, ê etc. together) lowercase_asciifolding_normalizer = analysis.normalizer( 'lowercase_asciifolding_normalizer', filter=('lowercase', 'asciifolding'), ) # Trigram tokenizer enables us to support partial matching trigram = analysis.tokenizer( 'trigram', 'nGram', min_gram=3, max_gram=3, token_chars=('letter', 'digit'), ) # Filters out "-" so that t-shirt and tshirt can be matched special_chars = analysis.char_filter('special_chars', 'mapping', mappings=('-=>',)) trigram_analyzer = analysis.CustomAnalyzer( 'trigram_analyzer', tokenizer=trigram, char_filter=special_chars, filter=('lowercase',), ) space_remover = analysis.token_filter( 'space_remover', type='pattern_replace', pattern=' ', replacement='', ) AREA_REGEX = r'[a-z]{1,2}' DISTRICT_REGEX = r'(?:[0-9][a-z]|[0-9]{1,2})' SECTOR_REGEX = r'[0-9]' UNIT_REGEX = r'[a-z]{2}' postcode_filter = analysis.token_filter( 'postcode_filter', type='pattern_capture', # Index whole postcode (with space) preserve_original=True, patterns=[ # Index postcode area # See the Royal Mail programmer's guide for the exact definitions rf'^({AREA_REGEX}){DISTRICT_REGEX} {SECTOR_REGEX}{UNIT_REGEX}', # Index postcode district (with sub-district code ignored) # This is so `wc1` query would match `wc1ab` and `wc1a1ab`, but not `wc111ab` # Area + one or two digits rf'^(({AREA_REGEX}[0-9]) {SECTOR_REGEX}{UNIT_REGEX}|' rf'({AREA_REGEX}[0-9]{{2}}) {SECTOR_REGEX}{UNIT_REGEX}|' rf'({AREA_REGEX}[0-9])[a-z]? {SECTOR_REGEX}{UNIT_REGEX})', # Index postcode district (including sub-district) rf'^({AREA_REGEX}{DISTRICT_REGEX}) {SECTOR_REGEX}{UNIT_REGEX}', # Index postcode sector rf'^({AREA_REGEX}{DISTRICT_REGEX} {SECTOR_REGEX}){UNIT_REGEX}', ], ) # Token filter that adds a space to well-formed UK postcodes that don't have one. normalise_postcode_filter = analysis.token_filter( 'normalise_postcode_filter', type='pattern_replace', pattern=rf'^' rf'(?<area>{AREA_REGEX})' rf'(?<district>{DISTRICT_REGEX})' rf'(?<sector>{SECTOR_REGEX})' rf'(?<unit>{UNIT_REGEX})' rf'$', replacement=r'${area}${district} ${sector}${unit}', ) postcode_analyzer = analysis.CustomAnalyzer( 'postcode_analyzer_v2', type='custom', tokenizer='keyword', filter=(space_remover, 'lowercase', normalise_postcode_filter, postcode_filter), ) postcode_search_analyzer = analysis.CustomAnalyzer( 'postcode_search_analyzer_v2', type='custom', tokenizer='keyword', filter=('lowercase', normalise_postcode_filter), ) english_possessive_stemmer = analysis.token_filter( 'english_possessive_stemmer', type='stemmer', language='possessive_english', ) english_stemmer = analysis.token_filter( 'english_stemmer', type='stemmer', language='english', ) english_stop = analysis.token_filter( 'english_stop', type='stop', stopwords='_english_', ) english_analyzer = analysis.CustomAnalyzer( 'english_analyzer', tokenizer='standard', filter=[ english_possessive_stemmer, 'lowercase', english_stop, english_stemmer, ], ) ANALYZERS = ( trigram_analyzer, english_analyzer, ) def configure_connection(): """Configure Elasticsearch default connection.""" connections_default = { 'hosts': [settings.ES_URL], 'verify_certs': settings.ES_VERIFY_CERTS, } connections.configure(default=connections_default) def get_client(): """Gets an instance of the Elasticsearch client from the connection cache.""" return connections.get_connection() def index_exists(index_name): """Checks if an index exists.""" client = get_client() return client.indices.exists(index_name) def create_index(index_name, mapping, alias_names=()): """ Creates an index, initialises it with a mapping, and optionally associates aliases with it. Note: If you need to perform multiple alias operations atomically, you should use start_alias_transaction() instead of specifying aliases when creating an index. """ index = Index(index_name) for analyzer in ANALYZERS: index.analyzer(analyzer) index.settings(**settings.ES_INDEX_SETTINGS) index.mapping(mapping) # ES allows you to specify filter criteria for aliases but we don't make use of that – # hence the empty dict for each alias alias_mapping = {alias_name: {} for alias_name in alias_names} index.aliases(**alias_mapping) index.create() def delete_index(index_name): """Deletes an index.""" logger.info(f'Deleting the {index_name} index...') client = get_client() client.indices.delete(index_name) def get_indices_for_aliases(*alias_names): """Gets the indices referenced by one or more aliases.""" client = get_client() alias_to_index_mapping = {alias_name: set() for alias_name in alias_names} index_to_alias_mapping = client.indices.get_alias(name=alias_names) for index_name, index_properties in index_to_alias_mapping.items(): for alias_name in index_properties['aliases']: alias_to_index_mapping[alias_name].add(index_name) return [alias_to_index_mapping[alias_name] for alias_name in alias_names] def get_aliases_for_index(index_name): """Gets the aliases referencing an index.""" client = get_client() alias_response = client.indices.get_alias(index=index_name) return alias_response[index_name]['aliases'].keys() def alias_exists(alias_name): """Checks if an alias exists.""" client = get_client() return client.indices.exists_alias(name=alias_name) def delete_alias(alias_name): """Deletes an alias entirely (dissociating it from all indices).""" logger.info(f'Deleting the {alias_name} alias...') client = get_client() client.indices.delete_alias('_all', alias_name) class _AliasUpdater: """Helper class for making multiple alias updates atomically.""" def __init__(self): """Initialises the instance with an empty list of pending operations.""" self.actions = [] def associate_indices_with_alias(self, alias_name, index_names): """Adds a pending operation to associate a new or existing alias with a set of indices.""" self.actions.append({ 'add': { 'alias': alias_name, 'indices': list(index_names), }, }) def dissociate_indices_from_alias(self, alias_name, index_names): """Adds a pending operation to dissociate an existing alias from a set of indices.""" self.actions.append({ 'remove': { 'alias': alias_name, 'indices': list(index_names), }, }) def commit(self): """Commits (flushes) pending operations.""" client = get_client() client.indices.update_aliases(body={ 'actions': self.actions, }) self.actions = [] @contextmanager def start_alias_transaction(): """ Returns a context manager that can be used to create and update aliases atomically. Changes are committed when the context manager exits. Usage example: with start_alias_transaction() as alias_transaction: alias_transaction.dissociate_indices_from_alias( 'some-alias', ['an-index', 'another-index], ) alias_transaction.associate_indices_with_alias( 'another-alias', ['new-index], ) """ alias_updater = _AliasUpdater() yield alias_updater alias_updater.commit() def associate_index_with_alias(alias_name, index_name): """ Associates a new or existing alias with an index. This is only intended to be a convenience function for simple operations. For more complex operations, use start_alias_transaction(). """ client = get_client() client.indices.put_alias(index_name, alias_name) def bulk( actions=None, chunk_size=500, max_chunk_bytes=settings.ES_BULK_MAX_CHUNK_BYTES, **kwargs, ): """Send data in bulk to Elasticsearch.""" return es_bulk( get_client(), actions=actions, chunk_size=chunk_size, max_chunk_bytes=max_chunk_bytes, **kwargs, )
from abc import ABC, abstractmethod import numpy as np import random from typing import Callable, Dict, Optional, Tuple, Sequence from .reward_spaces import Subtask from ..lux.game import Game class SubtaskSampler(ABC): def __init__(self, subtask_constructors: Sequence[Callable[..., Subtask]]): self.subtask_constructors = subtask_constructors @abstractmethod def sample(self, final_rewards: Optional[Tuple[float, float]]) -> Subtask: pass # noinspection PyMethodMayBeStatic def get_info(self) -> Dict[str, np.ndarray]: return {} class RandomSampler(SubtaskSampler): def sample(self, final_rewards: Optional[Tuple[float, float]]) -> Subtask: return self.subtask_constructors[random.randrange(len(self.subtask_constructors))]() class DifficultySampler(SubtaskSampler): def __init__(self, subtask_constructors: Sequence[Callable[..., Subtask]]): super(DifficultySampler, self).__init__(subtask_constructors) self.active_subtask_idx = -1 self.summed_rewards = np.zeros(len(self.subtask_constructors)) self.n_trials = np.zeros(len(self.subtask_constructors)) def sample(self, final_rewards: Optional[Tuple[float, float]]) -> Subtask: if final_rewards is not None: self.n_trials[self.active_subtask_idx] += 1 self.summed_rewards[self.active_subtask_idx] += np.mean(final_rewards) self.active_subtask_idx = np.random.choice(len(self.subtask_constructors), p=self.weights) return self.subtask_constructors[self.active_subtask_idx]() @property def weights(self) -> np.ndarray: weights = Subtask.get_reward_spec().reward_max - self.summed_rewards / np.maximum(self.n_trials, 1) return weights / weights.sum() def get_info(self) -> Dict[str, np.ndarray]: return { f"LOGGING_{subtask.__name__}_subtask_difficulty": self.weights[i] for i, subtask in enumerate(self.subtask_constructors) } class MultiSubtask(Subtask): def __init__( self, subtask_constructors: Sequence[Callable[..., Subtask]] = (), subtask_sampler_constructor: Callable[..., SubtaskSampler] = RandomSampler, **kwargs ): super(MultiSubtask, self).__init__(**kwargs) self.subtask_constructors = subtask_constructors self.subtask_sampler = subtask_sampler_constructor(self.subtask_constructors) self.active_subtask = self.subtask_sampler.sample(None) self.info = { f"LOGGING_{subtask.__name__}_subtask_reward": np.array([float("nan"), float("nan")]) for subtask in self.subtask_constructors } def compute_rewards_and_done(self, game_state: Game, done: bool) -> Tuple[Tuple[float, float], bool]: reward, done = self.active_subtask.compute_rewards_and_done(game_state, done) for subtask in self.subtask_constructors: reward_key = f"LOGGING_{subtask.__name__}_subtask_reward" if isinstance(self.active_subtask, subtask): self.info[reward_key] = np.array(reward) else: self.info[reward_key] = np.array([float("nan"), float("nan")]) if done: self.active_subtask = self.subtask_sampler.sample(reward) return reward, done def completed_task(self, game_state: Game) -> np.ndarray: raise NotImplementedError def get_info(self) -> Dict[str, np.ndarray]: return dict(**self.info, **self.subtask_sampler.get_info()) def get_subtask_encoding(self, subtask_encoding_dict: dict) -> int: return self.active_subtask.get_subtask_encoding(subtask_encoding_dict)
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class PublicIPAddressesOperations: """PublicIPAddressesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2017_10_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, public_ip_address_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-10-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'publicIpAddressName': self._serialize.url("public_ip_address_name", public_ip_address_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/publicIPAddresses/{publicIpAddressName}'} # type: ignore async def begin_delete( self, resource_group_name: str, public_ip_address_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified public IP address. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param public_ip_address_name: The name of the subnet. :type public_ip_address_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, public_ip_address_name=public_ip_address_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/publicIPAddresses/{publicIpAddressName}'} # type: ignore async def get( self, resource_group_name: str, public_ip_address_name: str, expand: Optional[str] = None, **kwargs ) -> "models.PublicIPAddress": """Gets the specified public IP address in a specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param public_ip_address_name: The name of the subnet. :type public_ip_address_name: str :param expand: Expands referenced resources. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: PublicIPAddress, or the result of cls(response) :rtype: ~azure.mgmt.network.v2017_10_01.models.PublicIPAddress :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.PublicIPAddress"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-10-01" accept = "application/json, text/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'publicIpAddressName': self._serialize.url("public_ip_address_name", public_ip_address_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('PublicIPAddress', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/publicIPAddresses/{publicIpAddressName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, public_ip_address_name: str, parameters: "models.PublicIPAddress", **kwargs ) -> "models.PublicIPAddress": cls = kwargs.pop('cls', None) # type: ClsType["models.PublicIPAddress"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-10-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json, text/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'publicIpAddressName': self._serialize.url("public_ip_address_name", public_ip_address_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'PublicIPAddress') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('PublicIPAddress', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('PublicIPAddress', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/publicIPAddresses/{publicIpAddressName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, public_ip_address_name: str, parameters: "models.PublicIPAddress", **kwargs ) -> AsyncLROPoller["models.PublicIPAddress"]: """Creates or updates a static or dynamic public IP address. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param public_ip_address_name: The name of the public IP address. :type public_ip_address_name: str :param parameters: Parameters supplied to the create or update public IP address operation. :type parameters: ~azure.mgmt.network.v2017_10_01.models.PublicIPAddress :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either PublicIPAddress or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2017_10_01.models.PublicIPAddress] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.PublicIPAddress"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, public_ip_address_name=public_ip_address_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('PublicIPAddress', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/publicIPAddresses/{publicIpAddressName}'} # type: ignore async def _update_tags_initial( self, resource_group_name: str, public_ip_address_name: str, parameters: "models.TagsObject", **kwargs ) -> "models.PublicIPAddress": cls = kwargs.pop('cls', None) # type: ClsType["models.PublicIPAddress"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-10-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json, text/json" # Construct URL url = self._update_tags_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'publicIpAddressName': self._serialize.url("public_ip_address_name", public_ip_address_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('PublicIPAddress', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_tags_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/publicIPAddresses/{publicIpAddressName}'} # type: ignore async def begin_update_tags( self, resource_group_name: str, public_ip_address_name: str, parameters: "models.TagsObject", **kwargs ) -> AsyncLROPoller["models.PublicIPAddress"]: """Updates public IP address tags. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param public_ip_address_name: The name of the public IP address. :type public_ip_address_name: str :param parameters: Parameters supplied to update public IP address tags. :type parameters: ~azure.mgmt.network.v2017_10_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either PublicIPAddress or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2017_10_01.models.PublicIPAddress] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.PublicIPAddress"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._update_tags_initial( resource_group_name=resource_group_name, public_ip_address_name=public_ip_address_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('PublicIPAddress', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/publicIPAddresses/{publicIpAddressName}'} # type: ignore def list_all( self, **kwargs ) -> AsyncIterable["models.PublicIPAddressListResult"]: """Gets all the public IP addresses in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either PublicIPAddressListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2017_10_01.models.PublicIPAddressListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.PublicIPAddressListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-10-01" accept = "application/json, text/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_all.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('PublicIPAddressListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_all.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/publicIPAddresses'} # type: ignore def list( self, resource_group_name: str, **kwargs ) -> AsyncIterable["models.PublicIPAddressListResult"]: """Gets all public IP addresses in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either PublicIPAddressListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2017_10_01.models.PublicIPAddressListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.PublicIPAddressListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-10-01" accept = "application/json, text/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('PublicIPAddressListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/publicIPAddresses'} # type: ignore def list_virtual_machine_scale_set_public_ip_addresses( self, resource_group_name: str, virtual_machine_scale_set_name: str, **kwargs ) -> AsyncIterable["models.PublicIPAddressListResult"]: """Gets information about all public IP addresses on a virtual machine scale set level. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_machine_scale_set_name: The name of the virtual machine scale set. :type virtual_machine_scale_set_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either PublicIPAddressListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2017_10_01.models.PublicIPAddressListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.PublicIPAddressListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-03-30" accept = "application/json, text/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_virtual_machine_scale_set_public_ip_addresses.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualMachineScaleSetName': self._serialize.url("virtual_machine_scale_set_name", virtual_machine_scale_set_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('PublicIPAddressListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_virtual_machine_scale_set_public_ip_addresses.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/virtualMachineScaleSets/{virtualMachineScaleSetName}/publicipaddresses'} # type: ignore def list_virtual_machine_scale_set_vm_public_ip_addresses( self, resource_group_name: str, virtual_machine_scale_set_name: str, virtualmachine_index: str, network_interface_name: str, ip_configuration_name: str, **kwargs ) -> AsyncIterable["models.PublicIPAddressListResult"]: """Gets information about all public IP addresses in a virtual machine IP configuration in a virtual machine scale set. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_machine_scale_set_name: The name of the virtual machine scale set. :type virtual_machine_scale_set_name: str :param virtualmachine_index: The virtual machine index. :type virtualmachine_index: str :param network_interface_name: The network interface name. :type network_interface_name: str :param ip_configuration_name: The IP configuration name. :type ip_configuration_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either PublicIPAddressListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2017_10_01.models.PublicIPAddressListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.PublicIPAddressListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-03-30" accept = "application/json, text/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_virtual_machine_scale_set_vm_public_ip_addresses.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualMachineScaleSetName': self._serialize.url("virtual_machine_scale_set_name", virtual_machine_scale_set_name, 'str'), 'virtualmachineIndex': self._serialize.url("virtualmachine_index", virtualmachine_index, 'str'), 'networkInterfaceName': self._serialize.url("network_interface_name", network_interface_name, 'str'), 'ipConfigurationName': self._serialize.url("ip_configuration_name", ip_configuration_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('PublicIPAddressListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_virtual_machine_scale_set_vm_public_ip_addresses.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/virtualMachineScaleSets/{virtualMachineScaleSetName}/virtualMachines/{virtualmachineIndex}/networkInterfaces/{networkInterfaceName}/ipconfigurations/{ipConfigurationName}/publicipaddresses'} # type: ignore async def get_virtual_machine_scale_set_public_ip_address( self, resource_group_name: str, virtual_machine_scale_set_name: str, virtualmachine_index: str, network_interface_name: str, ip_configuration_name: str, public_ip_address_name: str, expand: Optional[str] = None, **kwargs ) -> "models.PublicIPAddress": """Get the specified public IP address in a virtual machine scale set. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_machine_scale_set_name: The name of the virtual machine scale set. :type virtual_machine_scale_set_name: str :param virtualmachine_index: The virtual machine index. :type virtualmachine_index: str :param network_interface_name: The name of the network interface. :type network_interface_name: str :param ip_configuration_name: The name of the IP configuration. :type ip_configuration_name: str :param public_ip_address_name: The name of the public IP Address. :type public_ip_address_name: str :param expand: Expands referenced resources. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: PublicIPAddress, or the result of cls(response) :rtype: ~azure.mgmt.network.v2017_10_01.models.PublicIPAddress :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.PublicIPAddress"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-03-30" accept = "application/json, text/json" # Construct URL url = self.get_virtual_machine_scale_set_public_ip_address.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualMachineScaleSetName': self._serialize.url("virtual_machine_scale_set_name", virtual_machine_scale_set_name, 'str'), 'virtualmachineIndex': self._serialize.url("virtualmachine_index", virtualmachine_index, 'str'), 'networkInterfaceName': self._serialize.url("network_interface_name", network_interface_name, 'str'), 'ipConfigurationName': self._serialize.url("ip_configuration_name", ip_configuration_name, 'str'), 'publicIpAddressName': self._serialize.url("public_ip_address_name", public_ip_address_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('PublicIPAddress', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_virtual_machine_scale_set_public_ip_address.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/virtualMachineScaleSets/{virtualMachineScaleSetName}/virtualMachines/{virtualmachineIndex}/networkInterfaces/{networkInterfaceName}/ipconfigurations/{ipConfigurationName}/publicipaddresses/{publicIpAddressName}'} # type: ignore
#!/usr/bin/env python """Test of "New Hunt" wizard.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from absl import app from selenium.webdriver.common import keys from grr_response_core.lib import rdfvalue from grr_response_core.lib.rdfvalues import paths as rdf_paths from grr_response_server import data_store from grr_response_server import foreman from grr_response_server import foreman_rules from grr_response_server import hunt as lib_hunt from grr_response_server.flows.general import file_finder from grr_response_server.flows.general import transfer from grr_response_server.gui import gui_test_lib from grr_response_server.rdfvalues import flow_runner as rdf_flow_runner from grr_response_server.rdfvalues import output_plugin as rdf_output_plugin from grr.test_lib import test_lib class TestNewHuntWizard(gui_test_lib.GRRSeleniumHuntTest): """Test the "new hunt wizard" GUI.""" @staticmethod def FindForemanRules(hunt_urn, token): rules = data_store.REL_DB.ReadAllForemanRules() return [rule for rule in rules if rule.hunt_id == hunt_urn.Basename()] def testNewHuntWizard(self): # Open up and click on View Hunts. self.Open("/") self.WaitUntil(self.IsElementPresent, "client_query") self.WaitUntil(self.IsElementPresent, "css=a[grrtarget=hunts]") self.Click("css=a[grrtarget=hunts]") self.WaitUntil(self.IsElementPresent, "css=button[name=NewHunt]") # Open up "New Hunt" wizard self.Click("css=button[name=NewHunt]") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('What to run?')") # Click on Filesystem item in flows list self.WaitUntil(self.IsElementPresent, "css=#_Filesystem > i.jstree-icon") self.Click("css=#_Filesystem > i.jstree-icon") # Click on the FileFinder item in Filesystem flows list self.Click("link=File Finder") # Wait for flow configuration form to be rendered (just wait for first # input field). self.WaitUntil(self.IsElementPresent, "css=grr-new-hunt-wizard-form label:contains('Paths')") # Change "path" and "pathtype" values self.Type( "css=grr-new-hunt-wizard-form " "grr-form-proto-repeated-field:has(label:contains('Paths')) " "input", "/tmp") self.Select( "css=grr-new-hunt-wizard-form " "grr-form-proto-single-field:has(label:contains('Pathtype')) " "select", "TSK") # Click on "Next" button self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Hunt parameters')") # Click on "Next" button self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('How to process results')") # Click on "Back" button and check that all the values in the form # remain intact. self.Click("css=grr-new-hunt-wizard-form button.Back") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Hunt parameters')") self.Click("css=grr-new-hunt-wizard-form button.Back") self.WaitUntil(self.IsElementPresent, "css=grr-new-hunt-wizard-form label:contains('Paths')") self.assertEqual( "/tmp", self.GetValue( "css=grr-new-hunt-wizard-form " "grr-form-proto-repeated-field:has(label:contains('Paths')) input")) self.assertEqual( "TSK", self.GetSelectedLabel( "css=grr-new-hunt-wizard-form " "grr-form-proto-single-field:has(label:contains('Pathtype')) select" )) # Click on "Next" button self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Hunt parameters')") # Click on "Next" button self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('How to process results')") # Configure the hunt to use dummy output plugin. self.Click("css=grr-new-hunt-wizard-form button[name=Add]") self.Select("css=grr-new-hunt-wizard-form select", "DummyOutputPlugin") self.Type( "css=grr-new-hunt-wizard-form " "grr-form-proto-single-field:has(label:contains('Filepath Regex')) " "input", "some regex") # Click on "Next" button self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Where to run?')") # Empty set of rules should be valid. self.WaitUntil(self.IsElementPresent, "css=button.Next:not([disabled])") # A note informs what an empty set of rules means. self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('No rules specified!')") # Alternative match mode that matches a client if # any of the rules evaluates to true can be selected. self.Select( "css=grr-configure-rules-page " "label:contains('Match mode') ~ * select", "Match any") # The note depends on the match mode. self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('No rules specified!')") # Create 3 foreman rules. Note that "Add" button adds rules # to the beginning of a list. So we always use :nth(0) selector. self.Click("css=grr-configure-rules-page button[name=Add]") self.Select("css=grr-configure-rules-page div.well:nth(0) select", "Regex") rule = foreman_rules.ForemanRegexClientRule label = rule.ForemanStringField.SYSTEM.description self.Select( "css=grr-configure-rules-page div.well:nth(0) " "label:contains('Field') ~ * select", label) self.Type( "css=grr-configure-rules-page div.well:nth(0) " "label:contains('Attribute regex') ~ * input", "Linux") self.Click("css=grr-configure-rules-page button[name=Add]") self.Select("css=grr-configure-rules-page div.well:nth(0) select", "Integer") rule = foreman_rules.ForemanIntegerClientRule label = rule.ForemanIntegerField.CLIENT_CLOCK.description self.Select( "css=grr-configure-rules-page div.well:nth(0) " "label:contains('Field') ~ * select", label) self.Select( "css=grr-configure-rules-page div.well:nth(0) " "label:contains('Operator') ~ * select", "GREATER_THAN") self.Type( "css=grr-configure-rules-page div.well:nth(0) " "label:contains('Value') ~ * input", "1336650631137737") self.Click("css=grr-configure-rules-page button[name=Add]") self.Click("css=grr-configure-rules-page div.well:nth(0) " "label:contains('Os darwin') ~ * input[type=checkbox]") # Click on "Back" button self.Click("css=grr-new-hunt-wizard-form button.Back") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('How to process results')") # Click on "Next" button again and check that all the values that # we've just entered remain intact. self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Where to run?')") # Click on "Next" button self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Review')") # Check that the arguments summary is present. self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Paths')") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('/tmp')") # Check that output plugins are shown. self.assertTrue( self.IsElementPresent( "css=grr-wizard-form:contains('DummyOutputPlugin')")) self.assertTrue( self.IsElementPresent("css=grr-wizard-form:contains('some regex')")) # Check that there's no deprecated rules summary. self.assertFalse( self.IsElementPresent("css=grr-wizard-form:contains('Regex rules')")) self.assertFalse( self.IsElementPresent("css=grr-wizard-form:contains('Integer rules')")) # Check that rules summary is present. self.assertTrue( self.IsElementPresent( "css=grr-wizard-form:contains('Client rule set')")) # Click on "Run" button self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Created Hunt')") # Close the window and check that the hunt was created. self.Click("css=button.Next") # Select newly created hunt. self.Click("css=grr-hunts-list td:contains('gui_user')") # Check that correct details are displayed in hunt details tab. self.WaitUntil(self.IsElementPresent, "css=grr-hunt-inspector:contains('GenericHunt')") self.WaitUntil(self.IsElementPresent, "css=grr-hunt-inspector:contains('Flow Arguments')") self.assertTrue( self.IsElementPresent("css=grr-hunt-inspector:contains('Paths')")) self.assertTrue( self.IsElementPresent("css=grr-hunt-inspector:contains('/tmp')")) self.assertTrue( self.IsElementPresent( "css=grr-hunt-inspector:contains('DummyOutputPlugin')")) self.assertTrue( self.IsElementPresent("css=grr-hunt-inspector:contains('some regex')")) # Check that there's no deprecated rules summary. self.assertFalse( self.IsElementPresent("css=grr-hunt-inspector:contains('Regex rules')")) self.assertFalse( self.IsElementPresent( "css=grr-hunt-inspector:contains('Integer rules')")) # Check that rules summary is present. self.assertTrue( self.IsElementPresent( "css=grr-hunt-inspector:contains('Client Rule Set')")) # Check that the hunt object was actually created hunts_list = sorted( data_store.REL_DB.ReadHuntObjects(offset=0, count=10), key=lambda x: x.create_time) self.assertLen(hunts_list, 1) # Check that the hunt was created with a correct flow hunt = hunts_list[0] self.assertEqual(hunt.args.standard.flow_name, file_finder.FileFinder.__name__) self.assertEqual(hunt.args.standard.flow_args.paths[0], "/tmp") self.assertEqual(hunt.args.standard.flow_args.pathtype, rdf_paths.PathSpec.PathType.TSK) # self.assertEqual(hunt.args.flow_args.ignore_errors, True) self.assertEqual(hunt.output_plugins[0].plugin_name, "DummyOutputPlugin") # Check that hunt was not started self.assertEqual(hunt.hunt_state, hunt.HuntState.PAUSED) lib_hunt.StartHunt(hunt.hunt_id) hunt_rules = self.FindForemanRules( rdfvalue.RDFURN("hunts").Add(hunt.hunt_id), token=self.token) # Check that the hunt was created with correct rules self.assertLen(hunt_rules, 1) lifetime = hunt_rules[0].GetLifetime() lifetime -= rdfvalue.DurationSeconds("2w") self.assertLessEqual(lifetime, rdfvalue.DurationSeconds("1s")) r = hunt_rules[0].client_rule_set self.assertEqual(r.match_mode, foreman_rules.ForemanClientRuleSet.MatchMode.MATCH_ANY) self.assertLen(r.rules, 3) self.assertEqual(r.rules[0].rule_type, foreman_rules.ForemanClientRule.Type.OS) self.assertEqual(r.rules[0].os.os_windows, False) self.assertEqual(r.rules[0].os.os_linux, False) self.assertEqual(r.rules[0].os.os_darwin, True) self.assertEqual(r.rules[1].rule_type, foreman_rules.ForemanClientRule.Type.INTEGER) self.assertEqual(r.rules[1].integer.field, "CLIENT_CLOCK") self.assertEqual( r.rules[1].integer.operator, foreman_rules.ForemanIntegerClientRule.Operator.GREATER_THAN) self.assertEqual(r.rules[1].integer.value, 1336650631137737) self.assertEqual(r.rules[2].rule_type, foreman_rules.ForemanClientRule.Type.REGEX) self.assertEqual(r.rules[2].regex.field, "SYSTEM") self.assertEqual(r.rules[2].regex.attribute_regex, "Linux") def testWizardStepCounterIsShownCorrectly(self): # Open up and click on View Hunts. self.Open("/#/hunts") # Open up "New Hunt" wizard self.Click("css=button[name=NewHunt]") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('What to run?')") # Click on the FileFinder item in Filesystem flows list self.WaitUntil(self.IsElementPresent, "css=#_Filesystem > i.jstree-icon") self.Click("css=#_Filesystem > i.jstree-icon") self.Click("link=File Finder") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Step 1 out of 6')") # Click on "Next" button self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Step 2 out of 6')") def testLiteralExpressionIsProcessedCorrectly(self): """Literals are raw bytes. Testing that raw bytes are processed right.""" # Open up and click on View Hunts. self.Open("/") self.Click("css=a[grrtarget=hunts]") # Open up "New Hunt" wizard self.Click("css=button[name=NewHunt]") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('What to run?')") # Click on Filesystem item in flows list self.WaitUntil(self.IsElementPresent, "css=#_Filesystem > i.jstree-icon") self.Click("css=#_Filesystem > i.jstree-icon") # Click on the FileFinder item in Filesystem flows list self.Click("link=File Finder") self.Click("css=label:contains('Conditions') ~ * button") self.Select("css=label:contains('Condition type') ~ * select", "Contents literal match") self.Type("css=label:contains('Literal') ~ * input", "foo\\x0d\\xc8bar") # Click on "Next" button self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Hunt parameters')") # Click on "Next" button self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('How to process results')") # Click on "Next" button self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Where to run?')") # Click on "Next" button self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Review')") # Check that the arguments summary is present. self.WaitUntil( self.IsElementPresent, "css=grr-wizard-form:contains('%s')" % file_finder.FileFinder.__name__) self.WaitUntil(self.IsTextPresent, b"foo\\x0d\\xc8bar") # Click on "Run" button self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Created Hunt')") # Close the window and check that the hunt was created. self.Click("css=button.Next") # Check that the hunt object was actually created hunts_list = sorted( data_store.REL_DB.ReadHuntObjects(offset=0, count=10), key=lambda x: x.create_time) self.assertLen(hunts_list, 1) # Check that the hunt was created with a correct literal value. hunt = hunts_list[0] self.assertEqual(hunt.args.standard.flow_name, file_finder.FileFinder.__name__) self.assertEqual( hunt.args.standard.flow_args.conditions[0].contents_literal_match .literal, b"foo\x0d\xc8bar") def testOutputPluginsListEmptyWhenNoDefaultOutputPluginSet(self): self.Open("/#main=ManageHunts") self.Click("css=button[name=NewHunt]") # Select "List Processes" flow. self.Click("css=#_Processes > i.jstree-icon") self.Click("link=ListProcesses") # Click on "Next" button self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Hunt parameters')") # There should be no dummy output plugin visible. self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('How to process results')") self.WaitUntilNot(self.IsElementPresent, "css=grr-wizard-form:contains('Dummy do do')") def testDefaultOutputPluginIsCorrectlyAddedToThePluginsList(self): with test_lib.ConfigOverrider( {"AdminUI.new_hunt_wizard.default_output_plugin": "DummyOutputPlugin"}): self.Open("/#main=ManageHunts") self.Click("css=button[name=NewHunt]") # Select "List Processes" flow. self.Click("css=#_Processes > i.jstree-icon") self.Click("link=ListProcesses") # Click on "Next" button self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Hunt parameters')") # Dummy output plugin should be added by default. self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('How to process results')") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('DummyOutputPlugin')") def testLabelsHuntRuleDisplaysAvailableLabels(self): client_id = self.SetupClient(0) self.AddClientLabel(client_id, u"owner1", u"foo") self.AddClientLabel(client_id, u"owner2", u"bar") self.Open("/#main=ManageHunts") self.Click("css=button[name=NewHunt]") # Select "List Processes" flow. self.Click("css=#_Processes > i.jstree-icon") self.Click("link=ListProcesses") # Click 'Next' to go to hunt parameters page. self.Click("css=grr-new-hunt-wizard-form button.Next") # Click 'Next' to go to output plugins page. self.Click("css=grr-new-hunt-wizard-form button.Next") # Click 'Next' to go to hunt rules page. self.Click("css=grr-new-hunt-wizard-form button.Next") self.Click("css=grr-new-hunt-wizard-form button[name=Add]") # Select 'Clients With Label' rule. self.Select("css=grr-new-hunt-wizard-form div.well select", "Label") # Check that there's an option present for labels 'bar' (this option # should be selected) and for label 'foo'. self.WaitUntil( self.IsElementPresent, "css=grr-new-hunt-wizard-form div.well " ".form-group:has(label:contains('Label')) " "select option:selected[label=bar]") self.WaitUntil( self.IsElementPresent, "css=grr-new-hunt-wizard-form div.well " ".form-group:has(label:contains('Label')) " "select option:not(:selected)[label=foo]") def testLabelsHuntRuleMatchesCorrectClients(self): client_ids = self.SetupClients(10) self.AddClientLabel(client_ids[1], u"owner1", u"foo") self.AddClientLabel(client_ids[1], u"owner2", u"bar") self.AddClientLabel(client_ids[7], u"GRR", u"bar") self.Open("/#main=ManageHunts") self.Click("css=button[name=NewHunt]") # Select "List Processes" flow. self.Click("css=#_Processes > i.jstree-icon") self.Click("link=ListProcesses") # Click 'Next' to go to the output plugins page, hunt parameters page # and then to hunt rules page. self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Hunt parameters')") self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('How to process results')") self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Where to run?')") # Select 'Clients With Label' rule. self.Click("css=grr-configure-rules-page button[name=Add]") self.Select("css=grr-new-hunt-wizard-form div.well select", "Label") self.Select( "css=grr-new-hunt-wizard-form div.well .form-group " ".form-group:has(label:contains('Label')):nth-last-of-type(1) " "select", "foo") self.Click("css=grr-new-hunt-wizard-form div.well .form-group " ".form-group:has(label:contains('Add label')) button") self.Select( "css=grr-new-hunt-wizard-form div.well .form-group " ".form-group:has(label:contains('Label')):nth-last-of-type(1) " "select", "bar") self.Select( "css=grr-new-hunt-wizard-form div.well .form-group " ".form-group:has(label:contains('Match mode')) select", "Match any") # Click 'Next' to go to hunt overview page. Then click 'Next' to go to # submit the hunt and wait until it's created. self.Click("css=grr-new-hunt-wizard-form button.Next") self.Click("css=grr-new-hunt-wizard-form button.Next") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('Created Hunt')") hunts_list = sorted( data_store.REL_DB.ReadHuntObjects(offset=0, count=10), key=lambda x: x.create_time) hunt = hunts_list[0] lib_hunt.StartHunt(hunt.hunt_id) foreman_obj = foreman.Foreman() for client_id in client_ids: tasks_assigned = foreman_obj.AssignTasksToClient(client_id) if client_id in [client_ids[1], client_ids[7]]: self.assertTrue(tasks_assigned) else: self.assertFalse(tasks_assigned) def CreateSampleHunt(self, description, token=None): self.StartHunt( description=description, flow_runner_args=rdf_flow_runner.FlowRunnerArgs( flow_name=transfer.GetFile.__name__), flow_args=transfer.GetFileArgs( pathspec=rdf_paths.PathSpec( path="/tmp/evil.txt", pathtype=rdf_paths.PathSpec.PathType.TSK, )), client_rule_set=self._CreateForemanClientRuleSet(), output_plugins=[ rdf_output_plugin.OutputPluginDescriptor( plugin_name="DummyOutputPlugin", plugin_args=gui_test_lib.DummyOutputPlugin.args_type( filename_regex="blah!", fetch_binaries=True)) ], client_rate=60, paused=True, token=token) def testPathAutocomplete(self): # Open Hunts self.Open("/#/hunts") # Open "New Hunt" wizard self.Click("css=button[name=NewHunt]") self.WaitUntil(self.IsElementPresent, "css=grr-wizard-form:contains('What to run?')") # Click on Filesystem item in flows list self.Click("css=#_Filesystem > i.jstree-icon") # Click on the FileFinder item in Filesystem flows list self.Click("link=File Finder") input_selector = "css=grr-form-glob-expression input[uib-typeahead]" # Change "path" self.Type(input_selector, "/foo/%%path") self.WaitUntil(self.IsElementPresent, "css=[uib-typeahead-popup]:contains('%%environ_path%%')") self.GetElement(input_selector).send_keys(keys.Keys.ENTER) self.WaitUntilEqual("/foo/%%environ_path%%", self.GetValue, input_selector + ":text") if __name__ == "__main__": app.run(test_lib.main)
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Create / interact with a batch of updates / deletes. Batches provide the ability to execute multiple operations in a single request to the Cloud Datastore API. See https://cloud.google.com/datastore/docs/concepts/entities#Datastore_Batch_operations """ from gcloud.datastore import helpers from gcloud.datastore.key import _dataset_ids_equal from gcloud.datastore._generated import datastore_pb2 as _datastore_pb2 class Batch(object): """An abstraction representing a collected group of updates / deletes. Used to build up a bulk mutuation. For example, the following snippet of code will put the two ``save`` operations and the ``delete`` operation into the same mutation, and send them to the server in a single API request:: >>> from gcloud.datastore.batch import Batch >>> batch = Batch() >>> batch.put(entity1) >>> batch.put(entity2) >>> batch.delete(key3) >>> batch.commit() You can also use a batch as a context manager, in which case :meth:`commit` will be called automatically if its block exits without raising an exception:: >>> with Batch() as batch: ... batch.put(entity1) ... batch.put(entity2) ... batch.delete(key3) By default, no updates will be sent if the block exits with an error:: >>> with Batch() as batch: ... do_some_work(batch) ... raise Exception() # rolls back :type client: :class:`gcloud.datastore.client.Client` :param client: The client used to connect to datastore. """ _id = None # "protected" attribute, always None for non-transactions def __init__(self, client): self._client = client self._commit_request = _datastore_pb2.CommitRequest() self._partial_key_entities = [] def current(self): """Return the topmost batch / transaction, or None.""" return self._client.current_batch @property def dataset_id(self): """Getter for dataset ID in which the batch will run. :rtype: :class:`str` :returns: The dataset ID in which the batch will run. """ return self._client.dataset_id @property def namespace(self): """Getter for namespace in which the batch will run. :rtype: :class:`str` :returns: The namespace in which the batch will run. """ return self._client.namespace @property def connection(self): """Getter for connection over which the batch will run. :rtype: :class:`gcloud.datastore.connection.Connection` :returns: The connection over which the batch will run. """ return self._client.connection def _add_partial_key_entity_pb(self): """Adds a new mutation for an entity with a partial key. :rtype: :class:`gcloud.datastore._generated.entity_pb2.Entity` :returns: The newly created entity protobuf that will be updated and sent with a commit. """ return self.mutations.insert_auto_id.add() def _add_complete_key_entity_pb(self): """Adds a new mutation for an entity with a completed key. :rtype: :class:`gcloud.datastore._generated.entity_pb2.Entity` :returns: The newly created entity protobuf that will be updated and sent with a commit. """ # We use ``upsert`` for entities with completed keys, rather than # ``insert`` or ``update``, in order not to create race conditions # based on prior existence / removal of the entity. return self.mutations.upsert.add() def _add_delete_key_pb(self): """Adds a new mutation for a key to be deleted. :rtype: :class:`gcloud.datastore._generated.entity_pb2.Key` :returns: The newly created key protobuf that will be deleted when sent with a commit. """ return self.mutations.delete.add() @property def mutations(self): """Getter for the changes accumulated by this batch. Every batch is committed with a single commit request containing all the work to be done as mutations. Inside a batch, calling :meth:`put` with an entity, or :meth:`delete` with a key, builds up the request by adding a new mutation. This getter returns the protobuf that has been built-up so far. :rtype: :class:`gcloud.datastore._generated.datastore_pb2.Mutation` :returns: The Mutation protobuf to be sent in the commit request. """ return self._commit_request.mutation def put(self, entity): """Remember an entity's state to be saved during :meth:`commit`. .. note:: Any existing properties for the entity will be replaced by those currently set on this instance. Already-stored properties which do not correspond to keys set on this instance will be removed from the datastore. .. note:: Property values which are "text" ('unicode' in Python2, 'str' in Python3) map to 'string_value' in the datastore; values which are "bytes" ('str' in Python2, 'bytes' in Python3) map to 'blob_value'. When an entity has a partial key, calling :meth:`commit` sends it as an ``insert_auto_id`` mutation and the key is completed. On return, the key for the ``entity`` passed in is updated to match the key ID assigned by the server. :type entity: :class:`gcloud.datastore.entity.Entity` :param entity: the entity to be saved. :raises: ValueError if entity has no key assigned, or if the key's ``dataset_id`` does not match ours. """ if entity.key is None: raise ValueError("Entity must have a key") if not _dataset_ids_equal(self.dataset_id, entity.key.dataset_id): raise ValueError("Key must be from same dataset as batch") if entity.key.is_partial: entity_pb = self._add_partial_key_entity_pb() self._partial_key_entities.append(entity) else: entity_pb = self._add_complete_key_entity_pb() _assign_entity_to_pb(entity_pb, entity) def delete(self, key): """Remember a key to be deleted during :meth:`commit`. :type key: :class:`gcloud.datastore.key.Key` :param key: the key to be deleted. :raises: ValueError if key is not complete, or if the key's ``dataset_id`` does not match ours. """ if key.is_partial: raise ValueError("Key must be complete") if not _dataset_ids_equal(self.dataset_id, key.dataset_id): raise ValueError("Key must be from same dataset as batch") key_pb = helpers._prepare_key_for_request(key.to_protobuf()) self._add_delete_key_pb().CopyFrom(key_pb) def begin(self): """No-op Overridden by :class:`gcloud.datastore.transaction.Transaction`. """ def commit(self): """Commits the batch. This is called automatically upon exiting a with statement, however it can be called explicitly if you don't want to use a context manager. """ _, updated_keys = self.connection.commit( self.dataset_id, self._commit_request, self._id) # If the back-end returns without error, we are guaranteed that # :meth:`Connection.commit` will return keys that match (length and # order) directly ``_partial_key_entities``. for new_key_pb, entity in zip(updated_keys, self._partial_key_entities): new_id = new_key_pb.path_element[-1].id entity.key = entity.key.completed_key(new_id) def rollback(self): """No-op Overridden by :class:`gcloud.datastore.transaction.Transaction`. """ pass def __enter__(self): self._client._push_batch(self) self.begin() return self def __exit__(self, exc_type, exc_val, exc_tb): try: if exc_type is None: self.commit() else: self.rollback() finally: self._client._pop_batch() def _assign_entity_to_pb(entity_pb, entity): """Copy ``entity`` into ``entity_pb``. Helper method for ``Batch.put``. :type entity_pb: :class:`gcloud.datastore._generated.entity_pb2.Entity` :param entity_pb: The entity owned by a mutation. :type entity: :class:`gcloud.datastore.entity.Entity` :param entity: The entity being updated within the batch / transaction. """ bare_entity_pb = helpers.entity_to_protobuf(entity) key_pb = helpers._prepare_key_for_request(bare_entity_pb.key) bare_entity_pb.key.CopyFrom(key_pb) entity_pb.CopyFrom(bare_entity_pb)
#!/usr/bin/env python3 """Visualise statistic by machine economic.""" from __future__ import annotations import pandas as pd from matplotlib import pyplot as plt from typing import Dict from .mechanic_report import MechReports from .administration.logger_cfg import Logs from .support_modules.custom_exceptions import MainMenu from .support_modules.standart_functions import ( BasicFunctionsS as BasF_S ) LOGGER = Logs().give_logger(__name__) class MechEconomic(MechReports): """Visualise statistic by machine economic.""" __slots__ = ( 'mech_econ_path', 'mech_econ_data', 'mech_econ_file', ) def __init__(self, user): """Load mech econom data.""" super().__init__(user) self.mech_econ_data = {} self.mech_econ_path = ( super().get_root_path() / 'data' / 'mech_ecomomic' ) if self.mech_econ_path.exists(): self.mech_econ_file = super().load_data( data_path=self.mech_econ_path, user=user, ) else: self.mech_econ_file = pd.DataFrame(self.mech_econ_data, index=[0]) def _save_mech_econom(self): """Save mech econom and create log file.""" self.mech_econ_file = self.mech_econ_file.append( self.mech_econ_data, ignore_index=True ) self._dump_mech_econ_data() self._log_mech_econ_creation() def _dump_mech_econ_data(self): """Dump salary data to file.""" super().dump_data( data_path=self.mech_econ_path, base_to_dump=self.mech_econ_file, user=self.user, ) def _log_mech_econ_creation(self): """Save log about salary creation.""" report_name = '{}-{}'.format( self.mech_econ_data['year'], self.mech_econ_data['month'], ) LOGGER.warning( f"User '{self.user.login}' create mechanic econom.: {report_name}" ) def _visualise_one_day_cost(self): """Visualise cost of one day by each machine.""" year = self._chose_year() data_by_year = super().give_dataframe_by_year(year) data_for_plot = { 'mach': [], 'day_cost': [], } for mach in super().maint_dict['mach_name']: totall_cost = sum(self.mech_econ_file[mach]) total_work = sum(data_by_year.work) number_of_wdays = total_work day_cost = round(totall_cost/number_of_wdays, 0) data_for_plot['mach'].append(mach) data_for_plot['day_cost'].append(day_cost) data_for_plot = pd.DataFrame(data_for_plot) self._create_one_day_cost_plot(data_for_plot) def _input_machines_econ(self, mech_econ_date): """Input money, spent for machine in month.""" self.mech_econ_data['year'] = mech_econ_date['year'] self.mech_econ_data['month'] = mech_econ_date['month'] super().clear_screen() print("Введите сумму для каждой техники:") for mach in super().maint_dict['mach_name']: self.mech_econ_data[mach] = float(input(f"{mach}: ")) save = input( "\nДанные введены." "\n[s] - сохранить данные: " ) if save.lower() == 's': self._save_mech_econom() print("Данные сохранены.") else: print("Вы отменили сохранение.") input("\n[ENTER] - выйти.") def _visualise_statistic(self, year): """Visualise statistic.""" mech_econ_year = self.mech_econ_file.year == year data_by_year = ( self.mech_econ_file[mech_econ_year] .sort_values(by=['month']) ) super().print_all_dataframe(data_by_year) input("\n[ENTER] - выйти.") def _chose_year(self): """Show statistic about drill instrument.""" print("[ENTER] - выход" "\nВыберете год:") year = super().choise_from_list( sorted(set(self.mech_econ_file.year)), none_option=True ) if year: return year else: raise MainMenu @BasF_S.set_plotter_parametrs def _create_one_day_cost_plot(self, dataframe): """Create one day cost plot.""" figure = plt.figure() x_cost = list(range(len(super().maint_dict['mach_name']))) axle = figure.add_subplot(111) axle.bar( x_cost, dataframe.day_cost, 0.3, alpha=0.4, color='r', label='Коэффициент', tick_label=dataframe.mach ) axle.tick_params(labelrotation=90) axle.set_title( "Коэффициент целесообразности содержания техники руб/час. ", fontsize="x-large") axle.set_ylabel('руб.') axle.legend() axle.grid( True, linestyle='--', which='major', color='grey', alpha=.25, axis='y' ) figure.tight_layout() plt.show() def create_mech_econom(self): """Create mechanic econom data report.""" mech_econ_date = self.input_date() check = super().check_date_in_dataframe( self.mech_econ_file, mech_econ_date ) if check: print("Данные за этот месяц уже внесены.") input("\n[ENTER] - выйти.") else: self._input_machines_econ(mech_econ_date) def show_econ_statistic(self, stat_variants: Dict): """Show machine economic statistic.""" stat_variants = { 'Целесообразность затрат на содержание техники.': self._visualise_one_day_cost, } print("[ENTER] - выйти." "\nВыберете вид отчета:") stat = super().choise_from_list(stat_variants, none_option=True) if stat: stat_variants[stat]()
import numpy as np from multiagent.core import World, Agent, Landmark from multiagent.scenario import BaseScenario class Scenario(BaseScenario): def make_world(self, dim_c=3): world = World() # set any world properties first world.dim_c = dim_c num_landmarks = 3 # add agents world.agents = [Agent() for i in range(2)] for i, agent in enumerate(world.agents): agent.name = 'agent %d' % i agent.collide = False agent.size = 0.075 # speaker world.agents[0].movable = False # listener world.agents[1].silent = True # add landmarks world.landmarks = [Landmark() for i in range(num_landmarks)] for i, landmark in enumerate(world.landmarks): landmark.name = 'landmark %d' % i landmark.collide = False landmark.movable = False landmark.size = 0.04 # make initial conditions self.reset_world(world) return world def reset_world(self, world): # assign goals to agents for agent in world.agents: agent.goal_a = None agent.goal_b = None # want listener to go to the goal landmark world.agents[0].goal_a = world.agents[1] world.agents[0].goal_b = np.random.choice(world.landmarks) # random properties for agents for i, agent in enumerate(world.agents): agent.color = np.array([0.25,0.25,0.25]) # random properties for landmarks world.landmarks[0].color = np.array([0.65,0.15,0.15]) world.landmarks[1].color = np.array([0.15,0.65,0.15]) world.landmarks[2].color = np.array([0.15,0.15,0.65]) # special colors for goals world.agents[0].goal_a.color = world.agents[0].goal_b.color + np.array([0.45, 0.45, 0.45]) # set random initial states for agent in world.agents: agent.state.p_pos = np.random.uniform(-1,+1, world.dim_p) agent.state.p_vel = np.zeros(world.dim_p) agent.state.c = np.zeros(world.dim_c) for i, landmark in enumerate(world.landmarks): landmark.state.p_pos = np.random.uniform(-1,+1, world.dim_p) landmark.state.p_vel = np.zeros(world.dim_p) def benchmark_data(self, agent, world): # returns data for benchmarking purposes return reward(agent, reward) def reward(self, agent, world): # squared distance from listener to landmark a = world.agents[0] dist2 = np.sum(np.square(a.goal_a.state.p_pos - a.goal_b.state.p_pos)) return -dist2 def observation(self, agent, world): # goal color goal_color = np.zeros(world.dim_color) if agent.goal_b is not None: goal_color = agent.goal_b.color # get positions of all entities in this agent's reference frame entity_pos = [] for entity in world.landmarks: entity_pos.append(entity.state.p_pos - agent.state.p_pos) # communication of all other agents comm = [] for other in world.agents: if other is agent or (other.state.c is None): continue comm.append(other.state.c) # speaker if not agent.movable: return np.concatenate([goal_color]) # listener if agent.silent: return np.concatenate([agent.state.p_vel] + entity_pos + comm)
# -*- coding: utf-8 -*- # ***************************************************************************** # NICOS, the Networked Instrument Control System of the MLZ # Copyright (c) 2009-2022 by the NICOS contributors (see AUTHORS) # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Module authors: # Enrico Faulhaber <enrico.faulhaber@frm2.tum.de> # # ***************************************************************************** """Special widgets for the SANS1 statusmonitor.""" from nicos.core.status import BUSY, DISABLED, ERROR, NOTREACHED, OK, UNKNOWN, \ WARN from nicos.guisupport.qt import QBrush, QColor, QLineF, QPainter, QPen, \ QRectF, QSize, Qt, QTextOption, QWidget from nicos.guisupport.widget import NicosWidget, PropDef _magenta = QBrush(QColor('#A12F86')) _yellow = QBrush(QColor('yellow')) _white = QBrush(QColor('white')) _grey = QBrush(QColor('lightgrey')) _black = QBrush(QColor('black')) _blue = QBrush(QColor('blue')) _red = QBrush(QColor('red')) _olive = QBrush(QColor('olive')) _orange = QBrush(QColor('#ffa500')) statusbrush = { BUSY: _yellow, WARN: _orange, ERROR: _red, NOTREACHED: _red, DISABLED: _white, OK: _white, UNKNOWN: _olive, } class Tube2(NicosWidget, QWidget): """Sans1Tube with two detectors...""" designer_description = 'SANS-1 tube with two detectors' def __init__(self, parent, designMode=False): # det1pos, det1shift, det1tilt, det2pos self._curval = [0, 0, 0, 0] self._curstr = ['', '', '', ''] self._curstatus = [OK, OK, OK, OK] QWidget.__init__(self, parent) NicosWidget.__init__(self) devices = PropDef('devices', 'QStringList', [], 'position, shift and ' 'tilt of det1, position of det2') height = PropDef('height', int, 10, 'Widget height in characters') width = PropDef('width', int, 30, 'Widget width in characters') name = PropDef('name', str, '', 'Display name') posscale = PropDef('posscale', float, 20000, 'Length of the tube') color = PropDef('color', 'QColor', _magenta.color(), 'Color of the tube') def sizeHint(self): return QSize(round(self.props['width'] * self._scale) + 10, round(self.props['height'] * self._scale) + round(self.props['name'] and self._scale * 2.5 or 0) + 40) def registerKeys(self): for dev in self.props['devices']: self.registerDevice(str(dev)) def on_devValueChange(self, dev, value, strvalue, unitvalue, expired): try: idx = self.props['devices'].index(dev) except ValueError: return self._curval[idx] = value self._curstr[idx] = unitvalue self.update() def on_devStatusChange(self, dev, code, status, expired): try: idx = self.props['devices'].index(dev) except ValueError: return self._curstatus[idx] = code self.update() def paintEvent(self, event): painter = QPainter(self) painter.setBrush(QBrush(self.color)) painter.setRenderHint(QPainter.Antialiasing) fontscale = float(self._scale) h = self.props['height'] * fontscale w = self.props['width'] * fontscale posscale = (w - 120) / self.props['posscale'] if self.props['name']: painter.setFont(self.font()) painter.drawText(QRectF(5, 0, w, fontscale * 2.5), self.props['name'], QTextOption(Qt.AlignCenter)) yoff = fontscale * 2.5 else: yoff = 0 painter.setPen(self.color) painter.drawEllipse(QRectF(5, 5 + yoff, 50, h)) painter.drawRect(QRectF(30, 5 + yoff, w - 50, h)) painter.setPen(QColor('black')) painter.drawArc(QRectF(5, 5 + yoff, 50, h), 1440, 2880) painter.drawLine(QLineF(30, 5 + yoff, w - 25, 5 + yoff)) painter.drawLine(QLineF(30, 5 + yoff + h, w - 25, 5 + yoff + h)) painter.drawEllipse(QRectF(w - 45, 5 + yoff, 50, h)) # draw Detector 1 minx = 0 pos_val = self._curval[0] if pos_val is not None: pos_status = self._curstatus[0] pos_str = self._curstr[0] shift_val = self._curval[1] shift_status = self._curstatus[1] shift_str = self._curstr[1] if shift_val > 0: shift_str += ' ↓' elif shift_val < 0: shift_str += ' ↑' # Not used at the moment, prepared for later use tilt_val = self._curval[2] tilt_status = self._curstatus[2] tilt_str = self._curstr[2] if tilt_str.endswith('deg'): tilt_str = tilt_str[:-3] + '°' stat = max(pos_status, shift_status, tilt_status) painter.setBrush(statusbrush[stat]) # tf = QTransform() # tf.rotate(tilt_val) painter.resetTransform() painter.translate(60 + pos_val * posscale + fontscale / 2., 15 + yoff + shift_val * posscale + (h - 20) / 2.) painter.rotate(-tilt_val) painter.drawRect(QRectF(-fontscale / 2., - (h - 20) / 2., fontscale, h - 20)) # XXX tilt ??? painter.resetTransform() painter.setFont(self.valueFont) painter.drawText(QRectF(60 + pos_val * posscale - 10.5 * fontscale, -5 + yoff + h - fontscale, # + (shift_val - 4) * posscale, 9.5 * fontscale, 2 * fontscale), tilt_str, QTextOption(Qt.AlignRight)) painter.drawText(QRectF(60 + pos_val * posscale - 6.5 * fontscale, yoff + fontscale, # + (shift_val - 4) * posscale, 9.5 * fontscale, 2 * fontscale), shift_str, QTextOption(Qt.AlignLeft)) minx = max(minx, 60 + pos_val * posscale + 5 - 4 * fontscale) painter.drawText(QRectF(minx, h + 10 + yoff, 8 * fontscale, 30), pos_str, QTextOption(Qt.AlignCenter)) minx = minx + 8 * fontscale # # draw Detector 2 # pos_val = self._curval[3] # if pos_val is not None: # pos_status = self._curstatus[3] # pos_str = self._curstr[3] # # painter.setBrush(statusbrush[pos_status]) # painter.drawRect(60 + pos_val * posscale, 15 + yoff, # fontscale, h - 20 - 5 * posscale) # painter.setFont(self.valueFont) # minx = max(minx, 65 + pos_val * posscale - 4 * fontscale) # painter.drawText(minx, h + 10 + yoff, # 8 * fontscale, 30, Qt.AlignCenter, pos_str) # minx = minx + 8 * fontscale class BeamOption(NicosWidget, QWidget): designer_description = 'SANS-1 beam option' def __init__(self, parent, designMode=False): self._curstr = '' self._curstatus = OK self._fixed = '' QWidget.__init__(self, parent) NicosWidget.__init__(self) dev = PropDef('dev', str, '', 'NICOS device name') height = PropDef('height', int, 4, 'Widget height in characters') width = PropDef('width', int, 10, 'Widget width in characters') name = PropDef('name', str, '', 'Display name') def sizeHint(self): return QSize(round(self.props['width'] * self._scale), round(self.props['height'] * self._scale) + round(self.props['name'] and self._scale * 2.5 or 0)) def registerKeys(self): self.registerDevice(self.props['dev']) def on_devValueChange(self, dev, value, strvalue, unitvalue, expired): self._curstr = unitvalue self.update() def on_devMetaChange(self, dev, fmtstr, unit, fixed): self._fixed = fixed self.update() def on_devStatusChange(self, dev, code, status, expired): self._curstatus = code self.update() def paintEvent(self, event): painter = QPainter(self) painter.setBrush(_magenta) painter.setRenderHint(QPainter.Antialiasing) w = self.props['width'] * self._scale h = self.props['height'] * self._scale if self.props['name']: painter.setFont(self.font()) painter.drawText(QRectF(0, 0, w, self._scale * 2.5), self.props['name'], QTextOption(Qt.AlignCenter)) yoff = self._scale * 2.5 else: yoff = 0 painter.setBrush(statusbrush[self._curstatus]) painter.drawRect(QRectF(2, 2 + yoff, w - 4, h - 4)) painter.setFont(self.valueFont) painter.drawText(QRectF(2, 2 + yoff, w - 4, h - 4), self._curstr, QTextOption(Qt.AlignCenter)) class CollimatorTable(NicosWidget, QWidget): """Displays a list of 'beam options' as a vertical stack. Options are displayed as vertical stack of named elements drawn on top of a centered blue line ('the beam'). If the device value is in 'options', the correspondig element is drawn on top of 'the beam' by moving the whole stack vertically. If the device value is in 'disabled_options', the whole stack of options is vertically shifted 'out of beam'. Other values are ignored as they are considered temporary (while moving an option). If the device state happens to be in error, the name label is displayed in red to indicate the error. """ designer_description = 'SANS-1 collimator table' def __init__(self, parent, designMode=False): self._curstr = '' self._curstatus = OK self._fixed = '' self.shift = -1 QWidget.__init__(self, parent) NicosWidget.__init__(self) dev = PropDef('dev', str, '', 'NICOS device name of a switcher') options = PropDef('options', 'QStringList', [], 'list of valid switcher-' 'values to display in top-down order (first element ' 'will be displayed on top location)') disabled_options = PropDef('disabled_options', 'QStringList', [], 'list of valid switcher values for which ' 'all options are display out-of-beam') height = PropDef('height', int, 4, 'Widget height in characters') width = PropDef('width', int, 10, 'Widget width in characters') name = PropDef('name', str, '', 'Display name') def registerKeys(self): self.registerDevice(self.props['dev']) def sizeHint(self): return QSize(round(self._scale * self.props['width']), round(self._scale * 2.5 * self.props['height']) + round(self.props['name'] and 2.5 * self._scale or 0)) def on_devValueChange(self, dev, value, strvalue, unitvalue, expired): self._curstr = strvalue self.update() def on_devMetaChange(self, dev, fmtstr, unit, fixed): self._fixed = fixed self.update() def on_devStatusChange(self, dev, code, status, expired): self._curstatus = code self.update() def paintEvent(self, event): painter = QPainter(self) painter.setRenderHint(QPainter.Antialiasing) h = self._scale * 2.5 * self.props['height'] w = self._scale * self.props['width'] # cache pen pen = painter.pen() if self.props['name']: painter.setFont(self.font()) if self._curstatus != OK: painter.fillRect(QRectF(0, 0, w, self._scale * 2.5), statusbrush[self._curstatus]) if self._fixed: painter.setPen(QPen(_blue.color())) else: painter.setPen(QPen(_black.color())) painter.drawText(QRectF(0, 0, w, self._scale * 2.5), self.props['name'], QTextOption(Qt.AlignCenter)) painter.setPen(pen) yoff = self._scale * 2.5 else: yoff = 0 painter.setPen(QPen(_blue.color())) y = h * 0.5 + yoff painter.drawLine(QLineF(0, y, w, y)) painter.drawLine(QLineF(0, y+1, w, y+1)) painter.drawLine(QLineF(0, y+2, w, y+2)) # reset pen painter.setPen(pen) painter.setBrush(statusbrush[self._curstatus]) if self._curstr in self.props['options']: self.shift = self.props['options'].index(self._curstr) if self._curstr in self.props['disabled_options']: self.shift = len(self.props['options']) painter.setFont(self.valueFont) h0 = max(2 * self._scale, 2 * self._scale + 4) painter.setClipRect(QRectF(0, yoff, w, h)) for i, t in enumerate(self.props['options']): y = h * 0.5 + yoff + h0 * (self.shift - i - 0.45) b = statusbrush[self._curstatus] if t == self._curstr: painter.setBrush(b) else: painter.setBrush(_grey if b == statusbrush[OK] else b) painter.drawRect(QRectF(5, y + 2, w - 10, h0 - 4)) painter.drawText(QRectF(5, y + 2, w - 10, h0 - 4), t, QTextOption(Qt.AlignCenter))
#!/usr/bin/env python """Manager of worker subprocesses. This module invokes the worker subprocesses that perform the cloud security monitoring tasks. Each worker subprocess wraps around a cloud, store, event, or alert plugin and executes the plugin in a separate subprocess. """ import logging.config import multiprocessing as mp import time import schedule from cloudmarker import util, workers # Define module-level logger. _log = logging.getLogger(__name__) def main(): """Run the framework based on the schedule.""" args = util.parse_cli() config = util.load_config(args.config) logging.config.dictConfig(config['logger']) # Run the audits according to the schedule set in the configuration if the # 'force' flag is not set in the command line. if args.force: _log.info('Starting job now') job(config) else: _log.info('Scheduled to run job everyday at %s', config['schedule']) schedule.every().day.at(config['schedule']).do(job, config) while True: schedule.run_pending() time.sleep(60) def job(config): """Run the audits. Arguments: config (dict): Configuration dictionary. """ # Create an audit object for each audit configured to be run. audits = [] for audit_name in config['run']: audits.append(Audit(audit_name, config)) # Start all audits. for audit in audits: audit.start() # Wait for all audits to terminate. for audit in audits: audit.join() class Audit: """Audit manager. This class encapsulates a set of worker subprocesses and worker input queues for a single audit configuration. """ def __init__(self, audit_name, config): """Create an instance of :class:`Audit` from configuration. A single audit definition (from a list of audit definitions under the ``audits`` key in the configuration) is instantiated. Each audit definition contains lists of cloud plugins, store plugins, event plugins, and alert plugins. These plugins are instantiated and multiprocessing queues are set up to take records from one plugin and feed them to another plugin as per the audit workflow. Arguments: audit_name (str): Key name for an audit configuration. This key is looked for in ``config['audits']``. config (dict): Configuration dictionary. This is the entire configuration dictionary that contains top-level keys named ``clouds``, ``stores``, ``events``, ``alerts``, ``audits``, ``run``, etc. """ audit_config = config['audits'][audit_name] # We keep all workers in these lists. self._cloud_workers = [] self._store_workers = [] self._event_workers = [] self._alert_workers = [] # We keep all queues in these lists. self._store_queues = [] self._event_queues = [] self._alert_queues = [] # Create alert workers and queues. for name in audit_config['alerts']: input_queue = mp.Queue() args = ( audit_name + '-' + name, util.load_plugin(config['alerts'][name]), input_queue, ) worker = mp.Process(target=workers.store_worker, args=args) self._alert_workers.append(worker) self._alert_queues.append(input_queue) # Create event_workers workers and queues. for name in audit_config['events']: input_queue = mp.Queue() args = ( audit_name + '-' + name, util.load_plugin(config['events'][name]), input_queue, self._alert_queues, ) worker = mp.Process(target=workers.event_worker, args=args) self._event_workers.append(worker) self._event_queues.append(input_queue) # Create store workers and queues. for name in audit_config['stores']: input_queue = mp.Queue() args = ( audit_name + '-' + name, util.load_plugin(config['stores'][name]), input_queue, ) worker = mp.Process(target=workers.store_worker, args=args) self._store_workers.append(worker) self._store_queues.append(input_queue) # Create cloud workers. for name in audit_config['clouds']: args = ( audit_name + '-' + name, util.load_plugin(config['clouds'][name]), self._store_queues + self._event_queues ) worker = mp.Process(target=workers.cloud_worker, args=args) self._cloud_workers.append(worker) def start(self): """Start audit by starting all workers.""" for w in (self._cloud_workers + self._store_workers + self._event_workers + self._alert_workers): w.start() def join(self): """Wait until all workers terminate.""" # Wait for cloud workers to terminate. for w in self._cloud_workers: w.join() # Stop store workers and event workers. for q in self._store_queues + self._event_queues: q.put(None) # Wait for store workers and event_workers workers to terminate. for w in self._store_workers + self._event_workers: w.join() # Stop alert workers. for q in self._alert_queues: q.put(None) # Wait for alert workers to terminate. for w in self._alert_workers: w.join()
import os import shutil import pytest from pyuplift.utils import retrieve_from_gz data_home = os.path.join(os.sep.join(__file__.split(os.sep)[:-1]), 'data') def test_retrieve_from_gz(): output_path = os.path.join(data_home, 'test.test') archive_path = output_path + '.gz' retrieve_from_gz(archive_path, output_path) with open(output_path, 'r') as f: text = f.read() os.remove(output_path) assert text == 'good'
# Recorder that records agent states as dataframes and also stores a carla recording, in synchronous mode #!/usr/bin/env python # Copyright (c) 2019 Computer Vision Center (CVC) at the Universitat Autonoma de # Barcelona (UAB). # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. import glob import os import sys import pandas as pd from tqdm import tqdm import math CARLA_VERSION = "0.9.11" try: # sys.path.append("./libs/carla-0.9.9-py3.7-linux-x86_64.egg") if CARLA_VERSION == "0.9.9": sys.path.append("./libs/carla-0.9.9-py3.7-linux-x86_64.egg") elif CARLA_VERSION == "0.9.11": sys.path.append("./libs/carla-0.9.11-py3.7-linux-x86_64.egg") except IndexError: pass import carla import argparse import random import time import logging import click import pathlib import spawn current_dir = pathlib.Path(__file__).parent.absolute() SEED = 27 random.seed(SEED) def get_metadata(actor, frame_id): type_id = actor.type_id def splitCarlaVec(vect): return vect.x, vect.y, vect.z id = actor.id # clsname = ClientSideBoundingBoxes.get_class_name(actor) tf = actor.get_transform() roll, pitch, yaw = tf.rotation.roll, tf.rotation.pitch, tf.rotation.yaw loc = actor.get_location() pos_x, pos_y, pos_z = splitCarlaVec(loc) try: bbox3d = actor.bounding_box bbox3d_offset_x, bbox3d_offset_y, bbox3d_offset_z = splitCarlaVec( bbox3d.location ) bbox3d_extent_x, bbox3d_extent_y, bbox3d_extent_z = splitCarlaVec(bbox3d.extent) except: bbox3d_offset_x, bbox3d_offset_y, bbox3d_offset_z = None, None, None bbox3d_extent_x, bbox3d_extent_y, bbox3d_extent_z = None, None, None velocity_x, velocity_y, velocity_z = splitCarlaVec(actor.get_velocity()) acc_x, acc_y, acc_z = splitCarlaVec(actor.get_acceleration()) angular_vel_x, angular_vel_y, angular_vel_z = splitCarlaVec( actor.get_angular_velocity() ) try: # need to do this because Carla's Actor object doesnt support getattr traffic_light_state = actor.state.name except: traffic_light_state = None return ( frame_id, id, type_id, pos_x, pos_y, pos_z, roll, pitch, yaw, velocity_x, velocity_y, velocity_z, acc_x, acc_y, acc_z, angular_vel_x, angular_vel_y, angular_vel_z, bbox3d_offset_x, bbox3d_offset_y, bbox3d_offset_z, bbox3d_extent_x, bbox3d_extent_y, bbox3d_extent_z, traffic_light_state, ) global_collision = False def collision_detect_callback(event): actor_we_collide_against = event.other_actor impulse = event.normal_impulse intensity = math.sqrt(impulse.x ** 2 + impulse.y ** 2 + impulse.z ** 2) if "vehicle." in actor_we_collide_against.type_id: global global_collision global_collision = True def attach_collision_sensor(actor, world): blueprint_library = world.get_blueprint_library() collision_sensor = world.spawn_actor( blueprint_library.find("sensor.other.collision"), carla.Transform(), attach_to=actor, ) collision_sensor.listen(lambda event: collision_detect_callback(event)) return collision_sensor def run( client, round_name, recording_dir, speed_violation_prob=60, tl_violation_prob=70, perc_speed_diff=-30, num_vehicles=25, SESSION_DURATION=60, ): safe = True # avoid spawning vehicles whose geometry is not ideal for carla actor_list = [] sensors = [] logging.basicConfig(format="%(levelname)s: %(message)s", level=logging.INFO) try: FPS = 5 DELTA_T = 1 / FPS world = client.get_world() blueprints = world.get_blueprint_library().filter("vehicle.*") traffic_manager = client.get_trafficmanager() traffic_manager.set_global_distance_to_leading_vehicle(2.0) if CARLA_VERSION == "0.9.11": print("Using deterministic Traffic Manager") traffic_manager.set_random_device_seed(SEED) settings = client.get_world().get_settings() if not settings.synchronous_mode: traffic_manager.set_synchronous_mode(True) synchronous_master = True settings.synchronous_mode = True settings.fixed_delta_seconds = DELTA_T client.get_world().apply_settings(settings) else: synchronous_master = False recording_dir_path = pathlib.Path(recording_dir) recording_dir_path.mkdir(exist_ok=True) session_recording = str(recording_dir_path / f"{round_name}.csv") carla_session_recording = str( recording_dir_path.absolute() / f"{round_name}_carla_recording" ) print("Recording on file: %s" % client.start_recorder(carla_session_recording)) vehicles_list, walkers_list, all_actors = spawn.spawn( client, world, num_vehicles, 0, safe ) world.tick() print("spawned %d vehicles, press Ctrl+C to exit." % len(actor_list)) # fmt: off df_columns = [ "frame_id", "id", "type_id", "pos_x", "pos_y", "pos_z", "roll", "pitch", "yaw", "velocity_x", "velocity_y", "velocity_z", "acc_x", "acc_y", "acc_z", "angular_vel_x", "angular_vel_y", "angular_vel_z", "bbox3d_offset_x", "bbox3d_offset_y", "bbox3d_offset_z", "bbox3d_extent_x", "bbox3d_extent_y", "bbox3d_extent_z", "traffic_light_color", ] # fmt: on # get all non vehicle agents global global_collision global_collision = False actors = world.get_actors() for actor in actors: if "vehicle." in actor.type_id: sensors.append(attach_collision_sensor(actor, world)) non_vehicles = [ x for x in actors if ("vehicle" not in x.type_id and "traffic_light" not in x.type_id) ] # signs, traffic lights etc frame_id = 0 df_arr = [] non_vehicle_arr = [get_metadata(actor, frame_id) for actor in non_vehicles] df_arr += non_vehicle_arr pbar = tqdm(total=FPS * SESSION_DURATION) max_frames = FPS * SESSION_DURATION collision_detected_once = False while frame_id < max_frames: if global_collision and not collision_detected_once: # Todo, if detected, start a countdown of N frames and break only after N iterations print("detected collision, exiting!") collision_detected_once = True max_frames = frame_id + 5 # continue actors = world.get_actors() for actor in actors: if "vehicle." in actor.type_id: # print(actor.type_id) tm_port = traffic_manager.get_port() actor.set_autopilot(True, tm_port) traffic_manager.ignore_lights_percentage(actor, tl_violation_prob) traffic_manager.distance_to_leading_vehicle(actor, 3) if random.random() * 100 < speed_violation_prob: traffic_manager.vehicle_percentage_speed_difference( actor, perc_speed_diff ) vehicles_and_lights = [ x for x in actors if "vehicle" in x.type_id or "traffic_light" in x.type_id ] metadata_arr = [ get_metadata(actor, frame_id) for actor in vehicles_and_lights ] df_arr += metadata_arr frame_id += 1 pbar.update(1) world.tick() df = pd.DataFrame(df_arr, columns=df_columns) pbar.close() print(f"Saving CSV({len(df.frame_id.unique())} frames)") # df.to_parquet(f"session_data.parquet") df.to_csv(session_recording, index=False) world.tick() # if args.recorder_time > 0: # time.sleep(args.recorder_time) # else: # while True: # world.wait_for_tick() # # time.sleep(0.1) finally: if synchronous_master: settings = world.get_settings() settings.synchronous_mode = False settings.fixed_delta_seconds = None world.apply_settings(settings) print("\ndestroying %d actors" % (len(sensors) + len(vehicles_list))) # all_agents = sensors + vehicles_list for s in sensors: s.destroy() client.apply_batch_sync([carla.command.DestroyActor(x) for x in vehicles_list]) print("Stop recording") client.stop_recorder() @click.command() @click.option( "-s", "--scenario_type", type=click.Choice(["tl_sl", "nominal"], case_sensitive=False), required=True, ) @click.option("-n", "--num_rounds", default=100) @click.option("--test", is_flag=True) def main(scenario_type, num_rounds, test): # print(scenario_type, test, num_rounds) if test: random.seed(72) if scenario_type.lower() == "tl_sl": SPEED_VIOLATION_PROB = 60 TL_VIOLATION_PROB = 70 PERC_SPEED_DIFF = -30 SCENARIO_NAME = "tl_sl" # NUM_ROUNDS = 100 elif scenario_type.lower() == "nominal": SPEED_VIOLATION_PROB = 0 TL_VIOLATION_PROB = 0 PERC_SPEED_DIFF = 0 SCENARIO_NAME = "nominal" # NUM_ROUNDS = 200 NUM_ROUNDS = num_rounds print(f"Recording {SCENARIO_NAME} data") try: host = "127.0.0.1" # IP of the host server (default: 127.0.0.1) port = 2000 # TCP port to listen to (default: 2000)", client = carla.Client(host, port) if test: scenario_dir = f"test_{SCENARIO_NAME}_recordings" else: scenario_dir = f"{SCENARIO_NAME}_recordings" round_names = [] for i in range(NUM_ROUNDS): run( client, f"{scenario_type}_round_{i}", scenario_dir, SPEED_VIOLATION_PROB, TL_VIOLATION_PROB, PERC_SPEED_DIFF, ) round_names.append(f"{scenario_type}_round_{i}") # client.reload_world() except KeyboardInterrupt: pass finally: print("\ndone.") if __name__ == "__main__": main()
from system.core.model import Model from flask import jsonify class Lead(Model): def __init__(self): super(Lead, self).__init__() def get_leads(self, name, early, late, page, sort, order): query = 'SELECT * FROM leads' data = {} prev = False if name != '': query += ' WHERE CONCAT(first_name, " ", last_name) LIKE "%":name"%"' prev = True data['name'] = name if early != '': if prev: query += ' AND' else: query += ' WHERE' query += ' registered_datetime > :start' prev = True data['start'] = early if late != '': if prev: query += ' AND' else: query += ' WHERE' query += ' registered_datetime < :stop' data['stop'] = late if sort != '': self.check_sort(sort) query += ' ORDER BY ' + sort if order != '': if order == 'DESC': query += ' DESC' elif order == 'ASC': query += ' ASC' pages = self.db.query_db(query, data) query += ' LIMIT :offset, 10' data['offset'] = int(page)*10-10 results = self.db.query_db(query, data) return jsonify({'people': results, 'pages': pages}) def check_sort(self, sort): legal_vals = ['id','first_name','last_name','registered_datetime','email'] if not sort in legal_vals: sort = 'registered_datetime'
from django.conf import settings from django.contrib.auth import get_user, views as auth_views from django.contrib.auth.decorators import login_required from django.core.files import File from django.http import HttpResponseRedirect, HttpResponse from django.shortcuts import render, get_object_or_404 from django.urls import reverse from django.utils import timezone from .forms import ScoreForm from .models import Score, Result from . import voiceleading from music21 import converter import os.path # Create your views here. def index(request): user = get_user(request) if request.method == 'POST': score_form = ScoreForm(request.POST, request.FILES) new_score = score_form.save() if user.is_authenticated: new_score.user = user new_score.score_display_name = os.path.basename(new_score.score.name) new_score.save() fname = str.format('{0}/{1}', settings.MEDIA_ROOT, new_score.score.url) stream = converter.parse(fname) end_height = 1 for musical_test in new_score.musical_tests.all(): musical_test_failures = getattr(voiceleading, musical_test.func)( stream, chordified_stream=stream.chordify(), ) r = Result(score=new_score,musical_test=musical_test) r.passed = (len(musical_test_failures) == 0) r.save() stream, end_height = voiceleading.annotate_stream(musical_test_failures, stream, end_height) output_path = os.path.join("{}_checked.xml".format(fname[:-4])) stream.write( "musicxml", output_path ) with open(output_path) as fp: contents = File(fp) new_score.checked_score.save(output_path, contents) new_score.checked_score_display_name = f"{new_score.score_display_name[:-4]}_checked.xml" new_score.save() return HttpResponseRedirect( reverse('harmony_checker:checked', args=(new_score.id,)) ) else: score_form = ScoreForm() return render( request, 'harmony_checker/index.html', {'score_form': score_form, 'user': user, 'title': "Check Harmony"} ) def checked(request, score_id): user = get_user(request) score = get_object_or_404(Score, pk=score_id) results = Result.objects.filter(score=score_id) #generate checked score display name return render( request, 'harmony_checker/checked.html', { 'score': score, 'results': results, 'user': user, 'title': 'Results' } ) def checked_score(request, score_id): score = get_object_or_404(Score, pk=score_id) response = HttpResponse(score.checked_score, content_type='application/xml') response['Content-Disposition'] = f"attachment; filename={score.checked_score_display_name}" return response def score(request, score_id): score = get_object_or_404(Score, pk=score_id) response = HttpResponse(score.score, content_type='application/xml') response['Content-Disposition'] = f"attachment; filename={score.score_display_name}" return response @login_required def profile(request): user = get_user(request) scores = Score.objects.filter(user=user).order_by('-upload_date') return render( request, 'harmony_checker/profile.html', { 'user': user, 'scores': scores, 'title': "User Profile" } )
import re def test_repr(tracer, rpc_stub): class A: pass tracer.start() match = re.match("foo", "foobar") a = A() tracer.stop() from utils import return_GetFrame frame_proto = return_GetFrame(rpc_stub, "test_repr") binding_match_event = frame_proto.events[0] assert ( binding_match_event.binding.repr == "<re.Match object; span=(0, 3), match='foo'>" ) assert ( binding_match_event.binding.value == '{"repr": "<re.Match object; span=(0, 3), match=\'foo\'>"}' ) binding_a_event = frame_proto.events[2] assert binding_a_event.binding.repr == "<test_to_json.test_repr.<locals>.A object>" assert binding_a_event.binding.value == "{}"
# -*- coding: utf-8 -*- # # ====================================================================================================================== # Copyright (©) 2015-2019 LCS # Laboratoire Catalyse et Spectrochimie, Caen, France. # CeCILL-B FREE SOFTWARE LICENSE AGREEMENT # See full LICENSE agreement in the root directory # ====================================================================================================================== """ This module implements the |NDDataset| class. """ __all__ = ['NDDataset'] import textwrap import warnings import sys import numpy as np from traitlets import HasTraits, Instance, Bool, Float, validate, default, Dict, Union from traittypes import Array from spectrochempy.core.project.baseproject import AbstractProject from spectrochempy.core.dataset.ndarray import NDArray, DEFAULT_DIM_NAME from spectrochempy.core.dataset.ndcomplex import NDComplexArray from spectrochempy.core.dataset.coord import Coord, LinearCoord from spectrochempy.core.dataset.coordset import CoordSet from spectrochempy.core.dataset.ndmath import NDMath, _set_ufuncs, _set_operators from spectrochempy.core.dataset.ndio import NDIO from spectrochempy.core.dataset.ndplot import NDPlot from spectrochempy.core import error_, warning_ from spectrochempy.utils import (colored_output, SpectroChemPyException, SpectroChemPyWarning, MaskedConstant) HAS_XARRAY = False try: import xarray as xr HAS_XARRAY = True # pragma: no cover except ImportError: xr = None # pragma: no cover # ====================================================================================================================== # NDDataset class definition # ====================================================================================================================== class NDDataset(NDIO, NDPlot, NDMath, NDComplexArray): # coordinates _coordset = Instance(CoordSet, allow_none=True) # model data (e.g., for fit) _modeldata = Array(Float(), allow_none=True) # some setting for NDDataset _copy = Bool(False) _labels_allowed = Bool(False) # no labels for NDDataset # dataset can be members of a project. # we use the abstract class to avoid circular imports. _parent = Instance(AbstractProject, allow_none=True) # For the GUI interface # parameters state _state = Dict() # processed data (for GUI) _processeddata = Array(Float(), allow_none=True) # processed mask (for GUI) _processedmask = Union((Bool(), Array(Bool()), Instance(MaskedConstant))) # baseline data (for GUI) _baselinedata = Array(Float(), allow_none=True) # reference data (for GUI) _referencedata = Array(Float(), allow_none=True) # ------------------------------------------------------------------------------------------------------------------ # initialisation # ------------------------------------------------------------------------------------------------------------------ # .................................................................................................................. def __init__(self, data=None, coordset=None, coordunits=None, coordtitles=None, **kwargs): """ The main N-dimensional dataset class used by |scpy|. The NDDataset is the main object use by SpectroChemPy. Like numpy ndarrays, NDDataset have the capability to be sliced, sorted and subject to mathematical operations. But, in addition, NDDataset may have units, can be masked and each dimensions can have coordinates also with units. This make NDDataset aware of unit compatibility, e.g., for binary operation such as additions or subtraction or during the application of mathematical operations. In addition or in replacement of numerical data for coordinates, NDDataset can also have labeled coordinates where labels can be different kind of objects (strings, datetime, numpy nd.ndarray or othe NDDatasets, etc…). Parameters ---------- data : array of floats Data array contained in the object. The data can be a list, a tuple, a |ndarray|, a ndarray-like, a |NDArray| or any subclass of |NDArray|. Any size or shape of data is accepted. If not given, an empty |NDArray| will be inited. At the initialisation the provided data will be eventually casted to a numpy-ndarray. If a subclass of |NDArray| is passed which already contains some mask, labels, or units, these elements will be used to accordingly set those of the created object. If possible, the provided data will not be copied for `data` input, but will be passed by reference, so you should make a copy of the `data` before passing them if that's the desired behavior or set the `copy` argument to True. coordset : An instance of |CoordSet|, optional `coords` contains the coordinates for the different dimensions of the `data`. if `coords` is provided, it must specified the `coord` and `labels` for all dimensions of the `data`. Multiple `coord`'s can be specified in an |CoordSet| instance for each dimension. coordunits : list, optional A list of units corresponding to the dimensions in the order of the coordset. coordtitles : list, optional A list of titles corresponding of the dimensions in the order of the coordset. **kwargs : dict See other parameters. Other Parameters ---------------- dtype : str or dtype, optional, default=np.float64 If specified, the data will be casted to this dtype, else the data will be casted to float64 or complex128. dims : list of chars, optional If specified the list must have a length equal to the number od data dimensions (ndim) and the chars must be taken among among x,y,z,u,v,w or t. If not specified, the dimension names are automatically attributed in this order. name : str, optional A user friendly name for this object. If not given, the automatic `id` given at the object creation will be used as a name. labels : array of objects, optional Labels for the `data`. labels can be used only for 1D-datasets. The labels array may have an additional dimension, meaning several series of labels for the same data. The given array can be a list, a tuple, a |ndarray|, a ndarray-like, a |NDArray| or any subclass of |NDArray|. mask : array of bool or `NOMASK`, optional Mask for the data. The mask array must have the same shape as the data. The given array can be a list, a tuple, or a |ndarray|. Each values in the array must be `False` where the data are *valid* and True when they are not (like in numpy masked arrays). If `data` is already a :class:`~numpy.ma.MaskedArray`, or any array object (such as a |NDArray| or subclass of it), providing a `mask` here will causes the mask from the masked array to be ignored. units : |Unit| instance or str, optional Units of the data. If data is a |Quantity| then `units` is set to the unit of the `data`; if a unit is also explicitly provided an error is raised. Handling of units use the `pint <https://pint.readthedocs.org/>`_ package. title : str, optional The title of the dimension. It will later be used for instance for labelling plots of the data. It is optional but recommended to give a title to each ndarray. dlabel : str, optional Alias of `title`. meta : dict-like object, optional Additional metadata for this object. Must be dict-like but no further restriction is placed on meta. author : str, optional Name(s) of the author(s) of this dataset. BNy default, name of the computer note where this dataset is created. description : str, optional A optional description of the nd-dataset. A shorter alias is `desc`. history : str, optional A string to add to the object history. copy : bool, optional Perform a copy of the passed object. Default is False. See Also -------- Coord : Explicit coordinates object. LinearCoord : Implicit coordinates objet. CoordSet : Set of coordinates. Notes ----- The underlying array in a |NDDataset| object can be accessed through the `data` attribute, which will return a conventional |ndarray|. Examples -------- Usage by an end-user >>> from spectrochempy import * >>> x = NDDataset([1, 2, 3]) >>> print(x.data) # doctest: +NORMALIZE_WHITESPACE [ 1 2 3] """ super().__init__(data, **kwargs) self._parent = None # eventually set the coordinates with optional units and title if isinstance(coordset, CoordSet): self.set_coordset(**coordset) else: if coordset is None: coordset = [None] * self.ndim if coordunits is None: coordunits = [None] * self.ndim if coordtitles is None: coordtitles = [None] * self.ndim _coordset = [] for c, u, t in zip(coordset, coordunits, coordtitles): if not isinstance(c, CoordSet): if isinstance(c, LinearCoord): coord = LinearCoord(c) else: coord = Coord(c) if u is not None: coord.units = u if t is not None: coord.title = t else: if u: # pragma: no cover warning_('units have been set for a CoordSet, but this will be ignored ' '(units are only defined at the coordinate level') if t: # pragma: no cover warning_('title will be ignored as they are only defined at the coordinates level') coord = c _coordset.append(coord) if _coordset and set(_coordset) != {Coord()}: # if they are no coordinates do nothing self.set_coordset(*_coordset) # ------------------------------------------------------------------------------------------------------------------ # special methods # ------------------------------------------------------------------------------------------------------------------ # .................................................................................................................. def __dir__(self): # WARNING: be carefull to keep the present order of the three first elements! Needed for save/load operations return ['dims', 'coordset', 'data', 'name', 'title', 'mask', 'units', 'meta', 'preferences', 'author', 'description', 'history', 'date', 'modified', 'origin', 'roi', 'offset', 'transposed', 'modeldata', 'processeddata', 'baselinedata', 'referencedata', 'state'] + NDIO().__dir__() # .................................................................................................................. def __getitem__(self, items): saveditems = items # coordinate selection to test first if isinstance(items, str): try: return self._coordset[items] except Exception: pass # slicing new, items = super().__getitem__(items, return_index=True) if new is None: return None if self._coordset is not None: names = self._coordset.names # all names of the current coordinates new_coords = [None] * len(names) for i, item in enumerate(items): # get the corresponding dimension name in the dims list name = self.dims[i] # get the corresponding index in the coordinate's names list idx = names.index(name) if self._coordset[idx].is_empty: new_coords[idx] = Coord(None, name=name) elif isinstance(item, slice): # add the slice on the corresponding coordinates on the dim to the new list of coordinates if not isinstance(self._coordset[idx], CoordSet): new_coords[idx] = self._coordset[idx][item] else: # we must slice all internal coordinates newc = [] for c in self._coordset[idx]: newc.append(c[item]) new_coords[idx] = CoordSet(*newc[::-1], name=name) # we reverse to be sure # the order will be # kept for internal coordinates new_coords[idx]._default = self._coordset[idx]._default # set the same default coord new_coords[idx]._is_same_dim = self._coordset[idx]._is_same_dim elif isinstance(item, (np.ndarray, list)): new_coords[idx] = self._coordset[idx][item] new.set_coordset(*new_coords, keepnames=True) new.history = f'Slice extracted: ({saveditems})' return new # .................................................................................................................. def __getattr__(self, item): # when the attribute was not found if item in ["__numpy_ufunc__", "interface", '_pytestfixturefunction', '__dataclass_fields__', '_ipython_canary_method_should_not_exist_', '_baseclass', '_fill_value', '_ax_lines', '_axcb', 'clevels', '__wrapped__', 'coords', '__await__', '__aiter__'] or '_validate' in item or '_changed' in item: # raise an error so that traits, ipython operation and more ... will be handled correctly raise AttributeError # syntax such as ds.x, ds.y, etc... if item[0] in self.dims or self._coordset: # look also properties attribute = None index = 0 # print(item) if len(item) > 2 and item[1] == '_': attribute = item[1:] item = item[0] index = self.dims.index(item) if self._coordset: try: c = self._coordset[item] if isinstance(c, str) and c in self.dims: # probaly a reference to another coordinate name c = self._coordset[c] if c.name in self.dims or c._parent_dim in self.dims: if attribute is not None: # get the attribute return getattr(c, attribute) else: return c else: raise AttributeError except Exception as err: if item in self.dims: return None else: raise err elif attribute is not None: if attribute == 'size': # we want the size but there is no coords, get it from the data shape return self.shape[index] else: raise AttributeError(f'Can not find `{attribute}` when no coordinate is defined') return None raise AttributeError def __setattr__(self, key, value): if key in DEFAULT_DIM_NAME: # syntax such as ds.x, ds.y, etc... # Note the above test is important to avoid errors with traitlets # even if it looks redundant with the folllowing if key in self.dims: if self._coordset is None: # we need to create a coordset first self.set_coordset(dict((self.dims[i], None) for i in range(self.ndim))) idx = self._coordset.names.index(key) _coordset = self._coordset listcoord = False if isinstance(value, list): listcoord = all([isinstance(item, Coord) for item in value]) if listcoord: _coordset[idx] = list(CoordSet(value).to_dict().values())[0] _coordset[idx].name = key _coordset[idx]._is_same_dim = True elif isinstance(value, CoordSet): if len(value) > 1: value = CoordSet(value) _coordset[idx] = list(value.to_dict().values())[0] _coordset[idx].name = key _coordset[idx]._is_same_dim = True elif isinstance(value, (Coord, LinearCoord)): value.name = key _coordset[idx] = value else: _coordset[idx] = Coord(value, name=key) _coordset = self._valid_coordset(_coordset) self._coordset.set(_coordset) else: raise AttributeError(f'Coordinate `{key}` is not used.') else: super().__setattr__(key, value) # .................................................................................................................. def __eq__(self, other, attrs=None): attrs = self.__dir__() for attr in ( 'filename', 'preferences', 'name', 'description', 'history', 'date', 'modified', 'origin', 'show_datapoints', 'roi', 'offset', 'modeldata', 'processeddata', 'baselinedata', 'referencedata', 'state'): # these attibutes are not used for comparison (comparison based on data and units!) try: attrs.remove(attr) except ValueError: pass return super().__eq__(other, attrs) # .................................................................................................................. def __hash__(self): # all instance of this class has same hash, so they can be compared return super().__hash__ + hash(self._coordset) # ------------------------------------------------------------------------------------------------------------------ # Default values # ------------------------------------------------------------------------------------------------------------------ # .................................................................................................................. @default('_coordset') def _coordset_default(self): return None # .................................................................................................................. @default('_modeldata') def _modeldata_default(self): return None # .................................................................................................................. @default('_processeddata') def _processeddata_default(self): return None # .................................................................................................................. @default('_baselinedata') def _baselinedata_default(self): return None # .................................................................................................................. @default('_referencedata') def _referencedata_default(self): return None # ------------------------------------------------------------------------------------------------------------------ # GUI options # ------------------------------------------------------------------------------------------------------------------ # TODO: refactor the spectrochempy preference system to have a common basis @property def state(self): # state of the controller window for this dataset return self._state @state.setter def state(self, val): self._state = val @property def processeddata(self): return self._processeddata @processeddata.setter def processeddata(self, val): self._processeddata = val @property def processedmask(self): return self._processedmask @processedmask.setter def processedmask(self, val): self._processedmask = val @property def baselinedata(self): return self._baselinedata @baselinedata.setter def baselinedata(self, val): self._baselinedata = val @property def referencedata(self): return self._referencedata @referencedata.setter def referencedata(self, val): self._referencedata = val # ------------------------------------------------------------------------------------------------------------------ # Validators # ------------------------------------------------------------------------------------------------------------------ # .................................................................................................................. @validate('_coordset') def _coordset_validate(self, proposal): coords = proposal['value'] return self._valid_coordset(coords) def _valid_coordset(self, coords): # uses in coords_validate and setattr if coords is None: return for k, coord in enumerate(coords): if coord is not None and not isinstance(coord, CoordSet) and coord.data is None: continue # For coord to be acceptable, we require at least a NDArray, a NDArray subclass or a CoordSet if not isinstance(coord, (LinearCoord, Coord, CoordSet)): if isinstance(coord, NDArray): coord = coords[k] = Coord(coord) else: raise TypeError('Coordinates must be an instance or a subclass of Coord class or NDArray, or of ' f' CoordSet class, but an instance of {type(coord)} has been passed') if self.dims and coord.name in self.dims: # check the validity of the given coordinates in terms of size (if it correspond to one of the dims) size = coord.size if self.implements('NDDataset'): idx = self._get_dims_index(coord.name)[0] # idx in self.dims if size != self._data.shape[idx]: raise ValueError(f'the size of a coordinates array must be None or be equal' f' to that of the respective `{coord.name}`' f' data dimension but coordinate size={size} != data shape[{idx}]=' f'{self._data.shape[idx]}') else: pass # bypass this checking for any other derived type (should be done in the subclass) coords._parent = self return coords # .................................................................................................................. @property def _dict_dims(self): _dict = {} for index, dim in enumerate(self.dims): if dim not in _dict: _dict[dim] = {'size': self.shape[index], 'coord': getattr(self, dim)} return _dict # ------------------------------------------------------------------------------------------------------------------ # public methods # ------------------------------------------------------------------------------------------------------------------ # .................................................................................................................. def add_coordset(self, *coords, dims=None, **kwargs): """ Add one or a set of coordinates from a dataset. Parameters ---------- *coords : iterable Coordinates object(s). dims : list Name of the coordinates. **kwargs : dict Keywords passed to the coordset. """ if not coords and not kwargs: # reset coordinates self._coordset = None return if self._coordset is None: # make the whole coordset at once self._coordset = CoordSet(*coords, dims=dims, **kwargs) else: # add one coordinate self._coordset._append(*coords, **kwargs) if self._coordset: # set a notifier to the updated traits of the CoordSet instance HasTraits.observe(self._coordset, self._dims_update, '_updated') # force it one time after this initialization self._coordset._updated = True # .................................................................................................................. def coord(self, dim='x'): """ Return the coordinates along the given dimension. Parameters ---------- dim : int or str A dimension index or name, default index = `x`. If an integer is provided, it is equivalent to the `axis` parameter for numpy array. Returns ------- |Coord| Coordinates along the given axis. """ idx = self._get_dims_index(dim)[0] # should generate an error if the # dimension name is not recognized if idx is None: return None if self._coordset is None: return None # idx is not necessarily the position of the coordinates in the CoordSet # indeed, transposition may have taken place. So we need to retrieve the coordinates by its name name = self.dims[idx] if name in self._coordset.names: idx = self._coordset.names.index(name) return self._coordset[idx] else: error_(f'could not find this dimenson name: `{name}`') return None # .................................................................................................................. @property def coordset(self): """ |CoordSet| instance. Contains the coordinates of the various dimensions of the dataset. It's a readonly property. Use set_coords to change one or more coordinates at once. """ if self._coordset and all(c.is_empty for c in self._coordset): # all coordinates are empty, this is equivalent to None for the coordset return None return self._coordset # .................................................................................................................. @coordset.setter def coordset(self, coords): if isinstance(coords, CoordSet): self.set_coordset(**coords) else: self.set_coordset(coords) # .................................................................................................................. @property def coordnames(self): """ List of the |Coord| names. Read only property. """ if self._coordset is not None: return self._coordset.names # .................................................................................................................. @property def coordtitles(self): """ List of the |Coord| titles. Read only property. Use set_coordtitle to eventually set titles. """ if self._coordset is not None: return self._coordset.titles # .................................................................................................................. @property def coordunits(self): """ List of the |Coord| units. Read only property. Use set_coordunits to eventually set units. """ if self._coordset is not None: return self._coordset.units # .................................................................................................................. @property def data(self): """ The ``data`` array. If there is no data but labels, then the labels are returned instead of data. """ return super().data # .................................................................................................................. @data.setter def data(self, data): # as we can't write super().data = data, we call _set_data # see comment in the data.setter of NDArray super()._set_data(data) # .................................................................................................................. def delete_coordset(self): """ Delete all coordinate settings. """ self._coordset = None # .................................................................................................................. def implements(self, name=None): """ Check if the current object implements `NDDataset`. Rather than isinstance(obj, NDDataset) use object.implements('NDDataset'). This is useful to check type without importing the module Parameters ---------- name : str Name of the object class. If None, the function returns the class name. If name is given, it checks if it correspond to the current class name. Returns ------- str or bool If name is given, a bool is returned If name is None, the classname is returned Examples -------- >>> from spectrochempy import NDDataset, Coord >>> co = Coord([1., 2., 3.]) >>> co.implements('NDDataset') False >>> co.implements('Coord') True >>> ds = NDDataset([1., 2., 3.]) >>> ds.implements() 'NDDataset' """ if name is None: return 'NDDataset' else: return name == 'NDDataset' # .................................................................................................................. @property def labels(self): # not valid for NDDataset # There is no label for nd-dataset raise NotImplementedError # pragma: no cover # .................................................................................................................. @property def modeldata(self): """ |ndarray| - models data. Data eventually generated by modelling of the data. """ return self._modeldata # .................................................................................................................. @modeldata.setter def modeldata(self, data): self._modeldata = data # .................................................................................................................. @property def parent(self): """ |Project| instance The parent project of the dataset. """ return self._parent # .................................................................................................................. @parent.setter def parent(self, value): if self._parent is not None: # A parent project already exists for this dataset but the # entered values gives a different parent. This is not allowed, # as it can produce impredictable results. We will first remove it # from the current project. self._parent.remove_dataset(self.name) self._parent = value # .................................................................................................................. def set_coordset(self, *args, **kwargs): """ Set one or more coordinates at once. Warnings -------- This method replace all existing coordinates. See Also -------- add_coords, set_coordtitles, set_coordunits """ self._coordset = None self.add_coordset(*args, dims=self.dims, **kwargs) # .................................................................................................................. def set_coordtitles(self, *args, **kwargs): """ Set titles of the one or more coordinates. """ self._coordset.set_titles(*args, **kwargs) # .................................................................................................................. def set_coordunits(self, *args, **kwargs): """ Set units of the one or more coordinates. """ self._coordset.set_units(*args, **kwargs) # .................................................................................................................. def sort(self, **kwargs): """ Returns the dataset sorted along a given dimension. (by default, the last dimension [axis=-1]) using the numeric or label values. Parameters ---------- dim : str or int, optional, default=-1 dimension index or name along which to sort. pos : int , optional If labels are multidimensional - allow to sort on a define row of labels : labels[pos]. Experimental : Not yet checked. by : str among ['value', 'label'], optional, default=``value`` Indicate if the sorting is following the order of labels or numeric coord values. descend : `bool`, optional, default=`False` If true the dataset is sorted in a descending direction. Default is False except if coordinates are reversed. inplace : bool, optional, default=`False` Flag to say that the method return a new object (default) or not (inplace=True). Returns ------- sorted_dataset """ inplace = kwargs.get('inplace', False) if not inplace: new = self.copy() else: new = self # parameter for selecting the level of labels (default None or 0) pos = kwargs.pop('pos', None) # parameter to say if selection is done by values or by labels by = kwargs.pop('by', 'value') # determine which axis is sorted (dims or axis can be passed in kwargs) # it will return a tuple with axis and dim axis, dim = self.get_axis(**kwargs) if axis is None: axis, dim = self.get_axis(axis=0) # get the corresponding coordinates (remember the their order can be different form the order # of dimension in dims. S we cannot jsut take the coord from the indice. coord = getattr(self, dim) # get the coordinate using the syntax such as self.x descend = kwargs.pop('descend', None) if descend is None: # when non specified, default is False (except for reversed coordinates descend = coord.reversed # import warnings # warnings.simplefilter("error") indexes = [] for i in range(self.ndim): if i == axis: if not coord.has_data: # sometimes we have only label for Coord objects. # in this case, we sort labels if they exist! if coord.is_labeled: by = 'label' else: # nothing to do for sorting # return self itself return self args = coord._argsort(by=by, pos=pos, descend=descend) setattr(new, dim, coord[args]) indexes.append(args) else: indexes.append(slice(None)) new._data = new._data[tuple(indexes)] if new.is_masked: new._mask = new._mask[tuple(indexes)] return new # .................................................................................................................. def squeeze(self, *dims, inplace=False): """ Remove single-dimensional entries from the shape of a NDDataset. Parameters ---------- dim : None or int or tuple of ints, optional Selects a subset of the single-dimensional entries in the shape. If a dimension (dim) is selected with shape entry greater than one, an error is raised. inplace : bool, optional, default=`False` Flag to say that the method return a new object (default) or not (inplace=True). Returns ------- squeezed The input array, but with all or a subset of the dimensions of length 1 removed. Raises ------ ValueError If `dim` is not `None`, and the dimension being squeezed is not of length 1. """ # make a copy of the original dims old = self.dims[:] # squeeze the data and determine which axis must be squeezed new, axis = super().squeeze(*dims, inplace=inplace, return_axis=True) if axis is not None and new._coordset is not None: # if there are coordinates they have to be squeezed as well (remove # coordinate for the squeezed axis) for i in axis: dim = old[i] del new._coordset[dim] return new def expand_dims(self, dim=None): """ Expand the shape of an array. Insert a new axis that will appear at the `axis` position in the expanded array shape. Parameters ---------- dim : int or str Position in the expanded axes where the new axis (or axes) is placed. Returns ------- result : ndarray View of `a` with the number of dimensions increased. See Also -------- squeeze : The inverse operation, removing singleton dimensions """ # TODO # .................................................................................................................. def swapdims(self, dim1, dim2, inplace=False): """ Interchange two dimensions of a NDDataset. Parameters ---------- dim1 : int First axis. dim2 : int Second axis. inplace : bool, optional, default=`False` Flag to say that the method return a new object (default) or not (inplace=True). Returns ------- swaped_dataset See Also -------- transpose """ new = super().swapdims(dim1, dim2, inplace=inplace) new.history = f'Data swapped between dims {dim1} and {dim2}' return new # .................................................................................................................. @property def T(self): """ Transposed |NDDataset|. The same object is returned if `ndim` is less than 2. """ return self.transpose() # .................................................................................................................. def take(self, indices, **kwargs): """ Take elements from an array Parameters ---------- indices kwargs Returns ------- """ # handle the various syntax to pass the axis dims = self._get_dims_from_args(**kwargs) axis = self._get_dims_index(dims) axis = axis[0] if axis else None # indices = indices.tolist() if axis is None: # just do a fancy indexing return self[indices] if axis < 0: axis = self.ndim + axis index = tuple([...] + [indices] + [slice(None) for i in range(self.ndim - 1 - axis)]) new = self[index] return new def to_array(self): """ Return a numpy masked array (i.e., other NDDataset attributes are lost. Examples ======== >>> import spectrochempy as scp >>> dataset = scp.read('wodger.spg') >>> a = scp.to_array(dataset) equivalent to: >>> a = np.ma.array(dataset) or >>> a= dataset.masked_data """ return np.ma.array(self) # .................................................................................................................. def to_xarray(self, **kwargs): """ Convert a NDDataset instance to an `~xarray.DataArray` object ( the xarray library must be available ) Parameters Returns ------- object : a xarray.DataArray object """ # Information about DataArray from the DataArray docstring # # Attributes # ---------- # dims: tuple # Dimension names associated with this array. # values: np.ndarray # Access or modify DataArray values as a numpy array. # coords: dict-like # Dictionary of DataArray objects that label values along each dimension. # name: str or None # Name of this array. # attrs: OrderedDict # Dictionary for holding arbitrary metadata. # Init docstring # # Parameters # ---------- # data: array_like # Values for this array. Must be an ``numpy.ndarray``, ndarray like, # or castable to an ``ndarray``. # coords: sequence or dict of array_like objects, optional # Coordinates (tick labels) to use for indexing along each dimension. # If dict-like, should be a mapping from dimension names to the # corresponding coordinates. If sequence-like, should be a sequence # of tuples where the first element is the dimension name and the # second element is the corresponding coordinate array_like object. # dims: str or sequence of str, optional # Name(s) of the data dimension(s). Must be either a string (only # for 1D data) or a sequence of strings with length equal to the # number of dimensions. If this argument is omitted, dimension names # are taken from ``coords`` (if possible) and otherwise default to # ``['dim_0', ... 'dim_n']``. # name: str or None, optional # Name of this array. # attrs: dict_like or None, optional # Attributes to assign to the new instance. By default, an empty # attribute dictionary is initialized. # encoding: dict_like or None, optional # Dictionary specifying how to encode this array's data into a # serialized format like netCDF4. Currently used keys (for netCDF) # include '_FillValue', 'scale_factor', 'add_offset', 'dtype', # 'units' and 'calendar' (the later two only for datetime arrays). # Unrecognized keys are ignored. if not HAS_XARRAY: warnings.warn('Xarray is not available! This function can not be used', SpectroChemPyWarning) return None x, y = self.x, self.y tx = x.title if y: ty = y.title da = xr.DataArray(np.array(self.data, dtype=np.float64), coords=[(ty, y.data), (tx, x.data)], ) da.attrs['units'] = self.units else: da = xr.DataArray(np.array(self.data, dtype=np.float64), coords=[(tx, x.data)], ) da.attrs['units'] = self.units da.attrs['title'] = self.title return da # .................................................................................................................. def transpose(self, *dims, inplace=False): """ Permute the dimensions of a NDDataset. Parameters ---------- dims : sequence of dimension indexes or names, optional By default, reverse the dimensions, otherwise permute the dimensions according to the values given. inplace : bool, optional, default=`False` Flag to say that the method return a new object (default) or not (inplace=True). Returns ------- transposed_array See Also -------- swapdims : Interchange two dimensions of a NDDataset. """ new = super().transpose(*dims, inplace=inplace) new.history = f'Data transposed between dims: {dims}' if dims else '' return new # ------------------------------------------------------------------------------------------------------------------ # private methods # ------------------------------------------------------------------------------------------------------------------ # .................................................................................................................. def _cstr(self): # Display the metadata of the object and partially the data out = '' out += ' name: {}\n'.format(self.name) out += ' author: {}\n'.format(self.author) out += ' created: {}\n'.format(self._date) # out += ' modified: {}\n'.format(self._modified) if (self.modified - self.date).seconds > 1 else '' wrapper1 = textwrap.TextWrapper(initial_indent='', subsequent_indent=' ' * 15, replace_whitespace=True, width=self._text_width) pars = self.description.strip().splitlines() if pars: out += ' description: ' desc = '' if pars: desc += '{}\n'.format(wrapper1.fill(pars[0])) for par in pars[1:]: desc += '{}\n'.format(textwrap.indent(par, ' ' * 15)) # the three escaped null characters are here to facilitate # the generation of html outputs desc = '\0\0\0{}\0\0\0\n'.format(desc.rstrip()) out += desc if self._history: pars = self.history out += ' history: ' hist = '' if pars: hist += '{}\n'.format(wrapper1.fill(pars[0])) for par in pars[1:]: hist += '{}\n'.format(textwrap.indent(par, ' ' * 15)) # the three escaped null characters are here to facilitate # the generation of html outputs hist = '\0\0\0{}\0\0\0\n'.format(hist.rstrip()) out += hist out += '{}\n'.format(self._str_value().rstrip()) out += '{}\n'.format(self._str_shape().rstrip()) if self._str_shape() else '' out += '{}\n'.format(self._str_dims().rstrip()) if not out.endswith('\n'): out += '\n' out += '\n' if not self._html_output: return colored_output(out.rstrip()) else: return out.rstrip() # .................................................................................................................. def _loc2index(self, loc, dim=-1): # Return the index of a location (label or coordinates) along the dim # This can work only if `coords` exists. if self._coordset is None: raise SpectroChemPyException('No coords have been defined. Slicing or selection' ' by location ({}) needs coords definition.'.format(loc)) coord = self.coord(dim) return coord._loc2index(loc) # .................................................................................................................. def _str_dims(self): if self.is_empty: return '' if len(self.dims) < 1 or not hasattr(self, "_coordset"): return '' if not self._coordset or len(self._coordset) < 1: return '' self._coordset._html_output = self._html_output # transfert the html flag if necessary: false by default txt = self._coordset._cstr() txt = txt.rstrip() # remove the trailing '\n' return txt _repr_dims = _str_dims # ------------------------------------------------------------------------------------------------------------------ # events # ------------------------------------------------------------------------------------------------------------------ def _dims_update(self, change=None): # when notified that a coords names have been updated _ = self.dims # fire an update # .................................................................................................................. # ====================================================================================================================== # module function # ====================================================================================================================== # make some NDDataset operation accessible from the spectrochempy API thismodule = sys.modules[__name__] api_funcs = ['sort', 'copy', 'squeeze', 'swapdims', 'transpose', 'to_array', 'to_xarray', 'take', 'set_complex', 'set_quaternion', 'set_hypercomplex', 'component', 'to', 'to_base_units', 'to_reduced_units', 'ito', 'ito_base_units', 'ito_reduced_units', 'is_units_compatible', 'remove_masks'] # todo: check the fact that some function are defined also in ndmath for funcname in api_funcs: setattr(thismodule, funcname, getattr(NDDataset, funcname)) thismodule.__all__.append(funcname) # load one method from NDIO load = NDDataset.load __all__ += ['load'] # ====================================================================================================================== # Set the operators # ====================================================================================================================== _set_operators(NDDataset, priority=100000) _set_ufuncs(NDDataset)
# coding: utf-8 """ No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: beta Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems class ProcessLineage(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'name': 'str', 'operation_logic': 'str', 'pk': 'ProcessLineagePK' } attribute_map = { 'name': 'name', 'operation_logic': 'operationLogic', 'pk': 'pk' } def __init__(self, name=None, operation_logic=None, pk=None): """ ProcessLineage - a model defined in Swagger """ self._name = None self._operation_logic = None self._pk = None self.name = name if operation_logic is not None: self.operation_logic = operation_logic self.pk = pk @property def name(self): """ Gets the name of this ProcessLineage. :return: The name of this ProcessLineage. :rtype: str """ return self._name @name.setter def name(self, name): """ Sets the name of this ProcessLineage. :param name: The name of this ProcessLineage. :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") self._name = name @property def operation_logic(self): """ Gets the operation_logic of this ProcessLineage. data update operation logic, e.g. 'REPLACE', 'UPDATE', 'APPEND'. Default is 'REPLACE'. :return: The operation_logic of this ProcessLineage. :rtype: str """ return self._operation_logic @operation_logic.setter def operation_logic(self, operation_logic): """ Sets the operation_logic of this ProcessLineage. data update operation logic, e.g. 'REPLACE', 'UPDATE', 'APPEND'. Default is 'REPLACE'. :param operation_logic: The operation_logic of this ProcessLineage. :type: str """ self._operation_logic = operation_logic @property def pk(self): """ Gets the pk of this ProcessLineage. :return: The pk of this ProcessLineage. :rtype: ProcessLineagePK """ return self._pk @pk.setter def pk(self, pk): """ Sets the pk of this ProcessLineage. :param pk: The pk of this ProcessLineage. :type: ProcessLineagePK """ if pk is None: raise ValueError("Invalid value for `pk`, must not be `None`") self._pk = pk def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, ProcessLineage): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
import collections import itertools import math import unittest import aoc_utils.geometry from aoc_utils import char_map, data class TestCoordinatesUtils(unittest.TestCase): def test_solve_tie(self): self.assertEqual(None, solve_tie([])) self.assertEqual((12, 34), solve_tie([(12, 34)])) self.assertEqual((1, 1), solve_tie([(1, 1), (2, 2)])) self.assertEqual((1, 1), solve_tie([(2, 2), (1, 1)])) self.assertEqual((2, 1), solve_tie([(1, 2), (2, 1)])) self.assertEqual((2, 1), solve_tie([(2, 1), (1, 2)])) def solve_tie(options): if len(options): return sorted_by_priority(options)[0] def sorted_by_priority(options): return sorted(options, key=reverse_coordinates) def reverse_coordinates(coordinates): return tuple(i for i in reversed(coordinates)) class FindAllClosestRules(char_map.ProgressRules): def __init__(self, targets, allowed_values): super(FindAllClosestRules, self).__init__(allowed_values) self._targets = targets self._found_one = False self.results = [] def stop_progressing(self): return self._found_one def examine(self, coordinates): if coordinates in self._targets: self._found_one = True self.results.append(coordinates) return False return True def solve_tie(self, coordinate_options): return solve_tie(coordinate_options) class TestCaves(unittest.TestCase): def make_default_caves(self): caves = Caves([ "#######", "#E..G.#", "#...#.#", "#.G.#G#", "#######", ]) return caves def test_init_fighters(self): caves = self.make_default_caves() fighters = caves.fighters self.assertSetEqual({'E', 'G'}, set(fighters.keys())) self.assertEqual({(1, 1): 200}, fighters['E']) self.assertEqual({(4, 1): 200, (2, 3): 200, (5, 3): 200}, fighters['G']) def test_get_targets(self): caves = self.make_default_caves() self.assertListEqual([(4, 1), (2, 3), (5, 3)], list(caves.get_targets("E"))) self.assertListEqual([(1, 1)], list(caves.get_targets("G"))) def test_get_in_range(self): caves = self.make_default_caves() self.assertListEqual([(3, 1), (5, 1), (2, 2), (5, 2), (1, 3), (3, 3)], list(caves.get_in_range("E"))) self.assertListEqual([(2, 1), (1, 2)], list(caves.get_in_range("G"))) def test_get_coordinates_around(self): caves = self.make_default_caves() self.assertListEqual([(2, 1), (1, 2)], list(caves.get_coordinates_around((1, 1)))) self.assertListEqual([(3, 1), (5, 1)], list(caves.get_coordinates_around((4, 1)))) self.assertListEqual([(2, 2), (1, 3), (3, 3)], list(caves.get_coordinates_around((2, 3)))) self.assertListEqual([(5, 2)], list(caves.get_coordinates_around((5, 3)))) def test_find_all_closest_rules(self): caves = Caves([ "#######", "#E#.G.#", "#...#.#", "#.G.#G#", "#######", ]) finder = char_map.MapExplorer(caves._caves) rules = FindAllClosestRules( targets=[(3, 1), (5, 1), (2, 2), (5, 2), (1, 3), (3, 3)], allowed_values=[EMPTY_VALUE] ) finder.explore(start_point=(1, 1), rules=rules) self.assertListEqual([(2, 2), (1, 3)], list(rules.results)) def test_iterate_units(self): caves = self.make_default_caves() self.assertListEqual([(1, 1), (4, 1), (2, 3), (5, 3)], caves.iterate_units()) def test_get_attack_target(self): caves_2 = Caves([ "#######", "#..EG.#", "#...#.#", "#.G.#G#", "#######", ]) self.assertEqual((4, 1), caves_2.get_attack_target((3, 1), 'E')) self.assertEqual((3, 1), caves_2.get_attack_target((4, 1), 'G')) self.assertEqual(None, caves_2.get_attack_target((2, 3), 'G')) self.assertEqual(None, caves_2.get_attack_target((5, 3), 'G')) def test_find_next_step(self): caves = self.make_default_caves() self.assertEqual((2, 1), caves.find_next_step((1, 1), 'E')) self.assertEqual((3, 1), caves.find_next_step((4, 1), 'G')) self.assertEqual((2, 2), caves.find_next_step((2, 3), 'G')) self.assertEqual(None, caves.find_next_step((5, 3), 'G')) def test_play_unit(self): caves = self.make_default_caves() fighters = caves.fighters caves.play_unit((1, 1), 'E') self.assertEqual({(2, 1): 200}, fighters['E']) self.assertEqual({(4, 1): 200, (2, 3): 200, (5, 3): 200}, fighters['G']) caves.play_unit((2, 1), 'E') self.assertEqual({(3, 1): 200}, fighters['E']) self.assertEqual({(4, 1): 197, (2, 3): 200, (5, 3): 200}, fighters['G']) for _ in range(65): caves.play_unit((3, 1), 'E') self.assertEqual({(3, 1): 200}, fighters['E']) self.assertEqual({(4, 1): 2, (2, 3): 200, (5, 3): 200}, fighters['G']) caves.play_unit((3, 1), 'E') self.assertEqual({(3, 1): 200}, fighters['E']) self.assertEqual({(2, 3): 200, (5, 3): 200}, fighters['G']) def test_play_round(self): caves = self.make_default_caves() fighters = caves.fighters self.assertFalse(caves.play_round()) self.assertEqual({(2, 1): 194}, fighters['E']) self.assertEqual({(3, 1): 200, (2, 2): 200, (5, 3): 200}, fighters['G']) self.assertTrue(caves.play_round()) self.assertEqual({(2, 1): 188}, fighters['E']) self.assertEqual({(3, 1): 197, (2, 2): 200, (5, 3): 200}, fighters['G']) for _ in range(31): self.assertTrue(caves.play_round()) self.assertEqual({(2, 1): 2}, fighters['E']) self.assertEqual({(3, 1): 104, (2, 2): 200, (5, 3): 200}, fighters['G']) self.assertRaises(FightIsOver, caves.play_round) self.assertEqual({}, fighters['E']) self.assertEqual({(3, 1): 101, (2, 2): 200, (5, 3): 200}, fighters['G']) def test_play(self): caves = self.make_default_caves() fighters = caves.fighters self.assertEqual(16533, caves.play()) self.assertEqual({}, fighters['E']) self.assertEqual({(3, 1): 101, (2, 2): 200, (5, 3): 200}, fighters['G']) def test_play_examples(self): def check(expected_outcome, cave_lines, echo=False): caves = Caves(cave_lines) outcome = caves.play() if echo: caves.echo() self.assertEqual(expected_outcome, outcome) check(27730, [ '#######', '#.G...#', '#...EG#', '#.#.#G#', '#..G#E#', '#.....#', '#######', ]) check(36334, [ '#######', '#G..#E#', '#E#E.E#', '#G.##.#', '#...#E#', '#...E.#', '#######', ]) check(39514, [ '#######', '#E..EG#', '#.#G.E#', '#E.##E#', '#G..#.#', '#..E#.#', '#######', ]) check(27755, [ '#######', '#E.G#.#', '#.#G..#', '#G.#.G#', '#G..#.#', '#...E.#', '#######', ]) check(28944, [ '#######', '#.E...#', '#.#..G#', '#.###.#', '#E#G#G#', '#...#G#', '#######', ]) check(18740, [ '#########', '#G......#', '#.E.#...#', '#..##..G#', '#...##..#', '#...#...#', '#.G...G.#', '#.....G.#', '#########', ]) def test_play_mine(self): caves_lines = data.data_lines(2018, "day_15_mine.txt") caves = Caves(caves_lines) outcome = caves.play() self.assertEqual(201123, outcome) def test_find_minimum_elves_strength(self): for elf_strength in range(13, 20): strengths = {'E': elf_strength, 'G': 3} caves_lines = data.data_lines(2018, "day_15_mine.txt") caves = Caves(caves_lines, teams_strength=strengths) num_elves = len(caves.fighters['E']) outcome = caves.play() if len(caves.fighters['E']) == num_elves: break self.assertEqual(14, elf_strength) self.assertEqual(54188, outcome) TEAMS_STRENGTH = {'E': 3, 'G': 3} EMPTY_VALUE = '.' WALL_VALUE = '#' class FightIsOver(Exception): pass class Caves: def __init__(self, initial_map, teams_strength=TEAMS_STRENGTH): self._caves = char_map.CharMap(input_lines=initial_map) self.strength = teams_strength self.fighters = {team: {} for team in teams_strength} for position, entry in self._caves.items(): if entry in teams_strength: self.fighters[entry][position] = 200 def play(self): rounds = 0 while True: try: nobody_moved = self.play_round() rounds += 1 except FightIsOver: break if nobody_moved: rounds += self.play_frozen_situation() remaining_hit_points = sum(hp for team in self.fighters.values() for hp in team.values()) return rounds * remaining_hit_points def play_round(self): nobody_moved = True for unit in self.iterate_units(): if not self.game_on(): raise FightIsOver team = self._caves[unit] if team == EMPTY_VALUE: continue nobody_moved = self.play_unit(unit, team) and nobody_moved return nobody_moved def play_frozen_situation(self): attackers = collections.defaultdict(lambda: 0) for unit in self.iterate_units(): team = self._caves[unit] target = self.get_attack_target(unit, team) attackers[target] += self.strength[team] rounds = min( math.floor(self.fighters[self._caves[unit]][unit] / attackers[unit]) for unit in self.iterate_units() if attackers[unit] > 0 ) for unit in self.iterate_units(): team = self._caves[unit] self.fighters[team][unit] -= rounds * attackers[unit] return rounds def game_on(self): return all(team for team in self.fighters.values()) def play_unit(self, unit, team): attack_target = self.get_attack_target(unit, team) if attack_target: return self.attack(attack_target, self.strength[team]) new_position = self.find_next_step(unit, team) if new_position: self.move_unit(team, unit, new_position) attack_target = self.get_attack_target(new_position, team) if attack_target: return self.attack(attack_target, self.strength[team]) return False return True def attack(self, unit, strength): target_team = self._caves[unit] self.fighters[target_team][unit] -= strength if self.fighters[target_team][unit] <= 0: del self.fighters[target_team][unit] self._caves[unit] = EMPTY_VALUE return False return True def move_unit(self, team, from_coordinates, to_coordinates): self._caves[to_coordinates] = team self._caves[from_coordinates] = EMPTY_VALUE self.fighters[team][to_coordinates] = self.fighters[team][from_coordinates] del self.fighters[team][from_coordinates] def get_attack_target(self, unit, team): adjacents = [] min_hp = None for adjacent in self.get_coordinates_around(unit): opponent = self._caves[adjacent] if opponent in [EMPTY_VALUE, team]: continue hp = self.fighters[opponent][adjacent] if min_hp is None or hp < min_hp: min_hp = hp adjacents = [adjacent] elif hp == min_hp: adjacents.append(adjacent) return solve_tie(adjacents) def find_next_step(self, unit, team): in_range = self.get_in_range(team) if not in_range: return None finder = char_map.MapExplorer(self._caves) rules = FindAllClosestRules(targets=in_range, allowed_values=[EMPTY_VALUE]) finder.explore(unit, rules) closest = solve_tie(rules.results) if not closest: return None path = finder.shortest_path(start_point=unit, end_point=closest, rules=rules) return path[1] def iterate_units(self): all_units = itertools.chain.from_iterable(team.keys() for team in self.fighters.values()) return sorted_by_priority(all_units) def get_coordinates_around(self, coordinates): for delta in char_map.ADJACENT_COORDINATES_DELTAS: adjacent = aoc_utils.geometry.add_coordinates(coordinates, delta) if adjacent in self._caves and self._caves[adjacent] != WALL_VALUE: yield adjacent def get_in_range(self, opponent): in_range = [] for target in self.get_targets(opponent): for coordinates in self.get_coordinates_around(target): if self._caves[coordinates] == EMPTY_VALUE: in_range.append(coordinates) return sorted(in_range, key=lambda tup: (tup[1], tup[0])) def get_targets(self, opponent): for coordinates, entry in self._caves.items(): if entry not in [WALL_VALUE, EMPTY_VALUE, opponent]: yield coordinates def echo(self): all_fighters = {unit: hp for team in self.fighters.values() for unit, hp in team.items()} for y, line in enumerate(self._caves.lines()): line += " " line_units = sorted_by_priority(unit for unit in all_fighters if unit[1] == y) line += " ".join(str(all_fighters[unit]) for unit in line_units) print(line)
from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_login import LoginManager from flask_uploads import UploadSet, configure_uploads, IMAGES from flask_mail import Mail from flask_bootstrap import Bootstrap from config import config_options db = SQLAlchemy() login_manager = LoginManager() login_manager.session_protection = "strong" login_manager.login_view = "auth.login" photos = UploadSet("photos", IMAGES) mail = Mail() bootstrap = Bootstrap() def create_app(config_name): app = Flask(__name__) # Creating the app configurations app.config.from_object(config_options[config_name]) # Initializing flask extensions db.init_app(app) login_manager.init_app(app) mail.init_app(app) bootstrap.init_app(app) # Registering the main app Blueprint from .main import main as main_blueprint app.register_blueprint(main_blueprint) # Registering auth blueprint from .auth import auth as auth_blueprint app.register_blueprint(auth_blueprint, url_prefix = "/authenticate") # Configure UploadSet configure_uploads(app, photos) return app
from osf.models.metaschema import RegistrationSchemaBlock, RegistrationSchema, FileMetadataSchema # noqa from osf.models.base import Guid, BlackListGuid # noqa from osf.models.user import OSFUser, Email # noqa from osf.models.contributor import Contributor, RecentlyAddedContributor, PreprintContributor, DraftRegistrationContributor # noqa from osf.models.session import Session # noqa from osf.models.institution import Institution # noqa from osf.models.collection import CollectionSubmission, Collection # noqa from osf.models.draft_node import DraftNode # noqa from osf.models.node import AbstractNode, Node # noqa from osf.models.sanctions import Sanction, Embargo, Retraction, RegistrationApproval, DraftRegistrationApproval, EmbargoTerminationApproval # noqa from osf.models.registrations import Registration, DraftRegistrationLog, DraftRegistration # noqa from osf.models.nodelog import NodeLog # noqa from osf.models.preprintlog import PreprintLog # noqa from osf.models.tag import Tag # noqa from osf.models.comment import Comment # noqa from osf.models.conference import Conference, MailRecord # noqa from osf.models.citation import CitationStyle # noqa from osf.models.archive import ArchiveJob, ArchiveTarget # noqa from osf.models.queued_mail import QueuedMail # noqa from osf.models.external import ExternalAccount, ExternalProvider # noqa from osf.models.oauth import ApiOAuth2Application, ApiOAuth2PersonalToken, ApiOAuth2Scope # noqa from osf.models.osf_group import OSFGroup # noqa from osf.models.osf_grouplog import OSFGroupLog # noqa from osf.models.licenses import NodeLicense, NodeLicenseRecord # noqa from osf.models.private_link import PrivateLink # noqa from osf.models.notifications import NotificationDigest, NotificationSubscription # noqa from osf.models.spam import SpamStatus, SpamMixin # noqa from osf.models.subject import Subject # noqa from osf.models.provider import AbstractProvider, CollectionProvider, PreprintProvider, WhitelistedSHAREPreprintProvider, RegistrationProvider # noqa from osf.models.preprint import Preprint # noqa from osf.models.request import NodeRequest, PreprintRequest # noqa from osf.models.identifiers import Identifier # noqa from osf.models.files import ( # noqa BaseFileNode, BaseFileVersionsThrough, File, Folder, # noqa FileVersion, TrashedFile, TrashedFileNode, TrashedFolder, FileVersionUserMetadata, # noqa ) # noqa from osf.models.metadata import FileMetadataRecord # noqa from osf.models.node_relation import NodeRelation # noqa from osf.models.analytics import UserActivityCounter, PageCounter # noqa from osf.models.admin_profile import AdminProfile # noqa from osf.models.admin_log_entry import AdminLogEntry # noqa from osf.models.maintenance_state import MaintenanceState # noqa from osf.models.banner import ScheduledBanner # noqa from osf.models.quickfiles import QuickFilesNode # noqa from osf.models.dismissed_alerts import DismissedAlert # noqa from osf.models.action import ReviewAction # noqa from osf.models.action import NodeRequestAction, PreprintRequestAction, ReviewAction, RegistrationAction, SchemaResponseAction, BaseAction # noqa from osf.models.storage import ProviderAssetFile # noqa from osf.models.chronos import ChronosJournal, ChronosSubmission # noqa from osf.models.notable_email_domain import NotableEmailDomain # noqa from osf.models.brand import Brand # noqa from osf.models.schema_response import SchemaResponse # noqa from osf.models.schema_response_block import SchemaResponseBlock # noqa from osf.models.registration_bulk_upload_job import RegistrationBulkUploadJob # noqa from osf.models.registration_bulk_upload_row import RegistrationBulkUploadRow # noqa
# RT - Twitter from typing import TYPE_CHECKING, Union, Dict, Tuple, List from discord.ext import commands import discord from tweepy.asynchronous import AsyncStream from tweepy import API, OAuthHandler from tweepy.errors import NotFound from tweepy.models import Status from jishaku.functools import executor_function from asyncio import Event if TYPE_CHECKING: from asyncio import AbstractEventLoop from tweepy.models import Status from aiomysql import Pool from rtlib import Backend class DataManager: TABLE = "TwitterNotification" DEFAULT_MAX = 5 def __init__(self, loop: "AbstractEventLoop", pool: "Pool"): self.pool = pool loop.create_task(self._prepare_table()) async def _prepare_table(self): # テーブルを準備します。 async with self.pool.acquire() as conn: async with conn.cursor() as cursor: await cursor.execute( f"""CREATE TABLE IF NOT EXISTS {self.TABLE} ( GuildID BIGINT, ChannelID BIGINT, UserName TEXT );""" ) await self._update_users(cursor) self.ready.set() async def _read(self, cursor, channel, username): await cursor.execute( f"SELECT * FROM {self.TABLE} WHERE ChannelID = %s AND UserName = %s;", (channel.id, username) ) return await cursor.fetchone() async def write(self, channel: discord.TextChannel, username: str) -> None: "設定を保存します。" async with self.pool.acquire() as conn: async with conn.cursor() as cursor: assert not await self._read(cursor, channel, username), "既に設定されています。" await cursor.execute( f"SELECT * FROM {self.TABLE} WHERE GuildID = %s;", (channel.guild.id,) ) assert len(await cursor.fetchall()) <= self.DEFAULT_MAX, "追加しすぎです。" await cursor.execute( f"INSERT INTO {self.TABLE} VALUES (%s, %s, %s);", (channel.guild.id, channel.id, username) ) async def delete(self, channel: discord.TextChannel, username: str) -> None: "設定を削除します。" async with self.pool.acquire() as conn: async with conn.cursor() as cursor: assert await self._read(cursor, channel, username), "その設定はありません。" await cursor.execute( f"DELETE FROM {self.TABLE} WHERE ChannelID = %s AND UserName = %s;", (channel.id, username) ) async def _update_users(self, cursor): await cursor.execute( f"SELECT ChannelID, UserName FROM {self.TABLE};" ) self.users = { username: channel_id for channel_id, username in await cursor.fetchall() } async def update_users(self) -> List[Tuple[int, str]]: "設定のキャッシュを更新します。" async with self.pool.acquire() as conn: async with conn.cursor() as cursor: await self._update_users(cursor) class TwitterNotification(commands.Cog, DataManager, AsyncStream): TWITTERID_HEADERS = { "authority": "tweeterid.com", "sec-ch-ua": "^\\^Microsoft", "accept": "*/*", "content-type": "application/x-www-form-urlencoded; charset=UTF-8", "x-requested-with": "XMLHttpRequest", "sec-ch-ua-mobile": "?0", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.4577.63 Safari/537.36 Edg/93.0.961.38", "sec-ch-ua-platform": "^\\^Windows^\\^", "origin": "https://tweeterid.com", "sec-fetch-site": "same-origin", "sec-fetch-mode": "cors", "sec-fetch-dest": "empty", "referer": "https://tweeterid.com/", "accept-language": "ja,en;q=0.9,en-GB;q=0.8,en-US;q=0.7", } BASE_URL = "https://twitter.com/{}/status/{}" def __init__(self, bot: "Backend"): self.bot = bot self.users: Dict[str, int] = {} self.ready = Event() oauth = OAuthHandler( self.bot.secret["twitter"]["consumer_key"], self.bot.secret["twitter"]["consumer_secret"] ) oauth.set_access_token( self.bot.secret["twitter"]["access_token"], self.bot.secret["twitter"]["access_token_secret"] ) self.api = API(oauth) super(commands.Cog, self).__init__(self.bot.loop, self.bot.mysql.pool) super(DataManager, self).__init__(**self.bot.secret["twitter"]) self.connected = False self.cache: Dict[str, str] = {} self.bot.loop.create_task(self.start_stream()) def filter(self, *args, **kwargs): # connectedを使えるようにするためにオーバーライドした関数です。 self.connected = True super().filter(*args, **kwargs) def disconnect(self, *args, **kwargs): # connectedを使えるようにするためにオーバーライドした関数です。 self.connected = False super().disconnect(*args, **kwargs) def get_url(self, status: Union[Status, Tuple[str, int]]) -> str: "渡されたStatusからツイートのURLを取得します。" return self.BASE_URL.format( status.user.screen_name, status.id_str ) if isinstance(status, Status) else self.BASE_URL.format(*status) async def on_status(self, status: "Status"): # ツイートを取得した際に呼ばれる関数です。 if status.user.screen_name in self.users: # 通知対象のユーザーのツイートなら通知を行います。 if not (channel := self.bot.get_channel( self.users[status.user.screen_name] )): # もし通知するチャンネルが見当たらない場合はその設定を削除する。 return await self.delete( self.users[status.user.screen_name], status.user.screen_name ) # Tweetに飛ぶリンクボタンを追加しておく。 view = discord.ui.View(timeout=1) view.add_item(discord.ui.Button( label="Tweetを見る", url=self.get_url(status) )) # メッセージを調整する。 if hasattr(status, "retweeted_status") and status.retweeted_status: # リツイート status.text = status.text.replace( "RT @", "🔁 Retweeted @", 1 ) elif hasattr(status, "quoted_status") and status.quoted_status: # 引用リツイート status.text = "🔁 Retweeted [Original]({})\n{}".format( self.get_url(status.quoted_status), status.text ) elif (hasattr(status, "in_reply_to_status_id") and status.in_reply_to_status_id): # 返信 status.text = "⤴ Replied [Original]({})\n{}".format( self.get_url(( status.in_reply_to_screen_name, status.in_reply_to_status_id )), status.text ) # メンションが飛ばないように@は全角に置き換えておく。 status.text = status.text.replace("@", "@") try: # 通知の送信を行う。 await channel.webhook_send( content=status.text, username=status.user.screen_name + \ ("✅" if status.user.verified else "") \ + " - RT Twitter Notification", avatar_url=( "" if status.user.default_profile_image else status.user.profile_image_url_https ), view=view ) except discord.Forbidden: await channel.send( "Twitter通知をしようとしましたが権限がないため通知に失敗しました。\n" \ "チャンネルのWebhookを管理できるように権限を付与してください。\n" \ "またRTにはたくさんの機能があり全てを動かすのなら管理者権限を付与する方が手っ取り早いです。" ) except Exception as e: await channel.send( f"Twitter通知をしようとしましたが失敗しました。\nエラーコード:`{e}`" ) @executor_function def get_user_id(self, username: str) -> str: "ユーザー名からユーザーのIDを取得します。※これは子ルーチン関数です。" return self.api.get_user(screen_name=username).id_str async def start_stream(self, disconnect: bool = False) -> None: "Twitterのストリームを開始します。" if disconnect and self.connected: self.disconnect() if hasattr(self, "ready"): await self.ready.wait() del self.ready if self.users: follow = [] for username in self.users: try: follow.append(await self.get_user_id(username)) except NotFound: channel = self.bot.get_channel(self.users[username]) await self.delete(channel, username) del self.users[username] await channel.send( "Twitter通知をしようとしましたがエラーが発生しました。\n" \ + f"{username.replace('@', '@')}のユーザーが見つかりませんでした。" ) self.filter(follow=follow) def cog_unload(self): if self.connected: self.disconnect() @commands.group( aliases=["ツイッター", "tw"], extras={ "headding": {"ja": "Twitter通知", "en": "Twitter Notification"}, "parent": "ServerUseful" } ) async def twitter(self, ctx): """!lang ja -------- Twitterの指定したユーザーのツイートを指定したチャンネルに通知させます。 Aliases ------- tw, ツイッター !lang en -------- Notify the specified channel of tweets from the specified user on Twitter. Aliases ------- tw""" if not ctx.invoked_subcommand: await ctx.reply("使用方法が違います。 / It is used in different ways.") @twitter.command("set", aliases=["s", "設定"]) @commands.has_permissions(manage_channels=True, manage_webhooks=True) @commands.cooldown(1, 60, commands.BucketType.channel) async def set_(self, ctx, onoff: bool, *, username): """!lang ja -------- Twitterの通知を設定します。 このコマンドを実行したチャンネルに指定したユーザーのツイートの通知が来るようになります。 Parameters ---------- onoff : bool onまたはoffで通知を有効にするか無効にするかです。 username : str 通知する対象のユーザーの名前です。 `@`から始まるものです。 Examples -------- `rt!twitter set on tasuren1` RTの開発者のtasurenのTwitterの通知を有効にします。 Aliases ------- s, 設定 !lang en -------- Sets up Twitter notifications. The channel where this command is executed will receive notifications of tweets from the specified user. Parameters ---------- onoff : bool Enables or disables notifications with on or off. username : str The name of the user to be notified. It must start with `@`. Examples -------- `rt!twitter set on tasuren1` Enables Twitter notifications for the RT developer tasuren. Aliases ------- s""" await ctx.trigger_typing() try: if onoff: await self.get_user_id(username) await self.write(ctx.channel, username) else: await self.delete(ctx.channel, username) except AssertionError: await ctx.reply( {"ja": "既に設定されています。\nまたは設定しすぎです。", "en": "The username is already set.\nOr it is set too high."} \ if onoff else { "ja": "設定されていません。", "en": "The username is not set yet." } ) except NotFound: await ctx.reply( {"ja": "そのユーザーが見つかりませんでした。", "en": "The user is not found."} ) else: await self.update_users() await self.start_stream(True) await ctx.reply("Ok") @twitter.command("list", aliases=["l", "一覧"]) async def list_(self, ctx): """!lang ja -------- 設定しているTwitter通知のリストを表示します。 Aliases ------- l, 一覧 !lang en -------- Displays twitter notification settings Aliases ------- l""" await ctx.reply( embed=discord.Embed( title="Twitter", description="\n".join( f"<#{channel_id}>:{username}" for username, channel_id in self.users.items() ) ) ) def setup(bot): bot.add_cog(TwitterNotification(bot))
import copy import pprint import unittest import requests from wikibaseintegrator import wbi_core, wbi_fastrun, wbi_functions, wbi_datatype from wikibaseintegrator.wbi_core import MWApiError __author__ = 'Sebastian Burgstaller-Muehlbacher' __license__ = 'AGPLv3' class TestMediawikiApiCall(unittest.TestCase): def test_all(self): with self.assertRaises(MWApiError): wbi_functions.mediawiki_api_call_helper(data={'format': 'json', 'action': 'wbgetentities', 'ids': 'Q42'}, mediawiki_api_url="https://www.wikidataaaaaaa.org", max_retries=3, retry_after=1, allow_anonymous=True) with self.assertRaises(requests.HTTPError): wbi_functions.mediawiki_api_call_helper(data=None, mediawiki_api_url="https://httpbin.org/status/400", max_retries=3, retry_after=1, allow_anonymous=True) wbi_functions.mediawiki_api_call_helper(data={'format': 'json', 'action': 'wbgetentities', 'ids': 'Q42'}, max_retries=3, retry_after=1, allow_anonymous=True) with self.assertRaises(MWApiError): wbi_functions.mediawiki_api_call_helper(data=None, mediawiki_api_url="https://httpbin.org/status/502", max_retries=3, retry_after=1, allow_anonymous=True) class TestDataType(unittest.TestCase): def test_quantity(self): dt = wbi_datatype.Quantity(quantity='34.5', prop_nr='P43') dt_json = dt.get_json_representation() if not dt_json['mainsnak']['datatype'] == 'quantity': raise value = dt_json['mainsnak']['datavalue'] if not value['value']['amount'] == '+34.5': raise if not value['value']['unit'] == '1': raise dt2 = wbi_datatype.Quantity(quantity='34.5', prop_nr='P43', upper_bound='35.3', lower_bound='33.7', unit="Q11573") value = dt2.get_json_representation()['mainsnak']['datavalue'] if not value['value']['amount'] == '+34.5': raise if not value['value']['unit'] == 'http://www.wikidata.org/entity/Q11573': raise if not value['value']['upperBound'] == '+35.3': raise if not value['value']['lowerBound'] == '+33.7': raise def test_geoshape(self): dt = wbi_datatype.GeoShape(value='Data:Inner_West_Light_Rail_stops.map', prop_nr='P43') dt_json = dt.get_json_representation() if not dt_json['mainsnak']['datatype'] == 'geo-shape': raise value = dt_json['mainsnak']['datavalue'] if not value['value'] == 'Data:Inner_West_Light_Rail_stops.map': raise if not value['type'] == 'string': raise def test_live_item(self): """ Test an item against Wikidata """ item = wbi_core.ItemEngine(item_id='Q423111') mass_statement = [x for x in item.statements if x.get_prop_nr() == 'P2067'].pop() pprint.pprint(mass_statement.get_json_representation()) if not mass_statement: raise # TODO: get json directly from the API and compare part to ItemEngine class TestFastRun(unittest.TestCase): """ some basic tests for fastrun mode """ def test_fast_run(self): statements = [ wbi_datatype.ExternalID(value='P40095', prop_nr='P352'), wbi_datatype.ExternalID(value='YER158C', prop_nr='P705') ] frc = wbi_fastrun.FastRunContainer(base_filter={'P352': '', 'P703': 'Q27510868'}, base_data_type=wbi_datatype.BaseDataType, engine=wbi_core.ItemEngine) fast_run_result = frc.write_required(data=statements) if fast_run_result: message = 'fastrun failed' else: message = 'successful fastrun' print(fast_run_result, message) # here, fastrun should succeed, if not, test failed # if fast_run_result: # raise ValueError def test_fastrun_label(self): # tests fastrun label, description and aliases, and label in another language data = [wbi_datatype.ExternalID('/m/02j71', 'P646')] fast_run_base_filter = {'P361': 'Q18589965'} item = wbi_core.ItemEngine(item_id="Q2", data=data, fast_run=True, fast_run_base_filter=fast_run_base_filter) frc = wbi_core.ItemEngine.fast_run_store[0] frc.debug = True assert item.get_label('en') == "Earth" descr = item.get_description('en') assert len(descr) > 3 aliases = item.get_aliases() assert "the Earth" in aliases assert list(item.fast_run_container.get_language_data("Q2", 'en', 'label'))[0] == "Earth" assert item.fast_run_container.check_language_data("Q2", ['not the Earth'], 'en', 'label') assert "the Earth" in item.get_aliases() assert "planet" in item.get_description() assert item.get_label("es") == "Tierra" item.set_description(descr) item.set_description("fghjkl") assert item.json_representation['descriptions']['en'] == {'language': 'en', 'value': 'fghjkl'} item.set_label("Earth") item.set_label("xfgfdsg") assert item.json_representation['labels']['en'] == {'language': 'en', 'value': 'xfgfdsg'} item.set_aliases(["fake alias"], if_exists='APPEND') assert {'language': 'en', 'value': 'fake alias'} in item.json_representation['aliases']['en'] # something thats empty (for now.., can change, so this just makes sure no exception is thrown) frc.check_language_data("Q2", ['Ewiase'], 'ak', 'label') frc.check_language_data("Q2", ['not Ewiase'], 'ak', 'label') frc.check_language_data("Q2", [''], 'ak', 'description') frc.check_language_data("Q2", [], 'ak', 'aliases') frc.check_language_data("Q2", ['sdf', 'sdd'], 'ak', 'aliases') item.get_label("ak") item.get_description("ak") item.get_aliases("ak") item.set_label("label", lang="ak") item.set_description("d", lang="ak") item.set_aliases(["a"], lang="ak", if_exists='APPEND') def test_sitelinks(): data = [wbi_datatype.ItemID(value='Q12136', prop_nr='P31')] item = wbi_core.ItemEngine(item_id='Q622901', data=data) item.get_sitelink("enwiki") assert "enwiki" not in item.json_representation['sitelinks'] item.set_sitelink("enwiki", "something") assert item.get_sitelink("enwiki")['title'] == "something" assert "enwiki" in item.json_representation['sitelinks'] def test_nositelinks(): # this item doesn't and probably wont ever have any sitelinks (but who knows?? maybe one day..) data = [wbi_datatype.ItemID(value='Q5', prop_nr='P31')] item = wbi_core.ItemEngine(item_id='Q27869338', data=data) item.get_sitelink("enwiki") assert "enwiki" not in item.json_representation['sitelinks'] item.set_sitelink("enwiki", "something") assert item.get_sitelink("enwiki")['title'] == "something" assert "enwiki" in item.json_representation['sitelinks'] #### # tests for statement equality, with and without refs #### def test_ref_equals(): # statements are identical oldref = [wbi_datatype.ExternalID(value='P58742', prop_nr='P352', is_reference=True), wbi_datatype.ItemID(value='Q24784025', prop_nr='P527', is_reference=True), wbi_datatype.Time(time='+2001-12-31T12:01:13Z', prop_nr='P813', is_reference=True)] olditem = wbi_datatype.ItemID("Q123", "P123", references=[oldref]) newitem = copy.deepcopy(olditem) assert olditem.equals(newitem, include_ref=False) assert olditem.equals(newitem, include_ref=True) # dates are a month apart newitem = copy.deepcopy(olditem) newitem.references[0][2] = wbi_datatype.Time(time='+2002-01-31T12:01:13Z', prop_nr='P813') assert olditem.equals(newitem, include_ref=False) assert not olditem.equals(newitem, include_ref=True) # multiple refs newitem = copy.deepcopy(olditem) newitem.references.append([wbi_datatype.ExternalID(value='99999', prop_nr='P352')]) assert olditem.equals(newitem, include_ref=False) assert not olditem.equals(newitem, include_ref=True) olditem.references.append([wbi_datatype.ExternalID(value='99999', prop_nr='P352')]) assert olditem.equals(newitem, include_ref=True)
import sys import os import re import collections import itertools import bcolz import pickle import numpy as np import pandas as pd import gc import random import smart_open import h5py import csv import tensorflow as tf import gensim import datetime as dt from tqdm import tqdm_notebook as tqdm # import multiprocessing as mp # from itertools import repeat, product # from functools import partial # to be able to pickle class methods for multi processing # https://stackoverflow.com/questions/27318290/why-can-i-pass-an-instance-method-to-multiprocessing-process-but-not-a-multipro def _instance_method_alias(obj, arg): """ Alias for instance method that allows the method to be called in a multiprocessing pool """ return obj.convertSent2WordIds(arg) def get_embeddings_from_ft(fasttext_vec_file, dim, vocab_words): """ convert fast text .vec file to numpy array created embedding will be in order of words in vocab_words """ # gathering words from fasttext vec file-------------------- ft_lines = None with open(fasttext_vec_file, "r") as f: ft_lines = f.readlines() ft_shape = tuple([int(i.strip()) for i in ft_lines[0].split()]) ft_vocab_size = ft_shape[0] ft_wvs_dict = {} for i, line in enumerate(ft_lines[1:]): str_list = line.split() word = str(str_list[0].strip()) vec = np.array([np.float(f) for f in str_list[1:]]) assert dim == len(vec), "fast text some vectors doesn't match dimensions "+str(dim)+" != "+str(len(vec)) ft_wvs_dict[word] = vec assert ft_vocab_size == len(ft_wvs_dict), "fast text vectors file read issue "+str(ft_vocab_size)+" != "+str(len(ft_wvs_dict)) # creating embedding matrix from the file -------------------- wvs_embedding = np.random.randn(len(vocab_words), dim) for i,word in enumerate(vocab_words): if word in ft_wvs_dict: wvs_embedding[i] = ft_wvs_dict[word] return wvs_embedding #============================================================= # DOCUMENT PREPROCESSING #============================================================= CHAR_ALPHABETS = "abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'\"/\\|_@#$%^&*~`+-=<>()[]{}\n " char_start_tag_idx = len(CHAR_ALPHABETS) + 0 char_end_tag_idx = len(CHAR_ALPHABETS) + 1 char_unknown_tag_idx = len(CHAR_ALPHABETS) + 2 # when sentences are converted to characters # these are appended to signal end of sentences char_sent_start_tag_idx = len(CHAR_ALPHABETS) + 3 char_sent_end_tag_idx = len(CHAR_ALPHABETS) + 4 CHAR_ALPHABETS_LEN = len(CHAR_ALPHABETS) + 4 class GenerateDataset(object): """ This class takes in preprocessed data frame and generated datasets as necessary """ def __init__(self, data_frame, vocab_idx): self.data_frame = data_frame self.vocab_idx = vocab_idx self.vocab_size = len(vocab_idx) # constants ================================================================================ self.sentence_start_tag_idx = self.vocab_idx["<SOSent>"] self.sentence_end_tag_idx = self.vocab_idx["<EOSent>"] self.word_unknown_tag_idx = self.vocab_idx["<UNK>"] self.default_unit_dict = { "gene_unit" : "words", "variation_unit" : "words", "doc_unit" : "words", "doc_form" : "text", "doc_cntx_dir" : "forward", "divide_document": "single_unit" } def convertSent2WordIds(self, sentence, add_start_end_tag=False): """ sentence is a list of word. It is converted to list of ids based on vocab_idx """ sent2id = [] if add_start_end_tag: sent2id = [self.sentence_start_tag_idx] try: sent2id = sent2id + [self.vocab_idx[word] if self.vocab_idx[word]<self.vocab_size else self.word_unknown_tag_idx for word in sentence] except KeyError as e: print(e) print (sentence) raise ValueError('Fix this issue dude') if add_start_end_tag: sent2id = sent2id + [self.sentence_end_tag_idx] return sent2id def convertDoc2Sent2WordIds(self, document, add_start_end_tag=False): """ document is a list of sentence. sentence is a list of word. so given sent_list will be converted to list of list of ids based on vocab_idx """ return [self.convertSent2WordIds(sentence, add_start_end_tag) for sentence in document] def convertWord2Char2Ids(self, word, add_start_end_tag=False): """ word is a char sequence or list of characters, return list of ids in word or char sequence """ char2id = [] if add_start_end_tag: char2id = [char_start_tag_idx] char2id = char2id + [CHAR_ALPHABETS.find(char) for char in word] if add_start_end_tag: char2id = char2id + [char_end_tag_idx] return char2id def convertSent2Word2Char2Ids(self, sentence, add_start_end_tag=False, unit="chars"): """ sentence is list of words word is list of characters returns list of list of ids """ sent2words2char2id = [] if unit == "chars": """ all the words are grouped as list of chars with pre-post added tags """ if add_start_end_tag: sent2words2char2id = [[char_sent_start_tag_idx]] sent2words2char2id = sent2words2char2id + [self.convertWord2Char2Ids(word, add_start_end_tag) if self.vocab_idx[word] < self.vocab_size else [char_unknown_tag_idx] for word in sentence] if add_start_end_tag: sent2words2char2id = sent2words2char2id + [[char_sent_end_tag_idx]] elif unit == "raw_chars": """ just a stream of characters """ if add_start_end_tag: sent2words2char2id = [char_sent_start_tag_idx] for word in sentence: if self.vocab_idx[word] < self.vocab_size: sent2words2char2id += [charid for charid in self.convertWord2Char2Ids(word, add_start_end_tag)] else: sent2words2char2id += [char_unknown_tag_idx] if add_start_end_tag: sent2words2char2id = sent2words2char2id + [char_sent_end_tag_idx] else: assert False, "give valid doc_unit argument" return sent2words2char2id def convertDoc2Sent2Word2Char2Ids(self, document, doc_form="sentences", add_start_end_tag=False, unit="chars"): """ document is a list of sentence. sentence is a list of word. so given sent_list will be converted to list of list of ids based on vocab_idx returns list of list if doc_form == "text" returns list of list of list if doc_form == "sentences" """ doc2word2char2ids = [] if doc_form == "sentences": doc2word2char2ids = [self.convertSent2Word2Char2Ids(sentence, add_start_end_tag, unit) for sentence in document] elif doc_form == "text": doc2word2char2ids = [list_or_charid for list_or_charid in self.convertSent2Word2Char2Ids(sentence, add_start_end_tag, unit)] else: assert False, "give valid doc_form argument" return doc2word2char2ids def generate_data(self, unit_dict=None, has_class=False, add_start_end_tag=False): """ dataframe expects to have Sentences, Variations, Genes, Class(has_class) Sentences Text attribute converted to list of sentences which in turn converted to list of words Variations just one sentence which is a list of words Genes just one sentence which is a list of words returns information based on request unit_dict contains these 5 keys that can have gene_unit can be ["words", "chars", "raw_chars"] variation_unit can be ["words", "chars", "raw_chars"] doc_unit can be ["words", "word_list", chars", "raw_chars"] doc_form can be ["sentences", "text"] doc_cntx_dir can be ["forward", "backward"] divide_document can be ["single_unit", "multiple_units"] """ if not unit_dict: unit_dict = self.default_unit_dict try: unit_dict["doc_cntx_dir"] except KeyError as e: unit_dict["doc_cntx_dir"] = "forward" ids_document = [] ids_labels = [] ids_genes = [] ids_variations = [] # since sometimes the data will be shuffled in the frame # during train test split for index in self.data_frame.index: document = self.data_frame.Sentences[index] if unit_dict["divide_document"] == "single_unit": #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~` # doc units -------------------------------------------------------------- if unit_dict["doc_unit"] == "words" or unit_dict["doc_unit"] == "word_list": if unit_dict["doc_form"] == "sentences": ids_document.append(self.convertDoc2Sent2WordIds(document, add_start_end_tag)) else: # unit_dict["doc_form"] == "text" # using multiprocess to process each sentence in document and concatenate them to a single sentence # get_wordid_list = lambda d, setag : [wid for s in d for wid in self.convertSent2WordIds(s, setag)] # text_word_list = [] # with mp.Pool(processes = 5) as pool: # # text_word_list = pool.starmap(get_wordid_list, product(document, [add_start_end_tag]*len(document))) # # text_word_list = pool.starmap(get_wordid_list, zip(document, repeat(add_start_end_tag))) # text_word_list = pool.map(partial(get_wordid_list, setag=add_start_end_tag), document) # without multiprocessing if unit_dict["doc_unit"] == "words": text_word_list = [word_id for sentence in document for word_id in self.convertSent2WordIds(sentence, add_start_end_tag)] if unit_dict["doc_cntx_dir"] == "backward": text_word_list = text_word_list[::-1] else: # unit_dict["doc_unit"] == "word_list": sentence form a list text_word_list = [self.convertSent2WordIds(sentence, add_start_end_tag) for sentence in document] if unit_dict["doc_cntx_dir"] == "backward": text_word_list = [self.convertSent2WordIds(sentence, add_start_end_tag)[::-1] for sentence in document] ids_document.append(text_word_list) elif unit_dict["doc_unit"] == "chars" or unit_dict["doc_unit"] == "raw_chars": if unit_dict["doc_form"] == "sentences": for sentence in document: ids_document.append(self.convertDoc2Sent2Word2Char2Ids(document, doc_form=unit_dict["doc_form"], unit=unit_dict["doc_unit"], add_start_end_tag=add_start_end_tag)) else: # unit_dict["doc_form"] == "text" text_char_list = [word_as_char_list_id for sentence in document for word_as_char_list_id in self.convertSent2Word2Char2Ids(sentence, add_start_end_tag, unit=unit_dict["doc_unit"])] ids_document.append(text_char_list) else: assert False, "give valid doc_unit key-value" # others -------------------------------------------------------------- if has_class: ids_labels.append(self.data_frame.Class[index]) if unit_dict["gene_unit"] == "words": ids_genes.append(self.convertSent2WordIds(self.data_frame.Gene[index], add_start_end_tag)) else: ids_genes.append(self.convertSent2Word2Char2Ids(self.data_frame.Gene[index], add_start_end_tag, unit=unit_dict["doc_unit"])) if unit_dict["variation_unit"] == "words": ids_variations.append(self.convertSent2WordIds(self.data_frame.Variation[index], add_start_end_tag)) else: ids_variations.append(self.convertSent2Word2Char2Ids(self.data_frame.Variation[index], add_start_end_tag, unit=unit_dict["doc_unit"])) else: # unit_dict["divide_document"] == "multiple_unit" #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~` for sentence in document: # doc units -------------------------------------------------------------- if unit_dict["doc_unit"] == "words": # doesnt matter if # unit_dict["doc_form"] == "sentences" # unit_dict["doc_form"] == "text" try: sentence_list = self.convertSent2WordIds(sentence, add_start_end_tag) if unit_dict["doc_cntx_dir"] == "backward": text_word_list = self.convertSent2WordIds(sentence, add_start_end_tag)[::-1] ids_document.append(sentence_list) except ValueError as e: print(e) print (index) raise ValueError('Fix this issue dude !') elif unit_dict["doc_unit"] == "chars" or unit_dict["doc_unit"] == "raw_chars": # doesnt matter if # unit_dict["doc_form"] == "sentences" # unit_dict["doc_form"] == "text" ids_document.append(self.convertSent2Word2Char2Ids(sentence, add_start_end_tag, unit=unit_dict["doc_unit"])) # others -------------------------------------------------------------- if has_class: ids_labels.append(self.data_frame.Class[index]) if unit_dict["gene_unit"] == "words": ids_genes.append(self.convertSent2WordIds(self.data_frame.Gene[index], add_start_end_tag)) else: ids_genes.append(self.convertSent2Word2Char2Ids(self.data_frame.Gene[index], add_start_end_tag, unit=unit_dict["gene_unit"])) if unit_dict["variation_unit"] == "words": ids_variations.append(self.convertSent2WordIds(self.data_frame.Variation[index], add_start_end_tag)) else: ids_variations.append(self.convertSent2Word2Char2Ids(self.data_frame.Variation[index], add_start_end_tag, unit=unit_dict["variation_unit"])) return ids_document, ids_genes, ids_variations, ids_labels def placeholder_function(self, unit_dict=None, limit_dict=None, has_class=False, add_start_end_tag=False): """ dataframe expects to have Sentences, Variations, Genes, Class(has_class) Sentences Text attribute converted to list of sentences which in turn converted to list of words Variations just one sentence which is a list of words Genes just one sentence which is a list of words returns information based on request unit_dict contains these 5 keys that can have gene_unit can be ["words", "chars"] variation_unit can be ["words", "chars"] doc_unit can be ["words", "chars"] doc_form can be ["sentences", "text"] divide_document can be ["single_unit", "multiple_units"] limit_dict contains max sequence len to form valid matrices Text attribute options max_text_seq_len => maximum number of words in a text max_text_document_len => maximum number of sentences in a document max_text_sentence_len => maximum number of words in a sentence max_text_word_len => maximum number of chars in a word Gene Attribute options max_gene_sentence_len => maximum number of words in a sentence max_gene_word_len => maximum number of chars in a word Variation Attribute options max_variation_sentence_len => maximum number of words in a sentence max_variation_word_len => maximum number of chars in a word """ ids_document, ids_genes, ids_variations, ids_labels = self.generate_dataset(unit_dict, has_class, add_start_end_tag) # testing ====================================================================================== def test_class(): document = [ ['beautiful', 'is', 'better', 'than', 'ugly.'], ['explicit', 'is', 'better', 'than', 'implicit.'], ['simple', 'is', 'better', 'than', 'complex.'], ['complex', 'is', 'better', 'than', 'complicated.'], ['flat', 'is', 'better', 'than', 'nested.'], # ['sparse', 'is', 'better', 'than', 'dense.'], # ['readability', 'counts.'], # ['special', 'cases', "aren't", 'special', 'enough', 'to', 'break', 'the', 'rules.'], # ['although', 'practicality', 'beats', 'purity.'], # ['errors', 'should', 'never', 'pass', 'silently.'], # ['unless', 'explicitly', 'silenced.'], # ['in', 'the', 'face', 'of', 'ambiguity,', 'refuse', 'the', 'temptation', 'to', 'guess.'], # ['there', 'should', 'be', 'one--', 'and', 'preferably', 'only', 'one', '--obvious', 'way', 'to', 'do', 'it.'], # ['although', 'that', 'way', 'may', 'not', 'be', 'obvious', 'at', 'first', 'unless', "you're", 'Dutch.'], # ['now', 'is', 'better', 'than', 'never.'], ['Although', 'never', 'is', 'often', 'better', 'than', '*right*', 'now.'], # ['if', 'the', 'implementation', 'is', 'hard', 'to', 'explain,', "it's", 'a', 'bad', 'idea.'], # ['if', 'the', 'implementation', 'is', 'easy', 'to', 'explain,', 'it', 'may', 'be', 'a', 'good', 'idea.'], # ['namespaces', 'are', 'one', 'honking', 'great', 'idea', '--', "let's", 'do', 'more', 'of', 'those!'], ] data_dict = { "ID" : 0, "Gene" : [["beautiful"]], "Variation" : [["complex", "simple"]], "Class" : 0, "Sentences" : [document[:]] } custom_unit_dict = { "gene_unit" : "raw_chars", "variation_unit" : "raw_chars", # text transformed to sentences attribute "doc_unit" : "raw_chars", "doc_form" : "sentences", # "doc_cntx_dir" : "forward", "divide_document" : "single_unit" } df = pd.DataFrame(data=data_dict) corpus = sorted(list(set([word for sentence in document for word in sentence]))) corpus_wordidx = {word:i for i,word in enumerate(corpus)} corpus_wordidx["<SOSent>"] = len(corpus) corpus_wordidx["<EOSent>"] = len(corpus) + 1 corpus_wordidx["<UNK>"] = len(corpus) + 2 gen_data = GenerateDataset(df, corpus_wordidx) x_T, x_G, x_V, x_C = gen_data.generate_data(custom_unit_dict, has_class=True, add_start_end_tag=True) print("data", df.Sentences[0], "\n") print(corpus_wordidx) index = 0 print("text",np.array(x_T).shape, x_T[index]) print("gene",np.array(x_G).shape, x_G[index]) print("variation",np.array(x_V).shape, x_V[index]) print("classes",np.array(x_C).shape, x_C[index]) if __name__ == "__main__": test_class()
import sys, re, os, selenium, time, argparse from time import sleep from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.firefox.options import Options from selenium.webdriver.common.by import By from urllib.request import urlopen, urlretrieve class YoutubeDownloader(object): def __init__(self): self.driver = webdriver.Chrome() def download_video(self, directory, query): driver = self.driver download_link = "http://www.ssyoutube.com/watch?v=" + query.split("?v=")[1] driver.get(download_link) sleep(10) html = driver.page_source soup = BeautifulSoup(html, "lxml") for a in soup.find_all('a'): if "videoplayback" in a['href']: name = a['href'].split('=')[-1].replace("+", " ").replace("%28", "(").replace("%29", ")") urlretrieve(a['href'], directory + "/" + name + ".mp4") break driver.close() def parse_links(self, query): driver = self.driver driver.get(query) sleep(10) html = driver.page_source soup = BeautifulSoup(html, "lxml") title = soup.select('yt-formatted-string.title > a:nth-child(1)')[0].text links = list() for a in soup.find_all('a'): if "index=" in a['href']: links.append(a['href'].split('v=')[-1]) return title, links def download_playlist(self, links, list_dir, number): driver = self.driver num = 0 for link in links: if(num == number): break num = num + 1 download_link = "http://www.ssyoutube.com/watch?v=" + link driver.get(download_link) time.sleep(15) html = driver.page_source soup = BeautifulSoup(html, "lxml") for a in soup.find_all('a'): if "videoplayback" in a['href']: name = a['href'].split('=')[-1].replace("+", " ").replace("%28", "(").replace("%29", ")") urlretrieve(a['href'], list_dir + "/" + name + ".mp4") break driver.close() def create_base_directory(self, directory): direct = os.path.dirname(directory) if not os.path.exists(direct): os.makedirs(direct) else: direct = os.path.dirname(directory) return direct def create_list_directory(self, directory, title): direct = os.path.dirname(os.path.join(directory, title)) if not os.path.exists(direct): os.makedirs(direct) else: direct = os.path.dirname(directory, title) return direct def download(self, query, crawl_type, number, directory): direct = self.create_base_directory(directory) if(crawl_type == 'video'): self.download_video(direct, query) elif(crawl_type == 'playlist'): title, links = self.parse_links(query) list_dir = self.create_list_directory(direct, title) self.download_playlist(links, list_dir, number) def main(): parser = argparse.ArgumentParser(description='Youtube Downloader') parser.add_argument('-q', '--query', type=str, help='Link of video or playlist') parser.add_argument('-t', '--crawl_type', type=str, default='video', help="Options: 'video' | 'playlist'") parser.add_argument('-n', '--number', type=int, default=0, help='Number of videos to download from playlist: integer, -1 to download all') parser.add_argument('-d', '--directory', type=str, default='./Videos/', help='Directory to save results') # parser.add_argument('-l', '--headless', action='store_true', help='If set, script will be run headless') args = parser.parse_args() downloader = YoutubeDownloader() downloader.download(query=args.query, crawl_type=args.crawl_type, number=args.number, directory=args.directory) if __name__ == "__main__": main()
import pytest from os.path import join import mackinac @pytest.mark.fixtures('download_data') class TestReconstruct: def test_reconstruct_features(self, universal_folder, bacteria_folder, b_theta_features, b_theta_summary, b_theta_id): template = mackinac.create_template_model( universal_folder, bacteria_folder, 'bacteria', 'Bacteria template') model = mackinac.reconstruct_model_from_features( b_theta_features, template, b_theta_id, 'negbio', gc_content=b_theta_summary['gc_content'] / 100.0 ) assert model.id == b_theta_id assert len(model.reactions) == 923 # Value can change if genome annotation changes assert len(model.metabolites) == 999 # Value can change if genome annotation changes assert len(model.compartments) == 2 def test_reconstruct_likelihoods(self, universal_folder, bacteria_folder, b_theta_features, b_theta_summary, b_theta_id, search_program_path, search_db_path, fid_role_path, work_folder): template = mackinac.create_template_model( universal_folder, bacteria_folder, 'bacteria', 'Bacteria template') likelihoods = mackinac.calculate_likelihoods( b_theta_id, b_theta_features, template, search_program_path=search_program_path, search_db_path=search_db_path, fid_role_path=fid_role_path, work_folder=work_folder) assert len(likelihoods.reaction_values) == 5652 assert likelihoods.reaction_values['rxn00006']['likelihood'] == 0.0 assert pytest.approx(likelihoods.reaction_values['rxn14380']['likelihood'], 0.9594912486067599) model = mackinac.reconstruct_model_from_likelihoods( likelihoods, template, b_theta_id, 'negbio', gc_content=b_theta_summary['gc_content'] / 100.0 ) assert model.id == b_theta_id assert len(model.reactions) == 1164 # Value can change if genome annotation changes assert len(model.metabolites) == 1260 # Value can change if genome annotation changes assert len(model.compartments) == 2
#!/usr/bin/env python # Author: Alex Tereschenko <alext.mkrs@gmail.com> # Copyright (c) 2016 Alex Tereschenko. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import mraa as m import unittest as u from spi_checks_shared import * class SpiChecksLsbmode(u.TestCase): def setUp(self): self.spi = m.Spi(MRAA_SPI_BUS_NUM) def tearDown(self): del self.spi def test_spi_set_lsbmode_false(self): TEST_LSBMODE = False self.assertEqual(self.spi.lsbmode(TEST_LSBMODE), m.SUCCESS, "Setting LSB mode to %s did not return success" %TEST_LSBMODE) def test_spi_set_lsbmode_true(self): TEST_LSBMODE = True self.assertEqual(self.spi.lsbmode(TEST_LSBMODE), m.SUCCESS, "Setting LSB mode to %s did not return success" %TEST_LSBMODE) def test_spi_set_lsbmode_invalid(self): TEST_LSBMODE = 10 self.assertRaises(TypeError, self.spi.lsbmode, TEST_LSBMODE) if __name__ == "__main__": u.main()
class ThemeSpaceListGeneric: list = None list_text = None list_text_hi = None list_title = None
from mirage.libs import io class Loader: ''' This class permits to dynamically load the modules. ''' def __init__(self): ''' This constructor generates the modules list. ''' import mirage.modules as modules self.modulesList = {} for moduleName,module in modules.__modules__.items(): current = module#__import__("modules."+module, fromlist=module) moduleClass = getattr(current,moduleName) self.modulesList[moduleName] = moduleClass def getModulesNames(self): ''' This method returns a list of existing modules' names. :return: list of modules' name :rtype: list of str ''' return list(self.modulesList.keys()) def load(self,moduleName): ''' This method returns an instance of a specific module according to the name provided as parameter. :param moduleName: name of a module :type moduleName: str :return: an instance of the module :rtype: core.module.Module ''' if moduleName in self.modulesList: return self.modulesList[moduleName]() else: return None def list(self,pattern=""): ''' Display the list of module, filtered by the string provided as ``pattern``. :param pattern: filter :type pattern: str ''' displayDict = {} for module in self.modulesList: info = self.modulesList[module]().info() technology = (info["technology"]).upper() if ( pattern in info["description"] or pattern in info["name"] or pattern in info["technology"] or pattern in info["type"] ): if not technology in displayDict: displayDict[technology] = [] displayDict[technology].append([info["name"], info["type"], info["description"]]) for module in sorted(displayDict): if displayDict[module]: io.chart(["Name", "Type","Description"], sorted(displayDict[module]), "{} Modules".format(module))
#!/usr/bin/env python import boto3 import json import sys client = boto3.client('ecs') data = json.load(sys.stdin) family_prefix = data['family_prefix'] task_def = client.list_task_definitions(familyPrefix=family_prefix, status="ACTIVE", sort="DESC", maxResults=1) task_arn = task_def["taskDefinitionArns"] sys.stdout.write(json.dumps({"task_arn": "%s" % task_arn[0]})) sys.exit(0)
import itertools import os import numpy as np import pandas as pd from utils.Recording import Recording import utils.settings as settings def load_opportunity_dataset(opportunity_dataset_path: str) -> "list[Recording]": """ Returns a list of Recordings from the opportunity dataset """ print("Will read the opportunity dataset") opportunity_dataset_path += "/dataset" subject_ids = range(1, 5) recording_ids = range(1, 6) # see loader/opportunity_col_names to make your selection selected_feature_names = [ "IMU-BACK-accX", "IMU-BACK-accY", "IMU-BACK-accZ", "IMU-BACK-Quaternion1", "IMU-BACK-Quaternion2", "IMU-BACK-Quaternion3", "IMU-BACK-Quaternion4", "IMU-RLA-accX", "IMU-RLA-accY", "IMU-RLA-accZ", "IMU-RLA-Quaternion1", "IMU-RLA-Quaternion2", "IMU-RLA-Quaternion3", "IMU-RLA-Quaternion4", "IMU-LLA-accX", "IMU-LLA-accY", "IMU-LLA-accZ", "IMU-LLA-Quaternion1", "IMU-LLA-Quaternion2", "IMU-LLA-Quaternion3", "IMU-LLA-Quaternion4", "IMU-L-SHOE-EuX", "IMU-L-SHOE-EuY", "IMU-L-SHOE-EuZ", "IMU-L-SHOE-Nav_Ax", "IMU-L-SHOE-Nav_Ay", "IMU-L-SHOE-Nav_Az", "IMU-L-SHOE-Body_Ax", "IMU-L-SHOE-Body_Ay", "IMU-L-SHOE-Body_Az", "IMU-L-SHOE-AngVelBodyFrameX", "IMU-L-SHOE-AngVelBodyFrameY", "IMU-L-SHOE-AngVelBodyFrameZ", "IMU-L-SHOE-AngVelNavFrameX", "IMU-L-SHOE-AngVelNavFrameY", "IMU-L-SHOE-AngVelNavFrameZ", "IMU-R-SHOE-EuX", "IMU-R-SHOE-EuY", "IMU-R-SHOE-EuZ", "IMU-R-SHOE-Nav_Ax", "IMU-R-SHOE-Nav_Ay", "IMU-R-SHOE-Nav_Az", "IMU-R-SHOE-Body_Ax", "IMU-R-SHOE-Body_Ay", "IMU-R-SHOE-Body_Az", "IMU-R-SHOE-AngVelBodyFrameX", "IMU-R-SHOE-AngVelBodyFrameY", "IMU-R-SHOE-AngVelBodyFrameZ", "IMU-R-SHOE-AngVelNavFrameX", "IMU-R-SHOE-AngVelNavFrameY", "IMU-R-SHOE-AngVelNavFrameZ", ] print(f"Selected features (n_features: {len(selected_feature_names)}):\n", "\n".join(["\t" + str(feature_name) for feature_name in selected_feature_names])) # Get column names col_names = [] with open("src/loader/opportunity_col_names", "r") as file: lines = file.read().splitlines() for line in lines: col_names.append(line) recordings = [] for sub, rec in itertools.product(subject_ids, recording_ids): file_name = f"S{sub}-ADL{rec}.dat" file_path = os.path.join(opportunity_dataset_path, file_name) print(f"Reading {file_path} ...") file_df = pd.read_csv(file_path, delimiter=" ", header=None) file_df.columns = col_names # give them the real column names recordings.append(Recording( sensor_frame = file_df.loc[:, selected_feature_names], time_frame = file_df.loc[:, 'MILLISEC'], activities = file_df.loc[:, 'HL_Activity'].map( lambda label: settings.DATA_CONFIG.raw_label_to_activity_idx(label) ), # Use `[0]` to get only one activity | maps 0, 101, 102, 103, 104, 105 to 0, 1, 2, 3, 4, 5 subject=int(sub), recording_index=int(rec) )) print(f"\n => Total {len(recordings)} recordings read") return recordings
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = [ 'GetProtectedItemResult', 'AwaitableGetProtectedItemResult', 'get_protected_item', ] @pulumi.output_type class GetProtectedItemResult: """ Base class for backup items. """ def __init__(__self__, e_tag=None, location=None, name=None, properties=None, tags=None, type=None): if e_tag and not isinstance(e_tag, str): raise TypeError("Expected argument 'e_tag' to be a str") pulumi.set(__self__, "e_tag", e_tag) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if properties and not isinstance(properties, dict): raise TypeError("Expected argument 'properties' to be a dict") pulumi.set(__self__, "properties", properties) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter(name="eTag") def e_tag(self) -> Optional[str]: """ Optional ETag. """ return pulumi.get(self, "e_tag") @property @pulumi.getter def location(self) -> Optional[str]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ Resource name associated with the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def properties(self) -> Any: """ ProtectedItemResource properties """ return pulumi.get(self, "properties") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ Resource type represents the complete path of the form Namespace/ResourceType/ResourceType/... """ return pulumi.get(self, "type") class AwaitableGetProtectedItemResult(GetProtectedItemResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetProtectedItemResult( e_tag=self.e_tag, location=self.location, name=self.name, properties=self.properties, tags=self.tags, type=self.type) def get_protected_item(container_name: Optional[str] = None, fabric_name: Optional[str] = None, filter: Optional[str] = None, protected_item_name: Optional[str] = None, resource_group_name: Optional[str] = None, vault_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetProtectedItemResult: """ Use this data source to access information about an existing resource. :param str container_name: Container name associated with the backed up item. :param str fabric_name: Fabric name associated with the backed up item. :param str filter: OData filter options. :param str protected_item_name: Backed up item name whose details are to be fetched. :param str resource_group_name: The name of the resource group where the recovery services vault is present. :param str vault_name: The name of the recovery services vault. """ __args__ = dict() __args__['containerName'] = container_name __args__['fabricName'] = fabric_name __args__['filter'] = filter __args__['protectedItemName'] = protected_item_name __args__['resourceGroupName'] = resource_group_name __args__['vaultName'] = vault_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:recoveryservices/v20190513:getProtectedItem', __args__, opts=opts, typ=GetProtectedItemResult).value return AwaitableGetProtectedItemResult( e_tag=__ret__.e_tag, location=__ret__.location, name=__ret__.name, properties=__ret__.properties, tags=__ret__.tags, type=__ret__.type)
from estudent.school import School def run_example(): school = School.create_school_with_students("Hogwart") print(school) print(f"W szkole może być maksymalnie {school.MAX_STUDENTS_NUMBER} uczniów") if __name__ == '__main__': run_example()
from urllib.request import urlopen import torch from torch import nn import numpy as np from skimage.morphology import label import os from HD_BET.paths import folder_with_parameter_files def get_params_fname(fold): return os.path.join(folder_with_parameter_files, "%d.model" % fold) def maybe_download_parameters(fold=0, force_overwrite=False): """ Downloads the parameters for some fold if it is not present yet. :param fold: :param force_overwrite: if True the old parameter file will be deleted (if present) prior to download :return: """ assert 0 <= fold <= 4, "fold must be between 0 and 4" if not os.path.isdir(folder_with_parameter_files): maybe_mkdir_p(folder_with_parameter_files) out_filename = get_params_fname(fold) if force_overwrite and os.path.isfile(out_filename): os.remove(out_filename) if not os.path.isfile(out_filename): url = "https://zenodo.org/record/2540695/files/%d.model?download=1" % fold print("Downloading", url, "...") data = urlopen(url).read() with open(out_filename, 'wb') as f: f.write(data) def init_weights(module): if isinstance(module, nn.Conv3d): module.weight = nn.init.kaiming_normal(module.weight, a=1e-2) if module.bias is not None: module.bias = nn.init.constant(module.bias, 0) def softmax_helper(x): rpt = [1 for _ in range(len(x.size()))] rpt[1] = x.size(1) x_max = x.max(1, keepdim=True)[0].repeat(*rpt) e_x = torch.exp(x - x_max) return e_x / e_x.sum(1, keepdim=True).repeat(*rpt) class SetNetworkToVal(object): def __init__(self, use_dropout_sampling=False, norm_use_average=True): self.norm_use_average = norm_use_average self.use_dropout_sampling = use_dropout_sampling def __call__(self, module): if isinstance(module, nn.Dropout3d) or isinstance(module, nn.Dropout2d) or isinstance(module, nn.Dropout): module.train(self.use_dropout_sampling) elif isinstance(module, nn.InstanceNorm3d) or isinstance(module, nn.InstanceNorm2d) or \ isinstance(module, nn.InstanceNorm1d) \ or isinstance(module, nn.BatchNorm2d) or isinstance(module, nn.BatchNorm3d) or \ isinstance(module, nn.BatchNorm1d): module.train(not self.norm_use_average) def postprocess_prediction(seg): # basically look for connected components and choose the largest one, delete everything else print("running postprocessing... ") mask = seg != 0 lbls = label(mask, connectivity=mask.ndim) lbls_sizes = [np.sum(lbls == i) for i in np.unique(lbls)] largest_region = np.argmax(lbls_sizes[1:]) + 1 seg[lbls != largest_region] = 0 return seg def subdirs(folder, join=True, prefix=None, suffix=None, sort=True): if join: l = os.path.join else: l = lambda x, y: y res = [l(folder, i) for i in os.listdir(folder) if os.path.isdir(os.path.join(folder, i)) and (prefix is None or i.startswith(prefix)) and (suffix is None or i.endswith(suffix))] if sort: res.sort() return res def subfiles(folder, join=True, prefix=None, suffix=None, sort=True): if join: l = os.path.join else: l = lambda x, y: y res = [l(folder, i) for i in os.listdir(folder) if os.path.isfile(os.path.join(folder, i)) and (prefix is None or i.startswith(prefix)) and (suffix is None or i.endswith(suffix))] if sort: res.sort() return res subfolders = subdirs # I am tired of confusing those def maybe_mkdir_p(directory): splits = directory.split("/")[1:] for i in range(0, len(splits)): if not os.path.isdir(os.path.join("/", *splits[:i+1])): os.mkdir(os.path.join("/", *splits[:i+1]))
""" Azure Automation assets module to be used with Azure Automation during offline development """ #!/usr/bin/env python2 # ---------------------------------------------------------------------------------- # # MIT License # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ---------------------------------------------------------------------------------- # Constant keys for extracing items from automation assets. _KEY_NAME = "Name" _KEY_VALUE = "Value" _KEY_USERNAME = "Username" _KEY_PASSWORD = "Password" _KEY_CERTPATH = "CertPath" _KEY_CONNECTION_FIELDS = "ValueFields" # Assets supported in Azure automation within python scripts _KEY_VARIABLE = "Variable" _KEY_CERTIFICATE = "Certificate" _KEY_CREDENTIAL = "Credential" _KEY_CONNECTION = "Connection" # Get Azure Automation asset json file def _get_automation_asset_file(): import os if os.environ.get('AUTOMATION_ASSET_FILE') is not None: return os.environ.get('AUTOMATION_ASSET_FILE') return os.path.join(os.path.dirname(__file__), "localassets.json") # Helper function to find an asset of a specific type and name in the asset file def _get_asset_value(asset_file, asset_type, asset_name): import json json_data = open(asset_file) json_string = json_data.read() local_assets = json.loads(json_string) return_value = None for asset, asset_values in local_assets.iteritems(): if asset == asset_type: for value in asset_values: if value[_KEY_NAME] == asset_name: return_value = value break if return_value != None: # Found the value so break out of loop break return return_value # Returns an asset from the asses file def _get_asset(asset_type, asset_name): local_assets_file = _get_automation_asset_file() # Look in assets file for value return_value = _get_asset_value(local_assets_file, asset_type, asset_name) if return_value is None: raise LookupError("asset:" + asset_name + " not found") return return_value # Helper function to set an asset of a specific type and name in the assetFile def _set_asset_value(asset_file, asset_type, asset_name, asset_value): import json json_data = open(asset_file) json_string = json_data.read() local_assets = json.loads(json_string) item_found = False for asset, asset_values in local_assets.iteritems(): if asset == asset_type: for value in asset_values: if value[_KEY_NAME] == asset_name: value[_KEY_VALUE] = asset_value with open(asset_file, 'w') as asset_file_content: asset_file_content.write(json.dumps(local_assets, indent=4)) item_found = True break if item_found: break return item_found # Updates an asset in the assets file def _set_asset(asset_type, asset_name, asset_value): local_assets_file = _get_automation_asset_file() # Check assets file for value. item_found = _set_asset_value(local_assets_file, asset_type, asset_name, asset_value) if item_found is False: raise LookupError("asset:" + asset_name + " not found") # Below are the 5 supported calls that can be made to automation assets from within # a python script def get_automation_variable(name): """ Returns an automation variable """ variable = _get_asset(_KEY_VARIABLE, name) return variable[_KEY_VALUE] def set_automation_variable(name, value): """ Sets an automation variable """ _set_asset(_KEY_VARIABLE, name, value) def get_automation_credential(name): """ Returns an automation credential as a dictionay with username and password as keys """ credential = _get_asset(_KEY_CREDENTIAL, name) # Return a dictionary of the credential asset credential_dictionary = {} credential_dictionary['username'] = credential['Username'] credential_dictionary['password'] = credential['Password'] return credential_dictionary def get_automation_connection(name): """ Returns an automation connection dictionary """ connection = _get_asset(_KEY_CONNECTION, name) return connection[_KEY_CONNECTION_FIELDS] def get_automation_certificate(name): """ Returns an automation certificate in PKCS12 bytes """ from OpenSSL import crypto certificate = _get_asset(_KEY_CERTIFICATE, name) pks12_cert = crypto.load_pkcs12(open(certificate[_KEY_CERTPATH], 'rb').read(), certificate[_KEY_PASSWORD]) return crypto.PKCS12.export(pks12_cert)
# Generated by Django 3.1.7 on 2021-03-23 19:12 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('transactions', '0007_auto_20210323_1910'), ] operations = [ migrations.AlterField( model_name='customer', name='customer_id', field=models.BigIntegerField(default='791425045985934', primary_key=True, serialize=False), ), migrations.AlterField( model_name='supermarket', name='supermarket_id', field=models.BigIntegerField(default='874067270903651', primary_key=True, serialize=False), ), migrations.AlterField( model_name='transaction', name='transaction_id', field=models.BigIntegerField(default='363109663162057', primary_key=True, serialize=False), ), ]
#!/usr/bin/env python3 import sys import csv """ Field Name Full name Format Example 1 SEQ Sequence number Int (6) 86415 2 KM_REF Kilometre reference Char (6) ST5265 3 DEF_NAM Definitive name Char (60) Felton 4 TILE_REF Tile reference Char (4) ST46 5 LAT_DEG Latitude degrees Int (2) 51 6 LAT_MIN Latitude minutes Float (3.1) 23.1 7 LONG_DEG Longitude degrees Int (2) 2 8 LONG_MIN Longitude minutes Float (3.1) 41 9 NORTH Northings Int (7) 165500 10 EAST Eastings Int (7) 352500 11 GMT Greenwich Meridian Char (1) W 12 CO_CODE County code Char (2) NS 13 COUNTY County name Char (20) N Som 14 FULL_COUNTY Full county name Char (60) North Somerset 15 F_CODE Feature code Char (3) O 16 E_DATE Edit date Char (11) 01-MAR-1993 17 UPDATE_CO Update code Char (1) l 18 SHEET_1 Primary sheet no Int (3) 172 19 SHEET_2 Second sheet no Int (3) 182 20 SHEET_3 Third sheet no Int (3) 0 """ county = {} for row in csv.reader(sys.stdin, delimiter=':', quoting=csv.QUOTE_NONE): county[row[11]] = { 'gaz50k': row[11], 'county': row[12], 'name': row[13], } fields = [ 'gaz50k', 'county', 'name' ] print("\t".join(fields)) for code in county: print("\t".join([county[code][field] or "" for field in fields]))
#!/usr/bin/env python3 # python setup.py sdist --format=zip,gztar from setuptools import setup import os import sys import platform import imp import argparse version = imp.load_source('version', 'lib/version.py') def readhere(path): here = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(here, path), 'r') as fd: return fd.read() def readreqs(path): return [req for req in [line.strip() for line in readhere(path).split('\n')] if req and not req.startswith(('#', '-r'))] install_requires = readreqs('requirements.txt') tests_requires = install_requires + readreqs('requirements_travis.txt') if sys.version_info[:3] < (3, 4, 0): sys.exit("Error: Electrum requires Python version >= 3.4.0...") data_files = [] if platform.system() in ['Linux', 'FreeBSD', 'DragonFly']: parser = argparse.ArgumentParser() parser.add_argument('--root=', dest='root_path', metavar='dir', default='/') opts, _ = parser.parse_known_args(sys.argv[1:]) usr_share = os.path.join(sys.prefix, "share") if not os.access(opts.root_path + usr_share, os.W_OK) and \ not os.access(opts.root_path, os.W_OK): if 'XDG_DATA_HOME' in os.environ.keys(): usr_share = os.environ['XDG_DATA_HOME'] else: usr_share = os.path.expanduser('~/.local/share') data_files += [ (os.path.join(usr_share, 'applications/'), ['electrum.desktop']), (os.path.join(usr_share, 'pixmaps/'), ['icons/electrum.png']) ] setup( name="Electrum-ZCL", version=version.ELECTRUM_VERSION, install_requires=install_requires, tests_require=tests_requires, packages=[ 'electrum', 'electrum_gui', 'electrum_gui.qt', 'electrum_plugins', 'electrum_plugins.audio_modem', 'electrum_plugins.cosigner_pool', 'electrum_plugins.email_requests', 'electrum_plugins.greenaddress_instant', 'electrum_plugins.hw_wallet', 'electrum_plugins.keepkey', 'electrum_plugins.labels', 'electrum_plugins.ledger', 'electrum_plugins.trezor', 'electrum_plugins.digitalbitbox', 'electrum_plugins.trustedcoin', 'electrum_plugins.virtualkeyboard', ], package_dir={ 'electrum': 'lib', 'electrum_gui': 'gui', 'electrum_plugins': 'plugins', }, package_data={ 'electrum': [ 'servers.json', 'servers_testnet.json', 'currencies.json', 'checkpoints.json', 'checkpoints_testnet.json', 'www/index.html', 'wordlist/*.txt', 'locale/*/LC_MESSAGES/electrum.mo', ] }, scripts=['electrum-zcl'], data_files=data_files, description="Lightweight Zclassic Wallet", author="Zclassic CE", author_email="team@zclassic-ce.org", license="MIT Licence", url="https://zclassic-ce.org", long_description="""Lightweight Zclassic Wallet""" )
# -*- coding: utf-8 -*- """ Created on Sat Dec 16 22:30:11 2020 @author: Easin """ from __future__ import absolute_import, division, print_function import tensorflow as tf from tensorflow.keras import Model, layers import numpy as np import matplotlib.pyplot as plt # MNIST dataset parameters. num_classes = 10 # total classes (0-9 digits). num_features = 784 # data features (img shape: 28*28). # Training parameters. learning_rate = 0.1 training_steps = 2000 batch_size = 256 display_step = 100 # Network parameters. n_hidden_1 = 128 # 1st layer number of neurons. n_hidden_2 = 256 # 2nd layer number of neurons. # Prepare MNIST data. from tensorflow.keras.datasets import mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() # Convert to float32. x_train, x_test = np.array(x_train, np.float32), np.array(x_test, np.float32) # Flatten images to 1-D vector of 784 features (28*28). x_train, x_test = x_train.reshape([-1, num_features]), x_test.reshape([-1, num_features]) # Normalize images value from [0, 255] to [0, 1]. x_train, x_test = x_train / 255., x_test / 255. # Use tf.data API to shuffle and batch data. train_data = tf.data.Dataset.from_tensor_slices((x_train, y_train)) train_data = train_data.repeat().shuffle(5000).batch(batch_size).prefetch(1) # Create TF Model. class NeuralNet(Model): # Set layers. def __init__(self): super(NeuralNet, self).__init__() # First fully-connected hidden layer. self.fc1 = layers.Dense(n_hidden_1, activation=tf.nn.relu) # First fully-connected hidden layer. self.fc2 = layers.Dense(n_hidden_2, activation=tf.nn.relu) # Second fully-connecter hidden layer. self.out = layers.Dense(num_classes) # Set forward pass. def call(self, x, is_training=False): x = self.fc1(x) x = self.fc2(x) x = self.out(x) if not is_training: # tf cross entropy expect logits without softmax, so only # apply softmax when not training. x = tf.nn.softmax(x) return x # Build neural network model. neural_net = NeuralNet() # Cross-Entropy Loss. # Note that this will apply 'softmax' to the logits. def cross_entropy_loss(x, y): # Convert labels to int 64 for tf cross-entropy function. y = tf.cast(y, tf.int64) # Apply softmax to logits and compute cross-entropy. loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=x) # Average loss across the batch. return tf.reduce_mean(loss) # Accuracy metric. def accuracy(y_pred, y_true): # Predicted class is the index of highest score in prediction vector (i.e. argmax). correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.cast(y_true, tf.int64)) return tf.reduce_mean(tf.cast(correct_prediction, tf.float32), axis=-1) # Stochastic gradient descent optimizer. optimizer = tf.optimizers.SGD(learning_rate) # Optimization process. def run_optimization(x, y): # Wrap computation inside a GradientTape for automatic differentiation. with tf.GradientTape() as g: # Forward pass. pred = neural_net(x, is_training=True) # Compute loss. loss = cross_entropy_loss(pred, y) # Variables to update, i.e. trainable variables. trainable_variables = neural_net.trainable_variables # Compute gradients. gradients = g.gradient(loss, trainable_variables) # Update W and b following gradients. optimizer.apply_gradients(zip(gradients, trainable_variables)) # Run training for the given number of steps. for step, (batch_x, batch_y) in enumerate(train_data.take(training_steps), 1): # Run the optimization to update W and b values. run_optimization(batch_x, batch_y) if step % display_step == 0: pred = neural_net(batch_x, is_training=True) loss = cross_entropy_loss(pred, batch_y) acc = accuracy(pred, batch_y) print("step: %i, loss: %f, accuracy: %f" % (step, loss, acc)) # Test model on validation set. pred = neural_net(x_test, is_training=False) print("Test Accuracy: %f" % accuracy(pred, y_test)) # Predict 5 images from validation set. n_images = 5 test_images = x_test[:n_images] predictions = neural_net(test_images) # Display image and model prediction. for i in range(n_images): plt.imshow(np.reshape(test_images[i], [28, 28]), cmap='gray') plt.show() print("Model prediction: %i" % np.argmax(predictions.numpy()[i]))
# Copyright 2017-2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may # not use this file except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. ''' Description: Check whether the ElasticSearch Domains are in VPC and not as a public endpoint. Trigger: Periodic Reports on: AWS::Elasticsearch::Domain Feature: In order to: to protect my data for exposure As: a Security Officer I want: To ensure that all my ElasticSearch Domains to be in VPC and not as a public endpoint. Rule Parameters: None Scenarios: Scenario 1: Given: No ElasticSearch Domain is present Then: Return NOT_APPLICABLE on AWS::::Account Scenario 2: Given: At least one ElasticSearch Domain is present And: No 'VPCOptions' key is present in the list of "DomainName" on DescribeElasticsearchDomains API Then: Return NON_COMPLIANT on this Domain Scenario 3: Given: At least one ElasticSearch Domain is present And: The 'VPCOptions' key is present in the list of "DomainName" on DescribeElasticsearchDomains API Then: Return COMPLIANT on this Domain ''' import json import sys import time import datetime import boto3 import botocore try: import liblogging except ImportError: pass ############## # Parameters # ############## # Define the default resource to report to Config Rules DEFAULT_RESOURCE_TYPE = 'AWS::Elasticsearch::Domain' # Set to True to get the lambda to assume the Role attached on the Config Service (useful for cross-account). ASSUME_ROLE_MODE = True # Other parameters (no change needed) CONFIG_ROLE_TIMEOUT_SECONDS = 900 PAUSE_TO_AVOID_THROTTLE_SECONDS = 4 ############# # Main Code # ############# def get_all_domain_details(es_client, es_domains): es_domain_list_details = [] es_domains_names_only = [] for es_domain in es_domains: es_domains_names_only.append(es_domain['DomainName']) while es_domains_names_only: time.sleep(PAUSE_TO_AVOID_THROTTLE_SECONDS) domain_details = es_client.describe_elasticsearch_domains(DomainNames=es_domains_names_only[:5])['DomainStatusList'] es_domain_list_details += domain_details del es_domains_names_only[:5] return es_domain_list_details def evaluate_compliance(event, configuration_item, valid_rule_parameters): es_client = get_client('es', event) es_domain_list = es_client.list_domain_names()['DomainNames'] if not es_domain_list: return build_evaluation(event['accountId'], 'NOT_APPLICABLE', event, resource_type='AWS::::Account') es_domain_list_details = get_all_domain_details(es_client, es_domain_list) evaluation_list = [] for es_domain_details in es_domain_list_details: if 'VPCOptions' not in es_domain_details: compliance_type = 'NON_COMPLIANT' else: compliance_type = 'COMPLIANT' evaluation_list.append(build_evaluation(es_domain_details['DomainName'], compliance_type, event)) if evaluation_list: return evaluation_list return build_evaluation(event['accountId'], 'NOT_APPLICABLE', event, resource_type='AWS::::Account') def evaluate_parameters(rule_parameters): """Evaluate the rule parameters dictionary validity. Raise a ValueError for invalid parameters. Return: anything suitable for the evaluate_compliance() Keyword arguments: rule_parameters -- the Key/Value dictionary of the Config Rules parameters """ valid_rule_parameters = rule_parameters return valid_rule_parameters #################### # Helper Functions # #################### # Build an error to be displayed in the logs when the parameter is invalid. def build_parameters_value_error_response(ex): """Return an error dictionary when the evaluate_parameters() raises a ValueError. Keyword arguments: ex -- Exception text """ return build_error_response(internal_error_message="Parameter value is invalid", internal_error_details="An ValueError was raised during the validation of the Parameter value", customer_error_code="InvalidParameterValueException", customer_error_message=str(ex)) # This gets the client after assuming the Config service role # either in the same AWS account or cross-account. def get_client(service, event): """Return the service boto client. It should be used instead of directly calling the client. Keyword arguments: service -- the service name used for calling the boto.client() event -- the event variable given in the lambda handler """ if not ASSUME_ROLE_MODE: return boto3.client(service) credentials = get_assume_role_credentials(event["executionRoleArn"]) return boto3.client(service, aws_access_key_id=credentials['AccessKeyId'], aws_secret_access_key=credentials['SecretAccessKey'], aws_session_token=credentials['SessionToken'] ) # This generate an evaluation for config def build_evaluation(resource_id, compliance_type, event, resource_type=DEFAULT_RESOURCE_TYPE, annotation=None): """Form an evaluation as a dictionary. Usually suited to report on scheduled rules. Keyword arguments: resource_id -- the unique id of the resource to report compliance_type -- either COMPLIANT, NON_COMPLIANT or NOT_APPLICABLE event -- the event variable given in the lambda handler resource_type -- the CloudFormation resource type (or AWS::::Account) to report on the rule (default DEFAULT_RESOURCE_TYPE) annotation -- an annotation to be added to the evaluation (default None) """ eval_cc = {} if annotation: eval_cc['Annotation'] = annotation eval_cc['ComplianceResourceType'] = resource_type eval_cc['ComplianceResourceId'] = resource_id eval_cc['ComplianceType'] = compliance_type eval_cc['OrderingTimestamp'] = str(json.loads(event['invokingEvent'])['notificationCreationTime']) return eval_cc def build_evaluation_from_config_item(configuration_item, compliance_type, annotation=None): """Form an evaluation as a dictionary. Usually suited to report on configuration change rules. Keyword arguments: configuration_item -- the configurationItem dictionary in the invokingEvent compliance_type -- either COMPLIANT, NON_COMPLIANT or NOT_APPLICABLE annotation -- an annotation to be added to the evaluation (default None) """ eval_ci = {} if annotation: eval_ci['Annotation'] = annotation eval_ci['ComplianceResourceType'] = configuration_item['resourceType'] eval_ci['ComplianceResourceId'] = configuration_item['resourceId'] eval_ci['ComplianceType'] = compliance_type eval_ci['OrderingTimestamp'] = configuration_item['configurationItemCaptureTime'] return eval_ci #################### # Boilerplate Code # #################### # Helper function used to validate input def check_defined(reference, reference_name): if not reference: raise Exception('Error: ', reference_name, 'is not defined') return reference # Check whether the message is OversizedConfigurationItemChangeNotification or not def is_oversized_changed_notification(message_type): check_defined(message_type, 'messageType') return message_type == 'OversizedConfigurationItemChangeNotification' # Check whether the message is a ScheduledNotification or not. def is_scheduled_notification(message_type): check_defined(message_type, 'messageType') return message_type == 'ScheduledNotification' # Get configurationItem using getResourceConfigHistory API # in case of OversizedConfigurationItemChangeNotification def get_configuration(resource_type, resource_id, configuration_capture_time): result = AWS_CONFIG_CLIENT.get_resource_config_history( resourceType=resource_type, resourceId=resource_id, laterTime=configuration_capture_time, limit=1) configuration_item = result['configurationItems'][0] return convert_api_configuration(configuration_item) # Convert from the API model to the original invocation model def convert_api_configuration(configuration_item): for k, v in configuration_item.items(): if isinstance(v, datetime.datetime): configuration_item[k] = str(v) configuration_item['awsAccountId'] = configuration_item['accountId'] configuration_item['ARN'] = configuration_item['arn'] configuration_item['configurationStateMd5Hash'] = configuration_item['configurationItemMD5Hash'] configuration_item['configurationItemVersion'] = configuration_item['version'] configuration_item['configuration'] = json.loads(configuration_item['configuration']) if 'relationships' in configuration_item: for i in range(len(configuration_item['relationships'])): configuration_item['relationships'][i]['name'] = configuration_item['relationships'][i]['relationshipName'] return configuration_item # Based on the type of message get the configuration item # either from configurationItem in the invoking event # or using the getResourceConfigHistiry API in getConfiguration function. def get_configuration_item(invoking_event): check_defined(invoking_event, 'invokingEvent') if is_oversized_changed_notification(invoking_event['messageType']): configuration_item_summary = check_defined(invoking_event['configuration_item_summary'], 'configurationItemSummary') return get_configuration(configuration_item_summary['resourceType'], configuration_item_summary['resourceId'], configuration_item_summary['configurationItemCaptureTime']) if is_scheduled_notification(invoking_event['messageType']): return None return check_defined(invoking_event['configurationItem'], 'configurationItem') # Check whether the resource has been deleted. If it has, then the evaluation is unnecessary. def is_applicable(configuration_item, event): try: check_defined(configuration_item, 'configurationItem') check_defined(event, 'event') except: return True status = configuration_item['configurationItemStatus'] event_left_scope = event['eventLeftScope'] if status == 'ResourceDeleted': print("Resource Deleted, setting Compliance Status to NOT_APPLICABLE.") return status in ('OK', 'ResourceDiscovered') and not event_left_scope def get_assume_role_credentials(role_arn): sts_client = boto3.client('sts') try: assume_role_response = sts_client.assume_role(RoleArn=role_arn, RoleSessionName="configLambdaExecution", DurationSeconds=CONFIG_ROLE_TIMEOUT_SECONDS) if 'liblogging' in sys.modules: liblogging.logSession(role_arn, assume_role_response) return assume_role_response['Credentials'] except botocore.exceptions.ClientError as ex: # Scrub error message for any internal account info leaks print(str(ex)) if 'AccessDenied' in ex.response['Error']['Code']: ex.response['Error']['Message'] = "AWS Config does not have permission to assume the IAM role." else: ex.response['Error']['Message'] = "InternalError" ex.response['Error']['Code'] = "InternalError" raise ex # This removes older evaluation (usually useful for periodic rule not reporting on AWS::::Account). def clean_up_old_evaluations(latest_evaluations, event): cleaned_evaluations = [] old_eval = AWS_CONFIG_CLIENT.get_compliance_details_by_config_rule( ConfigRuleName=event['configRuleName'], ComplianceTypes=['COMPLIANT', 'NON_COMPLIANT'], Limit=100) old_eval_list = [] while True: for old_result in old_eval['EvaluationResults']: old_eval_list.append(old_result) if 'NextToken' in old_eval: next_token = old_eval['NextToken'] old_eval = AWS_CONFIG_CLIENT.get_compliance_details_by_config_rule( ConfigRuleName=event['configRuleName'], ComplianceTypes=['COMPLIANT', 'NON_COMPLIANT'], Limit=100, NextToken=next_token) else: break for old_eval in old_eval_list: old_resource_id = old_eval['EvaluationResultIdentifier']['EvaluationResultQualifier']['ResourceId'] newer_founded = False for latest_eval in latest_evaluations: if old_resource_id == latest_eval['ComplianceResourceId']: newer_founded = True if not newer_founded: cleaned_evaluations.append(build_evaluation(old_resource_id, "NOT_APPLICABLE", event)) return cleaned_evaluations + latest_evaluations def lambda_handler(event, context): if 'liblogging' in sys.modules: liblogging.logEvent(event) global AWS_CONFIG_CLIENT #print(event) check_defined(event, 'event') invoking_event = json.loads(event['invokingEvent']) rule_parameters = {} if 'ruleParameters' in event: rule_parameters = json.loads(event['ruleParameters']) try: valid_rule_parameters = evaluate_parameters(rule_parameters) except ValueError as ex: return build_parameters_value_error_response(ex) try: AWS_CONFIG_CLIENT = get_client('config', event) if invoking_event['messageType'] in ['ConfigurationItemChangeNotification', 'ScheduledNotification', 'OversizedConfigurationItemChangeNotification']: configuration_item = get_configuration_item(invoking_event) if is_applicable(configuration_item, event): compliance_result = evaluate_compliance(event, configuration_item, valid_rule_parameters) else: compliance_result = "NOT_APPLICABLE" else: return build_internal_error_response('Unexpected message type', str(invoking_event)) except botocore.exceptions.ClientError as ex: if is_internal_error(ex): return build_internal_error_response("Unexpected error while completing API request", str(ex)) return build_error_response("Customer error while making API request", str(ex), ex.response['Error']['Code'], ex.response['Error']['Message']) except ValueError as ex: return build_internal_error_response(str(ex), str(ex)) evaluations = [] latest_evaluations = [] if not compliance_result: latest_evaluations.append(build_evaluation(event['accountId'], "NOT_APPLICABLE", event, resource_type='AWS::::Account')) evaluations = clean_up_old_evaluations(latest_evaluations, event) elif isinstance(compliance_result, str): if configuration_item: evaluations.append(build_evaluation_from_config_item(configuration_item, compliance_result)) else: evaluations.append(build_evaluation(event['accountId'], compliance_result, event, resource_type=DEFAULT_RESOURCE_TYPE)) elif isinstance(compliance_result, list): for evaluation in compliance_result: missing_fields = False for field in ('ComplianceResourceType', 'ComplianceResourceId', 'ComplianceType', 'OrderingTimestamp'): if field not in evaluation: print("Missing " + field + " from custom evaluation.") missing_fields = True if not missing_fields: latest_evaluations.append(evaluation) evaluations = clean_up_old_evaluations(latest_evaluations, event) elif isinstance(compliance_result, dict): missing_fields = False for field in ('ComplianceResourceType', 'ComplianceResourceId', 'ComplianceType', 'OrderingTimestamp'): if field not in compliance_result: print("Missing " + field + " from custom evaluation.") missing_fields = True if not missing_fields: evaluations.append(compliance_result) else: evaluations.append(build_evaluation_from_config_item(configuration_item, 'NOT_APPLICABLE')) # Put together the request that reports the evaluation status result_token = event['resultToken'] test_mode = False if result_token == 'TESTMODE': # Used solely for RDK test to skip actual put_evaluation API call test_mode = True # Invoke the Config API to report the result of the evaluation evaluation_copy = [] evaluation_copy = evaluations[:] while evaluation_copy: AWS_CONFIG_CLIENT.put_evaluations(Evaluations=evaluation_copy[:100], ResultToken=result_token, TestMode=test_mode) del evaluation_copy[:100] # Used solely for RDK test to be able to test Lambda function return evaluations def is_internal_error(exception): return ((not isinstance(exception, botocore.exceptions.ClientError)) or exception.response['Error']['Code'].startswith('5') or 'InternalError' in exception.response['Error']['Code'] or 'ServiceError' in exception.response['Error']['Code']) def build_internal_error_response(internal_error_message, internal_error_details=None): return build_error_response(internal_error_message, internal_error_details, 'InternalError', 'InternalError') def build_error_response(internal_error_message, internal_error_details=None, customer_error_code=None, customer_error_message=None): error_response = { 'internalErrorMessage': internal_error_message, 'internalErrorDetails': internal_error_details, 'customerErrorMessage': customer_error_message, 'customerErrorCode': customer_error_code } print(error_response) return error_response
""" (C) Copyright 2021 IBM Corp. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Created on June 30, 2021 """ import pathlib import shutil import tempfile import unittest import os from fuse.utils.file_io.file_io import create_dir import wget from fuse_examples.classification.knight.eval.eval import eval from fuse_examples.classification.knight.make_targets_file import make_targets_file import fuse_examples.classification.knight.baseline.fuse_baseline as baseline class KnightTestTestCase(unittest.TestCase): def setUp(self): self.root = tempfile.mkdtemp() def test_eval(self): dir_path = pathlib.Path(__file__).parent.resolve() target_filename = os.path.join(dir_path, "../classification/knight/eval/example/example_targets.csv") task1_prediction_filename = os.path.join(dir_path, "../classification/knight/eval/example/example_task1_predictions.csv") task2_prediction_filename = os.path.join(dir_path, "../classification/knight/eval/example/example_task2_predictions.csv") eval(target_filename=target_filename, task1_prediction_filename=task1_prediction_filename, task2_prediction_filename=task2_prediction_filename, output_dir=self.root) def test_make_targets(self): dir_path = pathlib.Path(__file__).parent.resolve() data_path = os.path.join(self.root, "data") cache_path = os.path.join(self.root, "cache") split = os.path.join(dir_path, "../classification/knight/baseline/splits_final.pkl") output_filename = os.path.join(self.root, "output/validation_targets.csv") create_dir(os.path.join(data_path, "knight", "data")) create_dir(os.path.dirname(output_filename)) wget.download("https://raw.github.com/neheller/KNIGHT/main/knight/data/knight.json", os.path.join(data_path, "knight", "data")) make_targets_file(data_path=data_path, cache_path=cache_path, split=split, output_filename=output_filename) @unittest.skip("Not ready yet") # TODOs: set KNIGHT data # 1 Set 'KNIGHT_DATA' ahead (and not in the test) # 2, Add code that skip test if this var wasn't set # 2. Modify main() to support overriding the arguments and override number of epochs to 2 (and maybe number of samples) # 3. Use and test make predictions (inference script) def test_train(self): os.environ['KNIGHT_DATA'] = "/projects/msieve/MedicalSieve/PatientData/KNIGHT" os.environ['KNIGHT_CACHE'] = os.path.join(self.root, "train", "cache") os.environ['KNIGHT_RESULTS'] = os.path.join(self.root, "train", "results") baseline.main() def tearDown(self): # Delete temporary directories shutil.rmtree(self.root) if __name__ == '__main__': unittest.main()
# -*- coding: utf-8 -*- """ Created on Sep 20, 2012 @author: moloch Copyright 2012 Root the Box Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # pylint: disable=unused-wildcard-import,unused-variable import os import logging import sys import getpass import codecs from builtins import object from libs.ConsoleColors import * try: from urllib.parse import quote, quote_plus except ImportError: from urllib import quote, quote_plus from sqlalchemy import create_engine from tornado.options import options class DatabaseConnection(object): def __init__( self, database, hostname="", port="", username="", password="", dialect="", ssl_ca="", ): self.database = database self.hostname = hostname self.port = port self.username = username self.password = password self.dialect = dialect self.ssl_ca = ssl_ca def __str__(self): """ Construct the database connection string """ if self.dialect == "sqlite": db_conn = self._sqlite() elif self.dialect.startswith("postgres"): db_conn = self._postgresql() elif self.dialect == "mysql": db_conn = self._mysql() else: raise ValueError("Database dialect not supported") self._test_connection(db_conn) return db_conn def _postgresql(self): """ Configured to use postgresql, there is no built-in support for postgresql so make sure we can import the 3rd party python lib 'pypostgresql' """ logging.debug("Configured to use Postgresql for a database") try: import pypostgresql except ImportError: print(WARN + "You must install 'pypostgresql'") os._exit(1) db_host, db_name, db_user, db_password = self._db_credentials() postgres = "postgresql+pypostgresql://%s:%s@%s/%s" % ( db_user, db_password, db_host, db_name, ) if self._test_connection(postgres): return postgres else: logging.fatal("Cannot connect to database with any available driver") os._exit(1) def _sqlite(self): """ SQLite connection string, always save db file to cwd, or in-memory """ logging.debug("Configured to use SQLite for a database") db_name = self.database if not len(db_name): db_name = "rtb" if not db_name.endswith(".db"): db_name = "%s.db" % db_name return "sqlite:///%s" % db_name def _mysql(self): """ Configure db_connection for MySQL """ logging.debug("Configured to use MySQL for a database") db_server, db_name, db_user, db_password = self._db_credentials() db_charset = "utf8mb4" db_connection = "%s:%s@%s/%s?charset=%s" % ( db_user, db_password, db_server, db_name, db_charset, ) if self.ssl_ca != "": db_connection = db_connection + "&ssl_ca=" + self.ssl_ca codecs.register( lambda name: codecs.lookup("utf8") if name == "utf8mb4" else None ) __mysql = "mysql://%s" % db_connection __mysqlclient = "mysql+mysqldb://%s" % db_connection __pymysql = "mysql+pymysql://%s" % db_connection __mysqlconnector = "mysql+mysqlconnector://%s" % db_connection if self._test_connection(__mysql): return __mysql elif self._test_connection(__mysqlclient): return __mysqlclient elif self._test_connection(__pymysql): return __pymysql elif self._test_connection(__mysqlconnector): return __mysqlconnector else: logging.fatal( "Cannot connect to database with any available driver. Verify correct username & password in rootthebox.cfg and db dependecies." ) os._exit(1) def _test_connection(self, connection_string): """ Test the connection string to see if we can connect to the database """ try: engine = create_engine(connection_string) connection = engine.connect() connection.close() return True except Exception as e: if options.debug: logging.exception("Database connection failed: %s" % e) return False def _db_credentials(self): """ Pull db creds and return them url encoded """ if self.password == "" or self.password == "RUNTIME": sys.stdout.write(PROMPT + "Database password: ") sys.stdout.flush() self.password = getpass.getpass() elif self.password == "ENV": self.password = os.environ["sql_password"] db_host = quote(self.hostname) db_name = quote(self.database) db_user = quote(self.username) db_password = quote_plus(self.password) if "@" in db_password: logging.warning( "%sWARNING:%s Using the '@' symbol in your database password can cause login issues with SQL Alchemy.%s" % (WARN + bold + R, W, WARN) ) return db_host, db_name, db_user, db_password
from datetime import timedelta from django.contrib.auth import get_user_model from django.utils import timezone from churches.models import Church from schedules.forms import EventForm, AttendantAdminForm, AttendantForm from schedules.models import Event, Attendant from schedules.tests._setup import EventSetupTestCase class EventFormTests(EventSetupTestCase): def test_init(self): user = get_user_model().objects.get(username='test_user') form = EventForm(user=user) self.assertEqual(form.fields['church'].queryset.count(), 1) def test_invalid_clean_end(self): user = get_user_model().objects.get(username='test_user') church = Church.objects.get(name='Church 1') data = {'church': church, 'start': timezone.now(), 'end': timezone.now() - timedelta(days=1), 'title': 'Test', 'visibility': 'public', 'attendance_limit': 0} form = EventForm(user=user, data=data) self.assertFalse(form.is_valid()) def test_valid_clean_end(self): user = get_user_model().objects.get(username='test_user') church = Church.objects.get(name='Church 1') data = {'church': church, 'start': timezone.now(), 'end': timezone.now() + timedelta(days=1), 'title': 'Test', 'visibility': 'public', 'attendance_limit': 0} form = EventForm(user=user, data=data) self.assertTrue(form.is_valid()) class AttendantAdminFormTests(EventSetupTestCase): def test_valid_clean_amount(self): e = Event.objects.get(title='Title 5') a = Attendant.objects.get(full_name='Attendant 1') data = {'event': e, 'full_name': 'Attendant 5', 'amount': 2} form = AttendantAdminForm(instance=a, data=data) self.assertTrue(form.is_valid()) def test_invalid_clean_amount(self): e = Event.objects.get(title='Title 5') a = Attendant.objects.get(full_name='Attendant 1') data = {'event': e, 'full_name': 'Attendant 5', 'amount': 4} form = AttendantAdminForm(instance=a, data=data) self.assertFalse(form.is_valid()) class AttendantFormTests(EventSetupTestCase): def test_valid_clean_amount(self): e = Event.objects.get(title='Title 5') data = {'event': e, 'full_name': 'Attendant 5', 'amount': 1} form = AttendantForm(data=data) self.assertTrue(form.is_valid()) def test_invalid_clean_amount(self): e = Event.objects.get(title='Title 5') data = {'event': e, 'full_name': 'Attendant 5', 'amount': 2} form = AttendantForm(data=data) self.assertFalse(form.is_valid())
""" Module containing a class for encapsulating the settings of the tree search """ import os import yaml from aizynthfinder.utils.logging import logger from aizynthfinder.utils.paths import data_path from aizynthfinder.mcts.policy import Policy from aizynthfinder.mcts.stock import Stock, MongoDbInchiKeyQuery class Configuration: """ Encapsulating the settings of the tree search, including the policy, the stock and various parameters. All the parameters can be retrieved as attributes of the Configuration object, e.g. .. code-block:: config.max_transforms # The maximum of transform config.iteration_limit # The maximum number of iterations On instantiation it will read default parameters from a config.yml file located in the `data` folder of the package. """ def __init__(self): self._properties = {} filename = os.path.join(data_path(), "config.yml") with open(filename, "r") as fileobj: _config = yaml.load(fileobj.read(), Loader=yaml.SafeLoader) self._update_from_config(_config) self.stock = Stock() self.policy = Policy(self) self._logger = logger() def __eq__(self, other): return self._properties == other._properties @classmethod def from_file(cls, filename): """ Loads a configuration from a yaml file. The parameters not set in the yaml file are taken from the default values. The policies and stocks specified in the yaml file are directly loaded. :param filename: the path to a yaml file :type filename: str :return: a Configuration object with settings from the yaml file :rtype: Configuration """ config_obj = Configuration() with open(filename, "r") as fileobj: _config = yaml.load(fileobj.read(), Loader=yaml.SafeLoader) config_obj._update_from_config(_config) for key, policy_spec in _config.get("policy", {}).get("files", {}).items(): modelfile, templatefile = policy_spec config_obj.policy.load_policy(modelfile, templatefile, key) for key, stockfile in _config.get("stock", {}).get("files", {}).items(): config_obj.stock.load_stock(stockfile, key) if "mongodb" in _config.get("stock", {}): query_obj = MongoDbInchiKeyQuery(**(_config["stock"]["mongodb"] or {})) config_obj.stock.load_stock(query_obj, "mongodb_stock") return config_obj def update(self, **settings): """ Update the configuration using dictionary of parameters """ for setting, value in settings.items(): setattr(self, setting, value) self._logger.info(f"Setting {setting.replace('_', ' ')} to {value}") def _update_from_config(self, config): self._properties.update(config.get("finder", {}).get("properties", {})) self._properties.update(config.get("policy", {}).get("properties", {})) self._properties.update(config.get("properties", {})) self.__dict__.update(self._properties)
__all__ = ('GUI_STATE_CANCELLED', 'GUI_STATE_CANCELLING', 'GUI_STATE_READY', 'GUI_STATE_SWITCHING_CTX', 'GUI_STATE_SWITCHING_PAGE', 'PaginationBase') from ...backend.futures import Task, CancelledError from ...discord.core import KOKORO from ...discord.exceptions import DiscordException, ERROR_CODES GUI_STATE_READY = 0 GUI_STATE_SWITCHING_PAGE = 1 GUI_STATE_CANCELLING = 2 GUI_STATE_CANCELLED = 3 GUI_STATE_SWITCHING_CTX = 4 GUI_STATE_VALUE_TO_NAME = { GUI_STATE_READY : 'ready', GUI_STATE_SWITCHING_PAGE : 'switching_page', GUI_STATE_CANCELLING : 'cancelling', GUI_STATE_CANCELLED : 'cancelled', GUI_STATE_SWITCHING_CTX : 'switching_context', } class PaginationBase: """ Base class for pagination like objects. Attributes ---------- _canceller : `None` or `Function` The function called when the ``Pagination`` is cancelled or when it expires. This is a onetime use and after it was used, is set as `None`. _task_flag : `int` A flag to store the state of the ``Pagination``. Possible values: +---------------------------+-------+-----------------------------------------------------------------------+ | Respective name | Value | Description | +===========================+=======+=======================================================================+ | GUI_STATE_READY | 0 | The Pagination does nothing, is ready to be used. | +---------------------------+-------+-----------------------------------------------------------------------+ | GUI_STATE_SWITCHING_PAGE | 1 | The Pagination is currently changing it's page. | +---------------------------+-------+-----------------------------------------------------------------------+ | GUI_STATE_CANCELLING | 2 | The pagination is currently changing it's page, but it was cancelled | | | | meanwhile. | +---------------------------+-------+-----------------------------------------------------------------------+ | GUI_STATE_CANCELLED | 3 | The pagination is, or is being cancelled right now. | +---------------------------+-------+-----------------------------------------------------------------------+ | GUI_STATE_SWITCHING_CTX | 4 | The Pagination is switching context. Not used by the default class, | | | | but expected. | +---------------------------+-------+-----------------------------------------------------------------------+ _timeouter : `None` or ``Timeouter`` Executes the timing out feature on the ``Pagination``. channel : ``ChannelTextBase`` instance The channel where the ``Pagination`` is executed. client : ``Client`` of ``Embed`` (or any compatible) The client who executes the ``Pagination``. message : `None` or ``Message`` The message on what the ``Pagination`` is executed. """ __slots__ = ('_canceller', '_task_flag', '_timeouter', 'channel', 'client', 'message') async def __new__(cls, client, channel): """ Pagination instances should have asynchronous constructor. Parameters ---------- Raises ------ NotImplementedError """ raise NotImplementedError async def __call__(self, client, event): """ Called when a reaction is added or removed from the respective message. This method is a coroutine. Parameters ---------- client : ``Client`` The client who executes the ``Pagination``. event : ``ReactionAddEvent``, ``ReactionDeleteEvent`` The received event. """ pass async def _canceller_function(self, exception): """ Used when the ``Pagination`` is cancelled. First of all removes the pagination from waitfors, so it will not wait for reaction events, then sets the ``._task_flag`` of the it to `GUI_STATE_CANCELLED`. If `exception` is given as `TimeoutError`, then removes the ``Pagination``'s reactions from the respective message. This method is a coroutine. Parameters ---------- exception : `None` or ``BaseException`` instance Exception to cancel the ``Pagination`` with. """ client = self.client message = self.message client.events.reaction_add.remove(message, self) client.events.reaction_delete.remove(message, self) if self._task_flag == GUI_STATE_SWITCHING_CTX: # the message is not our, we should not do anything with it. return self._task_flag = GUI_STATE_CANCELLED if not await self._handle_close_exception(exception): await client.events.error(client, f'{self!r}._canceller_function', exception) async def _handle_close_exception(self, exception): """ Handles close exception if any. This method is a coroutine. Parameters ---------- exception : `None` or `BaseException` The close exception to handle. Returns ------- exception_handled : `bool` Whether the exception was handled. """ if exception is None: return True client = self.client message = self.message if isinstance(exception, CancelledError): try: await client.message_delete(message) except BaseException as err: if isinstance(err, ConnectionError): # no internet return True if isinstance(err, DiscordException): if err.code in ( ERROR_CODES.unknown_channel, # channel deleted ERROR_CODES.unknown_message, # message deleted ERROR_CODES.missing_access, # client removed ): return True await client.events.error(client, f'{self!r}._handle_close_exception', err) return True if isinstance(exception, TimeoutError): if self.channel.cached_permissions_for(client).can_manage_messages: try: await client.reaction_clear(message) except BaseException as err: if isinstance(err, ConnectionError): # no internet return True if isinstance(err, DiscordException): if err.code in ( ERROR_CODES.unknown_message, # message deleted ERROR_CODES.unknown_channel, # channel deleted ERROR_CODES.missing_access, # client removed ERROR_CODES.missing_permissions, # permissions changed meanwhile ): return True await client.events.error(client, f'{self!r}._handle_close_exception', err) return True if isinstance(exception, PermissionError): return True return False def cancel(self, exception=None): """ Cancels the pagination, if it is not cancelled yet. Parameters ---------- exception : `None` or ``BaseException`` instance, Optional Exception to cancel the pagination with. Defaults to `None` Returns ------- canceller_task : `None` or ``Task`` """ if self._task_flag in (GUI_STATE_READY, GUI_STATE_SWITCHING_PAGE, GUI_STATE_CANCELLING): self._task_flag = GUI_STATE_CANCELLED canceller = self._canceller if canceller is None: return self._canceller = None timeouter = self._timeouter if (timeouter is not None): timeouter.cancel() return Task(canceller(self, exception), KOKORO) def __repr__(self): """Returns the pagination instance's representation.""" repr_parts = [ '<', self.__class__.__name__, ' client=', repr(self.client), ', channel=', repr(self.channel), ', state=' ] task_flag = self._task_flag repr_parts.append(repr(task_flag)) repr_parts.append(' (') task_flag_name = GUI_STATE_VALUE_TO_NAME[task_flag] repr_parts.append(task_flag_name) repr_parts.append(')') # Third party things go here repr_parts.append('>') return ''.join(repr_parts) def is_active(self): """ Returns whether the menu is still active. Returns ------- is_active : `bool` """ return (self._task_flag in (GUI_STATE_READY, GUI_STATE_SWITCHING_PAGE))
import pytest from problems.problem_0242 import Solution @pytest.mark.parametrize('test_input, expected', ( (('anagram', 'nagaram'), True), (('rat', 'car'), False), )) def test_is_anagram(test_input, expected): assert Solution.isAnagram(*test_input) == expected
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest import os import numpy as np import tensorflow as tf import oneflow as flow from collections import OrderedDict import oneflow.typing as oft import test_global_storage from test_util import ( GenArgDict, GenArgList, type_name_to_flow_type, type_name_to_np_type, ) gpus = tf.config.experimental.list_physical_devices("GPU") for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) def RunOneflowBinaryOp(device_type, flow_op, x, y, data_type): flow.clear_default_session() func_config = flow.FunctionConfig() func_config.default_data_type(flow.float) flow_type = type_name_to_flow_type[data_type] @flow.global_function(type="train", function_config=func_config) def FlowJob( x: oft.Numpy.Placeholder(x.shape, dtype=flow_type), y: oft.Numpy.Placeholder(y.shape, dtype=flow_type), ): with flow.scope.placement(device_type, "0:0"): x += flow.get_variable( name="x", shape=x.shape, dtype=flow_type, initializer=flow.zeros_initializer(), trainable=True, ) y += flow.get_variable( name="y", shape=y.shape, dtype=flow_type, initializer=flow.zeros_initializer(), trainable=True, ) loss = flow_op(x, y) flow.optimizer.SGD( flow.optimizer.PiecewiseConstantScheduler([], [1e-4]), momentum=0 ).minimize(loss) flow.watch_diff(x, test_global_storage.Setter("x_diff")) flow.watch_diff(y, test_global_storage.Setter("y_diff")) return loss # Oneflow out = FlowJob(x, y).get().numpy() x_diff = test_global_storage.Get("x_diff") y_diff = test_global_storage.Get("y_diff") return out, x_diff, y_diff def RunTensorFlowBinaryOp(tf_op, x, y): # TensorFlow with tf.GradientTape(persistent=True) as tape: x = tf.Variable(x) y = tf.Variable(y) out = tf_op(x, y) x_diff = tape.gradient(out, x) y_diff = tape.gradient(out, y) return out.numpy(), x_diff, y_diff def compare_with_tensorflow( test_case, device_type, flow_op, tf_op, x_shape, y_shape, data_type, x_minval=-10, x_maxval=10, y_minval=-10, y_maxval=10, compare_grad=True, out_rtol=1e-5, out_atol=1e-5, diff_rtol=1e-5, diff_atol=1e-5, ): test_case.assertTrue(device_type in ["gpu", "cpu"]) np_type = type_name_to_np_type[data_type] x = np.random.uniform(low=x_minval, high=x_maxval, size=x_shape).astype(np_type) y = np.random.uniform(low=y_minval, high=y_maxval, size=y_shape).astype(np_type) of_out, of_x_diff, of_y_diff, = RunOneflowBinaryOp( device_type, flow_op, x, y, data_type ) tf_out, tf_x_diff, tf_y_diff = RunTensorFlowBinaryOp(tf_op, x, y) test_case.assertTrue( np.allclose(of_out, tf_out, rtol=out_rtol, atol=out_atol, equal_nan=True) ) if compare_grad: test_case.assertTrue( np.allclose( of_x_diff, tf_x_diff.numpy(), rtol=diff_rtol, atol=diff_atol, equal_nan=True, ) ) test_case.assertTrue( np.allclose( of_y_diff, tf_y_diff.numpy(), rtol=diff_rtol, atol=diff_atol, equal_nan=True, ) ) flow.clear_default_session() @flow.unittest.skip_unless_1n1d() class TestBinaryElementwiseOps(flow.unittest.TestCase): def test_floordiv(test_case): arg_dict = OrderedDict() arg_dict["test_case"] = [test_case] arg_dict["device_type"] = ["gpu", "cpu"] arg_dict["flow_op"] = [flow.math.floordiv] arg_dict["tf_op"] = [tf.math.floordiv] arg_dict["x_shape"] = [(5, 5,)] arg_dict["y_shape"] = [(5, 5,)] arg_dict["data_type"] = ["float32", "double"] arg_dict["x_minval"] = [-10] arg_dict["x_maxval"] = [10] arg_dict["y_minval"] = [1] arg_dict["y_maxval"] = [10] arg_dict["compare_grad"] = [False] for arg in GenArgList(arg_dict): compare_with_tensorflow(*arg) def test_pow(test_case): arg_dict = OrderedDict() arg_dict["test_case"] = [test_case] arg_dict["device_type"] = ["gpu", "cpu"] arg_dict["flow_op"] = [flow.math.pow] arg_dict["tf_op"] = [tf.math.pow] arg_dict["x_shape"] = [(5, 5,)] arg_dict["y_shape"] = [(5, 5,)] arg_dict["data_type"] = ["float32", "double"] arg_dict["x_minval"] = [1] arg_dict["x_maxval"] = [5] arg_dict["y_minval"] = [1] arg_dict["y_maxval"] = [5] arg_dict["compare_grad"] = [True] for arg in GenArgList(arg_dict): compare_with_tensorflow(*arg) def test_xdivy(test_case): arg_dict = OrderedDict() arg_dict["test_case"] = [test_case] arg_dict["device_type"] = ["gpu", "cpu"] arg_dict["flow_op"] = [flow.math.xdivy] arg_dict["tf_op"] = [tf.math.xdivy] arg_dict["x_shape"] = [(5, 5,)] arg_dict["y_shape"] = [(5, 5,)] arg_dict["data_type"] = ["float32", "double"] arg_dict["x_minval"] = [1] arg_dict["x_maxval"] = [100] arg_dict["y_minval"] = [1] arg_dict["y_maxval"] = [10] arg_dict["compare_grad"] = [True] for arg in GenArgList(arg_dict): compare_with_tensorflow(*arg) def test_xlogy(test_case): arg_dict = OrderedDict() arg_dict["test_case"] = [test_case] arg_dict["device_type"] = ["gpu", "cpu"] arg_dict["flow_op"] = [flow.math.xlogy] arg_dict["tf_op"] = [tf.math.xlogy] arg_dict["x_shape"] = [(5, 5,)] arg_dict["y_shape"] = [(5, 5,)] arg_dict["data_type"] = ["float32", "double"] arg_dict["x_minval"] = [1] arg_dict["x_maxval"] = [5] arg_dict["y_minval"] = [1] arg_dict["y_maxval"] = [5] arg_dict["compare_grad"] = [True] for arg in GenArgList(arg_dict): compare_with_tensorflow(*arg) def test_atan2(test_case): arg_dict = OrderedDict() arg_dict["test_case"] = [test_case] arg_dict["device_type"] = ["gpu", "cpu"] arg_dict["flow_op"] = [flow.math.atan2] arg_dict["tf_op"] = [tf.math.atan2] arg_dict["x_shape"] = [(5, 5,)] arg_dict["y_shape"] = [(5, 5,)] arg_dict["data_type"] = ["float32", "double"] arg_dict["x_minval"] = [1] arg_dict["x_maxval"] = [5] arg_dict["y_minval"] = [1] arg_dict["y_maxval"] = [5] arg_dict["compare_grad"] = [True] for arg in GenArgList(arg_dict): compare_with_tensorflow(*arg) if __name__ == "__main__": unittest.main()
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for ListDeployments # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-cloud-dialogflowcx # [START dialogflow_generated_dialogflowcx_v3_Deployments_ListDeployments_async] from google.cloud import dialogflowcx_v3 async def sample_list_deployments(): # Create a client client = dialogflowcx_v3.DeploymentsAsyncClient() # Initialize request argument(s) request = dialogflowcx_v3.ListDeploymentsRequest( parent="parent_value", ) # Make the request page_result = client.list_deployments(request=request) async for response in page_result: print(response) # [END dialogflow_generated_dialogflowcx_v3_Deployments_ListDeployments_async]
# coding: utf-8 # # Copyright 2014 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re import string import struct from core.domain import obj_services from core.domain import rte_component_registry from core.tests import test_utils import feconf import schema_utils import schema_utils_test import utils # File names ending in any of these suffixes will be ignored when checking for # RTE component validity. IGNORED_FILE_SUFFIXES = ['.pyc', '.DS_Store'] RTE_THUMBNAIL_HEIGHT_PX = 16 RTE_THUMBNAIL_WIDTH_PX = 16 _COMPONENT_CONFIG_SCHEMA = [ ('backend_id', basestring), ('category', basestring), ('description', basestring), ('frontend_id', basestring), ('tooltip', basestring), ('icon_data_url', basestring), ('preview_url_template', basestring), ('is_complex', bool), ('requires_fs', bool), ('is_block_element', bool), ('customization_arg_specs', list)] class RteComponentUnitTests(test_utils.GenericTestBase): """Tests that all the default RTE comopnents are valid.""" def _is_camel_cased(self, name): """Check whether a name is in CamelCase.""" return name and (name[0] in string.ascii_uppercase) def _is_alphanumeric_string(self, input_string): """Check whether a string is alphanumeric.""" return bool(re.compile("^[a-zA-Z0-9_]+$").match(input_string)) def _validate_customization_arg_specs(self, customization_arg_specs): for ca_spec in customization_arg_specs: self.assertEqual(set(ca_spec.keys()), set([ 'name', 'description', 'schema', 'default_value'])) self.assertTrue(isinstance(ca_spec['name'], basestring)) self.assertTrue(self._is_alphanumeric_string(ca_spec['name'])) self.assertTrue(isinstance(ca_spec['description'], basestring)) self.assertGreater(len(ca_spec['description']), 0) # The default value might not pass validation checks (e.g. the # Image component has a required field whose default value is # empty). Thus, when checking the default value schema, we don't # apply the custom validators. schema_utils_test.validate_schema(ca_spec['schema']) self.assertEqual( ca_spec['default_value'], schema_utils.normalize_against_schema( ca_spec['default_value'], ca_spec['schema'], apply_custom_validators=False)) if ca_spec['schema']['type'] == 'custom': obj_class = obj_services.Registry.get_object_class_by_type( ca_spec['schema']['obj_type']) self.assertIsNotNone(obj_class.edit_html_filename) self.assertIsNotNone(obj_class.edit_js_filename) self.assertEqual( ca_spec['default_value'], obj_class.normalize(ca_spec['default_value'])) def _listdir_omit_ignored(self, directory): """List all files and directories within 'directory', omitting the ones whose name ends in one of the IGNORED_FILE_SUFFIXES. """ names = os.listdir(directory) for suffix in IGNORED_FILE_SUFFIXES: names = [name for name in names if not name.endswith(suffix)] return names def test_image_thumbnails_for_rte_components(self): """Test the thumbnails for the RTE component icons.""" rte_components = ( rte_component_registry.Registry.get_all_rte_components()) for (component_name, component_specs) in rte_components.iteritems(): generated_image_filepath = os.path.join( os.getcwd(), feconf.RTE_EXTENSIONS_DIR, component_name, '%s.png' % component_name) relative_icon_data_url = component_specs['icon_data_url'][1:] defined_image_filepath = os.path.join( os.getcwd(), feconf.EXTENSIONS_DIR_PREFIX, 'extensions', relative_icon_data_url) self.assertEqual(generated_image_filepath, defined_image_filepath) with open(generated_image_filepath, 'rb') as f: img_data = f.read() width, height = struct.unpack('>LL', img_data[16:24]) self.assertEqual(int(width), RTE_THUMBNAIL_WIDTH_PX) self.assertEqual(int(height), RTE_THUMBNAIL_HEIGHT_PX) def test_rte_components_are_valid(self): """Test that the default RTE components are valid.""" rte_components = ( rte_component_registry.Registry.get_all_rte_components()) for (component_id, component_specs) in rte_components.iteritems(): # Check that the component id is valid. self.assertTrue(self._is_camel_cased(component_id)) # Check that the component directory exists. component_dir = os.path.join( feconf.RTE_EXTENSIONS_DIR, component_id) self.assertTrue(os.path.isdir(component_dir)) # In this directory there should be a /directives directory, an # an icon .png file and a protractor.js file, and an optional # preview .png file. # In /directives directory should be HTML file, a JS file, # there could be multiple JS and HTML files. dir_contents = self._listdir_omit_ignored(component_dir) self.assertLessEqual(len(dir_contents), 4) directives_dir = os.path.join(component_dir, 'directives') png_file = os.path.join(component_dir, '%s.png' % component_id) preview_file = os.path.join( component_dir, '%sPreview.png' % component_id) protractor_file = os.path.join(component_dir, 'protractor.js') self.assertTrue(os.path.isdir(directives_dir)) self.assertTrue(os.path.isfile(png_file)) self.assertTrue(os.path.isfile(protractor_file)) if len(dir_contents) == 5: self.assertTrue(os.path.isfile(preview_file)) main_js_file = os.path.join( directives_dir, '%sDirective.js' % component_id) main_html_file = os.path.join( directives_dir, '%s_directive.html' % component_id.lower()) self.assertTrue(os.path.isfile(main_js_file)) self.assertTrue(os.path.isfile(main_html_file)) js_file_content = utils.get_file_contents(main_js_file) self.assertIn( 'oppiaNoninteractive%s' % component_id, js_file_content) self.assertNotIn('<script>', js_file_content) self.assertNotIn('</script>', js_file_content) # Check that the configuration file contains the correct # top-level keys, and that these keys have the correct types. for item, item_type in _COMPONENT_CONFIG_SCHEMA: self.assertTrue(isinstance( component_specs[item], item_type)) # The string attributes should be non-empty. if item_type == basestring: self.assertTrue(component_specs[item]) self._validate_customization_arg_specs( component_specs['customization_arg_specs']) # pylint: disable=protected-access def test_html_contains_all_imports(self): """Test that the rich_text_components.html file contains script-imports for all directives of all RTE components. """ js_files_paths = [] for component_id in feconf.ALLOWED_RTE_EXTENSIONS: component_dir = os.path.join( feconf.RTE_EXTENSIONS_DIR, component_id) directives_dir = os.path.join(component_dir, 'directives') directive_filenames = os.listdir(directives_dir) js_files_paths.extend( os.path.join(directives_dir, filename) for filename in directive_filenames if filename.endswith('.js')) js_files_paths.sort() prefix = '<script src="{{ASSET_DIR_PREFIX}}/' suffix = '"></script>' html_script_tags = [ '%s%s%s' % (prefix, path, suffix) for path in js_files_paths] generated_html = '\n'.join(html_script_tags) rtc_html_file = os.path.join( feconf.FRONTEND_TEMPLATES_DIR, 'components', 'rich_text_components.html') with open(rtc_html_file, 'r') as f: rtc_html_file_contents = f.read() self.assertEqual(generated_html, rtc_html_file_contents.strip())
"""WOInfo Plugin for WordOps""" from cement.core.controller import CementBaseController, expose from cement.core import handler, hook from wo.core.variables import WOVariables from pynginxconfig import NginxConfig from wo.core.aptget import WOAptGet from wo.core.shellexec import WOShellExec from wo.core.logging import Log import os import configparser def wo_info_hook(app): pass class WOInfoController(CementBaseController): class Meta: label = 'info' stacked_on = 'base' stacked_type = 'nested' description = ('Display configuration information related to Nginx,' ' PHP and MySQL') arguments = [ (['--mysql'], dict(help='Get MySQL configuration information', action='store_true')), (['--php'], dict(help='Get PHP configuration information', action='store_true')), (['--php72'], dict(help='Get PHP 7.2 configuration information', action='store_true')), (['--nginx'], dict(help='Get Nginx configuration information', action='store_true')), ] usage = "wo info [options]" @expose(hide=True) def info_nginx(self): """Display Nginx information""" version = os.popen("nginx -v 2>&1 | cut -d':' -f2 | cut -d' ' -f2 | " "cut -d'/' -f2 | tr -d '\n'").read() allow = os.popen("grep ^allow /etc/nginx/common/acl.conf | " "cut -d' ' -f2 | cut -d';' -f1 | tr '\n' ' '").read() nc = NginxConfig() nc.loadf('/etc/nginx/nginx.conf') user = nc.get('user')[1] worker_processes = nc.get('worker_processes')[1] worker_connections = nc.get([('events',), 'worker_connections'])[1] keepalive_timeout = nc.get([('http',), 'keepalive_timeout'])[1] fastcgi_read_timeout = nc.get([('http',), 'fastcgi_read_timeout'])[1] client_max_body_size = nc.get([('http',), 'client_max_body_size'])[1] data = dict(version=version, allow=allow, user=user, worker_processes=worker_processes, keepalive_timeout=keepalive_timeout, worker_connections=worker_connections, fastcgi_read_timeout=fastcgi_read_timeout, client_max_body_size=client_max_body_size) self.app.render((data), 'info_nginx.mustache') @expose(hide=True) def info_php(self): """Display PHP information""" version = os.popen("{0} -v 2>/dev/null | head -n1 | cut -d' ' -f2 |".format("php5.6" if (WOVariables.wo_platform_codename == 'trusty' or WOVariables.wo_platform_codename == 'xenial' or WOVariables.wo_platform_codename == 'bionic') else "php") + " cut -d'+' -f1 | tr -d '\n'").read config = configparser.ConfigParser() config.read('/etc/{0}/fpm/php.ini'.format("php/5.6" if (WOVariables.wo_platform_codename == 'trusty' or WOVariables.wo_platform_codename == 'xenial' or WOVariables.wo_platform_codename == 'bionic') else "php5")) expose_php = config['PHP']['expose_php'] memory_limit = config['PHP']['memory_limit'] post_max_size = config['PHP']['post_max_size'] upload_max_filesize = config['PHP']['upload_max_filesize'] max_execution_time = config['PHP']['max_execution_time'] config.read('/etc/{0}/fpm/pool.d/www.conf'.format("php/5.6" if (WOVariables.wo_platform_codename == 'trusty' or WOVariables.wo_platform_codename == 'xenial' or WOVariables.wo_platform_codename == 'bionic') else "php5")) www_listen = config['www']['listen'] www_ping_path = config['www']['ping.path'] www_pm_status_path = config['www']['pm.status_path'] www_pm = config['www']['pm'] www_pm_max_requests = config['www']['pm.max_requests'] www_pm_max_children = config['www']['pm.max_children'] www_pm_start_servers = config['www']['pm.start_servers'] www_pm_min_spare_servers = config['www']['pm.min_spare_servers'] www_pm_max_spare_servers = config['www']['pm.max_spare_servers'] www_request_terminate_time = (config['www'] ['request_terminate_timeout']) try: www_xdebug = (config['www']['php_admin_flag[xdebug.profiler_enable' '_trigger]']) except Exception as e: www_xdebug = 'off' config.read('/etc/{0}/fpm/pool.d/debug.conf'.format("php/5.6" if (WOVariables.wo_platform_codename == 'trusty' or WOVariables.wo_platform_codename == 'xenial' or WOVariables.wo_platform_codename == 'bionic') else "php5")) debug_listen = config['debug']['listen'] debug_ping_path = config['debug']['ping.path'] debug_pm_status_path = config['debug']['pm.status_path'] debug_pm = config['debug']['pm'] debug_pm_max_requests = config['debug']['pm.max_requests'] debug_pm_max_children = config['debug']['pm.max_children'] debug_pm_start_servers = config['debug']['pm.start_servers'] debug_pm_min_spare_servers = config['debug']['pm.min_spare_servers'] debug_pm_max_spare_servers = config['debug']['pm.max_spare_servers'] debug_request_terminate = (config['debug'] ['request_terminate_timeout']) try: debug_xdebug = (config['debug']['php_admin_flag[xdebug.profiler_' 'enable_trigger]']) except Exception as e: debug_xdebug = 'off' data = dict(version=version, expose_php=expose_php, memory_limit=memory_limit, post_max_size=post_max_size, upload_max_filesize=upload_max_filesize, max_execution_time=max_execution_time, www_listen=www_listen, www_ping_path=www_ping_path, www_pm_status_path=www_pm_status_path, www_pm=www_pm, www_pm_max_requests=www_pm_max_requests, www_pm_max_children=www_pm_max_children, www_pm_start_servers=www_pm_start_servers, www_pm_min_spare_servers=www_pm_min_spare_servers, www_pm_max_spare_servers=www_pm_max_spare_servers, www_request_terminate_timeout=www_request_terminate_time, www_xdebug_profiler_enable_trigger=www_xdebug, debug_listen=debug_listen, debug_ping_path=debug_ping_path, debug_pm_status_path=debug_pm_status_path, debug_pm=debug_pm, debug_pm_max_requests=debug_pm_max_requests, debug_pm_max_children=debug_pm_max_children, debug_pm_start_servers=debug_pm_start_servers, debug_pm_min_spare_servers=debug_pm_min_spare_servers, debug_pm_max_spare_servers=debug_pm_max_spare_servers, debug_request_terminate_timeout=debug_request_terminate, debug_xdebug_profiler_enable_trigger=debug_xdebug) self.app.render((data), 'info_php.mustache') @expose(hide=True) def info_php72(self): """Display PHP information""" version = os.popen("php7.2 -v 2>/dev/null | head -n1 | cut -d' ' -f2 |" " cut -d'+' -f1 | tr -d '\n'").read config = configparser.ConfigParser() config.read('/etc/php/7.2/fpm/php.ini') expose_php = config['PHP']['expose_php'] memory_limit = config['PHP']['memory_limit'] post_max_size = config['PHP']['post_max_size'] upload_max_filesize = config['PHP']['upload_max_filesize'] max_execution_time = config['PHP']['max_execution_time'] config.read('/etc/php/7.2/fpm/pool.d/www.conf') www_listen = config['www']['listen'] www_ping_path = config['www']['ping.path'] www_pm_status_path = config['www']['pm.status_path'] www_pm = config['www']['pm'] www_pm_max_requests = config['www']['pm.max_requests'] www_pm_max_children = config['www']['pm.max_children'] www_pm_start_servers = config['www']['pm.start_servers'] www_pm_min_spare_servers = config['www']['pm.min_spare_servers'] www_pm_max_spare_servers = config['www']['pm.max_spare_servers'] www_request_terminate_time = (config['www'] ['request_terminate_timeout']) try: www_xdebug = (config['www']['php_admin_flag[xdebug.profiler_enable' '_trigger]']) except Exception as e: www_xdebug = 'off' config.read('/etc/php/7.2/fpm/pool.d/debug.conf') debug_listen = config['debug']['listen'] debug_ping_path = config['debug']['ping.path'] debug_pm_status_path = config['debug']['pm.status_path'] debug_pm = config['debug']['pm'] debug_pm_max_requests = config['debug']['pm.max_requests'] debug_pm_max_children = config['debug']['pm.max_children'] debug_pm_start_servers = config['debug']['pm.start_servers'] debug_pm_min_spare_servers = config['debug']['pm.min_spare_servers'] debug_pm_max_spare_servers = config['debug']['pm.max_spare_servers'] debug_request_terminate = (config['debug'] ['request_terminate_timeout']) try: debug_xdebug = (config['debug']['php_admin_flag[xdebug.profiler_' 'enable_trigger]']) except Exception as e: debug_xdebug = 'off' data = dict(version=version, expose_php=expose_php, memory_limit=memory_limit, post_max_size=post_max_size, upload_max_filesize=upload_max_filesize, max_execution_time=max_execution_time, www_listen=www_listen, www_ping_path=www_ping_path, www_pm_status_path=www_pm_status_path, www_pm=www_pm, www_pm_max_requests=www_pm_max_requests, www_pm_max_children=www_pm_max_children, www_pm_start_servers=www_pm_start_servers, www_pm_min_spare_servers=www_pm_min_spare_servers, www_pm_max_spare_servers=www_pm_max_spare_servers, www_request_terminate_timeout=www_request_terminate_time, www_xdebug_profiler_enable_trigger=www_xdebug, debug_listen=debug_listen, debug_ping_path=debug_ping_path, debug_pm_status_path=debug_pm_status_path, debug_pm=debug_pm, debug_pm_max_requests=debug_pm_max_requests, debug_pm_max_children=debug_pm_max_children, debug_pm_start_servers=debug_pm_start_servers, debug_pm_min_spare_servers=debug_pm_min_spare_servers, debug_pm_max_spare_servers=debug_pm_max_spare_servers, debug_request_terminate_timeout=debug_request_terminate, debug_xdebug_profiler_enable_trigger=debug_xdebug) self.app.render((data), 'info_php.mustache') @expose(hide=True) def info_mysql(self): """Display MySQL information""" version = os.popen("mysql -V | awk '{print($5)}' | cut -d ',' " "-f1 | tr -d '\n'").read() host = "localhost" port = os.popen("mysql -e \"show variables\" | grep ^port | awk " "'{print($2)}' | tr -d '\n'").read() wait_timeout = os.popen("mysql -e \"show variables\" | grep " "^wait_timeout | awk '{print($2)}' | " "tr -d '\n'").read() interactive_timeout = os.popen("mysql -e \"show variables\" | grep " "^interactive_timeout | awk " "'{print($2)}' | tr -d '\n'").read() max_used_connections = os.popen("mysql -e \"show global status\" | " "grep Max_used_connections | awk " "'{print($2)}' | tr -d '\n'").read() datadir = os.popen("mysql -e \"show variables\" | grep datadir | awk" " '{print($2)}' | tr -d '\n'").read() socket = os.popen("mysql -e \"show variables\" | grep \"^socket\" | " "awk '{print($2)}' | tr -d '\n'").read() data = dict(version=version, host=host, port=port, wait_timeout=wait_timeout, interactive_timeout=interactive_timeout, max_used_connections=max_used_connections, datadir=datadir, socket=socket) self.app.render((data), 'info_mysql.mustache') @expose(hide=True) def default(self): """default function for info""" if (not self.app.pargs.nginx and not self.app.pargs.php and not self.app.pargs.mysql and not self.app.pargs.php72): self.app.pargs.nginx = True self.app.pargs.php = True self.app.pargs.mysql = True if WOAptGet.is_installed(self, 'php7.2-fpm'): self.app.pargs.php = True if self.app.pargs.nginx: if WOAptGet.is_installed(self, 'nginx-custom') or WOAptGet.is_installed(self, 'nginx-common'): self.info_nginx() else: Log.error(self, "Nginx is not installed") if self.app.pargs.php: if (WOVariables.wo_platform_distro == 'debian' or WOVariables.wo_platform_codename == 'precise'): if WOAptGet.is_installed(self, 'php5-fpm'): self.info_php() else: Log.error(self, "PHP5 is not installed") else: if WOAptGet.is_installed(self, 'php5.6-fpm'): self.info_php() else: Log.error(self, "PHP5.6 is not installed") if self.app.pargs.php72: if WOAptGet.is_installed(self, 'php7.2-fpm'): self.info_php72() else: Log.error(self, "PHP 7.2 is not installed") if self.app.pargs.mysql: if WOShellExec.cmd_exec(self, "mysqladmin ping"): self.info_mysql() else: Log.error(self, "MySQL is not installed") def load(app): # register the plugin class.. this only happens if the plugin is enabled handler.register(WOInfoController) # register a hook (function) to run after arguments are parsed. hook.register('post_argument_parsing', wo_info_hook)
# ledtheatre is Licensed under the MIT License # Copyright 2017 Andrew Alcock # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from setuptools import setup def readme(): with open('README.rst') as f: return f.read() setup(name='ledtheatre', version='0.1.3', description='Control LED lights on the Adafruit PCA9685 PWM card', long_description=readme(), classifiers=[ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2.7', 'Topic :: System :: Hardware', ], url='https://github.com/aalcock/ledtheatre', author='Andrew Alcock', author_email='andrew@alcock.sg', license='MIT', packages=['ledtheatre'], install_requires=[ 'Adafruit_PCA9685>=1.0.1' ], zip_safe=True)
from .single_level import * from .multi_roi_extractor import *
from decouple import config ADDRESS = config("ADDRESS") PORT = config("PORT") TS_USER = config("TS_USER") PASSWORD = config("PASSWORD") TOKEN = config("TOKEN") PERSISTENCE_FILE = config("PERSISTENCE_FILE")
from datetime import datetime from datetime import date class MainParent(object): pass class SubParent1(MainParent): def foo(self): pass pass class SubParent2(MainParent): pass class Child(SubParent1, SubParent2): def spam(self): pass pass class NoParentsAllowed(datetime, object): def foo(self): pass pass class NoMembers(object): pass class BadMro(MainParent, object, SubParent1, SubParent2): pass class HugeChild(SubParent1, date): #SubParent1 is disabled __metaclass__ = None # Anyway, this field should be ignored and processed separately as "metaclass", not "class field" def __init__(self): self.instance_field_1 = 42 self.instance_field_2 = 100500 CLASS_FIELD = 42 (CLASS_FIELD_A,CLASS_FIELD_B) = (42,100500) #We do not support tuples in class assignments for now (see ClassFieldsManager) def _set(self, val): # Should not be treated as method (part of property) pass def _get(self): # Should not be treated as method (part of property) return None name = property(fget=_get, fset=_set) @property def some_property(self): # Should not be treated as method (part of property) return None @some_property.setter def some_property(self, val): # Should not be treated as method (part of property) pass def foo(self): #should be disabled self.some_property = 12 def bar(self): pass @classmethod def static_1(cls): # Could be abstract in Py3K pass @staticmethod def static_2(): # Could be abstract in Py3K pass @staticmethod def bad_method(): #Code has errors, so method should be not be marked as static pass class Bar(object): C = 1 class Foo(Bar): def __init__(self): self.foo = 12 class ParentWithConflicts(Bar): CLASS_FIELD = 42 def __init__(self): self.instance_field = 12 def my_func(self): pass class ChildWithConflicts(ParentWithConflicts, Bar): # Bar -> conflict CLASS_FIELD = 42 # Conflict GOOD_FIELD = 32 def __init__(self): self.instance_field = 12 # Conflict self.good_instance_field = "egg" def my_func(self): # Conflict pass
"""Test code for relu activation""" import os import numpy as np import tvm import topi from topi.util import get_const_tuple def verify_relu(m, n): A = tvm.placeholder((m, n), name='A') B = topi.nn.relu(A) a_np = np.random.uniform(size=get_const_tuple(A.shape)).astype(A.dtype) b_np = a_np * (a_np > 0) def check_device(device): if not tvm.module.enabled(device): print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) with tvm.target.create(device): s = topi.generic.schedule_elemwise(B) ctx = tvm.context(device, 0) a = tvm.nd.array(a_np, ctx) b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), ctx) foo = tvm.build(s, [A, B], device, name="relu") foo(a, b) np.testing.assert_allclose(b.asnumpy(), b_np, rtol=1e-5) for device in ['cuda', 'opencl', 'metal', 'rocm']: check_device(device) def verify_leaky_relu(m, alpha): A = tvm.placeholder((m,), name='A') B = topi.nn.leaky_relu(A, alpha) s = tvm.create_schedule([B.op]) a_np = np.random.uniform(size=get_const_tuple(A.shape)).astype(A.dtype) b_np = a_np * (a_np > 0) + a_np * (a_np < 0) * alpha ctx = tvm.cpu(0) a = tvm.nd.array(a_np, ctx) b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), ctx) foo = tvm.build(s, [A, B], "llvm", name="leaky_relu") foo(a, b) np.testing.assert_allclose(b.asnumpy(), b_np, rtol=1e-5) def test_relu(): verify_relu(10, 128) def test_leaky_relu(): verify_leaky_relu(100, 0.1) if __name__ == "__main__": test_relu() test_leaky_relu()
import threading import sys is_py2 = sys.version[0] == '2' if is_py2: import Queue as queue else: import queue as queue def isScalar(x): return not isinstance(x, (list, tuple)) def isList(x): return isinstance(x, (list)) def asString(x): return str(x) def makeDict(): return {'a': 1.0, 'c': 3.0, 'b': 2.0} def makeTuple(): return (1.0, 2.0, 3.0) def makeIterator(x): return iter(x) def makeGenerator(n): i = 0 while i < n: yield i i += 1 def iterateOnThread(iter): results = [] def iteration_worker(): for i in iter: results.append(i) thread = threading.Thread(target = iteration_worker) thread.start() while thread.isAlive(): thread.join(0.1) return results def invokeOnThread(f, *args, **kwargs): result = [] def invoke_worker(): result.append(f(*args, **kwargs)) thread = threading.Thread(target = invoke_worker) thread.start() while thread.isAlive(): thread.join(0.1) return result[0] def reflect(x): return x def callFunc(f, *args, **kwargs): return f(*args, **kwargs) def testThrowError(): throwError() def throwError(): raise ValueError('A very specific bad thing happened') class PythonClass(object): FOO = 1 BAR = 2 @classmethod def class_method(cls): return cls.FOO class PythonCallable(object): FOO = 1 BAR = 2 """ Call a callable Args: arg1: First argument. """ def __call__(self, arg1): return arg1 def create_callable(): return PythonCallable() dict_with_callable = dict(callable = create_callable())
import inspect import itertools import logging import time from typing import ( Any, Callable, List, Iterator, Iterable, Generic, Union, Optional, TYPE_CHECKING, ) import ray from ray.data.context import DatasetContext from ray.data.dataset import Dataset, T, U from ray.data.impl.pipeline_executor import ( PipelineExecutor, PipelineSplitExecutorCoordinator, ) from ray.data.block import Block from ray.data.row import TableRow from ray.data.impl import progress_bar from ray.data.impl.block_batching import batch_blocks, BatchType from ray.data.impl.block_list import BlockList from ray.data.impl.plan import ExecutionPlan from ray.data.impl.stats import DatasetPipelineStats, DatasetStats from ray.util.annotations import PublicAPI, DeveloperAPI if TYPE_CHECKING: import pyarrow logger = logging.getLogger(__name__) # Operations that can be naively applied per dataset row in the pipeline. _PER_DATASET_OPS = ["map", "map_batches", "add_column", "flat_map", "filter"] # Operations that apply to each dataset holistically in the pipeline. _HOLISTIC_PER_DATASET_OPS = ["repartition", "random_shuffle", "sort"] # Similar to above but we should force evaluation immediately. _PER_DATASET_OUTPUT_OPS = [ "write_json", "write_csv", "write_parquet", "write_datasource", ] # Operations that operate over the stream of output batches from the pipeline. _OUTPUT_ITER_OPS = ["take", "take_all", "show", "to_tf", "to_torch"] @PublicAPI class DatasetPipeline(Generic[T]): """Implements a pipeline of Datasets. Unlike Datasets, which execute all transformations synchronously, DatasetPipelines implement pipelined execution. This allows for the overlapped execution of data input (e.g., reading files), computation (e.g. feature preprocessing), and output (e.g., distributed ML training). A DatasetPipeline can be created by either repeating a Dataset (``ds.repeat(times=None)``), by turning a single Dataset into a pipeline (``ds.window(blocks_per_window=10)``), or defined explicitly using ``DatasetPipeline.from_iterable()``. DatasetPipeline supports the all the per-record transforms of Datasets (e.g., map, flat_map, filter), holistic transforms (e.g., repartition), and output methods (e.g., iter_rows, to_tf, to_torch, write_datasource). """ def __init__( self, base_iterable: Iterable[Callable[[], Dataset[T]]], stages: List[Callable[[Dataset[Any]], Dataset[Any]]] = None, length: int = None, progress_bars: bool = progress_bar._enabled, _executed: List[bool] = None, ): """Construct a DatasetPipeline (internal API). The constructor is not part of the DatasetPipeline API. Use the ``Dataset.repeat()``, ``Dataset.window()``, or ``DatasetPipeline.from_iterable()`` methods to construct a pipeline. """ self._base_iterable = base_iterable self._stages = stages or [] self._optimized_stages = None self._length = length self._progress_bars = progress_bars self._uuid = None # For testing only. # Whether the pipeline execution has started. # This variable is shared across all pipelines descending from this. self._executed = _executed or [False] self._dataset_iter = None self._first_dataset = None self._schema = None self._stats = DatasetPipelineStats() def iter_rows(self, *, prefetch_blocks: int = 0) -> Iterator[Union[T, TableRow]]: """Return a local row iterator over the data in the pipeline. If the dataset is a tabular dataset (Arrow/Pandas blocks), dict-like mappings :py:class:`~ray.data.row.TableRow` are yielded for each row by the iterator. If the dataset is not tabular, the raw row is yielded. Examples: >>> import ray >>> for i in ray.data.range(1000000).repeat(5).iter_rows(): # doctest: +SKIP ... print(i) # doctest: +SKIP Time complexity: O(1) Args: prefetch_blocks: The number of blocks to prefetch ahead of the current block during the scan. Returns: A local iterator over the records in the pipeline. """ def gen_rows() -> Iterator[Union[T, TableRow]]: time_start = time.perf_counter() for ds in self.iter_datasets(): wait_start = time.perf_counter() for row in ds.iter_rows(prefetch_blocks=prefetch_blocks): self._stats.iter_wait_s.add(time.perf_counter() - wait_start) with self._stats.iter_user_s.timer(): yield row wait_start = time.perf_counter() self._stats.iter_total_s.add(time.perf_counter() - time_start) return gen_rows() def iter_batches( self, *, prefetch_blocks: int = 0, batch_size: int = None, batch_format: str = "native", drop_last: bool = False, ) -> Iterator[BatchType]: """Return a local batched iterator over the data in the pipeline. Examples: >>> import ray >>> ds = ray.data.range(1000000).repeat(5) # doctest: +SKIP >>> for pandas_df in ds.iter_batches(): # doctest: +SKIP ... print(pandas_df) # doctest: +SKIP Time complexity: O(1) Args: prefetch_blocks: The number of blocks to prefetch ahead of the current block during the scan. batch_size: Record batch size, or None to let the system pick. batch_format: The format in which to return each batch. Specify "native" to use the current block format (promoting Arrow to pandas automatically), "pandas" to select ``pandas.DataFrame`` or "pyarrow" to select ``pyarrow.Table``. Default is "native". drop_last: Whether to drop the last batch if it's incomplete. Returns: An iterator over record batches. """ time_start = time.perf_counter() yield from batch_blocks( self._iter_blocks(), self._stats, prefetch_blocks=prefetch_blocks, batch_size=batch_size, batch_format=batch_format, drop_last=drop_last, ) self._stats.iter_total_s.add(time.perf_counter() - time_start) def _iter_blocks(self) -> Iterator[Block]: ds_wait_start = time.perf_counter() for ds in self.iter_datasets(): self._stats.iter_ds_wait_s.add(time.perf_counter() - ds_wait_start) yield from ds._plan.execute().iter_blocks() ds_wait_start = time.perf_counter() def split( self, n: int, *, equal: bool = False, locality_hints: List[Any] = None ) -> List["DatasetPipeline[T]"]: """Split the pipeline into ``n`` disjoint pipeline shards. This returns a list of sub-pipelines that can be passed to Ray tasks and actors and used to read the pipeline records in parallel. Examples: >>> import ray >>> pipe = ray.data.range(10).repeat(50) # doctest: +SKIP >>> workers = ... # doctest: +SKIP >>> # Split up a pipeline to process over `n` worker actors. >>> shards = pipe.split( # doctest: +SKIP ... len(workers), locality_hints=workers) >>> for shard, worker in zip(shards, workers): # doctest: +SKIP ... worker.consume.remote(shard) # doctest: +SKIP Time complexity: O(1) Implementation detail: this launches a coordinator actor that is used to execute the pipeline and push data blocks to each pipeline shard. Reading from an individual shard will be blocked if other shards are falling behind. A warning will be printed if a shard has been blocked on read for more than 10 seconds. Args: n: Number of child pipelines to return. equal: Whether to guarantee each split has an equal number of records. This may drop records if they cannot be divided equally among the splits. locality_hints: A list of Ray actor handles of size ``n``. The system will try to co-locate the blocks of the ith pipeline shard with the ith actor to maximize data locality. Returns: A list of ``n`` disjoint pipeline splits. """ return self._split( n, lambda ds, equal=equal: ds.split( n, equal=equal, locality_hints=locality_hints ), ) def split_at_indices(self, indices: List[int]) -> List["DatasetPipeline[T]"]: """Split the datasets within the pipeline at the given indices (like np.split). This will split each dataset contained within this pipeline, thereby producing len(indices) + 1 pipelines with the first pipeline containing the [0, indices[0]) slice from each dataset, the second pipeline containing the [indices[0], indices[1]) slice from each dataset, and so on, with the final pipeline will containing the [indices[-1], self.count()) slice from each dataset. Examples: >>> import ray >>> p1, p2, p3 = ray.data.range( # doctest: +SKIP ... 8).repeat(2).split_at_indices([2, 5]) # doctest: +SKIP >>> p1.take() # doctest: +SKIP [0, 1, 0, 1] >>> p2.take() # doctest: +SKIP [2, 3, 4, 2, 3, 4] >>> p3.take() # doctest: +SKIP [5, 6, 7, 5, 6, 7] Time complexity: O(num splits) See also: ``DatasetPipeline.split`` Args: indices: List of sorted integers which indicate where the pipeline will be split. If an index exceeds the length of the pipeline, an empty pipeline will be returned. Returns: The pipeline splits. """ if len(indices) < 1: raise ValueError("indices must be at least of length 1") if sorted(indices) != indices: raise ValueError("indices must be sorted") if indices[0] < 0: raise ValueError("indices must be positive") return self._split(len(indices) + 1, lambda ds: ds.split_at_indices(indices)) def _split(self, n: int, splitter: Callable[[Dataset], "DatasetPipeline[T]"]): resources = {} if not ray.util.client.ray.is_connected(): # Pin the coordinator (and any child actors) to the local node to avoid # errors during node failures. If the local node dies, then the driver # will fate-share with the coordinator anyway. resources["node:{}".format(ray.util.get_node_ip_address())] = 0.0001 coordinator = PipelineSplitExecutorCoordinator.options( resources=resources, placement_group=None, ).remote(self, n, splitter, DatasetContext.get_current()) if self._executed[0]: raise RuntimeError("Pipeline cannot be read multiple times.") self._executed[0] = True class SplitIterator: def __init__(self, split_index, coordinator): self.split_index = split_index self.coordinator = coordinator self.warn_threshold = 100 self.wait_delay_s = 0.1 def __iter__(self): return self def __next__(self): ds = None tries = 0 while ds is None: ds = ray.get( self.coordinator.next_dataset_if_ready.remote(self.split_index) ) # Wait for other shards to catch up reading. if not ds: time.sleep(self.wait_delay_s) tries += 1 if tries > self.warn_threshold: print( "Warning: reader on shard {} of the pipeline " "has been blocked more than {}s waiting for " "other readers to catch up. All pipeline shards " "must be read from concurrently.".format( self.split_index, self.wait_delay_s * self.warn_threshold, ) ) self.warn_threshold *= 2 return lambda: ds return [ # Disable progress bars for the split readers since they would # overwhelm the console. DatasetPipeline( SplitIterator(idx, coordinator), length=self._length, progress_bars=False, ) for idx in range(n) ] def rewindow( self, *, blocks_per_window: int, preserve_epoch: bool = True ) -> "DatasetPipeline[T]": """Change the windowing (blocks per dataset) of this pipeline. Changes the windowing of this pipeline to the specified size. For example, if the current pipeline has two blocks per dataset, and `.rewindow(blocks_per_window=4)` is requested, adjacent datasets will be merged until each dataset is 4 blocks. If `.rewindow(blocks_per_window)` was requested the datasets will be split into smaller windows. Args: blocks_per_window: The new target blocks per window. preserve_epoch: Whether to preserve epoch boundaries. If set to False, then windows can contain data from two adjacent epochs. """ class WindowIterator: def __init__(self, original_iter): self._original_iter = original_iter self._buffer: Optional[Dataset[T]] = None def __next__(self) -> Dataset[T]: try: # Merge windows until we meet the requested window size. if self._buffer is None: self._buffer = next(self._original_iter) while self._buffer.num_blocks() < blocks_per_window: next_ds = next(self._original_iter) if ( preserve_epoch and self._buffer._get_epoch() != next_ds._get_epoch() ): partial_window = self._buffer self._buffer = next_ds return lambda: partial_window else: self._buffer = self._buffer.union(next_ds) # Slice off the left-most chunk and return it. res, self._buffer = self._buffer._divide(blocks_per_window) assert res.num_blocks() <= blocks_per_window, res if self._buffer.num_blocks() == 0: self._buffer = None return lambda: res except StopIteration: # Return the left-over data as a single window. if self._buffer and self._buffer.num_blocks() > 0: res = self._buffer assert res.num_blocks() <= blocks_per_window, res self._buffer = None return lambda: res else: raise class WindowIterable: def __init__(self, original_iter): self._original_iter = original_iter def __iter__(self): return WindowIterator(self._original_iter) if self._length == float("inf"): length = float("inf") else: length = None return DatasetPipeline(WindowIterable(self.iter_datasets()), length=length) def repeat(self, times: int = None) -> "DatasetPipeline[T]": """Repeat this pipeline a given number or times, or indefinitely. This operation is only allowed for pipelines of a finite length. An error will be raised for pipelines of infinite length. Note that every repeat of the pipeline is considered an "epoch" for the purposes of ``iter_epochs()``. If there are multiple repeat calls, the latest repeat takes precedence for the purpose of defining epochs. Args: times: The number of times to loop over this pipeline, or None to repeat indefinitely. """ if self._length == float("inf"): raise ValueError("Cannot repeat a pipeline of infinite length.") class RepeatIterator: def __init__(self, original_iter): self._original_iter = original_iter # Holds results to repeat. self._results = [] # Incrementing cursor over results. self._i = 0 # This is calculated later. self._max_i = None def __next__(self) -> Dataset[T]: # Still going through the original pipeline. if self._original_iter: try: make_ds = next(self._original_iter) self._results.append(make_ds) def gen(): res = make_ds() res._set_epoch(0) return res return gen except StopIteration: self._original_iter = None # Calculate the cursor limit. if times: self._max_i = len(self._results) * (times - 1) else: self._max_i = float("inf") # Going through a repeat of the pipeline. if self._i < self._max_i: make_ds = self._results[self._i % len(self._results)] epoch = 1 + self._i // len(self._results) def gen(): res = make_ds() res._set_epoch(epoch) return res self._i += 1 return gen else: raise StopIteration class RepeatIterable: def __init__(self, original_iter): self._original_iter = original_iter def __iter__(self): return RepeatIterator(self._original_iter) if not times: length = float("inf") elif times and self._length: length = times * self._length else: length = None return DatasetPipeline( RepeatIterable(iter(self._base_iterable)), stages=self._stages.copy(), length=length, ) def schema( self, fetch_if_missing: bool = False ) -> Union[type, "pyarrow.lib.Schema"]: """Return the schema of the dataset pipeline. For datasets of Arrow records, this will return the Arrow schema. For dataset of Python objects, this returns their Python type. Note: This is intended to be a method for peeking schema before the execution of DatasetPipeline. If execution has already started, it will simply return the cached schema from the previous call. Time complexity: O(1) Args: fetch_if_missing: If True, synchronously fetch the schema if it's not known. Default is False, where None is returned if the schema is not known. Returns: The Python type or Arrow schema of the records, or None if the schema is not known. """ if not self._executed[0]: self._schema = self._peek().schema(fetch_if_missing) return self._schema def count(self) -> int: """Count the number of records in the dataset pipeline. This blocks until the entire pipeline is fully executed. Time complexity: O(dataset size / parallelism) Returns: The number of records in the dataset pipeline. """ if self._length == float("inf"): raise ValueError("Cannot count a pipeline of infinite length.") pipe = self.map_batches(lambda batch: [len(batch)]) total = 0 for elem in pipe.iter_rows(): total += elem return total def sum(self) -> int: """Sum the records in the dataset pipeline. This blocks until the entire pipeline is fully executed. Time complexity: O(dataset size / parallelism) Returns: The sum of the records in the dataset pipeline. """ if self._length == float("inf"): raise ValueError("Cannot sum a pipeline of infinite length.") pipe = self.map_batches(lambda batch: [batch.sum()[0]], batch_format="pandas") total = 0 for elem in pipe.iter_rows(): total += elem return total def show_windows(self, limit_per_dataset: int = 10) -> None: """Print up to the given number of records from each window/dataset. This is helpful as a debugging tool for understanding the structure of dataset pipelines. Args: limit_per_dataset: Rows to print per window/dataset. """ epoch = None for i, ds in enumerate(self.iter_datasets()): if ds._get_epoch() != epoch: epoch = ds._get_epoch() print("------ Epoch {} ------".format(epoch)) print("=== Window {} ===".format(i)) ds.show(limit_per_dataset) def iter_epochs(self) -> Iterator["DatasetPipeline[T]"]: """Split this pipeline up by epoch. This allows reading of data per-epoch for repeated Datasets, which is useful for ML training. For example, ``ray.data.range(10).repeat(50)`` generates a pipeline with 500 rows total split across 50 epochs. This method allows iterating over the data individually per epoch (repetition) of the original data. Examples: >>> import ray >>> epochs = ray.data.range(10).repeat(50).iter_epochs() # doctest: +SKIP >>> for i, epoch in enumerate(epochs): # doctest: +SKIP ... print("Epoch", i) # doctest: +SKIP ... for row in epoch.iter_rows(): # doctest: +SKIP ... print(row) # doctest: +SKIP Returns: Iterator over epoch objects, where each epoch is a DatasetPipeline containing data from that epoch only. """ class Peekable: def __init__(self, base_iter: Iterator[T]): self._iter = base_iter self._buffer = None def _fill_buffer_if_possible(self): if self._buffer is None: try: self._buffer = next(self._iter) assert self._buffer is not None except StopIteration: pass def peek(self) -> T: self._fill_buffer_if_possible() if self._buffer is None: raise StopIteration return self._buffer def __next__(self) -> T: self._fill_buffer_if_possible() if self._buffer is None: raise StopIteration item = self._buffer self._buffer = None return item class SingleEpochIterator: def __init__(self, peekable_iter: Iterator[Dataset[T]], epoch: int): self._iter = peekable_iter self._epoch = epoch def __next__(self) -> Dataset[T]: if self._iter.peek()._get_epoch() > self._epoch: raise StopIteration ds = next(self._iter) return lambda: ds def __iter__(self): return self class EpochDelimitedIterator: def __init__(self, pipe): self._iter = Peekable(pipe.iter_datasets()) self._cur_epoch = None def __next__(self) -> "DatasetPipeline[T]": if self._cur_epoch is None: self._cur_epoch = self._iter.peek()._get_epoch() else: self._cur_epoch += 1 warned = False while self._iter.peek()._get_epoch() < self._cur_epoch: if not warned: warned = True logger.warn( "Data from epoch {} was not fully read, " "skipping to next epoch.".format(self._cur_epoch - 1) ) next(self._iter) epoch_pipe = DatasetPipeline.from_iterable( SingleEpochIterator(self._iter, epoch=self._cur_epoch) ) return epoch_pipe def __iter__(self): return self return EpochDelimitedIterator(self) @DeveloperAPI def iter_datasets(self) -> Iterator[Dataset[T]]: """Iterate over the output datasets of this pipeline. Returns: Iterator over the datasets outputted from this pipeline. """ if self._executed[0]: raise RuntimeError("Pipeline cannot be read multiple times.") self._executed[0] = True if self._first_dataset is None: self._peek() iter = itertools.chain([self._first_dataset], self._dataset_iter) self._first_dataset = None self._dataset_iter = None return iter @DeveloperAPI def foreach_window( self, fn: Callable[[Dataset[T]], Dataset[U]] ) -> "DatasetPipeline[U]": """Apply a transform to each dataset/window in this pipeline. Args: fn: The function to transform each dataset with. Returns: The transformed DatasetPipeline. """ if self._executed[0]: raise RuntimeError("Pipeline cannot be read multiple times.") return DatasetPipeline( self._base_iterable, self._stages + [fn], self._length, self._progress_bars, _executed=self._executed, ) def stats(self, exclude_first_window: bool = True) -> str: """Returns a string containing execution timing information. Args: exclude_first_window: Whether to exclude the first window from the pipeline time breakdown. This is generally a good idea since there is always a stall waiting for the first window to be initially computed, which can be misleading in the stats. """ return self._stats.summary_string(exclude_first_window) @staticmethod def from_iterable( iterable: Iterable[Callable[[], Dataset[T]]], ) -> "DatasetPipeline[T]": """Create a pipeline from an sequence of Dataset producing functions. Args: iterable: A finite or infinite-length sequence of functions that each produce a Dataset when called. """ if hasattr(iterable, "__len__"): length = len(iterable) else: length = None return DatasetPipeline(iterable, length=length) def __repr__(self) -> str: return "DatasetPipeline(num_windows={}, num_stages={})".format( self._length, 1 + len(self._stages) ) def __str__(self) -> str: return repr(self) def _get_uuid(self) -> str: return self._uuid def _set_uuid(self, uuid: str) -> None: self._uuid = uuid def _optimize_stages(self): """Optimize this pipeline, fusing stages together as possible.""" context = DatasetContext.get_current() if not context.optimize_fuse_stages: self._optimized_stages = self._stages return # This dummy dataset will be used to get a set of optimized stages. dummy_ds = Dataset( ExecutionPlan(BlockList([], []), DatasetStats(stages={}, parent=None)), 0, True, ) # Apply all pipeline operations to the dummy dataset. for stage in self._stages: dummy_ds = stage(dummy_ds) # Get the optimized stages. _, _, stages = dummy_ds._plan._optimize() # Apply these optimized stages to the datasets underlying the pipeline. # These optimized stages will be executed by the PipelineExecutor. optimized_stages = [] for stage in stages: optimized_stages.append( lambda ds, stage=stage: Dataset( ds._plan.with_stage(stage), ds._epoch, True ) ) self._optimized_stages = optimized_stages def _peek(self) -> Dataset[T]: if self._first_dataset is None: self._optimize_stages() self._dataset_iter = PipelineExecutor(self) self._first_dataset = next(self._dataset_iter) return self._first_dataset for method in _PER_DATASET_OPS: def make_impl(method): delegate = getattr(Dataset, method) def impl(self, *args, **kwargs) -> "DatasetPipeline[U]": return self.foreach_window(lambda ds: getattr(ds, method)(*args, **kwargs)) impl.__name__ = delegate.__name__ impl.__doc__ = """ Apply ``Dataset.{method}`` to each dataset/window in this pipeline. """.format( method=method ) setattr( impl, "__signature__", inspect.signature(delegate).replace(return_annotation="DatasetPipeline[U]"), ) return impl setattr(DatasetPipeline, method, make_impl(method)) for method in _HOLISTIC_PER_DATASET_OPS: def make_impl(method): delegate = getattr(Dataset, method) def impl(self, *args, **kwargs) -> "DatasetPipeline[U]": return self.foreach_window(lambda ds: getattr(ds, method)(*args, **kwargs)) impl.__name__ = delegate.__name__ impl.__doc__ = """ Apply ``Dataset.{method}`` to each dataset/window in this pipeline. """.format( method=method ) setattr( impl, "__signature__", inspect.signature(delegate).replace(return_annotation="DatasetPipeline[U]"), ) return impl def deprecation_warning(method: str): def impl(*a, **kw): raise DeprecationWarning( "`{}` has been renamed to `{}_each_window`.".format(method, method) ) return impl setattr(DatasetPipeline, method, deprecation_warning(method)) setattr(DatasetPipeline, method + "_each_window", make_impl(method)) for method in _PER_DATASET_OUTPUT_OPS: def make_impl(method): delegate = getattr(Dataset, method) def impl(self, *args, **kwargs): uuid = None for i, ds in enumerate(self.iter_datasets()): if uuid is None: uuid = self._get_uuid() or ds._get_uuid() ds._set_uuid(f"{uuid}_{i:06}") getattr(ds, method)(*args, **kwargs) impl.__name__ = delegate.__name__ impl.__doc__ = """ Call ``Dataset.{method}`` on each output dataset of this pipeline. """.format( method=method ) setattr(impl, "__signature__", inspect.signature(delegate)) return impl setattr(DatasetPipeline, method, make_impl(method)) for method in _OUTPUT_ITER_OPS: def make_impl(method): delegate = getattr(Dataset, method) def impl(self, *args, **kwargs): return delegate(self, *args, **kwargs) impl.__name__ = delegate.__name__ impl.__doc__ = """ Call ``Dataset.{method}`` over the stream of output batches from the pipeline. """.format( method=method ) setattr(impl, "__signature__", inspect.signature(delegate)) return impl setattr(DatasetPipeline, method, make_impl(method))
#!/usr/bin/env python # -*- coding: utf-8 -*- import simplejson as json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.MaitainShopProduct import MaitainShopProduct class AlipayEcoMycarMaintainServiceproductUpdateModel(object): def __init__(self): self._operation_type = None self._out_product_id = None self._shop_product = None @property def operation_type(self): return self._operation_type @operation_type.setter def operation_type(self, value): self._operation_type = value @property def out_product_id(self): return self._out_product_id @out_product_id.setter def out_product_id(self, value): self._out_product_id = value @property def shop_product(self): return self._shop_product @shop_product.setter def shop_product(self, value): if isinstance(value, MaitainShopProduct): self._shop_product = value else: self._shop_product = MaitainShopProduct.from_alipay_dict(value) def to_alipay_dict(self): params = dict() if self.operation_type: if hasattr(self.operation_type, 'to_alipay_dict'): params['operation_type'] = self.operation_type.to_alipay_dict() else: params['operation_type'] = self.operation_type if self.out_product_id: if hasattr(self.out_product_id, 'to_alipay_dict'): params['out_product_id'] = self.out_product_id.to_alipay_dict() else: params['out_product_id'] = self.out_product_id if self.shop_product: if hasattr(self.shop_product, 'to_alipay_dict'): params['shop_product'] = self.shop_product.to_alipay_dict() else: params['shop_product'] = self.shop_product return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayEcoMycarMaintainServiceproductUpdateModel() if 'operation_type' in d: o.operation_type = d['operation_type'] if 'out_product_id' in d: o.out_product_id = d['out_product_id'] if 'shop_product' in d: o.shop_product = d['shop_product'] return o
from __future__ import annotations from pathlib import _PosixFlavour, _WindowsFlavour from typing import Optional, Callable, Awaitable, Dict, List, TYPE_CHECKING from errno import EINVAL import os import sys from aiopath.wrap import func_to_async_func as wrap_async try: from pathlib import _getfinalpathname _async_getfinalpathname = wrap_async(_getfinalpathname) except ImportError: def _getfinalpathname(*args, **kwargs): raise ImportError("_getfinalpathname() requires a Windows/NT platform") async def _async_getfinalpathname(*args, **kwargs): raise ImportError("_getfinalpathname() requires a Windows/NT platform") if TYPE_CHECKING: # keep mypy quiet from ._base import AsyncSyncPath, _AsyncSyncAccessor class _AsyncSyncPosixFlavour(_PosixFlavour): def gethomedir(self, username: str) -> str: return super().gethomedir(username) async def async_gethomedir(self, username: str) -> str: gethomedir: Callable[[str], Awaitable[str]] = wrap_async(super().gethomedir) return await gethomedir(username) def resolve(self, path: AsyncSyncPath, strict: bool = False) -> Optional[str]: sep: str = self.sep accessor: '_AsyncSyncAccessor' = path._accessor seen: Dict[str, Optional[str]] = {} def _resolve(path: str, rest: str) -> str: if rest.startswith(sep): path = '' for name in rest.split(sep): if not name or name == '.': continue if name == '..': # parent dir path, _, _ = path.rpartition(sep) continue newpath = path + name if path.endswith(sep) else path + sep + name if newpath in seen: # Already seen this path path = seen[newpath] if path is not None: continue # The symlink is not resolved, so we must have a symlink loop. raise RuntimeError(f"Symlink loop from {newpath}") # Resolve the symbolic link try: target = accessor.readlink(newpath) except OSError as e: if e.errno != EINVAL and strict: raise # Not a symlink, or non-strict mode. We just leave the path # untouched. path = newpath else: seen[newpath] = None # not resolved symlink path = _resolve(path, target) seen[newpath] = path # resolved symlink return path # NOTE: according to POSIX, getcwd() cannot contain path components # which are symlinks. base = '' if path.is_absolute() else os.getcwd() result = _resolve(base, str(path)) return result or sep async def async_resolve(self, path: AsyncSyncPath, strict: bool = False) -> Optional[str]: sep: str = self.sep accessor: '_AsyncSyncAccessor' = path._accessor seen: Dict[str, Optional[str]] = {} async def _resolve(path: str, rest: str) -> str: if rest.startswith(sep): path = '' for name in rest.split(sep): if not name or name == '.': continue if name == '..': # parent dir path, _, _ = path.rpartition(sep) continue newpath = path + name if path.endswith(sep) else path + sep + name if newpath in seen: # Already seen this path path = seen[newpath] if path is not None: continue # The symlink is not resolved, so we must have a symlink loop. raise RuntimeError(f"Symlink loop from {newpath}") # Resolve the symbolic link try: target = await accessor.async_readlink(newpath) except OSError as e: if e.errno != EINVAL and strict: raise # Not a symlink, or non-strict mode. We just leave the path # untouched. path = newpath else: seen[newpath] = None # not resolved symlink path = await _resolve(path, target) seen[newpath] = path # resolved symlink return path # NOTE: according to POSIX, getcwd() cannot contain path components # which are symlinks. base = '' if path.is_absolute() else os.getcwd() result = await _resolve(base, str(path)) return result or sep class _AsyncSyncWindowsFlavour(_WindowsFlavour): def gethomedir(self, username: str) -> str: return super().gethomedir(username) async def async_gethomedir(self, username: str) -> str: gethomedir: Callable[[str], Awaitable[str]] = wrap_async(super().gethomedir) return await gethomedir(username) def resolve(self, path: 'AsyncSyncPath', strict: bool = False) -> Optional[str]: s = str(path) if not s: return os.getcwd() previous_s: Optional[str] = None if _getfinalpathname is not None: if strict: return self._ext_to_normal(_getfinalpathname(s)) else: tail_parts: List[str] = [] # End of the path after the first one not found while True: try: s = self._ext_to_normal(_getfinalpathname(s)) except FileNotFoundError: previous_s = s s, tail = os.path.split(s) tail_parts.append(tail) if previous_s == s: return path else: return os.path.join(s, *reversed(tail_parts)) return None async def async_resolve(self, path: 'AsyncSyncPath', strict: bool = False) -> Optional[str]: s = str(path) if not s: return os.getcwd() previous_s: Optional[str] = None if _async_getfinalpathname is not None: if strict: return self._ext_to_normal(await _async_getfinalpathname(s)) else: tail_parts: List[str] = [] # End of the path after the first one not found while True: try: s = self._ext_to_normal(await _async_getfinalpathname(s)) except FileNotFoundError: previous_s = s s, tail = os.path.split(s) tail_parts.append(tail) if previous_s == s: return path else: return os.path.join(s, *reversed(tail_parts)) return None _async_sync_windows_flavour = _AsyncSyncWindowsFlavour() _async_sync_posix_flavour = _AsyncSyncPosixFlavour()
import argparse import json import os import pickle import numpy as np from pocovidnet.evaluate_genesis import GenesisEvaluator from pocovidnet.evaluate_video import VideoEvaluator from tensorflow.keras import backend as K from pocovidnet.videoto3d import Videoto3D def main(): parser = argparse.ArgumentParser(description='Evaluate genesis and cam') parser.add_argument('--json', type=str, default="../data/cross_val.json") parser.add_argument( '--genesis_weights', type=str, default='video_genesis_lr1e4' ) parser.add_argument( '--cam_weights', type=str, default='trained_models_cam' ) parser.add_argument( '--videos', type=str, default='../data/pocus_videos/convex' ) args = parser.parse_args() with open(args.json, "r") as infile: cross_val_split = json.load(infile) VIDEO_DIR = args.videos all_genesis_preds = [] all_frame_preds = [] for i in range(5): gen_eval = GenesisEvaluator( weights_dir=args.genesis_weights, ensemble=False, split=i ) K.set_image_data_format("channels_last") normal_eval = VideoEvaluator( weights_dir=args.cam_weights, ensemble=False, split=i, model_id="vgg_cam", num_classes=4 ) files = cross_val_split[str(i)]["test"][0] # print(files) for f in files: print("evaluate", f) # TEST if the video is working vid3d = Videoto3D("", 64, 64, 5, 5) vid3d.max_vid = {"cov": 20, "pne": 20, "reg": 20} X_test, _, fn = vid3d.video3d( [os.path.join(VIDEO_DIR, f)], ["cov"] ) if len(np.unique(fn)) != 1: print("ERROR: WRONG FILE!") print(fn) print(X_test.shape) continue # run genesis model K.set_image_data_format("channels_first") preds = gen_eval(os.path.join(VIDEO_DIR, f)) vid_pred_genesis = np.argmax(np.mean(preds, axis=(0, 1))) all_genesis_preds.append(preds) # run cam model K.set_image_data_format("channels_last") preds_framebased = normal_eval(os.path.join(VIDEO_DIR, f)) frame_pred = np.argmax(np.mean(preds_framebased, axis=0)) all_frame_preds.append(preds_framebased) print(preds.shape, preds_framebased.shape) print( "genesis pred", vid_pred_genesis, "frame based pred", frame_pred ) print("-------------") with open("evaluation_outputs.dat", "wb") as outfile: pickle.dump((all_genesis_preds, all_frame_preds), outfile) if __name__ == '__main__': main()
from rest_framework import serializers from .models import Skill, Task, Days class SkillSerializer(serializers.ModelSerializer): class Meta: model = Skill fields = ('name', 'user') class TaskSerializer(serializers.ModelSerializer): class Meta: model = Task fields = ('name', 'completion_time', 'skill') class DaysSerializer(serializers.ModelSerializer): class Meta: model = Days fields = ('monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday', 'user')
#!/usr/bin/env python3 # Copyright (c) 2016-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test using named arguments for RPCs.""" from test_framework.test_framework import AltcoinTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, ) class NamedArgumentTest(AltcoinTestFramework): def set_test_params(self): self.num_nodes = 1 def run_test(self): node = self.nodes[0] h = node.help(command='getblockchaininfo') assert(h.startswith('getblockchaininfo\n')) assert_raises_rpc_error(-8, 'Unknown named parameter', node.help, random='getblockchaininfo') h = node.getblockhash(height=0) node.getblock(blockhash=h) assert_equal(node.echo(), []) assert_equal(node.echo(arg0=0,arg9=9), [0] + [None]*8 + [9]) assert_equal(node.echo(arg1=1), [None, 1]) assert_equal(node.echo(arg9=None), [None]*10) assert_equal(node.echo(arg0=0,arg3=3,arg9=9), [0] + [None]*2 + [3] + [None]*5 + [9]) if __name__ == '__main__': NamedArgumentTest().main()
from typing import Tuple import pytest import kornia as kornia import kornia.testing as utils # test utils import torch from torch.testing import assert_allclose from torch.autograd import gradcheck class TestBoundingBoxInferring: def test_bounding_boxes_dim_inferring(self, device, dtype): boxes = torch.tensor([[ [1., 1.], [3., 1.], [3., 2.], [1., 2.], ]], device=device, dtype=dtype) h, w = kornia.geometry.transform.crop.infer_box_shape(boxes) assert (h, w) == (2, 3) def test_bounding_boxes_dim_inferring_batch(self, device, dtype): boxes = torch.tensor([[ [1., 1.], [3., 1.], [3., 2.], [1., 2.], ], [ [2., 2.], [4., 2.], [4., 3.], [2., 3.], ]], device=device, dtype=dtype) h, w = kornia.geometry.transform.crop.infer_box_shape(boxes) assert (h.unique().item(), w.unique().item()) == (2, 3) def test_gradcheck(self, device, dtype): boxes = torch.tensor([[ [1., 1.], [3., 1.], [3., 2.], [1., 2.], ]], device=device, dtype=dtype) boxes = utils.tensor_to_gradcheck_var(boxes) assert gradcheck(kornia.kornia.geometry.transform.crop.infer_box_shape, (boxes,), raise_exception=True) def test_jit(self, device, dtype): # Define script op = kornia.geometry.transform.crop.infer_box_shape op_script = torch.jit.script(op) # Define input boxes = torch.tensor([[ [1., 1.], [3., 1.], [3., 2.], [1., 2.], ]], device=device, dtype=dtype) actual = op_script(boxes) expected = op(boxes) assert_allclose(actual, expected) class TestCropAndResize: def test_align_corners_true(self, device, dtype): inp = torch.tensor([[[ [1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.], [13., 14., 15., 16.], ]]], device=device, dtype=dtype) height, width = 2, 3 expected = torch.tensor( [[[[6.0000, 6.5000, 7.0000], [10.0000, 10.5000, 11.0000]]]], device=device, dtype=dtype) boxes = torch.tensor([[ [1., 1.], [2., 1.], [2., 2.], [1., 2.], ]], device=device, dtype=dtype) # 1x4x2 # default should use align_coners True patches = kornia.crop_and_resize(inp, boxes, (height, width)) assert_allclose(patches, expected, rtol=1e-4, atol=1e-4) def test_align_corners_false(self, device, dtype): inp = torch.tensor([[[ [1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.], [13., 14., 15., 16.], ]]], device=device, dtype=dtype) height, width = 2, 3 expected = torch.tensor( [[[[6.7222, 7.1667, 7.6111], [9.3889, 9.8333, 10.2778]]]], device=device, dtype=dtype) boxes = torch.tensor([[ [1., 1.], [2., 1.], [2., 2.], [1., 2.], ]], device=device, dtype=dtype) # 1x4x2 patches = kornia.crop_and_resize(inp, boxes, (height, width), align_corners=False) assert_allclose(patches, expected, rtol=1e-4, atol=1e-4) def test_crop_batch(self, device, dtype): inp = torch.tensor([[[ [1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.], [13., 14., 15., 16.], ]], [[ [1., 5., 9., 13.], [2., 6., 10., 14.], [3., 7., 11., 15.], [4., 8., 12., 16.], ]]], device=device, dtype=dtype) expected = torch.tensor([[[ [6., 7.], [10., 11.], ]], [[ [7., 15.], [8., 16.], ]]], device=device, dtype=dtype) boxes = torch.tensor([[ [1., 1.], [2., 1.], [2., 2.], [1., 2.], ], [ [1., 2.], [3., 2.], [3., 3.], [1., 3.], ]], device=device, dtype=dtype) # 2x4x2 patches = kornia.crop_and_resize(inp, boxes, (2, 2)) assert_allclose(patches, expected, rtol=1e-4, atol=1e-4) def test_crop_batch_broadcast(self, device, dtype): inp = torch.tensor([[[ [1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.], [13., 14., 15., 16.], ]], [[ [1., 5., 9., 13.], [2., 6., 10., 14.], [3., 7., 11., 15.], [4., 8., 12., 16.], ]]], device=device, dtype=dtype) expected = torch.tensor([[[ [6., 7.], [10., 11.], ]], [[ [6., 10.], [7., 11.], ]]], device=device, dtype=dtype) boxes = torch.tensor([[ [1., 1.], [2., 1.], [2., 2.], [1., 2.], ]], device=device, dtype=dtype) # 1x4x2 patches = kornia.crop_and_resize(inp, boxes, (2, 2)) assert_allclose(patches, expected, rtol=1e-4, atol=1e-4) def test_gradcheck(self, device, dtype): img = torch.rand(1, 2, 5, 4, device=device, dtype=dtype) img = utils.tensor_to_gradcheck_var(img) # to var boxes = torch.tensor([[ [1., 1.], [2., 1.], [2., 2.], [1., 2.], ]], device=device, dtype=dtype) # 1x4x2 boxes = utils.tensor_to_gradcheck_var(boxes, requires_grad=False) # to var assert gradcheck(kornia.crop_and_resize, (img, boxes, (4, 2),), raise_exception=True) def test_jit(self, device, dtype): # Define script op = kornia.crop_and_resize op_script = torch.jit.script(op) # Define input img = torch.tensor([[[ [1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.], [13., 14., 15., 16.], ]]], device=device, dtype=dtype) boxes = torch.tensor([[ [1., 1.], [2., 1.], [2., 2.], [1., 2.], ]], device=device, dtype=dtype) # 1x4x2 crop_height, crop_width = 4, 2 actual = op_script(img, boxes, (crop_height, crop_width)) expected = op(img, boxes, (crop_height, crop_width)) assert_allclose(actual, expected, rtol=1e-4, atol=1e-4) class TestCenterCrop: def test_center_crop_h2_w4(self, device, dtype): inp = torch.tensor([[[ [1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.], [13., 14., 15., 16.], ]]], device=device, dtype=dtype) expected = torch.tensor([[[ [5., 6., 7., 8.], [9., 10., 11., 12.], ]]], device=device, dtype=dtype) out_crop = kornia.center_crop(inp, (2, 4)) assert_allclose(out_crop, expected, rtol=1e-4, atol=1e-4) def test_center_crop_h4_w2(self, device, dtype): inp = torch.tensor([[[ [1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.], [13., 14., 15., 16.], ]]], device=device, dtype=dtype) height, width = 4, 2 expected = torch.tensor([[[ [2., 3.], [6., 7.], [10., 11.], [14., 15.], ]]], device=device, dtype=dtype) out_crop = kornia.center_crop(inp, (height, width)) assert_allclose(out_crop, expected, rtol=1e-4, atol=1e-4) def test_center_crop_h4_w2_batch(self, device, dtype): inp = torch.tensor([ [[[1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.], [13., 14., 15., 16.]]], [[[1., 5., 9., 13.], [2., 6., 10., 14.], [3., 7., 11., 15.], [4., 8., 12., 16.]]] ], device=device, dtype=dtype) expected = torch.tensor([[[ [2., 3.], [6., 7.], [10., 11.], [14., 15.], ]], [[ [5., 9.], [6., 10.], [7., 11.], [8., 12.], ]]], device=device, dtype=dtype) out_crop = kornia.center_crop(inp, (4, 2)) assert_allclose(out_crop, expected, rtol=1e-4, atol=1e-4) def test_gradcheck(self, device, dtype): img = torch.rand(1, 2, 5, 4, device=device, dtype=dtype) img = utils.tensor_to_gradcheck_var(img) # to var assert gradcheck(kornia.center_crop, (img, (4, 2),), raise_exception=True) def test_jit(self, device, dtype): # Define script op = kornia.center_crop op_script = torch.jit.script(op) # Define input img = torch.ones(1, 2, 5, 4, device=device, dtype=dtype) actual = op_script(img, (4, 2)) expected = op(img, (4, 2)) assert_allclose(actual, expected, rtol=1e-4, atol=1e-4) def test_jit_trace(self, device, dtype): # Define script op = kornia.center_crop op_script = torch.jit.script(op) # Define input img = torch.ones(2, 1, 6, 3, device=device, dtype=dtype) op_trace = torch.jit.trace(op_script, (img, (torch.tensor(2), torch.tensor(3)))) img = torch.ones(2, 1, 6, 3, device=device, dtype=dtype) # Run actual = op_trace(img, (torch.tensor(2), torch.tensor(3))) expected = op(img, (2, 3)) assert_allclose(actual, expected, rtol=1e-4, atol=1e-4) class TestCropByBoxes: def test_crop_by_boxes_no_resizing(self, device, dtype): inp = torch.tensor([[[ [1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.], [13., 14., 15., 16.], ]]], device=device, dtype=dtype) src = torch.tensor([[ [1., 1.], [2., 1.], [2., 2.], [1., 2.], ]], device=device, dtype=dtype) # 1x4x2 dst = torch.tensor([[ [0., 0.], [1., 0.], [1., 1.], [0., 1.], ]], device=device, dtype=dtype) # 1x4x2 expected = torch.tensor([[[ [6., 7.], [10., 11.], ]]], device=device, dtype=dtype) patches = kornia.geometry.transform.crop.crop_by_boxes(inp, src, dst) assert_allclose(patches, expected) def test_crop_by_boxes_resizing(self, device, dtype): inp = torch.tensor([[[ [1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.], [13., 14., 15., 16.], ]]], device=device, dtype=dtype) src = torch.tensor([[ [1., 1.], [2., 1.], [2., 2.], [1., 2.], ]], device=device, dtype=dtype) # 1x4x2 dst = torch.tensor([[ [0., 0.], [2., 0.], [2., 1.], [0., 1.], ]], device=device, dtype=dtype) # 1x4x2 expected = torch.tensor([[[ [6., 6.5, 7.], [10., 10.5, 11.], ]]], device=device, dtype=dtype) patches = kornia.geometry.transform.crop.crop_by_boxes(inp, src, dst) assert_allclose(patches, expected, rtol=1e-4, atol=1e-4) def test_gradcheck(self, device, dtype): inp = torch.randn((1, 1, 3, 3), device=device, dtype=dtype) src = torch.tensor([[ [1., 0.], [2., 0.], [2., 1.], [1., 1.]]], device=device, dtype=dtype) dst = torch.tensor([[ [0., 0.], [1., 0.], [1., 1.], [0., 1.]]], device=device, dtype=dtype) inp = utils.tensor_to_gradcheck_var(inp, requires_grad=True) # to var assert gradcheck(kornia.geometry.transform.crop.crop_by_boxes, (inp, src, dst,), raise_exception=True) class TestCropByTransform: def test_crop_by_transform_no_resizing(self, device, dtype): inp = torch.tensor([[[ [1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.], [13., 14., 15., 16.], ]]], device=device, dtype=dtype) transform = torch.tensor([[ [1., 0., -1.], [0., 1., -1.], [0., 0., 1.], ]], device=device, dtype=dtype) # 1x3x3 expected = torch.tensor([[[ [6., 7.], [10., 11.], ]]], device=device, dtype=dtype) patches = kornia.geometry.transform.crop.crop_by_transform_mat(inp, transform, (2, 2)) assert_allclose(patches, expected) def test_crop_by_boxes_resizing(self, device, dtype): inp = torch.tensor([[[ [1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.], [13., 14., 15., 16.], ]]], device=device, dtype=dtype) transform = torch.tensor([[ [2., 0., -2.], [0., 1., -1.], [0., 0., 1.], ]], device=device, dtype=dtype) # 1x3x3 expected = torch.tensor([[[ [6., 6.5, 7.], [10., 10.5, 11.], ]]], device=device, dtype=dtype) patches = kornia.geometry.transform.crop.crop_by_transform_mat(inp, transform, (2, 3)) assert_allclose(patches, expected, rtol=1e-4, atol=1e-4) def test_gradcheck(self, device, dtype): inp = torch.randn((1, 1, 3, 3), device=device, dtype=dtype) transform = torch.tensor([[ [2., 0., -2.], [0., 1., -1.], [0., 0., 1.], ]], device=device, dtype=dtype) # 1x3x3 inp = utils.tensor_to_gradcheck_var(inp, requires_grad=True) # to var assert gradcheck(kornia.geometry.transform.crop.crop_by_transform_mat, (inp, transform, (2, 2),), raise_exception=True)
class Solution: def rob(self, nums): """ :type nums: List[int] :rtype: int """ if(len(nums)==1): return nums[0] # 1的时候不work 两个dp,一个从第一位开始,一个从倒数第二位结束 last, now = 0, 0 last1, now1 = 0, 0 for i, n in enumerate(nums): if i<len(nums)-1: last, now = now, max(n+last,now) print(now, last) if i>0: last1, now1 = now1, max(n+last1,now1) return max(now,now1) class Solution: def rob(self, nums): def rob(nums): now = prev = 0 for n in nums: now, prev = max(now, prev + n), now return now return max(rob(nums[len(nums) != 1:]), rob(nums[:-1]))
# Copyright (c) 2012-2013, Mark Peek <mark@peek.org> # All rights reserved. # # See LICENSE file for full license. from aws import Action as BaseAction from aws import BaseARN service_name = 'Amazon Managed Service for Prometheus' prefix = 'aps' class Action(BaseAction): def __init__(self, action=None): sup = super(Action, self) sup.__init__(prefix, action) class ARN(BaseARN): def __init__(self, resource='', region='', account=''): sup = super(ARN, self) sup.__init__(service=prefix, resource=resource, region=region, account=account) CreateWorkspace = Action('CreateWorkspace') DeleteWorkspace = Action('DeleteWorkspace') DescribeWorkspace = Action('DescribeWorkspace') GetLabels = Action('GetLabels') GetMetricMetadata = Action('GetMetricMetadata') GetSeries = Action('GetSeries') ListWorkspaces = Action('ListWorkspaces') QueryMetrics = Action('QueryMetrics') RemoteWrite = Action('RemoteWrite') UpdateWorkspaceAlias = Action('UpdateWorkspaceAlias')
import numpy as np import struct LAYER_DENSE = 1 LAYER_CONVOLUTION2D = 2 LAYER_FLATTEN = 3 LAYER_ELU = 4 LAYER_ACTIVATION = 5 LAYER_MAXPOOLING2D = 6 LAYER_LSTM = 7 LAYER_EMBEDDING = 8 ACTIVATION_LINEAR = 1 ACTIVATION_RELU = 2 ACTIVATION_SOFTPLUS = 3 ACTIVATION_SIGMOID = 4 ACTIVATION_TANH = 5 ACTIVATION_HARD_SIGMOID = 6 def write_floats(file, floats): ''' Writes floats to file in 1024 chunks.. prevents memory explosion writing very large arrays to disk when calling struct.pack(). ''' step = 1024 written = 0 for i in np.arange(0, len(floats), step): remaining = min(len(floats) - i, step) written += remaining file.write(struct.pack('=%sf' % remaining, *floats[i:i+remaining])) assert written == len(floats) def export_model(model, filename): with open(filename, 'wb') as f: def write_activation(activation): if activation == 'linear': f.write(struct.pack('I', ACTIVATION_LINEAR)) elif activation == 'relu': f.write(struct.pack('I', ACTIVATION_RELU)) elif activation == 'softplus': f.write(struct.pack('I', ACTIVATION_SOFTPLUS)) elif activation == 'tanh': f.write(struct.pack('I', ACTIVATION_TANH)) elif activation == 'sigmoid': f.write(struct.pack('I', ACTIVATION_SIGMOID)) elif activation == 'hard_sigmoid': f.write(struct.pack('I', ACTIVATION_HARD_SIGMOID)) else: assert False, "Unsupported activation type: %s" % activation model_layers = [l for l in model.layers if type(l).__name__ not in ['Dropout']] num_layers = len(model_layers) f.write(struct.pack('I', num_layers)) for layer in model_layers: layer_type = type(layer).__name__ if layer_type == 'Dense': weights = layer.get_weights()[0] biases = layer.get_weights()[1] activation = layer.get_config()['activation'] f.write(struct.pack('I', LAYER_DENSE)) f.write(struct.pack('I', weights.shape[0])) f.write(struct.pack('I', weights.shape[1])) f.write(struct.pack('I', biases.shape[0])) weights = weights.flatten() biases = biases.flatten() write_floats(f, weights) write_floats(f, biases) write_activation(activation) elif layer_type == 'Convolution2D': assert layer.border_mode == 'valid', "Only border_mode=valid is implemented" weights = layer.get_weights()[0] biases = layer.get_weights()[1] activation = layer.get_config()['activation'] # The kernel is accessed in reverse order. To simplify the C side we'll # flip the weight matrix for each kernel. weights = weights[:,:,::-1,::-1] f.write(struct.pack('I', LAYER_CONVOLUTION2D)) f.write(struct.pack('I', weights.shape[0])) f.write(struct.pack('I', weights.shape[1])) f.write(struct.pack('I', weights.shape[2])) f.write(struct.pack('I', weights.shape[3])) f.write(struct.pack('I', biases.shape[0])) weights = weights.flatten() biases = biases.flatten() write_floats(f, weights) write_floats(f, biases) write_activation(activation) elif layer_type == 'Flatten': f.write(struct.pack('I', LAYER_FLATTEN)) elif layer_type == 'ELU': f.write(struct.pack('I', LAYER_ELU)) f.write(struct.pack('f', layer.alpha)) elif layer_type == 'Activation': activation = layer.get_config()['activation'] f.write(struct.pack('I', LAYER_ACTIVATION)) write_activation(activation) elif layer_type == 'MaxPooling2D': assert layer.border_mode == 'valid', "Only border_mode=valid is implemented" pool_size = layer.get_config()['pool_size'] f.write(struct.pack('I', LAYER_MAXPOOLING2D)) f.write(struct.pack('I', pool_size[0])) f.write(struct.pack('I', pool_size[1])) elif layer_type == 'LSTM': inner_activation = layer.get_config()['inner_activation'] activation = layer.get_config()['activation'] return_sequences = int(layer.get_config()['return_sequences']) weights = layer.get_weights() W_i = weights[0] U_i = weights[1] b_i = weights[2] W_c = weights[3] U_c = weights[4] b_c = weights[5] W_f = weights[6] U_f = weights[7] b_f = weights[8] W_o = weights[9] U_o = weights[10] b_o = weights[11] f.write(struct.pack('I', LAYER_LSTM)) f.write(struct.pack('I', W_i.shape[0])) f.write(struct.pack('I', W_i.shape[1])) f.write(struct.pack('I', U_i.shape[0])) f.write(struct.pack('I', U_i.shape[1])) f.write(struct.pack('I', b_i.shape[0])) f.write(struct.pack('I', W_f.shape[0])) f.write(struct.pack('I', W_f.shape[1])) f.write(struct.pack('I', U_f.shape[0])) f.write(struct.pack('I', U_f.shape[1])) f.write(struct.pack('I', b_f.shape[0])) f.write(struct.pack('I', W_c.shape[0])) f.write(struct.pack('I', W_c.shape[1])) f.write(struct.pack('I', U_c.shape[0])) f.write(struct.pack('I', U_c.shape[1])) f.write(struct.pack('I', b_c.shape[0])) f.write(struct.pack('I', W_o.shape[0])) f.write(struct.pack('I', W_o.shape[1])) f.write(struct.pack('I', U_o.shape[0])) f.write(struct.pack('I', U_o.shape[1])) f.write(struct.pack('I', b_o.shape[0])) W_i = W_i.flatten() U_i = U_i.flatten() b_i = b_i.flatten() W_f = W_f.flatten() U_f = U_f.flatten() b_f = b_f.flatten() W_c = W_c.flatten() U_c = U_c.flatten() b_c = b_c.flatten() W_o = W_o.flatten() U_o = U_o.flatten() b_o = b_o.flatten() write_floats(f, W_i) write_floats(f, U_i) write_floats(f, b_i) write_floats(f, W_f) write_floats(f, U_f) write_floats(f, b_f) write_floats(f, W_c) write_floats(f, U_c) write_floats(f, b_c) write_floats(f, W_o) write_floats(f, U_o) write_floats(f, b_o) write_activation(inner_activation) write_activation(activation) f.write(struct.pack('I', return_sequences)) elif layer_type == 'Embedding': weights = layer.get_weights()[0] f.write(struct.pack('I', LAYER_EMBEDDING)) f.write(struct.pack('I', weights.shape[0])) f.write(struct.pack('I', weights.shape[1])) weights = weights.flatten() write_floats(f, weights) else: assert False, "Unsupported layer type: %s" % layer_type
import sqlalchemy from functools import partial async def create_engine(*args, **kwargs): engine = sqlalchemy.create_engine(*args, **kwargs) if engine.driver == "psycopg2": import asyncpg p = await asyncpg.create_pool(str(engine.url)) elif engine.driver == "pyodbc": import aioodbc p = await aioodbc.create_pool(**engine.url.translate_connect_args()) elif engine.driver == "mysqldb": import aiomysql p = aiomysql.create_pool(**engine.url.translate_connect_args()) else: p = engine.pool old_creator = engine.pool._creator def creator(*a, **kw): result = old_creator(*a, **kw) async def aenter(self): self._async_conn = p.acquire() return await self._async_conn.__aenter__() async def aexit(self): return await self._async_conn.__aexit__() result.__aenter__ = partial(aenter, result) result.__aexit__ = partial(aexit, result) engine.pool._creator = creator return engine
from cfn_datadog import Timeboard, Graph, TemplateVariable, Definition, Request from troposphere import Parameter, Template, Join, ImportValue, Sub t = Template() datadog_lambda_stackname = t.add_parameter(Parameter( "DatadogLambdaStackname", Type="String", Description="Stack name of cfn-datadog" )) time_board_arn = ImportValue(Sub("${DatadogLambdaStackname}-TimeboardDatadogLambdaArn")) t.add_resource(Timeboard( 'ExampleTimeBoard', ServiceToken=time_board_arn, TimeboardTitle="Automated Datadog Test Board", description="Automated Datadog timeboard created through Cloudformation", graphs=[Graph( GraphTitle="Example graph", definition=Definition( events=[], requests=[Request( q="avg:system.mem.free{*}" )], viz="timeseries" ) ), Graph( GraphTitle="Example graph 2", definition=Definition( events=[], requests=[Request( q="avg:system.mem.free{*}" )], viz="timeseries" ) ), ], template_variables=[TemplateVariable( name="host1", prefix="host", default="host:my-host" )], read_only=True )) print(t.to_json())
import logging from PyQt5.QtWidgets import * import envi.qt.memory as e_mem_qt import envi.qt.memcanvas as e_mem_canvas import vqt.hotkeys as vq_hotkey import vivisect.base as viv_base import vivisect.renderers as viv_rend import vivisect.qt.views as viv_q_views import vivisect.qt.ctxmenu as viv_q_ctxmenu from vqt.main import * from vivisect.const import * logger = logging.getLogger(__name__) # FIXME HACK where do these really live? qt_horizontal = 1 qt_vertical = 2 class VivCanvasBase(vq_hotkey.HotKeyMixin, e_mem_canvas.VQMemoryCanvas): def __init__(self, *args, **kwargs): e_mem_canvas.VQMemoryCanvas.__init__(self, *args, **kwargs) vq_hotkey.HotKeyMixin.__init__(self) self.vw = self.mem self._last_sname = None self.addHotKey('c', 'viv:make:code') self.addHotKey('f', 'viv:make:function') self.addHotKey('s', 'viv:make:string') self.addHotKey('p', 'viv:make:pointer') self.addHotKey('u', 'viv:make:unicode') self.addHotKey('n', 'viv:setname') self.addHotKey('g', 'viv:getlocation') self.addHotKey(';', 'viv:comment') self.addHotKey('S', 'viv:make:struct') self.addHotKey('ctrl+S', 'viv:make:struct:again') self.addHotKey('ctrl+meta+S', 'viv:make:struct:multi') self.addHotKey('U', 'viv:undefine') self.addHotKey('ctrl+p', 'viv:preview:instr') self.addHotKey('B', 'viv:bookmark') self.addHotKey('ctrl+1', 'viv:make:number:one') self.addHotKey('ctrl+2', 'viv:make:number:two') self.addHotKey('ctrl+4', 'viv:make:number:four') self.addHotKey('ctrl+6', 'viv:make:number:sixteen') self.addHotKey('ctrl+8', 'viv:make:number:eight') self.addHotKey('down', 'viv:nav:nextva') self.addHotKey('up', 'viv:nav:prevva') self.addHotKey('ctrl+down', 'viv:nav:nextundef') self.addHotKey('ctrl+up', 'viv:nav:prevundef') self.loadHotKeys(self.vw._viv_gui._vq_settings) # All extenders must implement vivColorMap vqtconnect(self.vivColorMap, 'viv:colormap') def vivColorMap(self, event, einfo): self._applyColorMap(einfo) def _applyColorMap(self, cmap): page = self.page() inner = '' for va, color in cmap.items(): inner += '.envi-va-0x%.8x { color: #000000; background-color: %s }\n' % (va, color) js = 'var node = document.querySelector("#cmapstyle"); node.innerHTML = `%s`;' % inner page.runJavaScript(js) @vq_hotkey.hotkey('viv:nav:nextva') def _hotkey_nav_nextva(self): if self._canv_curva is None: return loc = self.vw.getLocation(self._canv_curva) if loc is None: loc = (self._canv_curva, 1, None, None) nextva = loc[0] + loc[1] self._selectVa(nextva) @vq_hotkey.hotkey('viv:nav:prevva') def _hotkey_nav_prevva(self): if self._canv_curva is None: return loc = self.vw.getPrevLocation(self._canv_curva) if loc is None: loc = (self._canv_curva - 1, 1, None, None) self._selectVa(loc[0]) @vq_hotkey.hotkey('viv:nav:nextundef') def _hotkey_nav_nextundef(self): if self._canv_curva is None: return vw = self.vw va = self._canv_curva loc = vw.getLocation(va) if loc is None: # find next defined location while loc is None and vw.isValidPointer(va): va += 1 loc = vw.getLocation(va) va -= 1 lastloc = (va, 1, 0, 0) else: # find next undefined location while loc is not None: va = loc[0] lastloc = loc loc = vw.getLocation(va + loc[1]) # if we didn't fall off the map if vw.isValidPointer(va+lastloc[1]): va += lastloc[1] self._navExpression(hex(va)) self._selectVa(va) @vq_hotkey.hotkey('viv:nav:prevundef') def _hotkey_nav_prevundef(self): if self._canv_curva is None: return vw = self.vw va = self._canv_curva loc = vw.getLocation(va) if loc is None: # find previous defined location while loc is None and vw.isValidPointer(va): va -= 1 loc = vw.getLocation(va) if loc is not None: va = loc[0] else: # find previous undefined location while loc is not None: va = loc[0] loc = vw.getLocation(va-1) # if we fell off the end of a map if vw.isValidPointer(va-1): va -= 1 self._navExpression(hex(va)) self._selectVa(va) @vq_hotkey.hotkey('viv:make:code') def _hotkey_make_code(self): if self._canv_curva is not None: self.vw.makeCode(self._canv_curva) @vq_hotkey.hotkey('viv:make:function') def _hotkey_make_function(self): if self._canv_curva is not None: logger.debug('new function (manual): 0x%x', self._canv_curva) self.vw.makeFunction(self._canv_curva) @vq_hotkey.hotkey('viv:make:string') def _hotkey_make_string(self): if self._canv_curva is not None: self.vw.makeString(self._canv_curva) @vq_hotkey.hotkey('viv:make:pointer') def _hotkey_make_pointer(self): if self._canv_curva is not None: self.vw.makePointer(self._canv_curva) @vq_hotkey.hotkey('viv:make:unicode') def _hotkey_make_unicode(self): if self._canv_curva is not None: self.vw.makeUnicode(self._canv_curva) @vq_hotkey.hotkey('viv:undefine') def _hotkey_undefine(self): if self._canv_curva is not None: self.vw.delLocation(self._canv_curva) @vq_hotkey.hotkey('viv:getlocation') def _hotkey_getlocation(self): if self._canv_curva is not None: self.vw.getVivGui().getLocation(self._canv_curva) @vq_hotkey.hotkey('viv:setname') def _hotkey_setname(self): if self._canv_curva is not None: self.vw.getVivGui().setVaName(self._canv_curva, parent=self) @vq_hotkey.hotkey('viv:bookmark') def _hotkey_bookmark(self): if self._canv_curva is not None: self.vw.getVivGui().addBookmark(self._canv_curva, parent=self) @vq_hotkey.hotkey('viv:comment') def _hotkey_comment(self): if self._canv_curva is not None: self.vw.getVivGui().setVaComment(self._canv_curva, parent=self) @vq_hotkey.hotkey('viv:make:struct') def _hotkey_make_struct(self): if self._canv_curva is not None: sname = self.vw.getVivGui().makeStruct(self._canv_curva) if sname is not None: self._last_sname = sname @vq_hotkey.hotkey('viv:make:struct:again') def _hotkey_make_struct_again(self): if self._canv_curva is not None: if self._last_sname is not None: self.vw.makeStructure(self._canv_curva, self._last_sname) @vq_hotkey.hotkey('viv:make:struct:multi') def _hotkey_make_struct_multi(self, parent=None): if self._canv_curva is not None: if self._last_sname is not None: number, ok = QInputDialog.getText(parent, 'Make Multiple Consecutive Structs', 'Number of Structures') if ok: curva = self._canv_curva number = int(str(number), 0) for count in range(number): vs = self.vw.makeStructure(curva, self._last_sname) curva += len(vs) def makeStructAgainMulti(self, va, parent=None): if parent is None: parent = self curcomment = self.vw.getComment(va) if curcomment is None: curcomment = '' comment, ok = QInputDialog.getText(parent, 'Enter...', 'Comment', text=curcomment) if ok: self.vw.setComment(va, str(comment)) @vq_hotkey.hotkey('viv:make:number:one') def _hotkey_make_number_one(self): if self._canv_curva is not None: self.vw.makeNumber(self._canv_curva, 1) @vq_hotkey.hotkey('viv:make:number:two') def _hotkey_make_number_two(self): if self._canv_curva is not None: self.vw.makeNumber(self._canv_curva, 2) @vq_hotkey.hotkey('viv:make:number:four') def _hotkey_make_number_four(self): if self._canv_curva is not None: self.vw.makeNumber(self._canv_curva, 4) @vq_hotkey.hotkey('viv:make:number:eight') def _hotkey_make_number_eight(self): if self._canv_curva is not None: self.vw.makeNumber(self._canv_curva, 8) @vq_hotkey.hotkey('viv:make:number:sixteen') def _hotkey_make_number_sixteen(self): if self._canv_curva is not None: self.vw.makeNumber(self._canv_curva, 16) @vq_hotkey.hotkey('viv:preview:instr') def _hotkey_preview_instr(self): if self._canv_curva is not None: self.vw.previewCode(self._canv_curva) def getVaTag(self, va): loc = self.mem.getLocation(va) if loc is not None: va = loc[L_VA] return e_mem_canvas.VQMemoryCanvas.getVaTag(self, va) class VQVivMemoryCanvas(VivCanvasBase): def _wheelEventCallback(self, data): ''' Ugh. Yes. I know this sucks. But we have to do this because QtWebEngine does't natively let you get the max scroll size. You *have* to go through javascript to get those elements, and the only way to be sure of the function finishing (and being able to get a value outta js) is via this callback mechanism they set up. ''' smin = data[0] spos = data[1] smax = data[2] if not len(self._canv_rendvas): pass elif spos >= smax: lastva, lastsize = self._canv_rendvas[-1] mapva, mapsize, mperm, mfname = self.vw.getMemoryMap(lastva) sizeremain = (mapva + mapsize) - (lastva + lastsize) if sizeremain: self.renderMemoryAppend(min(sizeremain, 128)) elif spos == smin: firstva, firstsize = self._canv_rendvas[0] mapva, mapsize, mperm, mfname = self.vw.getMemoryMap(firstva) sizeremain = firstva - mapva if sizeremain: self.renderMemoryPrepend(min(sizeremain, 128)) def wheelEvent(self, event): page = self.page() page.runJavaScript(''' var pcur = window.innerHeight + window.pageYOffset var scrollMaxY = Math.max( document.body.scrollHeight, document.documentElement.scrollHeight, document.body.offsetHeight, document.documentElement.offsetHeight, document.body.clientHeight, document.documentElement.clientHeight, ); [window.innerHeight, pcur, scrollMaxY]; ''', self._wheelEventCallback) return e_mem_canvas.VQMemoryCanvas.wheelEvent(self, event) def _clearColorMap(self): page = self.page() page.runJavaScript('var node = document.querySelector("#cmapstyle"); node.innerHTML = "";') def _navExpression(self, expr): if self._canv_navcallback: self._canv_navcallback(expr) def initMemWindowMenu(self, va, menu): nav = self.parent() # our parent is always a VQVivMemoryWindow (nav target) viv_q_ctxmenu.buildContextMenu(self.vw, va=va, menu=menu, nav=nav) def _loc_helper(self, va): ''' we assume we're being handed a valid va since renderMemory checks for valid MemoryMap ''' nloc = self.mem.getLocation(va) if nloc is None: return va, 0 nva, nvsz, nvt, nvti = nloc return (nva, va-nva) class VQVivMemoryView(e_mem_qt.VQMemoryWindow, viv_base.VivEventCore): def __init__(self, vw, vwqgui): self.vw = vw self.vwqgui = vwqgui self._leading = False self._following = None self._follow_menu = None # init'd in handler below e_mem_qt.VQMemoryWindow.__init__(self, vw, syms=vw, parent=vwqgui, mwname='viv') viv_base.VivEventCore.__init__(self, vw) vwqgui.addEventCore(self) self.mem_canvas._canv_rend_middle = True self.addHotKeyTarget('viv:xrefsto', self._viv_xrefsto) self.addHotKey('x', 'viv:xrefsto') def getRendToolsMenu(self): menu = e_mem_qt.VQMemoryWindow.getRendToolsMenu(self) if self.vw.server: leadact = QAction('lead', menu, checkable=True) def leadToggle(): self._leading = not self._leading # We can only follow if not leading... (deep huh? ;) ) self._follow_menu.setEnabled(not self._leading) if self._leading: self._following = None self.vw.iAmLeader(self.mwname) self.updateMemWindowTitle() def clearFollow(): self._following = None self.updateMemWindowTitle() leadact.toggled.connect(leadToggle) menu.addAction(leadact) self._follow_menu = menu.addMenu('Follow..') self._follow_menu.addAction('(disable)', clearFollow) return menu def getExprTitle(self): title = str(self.addr_entry.text()) try: va = self.vw.parseExpression(title) name = self.vw.getName(va) if name is not None: title = name except Exception: title = 'expr error' if self._leading: title += ' (leading)' if self._following is not None: user, window = self._following title += ' (following %s %s)' % (user, window) return title def _getRenderVaSize(self): ''' Vivisect steps in and attempts to map to locations when they exist. since we have a location database, let's use that to make sure we get a real location if it exists. otherwise, we end up in no-man's land, since we rely on labels, which only exist for the base of a location. ''' addr, size = e_mem_qt.VQMemoryWindow._getRenderVaSize(self) if addr is None: return addr, size loc = self.vw.getLocation(addr) if loc is None: return addr, size return loc[L_VA], size def initMemoryCanvas(self, memobj, syms=None): return VQVivMemoryCanvas(memobj, syms=syms, parent=self) def _viv_xrefsto(self): if self.mem_canvas._canv_curva is not None: xrefs = self.vw.getXrefsTo(self.mem_canvas._canv_curva) if len(xrefs) == 0: self.vw.vprint('No xrefs found!') return title = 'Xrefs To: 0x%.8x' % self.mem_canvas._canv_curva view = viv_q_views.VQXrefView(self.vw, self.vwqgui, xrefs=xrefs, title=title) dock = self.vwqgui.vqDockWidget(view, floating=True) dock.resize(800, 600) def loadDefaultRenderers(self): import envi.memcanvas.renderers as e_render # FIXME check endianness self.mem_canvas.addRenderer("bytes", e_render.ByteRend()) self.mem_canvas.addRenderer("u_int_16", e_render.ShortRend()) self.mem_canvas.addRenderer("u_int_32", e_render.LongRend()) self.mem_canvas.addRenderer("u_int_64", e_render.QuadRend()) vivrend = viv_rend.WorkspaceRenderer(self.vw) self.mem_canvas.addRenderer('Viv', vivrend) self.mem_canvas.setRenderer('Viv') def _updateFunction(self, fva): for cbva, cbsize, cbfva in self.vw.getFunctionBlocks(fva): self.mem_canvas.renderMemoryUpdate(cbva, cbsize) def VTE_IAMLEADER(self, vw, event, einfo): user, followname = einfo def VWE_SYMHINT(self, vw, event, einfo): va, idx, hint = einfo self.mem_canvas.renderMemoryUpdate(va, 1) def VWE_ADDLOCATION(self, vw, event, einfo): va, size, ltype, tinfo = einfo self.mem_canvas.renderMemoryUpdate(va, size) def VWE_DELLOCATION(self, vw, event, einfo): va, size, ltype, tinfo = einfo self.mem_canvas.renderMemoryUpdate(va, size) def VWE_ADDFUNCTION(self, vw, event, einfo): va, meta = einfo self.mem_canvas.renderMemoryUpdate(va, 1) def VWE_SETFUNCMETA(self, vw, event, einfo): fva, key, val = einfo self._updateFunction(fva) def VWE_SETFUNCARGS(self, vw, event, einfo): fva, fargs = einfo self._updateFunction(fva) def VWE_COMMENT(self, vw, event, einfo): va, cmnt = einfo self.mem_canvas.renderMemoryUpdate(va, 1) @idlethread def VWE_SETNAME(self, vw, event, einfo): va, name = einfo self.mem_canvas.renderMemoryUpdate(va, 1) for fromva, tova, rtype, rflag in self.vw.getXrefsTo(va): self.mem_canvas.renderMemoryUpdate(fromva, 1) @idlethread def VTE_IAMLEADER(self, vw, event, einfo): user, fname = einfo def setFollow(): self._following = einfo self.updateMemWindowTitle() self._follow_menu.addAction('%s - %s' % (user, fname), setFollow) @idlethread def VTE_FOLLOWME(self, vw, event, einfo): user, fname, expr = einfo if self._following != (user, fname): return self.enviNavGoto(expr) @idlethread def enviNavGoto(self, expr, sizeexpr='256', rend=''): if self._leading: self.vw.followTheLeader(str(self.mwname), str(expr)) return e_mem_qt.VQMemoryWindow.enviNavGoto(self, expr, sizeexpr=sizeexpr, rend=rend)