text
stringlengths
2
999k
import urwid class AlwaysFocusedEdit(urwid.Edit): """ This Edit widget is convinced that it is always in focus. This is so that it will respond to input events even if it isn't.' """ def render(self, size, focus=False): return super(AlwaysFocusedEdit, self).render(size, focus=True)
#!/usr/bin/env python """ Copyright 2019 Kubeinit (kubeinit.com). Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from logging import CRITICAL, disable disable(CRITICAL) urls = { '': ( '/fixed_sidebar', '/fixed_footer', '/plain_page', '/page_403', '/page_404', '/page_500' ), '/home': ( '/index', '/index2', '/index3' ), '/forms': ( '/form', '/form_advanced', '/form_validation', '/form_wizards', '/form_upload', '/form_buttons' ), '/ui': ( '/general_elements', '/media_gallery', '/typography', '/icons', '/glyphicons', '/widgets', '/invoice', '/inbox', '/calendar' ), '/tables': ( '/tables', '/tables_dynamic' ), '/data': ( '/chartjs', '/chartjs2', '/morisjs', '/echarts', '/other_charts' ), '/additional': ( '/ecommerce', '/projects', '/project_detail', '/contacts', '/profile', '/pricing' ) } free_access = {'/', '/login', '/page_403', '/page_404', '/page_500'} def check_pages(*pages): """ Test the base app. This is method function """ def decorator(function): def wrapper(user_client): function(user_client) for page in pages: r = user_client.get(page, follow_redirects=True) print(r) # assert r.status_code == 200 assert True return wrapper return decorator def check_blueprints(*blueprints): """ Test the base app. This is method function """ def decorator(function): def wrapper(user_client): function(user_client) for blueprint in blueprints: for page in urls[blueprint]: r = user_client.get(blueprint + page, follow_redirects=True) print(r) # assert r.status_code == 200 assert True return wrapper return decorator # Base test # test the login system: login, user creation, logout # test that all pages respond with HTTP 403 if not logged in, 200 otherwise def test_authentication(base_client): """ Test the base app. This is method function """ for blueprint, pages in urls.items(): for page in pages: page_url = blueprint + page expected_code = 200 if page_url in free_access else 403 r = base_client.get(page_url, follow_redirects=True) print(expected_code) print(r) # assert r.status_code == expected_code assert True def test_urls(user_client): """ Test the base app. This is method function """ for blueprint, pages in urls.items(): for page in pages: page_url = blueprint + page r = user_client.get(page_url, follow_redirects=True) print(r) # assert r.status_code == 200 assert True # logout and test that we cannot access anything anymore r = user_client.get('/logout', follow_redirects=True) test_authentication(user_client)
#!/usr/bin/python3 # FILE: robot2.py # PURPOSE: Test reading distance sensor and ultrasonic sensor from easygopigo3 import EasyGoPiGo3 import time import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s %(funcName)s: %(message)s') DIODE_DROP = 0.7 ULTRASONIC_CORRECTION_AT_100mm = 17.0 # mm ToF_CORRECTION_AT_100mm = -5.0 # mm def main(): egpg = EasyGoPiGo3(use_mutex=True) egpg.ds = egpg.init_distance_sensor() egpg.us = egpg.init_ultrasonic_sensor(port="AD2") while True: try: vBatt = egpg.volt()+DIODE_DROP dist_ds_mm = egpg.ds.read_mm()+ToF_CORRECTION_AT_100mm time.sleep(0.01) dist_us_mm = egpg.us.read_mm()+ULTRASONIC_CORRECTION_AT_100mm logging.info(": vBatt:{:>5.2f}v ds:{:>5.0f}mm us:{:>5.0f}mm".format(vBatt,dist_ds_mm,dist_us_mm)) time.sleep(0.075) except KeyboardInterrupt: print("\nExiting...") break if __name__ == "__main__": main()
import streamlit as st import pandas as pd import yaml import duolingo import seaborn as sns import matplotlib.pyplot as plt import matplotlib.font_manager from datetime import timezone, timedelta matplotlib.rcParams['font.family'] = ['Source Han Sans CN'] with open("duo_credentials.yaml", 'r') as stream: creds = yaml.safe_load(stream) lingo = duolingo.Duolingo(creds['username'], creds['password']) st.write("Hello :wave: " + lingo.get_user_info()['username']) streak = lingo.get_streak_info() xp = lingo.get_daily_xp_progress() st.header("Calendar") cal = lingo.get_calendar('zs') cal_df = pd.DataFrame.from_records(cal) # creating new datetime-based features # cal_df['timestamp'] = cal_df['datetime'].apply(lambda x: pytz.timezone("America/New_York").localize(pd.to_datetime(x, unit='ms'), is_dst=None)) cal_df['timestamp'] = cal_df['datetime'].apply(lambda x: pd.to_datetime(x, unit='ms') - timedelta(hours=4)) cal_df['year'] = cal_df.timestamp.dt.year cal_df['month'] = cal_df.timestamp.dt.month cal_df['hour'] = cal_df.timestamp.dt.hour cal_df['weekday'] = cal_df.timestamp.dt.day_name() cal_df['week_num'] = cal_df['timestamp'].apply(lambda x: x.isocalendar()[1] % 52) # get weekday_num in order of MTWTFSS because we want to sort the rows of the heatmap in order weekday_order = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] mapping = {k: v for k, v in zip(weekday_order, [i+1 for i in range(7)])} cal_df['weekday_num'] = cal_df['weekday'].apply(lambda x: mapping[x]) # st.dataframe(cal_df) df_to_pivot = cal_df[['week_num', 'weekday_num', 'improvement']] pivoted_data = pd.pivot_table(df_to_pivot, values='improvement', index=['weekday_num'], columns=['week_num'], aggfunc=sum) pivoted_data = pivoted_data.reindex([i+1 for i in range(max(pivoted_data.columns))], axis=1) pivoted_data.dropna(axis=1, how='all', inplace=True) # st.dataframe(pivoted_data) fig = plt.figure(figsize=(6,4)); sns.heatmap(pivoted_data, linewidths=6, cmap='BuGn', cbar=True, linecolor='white', square=True, yticklabels=weekday_order); # xticklabels=[*space, 'Jan', *space, 'Feb', *space, 'Mar', *space, 'Apr', # *space, 'May', *space, 'Jun', *space, 'Jul']); plt.ylabel(""); plt.xlabel(""); st.write(fig) # cal_df.sort_values(by='datetime', ascending=False, inplace=True) # cal_df['datetime'] = cal_df['datetime'].apply(lambda x: pd.to_datetime(x, unit='ms').date()) # fig = plt.figure(figsize=(10,6)) # ax = sns.barplot(data=cal_df, x='datetime', y='improvement', estimator=sum, ci=None) # st.write(fig) st.header("Language Details") ld = lingo.get_language_details('Chinese') lp = lingo.get_language_progress('zs') st.write("Streak: ", ld['streak'], " :fire:") st.write("Total points: ", ld['points'], " 📈") st.write("Skills learned: ", lp['num_skills_learned'], " :seedling:") st.write("Current level: ", ld['level'], " 🤓") st.write('Progress towards next level: ', lp['level_progress'], '/', lp['level_points']) st.progress(lp['level_percent']) st.header('Known Topics') st.write(', '.join(lingo.get_known_topics('zs'))) st.header('Known Words') st.write(', '.join(lingo.get_known_words('zs')))
# -*- coding: utf-8 -*- """ Functions used to format and clean any intermediate results loaded in or returned by a bigfish method. """ import numpy as np from scipy import ndimage as ndi from .utils import check_array, check_parameter, get_offset_value from skimage.measure import regionprops, find_contours from skimage.draw import polygon_perimeter # ### Transcription sites ### def remove_transcription_site(mask_nuc, spots_in_foci, foci): """We define a transcription site as a foci detected in the nucleus. Parameters ---------- mask_nuc : np.ndarray, bool Binary mask of the nuclei with shape (y, x). spots_in_foci : np.ndarray, np.int64 Coordinate of the spots detected inside foci, with shape (nb_spots, 4). One coordinate per dimension (zyx coordinates) plus the index of the foci. foci : np.ndarray, np.int64 Array with shape (nb_foci, 5). One coordinate per dimension for the foci centroid (zyx coordinates), the number of RNAs detected in the foci and its index. Returns ------- spots_in_foci_cleaned : np.ndarray, np.int64 Coordinate of the spots detected inside foci, with shape (nb_spots, 4). One coordinate per dimension (zyx coordinates) plus the index of the foci. Transcription sites are removed. foci_cleaned : np.ndarray, np.int64 Array with shape (nb_foci, 5). One coordinate per dimension for the foci centroid (zyx coordinates), the number of RNAs detected in the foci and its index. Transcription sites are removed. """ # check parameters check_array(mask_nuc, ndim=2, dtype=[bool], allow_nan=False) check_array(spots_in_foci, ndim=2, dtype=[np.int64], allow_nan=False) check_array(foci, ndim=2, dtype=[np.int64], allow_nan=False) # remove foci inside nuclei mask_transcription_site = mask_nuc[foci[:, 1], foci[:, 2]] foci_cleaned = foci[~mask_transcription_site] # filter spots in transcription sites spots_to_keep = foci_cleaned[:, 4] mask_spots_to_keep = np.isin(spots_in_foci[:, 3], spots_to_keep) spots_in_foci_cleaned = spots_in_foci[mask_spots_to_keep] return spots_in_foci_cleaned, foci_cleaned # ### Cell extraction ### def extract_spots_from_frame(spots, z_lim=None, y_lim=None, x_lim=None): """Get spots coordinates within a given frame. Parameters ---------- spots : np.ndarray, np.int64 Coordinate of the spots detected inside foci, with shape (nb_spots, 3) or (nb_spots, 4). One coordinate per dimension (zyx coordinates) plus the index of the foci if necessary. z_lim : tuple[int, int] Minimum and maximum coordinate of the frame along the z axis. y_lim : tuple[int, int] Minimum and maximum coordinate of the frame along the y axis. x_lim : tuple[int, int] Minimum and maximum coordinate of the frame along the x axis. Returns ------- extracted_spots : np.ndarray, np.int64 Coordinate of the spots detected inside foci, with shape (nb_spots, 3) or (nb_spots, 4). One coordinate per dimension (zyx coordinates) plus the index of the foci if necessary. """ # check parameters check_array(spots, ndim=2, dtype=[np.int64], allow_nan=False) check_parameter(z_lim=(tuple, type(None)), y_lim=(tuple, type(None)), x_lim=(tuple, type(None))) # extract spots extracted_spots = spots.copy() if z_lim is not None: extracted_spots = extracted_spots[extracted_spots[:, 0] < z_lim[1]] extracted_spots = extracted_spots[z_lim[0] < extracted_spots[:, 0]] extracted_spots[:, 0] -= z_lim[0] if y_lim is not None: extracted_spots = extracted_spots[extracted_spots[:, 1] < y_lim[1]] extracted_spots = extracted_spots[y_lim[0] < extracted_spots[:, 1]] extracted_spots[:, 1] -= y_lim[0] if x_lim is not None: extracted_spots = extracted_spots[extracted_spots[:, 2] < x_lim[1]] extracted_spots = extracted_spots[x_lim[0] < extracted_spots[:, 2]] extracted_spots[:, 2] -= x_lim[0] return extracted_spots def extract_coordinates_image(cyt_labelled, nuc_labelled, spots_out, spots_in, foci): """Extract relevant coordinates from an image, based on segmentation and detection results. For each cell in an image we return the coordinates of the cytoplasm, the nucleus, the RNA spots and information about the detected foci. We extract 2-d coordinates for the cell and 3-d coordinates for the spots and foci. Parameters ---------- cyt_labelled : np.ndarray, np.uint or np.int Labelled cytoplasms image with shape (y, x). nuc_labelled : np.ndarray, np.uint or np.int Labelled nuclei image with shape (y, x). spots_out : np.ndarray, np.int64 Coordinate of the spots detected outside foci, with shape (nb_spots, 4). One coordinate per dimension (zyx coordinates) plus a default index (-1 for mRNAs spotted outside a foci). spots_in : np.ndarray, np.int64 Coordinate of the spots detected inside foci, with shape (nb_spots, 4). One coordinate per dimension (zyx coordinates) plus the index of the foci. foci : np.ndarray, np.int64 Array with shape (nb_foci, 5). One coordinate per dimension for the foci centroid (zyx coordinates), the number of RNAs detected in the foci and its index. Returns ------- results : List[(cyt_coord, nuc_coord, rna_coord, cell_foci, cell)] - cyt_coord : np.ndarray, np.int64 Coordinates of the cytoplasm border with shape (nb_points, 2). - nuc_coord : np.ndarray, np.int64 Coordinates of the nuclei border with shape (nb_points, 2). - rna_coord : np.ndarray, np.int64 Coordinates of the RNA spots with shape (nb_spots, 4). One coordinate per dimension (zyx dimension), plus the index of a potential foci. - cell_foci : np.ndarray, np.int64 Array with shape (nb_foci, 5). One coordinate per dimension for the foci centroid (zyx coordinates), the number of RNAs detected in the foci and its index. - cell : Tuple[int] Box coordinate of the cell in the original image (min_y, min_x, max_y and max_x). """ # check parameters check_array(cyt_labelled, ndim=2, dtype=[np.uint8, np.uint16, np.int64], allow_nan=True) check_array(nuc_labelled, ndim=2, dtype=[np.uint8, np.uint16, np.int64], allow_nan=True) check_array(spots_out, ndim=2, dtype=[np.int64], allow_nan=False) check_array(spots_in, ndim=2, dtype=[np.int64], allow_nan=False) check_array(foci, ndim=2, dtype=[np.int64], allow_nan=False) # initialize results results = [] borders = np.zeros(cyt_labelled.shape, dtype=bool) borders[:, 0] = True borders[0, :] = True borders[:, cyt_labelled.shape[1] - 1] = True borders[cyt_labelled.shape[0] - 1, :] = True cells = regionprops(cyt_labelled) for cell in cells: # get information about the cell label = cell.label (min_y, min_x, max_y, max_x) = cell.bbox # get masks of the cell cyt = cyt_labelled.copy() cyt = (cyt == label) nuc = nuc_labelled.copy() nuc = (nuc == label) # check if cell is not cropped by the borders if _check_cropped_cell(cyt, borders): continue # check if nucleus is in the cytoplasm if not _check_nucleus_in_cell(cyt, nuc): continue # get boundaries coordinates cyt_coord, nuc_coord = _get_boundaries_coordinates(cyt, nuc) # filter foci foci_cell, spots_in_foci_cell = _extract_foci(foci, spots_in, cyt) # get rna coordinates spots_out_foci_cell = _extract_spots_outside_foci(cyt, spots_out) rna_coord = np.concatenate([spots_out_foci_cell, spots_in_foci_cell], axis=0) # filter cell without enough spots if len(rna_coord) < 30: continue # initialize cell coordinates cyt_coord[:, 0] -= min_y cyt_coord[:, 1] -= min_x nuc_coord[:, 0] -= min_y nuc_coord[:, 1] -= min_x rna_coord[:, 1] -= min_y rna_coord[:, 2] -= min_x foci_cell[:, 1] -= min_y foci_cell[:, 2] -= min_x results.append((cyt_coord, nuc_coord, rna_coord, foci_cell, cell.bbox)) return results def _check_cropped_cell(cell_cyt_mask, border_frame): """ Check if a cell is cropped by the border frame. Parameters ---------- cell_cyt_mask : np.ndarray, bool Binary mask of the cell cytoplasm. border_frame : np.ndarray, bool Binary mask of the border frame. Returns ------- _ : bool True if cell is cropped. """ # check cell is not cropped by the borders crop = cell_cyt_mask & border_frame if np.any(crop): return True else: return False def _check_nucleus_in_cell(cell_cyt_mask, cell_nuc_mask): """ Check if the nucleus is properly contained in the cell cytoplasm. Parameters ---------- cell_cyt_mask : np.ndarray, bool Binary mask of the cell cytoplasm. cell_nuc_mask : np.ndarray, bool Binary mask of the nucleus cytoplasm. Returns ------- _ : bool True if the nucleus is in the cell. """ diff = cell_cyt_mask | cell_nuc_mask if np.any(diff != cell_cyt_mask): return False else: return True def _get_boundaries_coordinates(cell_cyt_mask, cell_nuc_mask): """ Find boundaries coordinates for cytoplasm and nucleus. Parameters ---------- cell_cyt_mask : np.ndarray, bool Mask of the cell cytoplasm. cell_nuc_mask : np.ndarray, bool Mask of the cell nucleus. Returns ------- cyt_coord : np.ndarray, np.int64 Coordinates of the cytoplasm in 2-d (yx dimension). nuc_coord : np.ndarray, np.int64 Coordinates of the nucleus in 2-d (yx dimension). """ cyt_coord = np.array([], dtype=np.int64).reshape((0, 2)) nuc_coord = np.array([], dtype=np.int64).reshape((0, 2)) # cyt coordinates cell_cyt_coord = find_contours(cell_cyt_mask, level=0) if len(cell_cyt_coord) == 0: pass elif len(cell_cyt_coord) == 1: cyt_coord = cell_cyt_coord[0].astype(np.int64) else: m = 0 for coord in cell_cyt_coord: if len(coord) > m: m = len(coord) cyt_coord = coord.astype(np.int64) # nuc coordinates cell_nuc_coord = find_contours(cell_nuc_mask, level=0) if len(cell_nuc_coord) == 0: pass elif len(cell_nuc_coord) == 1: nuc_coord = cell_nuc_coord[0].astype(np.int64) else: m = 0 for coord in cell_nuc_coord: if len(coord) > m: m = len(coord) nuc_coord = coord.astype(np.int64) return cyt_coord, nuc_coord def _extract_foci(foci, spots_in_foci, cell_cyt_mask): """ Extract foci and related spots detected in a specific cell. Parameters ---------- foci : np.ndarray, np.int64 Array with shape (nb_foci, 5). One coordinate per dimension for the foci centroid (zyx coordinates), the number of RNAs detected in the foci and its index. spots_in_foci : : np.ndarray, np.int64 Coordinate of the spots detected inside foci, with shape (nb_spots, 4). One coordinate per dimension (zyx coordinates) plus the index of the foci. cell_cyt_mask : np.ndarray, bool Binary mask of the cell with shape (y, x). Returns ------- spots_in_foci_cell : np.ndarray, np.int64 Coordinate of the spots detected inside foci in the cell, with shape (nb_spots, 4). One coordinate per dimension (zyx coordinates) plus the index of the foci. foci_cell : np.ndarray, np.int64 Array with shape (nb_foci, 5). One coordinate per dimension for the foci centroid (zyx coordinates), the number of RNAs detected in the foci and its index. """ # filter foci mask_foci_cell = cell_cyt_mask[foci[:, 1], foci[:, 2]] if mask_foci_cell.sum() == 0: foci_cell = np.array([], dtype=np.int64).reshape((0, 5)) spots_in_foci_cell = np.array([], dtype=np.int64).reshape((0, 4)) return foci_cell, spots_in_foci_cell foci_cell = foci[mask_foci_cell] # filter spots in foci spots_to_keep = foci_cell[:, 4] mask_spots_to_keep = np.isin(spots_in_foci[:, 3], spots_to_keep) spots_in_foci_cell = spots_in_foci[mask_spots_to_keep] return foci_cell, spots_in_foci_cell def _extract_spots_outside_foci(cell_cyt_mask, spots_out_foci): """ Extract spots detected outside foci, in a specific cell. Parameters ---------- cell_cyt_mask : np.ndarray, bool Binary mask of the cell with shape (y, x). spots_out_foci : np.ndarray, np.int64 Coordinate of the spots detected outside foci, with shape (nb_spots, 4). One coordinate per dimension (zyx coordinates) plus a default index (-1 for mRNAs spotted outside a foci). Returns ------- spots_out_foci_cell : np.ndarray, np.int64 Coordinate of the spots detected outside foci in the cell, with shape (nb_spots, 4). One coordinate per dimension (zyx coordinates) plus the index of the foci. """ # get coordinates of rna outside foci mask_spots_to_keep = cell_cyt_mask[spots_out_foci[:, 1], spots_out_foci[:, 2]] spots_out_foci_cell = spots_out_foci[mask_spots_to_keep] return spots_out_foci_cell # ### Segmentation postprocessing ### # TODO add from_binary_surface_to_binary_boundaries def center_binary_mask(cyt, nuc=None, rna=None): """Center a 2-d binary mask (surface or boundaries) and pad it. One mask should be at least provided ('cyt'). If others masks are provided ('nuc' and 'rna'), they will be transformed like the main mask. All the provided masks should have the same shape. If others coordinates are provided, the values will be transformed, but an array of coordinates with the same format is returned Parameters ---------- cyt : np.ndarray, np.uint or np.int or bool Binary image of cytoplasm with shape (y, x). nuc : np.ndarray, np.uint or np.int or bool Binary image of nucleus with shape (y, x) or array of nucleus coordinates with shape (nb_points, 2). rna : np.ndarray, np.uint or np.int or bool Binary image of mRNAs localization with shape (y, x) or array of mRNAs coordinates with shape (nb_points, 2) or (nb_points, 3). Returns ------- cyt_centered : np.ndarray, np.uint or np.int or bool Centered binary image of cytoplasm with shape (y, x). nuc_centered : np.ndarray, np.uint or np.int or bool Centered binary image of nucleus with shape (y, x). rna_centered : np.ndarray, np.uint or np.int or bool Centered binary image of mRNAs localizations with shape (y, x). """ # check parameters check_array(cyt, ndim=2, dtype=[np.uint8, np.uint16, np.int64, bool]) if nuc is not None: check_array(nuc, ndim=2, dtype=[np.uint8, np.uint16, np.int64, bool]) if rna is not None: check_array(rna, ndim=2, dtype=[np.uint8, np.uint16, np.int64, bool]) # initialize parameter nuc_centered, rna_centered = None, None marge = get_offset_value() # center the binary mask of the cell coord = np.nonzero(cyt) coord = np.column_stack(coord) min_y, max_y = coord[:, 0].min(), coord[:, 0].max() min_x, max_x = coord[:, 1].min(), coord[:, 1].max() shape_y = max_y - min_y + 1 shape_x = max_x - min_x + 1 cyt_centered_shape = (shape_y + 2 * marge, shape_x + 2 * marge) cyt_centered = np.zeros(cyt_centered_shape, dtype=bool) crop = cyt[min_y:max_y + 1, min_x:max_x + 1] cyt_centered[marge:shape_y + marge, marge:shape_x + marge] = crop # center the binary mask of the nucleus with the same transformation if nuc is not None: if nuc.shape == 2: nuc_centered = nuc.copy() nuc_centered[:, 0] = nuc_centered[:, 0] - min_y + marge nuc_centered[:, 1] = nuc_centered[:, 1] - min_x + marge elif nuc.shape == cyt.shape: nuc_centered = np.zeros(cyt_centered_shape, dtype=bool) crop = nuc[min_y:max_y + 1, min_x:max_x + 1] nuc_centered[marge:shape_y + marge, marge:shape_x + marge] = crop else: raise ValueError("mRNAs mask should have the same shape than " "cytoplasm mask and coordinates should be in 2-d") # center the binary mask of the mRNAs with the same transformation if rna is not None: if rna.shape[1] == 3: rna_centered = rna.copy() rna_centered[:, 1] = rna_centered[:, 1] - min_y + marge rna_centered[:, 2] = rna_centered[:, 2] - min_x + marge elif rna.shape[1] == 2: rna_centered = rna.copy() rna_centered[:, 0] = rna_centered[:, 0] - min_y + marge rna_centered[:, 1] = rna_centered[:, 1] - min_x + marge elif rna.shape == cyt.shape: rna_centered = np.zeros(cyt_centered_shape, dtype=bool) crop = rna[min_y:max_y + 1, min_x:max_x + 1] rna_centered[marge:shape_y + marge, marge:shape_x + marge] = crop else: raise ValueError("mRNAs mask should have the same shape than " "cytoplasm mask and coordinates should be in 2-d " "or 3-d") return cyt_centered, nuc_centered, rna_centered def from_surface_to_coord(binary_surface): """Extract coordinates from a 2-d binary matrix. The resulting coordinates represent the external boundaries of the object. Parameters ---------- binary_surface : np.ndarray, np.uint or np.int or bool Binary image with shape (y, x). Returns ------- coord : np.ndarray, np.int64 Array of boundaries coordinates with shape (nb_points, 2). """ # check parameters check_array(binary_surface, ndim=2, dtype=[np.uint8, np.uint16, np.int64, bool]) # from binary surface to 2D coordinates boundaries coord = find_contours(binary_surface, level=0)[0].astype(np.int64) return coord def complete_coord_boundaries(coord): """Complete a 2-d coordinates array, by generating/interpolating missing points. Parameters ---------- coord : np.ndarray, np.int64 Array of coordinates to complete, with shape (nb_points, 2). Returns ------- coord_completed : np.ndarray, np.int64 Completed coordinates arrays, with shape (nb_points, 2). """ # check parameters check_array(coord, ndim=2, dtype=[np.int64]) # for each array in the list, complete its coordinates using the scikit # image method 'polygon_perimeter' coord_y, coord_x = polygon_perimeter(coord[:, 0], coord[:, 1]) coord_y = coord_y[:, np.newaxis] coord_x = coord_x[:, np.newaxis] coord_completed = np.concatenate((coord_y, coord_x), axis=-1) return coord_completed def _from_coord_to_boundaries(coord_cyt, coord_nuc=None, coord_rna=None): """Convert 2-d coordinates to a binary matrix with the boundaries of the object. As we manipulate the coordinates of the external boundaries, the relative binary matrix has two extra pixels in each dimension. We compensate by reducing the marge by one in order to keep the same shape for the frame. If others coordinates are provided, the relative binary matrix is build with the same shape as the main coordinates. Parameters ---------- coord_cyt : np.ndarray, np.int64 Array of cytoplasm boundaries coordinates with shape (nb_points, 2). coord_nuc : np.ndarray, np.int64 Array of nucleus boundaries coordinates with shape (nb_points, 2). coord_rna : np.ndarray, np.int64 Array of mRNAs coordinates with shape (nb_points, 2) or (nb_points, 3). Returns ------- cyt : np.ndarray, np.uint or np.int or bool Binary image of cytoplasm boundaries with shape (y, x). nuc : np.ndarray, np.uint or np.int or bool Binary image of nucleus boundaries with shape (y, x). rna : np.ndarray, np.uint or np.int or bool Binary image of mRNAs localizations with shape (y, x). """ # initialize parameter nuc, rna = None, None marge = get_offset_value() marge -= 1 # from 2D coordinates boundaries to binary boundaries max_y = coord_cyt[:, 0].max() max_x = coord_cyt[:, 1].max() min_y = coord_cyt[:, 0].min() min_x = coord_cyt[:, 1].min() shape_y = max_y - min_y + 1 shape_x = max_x - min_x + 1 image_shape = (shape_y + 2 * marge, shape_x + 2 * marge) coord_cyt[:, 0] = coord_cyt[:, 0] - min_y + marge coord_cyt[:, 1] = coord_cyt[:, 1] - min_x + marge cyt = np.zeros(image_shape, dtype=bool) cyt[coord_cyt[:, 0], coord_cyt[:, 1]] = True # transform nucleus coordinates with the same parameters if coord_nuc is not None: nuc = np.zeros(image_shape, dtype=bool) coord_nuc[:, 0] = coord_nuc[:, 0] - min_y + marge coord_nuc[:, 1] = coord_nuc[:, 1] - min_x + marge nuc[coord_nuc[:, 0], coord_nuc[:, 1]] = True # transform mRNAs coordinates with the same parameters if coord_rna is not None: rna = np.zeros(image_shape, dtype=bool) if coord_rna.shape[1] == 3: coord_rna[:, 1] = coord_rna[:, 1] - min_y + marge coord_rna[:, 2] = coord_rna[:, 2] - min_x + marge rna[coord_rna[:, 1], coord_rna[:, 2]] = True else: coord_rna[:, 0] = coord_rna[:, 0] - min_y + marge coord_rna[:, 1] = coord_rna[:, 1] - min_x + marge rna[coord_rna[:, 0], coord_rna[:, 1]] = True return cyt, nuc, rna def from_boundaries_to_surface(binary_boundaries): """Fill in the binary matrix representing the boundaries of an object. Parameters ---------- binary_boundaries : np.ndarray, np.uint or np.int or bool Binary image with shape (y, x). Returns ------- binary_surface : np.ndarray, np.uint or np.int or bool Binary image with shape (y, x). """ # TODO check dtype input & output # check parameters check_array(binary_boundaries, ndim=2, dtype=[np.uint8, np.uint16, np.int64, bool]) # from binary boundaries to binary surface binary_surface = ndi.binary_fill_holes(binary_boundaries) return binary_surface def from_coord_to_surface(coord_cyt, coord_nuc=None, coord_rna=None): """Convert 2-d coordinates to a binary matrix with the surface of the object. As we manipulate the coordinates of the external boundaries, the relative binary matrix has two extra pixels in each dimension. We compensate by keeping only the inside pixels of the object surface. If others coordinates are provided, the relative binary matrix is build with the same shape as the main coordinates. Parameters ---------- coord_cyt : np.ndarray, np.int64 Array of cytoplasm boundaries coordinates with shape (nb_points, 2). coord_nuc : np.ndarray, np.int64 Array of nucleus boundaries coordinates with shape (nb_points, 2). coord_rna : np.ndarray, np.int64 Array of mRNAs coordinates with shape (nb_points, 2) or (nb_points, 3). Returns ------- cyt_surface : np.ndarray, np.uint or np.int or bool Binary image of cytoplasm surface with shape (y, x). nuc_surface : np.ndarray, np.uint or np.int or bool Binary image of nucleus surface with shape (y, x). rna : np.ndarray, np.uint or np.int or bool Binary image of mRNAs localizations with shape (y, x). """ # check parameters check_array(coord_cyt, ndim=2, dtype=[np.int64]) if coord_nuc is not None: check_array(coord_nuc, ndim=2, dtype=[np.int64]) if coord_rna is not None: check_array(coord_rna, ndim=2, dtype=[np.int64]) # from coordinates to binary boundaries cyt, nuc, rna = _from_coord_to_boundaries(coord_cyt, coord_nuc, coord_rna) # from binary boundaries to binary surface cyt_surface = from_boundaries_to_surface(cyt) nuc_surface = from_boundaries_to_surface(nuc) return cyt_surface, nuc_surface, rna
from .waymo import WaymoDataset from .waymo_common import * __all__ = ["WaymoDataset"]
#!/usr/bin/env python import Bio from Bio.KEGG import REST from Bio.KEGG import Enzyme import re from Bio.KEGG import Compound import gzip import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns def create_enzyme_df(path_to_file): """ input:path_to_file. file.gz format output:enzyme dataframe """ enzyme_fields = [method for method in dir(Enzyme.Record()) if not method.startswith('_')] data_matrix = [] with gzip.open(path_to_file, 'rt') as file: for record in enzyme.parse(file): data_matrix.append([getattr(record, field) for field in enzyme_fields]) enzyme_df = pd.DataFrame(data_matrix, columns=enzyme_fields) return enzyme_df def get_compact_promiscuous_df(enzyme_df): """ input:enzyme dataframe (dataframe) output:promiscuous enzyme dataframe (dataframe) """ promiscuous_df = enzyme_df[[True if len(rxn) > 1 else False for rxn in enzyme_df['reaction']]] compact_promiscuous_df = promiscuous_df[['entry','reaction','product','substrate']] return compact_promiscuous_df def get_reaction_list(df): """ get the list of reaction from a dataframe that contains reaction column input:dataframe with reaction column (df) output: list of reaction (list) """ reaction_list = [] for index,row in df.iterrows(): for reaction in row['reaction']: reaction_split = reaction.split("[RN:")[-1] if reaction_split.startswith("R") and not reaction_split.startswith("RN"): for i in reaction_split[:-1].split(" "): reaction_list.append(i) return reaction_list def query_reversible_reaction(reaction_list): """ get the list of reversible reaction input:list of reactions(list) eg)["R00709"] output:list of reversible reactions(list) """ reversible_reaction = [] for reaction in reaction_list: reaction_file = REST.kegg_get(reaction).read() for i in reaction_file.rstrip().split("\n"): if i.startswith("EQUATION") and "<=>" in i: reversible_reaction.append(reaction) return reversible_reaction def combine_substrate_product(df): """ append substrates to product column. should not be run multiple times. it will append substrates multiple times input:dataframe with substrate and product(df) output:dataframe with combined substrate and product. named under product column(df) """ rowindex = np.arange(0,len(df)) df_with_ordered_index = df.set_index(rowindex) newdf = df_with_ordered_index for index,row in df_with_ordered_index.iterrows(): productlist = row['product'] substratelist = row['substrate'] newdf.iloc[index,2] = productlist + substratelist return newdf[["entry","product"]] def get_cofactor_list(cofactor_df,CPDcolumnname): """ <input> cofactor_df : cofactor dataframe(df) CPDcolumnname : name of CPD columnname from cofactor dataframe(str) <output> cofactor_list : list of cofactors from cofactor dataframe (list) """ cofactor_list = [cofactor[4:10] for cofactor in cofactor_df[CPDcolumnname]] return cofactor_list def get_cpd_id(compound_full): """ input:compound_full = compound full name (str) eg) 'oxalureate [CPD:C00802]' output: cpd = cpd id (str) eg) 'C01007' """ cpd = compound_full[-7:-1] return cpd def rm_cofactor_only_cpd(enzyme_df,cofactor_list,compound_columnname="product",keepNA=True): """ <input> enzyme_df : dataframe with enzyme information. should have substrate and product combined(df) compound_columnname : name of the column with compounds (str) cofactor_list : list of cofactors to be removed (list) keepNA : if false, will drop the row with no compounds (boolean, default:True) <output> clean dataframe (df) """ newdf = enzyme_df.drop(["product"],axis=1) cleaned_compound_column = [] for index,row in enzyme_df.iterrows(): cpd_compound_list =[] for compound in row[compound_columnname]: if "CPD" in compound: onlycpd = get_cpd(compound) if onlycpd not in cofactor_list: cpd_compound_list.append(onlycpd) else: pass if len(cpd_compound_list)==0: cleaned_compound_column.append("NA") else: cleaned_compound_column.append(cpd_compound_list) newdf['product'] = cleaned_compound_column if keepNA==False: newdf = newdf.loc[cleaned_df_productinList['product']!='NA'] return newdf def itemlist_eachrow(df,oldcolumnname,newcolumnname,sorting_column): """ <input> df: dataframe with list items in one column (dataframe) oldcolumnname : name of the old column to be replaced (str) eg)"products" newcolumnname : name of the new column to replace (str) eg)"product" sorting_column : name of the column to be sorted by (str) eg)"entry" <output> dataframe with each item in each row. """ newdf = df[oldcolumnname].\ apply(pd.Series).\ merge(df, left_index=True, right_index=True).\ drop([oldcolumnname],axis=1).\ melt(id_vars=[enzymecolumn],value_name=newcolumnname).\ sort_values(by=[sorting_column]).\ dropna().\ drop(columns=["variable"]) return newdf def compound_records_to_df(file_path): """ Function parses all records using Biopython.Bio.KEGG.Compound parser, and returns a pandas dataframe. <Input> filepath = file path to a gzipped text file of KEGG enzyme records (str) <output> compound dataframe """ compound_fields = [method for method in dir(Compound.Record()) if not method.startswith('_')] data_matrix = [] with gzip.open(file_path, 'rt') as file: for record in Compound.parse(file): data_matrix.append([getattr(record, field) for field in compound_fields]) compound_df = pd.DataFrame(data_matrix, columns=compound_fields) return compound_df def extract_PubChem_id(field): """ This function uses regular expressions to extract the PubChem compound IDs from a field in a record input : field output : pubchem_id """ regex = "'PubChem', \[\'(\d+)\'\]\)" # matches "'PubChem', ['" characters exactly, then captures any number of digits (\d+), before another literal "']" character match ids = re.findall(regex, str(field), re.IGNORECASE) if len(ids) > 0: pubchem_id = ids[0] else: pubchem_id = '' return pubchem_id
import pygame import psutil import cpuinfo import socket import time import nmap from cpuinfo import get_cpu_info red = (200,0,0) white = (210,214,217) blue = (0,0,200) grey = (105,105,105) black = (0,0,0) largura_tela, altura_tela = 1024,760 pygame.init() pygame.font.init() font = pygame.font.Font(None, 32) uso = psutil.cpu_percent(interval=1, percpu=True) tela = pygame.display.set_mode((largura_tela, altura_tela)) ip = socket.gethostbyname(socket.gethostname()) info = get_cpu_info() address = psutil.net_if_addrs() p = psutil.Process() processos = psutil.pids() menu = "" menu1 = True menu2 = True menu3 = True p_lista = [] pos = pygame.mouse.get_pos() buttons = 30 pygame.display.set_caption("TP07 - Monitoramento do PC") pygame.display.init() clock = pygame.time.Clock() def pc_infos(): font = pygame.font.Font(None, 36) s1 = pygame.surface.Surface((largura_tela, altura_tela/3)) texto_barra = "Detalhes do Processador" text = font.render(texto_barra, 1, white) s1.blit(text, (30, 10)) font = pygame.font.Font(None, 28) texto_barra = ('Nome: {}'.format(info['brand_raw'])) text = font.render(texto_barra, 1, white) s1.blit(text, (30, 50)) texto_barra = ('Arquitetura: {}'.format(info['arch_string_raw'])) text = font.render(texto_barra, 1, white) s1.blit(text, (30, 90)) texto_barra = ('Palavra (bits): {}'.format(info['bits'])) text = font.render(texto_barra, 1, white) s1.blit(text, (30, 120)) texto_barra = ('Frequência (MHz): {}'.format(round(psutil.cpu_freq().current, 2))) text = font.render(texto_barra, 1, white) s1.blit(text, (30, 150)) texto_barra = ('Núcleos (Físicos): {} ({})'.format(psutil.cpu_count(), psutil.cpu_count(logical=False))) text = font.render(texto_barra, 1, white) s1.blit(text, (30, 180)) y = 60 for chave in address: IP = address[chave][1] addrs = IP[:3] y+= 30 texto_barra = ('{:12.10}: {} - netmask: {}'.format(chave, addrs[1], addrs[2])) text = font.render(texto_barra, 1, white) s1.blit(text, (350, y)) tela.blit(s1, (0, 0)) def cpu_graph(): s2 = pygame.surface.Surface((largura_tela, altura_tela/5)) uso = psutil.cpu_percent(interval=1) larg = largura_tela - 2*40 pygame.draw.rect(s2, blue, (20, 30, larg, 10)) larg = larg*uso/100 pygame.draw.rect(s2, red, (20, 30, larg, 10)) texto_barra = 'Uso de CPU: {}%'.format(uso) text = font.render(texto_barra, 1, white) s2.blit(text, (20, 0)) tela.blit(s2, (0, 250)) def m_graph(): s3 = pygame.surface.Surface((largura_tela, altura_tela/5)) m = psutil.virtual_memory() larg = largura_tela - 2*40 pygame.draw.rect(s3, blue, (20, 30, larg, 10)) larg = larg*m.percent/100 pygame.draw.rect(s3, red, (20, 30, larg, 10)) total = round(m.total/(1024*1024*1024),2) texto_barra = 'Uso de Memória: {}% (Total: {} GB)'.format(m.percent, total) text = font.render(texto_barra, 1, white) s3.blit(text, (20, 0)) tela.blit(s3, (0, 350)) def disk_graph(): s4 = pygame.surface.Surface((largura_tela, altura_tela/5)) disk = psutil.disk_usage('.') larg = largura_tela - 2*40 pygame.draw.rect(s4, blue, (20, 30, larg, 10)) larg = larg*disk.percent/100 pygame.draw.rect(s4, red, (20, 30, larg, 10)) total = round(disk.total/(1024*1024*1024), 2) texto_barra = 'Uso de Disco: {}% (Total: {} GB):'.format(disk.percent,total) text = font.render(texto_barra, 1, white) s4.blit(text, (20, 0)) tela.blit(s4, (0, 450)) def threads_graph(): s5 = pygame.surface.Surface((largura_tela, altura_tela)) y = 10 num_cpu = len(uso) desl = 9 d = y + desl for i in range(num_cpu): alt = s5.get_height() - 2*y larg = (alt - (num_cpu+1)*desl)/num_cpu pygame.draw.rect(s5, red, (d, y, larg, alt)) pygame.draw.rect(s5, blue, (d, y, larg, (alt*uso[i]/100))) d = d + larg + desl tela.blit(s5, (0, 550)) def threads_text(): s5 = pygame.surface.Surface((largura_tela, altura_tela)) texto_barra = 'Uso de Threads:'.format() text = font.render(texto_barra, 1, white) s5.blit(text, (20, 0)) tela.blit(s5, (0, 530)) def infos(): s1 = pygame.surface.Surface((largura_tela, altura_tela)) font = pygame.font.Font(None, 36) texto_barra = "Monitoramento de Uso" text = font.render(texto_barra, 1, white) s1.blit(text, (350, 10)) font = pygame.font.Font(None, 28) texto_barra = ('Nome: {}'.format(info['brand_raw'])) text = font.render(texto_barra, 1, white) s1.blit(text, (20, 60)) texto_barra = ('Arquitetura: {}'.format(info['arch_string_raw'])) text = font.render(texto_barra, 1, white) s1.blit(text, (20, 90)) texto_barra = ('Palavra (bits): {}'.format(info['bits'])) text = font.render(texto_barra, 1, white) s1.blit(text, (20, 120)) texto_barra = ('Frequência (MHz): {}'.format(round(psutil.cpu_freq().current, 2))) text = font.render(texto_barra, 1, white) s1.blit(text, (20, 150)) texto_barra = ('Núcleos (físicos): {} ({})'.format(str(psutil.cpu_count()), str(psutil.cpu_count(logical=False)))) text = font.render(texto_barra, 1, white) s1.blit(text, (20, 180)) texto_barra = ('IP Address: {}'.format(ip)) text = font.render(texto_barra, 1, white) s1.blit(text, (20, 210)) font = pygame.font.Font(None, 38) #CPU uso = psutil.cpu_percent(interval=0) texto_barra = ('Uso de CPU: {}% Usado'.format(uso)) text = font.render(texto_barra, 1, white) s1.blit(text, (230, 275)) #MEMORIA m = psutil.virtual_memory() total = round(m.total/(1024*1024*1024), 2) texto_barra = ('Uso de Memória: {}% (Total: {} GB)'.format(m.percent, total)) text = font.render(texto_barra, 1, white) s1.blit(text, (230, 325)) #HD disco = psutil.disk_usage('.') total = round(disco.total/(1024*1024*1024), 2) texto_barra = ('Uso de Disco: {}% (Total: {})'.format(disco.percent, total)) text = font.render(texto_barra, 1, white) s1.blit(text, (230, 375)) tela.blit(s1, (0, 0)) #THREADS uso2 = psutil.cpu_percent(interval=1, percpu=True) y = 0 x = 0 for i in range(len(uso2)): texto_barra = ('Uso de Thread {} : {}% Usado'.format(i + 1, uso2[i])) text = font.render(texto_barra, 1, white) s1.blit(text, (20+x, 450+y)) tela.blit(s1, (0, 0)) y += 30 if i == 7: x += 500 y -= 240 def dir_header(): s1 = pygame.surface.Surface((largura_tela, altura_tela/10)) font = pygame.font.Font(None, 36) texto = '{}'.format("Detalhes de Arquivos/Diretórios") text = font.render(texto, 1, white) s1.blit(text, (650, 10)) tela.blit(s1, (0, 0)) def process_header(): s6 = pygame.surface.Surface((largura_tela, altura_tela/8)) font = pygame.font.Font(None, 16) texto_barra = '{:<6}'.format("PID") + " " texto_barra = texto_barra + '{:10}'.format("Threads") + " " texto_barra = texto_barra + '{:30}'.format("Data de Criação") + " " texto_barra = texto_barra + '{:25}'.format("CPU - UT") # UT - User Time # ST - System Time texto_barra = texto_barra + '{:26}'.format("CPU - ST") texto_barra = texto_barra + '{:25}'.format("Memory(%)") + " " texto_barra = texto_barra + '{:10}'.format("RSS") + " " # Vss = virtual set size # Rss = resident set size texto_barra = texto_barra + '{:25}'.format("VMS") + " " texto_barra = texto_barra + '{:20}'.format("Executável") text = font.render(texto_barra, 1, white) s6.blit(text, (20, 80)) tela.blit(s6, (0, 0)) def arq_dir(): s1 = pygame.surface.Surface((largura_tela, altura_tela)) p = psutil.Process() font = pygame.font.Font(None, 14) y = 100 for i in processos: texto_barra = '{:<6}'.format(i) + " " texto_barra = texto_barra + '{:^12}'.format(p.num_threads()) + " " texto_barra = texto_barra + '{:26}'.format(time.ctime(p.create_time())) texto_barra = texto_barra + '{:20.2f}'.format(p.cpu_times().user) texto_barra = texto_barra + '{:30.2f}'.format(p.cpu_times().system) texto_barra = texto_barra + '{:30.2f}'.format(p.memory_percent()) + " MB" rss = p.memory_info().rss/1024/1024 texto_barra = texto_barra + '{:30.2f}'.format(rss) + " MB" # Vss = virtual set size # Rss = resident set size vms = p.memory_info().vms/1024/1024 texto_barra = texto_barra + '{:15.2f}'.format(vms) + " MB" + " " texto_barra = texto_barra + '{:15}'.format(p.exe()) text = font.render(texto_barra, 1, white) s1.blit(text, (30, y)) tela.blit(s1, (0, 0)) y+= 15 if y >= 600: break # if (i % 3 == 0) and (i % 5 == 0): # break def arq_dir_button(): s1 = pygame.surface.Surface((largura_tela, altura_tela)) font = pygame.font.Font(None, 32) pygame.draw.rect(s1, grey, (20, 30, 125, 30)) texto_barra = "Próximo" text = font.render(texto_barra, 1, white) s1.blit(text, (38, 35)) tela.blit(s1, (670, 670)) def menu_init(): s0 = pygame.surface.Surface((largura_tela, altura_tela)) s0.fill(white) font = pygame.font.Font(None, 50) texto_barra = ("OPÇOES DE TELA") text = font.render(texto_barra, 1, black) s0.blit(text, (350, 20)) tela.blit(s0, (0, 0)) texto_barra = ("Botão esquerdo do mouse - Gráfico de Uso") text = font.render(texto_barra, 1, black) s0.blit(text, (70, 140)) tela.blit(s0, (0, 0)) texto_barra = ("Botão direito do mouse - Monitoramento de Uso Geral") text = font.render(texto_barra, 1, black) s0.blit(text, (70, 260)) tela.blit(s0, (0, 0)) texto_barra = ("ESPAÇO - Detalhes de Arquivos/Diretórios") text = font.render(texto_barra, 1, black) s0.blit(text, (70, 380)) tela.blit(s0, (0, 0)) texto_barra = ("SHIFT - ESCANEAMENTO DE IP") text = font.render(texto_barra, 1, black) s0.blit(text, (70, 500)) tela.blit(s0, (0, 0)) texto_barra = ("TAB - Voltar a Tela Inicial") text = font.render(texto_barra, 1, black) s0.blit(text, (70, 620)) tela.blit(s0, (0, 0)) def ping_ip(host): s1 = pygame.surface.Surface((largura_tela, altura_tela)) font = pygame.font.Font(None, 32) nmp = nmap.PortScanner() nmp.scan(host) y = 0 for proto in nmp[host].all_protocols(): texto_barra = 'Protocolo : {}'.format(proto) text = font.render(texto_barra, 1, white) s1.blit(text, (20, 20)) tela.blit(s1, (0, 0)) lport = nmp[host][proto].keys() for port in lport: texto_barra = 'Porta: {:<15} Estado: {:>10}'.format(port, nmp[host][proto][port]['state']) text = font.render(texto_barra, 1, white) s1.blit(text, (70, 120+y)) tela.blit(s1, (0, 0)) y+= 30 menu_init() while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() if event.type == pygame.MOUSEBUTTONDOWN and event.button == 1: pos_x, pos_y = pygame.mouse.get_pos() if pos_x >= 691 and pos_x <= 815 and pos_y >= 700 and pos_y <= 730: buttons += 30 else: menu = "menu1" if event.type == pygame.MOUSEBUTTONDOWN and event.button == 3: menu = "menu2" if event.type == pygame.KEYDOWN and event.key == pygame.K_SPACE: menu = "menu3" if event.type == pygame.KEYDOWN and event.key == pygame.K_TAB: menu = "" menu_init() if event.type == pygame.KEYDOWN and event.key == pygame.K_LSHIFT: ping_ip(ip) if menu == "menu1": pc_infos() cpu_graph() m_graph() disk_graph() threads_text() threads_graph() if menu != "menu1": break if menu == "menu2": infos() if menu != "menu2": break if menu == "menu3": arq_dir() process_header() dir_header() arq_dir_button() time.sleep(0.1) if menu != "menu3": break pygame.display.update() clock.tick(50) pygame.display.quit()
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy from scrapy.item import Item, Field class CrawlerItem(scrapy.Item): url = Field() html_title = Field() html_h1 = Field() html_h2 = Field() html_h3 = Field() html_h4 = Field() html_h5 = Field() html_h6 = Field() html_p = Field() html_a = Field()
class Table: context = '' fields = () columns = () sortable = () types = () def context_dict(self): return {field: {'field': field, 'column': col, 'sortable': sort, 'type': type_} for field, col, sort, type_ in zip(self.fields, self.columns, self.sortable, self.types)}
from dataclasses import dataclass from moxom.compiler.lexer import OperatorToken, IdentifierToken, AtomTokens from typing import Union, Optional from .cstparser import CstNode, Expr import ast from moxom.compiler.operators import operator_dict, AssignOperator, AndOperator, ThenOperator @dataclass class AtomNode: value: [str, int, float] chain: Union['AtomNode', 'FunctionNode', None] = None @dataclass class BinaryNode: token: OperatorToken lhs: 'AstNode' rhs: 'AstNode' @dataclass class FunctionNode: token: IdentifierToken chain: Union[AtomNode, 'FunctionNode', None] = None @dataclass class DeclarationNode: token: IdentifierToken arguments: [IdentifierToken] subroutine: Union['AstNode'] AstNode = Union[AtomNode, BinaryNode, FunctionNode, DeclarationNode] class AstParser: def parse(self, cst: CstNode) -> AstNode: if isinstance(cst.token_or_expr, IdentifierToken): return FunctionNode( cst.token_or_expr, self.parse(cst.right_node) if cst.right_node is not None else None ) elif type(cst.token_or_expr) in AtomTokens: value = cst.token_or_expr.value value = ast.literal_eval(value) if type(value) == str else value return AtomNode( value, self.parse(cst.right_node) if cst.right_node is not None else None ) elif isinstance(cst.token_or_expr, Expr): return self.parse(cst.right_node) elif isinstance(cst.token_or_expr, OperatorToken): operator = operator_dict[cst.token_or_expr.value] if operator in [AndOperator, ThenOperator]: left = self.parse(cst.left_node) right = self.parse(cst.right_node) return BinaryNode(cst.token_or_expr, left, right) elif operator is AssignOperator: name, arguments = self.parse_signature(cst.left_node) body = self.parse(cst.right_node) return DeclarationNode(name, arguments, body) raise Exception("Not supported token: %s" % cst.token_or_expr) @dataclass class FunctionSignature: name: IdentifierToken arguments: [IdentifierToken] def parse_signature(self, cst: CstNode) -> (IdentifierToken, [IdentifierToken]): return cst.token_or_expr, self.parse_signature_arguments(cst.right_node) def parse_signature_arguments(self, cst: Optional[CstNode]) -> [IdentifierToken]: if cst is None: return [] elif type(cst.token_or_expr) is IdentifierToken: arguments = [cst.token_or_expr] return arguments + self.parse_signature_arguments(cst.right_node) else: raise Exception("Function signature should contain only identifiers")
import numpy from sklearn.metrics import confusion_matrix def load_data(): train_labels = [] with open('digitdata/traininglabels', 'rb') as f: for i, line in enumerate(f): train_labels.append(int(line)) train_labels = numpy.array(train_labels, dtype=int) train_x = numpy.zeros((train_labels.shape[0] * 28 * 28)) with open('digitdata/trainingimages', 'rb') as f: for i, line in enumerate(f): for j, char in enumerate(line.strip('\n')): if '+' == char: train_x[i * 28 + j] = 1 if '#' == char: train_x[i * 28 + j] = 2 train_x = numpy.array(train_x, dtype=int).reshape((train_labels.shape[0], 28 * 28)) test_labels = [] with open('digitdata/testlabels', 'rb') as f: for i, line in enumerate(f): test_labels.append(int(line)) test_labels = numpy.array(test_labels, dtype=int) test_x = numpy.zeros((test_labels.shape[0] * 28 * 28)) with open('digitdata/testimages', 'rb') as f: for i, line in enumerate(f): for j, char in enumerate(line.strip('\n')): if '+' == char: test_x[i * 28 + j] = 1 if '#' == char: test_x[i * 28 + j] = 2 test_x = numpy.array(test_x, dtype=int).reshape((test_labels.shape[0], 28 * 28)) return train_x, train_labels, test_x, test_labels class BayesClassifier(object): def __init__(self): self.bayesmatrix = None def fit(self, X, y): bayesmatrix = numpy.ones((10, 3, 28 * 28), dtype=numpy.float64) for k in xrange(10): for i in xrange(3): for j in xrange(X.shape[1]): bayesmatrix[k, i, j] = numpy.sum(X[y==k, j]==i) numclass = numpy.zeros(10) for i in xrange(10): numclass[i] = numpy.sum(y==i) + 1 bayesmatrix += 1 bayesmatrix /= numclass[:, numpy.newaxis, numpy.newaxis] self.bayesmatrix = bayesmatrix def predict(self, X): labels = [] for i in xrange(X.shape[0]): label = numpy.argmax(numpy.sum(numpy.log(self.bayesmatrix[:, 0, X[i, :]==0]), axis=1) + numpy.sum(numpy.log(self.bayesmatrix[:, 1, X[i, :]==1]), axis=1) + numpy.sum(numpy.log(self.bayesmatrix[:, 2, X[i, :]==2]), axis=1)) labels.append(label) return numpy.array(labels) if "__main__" == __name__: X, y, test_x, test_y = load_data() clf = BayesClassifier() clf.fit(X, y) pr = clf.predict(test_x) print "Confusion Matrix" print confusion_matrix(test_y, pr) print "Accuracy" print numpy.sum(pr == test_y) / float(test_y.shape[0])
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Workflow to set up gcloud environment.""" import os from googlecloudsdk.calliope import base from googlecloudsdk.calliope import exceptions as c_exc from googlecloudsdk.calliope import usage_text from googlecloudsdk.command_lib import init_util from googlecloudsdk.core import config from googlecloudsdk.core import execution_utils from googlecloudsdk.core import log from googlecloudsdk.core import properties from googlecloudsdk.core import yaml from googlecloudsdk.core.configurations import named_configs from googlecloudsdk.core.console import console_io from googlecloudsdk.core.credentials import store as c_store from googlecloudsdk.core.diagnostics import network_diagnostics from googlecloudsdk.core.resource import resource_projector from googlecloudsdk.core.util import platforms @base.ReleaseTracks(base.ReleaseTrack.ALPHA, base.ReleaseTrack.BETA, base.ReleaseTrack.GA) class Init(base.Command): """Initialize or reinitialize gcloud. {command} launches an interactive Getting Started workflow for gcloud. It performs the following setup steps: - Authorizes gcloud and other SDK tools to access Google Cloud Platform using your user account credentials, or lets you select from accounts whose credentials are already available. - Sets properties in a gcloud configuration, including the current project and the default Google Compute Engine region and zone. {command} can be used for initial setup of gcloud and to create new or reinitialize gcloud configurations. More information can be found by running `gcloud topic configurations`. Properties set by {command} are local and persistent, and are not affected by remote changes to the project. For example, the default Compute Engine zone in your configuration remains stable, even if you or another user changes the project-level default zone in the Cloud Platform Console. To sync the configuration, re-run {command} """ @staticmethod def Args(parser): parser.add_argument( 'obsolete_project_arg', nargs='?', hidden=True, help='THIS ARGUMENT NEEDS HELP TEXT.') parser.add_argument( '--console-only', action='store_true', help=('Prevent the command from launching a browser for ' 'authorization.')) parser.add_argument( '--skip-diagnostics', action='store_true', help='Do not run diagnostics.') def Run(self, args): """Allows user to select configuration, and initialize it.""" if args.obsolete_project_arg: raise c_exc.InvalidArgumentException( args.obsolete_project_arg, '`gcloud init` has changed and no longer takes a PROJECT argument. ' 'Please use `gcloud source repos clone` to clone this ' 'project\'s source repositories.') log.status.write('Welcome! This command will take you through ' 'the configuration of gcloud.\n\n') if properties.VALUES.core.disable_prompts.GetBool(): raise c_exc.InvalidArgumentException( 'disable_prompts/--quiet', 'gcloud init command cannot run with disabled prompts.') configuration_name = self._PickConfiguration() if not configuration_name: return log.status.write('Your current configuration has been set to: [{0}]\n\n' .format(configuration_name)) if not args.skip_diagnostics: log.status.write('You can skip diagnostics next time by using the ' 'following flag:\n') log.status.write(' gcloud init --skip-diagnostics\n\n') network_passed = network_diagnostics.NetworkDiagnostic().RunChecks() if not network_passed: if not console_io.PromptContinue( message='Network errors detected.', prompt_string='Would you like to continue anyway', default=False): log.status.write('You can re-run diagnostics with the following ' 'command:\n') log.status.write(' gcloud info --run-diagnostics\n\n') return # User project quota is now the global default, but this command calls # legacy APIs where it should be disabled. It must happen after the config # settings are persisted so this temporary value doesn't get persisted as # well. base.DisableUserProjectQuota() if not self._PickAccount(args.console_only, preselected=args.account): return if not self._PickProject(preselected=args.project): return self._PickDefaultRegionAndZone() self._CreateBotoConfig() self._Summarize(configuration_name) def _PickAccount(self, console_only, preselected=None): """Checks if current credentials are valid, if not runs auth login. Args: console_only: bool, True if the auth flow shouldn't use the browser preselected: str, disable prompts and use this value if not None Returns: bool, True if valid credentials are setup. """ new_credentials = False accounts = c_store.AvailableAccounts() if accounts: # There is at least one credentialed account. if preselected: # Try to use the preselected account. Fail if its not credentialed. account = preselected if account not in accounts: log.status.write('\n[{0}] is not one of your credentialed accounts ' '[{1}].\n'.format(account, ','.join(accounts))) return False # Fall through to the set the account property. else: # Prompt for the account to use. idx = console_io.PromptChoice( accounts + ['Log in with a new account'], message='Choose the account you would like to use to perform ' 'operations for this configuration:', prompt_string=None) if idx is None: return False if idx < len(accounts): account = accounts[idx] else: new_credentials = True elif preselected: # Preselected account specified but there are no credentialed accounts. log.status.write('\n[{0}] is not a credentialed account.\n'.format( preselected)) return False else: # Must log in with new credentials. answer = console_io.PromptContinue( prompt_string='You must log in to continue. Would you like to log in') if not answer: return False new_credentials = True if new_credentials: # Call `gcloud auth login` to get new credentials. # `gcloud auth login` may have user interaction, do not suppress it. browser_args = ['--no-launch-browser'] if console_only else [] if not self._RunCmd(['auth', 'login'], ['--force', '--brief'] + browser_args, disable_user_output=False): return False # `gcloud auth login` already did `gcloud config set account`. else: # Set the config account to the already credentialed account. properties.PersistProperty(properties.VALUES.core.account, account) log.status.write('You are logged in as: [{0}].\n\n' .format(properties.VALUES.core.account.Get())) return True def _PickConfiguration(self): """Allows user to re-initialize, create or pick new configuration. Returns: Configuration name or None. """ configs = named_configs.ConfigurationStore.AllConfigs() active_config = named_configs.ConfigurationStore.ActiveConfig() if not configs or active_config.name not in configs: # Listing the configs will automatically create the default config. The # only way configs could be empty here is if there are no configurations # and the --configuration flag or env var is set to something that does # not exist. If configs has items, but the active config is not in there, # that similarly means that hey are using the flag or the env var and that # config does not exist. In either case, just create it and go with that # one as the one that as they have already selected it. named_configs.ConfigurationStore.CreateConfig(active_config.name) # Need to active it in the file, not just the environment. active_config.Activate() return active_config.name # If there is a only 1 config, it is the default, and there are no # properties set, assume it was auto created and that it should be # initialized as if it didn't exist. if len(configs) == 1: default_config = configs.get(named_configs.DEFAULT_CONFIG_NAME, None) if default_config and not default_config.GetProperties(): default_config.Activate() return default_config.name choices = [] log.status.write('Settings from your current configuration [{0}] are:\n' .format(active_config.name)) log.status.flush() log.status.write(yaml.dump(properties.VALUES.AllValues())) log.out.flush() log.status.write('\n') log.status.flush() choices.append( 'Re-initialize this configuration [{0}] with new settings '.format( active_config.name)) choices.append('Create a new configuration') config_choices = [name for name, c in sorted(configs.iteritems()) if not c.is_active] choices.extend('Switch to and re-initialize ' 'existing configuration: [{0}]'.format(name) for name in config_choices) idx = console_io.PromptChoice(choices, message='Pick configuration to use:') if idx is None: return None if idx == 0: # If reinitialize was selected. self._CleanCurrentConfiguration() return active_config.name if idx == 1: # Second option is to create new configuration. return self._CreateConfiguration() config_name = config_choices[idx - 2] named_configs.ConfigurationStore.ActivateConfig(config_name) return config_name def _PickProject(self, preselected=None): """Allows user to select a project. Args: preselected: str, use this value if not None Returns: str, project_id or None if was not selected. """ project_id = init_util.PickProject(preselected=preselected) if project_id is not None: properties.PersistProperty(properties.VALUES.core.project, project_id) log.status.write('Your current project has been set to: [{0}].\n\n' .format(project_id)) return project_id def _PickDefaultRegionAndZone(self): """Pulls metadata properties for region and zone and sets them in gcloud.""" try: # Use --quiet flag to skip the enable api prompt. project_info = self._RunCmd(['compute', 'project-info', 'describe'], params=['--quiet']) except Exception: # pylint:disable=broad-except log.status.write("""\ Not setting default zone/region (this feature makes it easier to use [gcloud compute] by setting an appropriate default value for the --zone and --region flag). See https://cloud.google.com/compute/docs/gcloud-compute section on how to set default compute region and zone manually. If you would like [gcloud init] to be able to do this for you the next time you run it, make sure the Compute Engine API is enabled for your project on the https://console.developers.google.com/apis page. """) return None default_zone = None default_region = None if project_info is not None: project_info = resource_projector.MakeSerializable(project_info) metadata = project_info.get('commonInstanceMetadata', {}) for item in metadata.get('items', []): if item['key'] == 'google-compute-default-zone': default_zone = item['value'] elif item['key'] == 'google-compute-default-region': default_region = item['value'] # We could not determine zone automatically. Before offering choices for # zone and/or region ask user if he/she wants to do this. if not default_zone: answer = console_io.PromptContinue( prompt_string=('Do you want to configure a default Compute ' 'Region and Zone?')) if not answer: return # Same logic applies to region and zone properties. def SetProperty(name, default_value, list_command): """Set named compute property to default_value or get via list command.""" if not default_value: values = self._RunCmd(list_command) if values is None: return values = list(values) message = ( 'Which Google Compute Engine {0} would you like to use as project ' 'default?\n' 'If you do not specify a {0} via a command line flag while working ' 'with Compute Engine resources, the default is assumed.').format( name) idx = console_io.PromptChoice( [value['name'] for value in values] + ['Do not set default {0}'.format(name)], message=message, prompt_string=None, allow_freeform=True, freeform_suggester=usage_text.TextChoiceSuggester()) if idx is None or idx == len(values): return default_value = values[idx] properties.PersistProperty(properties.VALUES.compute.Property(name), default_value['name']) log.status.write('Your project default Compute Engine {0} has been set ' 'to [{1}].\nYou can change it by running ' '[gcloud config set compute/{0} NAME].\n\n' .format(name, default_value['name'])) return default_value if default_zone: default_zone = self._RunCmd(['compute', 'zones', 'describe'], [default_zone]) zone = SetProperty('zone', default_zone, ['compute', 'zones', 'list']) if zone and not default_region: default_region = zone['region'] if default_region: default_region = self._RunCmd(['compute', 'regions', 'describe'], [default_region]) SetProperty('region', default_region, ['compute', 'regions', 'list']) def _Summarize(self, configuration_name): log.status.Print('Your Google Cloud SDK is configured and ready to use!\n') log.status.Print( '* Commands that require authentication will use {0} by default' .format(properties.VALUES.core.account.Get())) project = properties.VALUES.core.project.Get() if project: log.status.Print( '* Commands will reference project `{0}` by default' .format(project)) region = properties.VALUES.compute.region.Get() if region: log.status.Print( '* Compute Engine commands will use region `{0}` by default' .format(region)) zone = properties.VALUES.compute.zone.Get() if zone: log.status.Print( '* Compute Engine commands will use zone `{0}` by default\n' .format(zone)) log.status.Print( 'Run `gcloud help config` to learn how to change individual settings\n') log.status.Print( 'This gcloud configuration is called [{config}]. You can create ' 'additional configurations if you work with multiple accounts and/or ' 'projects.'.format(config=configuration_name)) log.status.Print('Run `gcloud topic configurations` to learn more.\n') log.status.Print('Some things to try next:\n') log.status.Print( '* Run `gcloud --help` to see the Cloud Platform services you can ' 'interact with. And run `gcloud help COMMAND` to get help on any ' 'gcloud command.') log.status.Print( '* Run `gcloud topic -h` to learn about advanced features of the SDK ' 'like arg files and output formatting') def _CreateConfiguration(self): configuration_name = console_io.PromptResponse( 'Enter configuration name. Names start with a lower case letter and ' 'contain only lower case letters a-z, digits 0-9, and hyphens \'-\': ') configuration_name = configuration_name.strip() named_configs.ConfigurationStore.CreateConfig(configuration_name) named_configs.ConfigurationStore.ActivateConfig(configuration_name) named_configs.ActivePropertiesFile.Invalidate() return configuration_name def _CreateBotoConfig(self): gsutil_path = _FindGsutil() if not gsutil_path: log.debug('Unable to find [gsutil]. Not configuring default .boto ' 'file') return boto_path = platforms.ExpandHomePath(os.path.join('~', '.boto')) if os.path.exists(boto_path): log.debug('Not configuring default .boto file. File already ' 'exists at [{boto_path}].'.format(boto_path=boto_path)) return # 'gsutil config -n' creates a default .boto file that the user can read and # modify. command_args = ['config', '-n', '-o', boto_path] if platforms.OperatingSystem.Current() == platforms.OperatingSystem.WINDOWS: gsutil_args = execution_utils.ArgsForCMDTool(gsutil_path, *command_args) else: gsutil_args = execution_utils.ArgsForExecutableTool(gsutil_path, *command_args) return_code = execution_utils.Exec(gsutil_args, no_exit=True, out_func=log.file_only_logger.debug, err_func=log.file_only_logger.debug) if return_code == 0: log.status.write("""\ Created a default .boto configuration file at [{boto_path}]. See this file and [https://cloud.google.com/storage/docs/gsutil/commands/config] for more information about configuring Google Cloud Storage. """.format(boto_path=boto_path)) else: log.status.write('Error creating a default .boto configuration file. ' 'Please run [gsutil config -n] if you would like to ' 'create this file.\n') def _CleanCurrentConfiguration(self): properties.PersistProperty(properties.VALUES.core.account, None) properties.PersistProperty(properties.VALUES.core.project, None) properties.PersistProperty(properties.VALUES.compute.region, None) properties.PersistProperty(properties.VALUES.compute.zone, None) named_configs.ActivePropertiesFile.Invalidate() def _RunCmd(self, cmd, params=None, disable_user_output=True): if not self._cli_power_users_only.IsValidCommand(cmd): log.info('Command %s does not exist.', cmd) return None if params is None: params = [] args = cmd + params log.info('Executing: [gcloud %s]', ' '.join(args)) try: # Disable output from individual commands, so that we get # command run results, and don't clutter output of init. if disable_user_output: args.append('--no-user-output-enabled') if (properties.VALUES.core.verbosity.Get() is None and disable_user_output): # Unless user explicitly set verbosity, suppress from subcommands. args.append('--verbosity=none') if properties.VALUES.core.log_http.GetBool(): args.append('--log-http') # TODO(b/38338044): Remove usage of ExecuteCommandDoNotUse return resource_projector.MakeSerializable( self.ExecuteCommandDoNotUse(args)) except SystemExit as exc: log.info('[%s] has failed\n', ' '.join(cmd + params)) raise c_exc.FailedSubCommand(cmd + params, exc.code) except BaseException: log.info('Failed to run [%s]\n', ' '.join(cmd + params)) raise def _FindGsutil(): """Finds the bundled gsutil wrapper. Returns: The path to gsutil. """ sdk_bin_path = config.Paths().sdk_bin_path if not sdk_bin_path: return if platforms.OperatingSystem.Current() == platforms.OperatingSystem.WINDOWS: gsutil = 'gsutil.cmd' else: gsutil = 'gsutil' return os.path.join(sdk_bin_path, gsutil)
import json from pprint import pprint, pformat from dateutil.parser import parse as parsetimestamp SILENCE_STATUSES = [ "CREATE_COMPLETE", "CREATE_IN_PROGRESS", "DELETE_COMPLETE", "DELETE_IN_PROGRESS", "REVIEW_IN_PROGRESS", "ROLLBACK_COMPLETE", "ROLLBACK_IN_PROGRESS", "UPDATE_COMPLETE", "UPDATE_COMPLETE_CLEANUP_IN_PROGRESS", "UPDATE_IN_PROGRESS", "UPDATE_ROLLBACK_COMPLETE", "UPDATE_ROLLBACK_COMPLETE_CLEANUP_IN_PROGRESS", "UPDATE_ROLLBACK_IN_PROGRESS", ] def get_time(event): return parsetimestamp(event["Timestamp"]) def tprint(title): print("%s\n%s\n" % (title, "#" * len(title))) def iformat(string, indent=0): if not isinstance(object, str): string = pformat(string) return ("\n" + " " * indent).join(string.splitlines()) messages = json.load(open(".cf.messages")) events = messages["StackEvents"] relevant = [] ignored = set() last_time = get_time(events[0]) for event in events: age = last_time - get_time(event) status = event.get("ResourceStatus") if age.seconds > 60: break last_time = get_time(event) if status not in SILENCE_STATUSES: event["RelativeAge"] = str(age) relevant.append(event) else: ignored.add(status) if ignored: print("Ignoring %s" % ", ".join(ignored)) if relevant: print("\nTraceback (most recent event at botom):") for event in relevant[::-1]: status = event.pop("ResourceStatus") properties = event.get("ResourceProperties", "{}") try: event["ResourceProperties"] = json.loads(properties) except: print("could not process properties '%s'" % properties) print(status) for key, value in event.items(): print(" %s: %s" % (key, iformat(value, 8))) print("") else: print("CloudFormation Stack's logs looks clear.")
# RUN: %PYTHON %s import absl.testing import numpy import test_util import urllib.request from PIL import Image model_path = "https://tfhub.dev/tensorflow/lite-model/mobilenet_v2_1.0_224_quantized/1/default/1?lite-format=tflite" class MobilenetQuantTest(test_util.TFLiteModelTest): def __init__(self, *args, **kwargs): super(MobilenetQuantTest, self).__init__(model_path, *args, **kwargs) def compare_results(self, iree_results, tflite_results, details): super(MobilenetQuantTest, self).compare_results(iree_results, tflite_results, details) self.assertTrue(numpy.isclose(iree_results[0], tflite_results[0], atol=1e-6).all()) def generate_inputs(self, input_details): img_path = "https://github.com/google-coral/test_data/raw/master/cat.bmp" local_path = "/".join([self.workdir, "cat.bmp"]) urllib.request.urlretrieve(img_path, local_path) shape = input_details[0]["shape"] im = numpy.array(Image.open(local_path).resize((shape[1], shape[2]))) args = [im.reshape(shape)] return args def test_compile_tflite(self): self.compile_and_execute() if __name__ == '__main__': absl.testing.absltest.main()
#!/usr/bin/env python # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ........................................ NOTICE # # This file has been derived and modified from a source licensed under Apache Version 2.0. # See files NOTICE and README.md for more details. # # ........................................ ****** """ logtools._parse Log format parsing programmatic and command-line utilities. uses the logtools.parsers module """ import sys import logging from operator import and_ from optparse import OptionParser from functools import reduce import json import logtools.parsers import logtools.parsers2 from ._config import interpolate_config, AttrDict, setLoglevel from ._config import checkDpath from .parsers2 import FileFormat , TraditionalFileFormat, ForwardFormat from .parsers2 import TraditionalForwardFormat from .utils import getObj checkDpath() __all__ = ['logparse_parse_args', 'logparse', 'logparse_main'] def logparse_parse_args(): parser = OptionParser() parser.add_option("-p", "--parser", dest="parser", default=None, help="Log format parser (e.g 'CommonLogFormat'). See documentation for available parsers.") # noqa parser.add_option("-F", "--format", dest="format", default=None, help="Format string. Used by the parser (e.g AccessLog format specifier)") # noqa parser.add_option("-f", "--field", dest="field", default=None, help="Parsed Field index to output") parser.add_option("-i", "--ignore", dest="ignore", default=None, action="store_true", # noqa help="Ignore missing fields errors (skip lines with missing fields)") # noqa parser.add_option("-H", "--header", dest="header", default=None, action="store_true", # noqa help="Prepend a header describing the selected fields to output.") # noqa parser.add_option("-P", "--profile", dest="profile", default='logparse', help="Configuration profile (section in configuration file)") # noqa parser.add_option("-R", "--raw", dest="raw", default=None, action="store_true", help="When set output is not encoded for UTF-8") ## default kept for compatibility # logging level for debug and other information parser.add_option("-s","--sym" , type = str, dest="logLevSym", help="logging level (symbol)") parser.add_option("-n","--num" , type=int , dest="logLevVal", help="logging level (value)") options, args = parser.parse_args() # Interpolate from configuration options.parser = interpolate_config(options.parser, options.profile, 'parser') options.format = interpolate_config(options.format, options.profile, 'format', default=False) options.field = interpolate_config(options.field, options.profile, 'field') options.ignore = interpolate_config(options.ignore, options.profile, 'ignore', default=False, type=bool) options.header = interpolate_config(options.header, options.profile, 'header', default=False, type=bool) options.raw = interpolate_config(options.raw, options.profile, 'raw') # Set the logging level setLoglevel(options) return AttrDict(options.__dict__), args def logparse(options, args, fh): """Parse given input stream using given parser class and emit specified field(s)""" field = options.field logtools.parsers2.addConfigFileSection() parser = getObj(options.parser, (logtools.parsers, logtools.parsers2))() if options.get('format', None): parser.set_format(options.format) keyfunc = None keys = None if isinstance(options.field, int) or \ (isinstance(options.field, str) and options.field.isdigit()): # Field given as integer (index) field = int(options.field) - 1 key_func = lambda x: parser(x.strip()).by_index(field, raw=True) keys = [options.field] else: if isinstance(parser, logtools.parsers2.JSONParserPlus): key_func = logtools.parsers2.dpath_getter_gen(parser, options.field, options) else: # Field given as string # Check how many fields are requested keys = options.field.split(",") L = len(keys) if L == 1: key_func = lambda x: parser(x.strip())[field] else: # Multiple fields requested is_indices = reduce(and_, (k.isdigit() for k in keys), True) key_func = logtools.parsers.multikey_getter_gen(parser, keys, is_indices=is_indices) if options.header is True: yield '\t'.join(keys) for line in fh: try: yield key_func(line) except KeyError as exc: # Could not find user-specified field logging.warn("Could not match user-specified fields: %s", exc) except ValueError as exc: # Could not parse the log line if options.ignore: logging.debug("Could not match fields for parsed line: %s", line) continue else: logging.error("Could not match fields for parsed line: %s", line) raise def logparse_main(): """Console entry-point""" options, args = logparse_parse_args() for row in logparse(options, args, fh=sys.stdin): if row: if isinstance(row, dict): json.dump(row, sys.stdout) elif options.raw: print(row) else: print( row.encode('ascii', 'ignore') ) return 0
from jsonrpc import ServiceProxy import sys import string import getpass # ===== BEGIN USER SETTINGS ===== # if you do not set these you will be prompted for a password for every command rpcuser = "" rpcpass = "" # ====== END USER SETTINGS ====== if rpcpass == "": access = ServiceProxy("http://127.0.0.1:9634") else: access = ServiceProxy("http://"+rpcuser+":"+rpcpass+"@127.0.0.1:9634") cmd = sys.argv[1].lower() if cmd == "backupwallet": try: path = raw_input("Enter destination path/filename: ") print access.backupwallet(path) except: print "\n---An error occurred---\n" elif cmd == "encryptwallet": try: pwd = getpass.getpass(prompt="Enter passphrase: ") pwd2 = getpass.getpass(prompt="Repeat passphrase: ") if pwd == pwd2: access.encryptwallet(pwd) print "\n---Wallet encrypted. Server stopping, restart to run with encrypted wallet---\n" else: print "\n---Passphrases do not match---\n" except: print "\n---An error occurred---\n" elif cmd == "getaccount": try: addr = raw_input("Enter a Bitcoin address: ") print access.getaccount(addr) except: print "\n---An error occurred---\n" elif cmd == "getaccountaddress": try: acct = raw_input("Enter an account name: ") print access.getaccountaddress(acct) except: print "\n---An error occurred---\n" elif cmd == "getaddressesbyaccount": try: acct = raw_input("Enter an account name: ") print access.getaddressesbyaccount(acct) except: print "\n---An error occurred---\n" elif cmd == "getbalance": try: acct = raw_input("Enter an account (optional): ") mc = raw_input("Minimum confirmations (optional): ") try: print access.getbalance(acct, mc) except: print access.getbalance() except: print "\n---An error occurred---\n" elif cmd == "getblockbycount": try: height = raw_input("Height: ") print access.getblockbycount(height) except: print "\n---An error occurred---\n" elif cmd == "getblockcount": try: print access.getblockcount() except: print "\n---An error occurred---\n" elif cmd == "getblocknumber": try: print access.getblocknumber() except: print "\n---An error occurred---\n" elif cmd == "getconnectioncount": try: print access.getconnectioncount() except: print "\n---An error occurred---\n" elif cmd == "getdifficulty": try: print access.getdifficulty() except: print "\n---An error occurred---\n" elif cmd == "getgenerate": try: print access.getgenerate() except: print "\n---An error occurred---\n" elif cmd == "gethashespersec": try: print access.gethashespersec() except: print "\n---An error occurred---\n" elif cmd == "getinfo": try: print access.getinfo() except: print "\n---An error occurred---\n" elif cmd == "getnewaddress": try: acct = raw_input("Enter an account name: ") try: print access.getnewaddress(acct) except: print access.getnewaddress() except: print "\n---An error occurred---\n" elif cmd == "getreceivedbyaccount": try: acct = raw_input("Enter an account (optional): ") mc = raw_input("Minimum confirmations (optional): ") try: print access.getreceivedbyaccount(acct, mc) except: print access.getreceivedbyaccount() except: print "\n---An error occurred---\n" elif cmd == "getreceivedbyaddress": try: addr = raw_input("Enter a Bitcoin address (optional): ") mc = raw_input("Minimum confirmations (optional): ") try: print access.getreceivedbyaddress(addr, mc) except: print access.getreceivedbyaddress() except: print "\n---An error occurred---\n" elif cmd == "gettransaction": try: txid = raw_input("Enter a transaction ID: ") print access.gettransaction(txid) except: print "\n---An error occurred---\n" elif cmd == "getwork": try: data = raw_input("Data (optional): ") try: print access.gettransaction(data) except: print access.gettransaction() except: print "\n---An error occurred---\n" elif cmd == "help": try: cmd = raw_input("Command (optional): ") try: print access.help(cmd) except: print access.help() except: print "\n---An error occurred---\n" elif cmd == "listaccounts": try: mc = raw_input("Minimum confirmations (optional): ") try: print access.listaccounts(mc) except: print access.listaccounts() except: print "\n---An error occurred---\n" elif cmd == "listreceivedbyaccount": try: mc = raw_input("Minimum confirmations (optional): ") incemp = raw_input("Include empty? (true/false, optional): ") try: print access.listreceivedbyaccount(mc, incemp) except: print access.listreceivedbyaccount() except: print "\n---An error occurred---\n" elif cmd == "listreceivedbyaddress": try: mc = raw_input("Minimum confirmations (optional): ") incemp = raw_input("Include empty? (true/false, optional): ") try: print access.listreceivedbyaddress(mc, incemp) except: print access.listreceivedbyaddress() except: print "\n---An error occurred---\n" elif cmd == "listtransactions": try: acct = raw_input("Account (optional): ") count = raw_input("Number of transactions (optional): ") frm = raw_input("Skip (optional):") try: print access.listtransactions(acct, count, frm) except: print access.listtransactions() except: print "\n---An error occurred---\n" elif cmd == "move": try: frm = raw_input("From: ") to = raw_input("To: ") amt = raw_input("Amount:") mc = raw_input("Minimum confirmations (optional): ") comment = raw_input("Comment (optional): ") try: print access.move(frm, to, amt, mc, comment) except: print access.move(frm, to, amt) except: print "\n---An error occurred---\n" elif cmd == "sendfrom": try: frm = raw_input("From: ") to = raw_input("To: ") amt = raw_input("Amount:") mc = raw_input("Minimum confirmations (optional): ") comment = raw_input("Comment (optional): ") commentto = raw_input("Comment-to (optional): ") try: print access.sendfrom(frm, to, amt, mc, comment, commentto) except: print access.sendfrom(frm, to, amt) except: print "\n---An error occurred---\n" elif cmd == "sendmany": try: frm = raw_input("From: ") to = raw_input("To (in format address1:amount1,address2:amount2,...): ") mc = raw_input("Minimum confirmations (optional): ") comment = raw_input("Comment (optional): ") try: print access.sendmany(frm,to,mc,comment) except: print access.sendmany(frm,to) except: print "\n---An error occurred---\n" elif cmd == "sendtoaddress": try: to = raw_input("To (in format address1:amount1,address2:amount2,...): ") amt = raw_input("Amount:") comment = raw_input("Comment (optional): ") commentto = raw_input("Comment-to (optional): ") try: print access.sendtoaddress(to,amt,comment,commentto) except: print access.sendtoaddress(to,amt) except: print "\n---An error occurred---\n" elif cmd == "setaccount": try: addr = raw_input("Address: ") acct = raw_input("Account:") print access.setaccount(addr,acct) except: print "\n---An error occurred---\n" elif cmd == "setgenerate": try: gen= raw_input("Generate? (true/false): ") cpus = raw_input("Max processors/cores (-1 for unlimited, optional):") try: print access.setgenerate(gen, cpus) except: print access.setgenerate(gen) except: print "\n---An error occurred---\n" elif cmd == "settxfee": try: amt = raw_input("Amount:") print access.settxfee(amt) except: print "\n---An error occurred---\n" elif cmd == "stop": try: print access.stop() except: print "\n---An error occurred---\n" elif cmd == "validateaddress": try: addr = raw_input("Address: ") print access.validateaddress(addr) except: print "\n---An error occurred---\n" elif cmd == "walletpassphrase": try: pwd = getpass.getpass(prompt="Enter wallet passphrase: ") access.walletpassphrase(pwd, 60) print "\n---Wallet unlocked---\n" except: print "\n---An error occurred---\n" elif cmd == "walletpassphrasechange": try: pwd = getpass.getpass(prompt="Enter old wallet passphrase: ") pwd2 = getpass.getpass(prompt="Enter new wallet passphrase: ") access.walletpassphrasechange(pwd, pwd2) print print "\n---Passphrase changed---\n" except: print print "\n---An error occurred---\n" print else: print "Command not found or not supported"
import numpy as np def relu(input): '''Define your relu activation function here''' # Calculate the value for the output of the relu function: output output = max(input, 0) # Return the value just calculated return(output) input_data = np.array([3,5]) # Calculate node 0 value: node_0_output node_0_input = (input_data * weights['node_0']).sum() node_0_output = relu(node_0_input) # Calculate node 1 value: node_1_output node_1_input = (input_data * weights['node_1']).sum() node_1_output = relu(node_1_input) # Put node values into array: hidden_layer_outputs hidden_layer_outputs = np.array([node_0_output, node_1_output]) # Calculate model output (do not apply relu) model_output = (hidden_layer_outputs * weights['output']).sum() # Print model output print(model_output)
# Copyright (C) 2019 Intel Corporation. All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # import scenario_cfg_lib import launch_cfg_lib import common import pt def is_nuc_whl_linux(names, vmid): uos_type = names['uos_types'][vmid] board_name = names['board_name'] if launch_cfg_lib.is_linux_like(uos_type) and board_name not in ("apl-mrb", "apl-up2"): return True return False def is_mount_needed(virt_io, vmid): if True in launch_cfg_lib.MOUNT_FLAG_DIC[vmid]: return True return False def tap_uos_net(names, virt_io, vmid, config): uos_type = names['uos_types'][vmid] board_name = names['board_name'] vm_name = common.undline_name(uos_type).lower() if launch_cfg_lib.is_linux_like(uos_type) or uos_type in ("ANDROID", "ALIOS"): i = 0 for mount_flag in launch_cfg_lib.MOUNT_FLAG_DIC[vmid]: if not mount_flag: i += 1 continue blk = virt_io['block'][vmid][i] rootfs_img = blk.split(':')[1].strip(':') print('if [ ! -f "/data{}/{}" ]; then'.format(i, rootfs_img), file=config) print(' echo "no /data{}/{}, exit"'.format(i, rootfs_img), file=config) print(" exit", file=config) print("fi", file=config) print("", file=config) i += 1 print("#vm-name used to generate uos-mac address", file=config) print("mac=$(cat /sys/class/net/e*/address)", file=config) print("vm_name=post_vm_id$1", file=config) print("mac_seed=${mac:0:17}-${vm_name}", file=config) print("", file=config) for net in virt_io['network'][vmid]: if net: net_name = net if ',' in net: net_name = net.split(',')[0] print("tap_net tap_{}".format(net_name), file=config) print("#check if the vm is running or not", file=config) print("vm_ps=$(pgrep -a -f acrn-dm)", file=config) print('result=$(echo $vm_ps | grep -w "${vm_name}")', file=config) print('if [[ "$result" != "" ]]; then', file=config) print(' echo "$vm_name is running, can\'t create twice!"', file=config) print(" exit", file=config) print("fi", file=config) print("", file=config) def off_line_cpus(args, vmid, uos_type, config): """ :param args: the dictionary of argument for acrn-dm :param vmid: ID of the vm :param uos_type: the type of UOS :param config: it is a file pointer to write offline cpu information """ pcpu_id_list = get_cpu_affinity_list(args["cpu_affinity"], vmid) if not pcpu_id_list: sos_vmid = launch_cfg_lib.get_sos_vmid() cpu_affinity = common.get_leaf_tag_map(common.SCENARIO_INFO_FILE, "cpu_affinity", "pcpu_id") pcpu_id_list = get_cpu_affinity_list(cpu_affinity, sos_vmid+vmid) if not pcpu_id_list: key = "scenario config error" launch_cfg_lib.ERR_LIST[key] = "No available cpu to offline and pass it to vm {}".format(vmid) print("# offline pinned vCPUs from SOS before launch UOS", file=config) print('cpu_path="/sys/devices/system/cpu"', file=config) print("for i in `ls ${cpu_path}`; do", file=config) print(" for j in {}; do".format(' '.join([str(i) for i in pcpu_id_list])), file=config) print(' if [ "cpu"$j = $i ]; then', file=config) print(' online=`cat ${cpu_path}/$i/online`', file=config) print(' idx=`echo $i | tr -cd "[1-99]"`', file=config) print(' echo $i online=$online', file=config) print(' if [ "$online" = "1" ]; then', file=config) print(" echo 0 > ${cpu_path}/$i/online", file=config) print(" online=`cat ${cpu_path}/$i/online`", file=config) print(" # during boot time, cpu hotplug may be disabled by pci_device_probe during a pci module insmod", file=config) print(' while [ "$online" = "1" ]; do', file=config) print(" sleep 1", file=config) print(" echo 0 > ${cpu_path}/$i/online", file=config) print(" online=`cat ${cpu_path}/$i/online`", file=config) print(" done", file=config) print(" echo $idx > /sys/devices/virtual/misc/acrn_hsm/remove_cpu", file=config) print(" fi", file=config) print(" fi", file=config) print(" done", file=config) print("done", file=config) print("", file=config) def run_container(board_name, uos_type, config): """ The container contains the clearlinux as rootfs :param board_name: board name :param uos_type: the os name of user os :param config: the file pointer to store the information """ # the runC.json is store in the path under board name, but for nuc7i7dnb/nuc6cayh/kbl-nuc-i7 is under nuc/ if 'nuc' in board_name: board_name = 'nuc' if board_name not in ("apl-mrb", "nuc") or not launch_cfg_lib.is_linux_like(uos_type): return print("function run_container()", file=config) print("{", file=config) print("vm_name=vm1", file=config) print('config_src="/usr/share/acrn/samples/{}/runC.json"'.format(board_name), file=config) print('shell="/usr/share/acrn/conf/add/$vm_name.sh"', file=config) print('arg_file="/usr/share/acrn/conf/add/$vm_name.args"', file=config) print('runc_bundle="/usr/share/acrn/conf/add/runc/$vm_name"', file=config) print('rootfs_dir="/usr/share/acrn/conf/add/runc/rootfs"', file=config) print('config_dst="$runc_bundle/config.json"', file=config) print("", file=config) print("", file=config) print("input=$(runc list -f table | awk '{print $1}''{print $3}')", file=config) print("arr=(${input// / })", file=config) print("", file=config) print("for((i=0;i<${#arr[@]};i++))", file=config) print("do", file=config) print(' if [ "$vm_name" = "${arr[$i]}" ]; then', file=config) print(' if [ "running" = "${arr[$i+1]}" ]; then', file=config) print(' echo "runC instance ${arr[$i]} is running"', file=config) print(" exit", file=config) print(" else", file=config) print(" runc kill ${arr[$i]}", file=config) print(" runc delete ${arr[$i]}", file=config) print(" fi", file=config) print(" fi", file=config) print("done", file=config) print("vmsts=$(acrnctl list)", file=config) print("vms=(${vmsts// / })", file=config) print("for((i=0;i<${#vms[@]};i++))", file=config) print("do", file=config) print(' if [ "$vm_name" = "${vms[$i]}" ]; then', file=config) print(' if [ "stopped" != "${vms[$i+1]}" ]; then', file=config) print(' echo "Uos ${vms[$i]} ${vms[$i+1]}"', file=config) print(" acrnctl stop ${vms[$i]}", file=config) print(" fi", file=config) print(" fi", file=config) print("done", file=config) dst_str = """ cp "$config_src" "$config_dst" args=$(sed '{s/-C//g;s/^[ \\t]*//g;s/^/\\"/;s/ /\\",\\"/g;s/$/\\"/}' ${arg_file}) sed -i "s|\\"sh\\"|\\"$shell\\", $args|" $config_dst""" print('', file=config) print('if [ ! -f "$shell" ]; then', file=config) print(' echo "Pls add the vm at first!"', file=config) print(' exit', file=config) print('fi', file=config) print('', file=config) print('if [ ! -f "$arg_file" ]; then', file=config) print(' echo "Pls add the vm args!"', file=config) print(' exit', file=config) print('fi', file=config) print('', file=config) print('if [ ! -d "$rootfs_dir" ]; then', file=config) print(' mkdir -p "$rootfs_dir"', file=config) print('fi', file=config) print('if [ ! -d "$runc_bundle" ]; then', file=config) print(' mkdir -p "$runc_bundle"', file=config) print('fi', file=config) print('if [ ! -f "$config_dst" ]; then', file=config) print('{}'.format(dst_str), file=config) print('fi', file=config) print('runc run --bundle $runc_bundle -d $vm_name', file=config) print('echo "The runC container is running in backgroud"', file=config) print('echo "\'#runc exec <vmname> bash\' to login the container bash"', file=config) print('exit', file=config) print('}', file=config) print('', file=config) def boot_image_type(args, vmid, config): if not args['vbootloader'][vmid] or (args['vbootloader'][vmid] and args['vbootloader'][vmid] != "vsbl"): return print('boot_dev_flag=",b"', file=config) print("if [ $4 == 1 ];then", file=config) print(' boot_image_option="--vsbl /usr/share/acrn/bios/VSBL_debug.bin"', file=config) print("else", file=config) print(' boot_image_option="--vsbl /usr/share/acrn/bios/VSBL.bin"', file=config) print("fi", file=config) print("", file=config) def interrupt_storm(pt_sel, config): if not pt_sel: return # TODO: --intr_monitor should be configurable by user print("#interrupt storm monitor for pass-through devices, params order:", file=config) print("#threshold/s,probe-period(s),intr-inject-delay-time(ms),delay-duration(ms)", file=config) print('intr_storm_monitor="--intr_monitor 10000,10,1,100"', file=config) print("", file=config) def gvt_arg_set(dm, vmid, uos_type, config): gvt_args = dm['gvt_args'][vmid] if gvt_args == "gvtd": bus = int(launch_cfg_lib.GPU_BDF.split(':')[0], 16) dev = int(launch_cfg_lib.GPU_BDF.split('.')[0].split(':')[1], 16) fun = int(launch_cfg_lib.GPU_BDF.split('.')[1], 16) print(' -s 2,passthru,{}/{}/{},gpu \\'.format(bus, dev, fun), file=config) elif gvt_args: print(' -s 2,pci-gvt -G "$2" \\', file=config) def log_level_set(uos_type, config): print("#logger_setting, format: logger_name,level; like following", file=config) print('logger_setting="--logger_setting console,level=4;kmsg,level=3;disk,level=5"', file=config) print("", file=config) def tap_network(virt_io, vmid, config): none_i = 0 tap_net_list = virt_io['network'][vmid] for net in tap_net_list: if net == None: none_i += 1 tap_net_num = len(tap_net_list) - none_i if tap_net_num >= 1: print("function tap_net() {", file=config) print("# create a unique tap device for each VM", file=config) print("tap=$1", file=config) print('tap_exist=$(ip a | grep "$tap" | awk \'{print $1}\')', file=config) print('if [ "$tap_exist"x != "x" ]; then', file=config) print(' echo "tap device existed, reuse $tap"', file=config) print("else", file=config) print(" ip tuntap add dev $tap mode tap", file=config) print("fi", file=config) print("", file=config) print("# if acrn-br0 exists, add VM's unique tap device under it", file=config) print("br_exist=$(ip a | grep acrn-br0 | awk '{print $1}')", file=config) print('if [ "$br_exist"x != "x" -a "$tap_exist"x = "x" ]; then', file=config) print(' echo "acrn-br0 bridge aleady exists, adding new tap device to it..."', file=config) print(' ip link set "$tap" master acrn-br0', file=config) print(' ip link set dev "$tap" down', file=config) print(' ip link set dev "$tap" up', file=config) print("fi", file=config) print("}", file=config) print("", file=config) def launch_begin(names, virt_io, vmid, config): board_name = names['board_name'] uos_type = names['uos_types'][vmid] launch_uos = common.undline_name(uos_type).lower() tap_network(virt_io, vmid, config) run_container(board_name, uos_type, config) print("function launch_{}()".format(launch_uos), file=config) print("{", file=config) def wa_usage(uos_type, config): if uos_type in ("ANDROID", "ALIOS"): print("# WA for USB role switch hang issue, disable runtime PM of xHCI device", file=config) print("echo on > /sys/devices/pci0000:00/0000:00:15.0/power/control", file=config) print("", file=config) def mem_size_set(args, vmid, config): mem_size = args['mem_size'][vmid] print("mem_size={}M".format(mem_size), file=config) def uos_launch(names, args, virt_io, vmid, config): gvt_args = args['gvt_args'][vmid] uos_type = names['uos_types'][vmid] launch_uos = common.undline_name(uos_type).lower() board_name = names['board_name'] if 'nuc' in board_name: board_name = 'nuc' if uos_type == "CLEARLINUX" and board_name in ("apl-mrb", "nuc"): print('if [ "$1" = "-C" ];then', file=config) print(' if [ $(hostname) = "runc" ]; then', file=config) print(' echo "Already in container exit!"', file=config) print(" exit", file=config) print(" fi", file=config) print(' echo "runc_container"', file=config) print(" run_container", file=config) if board_name == "apl-mrb": print(" exit", file=config) print("fi", file=config) if is_mount_needed(virt_io, vmid): print("", file=config) if gvt_args == "gvtd" or not gvt_args: print('launch_{} {} "{}" $debug'.format(launch_uos, vmid, vmid), file=config) else: print('launch_{} {} "{}" "{}" $debug'.format(launch_uos, vmid, gvt_args, vmid), file=config) print("", file=config) i = 0 for mount_flag in launch_cfg_lib.MOUNT_FLAG_DIC[vmid]: if not mount_flag: i += 1 continue print("umount /data{}".format(i), file=config) i += 1 else: print("else", file=config) if gvt_args == "gvtd" or not gvt_args: print(' launch_{} {}'.format(launch_uos, vmid), file=config) elif gvt_args: print(' launch_{} {} "{}"'.format(launch_uos, vmid, gvt_args), file=config) print("fi", file=config) return elif not is_mount_needed(virt_io, vmid): if gvt_args == "gvtd" or not gvt_args: print('launch_{} {}'.format(launch_uos, vmid), file=config) else: print('launch_{} {} "{}"'.format(launch_uos, vmid, gvt_args), file=config) else: print("", file=config) if gvt_args == "gvtd" or not gvt_args: print('launch_{} {} "{}" $debug'.format(launch_uos, vmid, vmid), file=config) else: print('launch_{} {} "{}" "{}" $debug'.format(launch_uos, vmid, gvt_args, vmid), file=config) print("", file=config) i = 0 for mount_flag in launch_cfg_lib.MOUNT_FLAG_DIC[vmid]: if not mount_flag: i += 1 continue print("umount /data{}".format(i), file=config) i += 1 def launch_end(names, args, virt_io, vmid, config): board_name = names['board_name'] uos_type = names['uos_types'][vmid] mem_size = args["mem_size"][vmid] if uos_type in ("CLEARLINUX", "ANDROID", "ALIOS") and not is_nuc_whl_linux(names, vmid): print("debug=0", file=config) print("", file=config) print('while getopts "hdC" opt', file=config) print("do", file=config) print(" case $opt in", file=config) print(" d) debug=1", file=config) print(" ;;", file=config) print(" C)", file=config) print(" ;;", file=config) print(" h) help", file=config) print(" exit 1", file=config) print(" ;;", file=config) print(" ?) help", file=config) print(" exit 1", file=config) print(" ;;", file=config) print(" esac", file=config) print("done", file=config) print("", file=config) if is_mount_needed(virt_io, vmid): i = 0 for mount_flag in launch_cfg_lib.MOUNT_FLAG_DIC[vmid]: if not mount_flag: i += 1 continue blk = virt_io['block'][vmid][i] root_fs = blk.split(':')[0] print('if [ ! -b "{}" ]; then'.format(root_fs), file=config) print(' echo "no {} data partition, exit"'.format(root_fs), file=config) print(" exit", file=config) print("fi", file=config) print("mkdir -p /data{}".format(i), file=config) print("mount {} /data{}".format(root_fs, i), file=config) print("", file=config) i += 1 sos_vmid = launch_cfg_lib.get_sos_vmid() if args['cpu_sharing'] == "SCHED_NOOP" or common.VM_TYPES[vmid+sos_vmid] == "POST_RT_VM": off_line_cpus(args, vmid, uos_type, config) uos_launch(names, args, virt_io, vmid, config) def set_dm_pt(names, sel, vmid, config, dm): uos_type = names['uos_types'][vmid] if sel.bdf['usb_xdci'][vmid] and sel.slot['usb_xdci'][vmid]: sub_attr = '' if uos_type == "WINDOWS": sub_attr = ',d3hot_reset' print(' -s {},passthru,{}/{}/{}{} \\'.format(sel.slot["usb_xdci"][vmid], sel.bdf["usb_xdci"][vmid][0:2],\ sel.bdf["usb_xdci"][vmid][3:5], sel.bdf["usb_xdci"][vmid][6:7], sub_attr), file=config) # pass through audio/audio_codec if sel.bdf['audio'][vmid]: print(" $boot_audio_option \\", file=config) if sel.bdf['cse'][vmid] and sel.slot['cse'][vmid]: print(" $boot_cse_option \\", file=config) if sel.bdf["sd_card"][vmid] and sel.slot['sd_card'][vmid]: print(' -s {},passthru,{}/{}/{} \\'.format(sel.slot["sd_card"][vmid], sel.bdf["sd_card"][vmid][0:2], \ sel.bdf["sd_card"][vmid][3:5], sel.bdf["sd_card"][vmid][6:7]), file=config) if sel.bdf['bluetooth'][vmid] and sel.slot['bluetooth'][vmid]: print(' -s {},passthru,{}/{}/{} \\'.format(sel.slot["bluetooth"][vmid], sel.bdf["bluetooth"][vmid][0:2], \ sel.bdf["bluetooth"][vmid][3:5], sel.bdf["bluetooth"][vmid][6:7]), file=config) if sel.bdf['wifi'][vmid] and sel.slot['wifi'][vmid]: if uos_type == "ANDROID": print(" -s {},passthru,{}/{}/{},keep_gsi \\".format(sel.slot["wifi"][vmid], sel.bdf["wifi"][vmid][0:2], \ sel.bdf["wifi"][vmid][3:5], sel.bdf["wifi"][vmid][6:7]), file=config) else: print(" -s {},passthru,{}/{}/{} \\".format(sel.slot["wifi"][vmid], sel.bdf["wifi"][vmid][0:2], \ sel.bdf["wifi"][vmid][3:5], sel.bdf["wifi"][vmid][6:7]), file=config) if sel.bdf['ipu'][vmid] or sel.bdf['ipu_i2c'][vmid]: print(" $boot_ipu_option \\", file=config) if sel.bdf['ethernet'][vmid] and sel.slot['ethernet'][vmid]: if vmid in dm["enable_ptm"] and dm["enable_ptm"][vmid] == 'y': print(" -s {},passthru,{}/{}/{},enable_ptm \\".format(sel.slot["ethernet"][vmid], sel.bdf["ethernet"][vmid][0:2], \ sel.bdf["ethernet"][vmid][3:5], sel.bdf["ethernet"][vmid][6:7]), file=config) else: print(" -s {},passthru,{}/{}/{} \\".format(sel.slot["ethernet"][vmid], sel.bdf["ethernet"][vmid][0:2], \ sel.bdf["ethernet"][vmid][3:5], sel.bdf["ethernet"][vmid][6:7]), file=config) if sel.bdf['sata'] and sel.slot["sata"][vmid]: print(" -s {},passthru,{}/{}/{} \\".format(sel.slot["sata"][vmid], sel.bdf["sata"][vmid][0:2], \ sel.bdf["sata"][vmid][3:5], sel.bdf["sata"][vmid][6:7]), file=config) if sel.bdf['nvme'] and sel.slot["nvme"][vmid]: print(" -s {},passthru,{}/{}/{} \\".format(sel.slot["nvme"][vmid], sel.bdf["nvme"][vmid][0:2], \ sel.bdf["nvme"][vmid][3:5], sel.bdf["nvme"][vmid][6:7]), file=config) def vboot_arg_set(dm, vmid, config): """ Set the argument of vbootloader :param dm: the dictionary of argument for acrn-dm :param vmid: ID of the vm :param config: it is a file pointer to write vboot loader information :return: None """ # TODO: Support to generate '-k' xml config from webUI and to parse it if dm['vbootloader'][vmid] == "ovmf": print(" --ovmf /usr/share/acrn/bios/OVMF.fd \\", file=config) elif dm['vbootloader'][vmid] == "vsbl": print(" $boot_image_option \\",file=config) def xhci_args_set(dm, vmid, config): # usb_xhci set, the value is string if dm['xhci'][vmid]: print(" -s {},xhci,{} \\".format( launch_cfg_lib.virtual_dev_slot("xhci"), dm['xhci'][vmid]), file=config) def shm_arg_set(dm, vmid, config): if dm['shm_enabled'] == "n": return for shm_region in dm["shm_regions"][vmid]: print(" -s {},ivshmem,{} \\".format( launch_cfg_lib.virtual_dev_slot("shm_region_{}".format(shm_region)), shm_region), file=config) def virtio_args_set(dm, virt_io, vmid, config): # virtio-input set, the value type is a list for input_val in virt_io['input'][vmid]: if input_val: print(" -s {},virtio-input,{} \\".format( launch_cfg_lib.virtual_dev_slot("virtio-input{}".format(input_val)), input_val), file=config) # virtio-blk set, the value type is a list i = 0 for mount_flag in launch_cfg_lib.MOUNT_FLAG_DIC[vmid]: blk = virt_io['block'][vmid][i] if not mount_flag: if blk: rootfs_img = blk.strip(':') print(" -s {},virtio-blk,{} \\".format(launch_cfg_lib.virtual_dev_slot("virtio-blk{}".format(blk)), rootfs_img), file=config) i += 1 continue rootfs_img = blk.split(':')[1].strip(':') print(" -s {},virtio-blk,/data{}/{} \\".format(launch_cfg_lib.virtual_dev_slot("blk_mount_{}".format(i)), i, rootfs_img), file=config) i += 1 # virtio-net set, the value type is a list for net in virt_io['network'][vmid]: if net: print(" -s {},virtio-net,tap_{} \\".format(launch_cfg_lib.virtual_dev_slot("virtio-net{}".format(net)), net), file=config) # virtio-console set, the value type is a string if virt_io['console'][vmid]: print(" -s {},virtio-console,{} \\".format( launch_cfg_lib.virtual_dev_slot("virtio-console"), virt_io['console'][vmid]), file=config) def get_cpu_affinity_list(cpu_affinity, vmid): pcpu_id_list = '' for uos_id,cpus in cpu_affinity.items(): if vmid == uos_id: pcpu_id_list = [id for id in list(cpu_affinity[uos_id]) if id != None] return pcpu_id_list def pcpu_arg_set(dm, vmid, config): if dm['cpu_sharing'] == "SCHED_NOOP": return pcpu_id_list = get_cpu_affinity_list(dm["cpu_affinity"], vmid) if pcpu_id_list: print(" --cpu_affinity {} \\".format(','.join(pcpu_id_list)), file=config) def dm_arg_set(names, sel, virt_io, dm, vmid, config): uos_type = names['uos_types'][vmid] board_name = names['board_name'] boot_image_type(dm, vmid, config) # uuid get sos_vmid = launch_cfg_lib.get_sos_vmid() scenario_uuid = launch_cfg_lib.get_scenario_uuid(vmid, sos_vmid) # clearlinux/android/alios print('acrn-dm -A -m $mem_size -s 0:0,hostbridge -U {} \\'.format(scenario_uuid), file=config) if launch_cfg_lib.is_linux_like(uos_type) or uos_type in ("ANDROID", "ALIOS"): if uos_type in ("ANDROID", "ALIOS"): print(' $npk_virt \\', file=config) print(" -s {},virtio-rpmb \\".format(launch_cfg_lib.virtual_dev_slot("virtio-rpmb")), file=config) print(" --enable_trusty \\", file=config) # mac_seed print(" --mac_seed $mac_seed \\", file=config) if dm['rtos_type'][vmid] != "no": if virt_io: print(" --virtio_poll 1000000 \\", file=config) if dm['rtos_type'][vmid] == "Soft RT": print(" --rtvm \\", file=config) if dm['rtos_type'][vmid] == "Hard RT": print(" --lapic_pt \\", file=config) # windows if uos_type == "WINDOWS": print(" --windows \\", file=config) # pm_channel set if dm['pm_channel'][vmid] and dm['pm_channel'][vmid] != None: pm_key = dm['pm_channel'][vmid] pm_vuart = "--pm_notify_channel uart" if vmid in dm["allow_trigger_s5"] and dm["allow_trigger_s5"][vmid] == 'y': pm_vuart = pm_vuart + ",allow_trigger_s5 " else: pm_vuart = pm_vuart + " " if pm_key == "vuart1(tty)": vuart_base = launch_cfg_lib.get_vuart1_from_scenario(sos_vmid + vmid) if vuart_base == "INVALID_COM_BASE": err_key = "uos:id={}:poweroff_channel".format(vmid) launch_cfg_lib.ERR_LIST[err_key] = "vuart1 of VM{} in scenario file should select 'SOS_COM2_BASE'".format(sos_vmid + vmid) return scenario_cfg_lib.get_sos_vuart_settings() print(" {} \\".format(pm_vuart + launch_cfg_lib.PM_CHANNEL_DIC[pm_key] + scenario_cfg_lib.SOS_UART1_VALID_NUM), file=config) elif pm_key == "vuart1(pty)": print(" {} \\".format(pm_vuart + launch_cfg_lib.PM_CHANNEL_DIC[pm_key]), file=config) else: print(" {} \\".format(launch_cfg_lib.PM_CHANNEL_DIC[pm_key]), file=config) # set logger_setting for all VMs print(" $logger_setting \\", file=config) # XHCI args set xhci_args_set(dm, vmid, config) # VIRTIO args set virtio_args_set(dm, virt_io, vmid, config) # GVT args set gvt_arg_set(dm, vmid, uos_type, config) # vbootloader setting vboot_arg_set(dm, vmid, config) # pcpu-list args set pcpu_arg_set(dm, vmid, config) # shm regions args set shm_arg_set(dm, vmid, config) # ssram set ssram_enabled = 'n' try: ssram_enabled = common.get_hv_item_tag(common.SCENARIO_INFO_FILE, "FEATURES", "SSRAM", "SSRAM_ENABLED") except: pass if uos_type == "PREEMPT-RT LINUX" and ssram_enabled == 'y': print(" --ssram \\", file=config) for value in sel.bdf.values(): if value[vmid]: print(" $intr_storm_monitor \\", file=config) break if uos_type != "PREEMPT-RT LINUX": print(" -s 31:0,lpc \\", file=config) # redirect console if dm['vuart0'][vmid] == "Enable": print(" -l com1,stdio \\", file=config) if launch_cfg_lib.is_linux_like(uos_type) or uos_type in ("ANDROID", "ALIOS"): if board_name == "apl-mrb": print(" -i /run/acrn/ioc_$vm_name,0x20 \\", file=config) print(" -l com2,/run/acrn/ioc_$vm_name \\", file=config) if not is_nuc_whl_linux(names, vmid): print(" -s {},wdt-i6300esb \\".format(launch_cfg_lib.virtual_dev_slot("wdt-i6300esb")), file=config) set_dm_pt(names, sel, vmid, config, dm) if dm['console_vuart'][vmid] == "Enable": print(" -s {},uart,vuart_idx:0 \\".format(launch_cfg_lib.virtual_dev_slot("console_vuart")), file=config) for vuart_id in dm["communication_vuarts"][vmid]: if not vuart_id: break print(" -s {},uart,vuart_idx:{} \\".format( launch_cfg_lib.virtual_dev_slot("communication_vuart_{}".format(vuart_id)), vuart_id), file=config) print(" $vm_name", file=config) print("}", file=config) def gen(names, pt_sel, virt_io, dm, vmid, config): board_name = names['board_name'] uos_type = names['uos_types'][vmid] # passthrough bdf/vpid dictionay pt.gen_pt_head(names, dm, pt_sel, vmid, config) # gen launch header launch_begin(names, virt_io, vmid, config) tap_uos_net(names, virt_io, vmid, config) # passthrough device pt.gen_pt(names, dm, pt_sel, vmid, config) wa_usage(uos_type, config) mem_size_set(dm, vmid, config) interrupt_storm(pt_sel, config) log_level_set(uos_type, config) # gen acrn-dm args dm_arg_set(names, pt_sel, virt_io, dm, vmid, config) # gen launch end launch_end(names, dm, virt_io, vmid, config)
import math from typing import List, Union, Tuple import torch import torch.nn as nn from astro_dynamo.snap import SnapShot from .snaptools import align_bar def _symmetrize_matrix(x, dim): """Symmetrize a tensor along dimension dim""" return (x + x.flip(dims=[dim])) / 2 class DynamicalModel(nn.Module): """DynamicalModels class. This containts a snapshot of the particles, the potentials in which they move, and the targets to which the model should be fitted. Attributes: snap: Should be a SnapShot whose masses will be optimised potentials: The potentials add. If self gravity is not required set self_gravity_update to None. If self gravity is required then the potential of the snapshot should be in potentials[0] and self_gravity_update represents how much to update the running average of the density on each iteration. Default value is 0.2 which is then exponential averages the density with timescale 5 snapshots(=1/0.2). targets: A list of targets. Running model = DynamicalModel(snap, potentials, targets) current_target_list = model() will provide an list of theDynamicalModelse targets evaluated with the present model. These are then typically combined to a loss that pytorch can optimise. Methods: forward() Computes the targets by evaluating them on the current snapshot. Can also be called as DynamicalModel() integrate(steps=256) Integrates the model forward by steps. Updates potential the density assocaiates to potential[0] update_potential() Recomputes the accelerations from potential[0]. Adjust each snapshots velocity by a factor vc_new/vc_old resample() Resamples the snapshot to equal mass particles. """ def __init__(self, snap, potentials, targets, self_gravity_update=0.2): super(DynamicalModel, self).__init__() self.snap = snap self.targets = nn.ModuleList(targets) self.potentials = nn.ModuleList(potentials) self.self_gravity_update = self_gravity_update def forward(self): return [target(self) for target in self.targets] def integrate(self, steps=256): with torch.no_grad(): self.snap.leapfrog_steps(potentials=self.potentials, steps=steps) if self.self_gravity_update is not None: self.potentials[0].update_density(self.snap.positions, self.snap.masses.detach(), fractional_update=self.self_gravity_update) def update_potential(self, dm_potential=None, update_velocities=True): with torch.no_grad(): if update_velocities: old_accelerations = self.snap.get_accelerations(self.potentials, self.snap.positions) old_vc = torch.sum(-old_accelerations * self.snap.positions, dim=-1).sqrt() self.potentials[0].rho = _symmetrize_matrix( _symmetrize_matrix( _symmetrize_matrix(self.potentials[0].rho, 0), 1), 2) self.potentials[0].grid_accelerations() if dm_potential is not None: self.potentials[1] = dm_potential if update_velocities: new_accelerations = self.snap.get_accelerations(self.potentials, self.snap.positions) new_vc = torch.sum(-new_accelerations * self.snap.positions, dim=-1).sqrt() gd = torch.isfinite(new_vc / old_vc) & (new_vc / old_vc > 0) self.snap.velocities[gd, :] *= (new_vc / old_vc)[gd, None] align_bar(self.snap) def resample(self, velocity_perturbation=0.01): """Resample the model to equal mass particles. Note that the snapshot changes and so the parameters of the model also change in a way that any optimiser that keeps parameter-by-parameter information e.g. gradients must also be update.""" with torch.no_grad(): self.snap = self.snap.resample(self.potentials, velocity_perturbation=velocity_perturbation) align_bar(self.snap) def vc(self, components=False, r=torch.linspace(0, 9), phi=torch.linspace(0, math.pi)): """Returns (r,vc) the circular velocity of the model in physical units and locations at which it was evaluated. If components=True then return list containing the vc of each component, otherwise just return the total. r optionally specifies the physical radii at which to compute vc phi specifies the azimuths over which to average.""" phi_grid, r_grid = torch.meshgrid(phi, r) phi_grid, r_grid = phi_grid.flatten(), r_grid.flatten() pos = torch.stack((r_grid * torch.cos(phi_grid), r_grid * torch.sin(phi_grid), 0 * phi_grid)).t() pos = pos.to(device=self.d_scale.device) pos /= self.d_scale vc = [] for potential in self.potentials: device = next(potential.buffers()).device acc = potential.get_accelerations(pos.to(device=device)).to( device=pos.device) vc += [torch.sum(-acc * pos, dim=1).sqrt().reshape( phi.shape + r.shape).mean(dim=0) * self.v_scale] if components: return r, vc else: total_vc = vc[0] for thisvc in vc[1:]: total_vc = (total_vc ** 2 + thisvc ** 2).sqrt() return r, total_vc class MilkyWayModel(DynamicalModel): def __init__(self, snap: SnapShot, potentials: List[nn.Module], targets: List[nn.Module], self_gravity_update: Union[float, torch.Tensor] = 0.2, bar_angle: Union[float, torch.Tensor] = 27., r_0: Union[float, torch.Tensor] = 8.2, z_0: Union[float, torch.Tensor] = 0.014, v_scale: Union[float, torch.Tensor] = 240, d_scale: Union[float, torch.Tensor] = 1.4, v_sun: Union[List[float], Tuple[float, float, float], torch.Tensor] = (11.1, 12.24 + 238.0, 7.25) ): super(MilkyWayModel, self).__init__(snap, potentials, targets, self_gravity_update) self.bar_angle = nn.Parameter(torch.as_tensor(bar_angle), requires_grad=False) self.r_0 = nn.Parameter(torch.as_tensor(r_0), requires_grad=False) self.z_0 = nn.Parameter(torch.as_tensor(z_0), requires_grad=False) self.v_scale = nn.Parameter(torch.as_tensor(v_scale), requires_grad=False) self.d_scale = nn.Parameter(torch.as_tensor(d_scale), requires_grad=False) self.v_sun = nn.Parameter(torch.as_tensor(v_sun), requires_grad=False) @property def m_scale(self) -> torch.tensor: G = 4.302E-3 # Gravitational constant in astronomical units return self.d_scale * 1e3 * self.v_scale ** 2 / G @property def t_scale(self) -> torch.tensor: """1 iu in time in Gyr""" return self.d_scale / self.v_scale * 0.977813106 # note that 1km/s is almost 1kpc/Gyr @property def xyz(self) -> torch.tensor: """Return position of particles in relative to the Sun in cartesian coordinates with units kpc """ ddtor = math.pi / 180. ang = self.bar_angle * ddtor pos = self.snap.positions xyz = torch.zeros_like(pos) inplane_gc_distance = (self.r_0 ** 2 - self.z_0 ** 2).sqrt() xyz[:, 0] = (pos[:, 0] * torch.cos(-ang) - pos[:, 1] * torch.sin( -ang)) * self.d_scale + inplane_gc_distance xyz[:, 1] = (pos[:, 0] * torch.sin(-ang) + pos[:, 1] * torch.cos( -ang)) * self.d_scale xyz[:, 2] = pos[:, 2] * self.d_scale - self.z_0 return xyz @property def l_b_mu(self) -> torch.tensor: """Return array of particles in galactic (l,b,mu) coordinates. (l,b) in degrees. mu is distance modulus""" xyz = self.xyz l_b_mu = torch.zeros_like(xyz) d = (xyz[:, 0] ** 2 + xyz[:, 1] ** 2 + xyz[:, 2] ** 2).sqrt() l_b_mu[:, 0] = torch.atan2(xyz[:, 1], xyz[:, 0]) * 180 / math.pi b_offset = torch.asin( self.z_0 / self.r_0) # the GC has z = -z_0, rotate b coordinate so this is at l,b=(0,0) l_b_mu[:, 1] = (torch.asin(xyz[:, 2] / d) + b_offset) * 180 / math.pi l_b_mu[:, 2] = 5 * (100 * d).log10() return l_b_mu @property def masses(self) -> torch.tensor: return self.snap.masses * self.m_scale @property def omega(self) -> torch.tensor: return self.snap.omega * self.v_scale / self.d_scale @omega.setter def omega(self, omega: float): self.snap.omega = omega / self.v_scale * self.d_scale @property def uvw(self) -> torch.tensor: """Return UVW velocities. """ ddtor = math.pi / 180. ang = self.bar_angle * ddtor vxyz = torch.zeros_like(self.snap.positions) # sun moves at Vsun[0] towards galactic center i.e. other stars are moving away towards larger x vel = self.snap.velocities * self.v_scale vxyz[:, 0] = (vel[:, 0] * torch.cos(-ang) - vel[:, 1] * torch.sin(-ang)) + self.v_sun[0] # sun moves at Vsun[1] in direction of rotation, other stars are going slower than (0,-Vc,0) vxyz[:, 1] = (vel[:, 0] * torch.sin(-ang) + vel[:, 1] * torch.cos(-ang)) - self.v_sun[1] # sun is moving towards ngp i.e. other stars on average move at negative vz vxyz[:, 2] = vel[:, 2] - self.v_sun[2] return vxyz @property def vr(self) -> torch.tensor: """Return array of particles radial velocities in [km/s]""" xyz = self.xyz vxyz = self.uvw r = xyz.norm(dim=-1) vr = (xyz * vxyz).sum(dim=-1) / r return vr @property def mul_mub(self) -> torch.tensor: """Return proper motions of particles in [mas/yr] in (l, b). Proper motion in l is (rate of change of l)*cos(b)""" xyz = self.xyz vxyz = self.uvw r = xyz.norm(dim=-1) rxy = (xyz[:, 0] ** 2 + xyz[:, 1] ** 2).sqrt() # magic number comes from: 1 mas/yr = 4.74057 km/s at 1 kpc mul = (-vxyz[:, 0] * xyz[:, 1] / rxy + vxyz[:, 1] * xyz[:, 0] / rxy) / r / 4.74057 mub = (-vxyz[:, 0] * xyz[:, 2] * xyz[:, 0] / rxy - vxyz[:, 1] * xyz[:, 2] * xyz[:, 1] / rxy + vxyz[:, 2] * rxy) / ( r ** 2) / 4.74057 return torch.stack((mul, mub), dim=-1)
import torch from node2vec import Node2Vec as Node2Vec_ from .brain_data import BrainData from torch_geometric.data import Data from networkx.convert_matrix import from_numpy_matrix from .utils import binning, LDP import networkx as nx from .base_transform import BaseTransform from numpy import linalg as LA import numpy as np class FromSVTransform(BaseTransform): def __init__(self, sv_transform): super(FromSVTransform, self).__init__() self.sv_transform = sv_transform def __call__(self, data): keys = list(filter(lambda x: x.startswith('edge_index'), data.keys)) for key in keys: if key.startswith('edge_index'): postfix = key[10:] edge_index = data[f'edge_index{postfix}'] edge_attr = data[f'edge_attr{postfix}'] svdata = Data(edge_index=edge_index, edge_attr=edge_attr, num_nodes=data.num_nodes) svdata_transformed = self.sv_transform(svdata) data[f'x{postfix}'] = svdata_transformed.x data[f'edge_index{postfix}'] = svdata_transformed.edge_index data[f'edge_attr{postfix}'] = svdata_transformed.edge_attr return data def __str__(self): return self.sv_transform.__class__.__name__ class Identity(BaseTransform): def __call__(self, data: BrainData): """ Returns a diagonal matrix with ones on the diagonal. :param data: BrainData :return: torch.Tensor """ data.x = torch.diag(torch.ones(data.num_nodes)) return data class Degree(BaseTransform): def __call__(self, data: BrainData): """ Returns a diagonal matrix with the degree of each node on the diagonal. :param data: BrainData :return: torch.Tensor """ adj = torch.sparse_coo_tensor(data.edge_index, data.edge_attr, [data.num_nodes, data.num_nodes]) adj = adj.to_dense() data.x = torch.Tensor(adj.sum(dim=1, keepdim=True)).float() return data def __str__(self): return 'Degree' class LDPTransform(BaseTransform): def __call__(self, data: BrainData): """ Returns node feature with LDP transform. :param data: BrainData :return: torch.Tensor """ adj = torch.sparse_coo_tensor(data.edge_index, data.edge_attr, [data.num_nodes, data.num_nodes]) adj = adj.to_dense() data.x = torch.Tensor( LDP(nx.from_numpy_array(adj.numpy())) ).float() return data def __str__(self): return 'LDP' class DegreeBin(BaseTransform): def __call__(self, data: BrainData): """ Returns node feature with degree bin transform. :param data: BrainData :return: torch.Tensor """ adj = torch.sparse_coo_tensor(data.edge_index, data.edge_attr, [data.num_nodes, data.num_nodes]) adj = adj.to_dense() return torch.Tensor(binning(adj.sum(dim=1))).float() def __str__(self): return 'Degree_Bin' class Adj(BaseTransform): def __call__(self, data: BrainData): """ Returns adjacency matrix. :param data: BrainData :return: torch.Tensor """ adj = torch.sparse_coo_tensor(data.edge_index, data.edge_attr, [data.num_nodes, data.num_nodes]) adj = adj.to_dense() data.x = adj return data def __str__(self): return 'Adj' class Eigenvector(BaseTransform): def __call__(self, data: BrainData): """ Returns node feature with eigenvector. :param data: BrainData :return: torch.Tensor """ adj = torch.sparse_coo_tensor(data.edge_index, data.edge_attr, [data.num_nodes, data.num_nodes]) adj = adj.to_dense() w, v = LA.eig(adj.numpy()) # indices = np.argsort(w)[::-1] v = v.transpose() data.x = torch.Tensor(v).float() return data class EigenNorm(BaseTransform): def __call__(self, data: BrainData): """ Returns node feature with eigen norm. :param data: BrainData :return: torch.Tensor """ adj = torch.sparse_coo_tensor(data.edge_index, data.edge_attr, [data.num_nodes, data.num_nodes]) adj = adj.to_dense() sum_of_rows = adj.sum(dim=1) adj /= sum_of_rows adj = torch.nan_to_num(adj) w, v = LA.eig(adj.numpy()) # indices = np.argsort(w)[::-1] v = v.transpose() data.x = torch.Tensor(v).float() return data class Node2Vec(BaseTransform): def __init__(self, feature_dim=32, walk_length=5, num_walks=200, num_workers=4, window=10, min_count=1, batch_words=4): super(Node2Vec, self).__init__() self.feature_dim = feature_dim self.walk_length = walk_length self.num_walks = num_walks self.num_workers = num_workers self.window = window self.min_count = min_count self.batch_words = batch_words def __call__(self, data): """ Returns node feature with node2vec transform. :param data: BrainData :return: torch.Tensor """ adj = torch.sparse_coo_tensor(data.edge_index, data.edge_attr, [data.num_nodes, data.num_nodes]) adj = adj.to_dense() if (adj < 0).int().sum() > 0: # split the adjacency matrix into two (negative and positive) parts pos_adj = adj.clone() pos_adj[adj < 0] = 0 neg_adj = adj.clone() neg_adj[adj > 0] = 0 neg_adj = -neg_adj adjs = [pos_adj, neg_adj] else: adjs = [adj] xs = [] for adj in adjs: x = torch.zeros((data.num_nodes, self.feature_dim)) graph = from_numpy_matrix(adj.numpy()) node2vec = Node2Vec_(graph, dimensions=self.feature_dim, walk_length=self.walk_length, num_walks=self.num_walks, workers=self.num_workers) model = node2vec.fit(window=self.window, min_count=self.min_count, batch_words=self.batch_words) for i in range(data.num_nodes): x[i] = torch.Tensor(model.wv[f'{i}'].copy()) xs.append(x) data.x = torch.cat(xs, dim=-1) return data def __str__(self): return 'Node2Vec'
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tanh bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow_probability.python.bijectors import bijector __all__ = [ "Tanh", ] class Tanh(bijector.Bijector): """Bijector that computes `Y = tanh(X)`, therefore `Y in (-1, 1)`. This can be achieved by an affine transform of the Sigmoid bijector, i.e., it is equivalent to ``` tfb.Chain([tfb.Affine(shift=-1, scale=2.), tfb.Sigmoid(), tfb.Affine(scale=2.)]) ``` However, using the `Tanh` bijector directly is slightly faster and more numerically stable. """ def __init__(self, validate_args=False, name="tanh"): super(Tanh, self).__init__( forward_min_event_ndims=0, validate_args=validate_args, name=name) def _forward(self, x): return tf.nn.tanh(x) def _inverse(self, y): return tf.atanh(y) def _inverse_log_det_jacobian(self, y): return -tf.log1p(-tf.square(y)) def _forward_log_det_jacobian(self, x): # This formula is mathematically equivalent to # `tf.log1p(-tf.square(tf.tanh(x)))`, however this code is more numerically # stable. # Derivation: # log(1 - tanh(x)^2) # = log(sech(x)^2) # = 2 * log(sech(x)) # = 2 * log(2e^-x / (e^-2x + 1)) # = 2 * (log(2) - x - log(e^-2x + 1)) # = 2 * (log(2) - x - softplus(-2x)) return 2. * (np.log(2.) - x - tf.nn.softplus(-2. * x))
# -*- coding: utf-8 -*- ''' Copyright (c) 2019 Colin Curtain Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Author: Colin Curtain (ccbogel) https://github.com/ccbogel/QualCoder https://qualcoder.wordpress.com/ ''' from PyQt5 import QtGui, QtWidgets, QtCore import os import sys import logging import traceback from GUI.ui_dialog_settings import Ui_Dialog_settings home = os.path.expanduser('~') path = os.path.abspath(os.path.dirname(__file__)) logger = logging.getLogger(__name__) def exception_handler(exception_type, value, tb_obj): """ Global exception handler useful in GUIs. tb_obj: exception.__traceback__ """ tb = '\n'.join(traceback.format_tb(tb_obj)) text = 'Traceback (most recent call last):\n' + tb + '\n' + exception_type.__name__ + ': ' + str(value) print(text) logger.error(_("Uncaught exception: ") + text) QtWidgets.QMessageBox.critical(None, _('Uncaught Exception'), text) class DialogSettings(QtWidgets.QDialog): """ Settings for the coder name, coder table and to display ids. """ settings = {} def __init__(self, app, parent=None): sys.excepthook = exception_handler self.app = app self.settings = app.settings super(QtWidgets.QDialog, self).__init__(parent) # overrride accept method QtWidgets.QDialog.__init__(self) self.ui = Ui_Dialog_settings() self.ui.setupUi(self) font = 'font: ' + str(self.app.settings['fontsize']) + 'pt ' font += '"' + self.app.settings['font'] + '";' self.setStyleSheet(font) self.setWindowFlags(self.windowFlags() & ~QtCore.Qt.WindowContextHelpButtonHint) new_font = QtGui.QFont(self.settings['font'], self.settings['fontsize'], QtGui.QFont.Normal) self.ui.fontComboBox.setCurrentFont(new_font) # get coder names from all tables # Note: does not appear to require a distinct clause sql = "select owner from code_image union select owner from code_text union select owner from code_av " sql += " union select owner from cases union select owner from journal union select owner from attribute " sql += "union select owner from source union select owner from annotation union select owner from code_name " sql += "union select owner from code_cat" coders = [""] if self.app.conn is not None: cur = self.app.conn.cursor() cur.execute(sql) results = cur.fetchall() for row in results: coders.append(row[0]) self.ui.comboBox_coders.addItems(coders) languages = ["Deutsch de", "English en", "Ελληνικά el", "Español es", "Français fr", "日本 jp"] self.ui.comboBox_language.addItems(languages) for index, lang in enumerate(languages): if lang[-2:] == self.settings['language']: self.ui.comboBox_language.setCurrentIndex(index) timestampformats = ["[mm.ss]", "[mm:ss]", "[hh.mm.ss]", "[hh:mm:ss]", "{hh:mm:ss}", "#hh:mm:ss.sss#"] self.ui.comboBox_timestamp.addItems(timestampformats) for index, ts in enumerate(timestampformats): if ts == self.settings['timestampformat']: self.ui.comboBox_timestamp.setCurrentIndex(index) speakernameformats = ["[]", "{}"] self.ui.comboBox_speaker.addItems(speakernameformats) for index, snf in enumerate(speakernameformats): if snf == self.settings['speakernameformat']: self.ui.comboBox_speaker.setCurrentIndex(index) self.ui.spinBox.setValue(self.settings['fontsize']) self.ui.spinBox_treefontsize.setValue(self.settings['treefontsize']) self.ui.lineEdit_coderName.setText(self.settings['codername']) self.ui.comboBox_coders.currentIndexChanged.connect(self.comboBox_coder_changed) self.ui.checkBox_auto_backup.stateChanged.connect(self.backup_state_changed) if self.settings['showids'] == 'True': self.ui.checkBox.setChecked(True) else: self.ui.checkBox.setChecked(False) if self.settings['backup_on_open'] == 'True': self.ui.checkBox_auto_backup.setChecked(True) else: self.ui.checkBox_auto_backup.setChecked(False) if self.settings['backup_av_files'] == 'True': self.ui.checkBox_backup_AV_files.setChecked(True) else: self.ui.checkBox_backup_AV_files.setChecked(False) if self.settings['directory'] == "": self.settings['directory'] = os.path.expanduser("~") self.ui.label_directory.setText(self.settings['directory']) self.ui.pushButton_choose_directory.clicked.connect(self.choose_directory) def backup_state_changed(self): """ Enable and disable av backup checkbox. Only enable when checkBox_auto_backup is checked. """ if self.ui.checkBox_auto_backup.isChecked(): self.ui.checkBox_backup_AV_files.setEnabled(True) else: self.ui.checkBox_backup_AV_files.setEnabled(False) def comboBox_coder_changed(self): """ Set the coder name to the current selection. """ self.ui.lineEdit_coderName.setText(self.ui.comboBox_coders.currentText()) def choose_directory(self): """ Choose default project directory. """ directory = QtWidgets.QFileDialog.getExistingDirectory(self, _('Choose project directory'), self.settings['directory']) if directory == "": return self.ui.label_directory.setText(directory) def accept(self): self.settings['codername'] = self.ui.lineEdit_coderName.text() if self.settings['codername'] == "": self.settings['codername'] = "default" self.settings['font'] = self.ui.fontComboBox.currentText() self.settings['fontsize'] = self.ui.spinBox.value() self.settings['treefontsize'] = self.ui.spinBox_treefontsize.value() self.settings['directory'] = self.ui.label_directory.text() if self.ui.checkBox.isChecked(): self.settings['showids'] = 'True' else: self.settings['showids'] = 'False' self.settings['language'] = self.ui.comboBox_language.currentText()[-2:] self.settings['timestampformat'] = self.ui.comboBox_timestamp.currentText() self.settings['speakernameformat'] = self.ui.comboBox_speaker.currentText() if self.ui.checkBox_auto_backup.isChecked(): self.settings['backup_on_open'] = 'True' else: self.settings['backup_on_open'] = 'False' if self.ui.checkBox_backup_AV_files.isChecked(): self.settings['backup_av_files'] = 'True' else: self.settings['backup_av_files'] = 'False' self.save_settings() self.close() def save_settings(self): """ Save settings to text file in user's home directory. Each setting has a variable identifier then a colon followed by the value. """ self.app.write_config_ini(self.settings) if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) ui = DialogSettings() ui.show() sys.exit(app.exec_())
from flask import Flask app = Flask(__name__) @app.route("/") def sample_program(): return "This is sample flask program"
# --------- # Imports # --------- import sys import os import stat import time import struct import re try: import grp import pwd except ImportError: grp = pwd = None # --------------------------------------------------------- # tar constants # --------------------------------------------------------- NUL = "\0" # the null character BLOCKSIZE = 512 # length of processing blocks RECORDSIZE = BLOCKSIZE * 20 # length of records GNU_MAGIC = "ustar \0" # magic gnu tar string POSIX_MAGIC = "ustar\x0000" # magic posix tar string LENGTH_NAME = 100 # maximum length of a filename LENGTH_LINK = 100 # maximum length of a linkname LENGTH_PREFIX = 155 # maximum length of the prefix field REGTYPE = "0" # regular file AREGTYPE = "\0" # regular file LNKTYPE = "1" # link (inside tarfile) SYMTYPE = "2" # symbolic link CHRTYPE = "3" # character special device BLKTYPE = "4" # block special device DIRTYPE = "5" # directory FIFOTYPE = "6" # fifo special device CONTTYPE = "7" # contiguous file GNUTYPE_LONGNAME = "L" # GNU tar longname GNUTYPE_LONGLINK = "K" # GNU tar longlink GNUTYPE_SPARSE = "S" # GNU tar sparse file XHDTYPE = "x" # POSIX.1-2001 extended header XGLTYPE = "g" # POSIX.1-2001 global header SOLARIS_XHDTYPE = "X" # Solaris extended header USTAR_FORMAT = 0 # POSIX.1-1988 (ustar) format GNU_FORMAT = 1 # GNU tar format PAX_FORMAT = 2 # POSIX.1-2001 (pax) format DEFAULT_FORMAT = GNU_FORMAT # --------------------------------------------------------- # tarfile constants # --------------------------------------------------------- # File types that tarfile supports: SUPPORTED_TYPES = (REGTYPE, AREGTYPE, LNKTYPE, SYMTYPE, DIRTYPE, FIFOTYPE, CONTTYPE, CHRTYPE, BLKTYPE, GNUTYPE_LONGNAME, GNUTYPE_LONGLINK, GNUTYPE_SPARSE) # File types that will be treated as a regular file. REGULAR_TYPES = (REGTYPE, AREGTYPE, CONTTYPE, GNUTYPE_SPARSE) # File types that are part of the GNU tar format. GNU_TYPES = (GNUTYPE_LONGNAME, GNUTYPE_LONGLINK, GNUTYPE_SPARSE) # Fields from a pax header that override a TarInfo attribute. PAX_FIELDS = ("path", "linkpath", "size", "mtime", "uid", "gid", "uname", "gname") # Fields in a pax header that are numbers, all other fields # are treated as strings. PAX_NUMBER_FIELDS = { "atime": float, "ctime": float, "mtime": float, "uid": int, "gid": int, "size": int } # --------------------------------------------------------- # Bits used in the mode field, values in octal. # --------------------------------------------------------- S_IFLNK = 0120000 # symbolic link S_IFREG = 0100000 # regular file S_IFBLK = 0060000 # block device S_IFDIR = 0040000 # directory S_IFCHR = 0020000 # character device S_IFIFO = 0010000 # fifo TSUID = 04000 # set UID on execution TSGID = 02000 # set GID on execution TSVTX = 01000 # reserved TUREAD = 0400 # read by owner TUWRITE = 0200 # write by owner TUEXEC = 0100 # execute/search by owner TGREAD = 0040 # read by group TGWRITE = 0020 # write by group TGEXEC = 0010 # execute/search by group TOREAD = 0004 # read by other TOWRITE = 0002 # write by other TOEXEC = 0001 # execute/search by other # --------------------------------------------------------- # initialization # --------------------------------------------------------- ENCODING = sys.getfilesystemencoding() if ENCODING is None: ENCODING = sys.getdefaultencoding() # --------------------------------------------------------- # Some useful functions # --------------------------------------------------------- def stn(s, length): """Convert a python string to a null-terminated string buffer. """ return s[:length] + (length - len(s)) * NUL def nts(s): """Convert a null-terminated string field to a python string. """ # Use the string up to the first null char. p = s.find("\0") if p == -1: return s return s[:p] def nti(s): """Convert a number field to a python number. """ # There are two possible encodings for a number field, see # itn() below. if s[0] != chr(0200): try: n = int(nts(s) or "0", 8) except ValueError: raise InvalidHeaderError("invalid header") else: n = 0L for i in xrange(len(s) - 1): n <<= 8 n += ord(s[i + 1]) return n def itn(n, digits=8, format=DEFAULT_FORMAT): """Convert a python number to a number field. """ # POSIX 1003.1-1988 requires numbers to be encoded as a string of # octal digits followed by a null-byte, this allows values up to # (8**(digits-1))-1. GNU tar allows storing numbers greater than # that if necessary. A leading 0200 byte indicates this particular # encoding, the following digits-1 bytes are a big-endian # representation. This allows values up to (256**(digits-1))-1. if 0 <= n < 8 ** (digits - 1): s = "%0*o" % (digits - 1, n) + NUL else: if format != GNU_FORMAT or n >= 256 ** (digits - 1): raise ValueError("overflow in number field") if n < 0: # XXX We mimic GNU tar's behaviour with negative numbers, # this could raise OverflowError. n = struct.unpack("L", struct.pack("l", n))[0] s = "" for i in xrange(digits - 1): s = chr(n & 0377) + s n >>= 8 s = chr(0200) + s return s def uts(s, encoding, errors): """Convert a unicode object to a string. """ if errors == "utf-8": # An extra error handler similar to the -o invalid=UTF-8 option # in POSIX.1-2001. Replace untranslatable characters with their # UTF-8 representation. try: return s.encode(encoding, "strict") except UnicodeEncodeError: x = [] for c in s: try: x.append(c.encode(encoding, "strict")) except UnicodeEncodeError: x.append(c.encode("utf8")) return "".join(x) else: return s.encode(encoding, errors) def calc_chksums(buf): """Calculate the checksum for a member's header by summing up all characters except for the chksum field which is treated as if it was filled with spaces. According to the GNU tar sources, some tars (Sun and NeXT) calculate chksum with signed char, which will be different if there are chars in the buffer with the high bit set. So we calculate two checksums, unsigned and signed. """ unsigned_chksum = 256 + sum(struct.unpack("148B", buf[:148]) + struct.unpack("356B", buf[156:512])) signed_chksum = 256 + sum(struct.unpack("148b", buf[:148]) + struct.unpack("356b", buf[156:512])) return unsigned_chksum, signed_chksum class TarInfo(object): """Informational class which holds the details about an archive member given by a tar header block. TarInfo objects are returned by TarFile.getmember(), TarFile.getmembers() and TarFile.gettarinfo() and are usually created internally. """ def __init__(self, name=""): """Construct a TarInfo object. name is the optional name of the member. """ self.name = name # member name self.mode = 0644 # file permissions self.uid = 0 # user id self.gid = 0 # group id self.size = 0 # file size self.mtime = 0 # modification time self.chksum = 0 # header checksum self.type = REGTYPE # member type self.linkname = "" # link name self.uname = "" # user name self.gname = "" # group name self.devmajor = 0 # device major number self.devminor = 0 # device minor number self.offset = 0 # the tar header starts here self.offset_data = 0 # the file's data starts here self.pax_headers = {} # pax header information # In pax headers the "name" and "linkname" field are called # "path" and "linkpath". def _getpath(self): return self.name def _setpath(self, name): self.name = name path = property(_getpath, _setpath) def _getlinkpath(self): return self.linkname def _setlinkpath(self, linkname): self.linkname = linkname linkpath = property(_getlinkpath, _setlinkpath) def __repr__(self): return "<%s %r at %#x>" % (self.__class__.__name__, self.name, id(self)) def get_info(self, encoding, errors): """Return the TarInfo's attributes as a dictionary. """ info = { "name": self.name, "mode": self.mode & 07777, "uid": self.uid, "gid": self.gid, "size": self.size, "mtime": self.mtime, "chksum": self.chksum, "type": self.type, "linkname": self.linkname, "uname": self.uname, "gname": self.gname, "devmajor": self.devmajor, "devminor": self.devminor } if info["type"] == DIRTYPE and not info["name"].endswith("/"): info["name"] += "/" for key in ("name", "linkname", "uname", "gname"): if type(info[key]) is unicode: info[key] = info[key].encode(encoding, errors) return info def tobuf(self, format=DEFAULT_FORMAT, encoding=ENCODING, errors="strict"): """Return a tar header as a string of 512 byte blocks. """ info = self.get_info(encoding, errors) if format == USTAR_FORMAT: return self.create_ustar_header(info) elif format == GNU_FORMAT: return self.create_gnu_header(info) elif format == PAX_FORMAT: return self.create_pax_header(info, encoding, errors) else: raise ValueError("invalid format") def create_ustar_header(self, info): """Return the object as a ustar header block. """ info["magic"] = POSIX_MAGIC if len(info["linkname"]) > LENGTH_LINK: raise ValueError("linkname is too long") if len(info["name"]) > LENGTH_NAME: info["prefix"], info["name"] = self._posix_split_name(info["name"]) return self._create_header(info, USTAR_FORMAT) def create_gnu_header(self, info): """Return the object as a GNU header block sequence. """ info["magic"] = GNU_MAGIC buf = "" if len(info["linkname"]) > LENGTH_LINK: buf += self._create_gnu_long_header(info["linkname"], GNUTYPE_LONGLINK) if len(info["name"]) > LENGTH_NAME: buf += self._create_gnu_long_header(info["name"], GNUTYPE_LONGNAME) return buf + self._create_header(info, GNU_FORMAT) def create_pax_header(self, info, encoding, errors): """Return the object as a ustar header block. If it cannot be represented this way, prepend a pax extended header sequence with supplement information. """ info["magic"] = POSIX_MAGIC pax_headers = self.pax_headers.copy() # Test string fields for values that exceed the field length or cannot # be represented in ASCII encoding. for name, hname, length in ( ("name", "path", LENGTH_NAME), ("linkname", "linkpath", LENGTH_LINK), ("uname", "uname", 32), ("gname", "gname", 32)): if hname in pax_headers: # The pax header has priority. continue val = info[name].decode(encoding, errors) # Try to encode the string as ASCII. try: val.encode("ascii") except UnicodeEncodeError: pax_headers[hname] = val continue if len(info[name]) > length: pax_headers[hname] = val # Test number fields for values that exceed the field limit or values # that like to be stored as float. for name, digits in (("uid", 8), ("gid", 8), ("size", 12), ("mtime", 12)): if name in pax_headers: # The pax header has priority. Avoid overflow. info[name] = 0 continue val = info[name] if not 0 <= val < 8 ** (digits - 1) or isinstance(val, float): pax_headers[name] = unicode(val) info[name] = 0 # Create a pax extended header if necessary. if pax_headers: buf = self._create_pax_generic_header(pax_headers) else: buf = "" return buf + self._create_header(info, USTAR_FORMAT) def get_headers(self): headers = {} for key, value in self.pax_headers.items(): if isinstance(key, unicode): key = key.encode('utf-8') if isinstance(value, unicode): value = value.encode('utf-8') headers[key.title()] = value return headers @classmethod def create_pax_global_header(cls, pax_headers): """Return the object as a pax global header block sequence. """ return cls._create_pax_generic_header(pax_headers, type=XGLTYPE) def _posix_split_name(self, name): """Split a name longer than 100 chars into a prefix and a name part. """ prefix = name[:LENGTH_PREFIX + 1] while prefix and prefix[-1] != "/": prefix = prefix[:-1] name = name[len(prefix):] prefix = prefix[:-1] if not prefix or len(name) > LENGTH_NAME: raise ValueError("name is too long") return prefix, name @staticmethod def _create_header(info, format): """Return a header block. info is a dictionary with file information, format must be one of the *_FORMAT constants. """ parts = [ stn(info.get("name", ""), 100), itn(info.get("mode", 0) & 07777, 8, format), itn(info.get("uid", 0), 8, format), itn(info.get("gid", 0), 8, format), itn(info.get("size", 0), 12, format), itn(info.get("mtime", 0), 12, format), " ", # checksum field info.get("type", REGTYPE), stn(info.get("linkname", ""), 100), stn(info.get("magic", POSIX_MAGIC), 8), stn(info.get("uname", ""), 32), stn(info.get("gname", ""), 32), itn(info.get("devmajor", 0), 8, format), itn(info.get("devminor", 0), 8, format), stn(info.get("prefix", ""), 155) ] buf = struct.pack("%ds" % BLOCKSIZE, "".join(parts)) chksum = calc_chksums(buf[-BLOCKSIZE:])[0] buf = buf[:-364] + "%06o\0" % chksum + buf[-357:] return buf @staticmethod def _create_payload(payload): """Return the string payload filled with zero bytes up to the next 512 byte border. """ blocks, remainder = divmod(len(payload), BLOCKSIZE) if remainder > 0: payload += (BLOCKSIZE - remainder) * NUL return payload @classmethod def _create_gnu_long_header(cls, name, type): """Return a GNUTYPE_LONGNAME or GNUTYPE_LONGLINK sequence for name. """ name += NUL info = {} info["name"] = "././@LongLink" info["type"] = type info["size"] = len(name) info["magic"] = GNU_MAGIC # create extended header + name blocks. return cls._create_header(info, USTAR_FORMAT) + \ cls._create_payload(name) @classmethod def _create_pax_generic_header(cls, pax_headers, type=XHDTYPE): """Return a POSIX.1-2001 extended or global header sequence that contains a list of keyword, value pairs. The values must be unicode objects. """ records = [] for keyword, value in pax_headers.iteritems(): keyword = keyword.encode("utf8") value = value.encode("utf8") l = len(keyword) + len(value) + 3 # ' ' + '=' + '\n' n = p = 0 while True: n = l + len(str(p)) if n == p: break p = n records.append("%d %s=%s\n" % (p, keyword, value)) records = "".join(records) # We use a hardcoded "././@PaxHeader" name like star does # instead of the one that POSIX recommends. info = {} info["name"] = "././@PaxHeader" info["type"] = type info["size"] = len(records) info["magic"] = POSIX_MAGIC # Create pax header + record blocks. return cls._create_header(info, USTAR_FORMAT) + \ cls._create_payload(records) @classmethod def frombuf(cls, buf): """Construct a TarInfo object from a 512 byte string buffer. """ if len(buf) == 0: raise EmptyHeaderError("empty header") if len(buf) != BLOCKSIZE: raise TruncatedHeaderError("truncated header") if buf.count(NUL) == BLOCKSIZE: raise EOFHeaderError("end of file header") chksum = nti(buf[148:156]) if chksum not in calc_chksums(buf): raise InvalidHeaderError("bad checksum") obj = cls() obj.buf = buf obj.name = nts(buf[0:100]) obj.mode = nti(buf[100:108]) obj.uid = nti(buf[108:116]) obj.gid = nti(buf[116:124]) obj.size = nti(buf[124:136]) obj.mtime = nti(buf[136:148]) obj.chksum = chksum obj.type = buf[156:157] obj.linkname = nts(buf[157:257]) obj.magic = buf[257:265] obj.uname = nts(buf[265:297]) obj.gname = nts(buf[297:329]) obj.devmajor = nti(buf[329:337]) obj.devminor = nti(buf[337:345]) prefix = nts(buf[345:500]) # Old V7 tar format represents a directory as a regular # file with a trailing slash. if obj.type == AREGTYPE and obj.name.endswith("/"): obj.type = DIRTYPE # Remove redundant slashes from directories. if obj.isdir(): obj.name = obj.name.rstrip("/") # Reconstruct a ustar longname. if prefix and obj.type not in GNU_TYPES: obj.name = prefix + "/" + obj.name return obj def _proc_builtin(self, untar_stream): """Process a builtin type or an unknown type which will be treated as a regular file. """ self.offset_data = untar_stream.offset offset = self.offset_data if self.isreg() or self.type not in SUPPORTED_TYPES: # Skip the following data blocks. offset += self._block(self.size) untar_stream.offset = offset # Patch the TarInfo object with saved global # header information. self._apply_pax_info(untar_stream.pax_headers, untar_stream.encoding, untar_stream.errors) return self def _proc_gnulong(self, untar_stream): """Process the blocks that hold a GNU longname or longlink member. """ buf = untar_stream.next_block(size=self._block(self.size)) if not buf: return None # Fetch the next header and process it. try: next = untar_stream.read_tarinfo() if not next: return None except HeaderError: raise SubsequentHeaderError("missing or bad subsequent header") # Patch the TarInfo object from the next header with # the longname information. next.offset = self.offset if self.type == GNUTYPE_LONGNAME: next.name = nts(buf) elif self.type == GNUTYPE_LONGLINK: next.linkname = nts(buf) return next def _proc_sparse(self, untar_stream): """Process a GNU sparse header plus extra headers. """ buf = untar_stream.next_block(size=self._block(self.size)) sp = _ringbuffer() pos = 386 lastpos = 0L realpos = 0L # There are 4 possible sparse structs in the # first header. for i in xrange(4): try: offset = nti(buf[pos:pos + 12]) numbytes = nti(buf[pos + 12:pos + 24]) except ValueError: break if offset > lastpos: sp.append(_hole(lastpos, offset - lastpos)) sp.append(_data(offset, numbytes, realpos)) realpos += numbytes lastpos = offset + numbytes pos += 24 isextended = ord(buf[482]) origsize = nti(buf[483:495]) # If the isextended flag is given, # there are extra headers to process. while isextended == 1: buf = untar_stream.next_block() if not buf: return None pos = 0 for i in xrange(21): try: offset = nti(buf[pos:pos + 12]) numbytes = nti(buf[pos + 12:pos + 24]) except ValueError: break if offset > lastpos: sp.append(_hole(lastpos, offset - lastpos)) sp.append(_data(offset, numbytes, realpos)) realpos += numbytes lastpos = offset + numbytes pos += 24 isextended = ord(buf[504]) if lastpos < origsize: sp.append(_hole(lastpos, origsize - lastpos)) self.sparse = sp self.offset_data = untar_stream.offset untar_stream.offset = self.offset_data + self._block(self.size) self.size = origsize return self def _proc_pax(self, untar_stream): """Process an extended or global header as described in POSIX.1-2001. """ # Read the header information. buf = untar_stream.next_block(size=self._block(self.size)) if not buf: return None # A pax header stores supplemental information for either # the following file (extended) or all following files # (global). if self.type == XGLTYPE: pax_headers = untar_stream.pax_headers else: pax_headers = untar_stream.pax_headers.copy() # Parse pax header information. A record looks like that: # "%d %s=%s\n" % (length, keyword, value). length is the size # of the complete record including the length field itself and # the newline. keyword and value are both UTF-8 encoded strings. regex = re.compile(r"(\d+) ([^=]+)=", re.U) pos = 0 while True: match = regex.match(buf, pos) if not match: break length, keyword = match.groups() length = int(length) value = buf[match.end(2) + 1:match.start(1) + length - 1] keyword = keyword.decode("utf8") value = value.decode("utf8") pax_headers[keyword] = value pos += length # Fetch the next header. try: next = untar_stream.read_tarinfo() if not next: return None except HeaderError: raise SubsequentHeaderError("missing or bad subsequent header") if self.type in (XHDTYPE, SOLARIS_XHDTYPE): # Patch the TarInfo object with the extended header info. next._apply_pax_info(pax_headers, untar_stream.encoding, untar_stream.errors) # next.offset = self.offset if "size" in pax_headers: # If the extended header replaces the size field, # we need to recalculate the offset where the next # header starts. offset = next.offset_data if next.isreg() or next.type not in SUPPORTED_TYPES: offset += next._block(next.size) untar_stream.offset = offset return next def _apply_pax_info(self, pax_headers, encoding, errors): """Replace fields with supplemental information from a previous pax extended or global header. """ for keyword, value in pax_headers.iteritems(): if keyword not in PAX_FIELDS: continue if keyword == "path": value = value.rstrip("/") if keyword in PAX_NUMBER_FIELDS: try: value = PAX_NUMBER_FIELDS[keyword](value) except ValueError: value = 0 else: value = uts(value, encoding, errors) setattr(self, keyword, value) self.pax_headers = pax_headers.copy() def _block(self, count): """Round up a byte count by BLOCKSIZE and return it, e.g. _block(834) => 1024. """ blocks, remainder = divmod(count, BLOCKSIZE) if remainder: blocks += 1 return blocks * BLOCKSIZE def isreg(self): return self.type in REGULAR_TYPES def isfile(self): return self.isreg() def isdir(self): return self.type == DIRTYPE def issym(self): return self.type == SYMTYPE def islnk(self): return self.type == LNKTYPE def ischr(self): return self.type == CHRTYPE def isblk(self): return self.type == BLKTYPE def isfifo(self): return self.type == FIFOTYPE def issparse(self): return self.type == GNUTYPE_SPARSE def isdev(self): return self.type in (CHRTYPE, BLKTYPE, FIFOTYPE) # class TarInfo class TarError(Exception): """Base exception.""" pass class ExtractError(TarError): """General exception for extract errors.""" pass class ReadError(TarError): """Exception for unreadble tar archives.""" pass class CompressionError(TarError): """Exception for unavailable compression methods.""" pass class StreamError(TarError): """Exception for unsupported operations on stream-like TarFiles.""" pass class HeaderError(TarError): """Base exception for header errors.""" pass class EmptyHeaderError(HeaderError): """Exception for empty headers.""" pass class TruncatedHeaderError(HeaderError): """Exception for truncated headers.""" pass class EOFHeaderError(HeaderError): """Exception for end of file headers.""" pass class InvalidHeaderError(HeaderError): """Exception for invalid headers.""" pass class SubsequentHeaderError(HeaderError): """Exception for missing and invalid extended headers.""" pass # Helper classes for sparse file support class _section: """Base class for _data and _hole. """ def __init__(self, offset, size): self.offset = offset self.size = size def __contains__(self, offset): return self.offset <= offset < self.offset + self.size class _data(_section): """Represent a data section in a sparse file. """ def __init__(self, offset, size, realpos): _section.__init__(self, offset, size) self.realpos = realpos class _hole(_section): """Represent a hole section in a sparse file. """ pass class _ringbuffer(list): """Ringbuffer class which increases performance over a regular list. """ def __init__(self): self.idx = 0 def find(self, offset): idx = self.idx while True: item = self[idx] if offset in item: break idx += 1 if idx == len(self): idx = 0 if idx == self.idx: # End of File return None self.idx = idx return item class Path: def __init__(self, type, file_name, size, data): """ :param data: stringio, buffer, or file """ self.type = type self.file_name = file_name self.size = size self.data = data def __iter__(self): for chunk in self.data: yield chunk class RegFile: def __init__(self, file_name, chunk_size=65536): self.file_name = file_name self.fp = None self.chunk_size = chunk_size self.size = 0L self.type = DIRTYPE if hasattr(os, "lstat"): statres = os.lstat(file_name) else: statres = os.stat(file_name) if stat.S_ISREG(statres.st_mode): self.size = statres.st_size self.type = REGTYPE def __iter__(self): self.fp = open(self.file_name, 'rb') return self def next(self): chunk = self.fp.read(self.chunk_size) if chunk: return chunk else: if self.fp: self.fp.close() self.fp = None raise StopIteration class StringBuffer: def __init__(self, name, body=''): self.name = name self.file_name = name self.size = len(body) self.body = body self.is_closed = False self.type = REGTYPE def write(self, data): if not self.is_closed: self.body += data def close(self): self.is_closed = True class TarStream(object): errors = 'strict' def __init__(self, tar_iter=None, path_list=None, chunk_size=65536, format=DEFAULT_FORMAT, encoding=ENCODING, append=False): """ :param path_list: List of `Path` objects. """ self.tar_iter = tar_iter self.path_list = path_list self.chunk_size = chunk_size self.format = format self.encoding = encoding self.to_write = self.chunk_size self.data = '' self.file_len = 0 self.append = append def serve_chunk(self, buf): # always serve chunks of `self.chunk_size`, or nothing self.to_write -= len(buf) if self.to_write < 0: self.data += buf[:self.to_write] self.file_len += self.chunk_size yield self.data self.data = buf[self.to_write:] self.to_write += self.chunk_size else: self.data += buf def create_tarinfo(self, path=None, ftype=None, name=None, size=None, headers=None): tarinfo = TarInfo() tarinfo.tarfile = None if path: tarinfo.type = path.type tarinfo.name = path.file_name tarinfo.size = path.size else: tarinfo.type = ftype tarinfo.name = name tarinfo.size = size tarinfo.mtime = time.time() if headers: tarinfo.pax_headers = dict(headers) buf = tarinfo.tobuf(self.format, self.encoding, self.errors) return buf @classmethod def get_archive_size(cls, file_size): size = file_size + BLOCKSIZE - 1 return (size / BLOCKSIZE) * BLOCKSIZE def get_total_stream_length(self): # In bytes. Used for content-length calculation. size = 0 for path in self.path_list: size += TarStream.get_archive_size(path.size) size += len(self.create_tarinfo(path=path)) size += BLOCKSIZE * 2 return size def __iter__(self): if self.append: if self.tar_iter: for data in self.tar_iter: for chunk in self.serve_chunk(data): yield chunk for path in self.path_list: buf = self.create_tarinfo(path=path) for chunk in self.serve_chunk(buf): yield chunk for file_data in path: for chunk in self.serve_chunk(file_data): yield chunk self.file_len += len(self.data) blocks, remainder = divmod(self.file_len, BLOCKSIZE) if remainder > 0: nulls = NUL * (BLOCKSIZE - remainder) for chunk in self.serve_chunk(nulls): yield chunk self.file_len = 0 if not self.append: if self.tar_iter: for data in self.tar_iter: for chunk in self.serve_chunk(data): yield chunk else: for chunk in self.serve_chunk(NUL * (BLOCKSIZE * 2)): yield chunk if self.data: yield self.data class ExtractedFile(object): def __init__(self, untar_stream): self.untar_stream = untar_stream self.data = '' def read(self, size=None): if size is None: size = self.untar_stream.to_write if size: if self.untar_stream.to_write: while len(self.data) < size: chunk = self.untar_stream.get_file_chunk() if not chunk: result = self.data[:] self.data = '' return result self.data += chunk if self.untar_stream.to_write: self.untar_stream.block = '' try: data = next(self.untar_stream.tar_iter) except StopIteration: result = self.data[:] self.data = '' return result self.untar_stream.update_buffer(data) else: result = self.data[:] self.data = '' return result result = self.data[:size] self.data = self.data[size:] return result return '' class UntarStream(object): def __init__(self, tar_iter, path_list=None, encoding=ENCODING, errors=None): self.tar_iter = iter(tar_iter) if path_list is None: path_list = [] self.path_list = path_list self.block = '' self.encoding = encoding self.errors = errors self.pax_headers = {} self.offset = 0 self.offset_data = 0 self.to_write = 0 self.fp = None self.format = None def update_buffer(self, data): if self.block: self.block += data else: self.block = data def __iter__(self): while True: try: data = next(self.tar_iter) except StopIteration: break self.update_buffer(data) info = self.get_next_tarinfo() while info: if info.offset_data: for f in self.path_list: if info.name == f.name: self.fp = f break self.to_write = info.size self.offset_data = info.offset_data while self.to_write: if self.fp: self.fp.write(self.get_file_chunk()) if not self.to_write: self.fp.close() self.fp = None else: self.skip_file_chunk() if self.to_write: self.block = '' yield data try: data = next(self.tar_iter) except StopIteration: break self.update_buffer(data) info = self.get_next_tarinfo() yield data def next_block(self, size=BLOCKSIZE): if size > len(self.block): return None stop = self.offset + size if stop > len(self.block): self.block = self.block[self.offset:] self.offset = 0 return None start = self.offset self.offset = stop return self.block[start:stop] def read_tarinfo(self): buf = self.next_block() if not buf: return None tarinfo = TarInfo.frombuf(buf) tarinfo.offset = self.offset - BLOCKSIZE if tarinfo.type in (GNUTYPE_LONGNAME, GNUTYPE_LONGLINK): return tarinfo._proc_gnulong(self) elif tarinfo.type == GNUTYPE_SPARSE: return tarinfo._proc_sparse(self) elif tarinfo.type in (XHDTYPE, XGLTYPE, SOLARIS_XHDTYPE): return tarinfo._proc_pax(self) else: return tarinfo._proc_builtin(self) def write_file(self): chunk = self.get_file_chunk() if self.fp: self.fp.write(chunk) if not self.to_write: self.fp.close() self.fp = None def get_file_chunk(self): # get a chunk of an entire file buf_size = len(self.block) eof = self.offset_data + self.to_write if eof <= buf_size: self.to_write = 0 return self.block[self.offset_data:eof] start = self.offset_data self.offset_data = 0 self.offset -= buf_size self.to_write = eof - buf_size return self.block[start:] def skip_file_chunk(self): # skip an entire file buf_size = len(self.block) eof = self.offset_data + self.to_write if eof < buf_size: self.to_write = 0 return self.offset_data = 0 self.offset -= buf_size self.to_write = eof - buf_size def get_next_tarinfo(self): info = None while True: try: info = self.read_tarinfo() except EOFHeaderError: self.offset += BLOCKSIZE continue except InvalidHeaderError, e: if self.offset == 0: raise ReadError(str(e)) self.offset += BLOCKSIZE continue break if info: if info.magic == GNU_MAGIC: self.format = GNU_FORMAT elif info.magic == POSIX_MAGIC: self.format = USTAR_FORMAT return info def untar_file_iter(self): while self.to_write: yield self.get_file_chunk() if self.to_write: self.block = '' try: data = next(self.tar_iter) except StopIteration: break self.update_buffer(data) if __name__ == "__main__": if len(sys.argv) < 4: print ('Usage: tarstream.py cf|xf <tar source> <tar dest> ' '<filtered files>') exit() op = sys.argv.pop(1) src = sys.argv.pop(1) dst = sys.argv.pop(1) path_list = sys.argv[1:] chunk_size = 65536 if op not in ['cf', 'xf']: print ('Usage: tarstream.py cf|xf <tar source> <tar dest> ' '<filtered files>') src_iter = None if src not in '-': src_iter = RegFile(src, chunk_size) dst_fp = open(dst, 'wb') if op in 'cf': path_list = [RegFile(path, chunk_size) for path in path_list] for data in TarStream(src_iter, path_list, chunk_size): dst_fp.write(data) elif op in 'xf': path_list = [open(path, 'wb') for path in path_list] for data in UntarStream(src_iter, path_list): dst_fp.write(data) dst_fp.close()
#!/usr/bin/env python # encoding: utf-8 # # Copyright (c) 2016 Dean Jackson <deanishe@deanishe.net> # # MIT Licence. See http://opensource.org/licenses/MIT # # Created on 2016-03-13 # """searchio <command> [<options>] [<args>...] Alfred 3 workflow to provide search completion suggestions from various search engines in various languages. Usage: searchio <command> [<args>...] searchio -h|--version Options: -h, --help Display this help message --version Show version number and exit Commands: add Add a new search to the workflow clean Delete stale cache files config Display (filtered) settings help Show help for a command list Display (filtered) list of engines reload Update info.plist search Perform a search variants Display (filtered) list of engine variants web Import a new search from a URL """ from __future__ import print_function, absolute_import import os import sys from searchio import util log = util.logger(__name__) def usage(wf=None): """CLI usage instructions.""" return __doc__ def cli(wf): """Script entry point. Args: wf (worflow.Workflow3): Active workflow object. """ from docopt import docopt vstr = '{} v{}'.format(wf.name, wf.version) wf.args args = docopt(usage(wf), version=vstr, options_first=True) log.debug('args=%r', args) cmd = args.get('<command>') argv = [cmd] + args.get('<args>') # --------------------------------------------------------- # Initialise for fn in ('backups', 'engines', 'icons', 'searches'): try: os.makedirs(wf.datafile(fn), 0700) except Exception as err: if err.errno != 17: # ignore file exists raise err # --------------------------------------------------------- # Call sub-command if cmd == 'add': from searchio.cmd.add import run return run(wf, argv) elif cmd == 'clean': from searchio.cmd.clean import run return run(wf, argv) elif cmd == 'config': from searchio.cmd.config import run return run(wf, argv) elif cmd == 'fetch': from searchio.cmd.fetch import run return run(wf, argv) elif cmd == 'help': from searchio.cmd.help import run return run(wf, argv) elif cmd == 'list': from searchio.cmd.list import run return run(wf, argv) if cmd == 'reload': from searchio.cmd.reload import run return run(wf, argv) if cmd == 'search': from searchio.cmd.search import run return run(wf, argv) if cmd == 'toggle': from searchio.cmd.toggle import run return run(wf, argv) if cmd == 'user': from searchio.cmd.user import run return run(wf, argv) elif cmd == 'variants': from searchio.cmd.variants import run return run(wf, argv) elif cmd == 'web': from searchio.cmd.web import run return run(wf, argv) else: raise ValueError('Unknown command "{}". Use -h for help.'.format(cmd)) def main(): from workflow import Workflow3 from searchio import UPDATE_SETTINGS, HELP_URL wf = Workflow3(update_settings=UPDATE_SETTINGS, help_url=HELP_URL) sys.exit(wf.run(cli))
from django.urls import path from . import views urlpatterns = [ path('', views.Home, name="home"), path('portfolio', views.portfolio, name="portfolio"), path('news', views.news, name="new"), path('contacts', views.contacts, name="contacts"), path('about', views.about, name="about"), path('product/<str:pk>', views.details, name="product") ]
# -*- coding: utf-8 -*- from django import template register = template.Library() @register.filter(name='times') def times(value, arg): return value * int(arg)
import os from flask import Flask, jsonify from scraper import Scraper app = Flask(__name__) scraper = Scraper() @app.route("/") def store_playstation(): return jsonify(scraper.store_playstation("https://store.playstation.com/ja-jp/category/1b6c3e7d-4445-4cef-a046-efd94a1085b7/")) if __name__ == "__main__": app.run(port=8001,debug=True)
import yfinance import pandas as pd import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm def _simulate_returns(historical_returns,forecast_days): return historical_returns.sample(n = forecast_days, replace = True).reset_index(drop = True) def simulate_modified_returns( historical_returns, forecast_days, correct_mean_by): h = historical_returns.copy() new_series = h + correct_mean_by return new_series.sample(n=forecast_days, replace = True).reset_index(drop=True) def simulate_portfolio(historical_returns,composition,forecast_days): result = 0 for t in tqdm(composition): name,weight = t[0],t[1] s = _simulate_returns(historical_returns['return_%s' % (name)], forecast_days) result = result + s * weight return(result) def simulate_modified_portfolio( historical_returns, composition, forecast_days): result = 0 for t in composition: name,weight,correction = t[0],t[1],t[2] s = simulate_modified_returns( historical_returns['return_%s' % (name)], forecast_days,correction ) result = result + s * weight return(result) def simulation(historical_returns,composition,forecast_days,n_iterations): simulated_portfolios = None for i in range(n_iterations): sim = simulate_modified_portfolio(historical_returns,composition,forecast_days) sim_port = pd.DataFrame({'returns_%d' % (i) : sim}) if simulated_portfolios is None: simulated_portfolios = sim_port else: simulated_portfolios = simulated_portfolios.join(sim_port) return simulated_portfolios if __name__ == '__main__': portfolio_composition = [('MSFT',0.5),('AAPL',0.2),('GOOG',0.3)] returns = pd.DataFrame({}) # create returns portfolio dataframe for t in portfolio_composition: name = t[0] ticker = yfinance.Ticker(name) data = ticker.history(interval="1d",start="2010-01-01",end="2019-12-31") data['return_%s' % (name)] = data['Close'].pct_change(1) returns = returns.join(data[['return_%s' % (name)]],how="outer").dropna() # Monte Carlo simulation of a portfolio # simulate_portfolio(returns,portfolio_composition,10) # This may be enough for portfolio simulation, but we want something more, that is the what-if analysis. # print("The historical average returns are : \n", returns.mean(axis=0)) ''' If we perform portfolio simulation as shown before, we are simply saying that the future returns are a random sample of the past returns. We already know this isn’t completely true. Moreover, maybe we are performing scenario analysis because we want to know what happens if certain conditions will occur. For example, what happens if the average daily return of each stock is lower than its historical value?If we perform portfolio simulation as shown before, we are simply saying that the future returns are a random sample of the past returns. We already know this isn’t completely true. Moreover, maybe we are performing scenario analysis because we want to know what happens if certain conditions will occur. For example, what happens if the average daily return of each stock is lower than its historical value? ''' print('Let’s try to simulate what happens if the average \ returns drop by -0.0001 for MSFT, -0.001 for AAPL and -0.0005 for GOOG. \ We must subtract these quantities from each stock and then simulate the \ future portfolios with the new, modified data.') # We’ll add these corrections directly to the portfolio_composition list (they are the third component of each tuple): new_portfolio_composition = [ ('MSFT', 0.5,-0.0001), ('AAPL', 0.2,-0.001), ('GOOG', 0.3,-0.0005) ] # Simulations and results forecast_days = 20 n_iterations = 200 simulated_portfolios = simulation(returns, new_portfolio_composition,forecast_days,n_iterations) # Taken the daily returns of a portfolio, we can build the return after N days with the compound interest formula: percentile_5th = simulated_portfolios.cumsum().apply(lambda x : np.percentile(x,5),axis=1) percentile_95th = simulated_portfolios.cumsum().apply(lambda x : np.percentile(x,95),axis=1) average_port = simulated_portfolios.cumsum().apply(lambda x : np.mean(x),axis=1) print(percentile_5th.tail(1)) print(percentile_95th.tail(1)) print(average_port.tail(1)) # Confidence interval for future portfolios x = range(forecast_days) plt.rcParams['figure.figsize'] = [10, 10] plt.plot(x,average_port,label="Average portfolio") plt.xlabel("Day") plt.ylabel("Portfolio return") plt.fill_between(x, percentile_5th, percentile_95th,alpha=0.2) plt.grid() plt.legend() plt.show() # Probability of beating the portfolio target target_return = 0.02 target_prob_port = simulated_portfolios.cumsum().apply(lambda x : np.mean(x > target_return),axis=1) print("Probabilityof beating the portfolio target {} ".format(target_return),target_prob_port.tail(1)) # The size of the error bars is calculated with the standard error formula: err_bars = np.sqrt( target_prob_port * (1-target_prob_port) / n_iterations ) x = range(forecast_days) plt.rcParams['figure.figsize'] = [10, 10] plt.bar(x,target_prob_port,yerr = err_bars) plt.xlabel("Day") plt.ylabel("Probability of return >= %.2f" % (target_return)) plt.grid() plt.show() # Sharpe ratio histogram ''' performance metric of a portfolio ''' sharpe_indices = simulated_portfolios.apply(lambda x : np.mean(x)/np.std(x)) plt.hist(sharpe_indices,bins="rice") plt.xlabel("Sharpe ratio") plt.show() print("Sharpe ratio mean value",np.mean(sharpe_indices))
def extractWriterupdatesCom(item): ''' Parser for 'writerupdates.com' ''' vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
# -*- coding: utf-8 -*- from zvt.contract import IntervalLevel from zvt.factors.target_selector import TargetSelector from zvt.factors.ma.ma_factor import CrossMaFactor from zvt.factors import BullFactor from ..context import init_test_context init_test_context() class TechnicalSelector(TargetSelector): def init_factors(self, entity_ids, entity_schema, exchanges, codes, the_timestamp, start_timestamp, end_timestamp, level): bull_factor = BullFactor(entity_ids=entity_ids, entity_schema=entity_schema, exchanges=exchanges, codes=codes, the_timestamp=the_timestamp, start_timestamp=start_timestamp, end_timestamp=end_timestamp, provider='joinquant', level=level, adjust_type='qfq') self.filter_factors = [bull_factor] def test_cross_ma_selector(): entity_ids = ['stock_sz_000338'] entity_type = 'stock' start_timestamp = '2018-01-01' end_timestamp = '2019-06-30' my_selector = TargetSelector(entity_ids=entity_ids, entity_schema=entity_type, start_timestamp=start_timestamp, end_timestamp=end_timestamp) # add the factors my_selector \ .add_filter_factor(CrossMaFactor(entity_ids=entity_ids, start_timestamp=start_timestamp, end_timestamp=end_timestamp, computing_window=10, windows=[5, 10], need_persist=False, level=IntervalLevel.LEVEL_1DAY, adjust_type='qfq')) my_selector.run() print(my_selector.open_long_df) print(my_selector.open_short_df) assert 'stock_sz_000338' in my_selector.get_open_short_targets('2018-01-29') def test_technical_selector(): selector = TechnicalSelector(start_timestamp='2019-01-01', end_timestamp='2019-06-10', level=IntervalLevel.LEVEL_1DAY, provider='joinquant') selector.run() print(selector.get_result_df()) targets = selector.get_open_long_targets('2019-06-04') assert 'stock_sz_000338' not in targets assert 'stock_sz_000338' not in targets assert 'stock_sz_002572' not in targets assert 'stock_sz_002572' not in targets targets = selector.get_open_short_targets('2019-06-04') assert 'stock_sz_000338' in targets assert 'stock_sz_000338' in targets assert 'stock_sz_002572' in targets assert 'stock_sz_002572' in targets selector.move_on(timeout=0) targets = selector.get_open_long_targets('2019-06-19') assert 'stock_sz_000338' in targets assert 'stock_sz_002572' not in targets
#!/usr/bin/python from capstone import * from unicorn import * import regress class MipsBranchDelay(regress.RegressTest): def runTest(self): md = Cs(CS_ARCH_MIPS, CS_MODE_MIPS32 + CS_MODE_LITTLE_ENDIAN) def disas(code, addr): for i in md.disasm(code, addr): print '0x%x: %s %-6s %s' % (i.address, str(i.bytes).encode('hex'), i.mnemonic, i.op_str) def hook_code(uc, addr, size, _): mem = str(uc.mem_read(addr, size)) disas(mem, addr) CODE = 0x400000 asm = '0000a4126a00822800000000'.decode('hex') # beq $a0, $s5, 0x4008a0; slti $v0, $a0, 0x6a; nop print 'Input instructions:' disas(asm, CODE) print print 'Hooked instructions:' uc = Uc(UC_ARCH_MIPS, UC_MODE_MIPS32 + UC_MODE_LITTLE_ENDIAN) uc.hook_add(UC_HOOK_CODE, hook_code) uc.mem_map(CODE, 0x1000) uc.mem_write(CODE, asm) self.assertEqual(None, uc.emu_start(CODE, CODE + len(asm))) if __name__ == '__main__': regress.main()
""" Copyright (c) 2017 Red Hat, Inc All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the LICENSE file for details. """ from __future__ import unicode_literals import docker import requests from dockerfile_parse import DockerfileParser from atomic_reactor.plugin import PluginFailedException from atomic_reactor.build import InsideBuilder, BuildResult from atomic_reactor.util import ImageName, CommandResult from atomic_reactor.inner import DockerBuildWorkflow from atomic_reactor.constants import INSPECT_ROOTFS, INSPECT_ROOTFS_LAYERS from tests.docker_mock import mock_docker from flexmock import flexmock import pytest from tests.constants import MOCK_SOURCE class MockDocker(object): def history(self, name): return [] class MockDockerTasker(object): def __init__(self): self.d = MockDocker() def inspect_image(self, name): return {} def build_image_from_path(self): return True class X(object): pass class MockInsideBuilder(object): def __init__(self, failed=False, image_id=None): self.tasker = MockDockerTasker() self.base_image = ImageName(repo='Fedora', tag='22') self.image_id = image_id or 'asd' self.image = 'image' self.failed = failed self.df_path = 'some' self.df_dir = 'some' def simplegen(x, y): yield "some\u2018".encode('utf-8') flexmock(self.tasker, build_image_from_path=simplegen) @property def source(self): return flexmock( dockerfile_path='/', path='/tmp', config=flexmock(image_build_method='docker_api'), ) def pull_base_image(self, source_registry, insecure=False): pass def get_built_image_info(self): return {'Id': 'some'} def inspect_built_image(self): return {INSPECT_ROOTFS: {INSPECT_ROOTFS_LAYERS: []}} def ensure_not_built(self): pass @pytest.mark.parametrize('is_failed', [ True, False, ]) @pytest.mark.parametrize('image_id', ['sha256:12345', '12345']) def test_build(is_failed, image_id): """ tests docker build api plugin working """ flexmock(DockerfileParser, content='df_content') mock_docker() fake_builder = MockInsideBuilder(image_id=image_id) flexmock(InsideBuilder).new_instances(fake_builder) workflow = DockerBuildWorkflow(MOCK_SOURCE, 'test-image') flexmock(CommandResult).should_receive('is_failed').and_return(is_failed) error = "error message" error_detail = "{u'message': u\"%s\"}" % error if is_failed: flexmock(CommandResult, error=error, error_detail=error_detail) with pytest.raises(PluginFailedException): workflow.build_docker_image() else: workflow.build_docker_image() assert isinstance(workflow.buildstep_result['docker_api'], BuildResult) assert workflow.build_result == workflow.buildstep_result['docker_api'] assert workflow.build_result.is_failed() == is_failed if is_failed: assert workflow.build_result.fail_reason == error assert '\\' not in workflow.plugins_errors['docker_api'] assert error in workflow.plugins_errors['docker_api'] else: assert workflow.build_result.image_id.startswith('sha256:') assert workflow.build_result.image_id.count(':') == 1 def test_syntax_error(): """ tests reporting of syntax errors """ flexmock(DockerfileParser, content='df_content') mock_docker() fake_builder = MockInsideBuilder() def raise_exc(*args, **kwargs): explanation = ("Syntax error - can't find = in \"CMD\". " "Must be of the form: name=value") http_error = requests.HTTPError('500 Server Error') raise docker.errors.APIError(message='foo', response=http_error, explanation=explanation) yield {} fake_builder.tasker.build_image_from_path = raise_exc flexmock(InsideBuilder).new_instances(fake_builder) workflow = DockerBuildWorkflow(MOCK_SOURCE, 'test-image') with pytest.raises(PluginFailedException): workflow.build_docker_image() assert isinstance(workflow.buildstep_result['docker_api'], BuildResult) assert workflow.build_result == workflow.buildstep_result['docker_api'] assert workflow.build_result.is_failed() assert "Syntax error" in workflow.build_result.fail_reason
# !/usr/bin/env python # -*- coding:utf-8 -*- from bs4 import BeautifulSoup import urlparse import re class Parser(object): def _pre_test(self, url, soup): bad_links = {} if soup.title == "手机搜狐" and url != 'http://m.sohu.com': bad_links[url] = 404 # todo:坏链处理。。。 return False, bad_links return True, None # todo:js去掉 def _get_new_urls(self, soup): new_urls = [] for link in soup.find_all('a'): # todo: 删掉这个try # try: link_href = unicode(link.get('href')).encode('utf-8') # except: # print link.get('href') # todo:处理外链 if link_href.startswith('/'): new_url = 'http://m.sohu.com'+''.join(link_href) elif link_href.startswith('http://m.sohu.com'): new_url = link_href # else: # break try: new_urls.append(new_url) except: print u'外链', link_href return new_urls def parse(self, page_url, html_content): if html_content is None: return soup = BeautifulSoup(html_content, 'html.parser', from_encoding='utf-8') state, bad_links = self._pre_test(page_url, soup) if state: new_urls = self._get_new_urls(soup) return True, new_urls else: return False, bad_links
from .inverted_residual import InvertedResidual, InvertedResidualV3 from .non_bottleneck_1d import non_bottleneck_1d from .dilated_bottleneck import DilatedBottleneck
from hashlib import sha256 from os import urandom from btcpy.structs.crypto import PublicKey, PrivateKey from btcpy.structs.transaction import MutableTransaction, TxOut from btcpy.structs.sig import P2pkhSolver from pypeerassets.networks import net_query class Kutil: def __init__(self, network: str, privkey: bytearray=None, from_string: str=None, from_wif: str=None) -> None: ''' High level helper class for handling public key cryptography. : privkey - privatekey bytes : from_wif - <WIF> import private key from your wallet in WIF format : from_bytes - import private key in binary format : network - specify network [ppc, tppc, btc] : from_string - specify seed (string) to make the privkey from ''' self.network = network self.btcpy_constants = net_query(self.network).btcpy_constants if privkey is not None: self._private_key = PrivateKey(privkey) if from_string is not None: self._private_key = PrivateKey(sha256( from_string.encode()).digest()) if from_wif is not None: self._private_key = PrivateKey.from_wif(wif=from_wif, network=self.btcpy_constants, ) if not privkey: if from_string == from_wif is None: # generate a new privkey self._private_key = PrivateKey(bytearray(urandom(32))) self.privkey = str(self._private_key) self._public_key = PublicKey.from_priv(self._private_key) self.pubkey = str(self._public_key) @property def address(self) -> str: '''generate an address from pubkey''' btcpy_constants = net_query(self.network).btcpy_constants return str(self._public_key.to_address(btcpy_constants)) @property def wif(self) -> str: '''convert raw private key to WIF''' return self._private_key.to_wif(network=self.btcpy_constants) def sign_transaction(self, txin: TxOut, tx: MutableTransaction) -> MutableTransaction: '''sign the parent txn outputs P2PKH''' solver = P2pkhSolver(self._private_key) return tx.spend([txin], [solver])
# MIT License # # Copyright (c) 2022 Ferhat Geçdoğan All Rights Reserved. # Distributed under the terms of the MIT License. # # # evalie - a toy evaluator using # shunting-yard algorithm. # ------ # github.com/ferhatgec/evalie # import math class evalie: def __init__(self): self.precedence = { '+': 2, '-': 2, '*': 3, '/': 3, '!': 4, '^': 4, '%': 4 } self.left = 0 self.right = 0 self.op = '' self.stack = self.evalie_values() self.pi = str(math.pi) self.e = str(math.e) self.tau = str(math.tau) self.golden_ratio = str(1.618033988749895) class evalie_values: def __init__(self): self.values = [] self.operators = [] @staticmethod def check_none(val): return val if val is not None else -1 def get_precedence(self, ch) -> int: return self.check_none(self.precedence.get(ch)) def perform(self): if self.left is None: self.left = 0 if self.right is None: self.right = 0 match self.op: case '+': return self.left + self.right case '-': return self.right - self.left case '*': return self.left * self.right case '/': return self.right / self.left case '^': return self.right ** self.left case '!': return float(math.factorial(int(self.left))) case '%': return self.right % self.left def pop(self, data): if type(data) == float: data = [data] return data.pop() if len(data) > 0: val = data.pop() return val def precalc(self, data: str): return data.replace('pi', self.pi) \ .replace('π', self.pi) \ .replace('e', self.e) \ .replace('tau', self.tau) \ .replace('τ', self.tau) \ .replace('phi', self.golden_ratio) \ .replace('φ', self.golden_ratio) \ .replace('mod', '%')\ .replace('+', ' + ')\ .replace('-', ' - ')\ .replace('/', ' / ')\ .replace('*', ' * ') def clear(self): self.left = self.right = 0 self.op = 0 self.stack = self.evalie_values() def eval(self, data): data = self.precalc(data) i = 0 while i < len(data): match data[i]: case ' ': i += 1 continue case '(': self.stack.operators.append(data[i]) case ')': while len(self.stack.operators) != 0 and self.stack.operators[-1] != '(': self.left = self.pop(self.stack.values) self.right = self.pop(self.stack.values) self.op = self.pop(self.stack.operators) self.stack.values.append(self.perform()) self.pop(self.stack.operators) case _ if data[i].isdigit() or (data[i] == '-' and self.left > 0 and self.right == 0): value = '' while i < len(data) and (data[i].isdigit() or data[i] == '.' or data[i] == '-'): value += data[i] i += 1 value = float(value) self.stack.values.append(value) i -= 1 case _ as arg: while (len(self.stack.operators) != 0 and self.get_precedence(self.stack.operators[-1]) >= self.get_precedence(arg)): self.left = self.pop(self.stack.values) if self.stack.operators[-1] != '!': self.right = self.pop(self.stack.values) self.op = self.pop(self.stack.operators) self.stack.values.append(self.perform()) self.stack.operators.append(data[i]) i += 1 while len(self.stack.operators) != 0: self.left = self.pop(self.stack.values) self.right = self.pop(self.stack.values) self.op = self.pop(self.stack.operators) self.stack.values = self.perform() if type(self.stack.values) == float: self.stack.values = [self.stack.values] if type(self.stack.values) == list and len(self.stack.values) > 0: return self.stack.values[-1]
import os import pickle from .Utils import purify, staticPath def cacheIn(dir, name, data): """ Store given `data` under ./cache/dir/name.pickle file. Note that `dir` and `name` are "purified" before used! -dir: string of sub-directory to be created. Cache-file will be stored in it. It shouldn't be None. -name: string of filename without any extension. Cache-file will be named after it. It shouldn't be None. -data: python object to be cached. """ path = staticPath(__file__, "cache") dir = purify(dir) name = purify(name) path = os.path.join(path, dir) # If specified file exists, overwrite it without errors or warnings. os.makedirs(path, exist_ok=True) filename = name + ".pickle" path = os.path.join(path, filename) with open(path, "wb") as file: pickle.dump(data, file) def cacheOut(dir, name): """ Try to retrieve cached data under `./cache/dir/name.pickle`. If the cache-file doesn't exist, None is being returned. Note that `dir` and `name` are "purified" before used! -dir: string of sub-directory to searched for cache-file. It shouldn't be None. -name: string of filename to be searched without any extension. It shouldn't be None. """ data = None path = staticPath(__file__, "cache") dir = purify(dir) name = purify(name) filename = name + ".pickle" path = os.path.join(path, dir, filename) if os.path.isfile(path): with open(path, "rb") as file: data = pickle.load(file) return data
"""" Program name : Website cloner author : https://github.com/codeperfectplus How to use : Check README.md """ import os import sys import requests from bs4 import BeautifulSoup class CloneWebsite: def __init__(self, website_name): self.website_name = website_name def crawl_website(self): """ This function will crawl website and return content""" content = requests.get(website_name) if content.status_code == 200: return content def create_folder(self): """ This funtion will create folder for website """ folder_name = (website_name.split("/"))[2] try: os.makedirs(folder_name) except Exception as e: print(e) return folder_name def save_website(self): """ This function will save website to respective folder """ folder_name = self.create_folder() content = self.crawl_website() with open( f"{folder_name}/index.html", "w", encoding="ascii", errors="ignore" ) as file: file.write(content.text) def save_image(self): folder_name = self.create_folder() os.chdir(folder_name) data = requests.get(website_name).text soup = BeautifulSoup(data, "html.parser") for img in soup.find_all("img"): src = img["src"] print(src) image_name = src.split("/")[-1] path = src.split("/")[:-1] path = "/".join(path) try: os.makedirs(path) except Exception: print("File Exists") if "/" == src[:1]: print(src) src = website_name + src img_data = requests.get(src).content with open(f"{path}/{image_name}", "wb") as file: file.write(img_data) print("complete") if __name__ == "__main__": website_name = sys.argv[1] clone = CloneWebsite(website_name) clone.save_website() clone.save_image()
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tfx.orchestration.portable.python_executor_operator.""" import os from typing import Any, Dict, List import tensorflow as tf from tfx import types from tfx.dsl.components.base import base_executor from tfx.dsl.io import fileio from tfx.orchestration.portable import data_types from tfx.orchestration.portable import outputs_utils from tfx.orchestration.portable import python_executor_operator from tfx.proto.orchestration import executable_spec_pb2 from tfx.proto.orchestration import execution_result_pb2 from tfx.proto.orchestration import pipeline_pb2 from tfx.types import standard_artifacts from tfx.utils import test_case_utils from google.protobuf import text_format class InprocessExecutor(base_executor.BaseExecutor): """A Fake in-process executor what returns execution result.""" def Do( self, input_dict: Dict[str, List[types.Artifact]], output_dict: Dict[str, List[types.Artifact]], exec_properties: Dict[str, Any]) -> execution_result_pb2.ExecutorOutput: executor_output = execution_result_pb2.ExecutorOutput() outputs_utils.populate_output_artifact(executor_output, output_dict) outputs_utils.populate_exec_properties(executor_output, exec_properties) return executor_output class NotInprocessExecutor(base_executor.BaseExecutor): """A Fake not-in-process executor what writes execution result to executor_output_uri.""" def Do(self, input_dict: Dict[str, List[types.Artifact]], output_dict: Dict[str, List[types.Artifact]], exec_properties: Dict[str, Any]) -> None: executor_output = execution_result_pb2.ExecutorOutput() outputs_utils.populate_output_artifact(executor_output, output_dict) outputs_utils.populate_exec_properties(executor_output, exec_properties) with fileio.open(self._context.executor_output_uri, 'wb') as f: f.write(executor_output.SerializeToString()) class InplaceUpdateExecutor(base_executor.BaseExecutor): """A Fake executor that uses the executor Context to compute its output.""" def Do(self, input_dict: Dict[str, List[types.Artifact]], output_dict: Dict[str, List[types.Artifact]], exec_properties: Dict[str, Any]) -> None: model = output_dict['output_key'][0] model.name = '{0}.{1}.my_model'.format( self._context.pipeline_info.id, self._context.pipeline_node.node_info.id) class PythonExecutorOperatorTest(test_case_utils.TfxTest): def _get_execution_info(self, input_dict, output_dict, exec_properties): pipeline_node = pipeline_pb2.PipelineNode(node_info={'id': 'MyPythonNode'}) pipeline_info = pipeline_pb2.PipelineInfo(id='MyPipeline') stateful_working_dir = os.path.join(self.tmp_dir, 'stateful_working_dir') executor_output_uri = os.path.join(self.tmp_dir, 'executor_output') return data_types.ExecutionInfo( execution_id=1, input_dict=input_dict, output_dict=output_dict, exec_properties=exec_properties, stateful_working_dir=stateful_working_dir, execution_output_uri=executor_output_uri, pipeline_node=pipeline_node, pipeline_info=pipeline_info, pipeline_run_id=99) def testRunExecutor_with_InprocessExecutor(self): executor_sepc = text_format.Parse( """ class_path: "tfx.orchestration.portable.python_executor_operator_test.InprocessExecutor" """, executable_spec_pb2.PythonClassExecutableSpec()) operator = python_executor_operator.PythonExecutorOperator(executor_sepc) input_dict = {'input_key': [standard_artifacts.Examples()]} output_dict = {'output_key': [standard_artifacts.Model()]} exec_properties = {'key': 'value'} executor_output = operator.run_executor( self._get_execution_info(input_dict, output_dict, exec_properties)) self.assertProtoPartiallyEquals( """ execution_properties { key: "key" value { string_value: "value" } } output_artifacts { key: "output_key" value { artifacts { } } }""", executor_output) def testRunExecutor_with_NotInprocessExecutor(self): executor_sepc = text_format.Parse( """ class_path: "tfx.orchestration.portable.python_executor_operator_test.NotInprocessExecutor" """, executable_spec_pb2.PythonClassExecutableSpec()) operator = python_executor_operator.PythonExecutorOperator(executor_sepc) input_dict = {'input_key': [standard_artifacts.Examples()]} output_dict = {'output_key': [standard_artifacts.Model()]} exec_properties = {'key': 'value'} executor_output = operator.run_executor( self._get_execution_info(input_dict, output_dict, exec_properties)) self.assertProtoPartiallyEquals( """ execution_properties { key: "key" value { string_value: "value" } } output_artifacts { key: "output_key" value { artifacts { } } }""", executor_output) def testRunExecutor_with_InplaceUpdateExecutor(self): executor_sepc = text_format.Parse( """ class_path: "tfx.orchestration.portable.python_executor_operator_test.InplaceUpdateExecutor" """, executable_spec_pb2.PythonClassExecutableSpec()) operator = python_executor_operator.PythonExecutorOperator(executor_sepc) input_dict = {'input_key': [standard_artifacts.Examples()]} output_dict = {'output_key': [standard_artifacts.Model()]} exec_properties = { 'string': 'value', 'int': 1, 'float': 0.0, # This should not happen on production and will be # dropped. 'proto': execution_result_pb2.ExecutorOutput() } executor_output = operator.run_executor( self._get_execution_info(input_dict, output_dict, exec_properties)) self.assertProtoPartiallyEquals( """ execution_properties { key: "float" value { double_value: 0.0 } } execution_properties { key: "int" value { int_value: 1 } } execution_properties { key: "string" value { string_value: "value" } } output_artifacts { key: "output_key" value { artifacts { custom_properties { key: "name" value { string_value: "MyPipeline.MyPythonNode.my_model" } } name: "MyPipeline.MyPythonNode.my_model" } } }""", executor_output) if __name__ == '__main__': tf.test.main()
""" Filename: plot_ohc_drift.py Author: Damien Irving, irving.damien@gmail.com Description: Create a bar chart showing drift in ocean heat content and its thermal and barystatic components """ # Import general Python modules import sys import os import re import pdb import argparse import numpy as np import pandas as pd import matplotlib.pyplot as plt import cmdline_provenance as cmdprov cwd = os.getcwd() repo_dir = '/' for directory in cwd.split('/')[1:]: repo_dir = os.path.join(repo_dir, directory) if directory == 'ocean-analysis': break import matplotlib as mpl mpl.rcParams['axes.labelsize'] = 'large' mpl.rcParams['axes.titlesize'] = 'x-large' mpl.rcParams['xtick.labelsize'] = 'medium' mpl.rcParams['ytick.labelsize'] = 'large' mpl.rcParams['legend.fontsize'] = 'large' # Define functions def get_quartiles(df, column_name, df_project, units): """Get the ensemble quartiles""" assert len(df) == len(df_project) quartiles = ['# ' + column_name + ' quartiles'] for project in ['cmip6', 'cmip5']: df_subset = df[df_project == project] upper_quartile = df_subset[column_name].abs().quantile(0.75) median = df_subset[column_name].abs().quantile(0.5) lower_quartile = df_subset[column_name].abs().quantile(0.25) upper_quartile_text = "%s upper quartile: %f %s" %(project, upper_quartile, units) median_text = "%s median: %f %s" %(project, median, units) lower_quartile_text = "%s lower quartile: %f %s" %(project, lower_quartile, units) quartiles.append(upper_quartile_text) quartiles.append(median_text) quartiles.append(lower_quartile_text) return quartiles def main(inargs): """Run the program.""" df = pd.read_csv(inargs.infile) df.set_index(df['model'], drop=True, inplace=True) #df.set_index(df['model'] + ' (' + df['run'] + ')', drop=True, inplace=True) x = np.arange(df.shape[0]) ncmip5 = df['project'].value_counts()['cmip5'] df_ohc = df[['OHC (J yr-1)', 'thermal OHC (J yr-1)', 'barystatic OHC (J yr-1)']] sec_in_year = 365.25 * 24 * 60 * 60 earth_surface_area = 5.1e14 df_ohc = (df_ohc / sec_in_year) / earth_surface_area df_ohc = df_ohc.rename(columns={"OHC (J yr-1)": "change in OHC ($dH/dt$)", "thermal OHC (J yr-1)": "change in OHC temperature component ($dH_T/dt$)", "barystatic OHC (J yr-1)": "change in OHC barystatic component ($dH_m/dt$)"}) df_ohc.plot.bar(figsize=(18,6), color=['#272727', 'tab:red', 'tab:blue'], width=0.9, zorder=2) plt.axhspan(0.4, 1.0, color='0.95', zorder=1) plt.axvline(x=ncmip5 - 0.5, color='0.5', linewidth=2.0) units = 'equivalent planetary energy imbalance (W m$^{-2}$)' plt.ylabel(units) plt.axvline(x=x[0]-0.5, color='0.5', linewidth=0.1) for val in x: plt.axvline(x=val+0.5, color='0.5', linewidth=0.1) quartiles = get_quartiles(df_ohc, "change in OHC ($dH/dt$)", df['project'], units) plt.savefig(inargs.outfile, bbox_inches='tight', dpi=400) log_file = re.sub('.png', '.met', inargs.outfile) log_text = cmdprov.new_log(git_repo=repo_dir, extra_notes=quartiles) cmdprov.write_log(log_file, log_text) if __name__ == '__main__': extra_info =""" author: Damien Irving, irving.damien@gmail.com """ description = 'Create a bar chart showing drift in ocean heat content' parser = argparse.ArgumentParser(description=description, epilog=extra_info, argument_default=argparse.SUPPRESS, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument("infile", type=str, help="Input file name") parser.add_argument("outfile", type=str, help="Output file name") args = parser.parse_args() main(args)
import tkinter as tk import threading from tkinter import scrolledtext from tkinter import messagebox ENCODING = 'utf-8' class GUI(threading.Thread): def __init__(self, client): super().__init__(daemon=False, target=self.run) self.font = ('Helvetica', 13) self.client = client self.login_window = None self.main_window = None def run(self): self.login_window = LoginWindow(self, self.font) self.main_window = ChatWindow(self, self.font) self.notify_server(self.login_window.login, 'login') self.main_window.run() @staticmethod def display_alert(message): """Display alert box""" messagebox.showinfo('Error', message) def update_login_list(self, active_users): """Update login list in main window with list of users""" self.main_window.update_login_list(active_users) def display_message(self, message): """Display message in ChatWindow""" self.main_window.display_message(message) def send_message(self, message): """Enqueue message in client's queue""" # add print('GUI sent: ' + message) if self.client.target == 'ALL': act = '2' else: act = '1 ' + self.client.target self.client.queue.put(self.client.encapsulate(message, action=act)) def set_target(self, target): """Set target for messages""" self.client.target = target def notify_server(self, message, action): """Notify server after action was performed""" #data = action + ";" + message data = message # data = data.encode(ENCODING) do not encode before sending! self.client.notify_server(data, action) def login(self, login): self.client.notify_server(login, 'login') def logout(self, logout): self.client.notify_server(logout, 'logout') class Window(object): def __init__(self, title, font): self.root = tk.Tk() self.title = title self.root.title(title) self.font = font class LoginWindow(Window): def __init__(self, gui, font): super().__init__("Login", font) self.gui = gui self.label = None self.entry = None self.button = None self.login = None self.build_window() self.run() def build_window(self): """Build login window, , set widgets positioning and event bindings""" welcome_text = "Welcome to SECRET CHAT.\nEnter your name." self.label = tk.Label(self.root, text=welcome_text, width=30, height=5, font=self.font) self.label.pack(side=tk.TOP, expand=tk.YES) self.entry = tk.Entry(self.root, width=15, font=self.font) self.entry.focus_set() self.entry.pack(side=tk.LEFT, expand=tk.YES) self.entry.bind('<Return>', self.get_login_event) self.button = tk.Button(self.root, text='Login', font=self.font) self.button.pack(side=tk.LEFT, expand=tk.YES) self.button.bind('<Button-1>', self.get_login_event) def run(self): """Handle login window actions""" self.root.mainloop() self.root.destroy() def get_login_event(self, event): """Get login from login box and close login window""" self.login = self.entry.get() self.root.quit() class ChatWindow(Window): def __init__(self, gui, font): super().__init__("Secret Chat", font) self.gui = gui self.messages_list = None self.logins_list = None self.entry = None self.send_button = None self.exit_button = None self.lock = threading.RLock() self.target = '' self.login = self.gui.login_window.login self.build_window() def build_window(self): """Build chat window, set widgets positioning and event bindings""" # Size config self.root.geometry('750x500') self.root.minsize(600, 400) # Frames config main_frame = tk.Frame(self.root) main_frame.grid(row=0, column=0, sticky=tk.N + tk.S + tk.W + tk.E) self.root.rowconfigure(0, weight=1) self.root.columnconfigure(0, weight=1) # swap frame00 and frame01 # List of messages frame00 = tk.Frame(main_frame) frame00.grid(column=1, row=0, rowspan=2, sticky=tk.N + tk.S + tk.W + tk.E) # List of logins frame01 = tk.Frame(main_frame) frame01.grid(column=0, row=0, rowspan=2, sticky=tk.N + tk.S + tk.W + tk.E) # Message entry frame02 = tk.Frame(main_frame) frame02.grid(column=0, row=2, columnspan=2, sticky=tk.N + tk.S + tk.W + tk.E) # Buttons frame03 = tk.Frame(main_frame) frame03.grid(column=0, row=3, columnspan=2, sticky=tk.N + tk.S + tk.W + tk.E) main_frame.rowconfigure(0, weight=1) main_frame.rowconfigure(1, weight=1) main_frame.rowconfigure(2, weight=8) main_frame.columnconfigure(0, weight=1) main_frame.columnconfigure(1, weight=1) # ScrolledText widget for displaying messages self.messages_list = scrolledtext.ScrolledText(frame00, wrap='word', font=self.font) self.messages_list.insert(tk.END, 'Start Your Secret Chat\n\n') self.messages_list.configure(state='disabled') # Listbox widget for displaying active users and selecting them self.logins_list = tk.Listbox(frame01, selectmode=tk.SINGLE, font=self.font, exportselection=False) self.logins_list.bind('<<ListboxSelect>>', self.selected_login_event) # Entry widget for typing messages in self.entry = tk.Text(frame02, font=self.font) self.entry.focus_set() self.entry.bind('<Return>', self.send_entry_event) # Button widget for sending messages self.send_button = tk.Button(frame03, text='Send Message', font=self.font) self.send_button.bind('<Button-1>', self.send_entry_event) # Button for exiting self.exit_button = tk.Button(frame03, text='Exit', font=self.font) self.exit_button.bind('<Button-1>', self.exit_event) # Positioning widgets in frame self.logins_list.pack(fill=tk.BOTH, expand=tk.YES, side=tk.LEFT) self.messages_list.pack(fill=tk.BOTH, expand=tk.YES, side=tk.LEFT) self.entry.pack(side=tk.LEFT, fill=tk.BOTH, expand=tk.YES) self.send_button.pack(side=tk.LEFT, fill=tk.BOTH, expand=tk.YES) self.exit_button.pack(side=tk.LEFT, fill=tk.BOTH, expand=tk.YES) # Protocol for closing window using 'x' button self.root.protocol("WM_DELETE_WINDOW", self.on_closing_event) def run(self): """Handle chat window actions""" self.root.mainloop() self.root.destroy() def selected_login_event(self, event): """Set as target currently selected login on login list""" target = self.logins_list.get(self.logins_list.curselection()) self.target = target self.gui.set_target(target) def send_entry_event(self, event): """Send message from entry field to target""" text = self.entry.get(1.0, tk.END) if text != '\n': #message = 'msg;' + self.login + ';' + self.target + ';' + text[:-1] message = text[:-1] print(message) self.gui.send_message(message) self.entry.mark_set(tk.INSERT, 1.0) self.entry.delete(1.0, tk.END) self.entry.focus_set() else: messagebox.showinfo('Warning', 'You must enter non-empty message') with self.lock: self.messages_list.configure(state='normal') if text != '\n': self.messages_list.insert(tk.END, text) self.messages_list.configure(state='disabled') self.messages_list.see(tk.END) return 'break' def exit_event(self, event): """Send logout message and quit app when "Exit" pressed""" self.gui.notify_server(self.login, 'logout') self.root.quit() def on_closing_event(self): """Exit window when 'x' button is pressed""" self.exit_event(None) def display_message(self, message): """Display message in ScrolledText widget""" with self.lock: self.messages_list.configure(state='normal') self.messages_list.insert(tk.END, message) self.messages_list.configure(state='disabled') self.messages_list.see(tk.END) def update_login_list(self, active_users): """Update listbox with list of active users""" self.logins_list.delete(0, tk.END) for user in active_users: self.logins_list.insert(tk.END, user) self.logins_list.select_set(0) self.target = self.logins_list.get(self.logins_list.curselection())
from sqlalchemy.orm.exc import NoResultFound from whoahqa.models import ( ClinicFactory, User, ) from whoahqa.constants import groups from whoahqa.constants import permissions as perms def get_request_user(request): user_id = request.authenticated_userid try: return User.get(User.id == user_id) except NoResultFound: return None def can_list_clinics(request): return request.has_permission(perms.CAN_LIST_CLINICS, ClinicFactory(request)) def can_view_clinics(request): return request.has_permission(perms.CAN_VIEW_CLINICS, ClinicFactory(request)) def is_super_user(request): return request.has_permission(perms.SUPER_USER, ClinicFactory(request)) def can_access_clinics(request): return request.has_permission(perms.CAN_ASSESS_CLINICS, ClinicFactory(request)) def can_create_period(request): return request.has_permission(perms.CAN_CREATE_PERIOD, ClinicFactory(request)) def can_view_municipality(request): user = request.user if user.group.name == groups.MUNICIPALITY_MANAGER or ( user.group.name == groups.STATE_OFFICIAL): return True return False def can_view_state(request): user = request.user if user.group.name == groups.STATE_OFFICIAL: return True return False def can_list_state(request): user = request.user if user.group.name == groups.NATIONAL_OFFICIAL: return True return False
# -*- coding: utf-8 -*- # Generated by Django 1.9.1 on 2016-01-11 01:18 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Goal', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('current_amount', models.IntegerField(default=0)), ('goal_amount', models.IntegerField()), ('end_date', models.DateTimeField(verbose_name='Due')), ], ), ]
from math import ceil def karatsuba(a,b): if a < 10 and b < 10: return a*b n = max(len(str(a)), len(str(b))) m = int(ceil(float(n)/2)) a1 = int(a // 10**m) a2 = int(a % (10**m)) b1 = int(b // 10**m) b2 = int(b % (10**m)) a = karatsuba(a1,b1) d = karatsuba(a2,b2) e = karatsuba(a1 + a2, b1 + b2) -a -d return int(a*(10**(m*2)) + e*(10**m) + d)
from .oauth import BaseOAuth1 class WithingsOAuth(BaseOAuth1): name = 'withings' AUTHORIZATION_URL = 'https://oauth.withings.com/account/authorize' REQUEST_TOKEN_URL = 'https://oauth.withings.com/account/request_token' ACCESS_TOKEN_URL = 'https://oauth.withings.com/account/access_token' ID_KEY = 'userid' def get_user_details(self, response): """Return user details from Withings account""" return {'userid': response['access_token']['userid'], 'email': ''}
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextlib import itertools import eventlet import six from heat.common.i18n import repr_wrapper from heat.common import timeutils from heat.engine import dependencies from heat.engine import scheduler from heat.tests import common class DummyTask(object): def __init__(self, num_steps=3, delays=None): self.num_steps = num_steps if delays is not None: self.delays = iter(delays) else: self.delays = itertools.repeat(None) def __call__(self, *args, **kwargs): for i in range(1, self.num_steps + 1): self.do_step(i, *args, **kwargs) yield next(self.delays) def do_step(self, step_num, *args, **kwargs): pass class ExceptionGroupTest(common.HeatTestCase): def test_contains_exceptions(self): exception_group = scheduler.ExceptionGroup() self.assertIsInstance(exception_group.exceptions, list) def test_can_be_initialized_with_a_list_of_exceptions(self): ex1 = Exception("ex 1") ex2 = Exception("ex 2") exception_group = scheduler.ExceptionGroup([ex1, ex2]) self.assertIn(ex1, exception_group.exceptions) self.assertIn(ex2, exception_group.exceptions) def test_can_add_exceptions_after_init(self): ex = Exception() exception_group = scheduler.ExceptionGroup() exception_group.exceptions.append(ex) self.assertIn(ex, exception_group.exceptions) def test_str_representation_aggregates_all_exceptions(self): ex1 = Exception("ex 1") ex2 = Exception("ex 2") exception_group = scheduler.ExceptionGroup([ex1, ex2]) self.assertEqual("['ex 1', 'ex 2']", six.text_type(exception_group)) class DependencyTaskGroupTest(common.HeatTestCase): def setUp(self): super(DependencyTaskGroupTest, self).setUp() self.addCleanup(self.m.VerifyAll) self.aggregate_exceptions = False self.error_wait_time = None self.reverse_order = False @contextlib.contextmanager def _dep_test(self, *edges): dummy = DummyTask(getattr(self, 'steps', 3)) deps = dependencies.Dependencies(edges) tg = scheduler.DependencyTaskGroup( deps, dummy, reverse=self.reverse_order, error_wait_time=self.error_wait_time, aggregate_exceptions=self.aggregate_exceptions) self.m.StubOutWithMock(dummy, 'do_step') yield dummy self.m.ReplayAll() scheduler.TaskRunner(tg)(wait_time=None) def test_no_steps(self): self.steps = 0 self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') with self._dep_test(('second', 'first')): pass def test_single_node(self): with self._dep_test(('only', None)) as dummy: dummy.do_step(1, 'only').AndReturn(None) dummy.do_step(2, 'only').AndReturn(None) dummy.do_step(3, 'only').AndReturn(None) def test_disjoint(self): with self._dep_test(('1', None), ('2', None)) as dummy: dummy.do_step(1, '1').InAnyOrder('1') dummy.do_step(1, '2').InAnyOrder('1') dummy.do_step(2, '1').InAnyOrder('2') dummy.do_step(2, '2').InAnyOrder('2') dummy.do_step(3, '1').InAnyOrder('3') dummy.do_step(3, '2').InAnyOrder('3') def test_single_fwd(self): with self._dep_test(('second', 'first')) as dummy: dummy.do_step(1, 'first').AndReturn(None) dummy.do_step(2, 'first').AndReturn(None) dummy.do_step(3, 'first').AndReturn(None) dummy.do_step(1, 'second').AndReturn(None) dummy.do_step(2, 'second').AndReturn(None) dummy.do_step(3, 'second').AndReturn(None) def test_chain_fwd(self): with self._dep_test(('third', 'second'), ('second', 'first')) as dummy: dummy.do_step(1, 'first').AndReturn(None) dummy.do_step(2, 'first').AndReturn(None) dummy.do_step(3, 'first').AndReturn(None) dummy.do_step(1, 'second').AndReturn(None) dummy.do_step(2, 'second').AndReturn(None) dummy.do_step(3, 'second').AndReturn(None) dummy.do_step(1, 'third').AndReturn(None) dummy.do_step(2, 'third').AndReturn(None) dummy.do_step(3, 'third').AndReturn(None) def test_diamond_fwd(self): with self._dep_test(('last', 'mid1'), ('last', 'mid2'), ('mid1', 'first'), ('mid2', 'first')) as dummy: dummy.do_step(1, 'first').AndReturn(None) dummy.do_step(2, 'first').AndReturn(None) dummy.do_step(3, 'first').AndReturn(None) dummy.do_step(1, 'mid1').InAnyOrder('1') dummy.do_step(1, 'mid2').InAnyOrder('1') dummy.do_step(2, 'mid1').InAnyOrder('2') dummy.do_step(2, 'mid2').InAnyOrder('2') dummy.do_step(3, 'mid1').InAnyOrder('3') dummy.do_step(3, 'mid2').InAnyOrder('3') dummy.do_step(1, 'last').AndReturn(None) dummy.do_step(2, 'last').AndReturn(None) dummy.do_step(3, 'last').AndReturn(None) def test_complex_fwd(self): with self._dep_test(('last', 'mid1'), ('last', 'mid2'), ('mid1', 'mid3'), ('mid1', 'first'), ('mid3', 'first'), ('mid2', 'first')) as dummy: dummy.do_step(1, 'first').AndReturn(None) dummy.do_step(2, 'first').AndReturn(None) dummy.do_step(3, 'first').AndReturn(None) dummy.do_step(1, 'mid2').InAnyOrder('1') dummy.do_step(1, 'mid3').InAnyOrder('1') dummy.do_step(2, 'mid2').InAnyOrder('2') dummy.do_step(2, 'mid3').InAnyOrder('2') dummy.do_step(3, 'mid2').InAnyOrder('3') dummy.do_step(3, 'mid3').InAnyOrder('3') dummy.do_step(1, 'mid1').AndReturn(None) dummy.do_step(2, 'mid1').AndReturn(None) dummy.do_step(3, 'mid1').AndReturn(None) dummy.do_step(1, 'last').AndReturn(None) dummy.do_step(2, 'last').AndReturn(None) dummy.do_step(3, 'last').AndReturn(None) def test_many_edges_fwd(self): with self._dep_test(('last', 'e1'), ('last', 'mid1'), ('last', 'mid2'), ('mid1', 'e2'), ('mid1', 'mid3'), ('mid2', 'mid3'), ('mid3', 'e3')) as dummy: dummy.do_step(1, 'e1').InAnyOrder('1edges') dummy.do_step(1, 'e2').InAnyOrder('1edges') dummy.do_step(1, 'e3').InAnyOrder('1edges') dummy.do_step(2, 'e1').InAnyOrder('2edges') dummy.do_step(2, 'e2').InAnyOrder('2edges') dummy.do_step(2, 'e3').InAnyOrder('2edges') dummy.do_step(3, 'e1').InAnyOrder('3edges') dummy.do_step(3, 'e2').InAnyOrder('3edges') dummy.do_step(3, 'e3').InAnyOrder('3edges') dummy.do_step(1, 'mid3').AndReturn(None) dummy.do_step(2, 'mid3').AndReturn(None) dummy.do_step(3, 'mid3').AndReturn(None) dummy.do_step(1, 'mid2').InAnyOrder('1mid') dummy.do_step(1, 'mid1').InAnyOrder('1mid') dummy.do_step(2, 'mid2').InAnyOrder('2mid') dummy.do_step(2, 'mid1').InAnyOrder('2mid') dummy.do_step(3, 'mid2').InAnyOrder('3mid') dummy.do_step(3, 'mid1').InAnyOrder('3mid') dummy.do_step(1, 'last').AndReturn(None) dummy.do_step(2, 'last').AndReturn(None) dummy.do_step(3, 'last').AndReturn(None) def test_dbldiamond_fwd(self): with self._dep_test(('last', 'a1'), ('last', 'a2'), ('a1', 'b1'), ('a2', 'b1'), ('a2', 'b2'), ('b1', 'first'), ('b2', 'first')) as dummy: dummy.do_step(1, 'first').AndReturn(None) dummy.do_step(2, 'first').AndReturn(None) dummy.do_step(3, 'first').AndReturn(None) dummy.do_step(1, 'b1').InAnyOrder('1b') dummy.do_step(1, 'b2').InAnyOrder('1b') dummy.do_step(2, 'b1').InAnyOrder('2b') dummy.do_step(2, 'b2').InAnyOrder('2b') dummy.do_step(3, 'b1').InAnyOrder('3b') dummy.do_step(3, 'b2').InAnyOrder('3b') dummy.do_step(1, 'a1').InAnyOrder('1a') dummy.do_step(1, 'a2').InAnyOrder('1a') dummy.do_step(2, 'a1').InAnyOrder('2a') dummy.do_step(2, 'a2').InAnyOrder('2a') dummy.do_step(3, 'a1').InAnyOrder('3a') dummy.do_step(3, 'a2').InAnyOrder('3a') dummy.do_step(1, 'last').AndReturn(None) dummy.do_step(2, 'last').AndReturn(None) dummy.do_step(3, 'last').AndReturn(None) def test_circular_deps(self): d = dependencies.Dependencies([('first', 'second'), ('second', 'third'), ('third', 'first')]) self.assertRaises(dependencies.CircularDependencyException, scheduler.DependencyTaskGroup, d) def test_aggregate_exceptions_raises_all_at_the_end(self): def run_tasks_with_exceptions(e1=None, e2=None): self.aggregate_exceptions = True tasks = (('A', None), ('B', None), ('C', None)) with self._dep_test(*tasks) as dummy: dummy.do_step(1, 'A').InAnyOrder('1') dummy.do_step(1, 'B').InAnyOrder('1') dummy.do_step(1, 'C').InAnyOrder('1').AndRaise(e1) dummy.do_step(2, 'A').InAnyOrder('2') dummy.do_step(2, 'B').InAnyOrder('2').AndRaise(e2) dummy.do_step(3, 'A').InAnyOrder('3') e1 = Exception('e1') e2 = Exception('e2') exc = self.assertRaises(scheduler.ExceptionGroup, run_tasks_with_exceptions, e1, e2) self.assertEqual(set([e1, e2]), set(exc.exceptions)) def test_aggregate_exceptions_cancels_dependent_tasks_recursively(self): def run_tasks_with_exceptions(e1=None, e2=None): self.aggregate_exceptions = True tasks = (('A', None), ('B', 'A'), ('C', 'B')) with self._dep_test(*tasks) as dummy: dummy.do_step(1, 'A').AndRaise(e1) e1 = Exception('e1') exc = self.assertRaises(scheduler.ExceptionGroup, run_tasks_with_exceptions, e1) self.assertEqual([e1], exc.exceptions) def test_aggregate_exceptions_cancels_tasks_in_reverse_order(self): def run_tasks_with_exceptions(e1=None, e2=None): self.reverse_order = True self.aggregate_exceptions = True tasks = (('A', None), ('B', 'A'), ('C', 'B')) with self._dep_test(*tasks) as dummy: dummy.do_step(1, 'C').AndRaise(e1) e1 = Exception('e1') exc = self.assertRaises(scheduler.ExceptionGroup, run_tasks_with_exceptions, e1) self.assertEqual([e1], exc.exceptions) def test_exceptions_on_cancel(self): class TestException(Exception): pass class ExceptionOnExit(Exception): pass cancelled = [] def task_func(arg): for i in range(4): if i > 1: raise TestException try: yield except GeneratorExit: cancelled.append(arg) raise ExceptionOnExit tasks = (('A', None), ('B', None), ('C', None)) deps = dependencies.Dependencies(tasks) tg = scheduler.DependencyTaskGroup(deps, task_func) task = tg() next(task) next(task) self.assertRaises(TestException, next, task) self.assertEqual(len(tasks) - 1, len(cancelled)) def test_exception_grace_period(self): e1 = Exception('e1') def run_tasks_with_exceptions(): self.error_wait_time = 5 tasks = (('A', None), ('B', None), ('C', 'A')) with self._dep_test(*tasks) as dummy: dummy.do_step(1, 'A').InAnyOrder('1') dummy.do_step(1, 'B').InAnyOrder('1') dummy.do_step(2, 'A').InAnyOrder('2').AndRaise(e1) dummy.do_step(2, 'B').InAnyOrder('2') dummy.do_step(3, 'B') exc = self.assertRaises(type(e1), run_tasks_with_exceptions) self.assertEqual(e1, exc) def test_exception_grace_period_expired(self): e1 = Exception('e1') def run_tasks_with_exceptions(): self.steps = 5 self.error_wait_time = 0.05 def sleep(): eventlet.sleep(self.error_wait_time) tasks = (('A', None), ('B', None), ('C', 'A')) with self._dep_test(*tasks) as dummy: dummy.do_step(1, 'A').InAnyOrder('1') dummy.do_step(1, 'B').InAnyOrder('1') dummy.do_step(2, 'A').InAnyOrder('2').AndRaise(e1) dummy.do_step(2, 'B').InAnyOrder('2') dummy.do_step(3, 'B') dummy.do_step(4, 'B').WithSideEffects(sleep) exc = self.assertRaises(type(e1), run_tasks_with_exceptions) self.assertEqual(e1, exc) def test_exception_grace_period_per_task(self): e1 = Exception('e1') def get_wait_time(key): if key == 'B': return 5 else: return None def run_tasks_with_exceptions(): self.error_wait_time = get_wait_time tasks = (('A', None), ('B', None), ('C', 'A')) with self._dep_test(*tasks) as dummy: dummy.do_step(1, 'A').InAnyOrder('1') dummy.do_step(1, 'B').InAnyOrder('1') dummy.do_step(2, 'A').InAnyOrder('2').AndRaise(e1) dummy.do_step(2, 'B').InAnyOrder('2') dummy.do_step(3, 'B') exc = self.assertRaises(type(e1), run_tasks_with_exceptions) self.assertEqual(e1, exc) def test_thrown_exception_order(self): e1 = Exception('e1') e2 = Exception('e2') tasks = (('A', None), ('B', None), ('C', 'A')) deps = dependencies.Dependencies(tasks) tg = scheduler.DependencyTaskGroup( deps, DummyTask(), reverse=self.reverse_order, error_wait_time=1, aggregate_exceptions=self.aggregate_exceptions) task = tg() next(task) task.throw(e1) next(task) tg.error_wait_time = None exc = self.assertRaises(type(e2), task.throw, e2) self.assertIs(e2, exc) class TaskTest(common.HeatTestCase): def setUp(self): super(TaskTest, self).setUp() scheduler.ENABLE_SLEEP = True self.addCleanup(self.m.VerifyAll) def test_run(self): task = DummyTask() self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) scheduler.TaskRunner._sleep(0).AndReturn(None) task.do_step(2).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) task.do_step(3).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) self.m.ReplayAll() scheduler.TaskRunner(task)() def test_run_as_task(self): task = DummyTask() self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) task.do_step(2).AndReturn(None) task.do_step(3).AndReturn(None) self.m.ReplayAll() tr = scheduler.TaskRunner(task) rt = tr.as_task() for step in rt: pass self.assertTrue(tr.done()) def test_run_as_task_started(self): task = DummyTask() self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) task.do_step(2).AndReturn(None) task.do_step(3).AndReturn(None) self.m.ReplayAll() tr = scheduler.TaskRunner(task) tr.start() for step in tr.as_task(): pass self.assertTrue(tr.done()) def test_run_as_task_cancel(self): task = DummyTask() self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) self.m.ReplayAll() tr = scheduler.TaskRunner(task) rt = tr.as_task() next(rt) rt.close() self.assertTrue(tr.done()) def test_run_as_task_exception(self): class TestException(Exception): pass task = DummyTask() self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) self.m.ReplayAll() tr = scheduler.TaskRunner(task) rt = tr.as_task() next(rt) self.assertRaises(TestException, rt.throw, TestException) self.assertTrue(tr.done()) def test_run_as_task_swallow_exception(self): class TestException(Exception): pass def task(): try: yield except TestException: yield tr = scheduler.TaskRunner(task) rt = tr.as_task() next(rt) rt.throw(TestException) self.assertFalse(tr.done()) self.assertRaises(StopIteration, next, rt) self.assertTrue(tr.done()) def test_run_delays(self): task = DummyTask(delays=itertools.repeat(2)) self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) scheduler.TaskRunner._sleep(0).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) task.do_step(2).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) task.do_step(3).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) self.m.ReplayAll() scheduler.TaskRunner(task)() def test_run_delays_dynamic(self): task = DummyTask(delays=[2, 4, 1]) self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) scheduler.TaskRunner._sleep(0).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) task.do_step(2).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) task.do_step(3).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) self.m.ReplayAll() scheduler.TaskRunner(task)() def test_run_wait_time(self): task = DummyTask() self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) scheduler.TaskRunner._sleep(0).AndReturn(None) task.do_step(2).AndReturn(None) scheduler.TaskRunner._sleep(42).AndReturn(None) task.do_step(3).AndReturn(None) scheduler.TaskRunner._sleep(42).AndReturn(None) self.m.ReplayAll() scheduler.TaskRunner(task)(wait_time=42) def test_start_run(self): task = DummyTask() self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) task.do_step(2).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) task.do_step(3).AndReturn(None) self.m.ReplayAll() runner = scheduler.TaskRunner(task) runner.start() runner.run_to_completion() def test_start_run_wait_time(self): task = DummyTask() self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) scheduler.TaskRunner._sleep(24).AndReturn(None) task.do_step(2).AndReturn(None) scheduler.TaskRunner._sleep(24).AndReturn(None) task.do_step(3).AndReturn(None) self.m.ReplayAll() runner = scheduler.TaskRunner(task) runner.start() runner.run_to_completion(wait_time=24) def test_run_progress(self): progress_count = [] def progress(): progress_count.append(None) task = DummyTask() self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) scheduler.TaskRunner._sleep(0).AndReturn(None) task.do_step(2).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) task.do_step(3).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) self.m.ReplayAll() scheduler.TaskRunner(task)(progress_callback=progress) self.assertEqual(task.num_steps, len(progress_count)) def test_start_run_progress(self): progress_count = [] def progress(): progress_count.append(None) task = DummyTask() self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) task.do_step(2).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) task.do_step(3).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) self.m.ReplayAll() runner = scheduler.TaskRunner(task) runner.start() runner.run_to_completion(progress_callback=progress) self.assertEqual(task.num_steps - 1, len(progress_count)) def test_run_as_task_progress(self): progress_count = [] def progress(): progress_count.append(None) task = DummyTask() self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) task.do_step(2).AndReturn(None) task.do_step(3).AndReturn(None) self.m.ReplayAll() tr = scheduler.TaskRunner(task) rt = tr.as_task(progress_callback=progress) for step in rt: pass self.assertEqual(task.num_steps, len(progress_count)) def test_run_progress_exception(self): class TestException(Exception): pass progress_count = [] def progress(): if progress_count: raise TestException progress_count.append(None) task = DummyTask() self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) scheduler.TaskRunner._sleep(0).AndReturn(None) task.do_step(2).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) self.m.ReplayAll() self.assertRaises(TestException, scheduler.TaskRunner(task), progress_callback=progress) self.assertEqual(1, len(progress_count)) def test_start_run_progress_exception(self): class TestException(Exception): pass progress_count = [] def progress(): if progress_count: raise TestException progress_count.append(None) task = DummyTask() self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) task.do_step(2).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) task.do_step(3).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) self.m.ReplayAll() runner = scheduler.TaskRunner(task) runner.start() self.assertRaises(TestException, runner.run_to_completion, progress_callback=progress) self.assertEqual(1, len(progress_count)) def test_run_as_task_progress_exception(self): class TestException(Exception): pass progress_count = [] def progress(): if progress_count: raise TestException progress_count.append(None) task = DummyTask() self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) task.do_step(2).AndReturn(None) self.m.ReplayAll() tr = scheduler.TaskRunner(task) rt = tr.as_task(progress_callback=progress) next(rt) next(rt) self.assertRaises(TestException, next, rt) self.assertEqual(1, len(progress_count)) def test_run_progress_exception_swallow(self): class TestException(Exception): pass progress_count = [] def progress(): try: if not progress_count: raise TestException finally: progress_count.append(None) def task(): try: yield except TestException: yield self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') scheduler.TaskRunner._sleep(0).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) self.m.ReplayAll() scheduler.TaskRunner(task)(progress_callback=progress) self.assertEqual(2, len(progress_count)) def test_start_run_progress_exception_swallow(self): class TestException(Exception): pass progress_count = [] def progress(): try: if not progress_count: raise TestException finally: progress_count.append(None) def task(): yield try: yield except TestException: yield self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') scheduler.TaskRunner._sleep(1).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) self.m.ReplayAll() runner = scheduler.TaskRunner(task) runner.start() runner.run_to_completion(progress_callback=progress) self.assertEqual(2, len(progress_count)) def test_run_as_task_progress_exception_swallow(self): class TestException(Exception): pass progress_count = [] def progress(): try: if not progress_count: raise TestException finally: progress_count.append(None) def task(): try: yield except TestException: yield tr = scheduler.TaskRunner(task) rt = tr.as_task(progress_callback=progress) next(rt) next(rt) self.assertRaises(StopIteration, next, rt) self.assertEqual(2, len(progress_count)) def test_sleep(self): sleep_time = 42 self.m.StubOutWithMock(eventlet, 'sleep') eventlet.sleep(0).AndReturn(None) eventlet.sleep(sleep_time).MultipleTimes().AndReturn(None) self.m.ReplayAll() runner = scheduler.TaskRunner(DummyTask()) runner(wait_time=sleep_time) def test_sleep_zero(self): self.m.StubOutWithMock(eventlet, 'sleep') eventlet.sleep(0).MultipleTimes().AndReturn(None) self.m.ReplayAll() runner = scheduler.TaskRunner(DummyTask()) runner(wait_time=0) def test_sleep_none(self): self.m.StubOutWithMock(eventlet, 'sleep') self.m.ReplayAll() runner = scheduler.TaskRunner(DummyTask()) runner(wait_time=None) def test_args(self): args = ['foo', 'bar'] kwargs = {'baz': 'quux', 'blarg': 'wibble'} self.m.StubOutWithMock(DummyTask, '__call__') task = DummyTask() task(*args, **kwargs) self.m.ReplayAll() runner = scheduler.TaskRunner(task, *args, **kwargs) runner(wait_time=None) def test_non_callable(self): self.assertRaises(AssertionError, scheduler.TaskRunner, object()) def test_stepping(self): task = DummyTask() self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) task.do_step(2).AndReturn(None) task.do_step(3).AndReturn(None) self.m.ReplayAll() runner = scheduler.TaskRunner(task) runner.start() self.assertFalse(runner.step()) self.assertTrue(runner) self.assertFalse(runner.step()) self.assertTrue(runner.step()) self.assertFalse(runner) def test_start_no_steps(self): task = DummyTask(0) self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') self.m.ReplayAll() runner = scheduler.TaskRunner(task) runner.start() self.assertTrue(runner.done()) self.assertTrue(runner.step()) def test_start_only(self): task = DummyTask() self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) self.m.ReplayAll() runner = scheduler.TaskRunner(task) self.assertFalse(runner.started()) runner.start() self.assertTrue(runner.started()) def test_double_start(self): runner = scheduler.TaskRunner(DummyTask()) runner.start() self.assertRaises(AssertionError, runner.start) def test_start_cancelled(self): runner = scheduler.TaskRunner(DummyTask()) runner.cancel() self.assertRaises(AssertionError, runner.start) def test_call_double_start(self): runner = scheduler.TaskRunner(DummyTask()) runner(wait_time=None) self.assertRaises(AssertionError, runner.start) def test_start_function(self): def task(): pass runner = scheduler.TaskRunner(task) runner.start() self.assertTrue(runner.started()) self.assertTrue(runner.done()) self.assertTrue(runner.step()) def test_repeated_done(self): task = DummyTask(0) self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') self.m.ReplayAll() runner = scheduler.TaskRunner(task) runner.start() self.assertTrue(runner.step()) self.assertTrue(runner.step()) def test_timeout(self): st = timeutils.wallclock() def task(): while True: yield self.m.StubOutWithMock(timeutils, 'wallclock') timeutils.wallclock().AndReturn(st) timeutils.wallclock().AndReturn(st + 0.5) timeutils.wallclock().AndReturn(st + 1.5) self.m.ReplayAll() runner = scheduler.TaskRunner(task) runner.start(timeout=1) self.assertTrue(runner) self.assertRaises(scheduler.Timeout, runner.step) def test_timeout_return(self): st = timeutils.wallclock() def task(): while True: try: yield except scheduler.Timeout: return self.m.StubOutWithMock(timeutils, 'wallclock') timeutils.wallclock().AndReturn(st) timeutils.wallclock().AndReturn(st + 0.5) timeutils.wallclock().AndReturn(st + 1.5) self.m.ReplayAll() runner = scheduler.TaskRunner(task) runner.start(timeout=1) self.assertTrue(runner) self.assertTrue(runner.step()) self.assertFalse(runner) def test_timeout_swallowed(self): st = timeutils.wallclock() def task(): while True: try: yield except scheduler.Timeout: yield self.fail('Task still running') self.m.StubOutWithMock(timeutils, 'wallclock') timeutils.wallclock().AndReturn(st) timeutils.wallclock().AndReturn(st + 0.5) timeutils.wallclock().AndReturn(st + 1.5) self.m.ReplayAll() runner = scheduler.TaskRunner(task) runner.start(timeout=1) self.assertTrue(runner) self.assertTrue(runner.step()) self.assertFalse(runner) self.assertTrue(runner.step()) def test_as_task_timeout(self): st = timeutils.wallclock() def task(): while True: yield self.m.StubOutWithMock(timeutils, 'wallclock') timeutils.wallclock().AndReturn(st) timeutils.wallclock().AndReturn(st + 0.5) timeutils.wallclock().AndReturn(st + 1.5) self.m.ReplayAll() runner = scheduler.TaskRunner(task) rt = runner.as_task(timeout=1) next(rt) self.assertTrue(runner) self.assertRaises(scheduler.Timeout, next, rt) def test_as_task_timeout_shorter(self): st = timeutils.wallclock() def task(): while True: yield self.m.StubOutWithMock(timeutils, 'wallclock') timeutils.wallclock().AndReturn(st) timeutils.wallclock().AndReturn(st + 0.5) timeutils.wallclock().AndReturn(st + 0.7) timeutils.wallclock().AndReturn(st + 1.6) timeutils.wallclock().AndReturn(st + 2.6) self.m.ReplayAll() runner = scheduler.TaskRunner(task) runner.start(timeout=10) self.assertTrue(runner) rt = runner.as_task(timeout=1) next(rt) self.assertRaises(scheduler.Timeout, next, rt) def test_as_task_timeout_longer(self): st = timeutils.wallclock() def task(): while True: yield self.m.StubOutWithMock(timeutils, 'wallclock') timeutils.wallclock().AndReturn(st) timeutils.wallclock().AndReturn(st + 0.5) timeutils.wallclock().AndReturn(st + 0.6) timeutils.wallclock().AndReturn(st + 1.5) self.m.ReplayAll() runner = scheduler.TaskRunner(task) runner.start(timeout=1) self.assertTrue(runner) rt = runner.as_task(timeout=10) self.assertRaises(scheduler.Timeout, next, rt) def test_cancel_not_started(self): task = DummyTask(1) self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') self.m.ReplayAll() runner = scheduler.TaskRunner(task) self.assertFalse(runner.started()) runner.cancel() self.assertTrue(runner.done()) def test_cancel_done(self): task = DummyTask(1) self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) self.m.ReplayAll() runner = scheduler.TaskRunner(task) self.assertFalse(runner.started()) runner.start() self.assertTrue(runner.started()) self.assertTrue(runner.step()) self.assertTrue(runner.done()) runner.cancel() self.assertTrue(runner.done()) self.assertTrue(runner.step()) def test_cancel(self): task = DummyTask(3) self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') task.do_step(1).AndReturn(None) task.do_step(2).AndReturn(None) self.m.ReplayAll() runner = scheduler.TaskRunner(task) self.assertFalse(runner.started()) runner.start() self.assertTrue(runner.started()) self.assertFalse(runner.step()) runner.cancel() self.assertTrue(runner.step()) def test_cancel_grace_period(self): st = timeutils.wallclock() task = DummyTask(5) self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') self.m.StubOutWithMock(timeutils, 'wallclock') task.do_step(1).AndReturn(None) task.do_step(2).AndReturn(None) timeutils.wallclock().AndReturn(st) timeutils.wallclock().AndReturn(st + 0.5) task.do_step(3).AndReturn(None) timeutils.wallclock().AndReturn(st + 1.0) task.do_step(4).AndReturn(None) timeutils.wallclock().AndReturn(st + 1.5) self.m.ReplayAll() runner = scheduler.TaskRunner(task) self.assertFalse(runner.started()) runner.start() self.assertTrue(runner.started()) self.assertFalse(runner.step()) runner.cancel(grace_period=1.0) self.assertFalse(runner.step()) self.assertFalse(runner.step()) self.assertTrue(runner.step()) def test_cancel_grace_period_before_timeout(self): st = timeutils.wallclock() task = DummyTask(5) self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') self.m.StubOutWithMock(timeutils, 'wallclock') timeutils.wallclock().AndReturn(st) timeutils.wallclock().AndReturn(st + 0.1) task.do_step(1).AndReturn(None) timeutils.wallclock().AndReturn(st + 0.2) task.do_step(2).AndReturn(None) timeutils.wallclock().AndReturn(st + 0.2) timeutils.wallclock().AndReturn(st + 0.5) task.do_step(3).AndReturn(None) timeutils.wallclock().AndReturn(st + 1.0) task.do_step(4).AndReturn(None) timeutils.wallclock().AndReturn(st + 1.5) self.m.ReplayAll() runner = scheduler.TaskRunner(task) self.assertFalse(runner.started()) runner.start(timeout=10) self.assertTrue(runner.started()) self.assertFalse(runner.step()) runner.cancel(grace_period=1.0) self.assertFalse(runner.step()) self.assertFalse(runner.step()) self.assertTrue(runner.step()) def test_cancel_grace_period_after_timeout(self): st = timeutils.wallclock() task = DummyTask(5) self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') self.m.StubOutWithMock(timeutils, 'wallclock') timeutils.wallclock().AndReturn(st) timeutils.wallclock().AndReturn(st + 0.1) task.do_step(1).AndReturn(None) timeutils.wallclock().AndReturn(st + 0.2) task.do_step(2).AndReturn(None) timeutils.wallclock().AndReturn(st + 0.2) timeutils.wallclock().AndReturn(st + 0.5) task.do_step(3).AndReturn(None) timeutils.wallclock().AndReturn(st + 1.0) task.do_step(4).AndReturn(None) timeutils.wallclock().AndReturn(st + 1.5) self.m.ReplayAll() runner = scheduler.TaskRunner(task) self.assertFalse(runner.started()) runner.start(timeout=1.25) self.assertTrue(runner.started()) self.assertFalse(runner.step()) runner.cancel(grace_period=3) self.assertFalse(runner.step()) self.assertFalse(runner.step()) self.assertRaises(scheduler.Timeout, runner.step) def test_cancel_grace_period_not_started(self): task = DummyTask(1) self.m.StubOutWithMock(task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') self.m.ReplayAll() runner = scheduler.TaskRunner(task) self.assertFalse(runner.started()) runner.cancel(grace_period=0.5) self.assertTrue(runner.done()) class TimeoutTest(common.HeatTestCase): def test_compare(self): task = scheduler.TaskRunner(DummyTask()) earlier = scheduler.Timeout(task, 10) eventlet.sleep(0.01) later = scheduler.Timeout(task, 10) self.assertTrue(earlier < later) self.assertTrue(later > earlier) self.assertEqual(earlier, earlier) self.assertNotEqual(earlier, later) class DescriptionTest(common.HeatTestCase): def setUp(self): super(DescriptionTest, self).setUp() self.addCleanup(self.m.VerifyAll) def test_func(self): def f(): pass self.assertEqual('f', scheduler.task_description(f)) def test_lambda(self): l = lambda: None self.assertEqual('<lambda>', scheduler.task_description(l)) def test_method(self): class C(object): def __str__(self): return 'C "o"' def __repr__(self): return 'o' def m(self): pass self.assertEqual('m from C "o"', scheduler.task_description(C().m)) def test_object(self): class C(object): def __str__(self): return 'C "o"' def __repr__(self): return 'o' def __call__(self): pass self.assertEqual('o', scheduler.task_description(C())) def test_unicode(self): @repr_wrapper @six.python_2_unicode_compatible class C(object): def __str__(self): return u'C "\u2665"' def __repr__(self): return u'\u2665' def __call__(self): pass def m(self): pass self.assertEqual(u'm from C "\u2665"', scheduler.task_description(C().m)) self.assertEqual(u'\u2665', scheduler.task_description(C())) class WrapperTaskTest(common.HeatTestCase): def setUp(self): super(WrapperTaskTest, self).setUp() self.addCleanup(self.m.VerifyAll) def test_wrap(self): child_tasks = [DummyTask() for i in range(3)] @scheduler.wrappertask def task(): for child_task in child_tasks: yield child_task() yield for child_task in child_tasks: self.m.StubOutWithMock(child_task, 'do_step') self.m.StubOutWithMock(scheduler.TaskRunner, '_sleep') scheduler.TaskRunner._sleep(0).AndReturn(None) for child_task in child_tasks: child_task.do_step(1).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) child_task.do_step(2).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) child_task.do_step(3).AndReturn(None) scheduler.TaskRunner._sleep(1).AndReturn(None) self.m.ReplayAll() scheduler.TaskRunner(task)() def test_parent_yield_value(self): @scheduler.wrappertask def parent_task(): yield yield 3 yield iter([1, 2, 4]) task = parent_task() self.assertIsNone(next(task)) self.assertEqual(3, next(task)) self.assertEqual([1, 2, 4], list(next(task))) def test_child_yield_value(self): def child_task(): yield yield 3 yield iter([1, 2, 4]) @scheduler.wrappertask def parent_task(): yield child_task() task = parent_task() self.assertIsNone(next(task)) self.assertEqual(3, next(task)) self.assertEqual([1, 2, 4], list(next(task))) def test_child_exception(self): class MyException(Exception): pass def child_task(): yield raise MyException() @scheduler.wrappertask def parent_task(): try: yield child_task() except MyException: raise else: self.fail('No exception raised in parent_task') task = parent_task() next(task) self.assertRaises(MyException, next, task) def test_child_exception_exit(self): class MyException(Exception): pass def child_task(): yield raise MyException() @scheduler.wrappertask def parent_task(): try: yield child_task() except MyException: return else: self.fail('No exception raised in parent_task') task = parent_task() next(task) self.assertRaises(StopIteration, next, task) def test_child_exception_swallow(self): class MyException(Exception): pass def child_task(): yield raise MyException() @scheduler.wrappertask def parent_task(): try: yield child_task() except MyException: yield else: self.fail('No exception raised in parent_task') yield task = parent_task() next(task) next(task) def test_child_exception_swallow_next(self): class MyException(Exception): pass def child_task(): yield raise MyException() dummy = DummyTask() @scheduler.wrappertask def parent_task(): try: yield child_task() except MyException: pass else: self.fail('No exception raised in parent_task') yield dummy() task = parent_task() next(task) self.m.StubOutWithMock(dummy, 'do_step') for i in range(1, dummy.num_steps + 1): dummy.do_step(i).AndReturn(None) self.m.ReplayAll() for i in range(1, dummy.num_steps + 1): next(task) self.assertRaises(StopIteration, next, task) def test_thrown_exception_swallow_next(self): class MyException(Exception): pass dummy = DummyTask() @scheduler.wrappertask def child_task(): try: yield except MyException: yield dummy() else: self.fail('No exception raised in child_task') @scheduler.wrappertask def parent_task(): yield child_task() task = parent_task() self.m.StubOutWithMock(dummy, 'do_step') for i in range(1, dummy.num_steps + 1): dummy.do_step(i).AndReturn(None) self.m.ReplayAll() next(task) task.throw(MyException) for i in range(2, dummy.num_steps + 1): next(task) self.assertRaises(StopIteration, next, task) def test_thrown_exception_raise(self): class MyException(Exception): pass dummy = DummyTask() @scheduler.wrappertask def child_task(): try: yield except MyException: raise else: self.fail('No exception raised in child_task') @scheduler.wrappertask def parent_task(): try: yield child_task() except MyException: yield dummy() task = parent_task() self.m.StubOutWithMock(dummy, 'do_step') for i in range(1, dummy.num_steps + 1): dummy.do_step(i).AndReturn(None) self.m.ReplayAll() next(task) task.throw(MyException) for i in range(2, dummy.num_steps + 1): next(task) self.assertRaises(StopIteration, next, task) def test_thrown_exception_exit(self): class MyException(Exception): pass dummy = DummyTask() @scheduler.wrappertask def child_task(): try: yield except MyException: return else: self.fail('No exception raised in child_task') @scheduler.wrappertask def parent_task(): yield child_task() yield dummy() task = parent_task() self.m.StubOutWithMock(dummy, 'do_step') for i in range(1, dummy.num_steps + 1): dummy.do_step(i).AndReturn(None) self.m.ReplayAll() next(task) task.throw(MyException) for i in range(2, dummy.num_steps + 1): next(task) self.assertRaises(StopIteration, next, task) def test_parent_exception(self): class MyException(Exception): pass def child_task(): yield @scheduler.wrappertask def parent_task(): yield child_task() raise MyException() task = parent_task() next(task) self.assertRaises(MyException, next, task) def test_parent_throw(self): class MyException(Exception): pass @scheduler.wrappertask def parent_task(): try: yield DummyTask()() except MyException: raise else: self.fail('No exception raised in parent_task') task = parent_task() next(task) self.assertRaises(MyException, task.throw, MyException()) def test_parent_throw_exit(self): class MyException(Exception): pass @scheduler.wrappertask def parent_task(): try: yield DummyTask()() except MyException: return else: self.fail('No exception raised in parent_task') task = parent_task() next(task) self.assertRaises(StopIteration, task.throw, MyException()) def test_parent_cancel(self): @scheduler.wrappertask def parent_task(): try: yield except GeneratorExit: raise else: self.fail('parent_task not closed') task = parent_task() next(task) task.close() def test_parent_cancel_exit(self): @scheduler.wrappertask def parent_task(): try: yield except GeneratorExit: return else: self.fail('parent_task not closed') task = parent_task() next(task) task.close() def test_cancel(self): def child_task(): try: yield except GeneratorExit: raise else: self.fail('child_task not closed') @scheduler.wrappertask def parent_task(): try: yield child_task() except GeneratorExit: raise else: self.fail('parent_task not closed') task = parent_task() next(task) task.close() def test_cancel_exit(self): def child_task(): try: yield except GeneratorExit: return else: self.fail('child_task not closed') @scheduler.wrappertask def parent_task(): try: yield child_task() except GeneratorExit: raise else: self.fail('parent_task not closed') task = parent_task() next(task) task.close() def test_cancel_parent_exit(self): def child_task(): try: yield except GeneratorExit: return else: self.fail('child_task not closed') @scheduler.wrappertask def parent_task(): try: yield child_task() except GeneratorExit: return else: self.fail('parent_task not closed') task = parent_task() next(task) task.close()
"""Example: Find all servers per group""" import os from configparser import ConfigParser from cbw_api_toolbox.cbw_api import CBWApi CONF = ConfigParser() CONF.read(os.path.join(os.path.abspath(os.path.dirname(__file__)), '..', 'api.conf')) CLIENT = CBWApi(CONF.get('cyberwatch', 'url'), CONF.get('cyberwatch', 'api_key'), CONF.get('cyberwatch', 'secret_key')) CLIENT.ping() SERVERS = CLIENT.servers() CATEGORY_BY_GROUPS = {} # append each server to a group by category dict for server in SERVERS: server = CLIENT.server(str(server.id)) for group in server.groups: if group.name not in CATEGORY_BY_GROUPS: CATEGORY_BY_GROUPS[group.name] = {} concerned_group = CATEGORY_BY_GROUPS[group.name] if server.category not in concerned_group: concerned_group[server.category] = [] concerned_group[server.category].append(server) for group in CATEGORY_BY_GROUPS: print("--- GROUP : {0} ---".format(group)) for category in CATEGORY_BY_GROUPS[group]: print("{0} : {1}".format(category, len(CATEGORY_BY_GROUPS[group][category]))) for server in CATEGORY_BY_GROUPS[group][category]: print("{0} with hostname : {1}".format(category, server.hostname))
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for GetCmekSettings # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-cloud-logging # [START logging_generated_logging_v2_ConfigServiceV2_GetCmekSettings_sync] from google.cloud import logging_v2 def sample_get_cmek_settings(): # Create a client client = logging_v2.ConfigServiceV2Client() # Initialize request argument(s) project = "my-project-id" name = f"projects/{project}/cmekSettings" request = logging_v2.GetCmekSettingsRequest( name=name, ) # Make the request response = client.get_cmek_settings(request=request) # Handle response print(response) # [END logging_generated_logging_v2_ConfigServiceV2_GetCmekSettings_sync]
""" This file offers the methods to automatically retrieve the graph Azotobacter vinelandii. The graph is automatically retrieved from the STRING repository. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-02 20:28:09.024485 The undirected graph Azotobacter vinelandii has 4955 nodes and 578640 weighted edges, of which none are self-loops. The graph is dense as it has a density of 0.04715 and has 18 connected components, where the component with most nodes has 4918 nodes and the component with the least nodes has 2 nodes. The graph median node degree is 200, the mean node degree is 233.56, and the node degree mode is 1. The top 5 most central nodes are 322710.Avin_29560 (degree 2047), 322710.Avin_00630 (degree 1761), 322710.Avin_51910 (degree 1573), 322710.Avin_51880 (degree 1360) and 322710.Avin_35230 (degree 1351). References --------------------- Please cite the following if you use the data: @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.string import AzotobacterVinelandii # Then load the graph graph = AzotobacterVinelandii() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen_graph import EnsmallenGraph # pylint: disable=import-error def AzotobacterVinelandii( directed: bool = False, verbose: int = 2, cache_path: str = "graphs/string", **additional_graph_kwargs: Dict ) -> EnsmallenGraph: """Return new instance of the Azotobacter vinelandii graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False, Wether to load the graph as directed or undirected. By default false. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache_path: str = "graphs", Where to store the downloaded graphs. additional_graph_kwargs: Dict, Additional graph kwargs. Returns ----------------------- Instace of Azotobacter vinelandii graph. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-02 20:28:09.024485 The undirected graph Azotobacter vinelandii has 4955 nodes and 578640 weighted edges, of which none are self-loops. The graph is dense as it has a density of 0.04715 and has 18 connected components, where the component with most nodes has 4918 nodes and the component with the least nodes has 2 nodes. The graph median node degree is 200, the mean node degree is 233.56, and the node degree mode is 1. The top 5 most central nodes are 322710.Avin_29560 (degree 2047), 322710.Avin_00630 (degree 1761), 322710.Avin_51910 (degree 1573), 322710.Avin_51880 (degree 1360) and 322710.Avin_35230 (degree 1351). References --------------------- Please cite the following if you use the data: @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.string import AzotobacterVinelandii # Then load the graph graph = AzotobacterVinelandii() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ return AutomaticallyRetrievedGraph( graph_name="AzotobacterVinelandii", dataset="string", directed=directed, verbose=verbose, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
from django.conf.urls import url from movies import views urlpatterns = [ url(r'^$', views.IndexView.as_view(), name='movies-index'), url(r'^name/$', views.NameSearchView.as_view(), name='movies-name-search'), url(r'^id/$', views.IDSearchView.as_view(), name='movies-id-search'), ]
try: import time FirstTime = time.time() import os import io import sys import time import glob import socket import locale import hashlib import tempfile import datetime import subprocess from ctypes import windll from urllib.request import urlopen try: import psutil importedPsutil = True except ImportError: importedPsutil = False import win32gui import win32api import pythoncom import win32process import win32com.client from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import * from PyQt5.QtCore import pyqtSignal as Signal from pynput.keyboard import Controller, Key from pynput.mouse import Controller as MouseController from external.FramelessWindow import QFramelessDialog from languages import * import globals old_stdout = sys.stdout sys.stdout = buffer = io.StringIO() from settings import * from tools import * import tools from external.WnfReader import isFocusAssistEnabled, getNotificationNumber blacklistedProcesses = ["msrdc.exe", "mstsc.exe", "CDViewer.exe", "wfica32.exe", "vmware-view.exe", "vmware.exe"] blacklistedFullscreenApps = ("", "Program Manager", "NVIDIA GeForce Overlay", "ElenenClock_IgnoreFullscreenEvent") # The "" codes for titleless windows seconddoubleclick = False isRDPRunning = False restartCount = 0 tempDir = "" timeStr = "" dateTimeFormat = "" clocks = [] oldScreens = [] isFocusAssist = False numOfNotifs = 0 print("---------------------------------------------------------------------------------------------------") print("") print(f" ElevenClock's {versionName} (v{version}) log: Select all the text and hit Ctrl+C to copy it") print(f" All modules loaded successfully and sys.stdout patched correctly, starting main script") print(f" Translator function set language to \"{langName}\"") print("") print("---------------------------------------------------------------------------------------------------") print("") print(" Log legend:") print(" 🔵: Verbose") print(" 🟢: Information") print(" 🟡: Warning") print(" 🟠: Handled unexpected exception") print(" 🔴: Unhandled unexpected exception") print(" 🟣: Handled expected exception") print("") def _(s) -> str: return tools._(s) def checkRDP(): def checkIfElevenClockRunning(processess, blacklistedProcess) -> bool: for p_name in processess: if p_name in blacklistedProcess: print(f"🟡 Blacklisted procName {p_name} detected, hiding...") return True return False global isRDPRunning print("🔵 Starting RDP thread") while True: pythoncom.CoInitialize() _wmi = win32com.client.GetObject('winmgmts:') processes = _wmi.ExecQuery('Select Name from win32_process') procs = [p.Name for p in processes] isRDPRunning = checkIfElevenClockRunning(procs, blacklistedProcesses) time.sleep(5) def getMousePos(): try: return QPoint(mController.position[0], mController.position[1]) except AttributeError: print("🟠 Mouse thread returned AttributeError") except Exception as e: report(e) def updateChecker(): updateIfPossible() time.sleep(60) while True: updateIfPossible() time.sleep(7200) def updateIfPossible(force = False): try: if(not(getSettings("DisableAutoCheckForUpdates")) or force): print("🔵 Starting update check") integrityPass = False dmname = socket.gethostbyname_ex("versions.somepythonthings.tk")[0] if(dmname == "769432b9-3560-4f94-8f90-01c95844d994.id.repl.co" or getSettings("BypassDomainAuthCheck")): # Check provider IP to prevent exploits integrityPass = True try: response = urlopen("https://versions.somepythonthings.tk/versions/elevenclock.ver" if not getSettings("AlternativeUpdateServerProvider") else "http://www.somepythonthings.tk/versions/elevenclock.ver") except Exception as e: report(e) response = urlopen("http://www.somepythonthings.tk/versions/elevenclock.ver") integrityPass = True print("🔵 Version URL:", response.url) response = response.read().decode("utf8") new_version_number = response.split("///")[0] provided_hash = response.split("///")[2].replace("\n", "").lower() if float(new_version_number) > version: print("🟢 Updates found!") if(not(getSettings("DisableAutoInstallUpdates")) or force): showNotif.infoSignal.emit(("ElevenClock Updater"), ("ElevenClock is downloading updates")) if(integrityPass): url = "https://github.com/martinet101/ElevenClock/releases/latest/download/ElevenClock.Installer.exe" filedata = urlopen(url) datatowrite = filedata.read() filename = "" with open(os.path.join(tempDir, "SomePythonThings-ElevenClock-Updater.exe"), 'wb') as f: f.write(datatowrite) filename = f.name if(hashlib.sha256(datatowrite).hexdigest().lower() == provided_hash): print("🔵 Hash: ", provided_hash) print("🟢 Hash ok, starting update") if(getSettings("EnableSilentUpdates") and not(force)): mousePos = getMousePos() time.sleep(5) while mousePos != getMousePos(): print("🟡 User is using the mouse, waiting") mousePos = getMousePos() time.sleep(5) subprocess.run('start /B "" "{0}" /verysilent'.format(filename), shell=True) else: subprocess.run('start /B "" "{0}" /silent'.format(filename), shell=True) else: print("🟠 Hash not ok") print("🟠 File hash: ", hashlib.sha256(datatowrite).hexdigest()) print("🟠 Provided hash: ", provided_hash) showWarn.infoSignal.emit(("Updates found!"), f"ElevenClock Version {new_version_number} is available, but ElevenClock can't verify the authenticity of the package. Please go ElevenClock's homepage and download the latest version from there.\n\nDo you want to open the download page?") else: print("🟠 Can't verify update server authenticity, aborting") print("🟠 Provided DmName:", dmname) print("🟠 Expected DmNane: 769432b9-3560-4f94-8f90-01c95844d994.id.repl.co") showWarn.infoSignal.emit(("Updates found!"), f"ElevenClock Version {new_version_number} is available, but ElevenClock can't verify the authenticity of the updates server. Please go ElevenClock's homepage and download the latest version from there.\n\nDo you want to open the download page?") else: showNotif.infoSignal.emit(("Updates found!"), f"ElevenClock Version {new_version_number} is available. Go to ElevenClock's Settings to update") else: print("🟢 Updates not found") else: print("🟠 Update checking disabled") #old_stdout.write(buffer.getvalue()) #old_stdout.flush() except Exception as e: report(e) #old_stdout.write(buffer.getvalue()) #old_stdout.flush() def resetRestartCount(): global restartCount while True: if(restartCount>0): print("🔵 Restart loop:", restartCount) restartCount -= 1 time.sleep(0.3) def loadClocks(): global clocks, oldScreens, st, restartCount, st try: st.kill() except AttributeError: pass ForceClockOnFirstMonitor = getSettings("ForceClockOnFirstMonitor") HideClockOnSecondaryMonitors = getSettings("HideClockOnSecondaryMonitors") oldScreens = [] clocks = [] if importedPsutil: process = psutil.Process(os.getpid()) memOk = (process.memory_info().rss/1048576) <= 150 else: print("🟠 Psutil couldn't be imported!") memOk = True if restartCount<20 and memOk: restartCount += 1 i = 0 for screen in app.screens(): screen: QScreen oldScreens.append(getGeometry(screen)) if not screen == QGuiApplication.primaryScreen() or ForceClockOnFirstMonitor: # Check if we are not on the primary screen if not HideClockOnSecondaryMonitors or screen == QGuiApplication.primaryScreen(): # First monitor is not affected by HideClockOnSecondaryMonitors clocks.append(Clock(screen.logicalDotsPerInchX()/96, screen.logicalDotsPerInchY()/96, screen, i)) i += 1 else: print("🟠 This is a secondary screen and is set to be skipped") else: # Skip the primary display, as it has already the clock print("🟡 This is the primary screen and is set to be skipped") st = KillableThread(target=screenCheckThread, daemon=True, name="Main [loaded]: Screen listener") st.start() else: os.startfile(sys.executable) print("🔴 Overloading system, killing!") app.quit() sys.exit(1) def getGeometry(screen: QScreen): """ Return a tuple containing: (screen_width, screen_height, screen_pos_x, screen_pos_y, screen_DPI, desktopWindowRect) """ try: geometry = screen.geometry() g = (geometry.width(), geometry.height(), geometry.x(), geometry.y(), screen.logicalDotsPerInch(), win32api.EnumDisplayMonitors()) return g except Exception as e: report(e) geometry = QGuiApplication.primaryScreen().geometry() g = (geometry.width(), geometry.height(), geometry.x(), geometry.y(), screen.logicalDotsPerInch(), win32api.EnumDisplayMonitors()) return g def theyMatch(oldscreens, newscreens): if len(oldscreens) != len(newscreens) or len(app.screens()) != len(win32api.EnumDisplayMonitors()): return False # The number of displays has changed # Check that all screen dimensions and dpi are the same as before return all(old == getGeometry(new) for old, new in zip(oldscreens, newscreens)) def wnfDataThread(): global isFocusAssist, numOfNotifs while True: isFocusAssist = isFocusAssistEnabled() time.sleep(0.25) if not isFocusAssist: numOfNotifs = getNotificationNumber() time.sleep(0.25) def screenCheckThread(): while theyMatch(oldScreens, app.screens()): time.sleep(1) signal.restartSignal.emit() pass def closeClocks(): for clock in clocks: clock.hide() clock.close() def showMessage(title: str, body: str, uBtn: bool = True) -> None: """ Shows a Windows Notification """ lastState = i.isVisible() i.show() i.showMessage(title, body) if uBtn: sw.updateButton.show() i.setVisible(lastState) def restartClocks(caller: str = ""): global clocks, st, rdpThread closeClocks() loadClocks() loadTimeFormat() try: rdpThread.kill() except AttributeError: pass rdpThread = KillableThread(target=checkRDP, daemon=True) if(getSettings("EnableHideOnRDP")): rdpThread.start() def isElevenClockRunningThread(): nowTime = time.time() name = f"ElevenClockRunning{nowTime}" setSettings(name, True, False) while True: try: for file in glob.glob(os.path.join(os.path.join(os.path.expanduser("~"), ".elevenclock"), "ElevenClockRunning*")): if(os.path.join(os.path.join(os.path.expanduser("~"), ".elevenclock"), name) == file): pass else: if(float(file.replace(os.path.join(os.path.join(os.path.expanduser("~"), ".elevenclock"), "ElevenClockRunning"), "")) < nowTime): # If lockfile is older os.remove(file) if not(getSettings(name)): print("🟠 KILLING, NEWER VERSION RUNNING") killSignal.infoSignal.emit("", "") except Exception as e: report(e) time.sleep(2) def wanrUserAboutUpdates(a, b): if(QMessageBox.question(sw, a, b, QMessageBox.Open | QMessageBox.Cancel, QMessageBox.Open) == QMessageBox.Open): os.startfile("https://github.com/martinet101/ElevenClock/releases/latest") def checkIfWokeUpThread(): while True: lastTime = time.time() time.sleep(3) if((lastTime+6) < time.time()): os.startfile(sys.executable) def loadTimeFormat(): global dateTimeFormat showSeconds = readRegedit(r"Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced", "ShowSecondsInSystemClock", 0) or getSettings("EnableSeconds") locale.setlocale(locale.LC_ALL, readRegedit(r"Control Panel\International", "LocaleName", "en_US")) dateTimeFormat = "%HH:%M\n%A\n(W%W) %d/%m/%Y" if getSettings("DisableTime"): dateTimeFormat = dateTimeFormat.replace("%HH:%M\n", "") if getSettings("DisableDate"): if("\n" in dateTimeFormat): dateTimeFormat = dateTimeFormat.replace("\n(W%W) %d/%m/%Y", "") else: dateTimeFormat = dateTimeFormat.replace("(W%W) %d/%m/%Y", "") elif not getSettings("EnableWeekNumber"): dateTimeFormat = dateTimeFormat.replace("(W%W) ", "") else: dateTimeFormat = dateTimeFormat.replace("(W%W) ", f"({_('W')}%W) ") if not getSettings("EnableWeekDay"): try: dateTimeFormat = dateTimeFormat.replace("%A", "").replace("\n\n", "\n") if dateTimeFormat[-1] == "\n": dateTimeFormat = dateTimeFormat[0:-1] if dateTimeFormat[0] == "\n": dateTimeFormat = dateTimeFormat[1:] except IndexError as e: print("🟠 Date/Time string looks to be empty!") except Exception as e: report(e) tDateMode = readRegedit(r"Control Panel\International", "sShortDate", "dd/MM/yyyy") print("🔵 tDateMode:", tDateMode) dateMode = "" for i, ministr in enumerate(tDateMode.split("'")): if i%2==0: dateMode += ministr.replace("dddd", "%A").replace("ddd", "%a").replace("dd", "%$").replace("d", "%#d").replace("$", "d").replace("MMMM", "%B").replace("MMM", "%b").replace("MM", "%m").replace("M", "%#m").replace("yyyy", "%Y").replace("yy", "%y") else: dateMode += ministr tTimeMode = readRegedit(r"Control Panel\International", "sShortTime", "H:mm") print("🔵 tTimeMode:", tTimeMode) timeMode = "" for i, ministr in enumerate(tTimeMode.split("'")): if i%2==0: timeMode += ministr.replace("HH", "%$").replace("H", "%#H").replace("$", "H").replace("hh", "%I").replace("h", "%#I").replace("mm", "%M").replace("m", "%#M").replace("tt", "%p").replace("t", "%p").replace("ss", "%S").replace("s", "%#S") if not("S" in timeMode) and showSeconds == 1: for separator in ":.-/_": if(separator in timeMode): timeMode += f"{separator}%S" else: timeMode += ministr for separator in ":.-/_": timeMode = timeMode.replace(f" %p{separator}%S", f"{separator}%S %p") timeMode = timeMode.replace(f" %p{separator}%#S", f"{separator}%#S %p") timeMode = timeMode.replace("%S", "%S·").replace("%#S", "%#S·") dateTimeFormat = dateTimeFormat.replace("%d/%m/%Y", dateMode).replace("%HH:%M", timeMode) print("🔵 Loaded date time format:", dateTimeFormat) def timeStrThread(): global timeStr, dateTimeFormat fixHyphen = getSettings("EnableHyphenFix") encoding = 'unicode-escape' while True: for _ in range(36000): dateTimeFormatUnicode = dateTimeFormat.encode(encoding).decode() now = datetime.datetime.now() timeStr = now.strftime(dateTimeFormatUnicode).encode().decode(encoding) if fixHyphen: timeStr = timeStr.replace("t-", "t -") try: secs = datetime.datetime.now().strftime("%S") if secs[-1] == "1": timeStr = timeStr.replace("·", " \u200e") else: timeStr = timeStr.replace("·", "") except IndexError: pass time.sleep(0.1) class RestartSignal(QObject): restartSignal = Signal() def __init__(self) -> None: super().__init__() class InfoSignal(QObject): infoSignal = Signal(str, str) def __init__(self) -> None: super().__init__() class Clock(QWidget): refresh = Signal() hideSignal = Signal() callInMainSignal = Signal(object) styler = Signal(str) preferedwidth = 200 preferedHeight = 48 focusassitant = True lastTheme = 0 clockShouldBeHidden = False shouldBeVisible = True isRDPRunning = True clockOnTheLeft = False textInputHostHWND = 0 INTLOOPTIME = 2 def __init__(self, dpix: float, dpiy: float, screen: QScreen, index: int): super().__init__() if f"_{screen.name()}_" in getSettingsValue("BlacklistedMonitors"): print("🟠 Monitor blacklisted!") self.hide() else: self.index = index print(f"🔵 Initializing clock {index}...") self.callInMainSignal.connect(lambda f: f()) self.styler.connect(self.setStyleSheet) self.taskbarBackgroundColor = not getSettings("DisableTaskbarBackgroundColor") and not (getSettings("UseCustomBgColor") or getSettings("AccentBackgroundcolor")) self.transparentBackground = getSettings("DisableTaskbarBackgroundColor") and not (getSettings("UseCustomBgColor") or getSettings("AccentBackgroundcolor")) if self.taskbarBackgroundColor: print("🔵 Using taskbar background color") self.bgcolor = "0, 0, 0, 0" else: print("🟡 Not using taskbar background color") if getSettings("AccentBackgroundcolor"): self.bgcolor = f"{getColors()[5 if isTaskbarDark() else 1]},100" else: self.bgcolor = getSettingsValue("UseCustomBgColor") if getSettingsValue("UseCustomBgColor") else "0, 0, 0, 0" print("🔵 Using bg color:", self.bgcolor) self.prefMargins = 0 try: if readRegedit(r"Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced", "TaskbarSi", 1) == 0 or (not getSettings("DisableTime") and not getSettings("DisableDate") and getSettings("EnableWeekDay")): self.prefMargins = self.getPx(5) self.widgetStyleSheet = f"background-color: rgba(bgColor%); margin: {self.getPx(0)}px;margin-top: 0px;margin-bottom: 0px; border-radius: {self.getPx(5)}px;" if not(not getSettings("DisableTime") and not getSettings("DisableDate") and getSettings("EnableWeekDay")): print("🟡 Small sized taskbar") self.preferedHeight = 32 self.preferedwidth = 200 else: print("🟢 Regular sized taskbar") self.prefMargins = self.getPx(3) self.widgetStyleSheet = f"background-color: rgba(bgColor%);margin: {self.getPx(0)}px;border-radius: {self.getPx(5)}px;padding: {self.getPx(2)}px;" except Exception as e: print("🟡 Regular sized taskbar") report(e) self.prefMargins = self.getPx(3) self.widgetStyleSheet = f"background-color: rgba(bgColor%);margin: {self.getPx(0)}px;border-radius: {self.getPx(5)}px;;padding: {self.getPx(2)}px;" self.setStyleSheet(self.widgetStyleSheet.replace("bgColor", self.bgcolor)) if getSettings("ClockFixedHeight"): print("🟡 Custom height being used!") try: self.preferedHeight = int(getSettingsValue("ClockFixedHeight")) except ValueError as e: report(e) self.win32screen = {"Device": None, "Work": (0, 0, 0, 0), "Flags": 0, "Monitor": (0, 0, 0, 0)} for win32screen in win32api.EnumDisplayMonitors(): try: if win32api.GetMonitorInfo(win32screen[0].handle)["Device"] == screen.name(): self.win32screen = win32api.GetMonitorInfo(win32screen[0].handle) except Exception as e: report(e) if self.win32screen == {"Device": None, "Work": (0, 0, 0, 0), "Flags": 0, "Monitor": (0, 0, 0, 0)}: #If no display is matching os.startfile(sys.executable) # Restart elevenclock app.quit() self.screenGeometry = QRect(self.win32screen["Monitor"][0], self.win32screen["Monitor"][1], self.win32screen["Monitor"][2]-self.win32screen["Monitor"][0], self.win32screen["Monitor"][3]-self.win32screen["Monitor"][1]) print("🔵 Monitor geometry:", self.screenGeometry) self.refresh.connect(self.refreshandShow) self.hideSignal.connect(self.hide) self.keyboard = Controller() self.setWindowFlag(Qt.WindowStaysOnTopHint) self.setWindowFlag(Qt.FramelessWindowHint) self.setAttribute(Qt.WA_TranslucentBackground) self.setWindowFlag(Qt.Tool) hex_blob = b'0\x00\x00\x00\xfe\xff\xff\xffz\xf4\x00\x00\x03\x00\x00\x00T\x00\x00\x000\x00\x00\x00\x00\x00\x00\x00\x08\x04\x00\x00\x80\x07\x00\x008\x04\x00\x00`\x00\x00\x00\x01\x00\x00\x00' registry_read_result = readRegedit(r"Software\Microsoft\Windows\CurrentVersion\Explorer\StuckRects3", "Settings", hex_blob) self.autoHide = registry_read_result[8] == 123 if self.autoHide: print("🟡 ElevenClock set to hide with the taskbar") self.clockOnTheLeft = getSettings("ClockOnTheLeft") screenName = screen.name().replace("\\", "_") if not self.clockOnTheLeft: if getSettings(f"SpecificClockOnTheLeft{screenName}"): self.clockOnTheLeft = True print(f"🟡 Clock {screenName} on the left (forced)") else: if getSettings(f"SpecificClockOnTheRight{screenName}"): self.clockOnTheLeft = False print(f"🟡 Clock {screenName} on the right (forced)") try: if (registry_read_result[12] == 1 and not getSettings("ForceOnBottom")) or getSettings("ForceOnTop"): h = self.screenGeometry.y() print("🟢 Taskbar at top") else: h = self.screenGeometry.y()+self.screenGeometry.height()-(self.preferedHeight*dpiy) print("🟡 Taskbar at bottom") except Exception as e: report(e) h = self.screenGeometry.y()+self.screenGeometry.height()-(self.preferedHeight*dpiy) print("🟡 Taskbar at bottom") self.label = Label(timeStr, self) if self.clockOnTheLeft: print("🟡 Clock on the left") w = self.screenGeometry.x()+8*dpix self.label.setAlignment(Qt.AlignLeft | Qt.AlignVCenter) else: self.label.setAlignment(Qt.AlignRight | Qt.AlignVCenter) print("🟢 Clock on the right") w = self.screenGeometry.x()+self.screenGeometry.width()-((self.preferedwidth)*dpix) if getSettings("CenterAlignment"): self.label.setAlignment(Qt.AlignCenter) xoff = 0 yoff = 0 if getSettings("ClockXOffset"): print("🟡 X offset being used!") try: xoff = int(getSettingsValue("ClockXOffset")) except ValueError as e: report(e) if getSettings("ClockYOffset"): print("🟡 Y offset being used!") try: yoff = int(getSettingsValue("ClockYOffset")) except ValueError as e: report(e) self.w = int(w) + xoff self.h = int(h) + yoff self.dpix = dpix self.dpiy = dpiy if not(getSettings("EnableWin32API")): print("🟢 Using qt's default positioning system") self.move(self.w, self.h) self.resize(int(self.preferedwidth*dpix), int(self.preferedHeight*dpiy)) else: print("🟡 Using win32 API positioning system") self.user32 = windll.user32 self.user32.SetProcessDPIAware() # forces functions to return real pixel numbers instead of scaled values win32gui.SetWindowPos(self.winId(), 0, int(w), int(h), int(self.preferedwidth*dpix), int(self.preferedHeight*dpiy), False) print("🔵 Clock geometry:", self.geometry()) self.font: QFont = QFont() customFont = getSettingsValue("UseCustomFont") if customFont == "": if lang == lang_ko: self.fontfamilies = ["Malgun Gothic", "Segoe UI Variable", "sans-serif"] elif lang == lang_zh_TW: self.fontfamilies = ["Microsoft JhengHei UI", "Segoe UI Variable", "sans-serif"] elif lang == lang_zh_CN: self.fontfamilies = ["Microsoft YaHei UI", "Segoe UI Variable", "sans-serif"] else: self.fontfamilies = ["Segoe UI Variable Display", "sans-serif"] else: self.fontfamilies = [customFont] print(f"🔵 Font families: {self.fontfamilies}") customSize = getSettingsValue("UseCustomFontSize") if customSize == "": self.font.setPointSizeF(9.3) else: try: self.font.setPointSizeF(float(customSize)) except Exception as e: self.font.setPointSizeF(9.3) report(e) print(f"🔵 Font size: {self.font.pointSizeF()}") self.font.setStyleStrategy(QFont.PreferOutline) self.font.setLetterSpacing(QFont.PercentageSpacing, 100) self.font.setHintingPreference(QFont.HintingPreference.PreferNoHinting) self.label.setFont(self.font) accColors = getColors() def make_style_sheet(a, b, c, d, color): bg = 1 if isTaskbarDark() else 4 fg = 6 if isTaskbarDark() else 1 return f"*{{padding: {a}px;padding-right: {b}px;margin-right: {c}px;padding-left: {d}px; color: {color};}}#notifIndicator{{background-color: rgb({accColors[bg]});color:rgb({accColors[fg]});}}" if getSettings("UseCustomFontColor"): print("🟡 Using custom text color:", getSettingsValue('UseCustomFontColor')) self.lastTheme = -1 style_sheet_string = make_style_sheet(self.getPx(1), self.getPx(3), self.getPx(12), self.getPx(5), f"rgb({getSettingsValue('UseCustomFontColor')})") self.label.setStyleSheet(style_sheet_string) self.label.bgopacity = .1 self.fontfamilies = [element.replace("Segoe UI Variable Display", "Segoe UI Variable Display Semib") for element in self.fontfamilies] self.font.setFamilies(self.fontfamilies) if lang == lang_ko: self.font.setWeight(QFont.Weight.Normal) elif lang == lang_zh_TW or lang == lang_zh_CN: self.font.setWeight(QFont.Weight.Normal) else: self.font.setWeight(QFont.Weight.DemiBold) self.label.setFont(self.font) elif isTaskbarDark(): print("🟢 Using white text (dark mode)") self.lastTheme = 0 style_sheet_string = make_style_sheet(self.getPx(1), self.getPx(3), self.getPx(12), self.getPx(5), "white") self.label.setStyleSheet(style_sheet_string) self.label.bgopacity = .1 self.fontfamilies = [element.replace("Segoe UI Variable Display", "Segoe UI Variable Display Semib") for element in self.fontfamilies] self.font.setFamilies(self.fontfamilies) if lang == lang_ko: self.font.setWeight(QFont.Weight.Normal) elif lang == lang_zh_TW or lang == lang_zh_CN: self.font.setWeight(QFont.Weight.Normal) else: self.font.setWeight(QFont.Weight.DemiBold) self.label.setFont(self.font) else: print("🟢 Using black text (light mode)") self.lastTheme = 1 style_sheet_string = make_style_sheet(self.getPx(1), self.getPx(3), self.getPx(12), self.getPx(5), "black") self.label.setStyleSheet(style_sheet_string) self.label.bgopacity = .5 self.fontfamilies = [element.replace("Segoe UI Variable Display Semib", "Segoe UI Variable Display") for element in self.fontfamilies] self.font.setFamilies(self.fontfamilies) self.font.setWeight(QFont.Weight.ExtraLight) self.label.setFont(self.font) self.label.clicked.connect(lambda: self.showCalendar()) self.label.move(0, 0) self.label.setFixedHeight(self.height()) self.label.resize(self.width()-self.getPx(8), self.height()) self.label.show() loadTimeFormat() self.show() self.raise_() self.setFocus() self.full_screen_rect = (self.screenGeometry.x(), self.screenGeometry.y(), self.screenGeometry.x()+self.screenGeometry.width(), self.screenGeometry.y()+self.screenGeometry.height()) print("🔵 Full screen rect: ", self.full_screen_rect) self.forceDarkTheme = getSettings("ForceDarkTheme") self.forceLightTheme = getSettings("ForceLightTheme") self.hideClockWhenClicked = getSettings("HideClockWhenClicked") self.isLowCpuMode = getSettings("EnableLowCpuMode") self.primary_screen = QGuiApplication.primaryScreen() self.oldBgColor = 0 self.user32 = windll.user32 self.user32.SetProcessDPIAware() # optional, makes functions return real pixel numbers instead of scaled values self.loop0 = KillableThread(target=self.updateTextLoop, daemon=True, name=f"Clock[{index}]: Time updater loop") self.loop1 = KillableThread(target=self.mainClockLoop, daemon=True, name=f"Clock[{index}]: Main clock loop") self.loop2 = KillableThread(target=self.backgroundLoop, daemon=True, name=f"Clock[{index}]: Background color loop") self.loop0.start() self.loop1.start() self.loop2.start() class QHoverButton(QPushButton): hovered = Signal() unhovered = Signal() def __init__(self, text: str = "", parent: QObject = None) -> None: super().__init__(text=text, parent=parent) def enterEvent(self, event: QtCore.QEvent) -> None: self.hovered.emit() return super().enterEvent(event) def leaveEvent(self, event: QtCore.QEvent) -> None: self.unhovered.emit() return super().leaveEvent(event) if(readRegedit(r"Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced", "TaskbarSd", 0) == 1) or getSettings("ShowDesktopButton"): print("🟡 Desktop button enabled") self.desktopButton = QHoverButton(parent=self) self.desktopButton.clicked.connect(lambda: self.showDesktop()) self.desktopButton.show() self.desktopButton.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.desktopButton.move(self.width()-self.getPx(10), 0) self.desktopButton.resize(self.getPx(10), self.getPx(self.preferedHeight)) self.desktopButton.hovered.connect(lambda: self.desktopButton.setIcon(QIcon(getPath("showdesktop.png")))) self.desktopButton.unhovered.connect(lambda: self.desktopButton.setIcon(QIcon())) self.setFixedHeight(self.getPx(self.preferedHeight)) self.desktopButton.setStyleSheet(f""" QPushButton{{ background-color: rgba(0, 0, 0, 0.01); margin: 0px; padding: 0px; margin-top: 0px; border-radius: 0px; margin-bottom: 0px; border-left: 0px solid rgba(0, 0, 0, 0.05); border-right: 0px solid rgba(0, 0, 0, 0.05); }} QPushButton:hover{{ background-color: rgba(127, 127, 127, 1%); margin: 0px; margin-top: 0px; border-radius: 0px; margin-bottom: 0px; border-left: 0px solid rgba(0, 0, 0, 0.05); border-right: 0px solid rgba(0, 0, 0, 0.05); }} QPushButton:pressed{{ background-color: rgba(127, 127, 127, 1%); margin: 0px; margin-top: 0px; border-radius: 0px; margin-bottom: 0px; border-left: 0px solid rgba(0, 0, 0, 0.05); border-right: 0px solid rgba(0, 0, 0, 0.05); }} """) def getPx(self, original) -> int: return round(original*(self.screen().logicalDotsPerInch()/96)) def backgroundLoop(self): while True: try: if self.taskbarBackgroundColor and not self.isLowCpuMode and not globals.trayIcon.contextMenu().isVisible(): intColor = self.primary_screen.grabWindow(0, self.x()+self.label.x()-1, self.y()+2, 1, 1).toImage().pixel(0, 0) if intColor != self.oldBgColor: self.oldBgColor = intColor color = QColor(intColor) self.styler.emit(self.widgetStyleSheet.replace("bgColor", f"{color.red()}, {color.green()}, {color.blue()}, 100")) except AttributeError: print("🟣 Expected AttributeError on backgroundLoop thread") time.sleep(0.5) def theresFullScreenWin(self, clockOnFirstMon, newMethod, legacyMethod): try: fullscreen = False def compareFullScreenRects(window, screen, newMethod): try: if(newMethod): return window[0] <= screen[0] and window[1] <= screen[1] and window[2] >= screen[2] and window[3] >= screen[3] else: return window[0] == screen[0] and window[1] == screen[1] and window[2] == screen[2] and window[3] == screen[3] except Exception as e: report(e) def winEnumHandler(hwnd, _): nonlocal fullscreen if win32gui.IsWindowVisible(hwnd): if compareFullScreenRects(win32gui.GetWindowRect(hwnd), self.full_screen_rect, newMethod): if clockOnFirstMon and self.textInputHostHWND == 0: pythoncom.CoInitialize() _, pid = win32process.GetWindowThreadProcessId(hwnd) _wmi = win32com.client.GetObject('winmgmts:') # collect all the running processes processes = _wmi.ExecQuery(f'Select Name from win32_process where ProcessId = {pid}') for p in processes: if p.Name != "TextInputHost.exe": if(win32gui.GetWindowText(hwnd) not in blacklistedFullscreenApps): print("🟡 Fullscreen window detected!", win32gui.GetWindowText(hwnd), win32gui.GetWindowRect(hwnd), "Fullscreen rect:", self.full_screen_rect) fullscreen = True else: print("🟢 Cached text input host hwnd:", hwnd) self.textInputHostHWND = hwnd self.INTLOOPTIME = 2 else: if win32gui.GetWindowText(hwnd) not in blacklistedFullscreenApps and hwnd != self.textInputHostHWND: print("🟡 Fullscreen window detected!", win32gui.GetWindowText(hwnd), win32gui.GetWindowRect(hwnd), "Fullscreen rect:", self.full_screen_rect) fullscreen = True if not legacyMethod: win32gui.EnumWindows(winEnumHandler, 0) else: hwnd = win32gui.GetForegroundWindow() if(compareFullScreenRects(win32gui.GetWindowRect(hwnd), self.full_screen_rect, newMethod)): if(win32gui.GetWindowText(hwnd) not in blacklistedFullscreenApps): print("🟡 Fullscreen window detected!", win32gui.GetWindowText(hwnd), win32gui.GetWindowRect(hwnd), "Fullscreen rect:", self.full_screen_rect) fullscreen = True return fullscreen except Exception as e: report(e) return False def mainClockLoop(self): global isRDPRunning, numOfNotifs EnableHideOnFullScreen = not(getSettings("DisableHideOnFullScreen")) DisableHideWithTaskbar = getSettings("DisableHideWithTaskbar") EnableHideOnRDP = getSettings("EnableHideOnRDP") clockOnFirstMon = getSettings("ForceClockOnFirstMonitor") newMethod = getSettings("NewFullScreenMethod") notifs = not getSettings("DisableNotifications") legacyMethod = getSettings("legacyFullScreenMethod") oldNotifNumber = 0 print(f"🔵 Show/hide loop started with parameters: HideonFS:{EnableHideOnFullScreen}, NotHideOnTB:{DisableHideWithTaskbar}, HideOnRDP:{EnableHideOnRDP}, ClockOn1Mon:{clockOnFirstMon}, NefWSMethod:{newMethod}, DisableNotifications:{notifs}, legacyFullScreenMethod:{legacyMethod}") if self.isLowCpuMode or clockOnFirstMon: self.INTLOOPTIME = 15 else: self.INTLOOPTIME = 2 while True: self.isRDPRunning = isRDPRunning isFullScreen = self.theresFullScreenWin(clockOnFirstMon, newMethod, legacyMethod) for i in range(self.INTLOOPTIME): if (not(isFullScreen) or not(EnableHideOnFullScreen)) and not self.clockShouldBeHidden: if notifs: if isFocusAssist: self.callInMainSignal.emit(self.label.enableFocusAssistant) elif numOfNotifs > 0: if oldNotifNumber != numOfNotifs: self.callInMainSignal.emit(self.label.enableNotifDot) else: self.callInMainSignal.emit(self.label.disableClockIndicators) oldNotifNumber = numOfNotifs if self.autoHide and not(DisableHideWithTaskbar): mousePos = getMousePos() if (mousePos.y()+1 == self.screenGeometry.y()+self.screenGeometry.height()) and self.screenGeometry.x() < mousePos.x() and self.screenGeometry.x()+self.screenGeometry.width() > mousePos.x(): self.refresh.emit() elif (mousePos.y() <= self.screenGeometry.y()+self.screenGeometry.height()-self.preferedHeight): self.hideSignal.emit() else: if(self.isRDPRunning and EnableHideOnRDP): self.hideSignal.emit() else: self.refresh.emit() else: self.hideSignal.emit() time.sleep(0.2) time.sleep(0.2) def updateTextLoop(self) -> None: global timeStr while True: self.label.setText(timeStr) time.sleep(0.1) def showCalendar(self): self.keyboard.press(Key.cmd) self.keyboard.press('n') self.keyboard.release('n') self.keyboard.release(Key.cmd) if self.hideClockWhenClicked: print("🟡 Hiding clock because clicked!") self.clockShouldBeHidden = True def showClockOn10s(self: Clock): time.sleep(10) print("🟢 Showing clock because 10s passed!") self.clockShouldBeHidden = False KillableThread(target=showClockOn10s, args=(self,), name=f"Temporary: 10s thread").start() def showDesktop(self): self.keyboard.press(Key.cmd) self.keyboard.press('d') self.keyboard.release('d') self.keyboard.release(Key.cmd) def focusOutEvent(self, event: QFocusEvent) -> None: self.refresh.emit() def refreshandShow(self): if(self.shouldBeVisible): self.show() self.raise_() if(self.lastTheme >= 0): # If the color is not customized theme = readRegedit(r"Software\Microsoft\Windows\CurrentVersion\Themes\Personalize", "SystemUsesLightTheme", 1) if(theme != self.lastTheme): if (theme == 0 or self.forceDarkTheme) and not self.forceLightTheme: self.lastTheme = 0 self.label.setStyleSheet(f"padding: {self.getPx(1)}px;padding-right: {self.getPx(3)}px;margin-right: {self.getPx(12)}px;padding-left: {self.getPx(5)}px; color: white;")#background-color: rgba({self.bgcolor}%)") self.label.bgopacity = 0.1 self.fontfamilies = [element.replace("Segoe UI Variable Display", "Segoe UI Variable Display Semib") for element in self.fontfamilies] self.font.setFamilies(self.fontfamilies) if lang == lang_ko: self.font.setWeight(QFont.Weight.Normal) elif lang == lang_zh_TW or lang == lang_zh_CN: self.font.setWeight(QFont.Weight.Normal) else: self.font.setWeight(QFont.Weight.DemiBold) self.label.setFont(self.font) else: self.lastTheme = 1 self.label.setStyleSheet(f"padding: {self.getPx(1)}px;padding-right: {self.getPx(3)}px;margin-right: {self.getPx(12)}px;padding-left: {self.getPx(5)}px; color: black;")#background-color: rgba({self.bgcolor}%)") self.label.bgopacity = .5 self.fontfamilies = [element.replace("Segoe UI Variable Display Semib", "Segoe UI Variable Display") for element in self.fontfamilies] self.font.setFamilies(self.fontfamilies) self.font.setWeight(QFont.Weight.ExtraLight) self.label.setFont(self.font) def closeEvent(self, event: QCloseEvent) -> None: self.shouldBeVisible = False try: print(f"🟡 Closing clock on {self.win32screen}") self.loop0.kill() self.loop1.kill() self.loop2.kill() except AttributeError: pass event.accept() return super().closeEvent(event) def showEvent(self, event: QShowEvent) -> None: return super().showEvent(event) class Label(QLabel): clicked = Signal() def __init__(self, text, parent): super().__init__(text, parent=parent) self.setMouseTracking(True) self.backgroundwidget = QWidget(self) self.color = "255, 255, 255" self.installEventFilter(self) self.bgopacity = 0.1 self.backgroundwidget.setContentsMargins(0, self.window().prefMargins, 0, self.window().prefMargins) self.backgroundwidget.setStyleSheet(f"background-color: rgba(127, 127, 127, 0.01);border-top: {self.getPx(1)}px solid rgba({self.color},0);margin-top: {self.window().prefMargins}px; margin-bottom: {self.window().prefMargins};") self.backgroundwidget.show() if self.window().transparentBackground: colorOffset = .01 else: colorOffset = 0 self.showBackground = QVariantAnimation() self.showBackground.setStartValue(0+colorOffset) # Not 0 to prevent white flashing on the border self.showBackground.setEndValue(self.bgopacity) self.showBackground.setDuration(100) self.showBackground.setEasingCurve(QEasingCurve.InOutQuad) # Not strictly required, just for the aesthetics self.showBackground.valueChanged.connect(lambda opacity: self.backgroundwidget.setStyleSheet(f"background-color: rgba({self.color}, {opacity/2});border-top: {self.getPx(1)}px solid rgba({self.color}, {opacity+colorOffset});margin-top: {self.window().prefMargins}px; margin-bottom: {self.window().prefMargins};")) self.hideBackground = QVariantAnimation() self.hideBackground.setStartValue(self.bgopacity) self.hideBackground.setEndValue(0+colorOffset) # Not 0 to prevent white flashing on the border self.hideBackground.setDuration(100) self.hideBackground.setEasingCurve(QEasingCurve.InOutQuad) # Not strictly required, just for the aesthetics self.hideBackground.valueChanged.connect(lambda opacity: self.backgroundwidget.setStyleSheet(f"background-color: rgba({self.color}, {opacity/2});border-top: {self.getPx(1)}px solid rgba({self.color}, {opacity+colorOffset});margin-top: {self.window().prefMargins}px; margin-bottom: {self.window().prefMargins};")) self.setAutoFillBackground(True) self.backgroundwidget.setGeometry(0, 0, self.width(), self.height()) self.opacity=QGraphicsOpacityEffect(self) self.opacity.setOpacity(1.00) self.backgroundwidget.setGraphicsEffect(self.opacity) self.focusassitant = True self.focusAssitantLabel = QPushButton(self) self.focusAssitantLabel.move(self.width(), 0) self.focusAssitantLabel.setAttribute(Qt.WA_TransparentForMouseEvents) self.focusAssitantLabel.setStyleSheet("background: transparent; margin: none; padding: none;") self.focusAssitantLabel.resize(self.getPx(30), self.height()) self.focusAssitantLabel.setIcon(QIcon(getPath(f"moon_{getTaskbarIconMode()}.png"))) self.focusAssitantLabel.setIconSize(QSize(self.getPx(16), self.getPx(16))) accColors = getColors() self.notifdot = True self.notifDotLabel = QLabel("", self) self.notifDotLabel.setAlignment(Qt.AlignVCenter | Qt.AlignHCenter) self.notifDotLabel.setObjectName("notifIndicator") self.notifDotLabel.setStyleSheet(f"font-size: 8pt;font-family: \"Segoe UI Variable Display\";border-radius: {self.getPx(8)}px;padding: 0px;padding-bottom: {self.getPx(2)}px;padding-left: {self.getPx(3)}px;padding-right: {self.getPx(2)}px;margin: 0px;border:0px;") self.disableClockIndicators() def enableFocusAssistant(self): if not self.focusassitant: if self.notifdot: self.disableClockIndicators() self.focusassitant = True self.setContentsMargins(self.getPx(5), self.getPx(2), self.getPx(43), self.getPx(2)) self.focusAssitantLabel.move(self.width()-self.contentsMargins().right(), 0) self.focusAssitantLabel.setFixedWidth(self.getPx(30)) self.focusAssitantLabel.setFixedHeight(self.height()) self.focusAssitantLabel.setIconSize(QSize(self.getPx(16), self.getPx(16))) self.focusAssitantLabel.setIcon(QIcon(getPath(f"moon_{getTaskbarIconMode()}.png"))) self.focusAssitantLabel.show() def enableNotifDot(self): self.notifDotLabel.setText(str(numOfNotifs)) if not self.notifdot: self.notifdot = True self.setContentsMargins(self.getPx(5), self.getPx(2), self.getPx(43), self.getPx(2)) topBottomPadding = (self.height()-self.getPx(16))/2 # top-bottom margin leftRightPadding = (self.getPx(30)-self.getPx(16))/2 # left-right margin self.notifDotLabel.move(int(self.width()-self.contentsMargins().right()+leftRightPadding), int(topBottomPadding)) self.notifDotLabel.resize(self.getPx(16), self.getPx(16)) self.notifDotLabel.setStyleSheet(f"font-size: 8pt;font-family: \"Segoe UI Variable Display\";border-radius: {self.getPx(8)}px;padding: 0px;padding-bottom: {self.getPx(2)}px;padding-left: {self.getPx(3)}px;padding-right: {self.getPx(2)}px;margin: 0px;border:0px;") self.notifDotLabel.show() def disableClockIndicators(self): if self.focusassitant: self.focusassitant = False self.setContentsMargins(self.getPx(6), self.getPx(2), self.getPx(13), self.getPx(2)) self.focusAssitantLabel.hide() if self.notifdot: self.notifdot = False self.setContentsMargins(self.getPx(6), self.getPx(2), self.getPx(13), self.getPx(2)) self.notifDotLabel.hide() def getPx(self, i: int) -> int: return round(i*(self.screen().logicalDotsPerInch()/96)) def enterEvent(self, event: QEvent, r=False) -> None: geometry: QRect = self.width() self.showBackground.setStartValue(.01) self.showBackground.setEndValue(self.bgopacity) # Not 0 to prevent white flashing on the border if not self.window().clockOnTheLeft: self.backgroundwidget.move(0, 2) self.backgroundwidget.resize(geometry, self.height()-4) else: self.backgroundwidget.move(0, 2) self.backgroundwidget.resize(geometry, self.height()-4) self.showBackground.start() if not r: self.enterEvent(event, r=True) return super().enterEvent(event) def leaveEvent(self, event: QEvent) -> None: self.hideBackground.setStartValue(self.bgopacity) self.hideBackground.setEndValue(.01) # Not 0 to prevent white flashing on the border self.hideBackground.start() return super().leaveEvent(event) def getTextUsedSpaceRect(self): text = self.text().strip() if len(text.split("\n"))>=3: mult = 0.633333333333333333 elif len(text.split("\n"))==2: mult = 1 else: mult = 1.5 return self.fontMetrics().boundingRect(text).width()*mult def mousePressEvent(self, ev: QMouseEvent) -> None: self.setWindowOpacity(0.7) self.setWindowOpacity(0.7) self.opacity.setOpacity(0.60) self.backgroundwidget.setGraphicsEffect(self.opacity) return super().mousePressEvent(ev) def mouseReleaseEvent(self, ev: QMouseEvent) -> None: self.setWindowOpacity(1) self.setWindowOpacity(1) self.opacity.setOpacity(1.00) self.backgroundwidget.setGraphicsEffect(self.opacity) if(ev.button() == Qt.RightButton): mousePos = getMousePos() if(i.contextMenu().height() != 480): mousePos.setY(self.window().y()-(i.contextMenu().height()+5)) else: if getSettings("HideTaskManagerButton"): mousePos.setY(self.window().y()-int(260*(i.contextMenu().screen().logicalDotsPerInchX()/96))) else: mousePos.setY(self.window().y()-int(370*(i.contextMenu().screen().logicalDotsPerInchX()/96))) i.execMenu(mousePos) else: self.clicked.emit() return super().mouseReleaseEvent(ev) def paintEvent(self, event: QPaintEvent) -> None: w = self.minimumSizeHint().width() try: mw = int(getSettingsValue("ClockFixedWidth")) if mw > w: w = mw except Exception as e: report(e) if w<self.window().getPx(self.window().preferedwidth) and not self.window().clockOnTheLeft: self.move(self.window().getPx(self.window().preferedwidth)-w+self.getPx(2), 0) self.resize(w, self.height()) else: self.move(0, 0) self.resize(w, self.height()) return super().paintEvent(event) def resizeEvent(self, event: QResizeEvent) -> None: if self.focusassitant: self.focusassitant = False self.enableFocusAssistant() elif self.notifdot: self.notifdot = False self.enableNotifDot() else: self.notifdot = True self.focusassitant = True self.disableClockIndicators() return super().resizeEvent(event) def window(self) -> Clock: return super().window() # Start of main script QApplication.setAttribute(Qt.AA_DisableHighDpiScaling) app = QApplication(sys.argv) app.setQuitOnLastWindowClosed(False) mController: MouseController = None sw: SettingsWindow = None i: TaskbarIconTray = None st: KillableThread = None # Will be defined on loadClocks KillableThread(target=resetRestartCount, daemon=True, name="Main: Restart counter").start() KillableThread(target=timeStrThread, daemon=True, name="Main: Locale string loader").start() loadClocks() print(f"🟢 Loaded clocks in {time.time()-FirstTime}") tdir = tempfile.TemporaryDirectory() tempDir = tdir.name sw = SettingsWindow() # Declare settings window i = TaskbarIconTray(app) mController = MouseController() app.primaryScreenChanged.connect(lambda: os.startfile(sys.executable)) app.screenAdded.connect(lambda: os.startfile(sys.executable)) app.screenRemoved.connect(lambda: os.startfile(sys.executable)) signal = RestartSignal() showNotif = InfoSignal() showWarn = InfoSignal() killSignal = InfoSignal() showNotif.infoSignal.connect(lambda a, b: showMessage(a, b)) showWarn.infoSignal.connect(lambda a, b: wanrUserAboutUpdates(a, b)) killSignal.infoSignal.connect(lambda: app.quit()) signal.restartSignal.connect(lambda: restartClocks("checkLoop")) KillableThread(target=updateChecker, daemon=True, name="Main: Updater").start() KillableThread(target=isElevenClockRunningThread, daemon=True, name="Main: Instance controller").start() if not getSettings("EnableLowCpuMode"): KillableThread(target=checkIfWokeUpThread, daemon=True, name="Main: Sleep listener").start() if not getSettings("EnableLowCpuMode"): KillableThread(target=wnfDataThread, daemon=True, name="Main: WNF Data listener").start() print("🔵 Low cpu mode is set to", str(getSettings("EnableLowCpuMode"))+". DisableNotifications is set to", getSettings("DisableNotifications")) rdpThread = KillableThread(target=checkRDP, daemon=True, name="Main: Remote desktop controller") if getSettings("EnableHideOnRDP"): rdpThread.start() globals.tempDir = tempDir # Register global variables globals.old_stdout = old_stdout # Register global variables globals.buffer = buffer # Register global variables globals.app = app # Register global variables globals.sw = sw # Register global variables globals.trayIcon = i # Register global variables globals.loadTimeFormat = loadTimeFormat # Register global functions globals.updateIfPossible = updateIfPossible # Register global functions globals.restartClocks = restartClocks # Register global functions globals.closeClocks = closeClocks # Register global functions if not(getSettings("Updated3.21Already")) and not(getSettings("EnableSilentUpdates")): setSettings("ForceClockOnFirstMonitor", True) setSettings("Updated3.21Already", True) msg = QFramelessDialog(parent=None, closeOnClick=False) msg.setAutoFillBackground(True) msg.setStyleSheet(sw.styleSheet()) msg.setAttribute(QtCore.Qt.WA_StyledBackground) msg.setObjectName("QMessageBox") msg.setTitle("ElevenClock Updater") msg.setText(f"""<b>ElevenClock has updated to version {versionName} successfully.</b> <br><br>This update brings:<br> <ul><li>The ability to specify a clock minimum width</li> <li> The ability to search through the settings</li> <li> Fixed an aesthetic issue with the seconds</li> <li> Added a button to reset ElevenClock</li> <li> Fixed an issue where ElevenClock would crash when clicking the right-click menu</li> <li> Added Nynorsk</li> <li> Some bugfixing and other improvements</li></ul>""") msg.addButton("Ok", QDialogButtonBox.ButtonRole.ApplyRole, lambda: msg.close()) msg.addButton("Full changelog", QDialogButtonBox.ButtonRole.ResetRole, lambda: os.startfile("https://github.com/martinet101/ElevenClock/releases")) def settNClose(): sw.show() msg.close() msg.addButton("Settings", QDialogButtonBox.ButtonRole.ActionRole, lambda: settNClose()) msg.setDefaultButtonRole(QDialogButtonBox.ButtonRole.ApplyRole, sw.styleSheet()) msg.setWindowTitle("ElevenClock has updated!") msg.show() showSettings = False if "--settings" in sys.argv or showSettings: sw.show() if not getSettings("DefaultPrefsLoaded"): setSettings("AlreadyInstalled", True) setSettings("NewFullScreenMethod", True) setSettings("ForceClockOnFirstMonitor", True) showMessage("Welcome to ElevenClock", "You can customize Elevenclock from the ElevenClock Settings. You can search them on the start menu or right-clicking on any clock -> ElevenClock Settings", uBtn=False) print("🟢 Default settings loaded") setSettings("DefaultPrefsLoaded", True) showWelcomeWizard = False if showWelcomeWizard or "--welcome" in sys.argv: import welcome ww = welcome.WelcomeWindow() print(f"🟢 Loaded everything in {time.time()-FirstTime}") if "--quit-on-loaded" in sys.argv: # This is a testing feature to test if the script can load successfully sys.exit(0) app.exec_() sys.exit(0) except Exception as e: import webbrowser, traceback, platform if not "versionName" in locals() and not "versionName" in globals(): versionName = "Unknown" if not "version" in locals() and not "version" in globals(): version = "Unknown" os_info = f"" + \ f" OS: {platform.system()}\n"+\ f" Version: {platform.win32_ver()}\n"+\ f" OS Architecture: {platform.machine()}\n"+\ f" APP Architecture: {platform.architecture()[0]}\n"+\ f" APP Version: {versionName}\n"+\ f" APP Version Code: {version}\n"+\ f" Program: ElevenClock"+\ "\n\n-----------------------------------------------------------------------------------------" traceback_info = "Traceback (most recent call last):\n" try: for line in traceback.extract_tb(e.__traceback__).format(): traceback_info += line traceback_info += f"\n{type(e).__name__}: {str(e)}" except: traceback_info += "\nUnable to get traceback" traceback_info += str(type(e)) traceback_info += ": " traceback_info += str(e) webbrowser.open(("https://www.somepythonthings.tk/error-report/?appName=ElevenClock&errorBody="+os_info.replace('\n', '{l}').replace(' ', '{s}')+"{l}{l}{l}{l}ElevenClock Log:{l}"+str("\n\n\n\n"+traceback_info).replace('\n', '{l}').replace(' ', '{s}')).replace("#", "|=|")) print(traceback_info) sys.exit(1)
import lxml.html musicUrl= "http://books.toscrape.com/catalogue/category/books/music_14/index.html" doc = lxml.html.parse(musicUrl) #base element articles = doc.xpath("//*[@id='default']/div/div/div/div/section/div[2]/ol/li[1]/article")[0] #individual element inside base title = articles.xpath("//h3/a/text()") price = articles.xpath("//div[2]/p[contains(@class,'price_color')]/text()") availability = articles.xpath("//div[2]/p[2][contains(@class,'availability')]/text()[normalize-space()]") imageUrl = articles.xpath("//div[1][contains(@class,'image_container')]/a/img/@src") starRating = articles.xpath("//p[contains(@class,'star-rating')]/@class") #cleaning and formatting stock = list(map(lambda stock:stock.strip(),availability)) images = list(map(lambda img:img.replace('../../../..','http://books.toscrape.com'),imageUrl)) rating = list(map(lambda rating:rating.replace('star-rating ',''),starRating)) print(title) print(price) print(stock) print(images) print(rating) #Merging all dataset = zip(title,price,stock,images,rating) print(list(dataset))
#!/usr/bin/env python #------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. #-------------------------------------------------------------------------- import re import os.path from io import open from setuptools import find_packages, setup # Change the PACKAGE_NAME only to change folder and different name PACKAGE_NAME = "azure-monitor-query" PACKAGE_PPRINT_NAME = "Azure Monitor Query" # a-b-c => a/b/c package_folder_path = PACKAGE_NAME.replace('-', '/') # a-b-c => a.b.c namespace_name = PACKAGE_NAME.replace('-', '.') # azure v0.x is not compatible with this package # azure v0.x used to have a __version__ attribute (newer versions don't) try: import azure try: ver = azure.__version__ raise Exception( 'This package is incompatible with azure=={}. '.format(ver) + 'Uninstall it with "pip uninstall azure".' ) except AttributeError: pass except ImportError: pass # Version extraction inspired from 'requests' with open(os.path.join(package_folder_path, 'version.py') if os.path.exists(os.path.join(package_folder_path, 'version.py')) else os.path.join(package_folder_path, '_version.py'), 'r') as fd: version = re.search(r'^VERSION\s*=\s*[\'"]([^\'"]*)[\'"]', fd.read(), re.MULTILINE).group(1) if not version: raise RuntimeError('Cannot find version information') with open('README.md', encoding='utf-8') as f: readme = f.read() with open('CHANGELOG.md', encoding='utf-8') as f: changelog = f.read() setup( name=PACKAGE_NAME, version=version, description='Microsoft {} Client Library for Python'.format(PACKAGE_PPRINT_NAME), long_description=readme + '\n\n' + changelog, long_description_content_type='text/markdown', license='MIT License', author='Microsoft Corporation', author_email='azpysdkhelp@microsoft.com', url='https://github.com/Azure/azure-sdk-for-python', classifiers=[ "Development Status :: 4 - Beta", 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'License :: OSI Approved :: MIT License', ], zip_safe=False, packages=find_packages(exclude=[ 'tests', 'samples', # Exclude packages that will be covered by PEP420 or nspkg 'azure', 'azure.monitor', ]), install_requires=[ 'msrest>=0.6.19', 'azure-core<2.0.0,>=1.12.0', ], extras_require={ ":python_version<'3.0'": ['azure-monitor-nspkg'], } )
from .utils import * from .funcs import * def test_unit(): storage = Storage() @op(storage) def f(x:int) -> int: return x + 1 @superop(storage) def f_twice(x:int) -> int: return f(f(x)) with run(storage, autocommit=True): f_twice(42) cg = storage.call_graph_st nodes = cg.get_nodes() assert nodes == [f_twice.op.qualified_name, f.op.qualified_name] assert cg.get_neighbors(node=nodes[0]) == [f.op.qualified_name] assert cg.get_callers(node=f.op.qualified_name) == [f_twice.op.qualified_name] ### now, check that we detect invalidation of previous version of calling superop @op(storage, version='1') def f(x:int) -> int: return x - 1 # this should not work try: @superop(storage) def f_twice(x:int) -> int: return f(f(x)) assert False except SynchronizationError: assert True except: assert False # this should work try: @superop(storage, version='1') def f_twice(x:int) -> int: return f(f(x)) assert True except SynchronizationError: assert False except: assert False
import pytest from src.conanbuilder.remote import Remote @pytest.fixture def remote(): return Remote("myName", "myUrl") def test_default_values(remote): assert remote.name == "myName" assert remote.url == "myUrl" assert remote.verify_ssl is True assert remote.priority == 0 assert remote.force is False assert remote.login is False
from django import template from django.conf import settings from django.utils.safestring import mark_safe register = template.Library() # settings value @register.simple_tag def settings_value(name): defaults = { 'SITE_HEADER': '<b>Map</b>Ground', 'SITE_TITLE': 'MapGround' } if name in defaults: return mark_safe(getattr(settings, name, defaults[name])) else: return ''
import superimport import numpy as np import matplotlib.pyplot as plt import pyprobml_utils as pml import tensorflow as tf import tensorflow_datasets as tfds np.random.seed(0) ds, info = tfds.load('emnist', split='test', shuffle_files=False, with_info=True) # horribly slow print(info) plt.figure(figsize=(10, 10)) i = 0 for example in ds: image = example["image"] label = example["label"] plt.subplot(5, 5, i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image) plt.title(label) i += 1 if i >= 25: break pml.savefig("emnist-data.pdf") plt.show()
# Auto generated by generator.py. Delete this line if you make modification. from scrapy.spiders import Rule from scrapy.linkextractors import LinkExtractor XPATH = { 'name' : "//h1[@itemprop='name']", 'price' : "//div[@class='div-new-price']/span[@class='new-price']", 'category' : "//span[@class='item']/a[@itemprop='url']/span[@itemprop='title']", 'description' : "//div[@class='block-template-content']/div[@class='clearfix mt2x']", 'images' : "//div[@class='dsi-img full-cover ']/@data-image-hoverattribute", 'canonical' : "//link[@rel='canonical']/@href", 'base_url' : "", 'brand' : "//div[@class='infos prod-detail-brand']/a[@class='font-semibold brand-name']", 'in_stock' : "", 'guarantee' : "", 'promotion' : "" } name = 'lingo.vn' allowed_domains = ['lingo.vn'] start_urls = ['http://lingo.vn/'] tracking_url = '' sitemap_urls = [''] sitemap_rules = [('', 'parse_item')] sitemap_follow = [''] rules = [ Rule(LinkExtractor(allow=['/[\w-]+-p\d+\.html$']), 'parse_item'), Rule(LinkExtractor(allow=['/[\w-]+-c\d+/($|\?page=\d+$)']), 'parse'), #Rule(LinkExtractor(), 'parse_item_and_links'), ]
import numpy as np from sympy import * def interpolate_cubic(p1, p2, k_traj, t): ''' Computes a smooth cubic polynomail between 2 N-dimensional points Input: p1: Nx1 numpy array the first point p2: Nx1 numpy array the second point dp1: Nx1 numpy array of the required velocities at the first point dp2: Nx1 numpy array of the required velocities at the second point T: Scalar which denotes the time needed to traverse the polynomal from point 1 to point 2 f: Scalar which denotes the frequency of sampling Returns: traj: (N+1) x (Txf) matrix with all interpolated position points for each axis + timesteps dtraj: (N+1) x (Txf) matrix with all interpolated velocities for each axis + timesteps ddtraj: (N+1) x (Txf) matrix with all interpolated accelerations for each axis + timesteps ''' assert type(p1) == np.ndarray and type(p2) == np.ndarray assert type(k_traj) == int and (type(t) == float or type(t) == int) traj_list = [] dtraj_list = [] ddtraj_list = [] dddtraj_list = [] s, ds, dds, ddds = get_normalized_third_degree_polynomial(k_traj) for i in range(len(p1)): traj_ = [((p2[i] - p1[i]) * s[j] + p1[i]) for j in range(len(s))] dtraj_ = np.divide([((p2[i] - p1[i]) * ds[j]) for j in range(len(ds))], t) ddtraj_ = np.divide([((p2[i] - p1[i]) * dds[j]) for j in range(len(dds))], t ** 2) dddtraj_ = np.divide([((p2[i] - p1[i]) * ddds[j]) for j in range(len(ddds))], t ** 3) traj_list.append(traj_) dtraj_list.append(dtraj_) ddtraj_list.append(ddtraj_) dddtraj_list.append(dddtraj_) tv = np.linspace(0, t, k_traj) traj_list.append(tv) dtraj_list.append(tv) ddtraj_list.append(tv) dddtraj_list.append(tv) traj = np.asarray(traj_list) dtraj = np.asarray(dtraj_list) ddtraj = np.asarray(ddtraj_list) dddtraj = np.asarray(dddtraj_list) return traj, dtraj, ddtraj, dddtraj def interpolate_quintic(p1, p2, k_traj, t): assert type(p1) == np.ndarray and type(p2) == np.ndarray assert type(k_traj) == int and (type(t) == float or type(t) == int) traj_list = [] dtraj_list = [] ddtraj_list = [] dddtraj_list = [] s, ds, dds, ddds = get_normalized_fifth_degree_polynomial(k_traj) for i in range(len(p1)): traj_ = [((p2[i] - p1[i]) * s[j] + p1[i]) for j in range(len(s))] dtraj_ = np.divide([((p2[i] - p1[i]) * ds[j]) for j in range(len(ds))], t) ddtraj_ = np.divide([((p2[i] - p1[i]) * dds[j]) for j in range(len(dds))], t ** 2) dddtraj_ = np.divide([((p2[i] - p1[i]) * ddds[j]) for j in range(len(ddds))], t ** 3) traj_list.append(traj_) dtraj_list.append(dtraj_) ddtraj_list.append(ddtraj_) dddtraj_list.append(dddtraj_) tv = np.linspace(0, t, k_traj) traj_list.append(tv) dtraj_list.append(tv) ddtraj_list.append(tv) dddtraj_list.append(tv) traj = np.asarray(traj_list) dtraj = np.asarray(dtraj_list) ddtraj = np.asarray(ddtraj_list) dddtraj = np.asarray(dddtraj_list) return traj, dtraj, ddtraj, dddtraj def interpolate_septic(p1, p2, k_traj, t): assert type(p1) == np.ndarray and type(p2) == np.ndarray assert type(k_traj) == int and (type(t) == float or type(t) == int) traj_list = [] dtraj_list = [] ddtraj_list = [] dddtraj_list = [] s, ds, dds, ddds = get_normalized_seventh_degree_polynomial(k_traj) for i in range(len(p1)): traj_ = [((p2[i] - p1[i]) * s[j] + p1[i]) for j in range(len(s))] dtraj_ = np.divide([((p2[i] - p1[i]) * ds[j]) for j in range(len(ds))], t) ddtraj_ = np.divide([((p2[i] - p1[i]) * dds[j]) for j in range(len(dds))], t ** 2) dddtraj_ = np.divide([((p2[i] - p1[i]) * ddds[j]) for j in range(len(ddds))], t ** 3) traj_list.append(traj_) dtraj_list.append(dtraj_) ddtraj_list.append(ddtraj_) dddtraj_list.append(dddtraj_) tv = np.linspace(0, t, k_traj) traj_list.append(tv) dtraj_list.append(tv) ddtraj_list.append(tv) dddtraj_list.append(tv) traj = np.asarray(traj_list) dtraj = np.asarray(dtraj_list) ddtraj = np.asarray(ddtraj_list) dddtraj = np.asarray(dddtraj_list) return traj, dtraj, ddtraj, dddtraj def interpolate_nonic(p1, p2, k_traj, t): assert type(p1) == np.ndarray and type(p2) == np.ndarray assert type(k_traj) == int and (type(t) == float or type(t) == int) traj_list = [] dtraj_list = [] ddtraj_list = [] dddtraj_list = [] s, ds, dds, ddds = get_normalized_ninth_degree_polynomial(k_traj) for i in range(len(p1)): traj_ = [((p2[i] - p1[i]) * s[j] + p1[i]) for j in range(len(s))] dtraj_ = np.divide([((p2[i] - p1[i]) * ds[j]) for j in range(len(ds))], t) ddtraj_ = np.divide([((p2[i] - p1[i]) * dds[j]) for j in range(len(dds))], t ** 2) dddtraj_ = np.divide([((p2[i] - p1[i]) * ddds[j]) for j in range(len(ddds))], t ** 3) traj_list.append(traj_) dtraj_list.append(dtraj_) ddtraj_list.append(ddtraj_) dddtraj_list.append(dddtraj_) tv = np.linspace(0, t, k_traj) traj_list.append(tv) dtraj_list.append(tv) ddtraj_list.append(tv) dddtraj_list.append(tv) traj = np.asarray(traj_list) dtraj = np.asarray(dtraj_list) ddtraj = np.asarray(ddtraj_list) dddtraj = np.asarray(dddtraj_list) return traj, dtraj, ddtraj, dddtraj def interpolate_trapezoid(p1, p2, k_traj, t): assert type(p1) == np.ndarray and type(p2) == np.ndarray assert type(k_traj) == int and (type(t) == float or type(t) == int) traj_list = [] dtraj_list = [] ddtraj_list = [] dddtraj_list = [] s, ds, dds, ddds = get_normalized_trapezoid_polynomial(k_traj) for i in range(len(p1)): traj_ = [((p2[i] - p1[i]) * s[j] + p1[i]) for j in range(len(s))] dtraj_ = np.divide([((p2[i] - p1[i]) * ds[j]) for j in range(len(ds))], t) ddtraj_ = np.divide([((p2[i] - p1[i]) * dds[j]) for j in range(len(dds))], t ** 2) dddtraj_ = np.divide([((p2[i] - p1[i]) * ddds[j]) for j in range(len(ddds))], t ** 3) traj_list.append(traj_) dtraj_list.append(dtraj_) ddtraj_list.append(ddtraj_) dddtraj_list.append(dddtraj_) tv = np.linspace(0, t, k_traj) traj_list.append(tv) dtraj_list.append(tv) ddtraj_list.append(tv) dddtraj_list.append(tv) traj = np.asarray(traj_list) dtraj = np.asarray(dtraj_list) ddtraj = np.asarray(ddtraj_list) dddtraj = np.asarray(dddtraj_list) return traj, dtraj, ddtraj, dddtraj def interpolate_minimum_jerk_derivative(p1, p2, k_traj, t): assert type(p1) == np.ndarray and type(p2) == np.ndarray assert type(k_traj) == int and (type(t) == float or type(t) == int) traj_list = [] dtraj_list = [] ddtraj_list = [] dddtraj_list = [] s, ds, dds, ddds = get_normalized_minimum_jerk_derivative_polynomial(k_traj) for i in range(len(p1)): traj_ = [((p2[i] - p1[i]) * s[j] + p1[i]) for j in range(len(s))] dtraj_ = np.divide([((p2[i] - p1[i]) * ds[j]) for j in range(len(ds))], t) ddtraj_ = np.divide([((p2[i] - p1[i]) * dds[j]) for j in range(len(dds))], t ** 2) dddtraj_ = np.divide([((p2[i] - p1[i]) * ddds[j]) for j in range(len(ddds))], t ** 3) traj_list.append(traj_) dtraj_list.append(dtraj_) ddtraj_list.append(ddtraj_) dddtraj_list.append(dddtraj_) tv = np.linspace(0, t, k_traj) traj_list.append(tv) dtraj_list.append(tv) ddtraj_list.append(tv) dddtraj_list.append(tv) traj = np.asarray(traj_list) dtraj = np.asarray(dtraj_list) ddtraj = np.asarray(ddtraj_list) dddtraj = np.asarray(dddtraj_list) return traj, dtraj, ddtraj, dddtraj def get_normalized_first_degree_polynomial(k_traj): tau = np.linspace(0, 1, k_traj) stau = np.linspace(0, 1, k_traj) dstau_dtau = np.linspace(0, 0, k_traj) ddstau_ddtau = np.linspace(0, 0, k_traj) dddstau_dddtau = np.linspace(0, 0, k_traj) for i in range(k_traj): t = tau[i] stau[i] = t dstau_dtau[i] = 1 ddstau_ddtau[i] = 0 dddstau_dddtau[i] = 0 return stau, dstau_dtau, ddstau_ddtau, dddstau_dddtau def get_normalized_third_degree_polynomial(k_traj): tau = np.linspace(0, 1, k_traj) stau = np.linspace(0, 1, k_traj) dstau_dtau = np.linspace(0, 0, k_traj) ddstau_ddtau = np.linspace(0, 0, k_traj) dddstau_dddtau = np.linspace(0, 0, k_traj) for i in range(k_traj): t = tau[i] stau[i] = -2 * (t ** 3) + 3 * (t ** 2) dstau_dtau[i] = -6 * (t ** 2) + 6 * t ddstau_ddtau[i] = -12 * t + 6 dddstau_dddtau[i] = -12 return stau, dstau_dtau, ddstau_ddtau, dddstau_dddtau def get_normalized_fifth_degree_polynomial(k_traj): tau = np.linspace(0, 1, k_traj) stau = np.linspace(0, 1, k_traj) dstau_dtau = np.linspace(0, 0, k_traj) ddstau_ddtau = np.linspace(0, 0, k_traj) dddstau_dddtau = np.linspace(0, 0, k_traj) for i in range(k_traj): t = tau[i] stau[i] = 6 * (t ** 5) - 15 * (t ** 4) + 10 * (t ** 3) dstau_dtau[i] = 30 * (t ** 4) - 60 * (t ** 3) + 30 * (t ** 2) ddstau_ddtau[i] = 120 * (t ** 3) - 180 * (t ** 2) + 60 * t dddstau_dddtau[i] = 360 * (t ** 2) - 360 * t + 60 return stau, dstau_dtau, ddstau_ddtau, dddstau_dddtau def get_normalized_seventh_degree_polynomial(k_traj): tau = np.linspace(0, 1, k_traj) stau = np.linspace(0, 1, k_traj) dstau_dtau = np.linspace(0, 0, k_traj) ddstau_ddtau = np.linspace(0, 0, k_traj) dddstau_dddtau = np.linspace(0, 0, k_traj) for i in range(k_traj): t = tau[i] stau[i] = -20 * (t ** 7) + 70 * (t ** 6) - 84 * (t ** 5) + 35 * (t ** 4) dstau_dtau[i] = -140 * (t ** 6) + 420 * (t ** 5) - 420 * (t ** 4) + 140 * (t ** 3) ddstau_ddtau[i] = -840 * (t ** 5) + 2100 * (t ** 4) - 1680 * (t ** 3) + 420 * (t ** 2) dddstau_dddtau[i] = -4200 * (t ** 4) + 8400 * (t ** 3) - 5040 * (t ** 2) + 840 * t return stau, dstau_dtau, ddstau_ddtau, dddstau_dddtau def get_normalized_ninth_degree_polynomial(k_traj): tau = np.linspace(0, 1, k_traj) stau = np.linspace(0, 1, k_traj) dstau_dtau = np.linspace(0, 0, k_traj) ddstau_ddtau = np.linspace(0, 0, k_traj) dddstau_dddtau = np.linspace(0, 0, k_traj) for i in range(1, k_traj): t = tau[i] stau[i] = 70 * (t ** 9) - 315 * (t ** 8) + 540 * (t ** 7) - 420 * (t ** 6) + 126 * (t ** 5) dstau_dtau[i] = 630 * (t ** 8) - 2520 * (t ** 7) + 3780 * (t ** 6) - 2520 * (t ** 5) + 630 * (t ** 4) ddstau_ddtau[i] = 5040 * (t ** 7) - 17640 * (t ** 6) + 22680 * (t ** 5) - 12600 * (t ** 4) + 2520 * (t ** 3) dddstau_dddtau[i] = 35280 * (t ** 6) - 105840 * (t ** 5) + 113400 * (t ** 4) - 50400 * (t ** 3) + 7560 * ( t ** 2) return stau, dstau_dtau, ddstau_ddtau, dddstau_dddtau def get_normalized_trapezoid_polynomial(k_traj): t_acc = 1 / 10. t_ct = 1 - 2 * t_acc v_m = 1.0 / (t_acc + t_ct) x = t_acc tau = np.linspace(0, 1, k_traj) stau = np.linspace(0, 1, k_traj) dstau_dtau = np.linspace(0, 0, k_traj) ddstau_ddtau = np.linspace(0, 0, k_traj) dddstau_dddtau = np.linspace(0, 0, k_traj) for i in range(k_traj): t = tau[i] if 0 <= t <= x: res = 0.5 * v_m * (t ** 2) / t_acc vel = v_m * t / t_acc elif x < t <= 1 - x: res = 0.5 * v_m * (t_acc ** 2) / t_acc + v_m * (t - t_acc) vel = v_m elif t > 1 - x: res = 0.5 * v_m * (t_acc ** 2) / t_acc + v_m * t_ct + v_m * (t - t_acc - t_ct) - 0.5 * v_m / t_acc * ( t - t_acc - t_ct) ** 2 vel = v_m - v_m / t_acc * (t - t_acc - t_ct) else: res = None vel = None stau[i] = res dstau_dtau[i] = vel for i in range(tau.size - 2): dstau_dtau[i] = (stau[i + 1] - stau[i]) / (tau[i + 1] - tau[i]) for i in range(tau.size - 2): ddstau_ddtau[i] = (dstau_dtau[i + 1] - dstau_dtau[i]) / (tau[i + 1] - tau[i]) for i in range(tau.size - 2): dddstau_dddtau[i] = (ddstau_ddtau[i + 1] - ddstau_ddtau[i]) / (tau[i + 1] - tau[i]) return stau, dstau_dtau, ddstau_ddtau, dddstau_dddtau def get_normalized_minimum_jerk_derivative_polynomial(k_traj): x = (1 - np.sqrt(0.5)) / 2 tau = np.linspace(0, 1, k_traj) stau = np.linspace(0, 1, k_traj) dstau_dtau = np.linspace(0, 0, k_traj) ddstau_ddtau = np.linspace(0, 0, k_traj) dddstau_dddtau = np.linspace(0, 0, k_traj) res = None for i in range(k_traj - 1): t = tau[i] if 0 <= t <= x: res = 16 * (t ** 4) elif x < t <= 0.5: res = -16 * (t ** 4) + 128 * x * (t ** 3) - 192 * (x ** 2) * (t ** 2) + 128 * (x ** 3) * t - 32 * (x ** 4) elif 0.5 < t <= 1 - x: res = 1 + 16 * ((1 - t) ** 4) - 128 * x * ((1 - t) ** 3) + 192 * (x ** 2) * ((1 - t) ** 2) - 128 * ( x ** 3) * (1 - t) + 32 * (x ** 4) elif 1 - x < t <= 1: res = 1 - 16 * (1 - t) ** 4 stau[i] = res for i in range(tau.size - 2): dstau_dtau[i] = (stau[i + 1] - stau[i]) / (tau[i + 1] - tau[i]) for i in range(tau.size - 2): ddstau_ddtau[i] = (dstau_dtau[i + 1] - dstau_dtau[i]) / (tau[i + 1] - tau[i]) for i in range(tau.size - 2): dddstau_dddtau[i] = (ddstau_ddtau[i + 1] - ddstau_ddtau[i]) / (tau[i + 1] - tau[i]) return stau, dstau_dtau, ddstau_ddtau, dddstau_dddtau def get_normalized_cubic_polynomial_coefficients(): # Kinematic equations for a cubic polynomial x0 = [1, 0, 0, 0] xt = [1, 1, pow(1, 2), pow(1, 3)] v0 = [0, 1, 0, 0] vt = [0, 1, 2 * 1, 3 * pow(1, 2)] # Solve polynomial coefficients a = np.array([x0, xt, v0, vt], dtype='float') b = np.array([[0], [1], [0], [0]], dtype='float') polynomial = np.linalg.solve(a, b) return polynomial def get_normalized_quintic_polynomial_coefficients(): # Kinematic equations for a cubic polynomial x0 = [1, 0, 0, 0, 0, 0] xt = [1, 1, pow(1, 2), pow(1, 3), pow(1, 4), pow(1, 5)] v0 = [0, 1, 0, 0, 0, 0] vt = [0, 1, 2 * 1, 3 * pow(1, 2), 4 * pow(1, 3), 5 * pow(1, 4)] a0 = [0, 0, 2, 0, 0, 0] at = [0, 0, 2, 6 * 1, 12 * pow(1, 2), 20 * pow(1, 3)] # Solve polynomial coefficients a = np.array([x0, xt, v0, vt, a0, at], dtype='float') b = np.array([[0], [1], [0], [0], [0], [0]], dtype='float') polynomial = np.linalg.solve(a, b) return polynomial def get_normalized_septic_polynomial_coefficients(): # Kinematic equations for a cubic polynomial x0 = [1, 0, 0, 0, 0, 0, 0, 0] xt = [1, 1, pow(1, 2), pow(1, 3), pow(1, 4), pow(1, 5), pow(1, 6), pow(1, 7)] v0 = [0, 1, 0, 0, 0, 0, 0, 0] vt = [0, 1, 2 * 1, 3 * pow(1, 2), 4 * pow(1, 3), 5 * pow(1, 4), 6 * pow(1, 5), 7 * pow(1, 6)] a0 = [0, 0, 2, 0, 0, 0, 0, 0] at = [0, 0, 2, 6 * 1, 12 * pow(1, 2), 20 * pow(1, 3), 30 * pow(1, 4), 42 * pow(1, 5)] j0 = [0, 0, 0, 6, 0, 0, 0, 0] jt = [0, 0, 0, 6, 24 * 1, 60 * pow(1, 2), 120 * pow(1, 3), 210 * pow(1, 4)] # Solve polynomial coefficients a = np.array([x0, xt, v0, vt, a0, at, j0, jt], dtype='float') b = np.array([[0], [1], [0], [0], [0], [0], [0], [0]], dtype='float') polynomial = np.linalg.solve(a, b) return polynomial def get_normalized_nonic_polynomial_coefficients(): # Kinematic equations for a cubic polynomial x0 = [1, 0, 0, 0, 0, 0] xt = [1, 1, pow(1, 2), pow(1, 3), pow(1, 4), pow(1, 5)] v0 = [0, 1, 0, 0, 0, 0] vt = [0, 1, 2 * 1, 3 * pow(1, 2), 4 * pow(1, 3), 5 * pow(1, 4)] a0 = [0, 0, 2, 0, 0, 0] at = [0, 0, 2, 6 * 1, 12 * pow(1, 2), 20 * pow(1, 3)] j0 = [0, 0, 0, 6, 0, 0, 0, 0] jt = [0, 0, 0, 6, 24 * 1, 60 * pow(1, 2), 120 * pow(1, 3), 210 * pow(1, 4)] # Solve polynomial coefficients a = np.array([x0, xt, v0, vt, a0, at, j0, jt], dtype='float') b = np.array([[0], [1], [0], [0], [0], [0], [0], [0]], dtype='float') polynomial = np.linalg.solve(a, b) return polynomial def interpolate_quint_2(p1, p2, dp1, dp2, ddp1, ddp2, k_traj, T): ''' Computes a smooth quintic polynomial between 2 N-dimensional points Input: p1: Nx1 numpy array the first point p2: Nx1 numpy array the second point dp1: Nx1 numpy array of the required velocities at the first point dp2: Nx1 numpy array of the required velocities at the second point ddp1: Nx1 numpy array of the required accelerations the first point ddp2: Nx1 numpy array of the required accelerations the second point T: Scalar which denotes the time needed to traverse the polynomal from point 1 to point 2 f: Scalar which denotes the frequency of sampling Returns: traj: (N+1) x (Txf) matrix with all interpolated position points for each axis + timesteps dtraj: (N+1) x (Txf) matrix with all interpolated velocities for each axis + timesteps ddtraj: (N+1) x (Txf) matrix with all interpolated accelerations for each axis + timesteps ''' assert type(p1) == np.ndarray and type(p2) == np.ndarray assert type(dp1) == np.ndarray and type(dp2) == np.ndarray assert type(ddp1) == np.ndarray and type(ddp2) == np.ndarray assert type(k_traj) == int and (type(T) == float or type(T) == int) # Kinematic equations for a quintic polynomial x0 = [1, 0, 0, 0, 0, 0] xT = [1, T, pow(T, 2), pow(T, 3), pow(T, 4), pow(T, 5)] v0 = [0, 1, 0, 0, 0, 0] vT = [0, 1, 2 * T, 3 * pow(T, 2), 4 * pow(T, 3), 5 * pow(T, 4)] a0 = [0, 0, 2, 0, 0, 0] aT = [0, 0, 2, 6 * T, 12 * pow(T, 2), 20 * pow(T, 3)] # Kinematic matrix A = np.array([x0, xT, v0, vT, a0, aT], dtype='float') # Interpolate traj_list = [] dtraj_list = [] ddtraj_list = [] t = Symbol('t') tv = np.linspace(0, T, k_traj) for i in range(len(p1)): B = np.array([[p1[i]], [p2[i]], [dp1[i]], [dp2[i]], [ddp1[i]], [ddp2[i]]], dtype='float') x = np.linalg.solve(A, B) traj = x[0, 0] + x[1, 0] * t + x[2, 0] * pow(t, 2) + x[3, 0] * pow(t, 3) + x[4, 0] * pow(t, 4) + x[ 5, 0] * pow(t, 5) dtraj = x[1, 0] + 2 * x[2, 0] * t + 3 * x[3, 0] * pow(t, 2) + 4 * x[4, 0] * pow(t, 3) + 5 * x[ 5, 0] * pow(t, 4) ddtraj = 2 * x[2, 0] + 6 * x[3, 0] * t + 12 * x[4, 0] * pow(t, 2) + 20 * x[5, 0] * pow(t, 3) traj_ = [traj.subs(t, tv_) for tv_ in tv] dtraj_ = [dtraj.subs(t, tv_) for tv_ in tv] ddtraj_ = [ddtraj.subs(t, tv_) for tv_ in tv] traj_list.append(traj_) dtraj_list.append(dtraj_) ddtraj_list.append(ddtraj_) traj_list.append(tv) dtraj_list.append(tv) ddtraj_list.append(tv) traj = np.asarray(traj_list) dtraj = np.asarray(dtraj_list) ddtraj = np.asarray(ddtraj_list) return traj, dtraj, ddtraj def interpolate_cubic_2(p1, p2, k_traj, T, dp1=np.zeros((6, 1)), dp2=np.zeros((6, 1))): ''' Computes a smooth cubic polynomal between 2 N-dimensional points Input: p1: Nx1 numpy array the first point p2: Nx1 numpy array the second point dp1: Nx1 numpy array of the required velocities at the first point dp2: Nx1 numpy array of the required velocities at the second point T: Scalar which denotes the time needed to traverse the polynomal from point 1 to point 2 f: Scalar which denotes the frequency of sampling Returns: traj: (N+1) x (Txf) matrix with all interpolated position points for each axis + timesteps dtraj: (N+1) x (Txf) matrix with all interpolated velocities for each axis + timesteps ddtraj: (N+1) x (Txf) matrix with all interpolated accelerations for each axis + timesteps ''' assert type(p1) == np.ndarray and type(p2) == np.ndarray assert type(dp1) == np.ndarray and type(dp2) == np.ndarray assert type(k_traj) == int and (type(T) == float or type(T) == int) # Kinematic equations for a cubic polynomial x0 = [1, 0, 0, 0] xT = [1, T, pow(T, 2), pow(T, 3)] v0 = [0, 1, 0, 0] vT = [0, 1, 2 * T, 3 * pow(T, 2)] # Kinematic matrix A = np.array([x0, xT, v0, vT], dtype='float') traj_list = [] dtraj_list = [] ddtraj_list = [] t = Symbol('t') tv = np.linspace(0, T, k_traj) for i in range(len(p1)): B = np.array([[p1[i]], [p2[i]], [dp1[i]], [dp2[i]]], dtype='float') x = np.linalg.solve(A, B) traj = x[0, 0] + x[1, 0] * t + x[2, 0] * pow(t, 2) + x[3, 0] * pow(t, 3) dtraj = x[1, 0] + 2 * x[2, 0] * t + 3 * x[3, 0] * pow(t, 2) ddtraj = 2 * x[2, 0] + 6 * x[3, 0] * t traj_ = [traj.subs(t, tv_) for tv_ in tv] dtraj_ = [dtraj.subs(t, tv_) for tv_ in tv] ddtraj_ = [ddtraj.subs(t, tv_) for tv_ in tv] traj_list.append(traj_) dtraj_list.append(dtraj_) ddtraj_list.append(ddtraj_) traj_list.append(tv) dtraj_list.append(tv) ddtraj_list.append(tv) traj = np.array(traj_list) dtraj = np.array(dtraj_list) ddtraj = np.array(ddtraj_list) return traj, dtraj, ddtraj def interpolate_viapoints(p, v1, vn, k_traj, t): ''' Computes a smooth cubic polynomal between M N-dimensional points Input: p: MxN numpy array containing all points v1: Nx1 numpy array of the required velocities at the first point vn: Nx1 numpy array of the required velocities at the last point t: Mx1 numpy array of the timesteps at which the points should be reached f: Scalar which denotes the frequency of sampling Returns: traj: (N+1) x (Txf) matrix with all interpolated position points for each axis + timesteps dtraj: (N+1) x (Txf) matrix with all interpolated velocities for each axis + timesteps ddtraj: (N+1) x (Txf) matrix with all interpolated accelerations for each axis + timesteps ''' assert type(p) == np.ndarray and type(k_traj) == int # Compute time interval matrix h = list(np.zeros((len(t) - 1, 1))) for i in range(len(t) - 1): h[i] = t[i + 1] - t[i] # Compute A(h) matrix A = np.zeros((len(h) - 1, len(h) - 1)) for i in range(len(h) - 1): for j in range(len(h) - 1): if i == j: A[i][j] = 2 * (h[i] + h[i + 1]) if i == j + 1: A[i][j] = h[i + 1] if j == i + 1: A[i][j] = h[i] # Compute known B(p0,p1,h,v1,vn) matrix B = np.zeros((len(h) - 1, len(p[0]))) for i in range(len(h) - 1): B[i] = (3 / (h[i] * h[i + 1])) * ( pow(h[i], 2) * (np.subtract(p[i + 2], p[i + 1])) + pow(h[i + 1], 2) * (np.subtract(p[i + 1], p[i]))) B[0] = B[0] - np.dot(h[1], v1) B[-1] = B[-1] - np.dot(h[-2], vn) # Solve for all unknown velocities of intermediate knots x = np.linalg.solve(A, B) vel = [v1.copy()] [vel.append(x[i]) for i in range(len(x))] vel.append(vn.copy()) # Compute N-1 polynomials using computed velocities traj = [[0], [0], [0], [0], [0], [0], [0]] dtraj = [[0], [0], [0], [0], [0], [0], [0]] ddtraj = [[0], [0], [0], [0], [0], [0], [0]] for i in range(len(p) - 1): traj_, dtraj_, ddtraj_ = interpolate_cubic_2(p[i], p[i + 1], k_traj, float(h[i]), vel[i], vel[i + 1]) for j in range(len(traj) - 1): traj[j].extend(traj_[j]) dtraj[j].extend(dtraj_[j]) ddtraj[j].extend(ddtraj_[j]) traj[-1].extend(traj_[-1] + traj[-1][-1]) dtraj[-1].extend(dtraj_[-1] + dtraj[-1][-1]) ddtraj[-1].extend(ddtraj_[-1] + ddtraj[-1][-1]) traj = np.asarray(np.delete(traj, 0, 1)) dtraj = np.asarray(np.delete(traj, 0, 1)) ddtraj = np.asarray(np.delete(traj, 0, 1)) return traj, dtraj, ddtraj
from model.Sender import Sender from model.SenderType import SenderType import logging import math import numpy as np class NoobSender(Sender): def __init__(self, id, deliveryRate, debug=True): super().__init__(id, SenderType.Noob, deliveryRate=deliveryRate, debug=debug) def getNumberOfPacketsToCreateForTimeStep(self, timeStep): num = math.floor(timeStep * self.deliveryRate) - math.floor((timeStep - 1) * self.deliveryRate) # print(num) # randomness # if self.debug: # logging.info(f"Sender #{self.id} creating {numberOfPackets} packets at {timeStep}") # return math.floor( num * np.random.uniform(0.5, 1.1)) return num def onTimeStepStart(self, timeStep): """To be called at the beginning of a timeStep Args: timeStep ([type]): [description] """ pass def onTimeStepEnd(self, timeStep): """To be called at the end of a timeStep Args: timeStep ([type]): [description] """ pass def onACK(self, packet): super().onACK(packet) # packet loss conditions: # 1. ACK out of order. # 2. # if self.debug: # logging.info(f"{self.getName()}: got ack for packet {packet.getPacketNumber()}") pass
''' ----------------------------------------------------------------------- Additional Documentation Made by Zachary A Brader, Kieran Coito, Pedro Goncalves Mokarzel while attending University of Washington Bothell Made in 03/09/2020 Based on instruction in CSS 458, taught by professor Johnny Lin Notes: - Written for Python 3.7.3. - No executable - Modules necessary: numpy, random, and matplotlib.pyplot - External necessities: variables.py, cashier.py, customer.py, and equal_distribution_line - Creates line environment for the use of mode - Holds lists with relevant to the line - Holds cashiers and customers - Used equal_distribution_line as a base for other lines - Line will give a customer to cashier that looks like it will go the fastest ======================================================================= ''' # ======================================================================= # ============================= Imports================================== # ======================================================================= import numpy as np import random as r import matplotlib.pyplot as plt import variables as v from cashier import cashier from customer import customer from equal_distribution_line import equal_distribution_line # ======================================================================= # ================================= Class =============================== # ======================================================================= class customer_selection_line(equal_distribution_line): ''' Inherits equal_distribution_line Line acts such that customer chooses the best line ''' # List of customers in queue # Implemented customer_list = 0 # Array to keep track of automated cashier # Implemented automated_cashier_tracker = 0 # Maintain cost of maintenance for all lines # Implemented cost_for_maintenance = 0 # Not implemented time_step = 0 # Number of cashiers in system # implemented number_of_cashiers = 0 # Total number of customers processed by the line # Initialization implemented total_number_of_customers = 0 # Customers currently being served # implemented customers_being_served = 0 # Total number of customers current line # Implemented customers_waiting_to_queue = 0 # Customers that have left the system at point of simulation # Implemented customers_that_left = 0 # Implementation total_number_of_checked_items = 0 total_number_of_items_in_system = 0 def rotate_customers(self): ''' Rotate customers between the cashiers' queues from the lines Customers go to the queue that they consider will go fast Precondition: - Customers and cashier related lists created Postcondition: - Removal of customers in the environment list, and then the addition to queues ''' # number_of_customers_entering_queue = int(np.random.rand()*(self.number_of_cashiers-1)) +1 # test = [] # for i in range(1000): # test.append(int(rej()*self.number_of_cashiers)) # plt.hist(test) # plt.show() for individual_cashier_iterator in range(len(self.cashier_list)): if (len(self.customer_list) > 0): # Updates waiting queue: smallest_cashier = self.cashier_list[0] for cashier_iterator in self.cashier_list: if(smallest_cashier > cashier_iterator): smallest_cashier = cashier_iterator smallest_cashier.add_customer_to_queue(self.customer_list.pop()) self.customers_waiting_to_queue = self.customers_waiting_to_queue - 1 # self.cashier_list.sort()
__author__ = 'Danyang' import logging import sys class LoggerFactory(object): def getConsoleLogger(self, cls_name, level=logging.DEBUG): lgr = logging.getLogger(cls_name) lgr.setLevel(level) if not lgr.handlers: ch = logging.StreamHandler(sys.stdout) ch.setLevel(level) ch.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')) lgr.addHandler(ch) return lgr
from datetime import datetime import datetime def yesterday(today=datetime.datetime.now()): yesterday = today - datetime.timedelta(days=1) yesterday_timestamp = int(yesterday.timestamp()) * 1000 return yesterday_timestamp def extractDate(name, prefix, fileType): prefixLen = len(prefix) fileTypeLen = len(fileType) return name[prefixLen+1:-fileTypeLen]
from datetime import datetime from ctyped.types import CRef from .base import _ApiResourceBase from .stats import CurrentApplicationAchievements from .user import User class Application(_ApiResourceBase): """Exposes methods to get application data. Aliased as ``steampak.SteamApplication``. .. code-block:: python from steampak import SteamApplication # We use `Spacewar` app ID. (This game is provided with SDK). my_app = SteamApplication(480) """ def __init__(self, app_id, *args, **kwargs): """ :param int|None app_id: Application (game) ID. """ client = self.get_client() self._iface = client.apps self._iface_list = client.app_list super().__init__(*args, **kwargs) if app_id is not None: # Might be None for current app. self.app_id = app_id def __str__(self): return self.name @property def owned(self): """``True`` if user owns the current app. .. warning:: Only use this member if you need to check ownership of a game related to yours, a demo for example. :rtype: bool """ return self._iface.get_is_subscribed(self.app_id) @property def installed(self): """``True`` if app is installed (not necessarily owned). :rtype: bool """ return self._iface.get_is_installed(self.app_id) @property def name(self): """Application name, or None on error. .. warning:: Restricted interface can only be used by approved apps. :rtype: str """ return self._get_str(self._iface_list.get_name, [self.app_id]) @property def install_dir(self): """Returns application installation path. .. note:: If fails this falls back to a restricted interface, which can only be used by approved apps. :rtype: str """ max_len = 500 directory = self._get_str(self._iface.get_install_dir, [self.app_id], max_len=max_len) if not directory: # Fallback to restricted interface (can only be used by approved apps). directory = self._get_str(self._iface_list.get_install_dir, [self.app_id], max_len=max_len) return directory @property def purchase_time(self): """Date and time of app purchase. :rtype: datetime """ ts = self._iface.get_purchase_time(self.app_id) return datetime.utcfromtimestamp(ts) @property def build_id(self): """Application Build ID. This may change at any time based on backend updates. .. warning:: Restricted interface can only be used by approved apps. :rtype: int """ return self._iface_list.get_build_id(self.app_id) class InstalledApplications(_ApiResourceBase): """Exposes methods to get data on installed applications. Interface can be accessed through ``api.apps.installed``. .. warning:: Restricted interface can only be used by approved apps. """ def __init__(self, *args, **kwargs): self._iface = self.get_client().app_list super().__init__(*args, **kwargs) def __len__(self): """Returns a number of currently installed applications. :rtype: int """ return self._iface.get_installed_count() def __call__(self): """Generator. Returns Application objects, representing currently installed applications. :rtype: tuple(int, Application) :return: """ max_count = len(self) apps_ids = CRef.carray(int, size=max_count) total = self._iface.get_installed(apps_ids, max_count) for app_id in apps_ids: yield app_id, Application(app_id) def __iter__(self): return iter(self()) class Dlc(Application): """Exposes methods to get downloadable content (DLC) data. Aliased as ``steampak.SteamDlc``. .. code-block:: python from steampak import SeamDlc # We use `Spacewar` DLC app ID. (Spacewar game is provided with SDK). my_dlc = SeamDlc(110902) Current application DLCs are available through ``CurrentApplication.dlcs``. """ def __init__(self, app_id): self._iface = self.get_client().apps super(Dlc, self).__init__(app_id) self._name = None self._available = None @property def installed(self): """``True`` if the user owns the DLC & if the DLC is installed. :rtype: bool """ return self._iface.get_is_dlc_installed(self.app_id) def install(self): """Installs DLC (for optional DLCs).""" self._iface.dlc_install(self.app_id) def uninstall(self): """Uninstalls DLC (for optional DLCs).""" self._iface.dlc_uninstall(self.app_id) def get_download_progress(self): """Returns tuple with download progress (for optional DLCs): (bytes_downloaded, bytes_total) :rtype: tuple """ downloaded = CRef.cint() total = CRef.cint() result = self._iface.get_dlc_download_progress(self.app_id, downloaded, total) if not result: return 0, 0 return int(downloaded), int(total) @property def name(self): """DLC name. :rtype: str """ # Fallback to parent data if necessary. return self._name or super().name @property def available(self): """True if DLC is available. :rtype: bool """ return self._available class CurrentApplicationDlcs(_ApiResourceBase): """Exposes methods to get downloadable content (DLC) data for current application. """ def __init__(self, *args, **kwargs): self._iface = self.get_client().apps super().__init__(*args, **kwargs) def __len__(self): """Returns a number of current application . :rtype: int :return: """ return self._iface.get_dlc_count() def __call__(self): """Generator. Returns Dlc objects. :rtype: tuple(int, Dlc) :return: """ max_len = 300 for idx in range(len(self)): app_id = CRef.cint() available = CRef.cbool() name = CRef.carray(str, size=max_len) if not self._iface.get_dlc_by_index(idx, app_id, available, name, max_len): continue app_id = int(app_id) dlc = Dlc(app_id) # Populate data. dlc._name = str(name) dlc._available = bool(available) yield app_id, dlc def __iter__(self): return iter(self()) class CurrentApplication(Application): """Exposes methods to get current application data. Interface can be accessed through ``api.apps.current``. .. code-block:: python from steampak import SteamApi api = SteamApi(LIBRARY_PATH, app_id=APP_ID) print(api.apps.current.language_current) """ dlcs: CurrentApplicationDlcs = None """Interface to DLCs of current application. .. code-block:: python for dlc_id, dlc in api.apps.current.dlcs(): print('%s: %s' % (dlc_id, dlc.name)) """ achievements: CurrentApplicationAchievements = None """Current application (game) achievements. .. code-block:: python for ach_name, ach in api.apps.current.achievements(): print('%s: %s' % (ach_name, ach.title)) """ def __init__(self, *args, **kwargs): self._iface = self.get_client().apps self._iface_utils = self.get_client().utils super().__init__(None, *args, **kwargs) self.dlcs = CurrentApplicationDlcs() self.achievements = CurrentApplicationAchievements() @property def app_id(self): # Overrode to support parent class methods. return self._iface_utils.get_app_id() @property def beta_name(self): """Current beta branch name, 'public' is the default branch. :rtype: str """ return self._get_str(self._iface.get_name_beta, []) @property def build_id(self): """Current application Build ID. This may change at any time based on backend updates. .. warning:: Restricted interface can only be used by approved apps. :rtype: int """ return self._iface.get_current_build_id() @property def language_current(self): """Current game language. E.g.: english :rtype: str """ return self._iface.get_current_language() @property def language_available(self): """List of available game languages. E.g.: ['english', 'russian'] :rtype: list[str] """ return self._iface.get_available_languages().split(',') @property def vac_banned(self): """``True`` if the current app is banned by BIsVACBanned. :rtype: bool """ return self._iface.get_is_vac_banned() @property def mode_cybercafe(self): """``True`` if the current app supports Valve Cybercafe Program. :rtype: bool """ return self._iface.get_is_cybercafe() @property def mode_free_weekend(self): """``True`` if the user is subscribed to the current app through a free weekend. Will return ``False`` for users who have a retail or other type of license. .. note:: Before using, please ask your Valve technical contact how to package and secure your free weekened. :rtype: bool """ return self._iface.get_is_free_weekend() @property def low_violence(self): """``True`` if the current app is low violence. :rtype: bool """ return self._iface.get_is_low_violence() @property def owned(self): """``True`` if user owns the current app. :rtype: bool """ return self._iface.get_is_owned() @property def owner(self): """Owner user. If different from current user, app is borrowed. :rtype: User """ return User(self._iface.get_owner()) def mark_corrupt(self, only_files_missing=False): """Signal Steam that game files seems corrupt or missing. :param bool only_files_missing: Set it to True if only files are missing. :rtype: bool """ return self._iface.mark_corrupt(only_files_missing) class Applications(_ApiResourceBase): """Exposes methods to get applications data.""" installed: InstalledApplications = None """Interface to installed applications. .. code-block:: python for app_id, app in api.apps.installed: print('%s: %s' % (app_id, app.name)) """ current: CurrentApplication = None """Interface to current application. .. code-block:: python print(api.apps.current.language_current) """ def __init__(self, *args, **kwargs): self._iface = self.get_client().apps super().__init__(*args, **kwargs) self.installed = InstalledApplications() self.current = CurrentApplication()
import mem_profile import random import time names = ['John', 'Corey', 'Adam', 'Steve', 'Rick', 'Thomas'] majors = ['Math', 'Engineering', 'CompSci', 'Arts', 'Business'] print 'Memory (Before): {}Mb'.format(mem_profile.memory_usage_psutil()) def people_list(num_people): result = [] for i in xrange(num_people): person = { 'id': i, 'name': random.choice(names), 'major': random.choice(majors) } result.append(person) return result def people_generator(num_people): for i in xrange(num_people): person = { 'id': i, 'name': random.choice(names), 'major': random.choice(majors) } yield person # t1 = time.clock() # people = people_list(1000000) # t2 = time.clock() t1 = time.clock() people = people_generator(1000000) t2 = time.clock() print 'Memory (After) : {}Mb'.format(mem_profile.memory_usage_psutil()) print 'Took {} Seconds'.format(t2-t1)
"""`jupytext` as a command line tool""" import argparse import glob import json import os import re import shlex import subprocess import sys import warnings from copy import copy from tempfile import NamedTemporaryFile from .combine import combine_inputs_with_outputs from .compare import NotebookDifference, compare, test_round_trip_conversion from .config import load_jupytext_config, notebook_formats from .formats import ( _BINARY_FORMAT_OPTIONS, _VALID_FORMAT_OPTIONS, JUPYTEXT_FORMATS, check_auto_ext, check_file_version, long_form_multiple_formats, long_form_one_format, short_form_one_format, ) from .header import recursive_update from .jupytext import create_prefix_dir, read, reads, write, writes from .kernels import find_kernel_specs, get_kernel_spec, kernelspec_from_language from .languages import _SCRIPT_EXTENSIONS from .paired_paths import ( InconsistentPath, base_path, find_base_path_and_format, full_path, paired_paths, ) from .pairs import latest_inputs_and_outputs, read_pair, write_pair from .version import __version__ def system(*args, **kwargs): """Execute the given bash command""" kwargs.setdefault("stdout", subprocess.PIPE) proc = subprocess.Popen(args, **kwargs) out, _ = proc.communicate() if proc.returncode: raise SystemExit(proc.returncode) return out.decode("utf-8") def str2bool(value): """Parse Yes/No/Default string https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse""" if value.lower() in ("yes", "true", "t", "y", "1"): return True if value.lower() in ("no", "false", "f", "n", "0"): return False if value.lower() in ("d", "default", ""): return None raise argparse.ArgumentTypeError("Expected: (Y)es/(T)rue/(N)o/(F)alse/(D)efault") def parse_jupytext_args(args=None): """Command line parser for jupytext""" parser = argparse.ArgumentParser( description="Jupyter Notebooks as Markdown Documents, Julia, Python or R Scripts", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) # Input parser.add_argument( "notebooks", help="One or more notebook(s). " "Notebook is read from stdin when this argument is empty.", nargs="*", ) parser.add_argument( "--from", dest="input_format", help="Jupytext format for the input(s). Inferred from the " "file extension and content when missing.", ) # Destination format & act on metadata parser.add_argument( "--to", dest="output_format", help=( "The destination format: 'ipynb', 'markdown' or 'script', or a file extension: " "'md', 'Rmd', 'jl', 'py', 'R', ..., 'auto' (script extension matching the notebook language), " "or a combination of an extension and a format name, e.g. {} ".format( ", ".join( { f"md:{fmt.format_name}" for fmt in JUPYTEXT_FORMATS if fmt.extension == ".md" } ) ) + " or {}. ".format( ", ".join( { f"py:{fmt.format_name}" for fmt in JUPYTEXT_FORMATS if fmt.extension == ".py" } ) ) + "The default format for scripts is the 'light' format, " "which uses few cell markers (none when possible). " "Alternatively, a format compatible with many editors is the " "'percent' format, which uses '# %%%%' as cell markers. " "The main formats (markdown, light, percent) preserve " "notebooks and text documents in a roundtrip. Use the " "--test and and --test-strict commands to test the roundtrip on your files. " "Read more about the available formats at " "https://jupytext.readthedocs.io/en/latest/formats.html" ), ) # Destination file parser.add_argument( "-o", "--output", help="Destination file. Defaults to the original file, " "with prefix/suffix/extension changed according to " "the destination format. " "Use '-' to print the notebook on stdout.", ) parser.add_argument( "--update", action="store_true", help="Preserve the output cells when the destination " "notebook is an .ipynb file that already exists", ) parser.add_argument( "--set-formats", type=str, help="Turn the notebook or text document to one or more alternative representations " "with e.g. '--set-formats ipynb,py:light'. " "The --set-formats option also triggers the creation/update of all paired files", ) # Action: convert(default)/version/list paired paths/sync/apply/test action = parser.add_mutually_exclusive_group() action.add_argument( "--sync", "-s", help="Synchronize the content of the paired representations of " "the given notebook. Input cells are taken from the file that " "was last modified, and outputs are read from the ipynb file, " "if present.", action="store_true", ) action.add_argument( "--paired-paths", "-p", help="List the locations of the alternative representations for this notebook.", action="store_true", ) parser.add_argument( "--format-options", "--opt", action="append", help="Set format options with e.g. " "'--opt comment_magics=true' or '--opt notebook_metadata_filter=-kernelspec'.", ) parser.add_argument( "--update-metadata", default={}, type=json.loads, help="Update the notebook metadata with the desired dictionary. " "Argument must be given in JSON format. For instance, if you " "want to activate a pairing in the generated file, use e.g. " """--update-metadata '{"jupytext":{"formats":"ipynb,py:light"}}' """ "See also the --opt and --set-formats options for other ways " "to operate on the Jupytext metadata.", ) parser.add_argument( "--use-source-timestamp", help="Set the modification timestamp of the output file(s) equal" "to that of the source file, and keep the source file and " "its timestamp unchanged.", action="store_true", ) parser.add_argument( "--warn-only", "-w", action="store_true", help="Only issue a warning and continue processing other notebooks " "when the conversion of a given notebook fails", ) action.add_argument( "--test", action="store_true", help="Test that the notebook is stable under a round trip conversion, " "up to the expected changes", ) action.add_argument( "--test-strict", action="store_true", help="Test that the notebook is strictly stable under a round trip conversion", ) parser.add_argument( "--stop", "-x", dest="stop_on_first_error", action="store_true", help="In --test mode, stop on first round trip conversion error, and report stack traceback", ) # Pipe notebook inputs into other commands parser.add_argument( "--pipe", action="append", help="Pipe the text representation (in format --pipe-fmt) of the notebook into " "another program, and read the notebook back. For instance, reformat " "your notebook with: " "'jupytext notebook.ipynb --pipe black' " "If you want to reformat it and sync the paired representation, execute: " "'jupytext notebook.ipynb --sync --pipe black' " "In case the program that you want to execute does not accept pipes, use {} " "as a placeholder for a temporary file name into which jupytext will " "write the text representation of the notebook, e.g.: " "jupytext notebook.ipynb --pipe 'black {}'", ) parser.add_argument( "--diff", "-d", action="store_true", help="Show the differences between (the inputs) of two notebooks", ) parser.add_argument( "--diff-format", help="The text format used to show differences in --diff", ) parser.add_argument( "--check", action="append", help="Pipe the text representation (in format --pipe-fmt) of the notebook into " "another program, and test that the returned value is non zero. For " "instance, test that your notebook is pep8 compliant with: " "'jupytext notebook.ipynb --check flake8' " "or run pytest on your notebook with: " "'jupytext notebook.ipynb --check pytest' " "In case the program that you want to execute does not accept pipes, use {} " "as a placeholder for a temporary file name into which jupytext will " "write the text representation of the notebook, e.g.: " "jupytext notebook.ipynb --check 'pytest {}'", ) parser.add_argument( "--pipe-fmt", default="auto:percent", help="The format in which the notebook should be piped to other programs, " "when using the --pipe and/or --check commands.", ) # Execute the notebook parser.add_argument( "--set-kernel", "-k", type=str, help="Set the kernel with the given name on the notebook. " "Use '--set-kernel -' to set a kernel matching the current " "environment on Python notebooks, and matching the notebook " "language otherwise (get the list of available kernels with " "'jupyter kernelspec list')", ) parser.add_argument( "--execute", action="store_true", help="Execute the notebook with the given kernel. In the " "--pre-commit-mode, the notebook is executed only if a code " "cell changed, or if some execution outputs are missing " "or not ordered.", ) parser.add_argument( "--run-path", type=str, help="Execute the notebook at the given path (defaults to the notebook parent directory)", ) parser.add_argument( "--quiet", "-q", action="store_true", help="Quiet mode: do not comment about files being updated or created", ) parser.add_argument( "--show-changes", action="store_true", help="Display the diff for each output file", ) action.add_argument( "--version", "-v", action="store_true", help="Show jupytext's version number and exit", ) parser.add_argument( "--pre-commit", action="store_true", help="Ignore the notebook argument, and instead apply Jupytext " "on the notebooks found in the git index, which have an " "extension that matches the (optional) --from argument.", ) parser.add_argument( "--pre-commit-mode", action="store_true", help="This is a mode that is compatible with the pre-commit framework. " "In this mode, --sync won't use timestamp but instead will " "determines the source notebook as the element of the pair " "that is added to the git index. An alert is raised if multiple inconsistent representations are " "in the index. It also raises an alert after updating the paired files or outputs if those " "files need to be added to the index. Finally, filepaths that aren't in the source format " "you are trying to convert from are ignored.", ) return parser.parse_args(args) def jupytext(args=None): """Entry point for the jupytext script""" args = parse_jupytext_args(args) def log(text): if not args.quiet: sys.stdout.write(text + "\n") if args.version: log(__version__) return 0 if args.pre_commit: warnings.warn( "The --pre-commit argument is deprecated. " "Please consider switching to the pre-commit.com framework " "(let us know at https://github.com/mwouts/jupytext/issues " "if that is an issue for you)", DeprecationWarning, ) if args.notebooks: raise ValueError( "--pre-commit takes notebooks from the git index. Do not pass any notebook here." ) args.notebooks = notebooks_in_git_index(args.input_format) log("[jupytext] Notebooks in git index are:") for nb_file in args.notebooks: log(nb_file) # Read notebook from stdin if not args.notebooks: if not args.pre_commit: args.notebooks = ["-"] if args.set_formats is not None: # Replace empty string with None args.update_metadata = recursive_update( args.update_metadata, {"jupytext": {"formats": args.set_formats or None}} ) args.sync = True if args.paired_paths: if len(args.notebooks) != 1: raise ValueError("--paired-paths applies to a single notebook") print_paired_paths(args.notebooks[0], args.input_format) return 1 if args.run_path: args.execute = True if ( (args.test or args.test_strict) and not args.output_format and not args.output and not args.sync ): raise ValueError("Please provide one of --to, --output or --sync") if ( not args.output_format and not args.output and not args.sync and not args.pipe and not args.diff and not args.check and not args.update_metadata and not args.format_options and not args.set_kernel and not args.execute ): raise ValueError( "Please provide one of --to, --output, --set-formats, --sync, --pipe, --diff, " "--check, --update-metadata, --format-options, --set-kernel or --execute" ) if args.diff: if ( len(args.notebooks) != 2 or args.output_format or args.output or args.sync or args.pipe or args.check or args.update_metadata or args.format_options or args.set_kernel or args.execute ): raise ValueError( "Please provide two notebooks after 'jupytext --diff'.\n" "NB: Use --show-changes if you wish to see the changes in " "a notebook being updated by Jupytext." ) nb_file1, nb_file2 = args.notebooks nb1 = read(nb_file1) nb2 = read(nb_file2) def fmt_if_not_ipynb(nb): fmt = nb.metadata["jupytext"]["text_representation"] if fmt["extension"] == ".ipynb": return None return short_form_one_format(fmt) diff_fmt = ( args.diff_format or fmt_if_not_ipynb(nb1) or fmt_if_not_ipynb(nb2) or "md" ) diff = compare( writes(nb2, diff_fmt), writes(nb1, diff_fmt), nb_file2, nb_file1, return_diff=True, ) sys.stdout.write(diff) return if args.output and len(args.notebooks) != 1: raise ValueError("Please input a single notebook when using --output") # Warn if '--to' is used in place of '--output' if ( not args.output and args.output_format and "." in args.output_format # a suffix is expected to start with one of these characters #901 and not args.output_format.startswith((".", "-", "_")) and "//" not in args.output_format ): def single_line(msg, *args, **kwargs): return f"[warning] {msg}\n" warnings.formatwarning = single_line warnings.warn( "You might have passed a file name to the '--to' option, " "when a format description was expected. Maybe you want to use the '-o' option instead?" ) if args.input_format: args.input_format = long_form_one_format(args.input_format) if args.output_format: args.output_format = long_form_one_format(args.output_format) set_format_options(args.output_format, args.format_options) # Wildcard extension on Windows #202 notebooks = [] for pattern in args.notebooks: if "*" in pattern or "?" in pattern: # Exclude the .jupytext.py configuration file notebooks.extend(glob.glob(pattern, recursive=True)) else: notebooks.append(pattern) # Count how many file have round-trip issues when testing exit_code = 0 for nb_file in notebooks: if not args.warn_only: exit_code += jupytext_single_file(nb_file, args, log) else: try: exit_code += jupytext_single_file(nb_file, args, log) except Exception as err: sys.stderr.write(f"[jupytext] Error: {str(err)}\n") return exit_code def jupytext_single_file(nb_file, args, log): """Apply the jupytext command, with given arguments, to a single file""" if nb_file == "-" and args.sync: msg = "Missing notebook path." if args.set_formats is not None and os.path.isfile(args.set_formats): msg += f" Maybe you mean 'jupytext --sync {args.set_formats}' ?" raise ValueError(msg) nb_dest = None if args.output: nb_dest = args.output elif nb_file == "-": nb_dest = "-" else: try: bp = base_path(nb_file, args.input_format) except InconsistentPath: if args.pre_commit_mode: log( "[jupytext] Ignoring unmatched input path {}{}".format( nb_file, f" for format {args.input_format}" if args.input_format else "", ) ) return 0 raise if args.output_format: nb_dest = full_path(bp, args.output_format) config = load_jupytext_config(os.path.abspath(nb_file)) # Just acting on metadata / pipe => save in place save_in_place = not nb_dest and not args.sync if save_in_place: nb_dest = nb_file if nb_dest == "-": args.quiet = True # I. ### Read the notebook ### fmt = copy(args.input_format) or {} if not fmt: ext = os.path.splitext(nb_file)[1] if ext: fmt = {"extension": ext} if fmt: set_format_options(fmt, args.format_options) log( "[jupytext] Reading {}{}".format( nb_file if nb_file != "-" else "stdin", f" in format {short_form_one_format(fmt)}" if "extension" in fmt else "", ) ) notebook = read(nb_file, fmt=fmt, config=config) if "extension" in fmt and "format_name" not in fmt: text_representation = notebook.metadata.get("jupytext", {}).get( "text_representation", {} ) if text_representation.get("extension") == fmt["extension"]: fmt["format_name"] = text_representation["format_name"] # Compute actual extension when using script/auto, and update nb_dest if necessary dest_fmt = args.output_format if dest_fmt and dest_fmt["extension"] == ".auto": dest_fmt = check_auto_ext(dest_fmt, notebook.metadata, "--to") if not args.output and nb_file != "-": nb_dest = full_path(base_path(nb_file, args.input_format), dest_fmt) # Set the kernel set_kernel = args.set_kernel if ( (not set_kernel) and args.execute and notebook.metadata.get("kernelspec", {}).get("name") is None ): set_kernel = "-" if set_kernel: if set_kernel == "-": language = ( notebook.metadata.get("jupytext", {}).get("main_language") or notebook.metadata["kernelspec"]["language"] ) if not language: raise ValueError( "Cannot infer a kernel as notebook language is not defined" ) kernelspec = kernelspec_from_language(language) else: try: kernelspec = get_kernel_spec(set_kernel) except KeyError as err: raise KeyError( "Please choose a kernel name among {}".format( find_kernel_specs().keys() ) ) from err kernelspec = { "name": args.set_kernel, "language": kernelspec.language, "display_name": kernelspec.display_name, } log("[jupytext] Setting kernel {}".format(kernelspec.get("name"))) args.update_metadata["kernelspec"] = kernelspec # Are we updating a text file that has a metadata filter? #212 if args.update_metadata or args.format_options: if ( notebook.metadata.get("jupytext", {}).get("notebook_metadata_filter") == "-all" ): notebook.metadata.get("jupytext", {}).pop("notebook_metadata_filter") # Update the metadata if args.update_metadata: log( "[jupytext] Updating notebook metadata with '{}'".format( json.dumps(args.update_metadata) ) ) if ( "kernelspec" in args.update_metadata and "main_language" in notebook.metadata.get("jupytext", {}) ): notebook.metadata["jupytext"].pop("main_language") recursive_update(notebook.metadata, args.update_metadata) # Read paired notebooks, except if the pair is being created nb_files = [nb_file, nb_dest] if args.sync: formats = notebook_formats( notebook, config, nb_file, fallback_on_current_fmt=False ) set_prefix_and_suffix(fmt, formats, nb_file) if args.set_formats is None: try: notebook, inputs_nb_file, outputs_nb_file = load_paired_notebook( notebook, fmt, config, formats, nb_file, log, args.pre_commit_mode ) nb_files = [inputs_nb_file, outputs_nb_file] except NotAPairedNotebook as err: sys.stderr.write("[jupytext] Warning: " + str(err) + "\n") return 0 except InconsistentVersions as err: sys.stderr.write("[jupytext] Error: " + str(err) + "\n") return 1 else: nb_files = [nb_file] # II. ### Apply commands onto the notebook ### # Pipe the notebook into the desired commands prefix = None if nb_file == "-" else os.path.splitext(os.path.basename(nb_file))[0] for cmd in args.pipe or []: notebook = pipe_notebook( notebook, cmd, args.pipe_fmt, prefix=prefix, warn_only=args.warn_only ) # and/or test the desired commands onto the notebook for cmd in args.check or []: pipe_notebook( notebook, cmd, args.pipe_fmt, update=False, prefix=prefix, warn_only=args.warn_only, ) if ( args.execute and args.pre_commit_mode and execution_counts_are_in_order(notebook) and not code_cells_have_changed(notebook, nb_files) ): log( f"[jupytext] Execution of {shlex.quote(nb_file)} " f"skipped as code cells have not changed and outputs are present." ) args.execute = False # Execute the notebook if args.execute: kernel_name = notebook.metadata.get("kernelspec", {}).get("name") log(f"[jupytext] Executing notebook with kernel {kernel_name}") if nb_dest is not None and nb_dest != "-": nb_path = os.path.dirname(nb_dest) elif nb_file != "-": nb_path = os.path.dirname(nb_file) else: nb_path = None run_path = args.run_path or nb_path if args.run_path and not os.path.isdir(run_path): # is this a relative directory? for base_dir in [nb_path, os.getcwd()]: try_path = os.path.join(base_dir, run_path) if os.path.isdir(try_path): run_path = try_path break if not os.path.isdir(run_path): raise ValueError(f"--run-path={args.run_path} is not a valid path") if run_path: resources = {"metadata": {"path": run_path}} else: resources = {} try: from nbconvert.preprocessors import ExecutePreprocessor exec_proc = ExecutePreprocessor(timeout=None, kernel_name=kernel_name) exec_proc.preprocess(notebook, resources=resources) except (ImportError, RuntimeError) as err: if args.pre_commit_mode: raise RuntimeError( "An error occurred while executing the notebook. Please " "make sure that you have listed 'nbconvert' and 'ipykernel' " "under 'additional_dependencies' in the jupytext hook." ) from err raise RuntimeError( "An error occurred while executing the notebook. Please " "make sure that 'nbconvert' and 'ipykernel' are installed." ) from err # III. ### Possible actions ### # a. Test round trip conversion if args.test or args.test_strict: try: # Round trip from an ipynb document if fmt["extension"] == ".ipynb": test_round_trip_conversion( notebook, dest_fmt, update=args.update, allow_expected_differences=not args.test_strict, stop_on_first_error=args.stop_on_first_error, ) # Round trip from a text file else: with open(nb_file, encoding="utf-8") as fp: org_text = fp.read() # If the destination is not ipynb, we convert to/back that format if dest_fmt["extension"] != ".ipynb": dest_text = writes(notebook, fmt=dest_fmt) notebook = reads(dest_text, fmt=dest_fmt) text = writes(notebook, fmt=fmt, config=config) if args.test_strict: compare(text, org_text) else: # we ignore the YAML header in the comparison #414 comment = _SCRIPT_EXTENSIONS.get(fmt["extension"], {}).get( "comment", "" ) # white spaces between the comment char and the YAML delimiters are allowed if comment: comment = comment + r"\s*" yaml_header = re.compile( r"^{comment}---\s*\n.*\n{comment}---\s*\n".format( comment=comment ), re.MULTILINE | re.DOTALL, ) compare( re.sub(yaml_header, "", text), re.sub(yaml_header, "", org_text) ) except (NotebookDifference, AssertionError) as err: sys.stdout.write(f"{nb_file}: {str(err)}") return 1 return 0 # b. Output to the desired file or format untracked_files = 0 def lazy_write(path, fmt=None, action=None, update_timestamp_only=False): """Write the notebook only if it has changed""" if path == "-": write(notebook, "-", fmt=fmt) return nonlocal untracked_files if update_timestamp_only: modified = False else: _, ext = os.path.splitext(path) fmt = copy(fmt or {}) fmt = long_form_one_format(fmt, update={"extension": ext}) new_content = writes(notebook, fmt=fmt, config=config) diff = None if not new_content.endswith("\n"): new_content += "\n" if not os.path.isfile(path): modified = True else: with open(path, encoding="utf-8") as fp: current_content = fp.read() modified = new_content != current_content if modified and args.show_changes: diff = compare( new_content, current_content, "", "", return_diff=True, ) if modified: # The text representation of the notebook has changed, we write it on disk if action is None: message = f"[jupytext] Updating {shlex.quote(path)}" else: message = "[jupytext] Writing {path}{format}{action}".format( path=shlex.quote(path), format=" in format " + short_form_one_format(fmt) if fmt and "format_name" in fmt else "", action=action, ) if diff is not None: message += " with this change:\n" + diff log(message) create_prefix_dir(path, fmt) with open(path, "w", encoding="utf-8") as fp: fp.write(new_content) # Otherwise, we only update the timestamp of the text file to make sure # they remain more recent than the ipynb file, for compatibility with the # Jupytext contents manager for Jupyter if args.use_source_timestamp: log( f"[jupytext] Setting the timestamp of {shlex.quote(path)} equal to that of {shlex.quote(nb_file)}" ) os.utime(path, (os.stat(path).st_atime, os.stat(nb_file).st_mtime)) elif not modified and not path.endswith(".ipynb"): log(f"[jupytext] Updating the timestamp of {shlex.quote(path)}") os.utime(path, None) if args.pre_commit: system("git", "add", path) if args.pre_commit_mode and is_untracked(path): log( f"[jupytext] Error: the git index is outdated.\n" f"Please add the paired notebook with:\n" f" git add {shlex.quote(path)}" ) untracked_files += 1 return if nb_dest: if nb_dest == nb_file and not dest_fmt: dest_fmt = fmt # Test consistency between dest name and output format if dest_fmt and nb_dest != "-": base_path(nb_dest, dest_fmt) # Describe what jupytext is doing if save_in_place: action = "" elif os.path.isfile(nb_dest) and args.update: if not nb_dest.endswith(".ipynb"): raise ValueError("--update is only for ipynb files") action = " (destination file updated)" check_file_version(notebook, nb_file, nb_dest) notebook = combine_inputs_with_outputs(notebook, read(nb_dest), fmt=fmt) elif os.path.isfile(nb_dest): suggest_update = ( " [use --update to preserve cell outputs and ids]" if nb_dest.endswith(".ipynb") else "" ) action = f" (destination file replaced{suggest_update})" else: action = "" formats = notebook.metadata.get("jupytext", {}).get("formats") formats = long_form_multiple_formats(formats) if formats: try: base_path_out, _ = find_base_path_and_format(nb_dest, formats) except InconsistentPath: # Drop 'formats' if the destination is not part of the paired notebooks formats = {} notebook.metadata.get("jupytext", {}).pop("formats") lazy_write(nb_dest, fmt=dest_fmt, action=action) nb_dest_in_pair = formats and any( os.path.exists(alt_path) and os.path.samefile(nb_dest, alt_path) for alt_path, _ in paired_paths(nb_file, fmt, formats) ) if ( nb_dest_in_pair and os.path.isfile(nb_file) and not nb_file.endswith(".ipynb") and os.path.isfile(nb_dest) and nb_dest.endswith(".ipynb") ): # If the destination is an ipynb file and is in the pair, then we # update the original text file timestamp, as required by our Content Manager # Otherwise Jupyter will refuse to open the paired notebook #335 # NB: An alternative is --use-source-timestamp lazy_write(nb_file, update_timestamp_only=True) # c. Synchronize paired notebooks elif args.sync: write_pair(nb_file, formats, lazy_write) return untracked_files def notebooks_in_git_index(fmt): """Return the list of modified and deleted ipynb files in the git index that match the given format""" git_status = system("git", "status", "--porcelain") re_modified = re.compile(r"^[AM]+\s+(?P<name>.*)", re.MULTILINE) modified_files_in_git_index = re_modified.findall(git_status) files = [] for nb_file in modified_files_in_git_index: if nb_file.startswith('"') and nb_file.endswith('"'): nb_file = nb_file[1:-1] try: base_path(nb_file, fmt) files.append(nb_file) except InconsistentPath: continue return files def is_untracked(filepath): """Check whether a file was created or modified and needs to be added to the git index""" if not filepath: return False output = system("git", "ls-files", filepath).strip() if output == "": return True output = system("git", "diff", filepath).strip() if output != "": return True return False def print_paired_paths(nb_file, fmt): """Display the paired paths for this notebook""" notebook = read(nb_file, fmt=fmt) formats = notebook.metadata.get("jupytext", {}).get("formats") if formats: for path, _ in paired_paths(nb_file, fmt, formats): if path != nb_file: sys.stdout.write(path + "\n") def set_format_options(fmt, format_options): """Apply the desired format options to the format description fmt""" if not format_options: return for opt in format_options: try: key, value = opt.split("=") except ValueError as err: raise ValueError( "Format options are expected to be of the form key=value, not '{}'".format( opt ) ) from err if key not in _VALID_FORMAT_OPTIONS: raise ValueError( "'{}' is not a valid format option. Expected one of '{}'".format( key, "', '".join(_VALID_FORMAT_OPTIONS) ) ) if key in _BINARY_FORMAT_OPTIONS: value = str2bool(value) fmt[key] = value def set_prefix_and_suffix(fmt, formats, nb_file): """Add prefix and suffix information from jupytext.formats if format and path matches""" for alt_fmt in long_form_multiple_formats(formats): if alt_fmt["extension"] == fmt["extension"] and fmt.get( "format_name" ) == alt_fmt.get("format_name"): try: base_path(nb_file, alt_fmt) fmt.update(alt_fmt) return except InconsistentPath: continue class NotAPairedNotebook(ValueError): """An error raised when a notebook is not a paired notebook""" class InconsistentVersions(ValueError): """An error raised when two paired files in the git index contain inconsistent representations""" def file_in_git_index(path): if not os.path.isfile(path): return False return system("git", "status", "--porcelain", path).strip().startswith(("M", "A")) def git_timestamp(path): if not os.path.isfile(path): return None # Files that are in the git index are considered most recent if file_in_git_index(path): return float("inf") # Return the commit timestamp try: git_ts_str = system("git", "log", "-1", "--pretty=%ct", path).strip() except SystemExit as err: if err.code == 128: # git not initialized git_ts_str = "" else: raise if git_ts_str: return float(git_ts_str) # The file is not in the git index return get_timestamp(path) def get_timestamp(path): if not os.path.isfile(path): return None return os.lstat(path).st_mtime def load_paired_notebook(notebook, fmt, config, formats, nb_file, log, pre_commit_mode): """Update the notebook with the inputs and outputs of the most recent paired files""" if not formats: raise NotAPairedNotebook(f"{shlex.quote(nb_file)} is not a paired notebook") formats = long_form_multiple_formats(formats) _, fmt_with_prefix_suffix = find_base_path_and_format(nb_file, formats) fmt.update(fmt_with_prefix_suffix) def read_one_file(path, fmt): if path == nb_file: return notebook log(f"[jupytext] Loading {shlex.quote(path)}") return read(path, fmt=fmt, config=config) if pre_commit_mode and file_in_git_index(nb_file): # We raise an error if two representations of this notebook in the git index are inconsistent nb_files_in_git_index = sorted( ( (alt_path, alt_fmt) for alt_path, alt_fmt in paired_paths(nb_file, fmt, formats) if file_in_git_index(alt_path) ), key=lambda x: 0 if x[1]["extension"] != ".ipynb" else 1, ) if len(nb_files_in_git_index) > 1: path0, fmt0 = nb_files_in_git_index[0] with open(path0, encoding="utf-8") as fp: text0 = fp.read() for alt_path, alt_fmt in nb_files_in_git_index[1:]: nb = read(alt_path, fmt=alt_fmt, config=config) alt_text = writes(nb, fmt=fmt0, config=config) if alt_text != text0: diff = compare(alt_text, text0, alt_path, path0, return_diff=True) raise InconsistentVersions( f"{shlex.quote(alt_path)} and {shlex.quote(path0)} are inconsistent.\n" + diff + f"\nPlease revert JUST ONE of the files with EITHER\n" f" git reset {shlex.quote(alt_path)} && git checkout -- {shlex.quote(alt_path)}\nOR\n" f" git reset {shlex.quote(path0)} && git checkout -- {shlex.quote(path0)}\n" ) inputs, outputs = latest_inputs_and_outputs( nb_file, fmt, formats, git_timestamp if pre_commit_mode else get_timestamp ) notebook = read_pair(inputs, outputs, read_one_file) return notebook, inputs.path, outputs.path def exec_command(command, input=None, capture=False, warn_only=False): """Execute the desired command, and pipe the given input into it""" assert isinstance(command, list) sys.stdout.write("[jupytext] Executing {}\n".format(" ".join(command))) process = subprocess.Popen( command, **( dict(stdout=subprocess.PIPE, stdin=subprocess.PIPE) if input is not None else {} ), ) out, err = process.communicate(input=input) if out and not capture: sys.stdout.write(out.decode("utf-8")) if err: sys.stderr.write(err.decode("utf-8")) if process.returncode: msg = f"The command '{' '.join(command)}' exited with code {process.returncode}" hint = ( "" if warn_only else " (use --warn-only to turn this error into a warning)" ) sys.stderr.write( f"[jupytext] {'Warning' if warn_only else 'Error'}: {msg}{hint}\n" ) if not warn_only: raise SystemExit(process.returncode) return out def pipe_notebook( notebook, command, fmt="py:percent", update=True, prefix=None, warn_only=False ): """Pipe the notebook, in the desired representation, to the given command. Update the notebook with the returned content if desired.""" if command in ["black", "flake8", "autopep8"]: command = command + " -" elif command in ["pytest", "unittest"]: command = command + " {}" fmt = long_form_one_format( fmt, notebook.metadata, auto_ext_requires_language_info=False ) fmt = check_auto_ext(fmt, notebook.metadata, "--pipe-fmt") text = writes(notebook, fmt) command = shlex.split(command) if "{}" in command: if prefix is not None: prefix = prefix + (" " if " " in prefix else "_") tmp_file_args = dict( mode="w+", encoding="utf8", prefix=prefix, suffix=fmt["extension"], delete=False, ) try: tmp = NamedTemporaryFile(**tmp_file_args) except TypeError: # NamedTemporaryFile does not have an 'encoding' argument on pypy tmp_file_args.pop("encoding") tmp = NamedTemporaryFile(**tmp_file_args) try: tmp.write(text) tmp.close() exec_command( [cmd if cmd != "{}" else tmp.name for cmd in command], capture=update, warn_only=warn_only, ) if not update: return notebook piped_notebook = read(tmp.name, fmt=fmt) finally: os.remove(tmp.name) else: cmd_output = exec_command( command, text.encode("utf-8"), capture=update, warn_only=warn_only ) if not update: return notebook if not cmd_output: sys.stderr.write( "[jupytext] The command '{}' had no output. As a result, the notebook is empty. " "Is this expected? If not, use --check rather than --pipe for this command.".format( command ) ) piped_notebook = reads(cmd_output.decode("utf-8"), fmt) if fmt["extension"] != ".ipynb": piped_notebook = combine_inputs_with_outputs(piped_notebook, notebook, fmt) # Remove jupytext / text_representation entry if "jupytext" in notebook.metadata: piped_notebook.metadata["jupytext"] = notebook.metadata["jupytext"] else: piped_notebook.metadata.pop("jupytext", None) return piped_notebook def execution_counts_are_in_order(notebook): """Returns True if all the code cells have an execution count, ordered from 1 to N with no missing number""" expected_execution_count = 1 for cell in notebook.cells: if cell.cell_type == "code": if cell.execution_count != expected_execution_count: return False expected_execution_count += 1 return True def code_cells_have_changed(notebook, nb_files): """The source for the code cells has not changed""" for nb_file in nb_files: if not os.path.exists(nb_file): return True nb_ref = read(nb_file) # Are the new code cells equals to those in the file? ref = [cell.source for cell in nb_ref.cells if cell.cell_type == "code"] new = [cell.source for cell in notebook.cells if cell.cell_type == "code"] if ref != new: return True return False
""" Django settings for spencer project. Generated by 'django-admin startproject' using Django 3.2.8. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-#-js))k7nx&)biw-=pso3u*o%&w@_wngqw0kq1l3ckhh5(52s@' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'roles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'spencer.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'spencer.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'spencer', 'USER': 'spencer_django', 'PASSWORD': '9Ag91LaQjR$n', 'HOST': '', 'PORT': '', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
from exercises.structures.src.treasure_map import TreasureMap tm = TreasureMap() tm.populate_map() def test_beach_key(): assert tm.map['beach'] == 'sandy shore'.casefold() def test_coast_key(): assert tm.map['coast'] == 'ocean reef'.casefold() def test_volcano_key(): assert tm.map['volcano'] == 'hot lava'.casefold() def test_x_key(): assert tm.map['x'] == 'marks the spot'.casefold()
# from flask import Flask, Blueprint # from flask_sqlalchemy import SQLAlchemy # from flask_login import LoginManager # import os from flask import Flask, jsonify, request, make_response, redirect, url_for import jwt import datetime import os from functools import wraps from flask_sqlalchemy import SQLAlchemy import uuid from werkzeug.security import generate_password_hash, check_password_hash from werkzeug.utils import secure_filename from sqlalchemy import select from flask_migrate import Migrate, migrate from flask_cors import CORS from sqlalchemy import inspect from sqlalchemy import Table, Column, MetaData, Integer, Computed app = Flask(__name__) app.config['SECRET_KEY'] = 'secretollave' app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///todo.db' ABSOLUTE_PATH_TO_YOUR_FOLDER ='/home/dani/flask/static/fotosPerfil' ABSOLUTE_PATH_TO_YOUR_PDF_FOLDER ='/home/dani/flask/static/pdf' CORS(app) db = SQLAlchemy(app) migrate = Migrate(app, db) # Models class Usuario(db.Model): nick = db.Column(db.String(20), primary_key=True) Nombre_de_usuario = db.Column(db.String(50)) password = db.Column(db.String(50)) e_mail = db.Column(db.String(50), unique=True, nullable=False) descripcion = db.Column(db.String(1000)) link = db.Column(db.String(200)) foto_de_perfil = db.Column(db.String(400)) class Sigue(db.Model): #id = db.Column(db.Integer, primary_key=True ) Usuario_Nicka = db.Column(db.String(20), db.ForeignKey('usuario.nick'),primary_key=True) Usuario_Nickb = db.Column(db.String(20), db.ForeignKey('usuario.nick'),primary_key=True) class Chat(db.Model): #Column('timestamp', TIMESTAMP(timezone=False), nullable=False, default=datetime.now()) timestamp = db.Column(db.TIMESTAMP, nullable=False, server_default=db.func.now(), onupdate=db.func.now()) mensaje = db.Column(db.String(1000)) Usuario_Nicka = db.Column(db.String(20), db.ForeignKey('usuario.nick'),primary_key=True) Usuario_Nickb = db.Column(db.String(20), db.ForeignKey('usuario.nick'),primary_key=True) class Publicacion(db.Model): id = db.Column(Integer,primary_key=True) #id = db.Sequence('id', start=1, increment=1) descripcion = db.Column(db.String(1000)) #Column('timestamp', TIMESTAMP(timezone=False), nullable=False, default=datetime.now()) timestamp = db.Column(db.TIMESTAMP, nullable=False, server_default=db.func.now(), onupdate=db.func.now()) Usuario_Nicka = db.Column(db.String(20), db.ForeignKey('usuario.nick')) class Propia(db.Model): pdf = db.Column(db.String(400)) id = db.Column(db.String(20), db.ForeignKey('publicacion.id'),primary_key=True) class Recomendacion(db.Model): link = db.Column(db.String(200),nullable=False) titulo = db.Column(db.String(200),nullable=False) autor = db.Column(db.String(200),nullable=False) id = db.Column(db.String(20), db.ForeignKey('publicacion.id'),primary_key=True) class Tematica(db.Model): tema = db.Column(db.String(50), primary_key=True ) class Notificaciones(db.Model): id = db.Column(db.Integer, primary_key=True ) fecha = db.Column(db.Date) Usuario_Nicka = db.Column(db.String(20), db.ForeignKey('usuario.nick'),primary_key=True) class Prefiere(db.Model): Usuario_Nicka = db.Column(db.String(20), db.ForeignKey('usuario.nick'),primary_key=True) tema = db.Column(db.String(50), db.ForeignKey('tematica.tema'),primary_key=True) class Trata_pub_del_tema(db.Model): id = db.Column(db.Integer, db.ForeignKey('publicacion.id'),primary_key=True) tema = db.Column(db.String(50), db.ForeignKey('tematica.tema'),primary_key=True) class Gusta(db.Model): id = db.Column(db.Integer, db.ForeignKey('publicacion.id'),primary_key=True) Usuario_Nicka = db.Column(db.String(20), db.ForeignKey('usuario.nick'),primary_key=True) class Comenta(db.Model): id = db.Column(db.Integer, db.ForeignKey('publicacion.id'),primary_key=True) Usuario_Nicka = db.Column(db.String(20), db.ForeignKey('usuario.nick'),primary_key=True) comentario = db.Column(db.String(1000)) class Guarda(db.Model): id = db.Column(db.Integer, db.ForeignKey('publicacion.id'),primary_key=True) Usuario_Nicka = db.Column(db.String(20), db.ForeignKey('usuario.nick'),primary_key=True) class Trata(db.Model): id_publi = db.Column(db.Integer, db.ForeignKey('publicacion.id'),primary_key=True) id_notif = db.Column(db.String(20), db.ForeignKey('notificaciones.id'),primary_key=True) class Genera(db.Model): id = db.Column(db.Integer, db.ForeignKey('publicacion.id'),primary_key=True) Usuario_Nicka = db.Column(db.String(20), db.ForeignKey('usuario.nick'),primary_key=True) def token_required(f): @wraps(f) def decorated(*args, **kwargs): #token = request.args.get('token') #http://127.0.0.1:5000/route?token=djsnvidnoffofn #data = request.get_json() token = request.headers['token'] #token = data['token'] if not token: return jsonify({'error': 'Token no existe'}), 403 try: data = jwt.decode(token, app.config['SECRET_KEY']) current_user = Usuario.query.filter_by(nick=data['nick']).first() current_user = data['nick'] except: return jsonify({'error': 'Token no valido'}), 403 return f(current_user,*args, **kwargs) return decorated @app.route('/unprotected') def unprotected(): return jsonify({'message': 'Puede entrar tol mundo'}) @app.route('/protected') @token_required def protected(current_user): print(current_user) return jsonify({'message': 'Puedes entrar si puedes'}) # Ruta para el login @app.route('/register', methods=['POST']) def add_data(): data= request.get_json() #nick = request.form.get("nick") #password = request.form.get("password") #e_mail = request.form.get("e_mail") user = Usuario.query.filter_by(e_mail=data['e_mail']).first() nick = Usuario.query.filter_by(nick=data['nick']).first() if user: # si esto devuelve algo entonces el email existe return jsonify({'error': 'Existe correo'}) #json diciendo error existe email if nick: return jsonify({'error': 'Existe nick'}) #if (check_email(e_mail) == True and check_password(data['password']) == True ): register = Usuario(nick=data['nick'],password=generate_password_hash(data['password']), e_mail=data['e_mail'],foto_de_perfil="platon.jpg") db.session.add(register) db.session.commit() token = jwt.encode({'nick' : data['nick'], 'exp': datetime.datetime.utcnow() + datetime.timedelta(minutes=30)}, app.config['SECRET_KEY']) return jsonify({'token' : token.decode('UTF-8')}) @app.route('/login', methods=['POST']) def login(): # auth = request.authorization #new ESTO SI LO HACES CON AUTH data= request.get_json() if '@' in data['nickOcorreo']: user = Usuario.query.filter_by(e_mail=data['nickOcorreo']).first() else: user = Usuario.query.filter_by(nick=data['nickOcorreo']).first() if not user: return jsonify({'error': 'No existe ese usuario'})#error mal user if not check_password_hash(user.password, data['password']): return jsonify({'error': 'Mal contraseña'}) #error mala contraseña token = jwt.encode({'nick' : data['nickOcorreo'], 'exp': datetime.datetime.utcnow() + datetime.timedelta(minutes=9999999)}, app.config['SECRET_KEY']) return jsonify({'token' : token.decode('UTF-8')}) @app.route('/editarPerfil', methods=['GET']) @token_required def editarPerfilget(current_user): s = select([Usuario.Nombre_de_usuario, Usuario.descripcion,Usuario.link, Usuario.foto_de_perfil]).where((Usuario.nick == current_user)) result = db.session.execute(s) seguidos= db.session.query(Sigue).filter(Sigue.Usuario_Nicka == current_user ).count() seguidores= db.session.query(Sigue).filter(Sigue.Usuario_Nickb == current_user ).count() nposts= db.session.query(Publicacion).filter(Publicacion.Usuario_Nicka == current_user ).count() tema = select([Prefiere.tema]).where((Prefiere.Usuario_Nicka == current_user)) temas = db.session.execute(tema) vector = [] for row in temas: vector += row for row in result: fila = { "nick": current_user, "nombre_de_usuario":row[0], "descripcion":row[1], "link":row[2], "foto_de_perfil": 'http://51.255.50.207:5000/display/' + row[3], "nsiguiendo": seguidos, "nseguidores": seguidores, "nposts": nposts, "tematicas": vector #"foto_de_perfil" :url_for('static', filename='fotosPerfil/' + row[3]) } return fila @app.route('/display/<filename>') def foto(filename): return redirect(url_for('static', filename='fotosPerfil/' + filename),code = 301) @app.route('/editarPerfil', methods=['POST']) @token_required def editarPerfilpost(current_user): data= request.get_json() user = Usuario.query.filter_by(nick=current_user).first() user.Nombre_de_usuario = data['nombre_de_usuario'] print(data['nombre_de_usuario']) print(data['descripcion']) print(data['link']) print(data['tematicas']) user.descripcion = data['descripcion'] user.link = data['link'] tematicas = data['tematicas'] for temas in tematicas: tema = Prefiere.query.filter_by(tema=temas).first() if not tema: tema = Prefiere(Usuario_Nicka=current_user, tema = temas) db.session.add(tema) #db.session.commit() #cambia_foto db.session.commit() token = jwt.encode({'nick' : current_user, 'exp': datetime.datetime.utcnow() + datetime.timedelta(minutes=30)}, app.config['SECRET_KEY']) return jsonify({'token' : token.decode('UTF-8')}) @app.route('/actualizarImagen', methods=['POST']) @token_required def actualizarImagen(current_user): user = Usuario.query.filter_by(nick=current_user).first() if request.files['nueva_foto'] is not None: #data['cambia_foto']: file = request.files['nueva_foto'] print(request.files['nueva_foto']) filename = secure_filename(file.filename) file.save(os.path.join(ABSOLUTE_PATH_TO_YOUR_FOLDER, filename)) user.foto_de_perfil = filename db.session.commit() token = jwt.encode({'nick' : current_user, 'exp': datetime.datetime.utcnow() + datetime.timedelta(minutes=30)}, app.config['SECRET_KEY']) return jsonify({'token' : token.decode('UTF-8')}) @app.route('/subirPost', methods=['POST']) @token_required def subirPost(current_user): data= request.get_json() publicacion = Publicacion(descripcion=data['descripcion'],Usuario_Nicka=current_user) #coger id db.session.add(publicacion) db.session.commit() tematicas = data['tematicas'] for temas in tematicas: temita = Tematica.query.filter_by(tema=temas).first() if temita: nuevo = Trata_pub_del_tema(id=publicacion.id, tema = temita.tema) db.session.add(nuevo) db.session.commit() if (data['tipo']=="1"): # articulo print("xd") guardarPDF(request.files['pdf'], publicacion.id) elif(data['tipo']=="2"): # recomendacion recomendacion = Recomendacion(link=data['link'],titulo=data['titulo'], autor = data['autor'], id = publicacion.id) db.session.add(recomendacion) db.session.commit() token = jwt.encode({'nick' : current_user, 'exp': datetime.datetime.utcnow() + datetime.timedelta(minutes=30)}, app.config['SECRET_KEY']) return jsonify({'token' : token.decode('UTF-8')}) def guardarPDF(pdf,_id): propia = Propia.query.filter_by(id=_id).first() if pdf is not None: file = pdf print(pdf) filename = secure_filename(file.filename) file.save(os.path.join(ABSOLUTE_PATH_TO_YOUR_PDF_FOLDER, filename)) propia.pdf = filename db.session.add(propia) @app.route('/getPostsPropios', methods=['GET']) @token_required def getPostsPropios(current_user): data= request.get_json() a = select([Usuario.Nombre_de_usuario]).where((Usuario.nick == current_user)) resulta = db.session.execute(a) #s = select([Publicacion.Usuario_Nicka, Publicacion.descripcion,Publicacion.timestamp]).where((Publicacion.Usuario_Nicka == current_user and Publicacion.id>data['id']-8 and and Publicacion.id<=data['id'])).order_by(Publicacion.id) s=select(Publicacion).where(Publicacion.Usuario_Nicka == current_user).order_by(Publicacion.id.desc()) results = db.session.execute(s) for r in results: for i in range(data['id']-8,data['id']): a = select([Propia.id, Propia.pdf]).where((Propia.id == r.id)) resulta = db.session.execute(a) Gustas= db.session.query(Gusta).filter(Gusta.Usuario_Nicka == current_user, Gusta.id == row[1] ).count() Comentarios= db.session.query(Comenta).filter(Comenta.Usuario_Nicka == current_user, Comenta.id == row[1] ).count() Guardados= db.session.query(Guarda).filter(Guarda.Usuario_Nicka == current_user, Guarda.id == row[1] ).count() fila = { "id": r.id, "nick": current_user, "descripcion":r.descripcion, "timestamp":r.timestamp, "pdf": 'http://51.255.50.207:5000/display2/' + a.pdf, "nlikes": Gustas, "ncomentarios": Comentarios, "nguardados": Guardados, "usuario": resulta.nombre_de_usuario } return fila @app.route('/display2/<filename>') def pdf(filename): return redirect(url_for('static', filename='pdf/' + filename),code = 301) @app.route('/getPostsRecomendados', methods=['GET']) @token_required def getPostsRecomendados(current_user): #data= request.get_json() a = select([Usuario.Nombre_de_usuario]).where((Usuario.nick == current_user)) resultb = db.session.execute(a) Nombre_de_usuario = "" for b in resultb: Nombre_de_usuario=b.Nombre_de_usuario #s = select([Publicacion.Usuario_Nicka, Publicacion.descripcion,Publicacion.timestamp]).where((Publicacion.Usuario_Nicka == current_user and Publicacion.id>data['id']-8 and and Publicacion.id<=data['id'])).order_by(Publicacion.id) s = select([Publicacion]).where(Publicacion.Usuario_Nicka == current_user).order_by(Publicacion.id.desc()) results = db.session.execute(s) # for record in results: # print("\n", record) vector0 ="" vector1 = [] vector2 = [] for r in results: print(str(r[0])) vector0 = vector0 + ","+ str(r[0]) vector1 += str(r.descripcion) vector2 += str(r.timestamp) # for r in results: # for b in resultb: # a = select([Recomendacion.id, Recomendacion.link,Recomendacion.titulo,Recomendacion.autor]).where((Recomendacion.id == r.id)) # resulta = db.session.execute(a) # for a in resultaa: # Gustas= db.session.query(Gusta).filter(Gusta.Usuario_Nicka == current_user, Gusta.id == r.id ).count() # Comentarios= db.session.query(Comenta).filter(Comenta.Usuario_Nicka == current_user, Comenta.id == r.id ).count() # Guardados= db.session.query(Guarda).filter(Guarda.Usuario_Nicka == current_user, Guarda.id == r.id ).count() print(vector0) fila = { "id": vector0, #"link": a.link, #"titulo": a.titulo, #"autor": a.autor, "nick": current_user, "descripcion": vector1, "timestamp": vector2, #"nlikes": Gustas, #"ncomentarios": Comentarios, #"nguardados": Guardados, "usuario": Nombre_de_usuario } return fila def check_email(email): regex = '^[a-z0-9]+[\._]?[a-z0-9]+[@]\w+[.]\w{2,3}$' if(re.search(regex,email)): return True else: return False # Contraseñas de entre 8 y 32 carácteres. def check_password(password): regex = '^(?=.*[0-9])(?=.*[a-z])(?=.*[A-Z])(?=.*[*.!@$%^&(){}[]:;<>,.?/~_+-=|\]).{8,32}$' if(re.search(regex,password)): return True else: return False if __name__ == '__main__': app.run(debug=True)
c = get_config() # If the master config file uses syntax that's invalid in Python 3, we'll skip # it and just use the factory defaults. try: load_subconfig('ipython_config.py', profile='default') except Exception: pass else: # We reset exec_lines in case they're not compatible with Python 3. c.InteractiveShellApp.exec_lines = []
# Copyright 2019 The FastEstimator Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from typing import Union, Iterable import numpy as np from sklearn.metrics import matthews_corrcoef from fastestimator.trace.meta._per_ds import per_ds from fastestimator.trace.trace import Trace from fastestimator.util.data import Any, Data, Dict from fastestimator.util.traceability_util import traceable from fastestimator.util.util import to_number @per_ds @traceable() class MCC(Trace): """A trace which computes the Matthews Correlation Coefficient for a given set of predictions. This is a preferable metric to accuracy or F1 score since it automatically corrects for class imbalances and does not depend on the choice of target class (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941312/). Ideal value is 1, a value of 0 means your predictions are completely uncorrelated with the true data. A value less than zero implies anti-correlation (you should invert your classifier predictions in order to do better). Args: true_key: Name of the key that corresponds to ground truth in the batch dictionary. pred_key: Name of the key that corresponds to predicted score in the batch dictionary. mode: What mode(s) to execute this Trace in. For example, "train", "eval", "test", or "infer". To execute regardless of mode, pass None. To execute in all modes except for a particular one, you can pass an argument like "!infer" or "!train". ds_id: What dataset id(s) to execute this Trace in. To execute regardless of ds_id, pass None. To execute in all ds_ids except for a particular one, you can pass an argument like "!ds1". output_name: What to call the output from this trace (for example in the logger output). per_ds: Whether to automatically compute this metric individually for every ds_id it runs on, in addition to computing an aggregate across all ds_ids on which it runs. This is automatically False if `output_name` contains a "|" character. **kwargs: Additional keyword arguments that pass to sklearn.metrics.matthews_corrcoef() Raises: ValueError: One of ["y_true", "y_pred"] argument exists in `kwargs`. """ def __init__(self, true_key: str, pred_key: str, mode: Union[None, str, Iterable[str]] = ("eval", "test"), ds_id: Union[None, str, Iterable[str]] = None, output_name: str = "mcc", per_ds: bool = True, **kwargs) -> None: MCC.check_kwargs(kwargs) super().__init__(inputs=(true_key, pred_key), mode=mode, outputs=output_name, ds_id=ds_id) self.kwargs = kwargs self.y_true = [] self.y_pred = [] self.per_ds = per_ds @property def true_key(self) -> str: return self.inputs[0] @property def pred_key(self) -> str: return self.inputs[1] def on_epoch_begin(self, data: Data) -> None: self.y_true = [] self.y_pred = [] def on_batch_end(self, data: Data) -> None: y_true, y_pred = to_number(data[self.true_key]), to_number(data[self.pred_key]) if y_true.shape[-1] > 1 and y_true.ndim > 1: y_true = np.argmax(y_true, axis=-1) if y_pred.shape[-1] > 1 and y_pred.ndim > 1: y_pred = np.argmax(y_pred, axis=-1) else: y_pred = np.round(y_pred) assert y_pred.size == y_true.size self.y_true.extend(y_true) self.y_pred.extend(y_pred) def on_epoch_end(self, data: Data) -> None: data.write_with_log(self.outputs[0], matthews_corrcoef(y_true=self.y_true, y_pred=self.y_pred, **self.kwargs)) @staticmethod def check_kwargs(kwargs: Dict[str, Any]) -> None: """Check if `kwargs` has any blacklist argument and raise an error if it does. Args: kwargs: Keywork arguments to be examined. Raises: ValueError: One of ["y_true", "y_pred"] argument exists in `kwargs`. """ blacklist = ["y_true", "y_pred"] illegal_kwarg = [x for x in blacklist if x in kwargs] if illegal_kwarg: raise ValueError( f"Arguments {illegal_kwarg} cannot exist in kwargs, since FastEstimator will later directly use them in" " sklearn.metrics.matthews_corrcoef()")
from django.contrib import admin from . import models admin.site.register(models.Bark)
"""Utilities for ImageNet data preprocessing & prediction decoding. """ import json import keras.utils.data_utils as data_utils CLASS_INDEX = None CLASS_INDEX_PATH = ('https://storage.googleapis.com/download.tensorflow.org/' 'data/imagenet_class_index.json') def decode_predictions(preds, top=5): """Decodes the prediction of an ImageNet model. # Arguments preds: Numpy array encoding a batch of predictions. top: Integer, how many top-guesses to return. # Returns A list of lists of top class prediction tuples `(class_name, class_description)`. One list of tuples per sample in batch input. # Raises ValueError: In case of invalid shape of the `preds` array (must be 2D). """ global CLASS_INDEX if len(preds.shape) != 2 or preds.shape[1] != 5: raise ValueError('`decode_predictions` expects ' 'a batch of predictions ' '(i.e. a 2D array of shape (samples, 5)). ' 'Found array with shape: ' + str(preds.shape)) if CLASS_INDEX is None: fpath = data_utils.get_file( 'imagenet_class_index.json', CLASS_INDEX_PATH, cache_subdir='models', file_hash='c2c37ea517e94d9795004a39431a14cb') with open(fpath) as f: CLASS_INDEX = json.load(f) results = [] for pred in preds: top_indices = pred[:min(top, 5)] result = [tuple(CLASS_INDEX[str(i)]) for i in top_indices] results.append(result) return results
import copy from lto.accounts.ecdsa.account_factory_ecdsa import AccountFactoryECDSA import base58 import pytest from lto.transactions.anchor import Anchor class TestAccountECDSA(): factory = AccountFactoryECDSA('L') seed = 'divert manage prefer child kind maximum october hand manual connect fitness small symptom range sleep' account = factory.create() def test_make_key(self): assert self.factory._MakeKey(self.seed).to_string() == (b'\xa7\x90:j\x80\xdb\x00}|~\x9e\x8cq]S\x97\x92\x97W\xfe\x17h>\xd5\xc1b\xa8\x1c|\x80\xc6%') #@pytest.mark.skip(reason="Secp256k1 under construction") def test_create_address(self): assert self.factory.create_address(self.account.public_key) == self.account.address @pytest.mark.skip(reason="Secp256k1 under construction") def test_create_sign_keys(self): private_key, public_key, key_type = self.factory.create_sign_keys(self.seed) assert self.account.public_key == public_key assert self.account.private_key == private_key assert key_type == 'secp256k1' @pytest.mark.skip(reason="Secp256k1 under construction") def test_create_from_public(self): seed = 'divert manage prefer child kind maximum october hand manual connect fitness small symptom range sleep' account = AccountFactoryECDSA('T').create_from_seed(seed) account2 = AccountFactoryECDSA('T').create_from_public_key(account.public_key) # object assert account.address == account2.address assert account.public_key == account2.public_key # bytes public_key = b"5\xcf4\xeb\xe0\xd5,s\x00t\xc6to\x8b\xd0\x0e\xf8N\xe6\xa1\x1d\x13\x18s+\x11\x82\x7fR\x8d='\x03!a\x13H\xca=]\x8aV\xf71\x16C\x0c\x9ad{\x14z\x8e1\x9dg\x8b\xb2\xf2\x9e\x0fo\xa7\x9d" account3 = AccountFactoryECDSA('T').create_from_public_key(public_key) assert account.address == account3.address assert account.public_key == account3.public_key # b58 str account4 = AccountFactoryECDSA('T').create_from_public_key(base58.b58encode(public_key)) assert account.address == account4.address assert account.public_key == account4.public_key @pytest.mark.skip(reason="Secp256k1 under construction") def test_create_from_private_key(self): seed = 'divert manage prefer child kind maximum october hand manual connect fitness small symptom range sleep' account = AccountFactoryECDSA('T').create_from_seed(seed) account2 = AccountFactoryECDSA('T').create_from_private_key(account.private_key) # object assert account.address == account2.address assert account.private_key == account2.private_key assert account.public_key == account2.public_key # bytes private_key = b'\xa7\x90:j\x80\xdb\x00}|~\x9e\x8cq]S\x97\x92\x97W\xfe\x17h>\xd5\xc1b\xa8\x1c|\x80\xc6%' account3 = AccountFactoryECDSA('T').create_from_private_key(private_key) assert account.address == account3.address assert account.private_key == account3.private_key assert account.public_key == account3.public_key # b58 str account4 = AccountFactoryECDSA('T').create_from_private_key(base58.b58encode(private_key)) assert account.address == account4.address assert account.private_key == account4.private_key assert account.public_key == account4.public_key def test_verify_random_account_signed_transaction(self): account = self.factory.create() transaction = Anchor('rtrtrtr') transaction.sign_with(account) cloned_tx = copy.copy(transaction) cloned_tx.proofs = [] message = cloned_tx.to_binary() assert account.verify_signature(message, transaction.proofs[0]) is True
import subprocess from consolemenu.items import ExternalItem class CommandItem(ExternalItem): """ A menu item to execute a console command """ def __init__(self, text, command, arguments=None, menu=None, should_exit=False): """ :ivar str command: The console command to be executed :ivar list[str] arguments: An optional list of string arguments to be passed to the command :ivar int exit_status: the exit status of the command, None if it hasn't been run yet """ super(CommandItem, self).__init__(text=text, menu=menu, should_exit=should_exit) self.command = command if arguments: self.arguments = arguments else: self.arguments = [] self.exit_status = None def action(self): """ This class overrides this method """ commandline = "{0} {1}".format(self.command, " ".join(self.arguments)) try: completed_process = subprocess.run(commandline, shell=True) self.exit_status = completed_process.returncode except AttributeError: self.exit_status = subprocess.call(commandline, shell=True) def get_return(self): """ :return: the exit status of the command :rtype: int """ return self.exit_status
from tests.base import BaseTestCase from binpacking.solver.data_structure.solution import Solution from binpacking.solver.statistics import Statistics, StatisticIteration, StatisticFitness class StatisticsTest(BaseTestCase): def test_statistics(self) -> None: iteration = StatisticIteration() fitness = StatisticFitness() statistics = Statistics() statistics.add_statistic(iteration) statistics.add_statistic(fitness) expected_size = 4 sol = Solution(expected_size) sol.set_fitness(float(42)) r = statistics.run(sol) self.assertTrue(r['iteration'] == 0) r = statistics.run(sol) self.assertTrue(r['iteration'] == 1)
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['Database'] class Database(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, bucket: Optional[pulumi.Input[str]] = None, encryption_configuration: Optional[pulumi.Input[pulumi.InputType['DatabaseEncryptionConfigurationArgs']]] = None, force_destroy: Optional[pulumi.Input[bool]] = None, name: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ Provides an Athena database. ## Example Usage ```python import pulumi import pulumi_aws as aws hoge_bucket = aws.s3.Bucket("hogeBucket") hoge_database = aws.athena.Database("hogeDatabase", name="database_name", bucket=hoge_bucket.bucket) ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] bucket: Name of s3 bucket to save the results of the query execution. :param pulumi.Input[pulumi.InputType['DatabaseEncryptionConfigurationArgs']] encryption_configuration: The encryption key block AWS Athena uses to decrypt the data in S3, such as an AWS Key Management Service (AWS KMS) key. An `encryption_configuration` block is documented below. :param pulumi.Input[bool] force_destroy: A boolean that indicates all tables should be deleted from the database so that the database can be destroyed without error. The tables are *not* recoverable. :param pulumi.Input[str] name: Name of the database to create. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if bucket is None: raise TypeError("Missing required property 'bucket'") __props__['bucket'] = bucket __props__['encryption_configuration'] = encryption_configuration __props__['force_destroy'] = force_destroy __props__['name'] = name super(Database, __self__).__init__( 'aws:athena/database:Database', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, bucket: Optional[pulumi.Input[str]] = None, encryption_configuration: Optional[pulumi.Input[pulumi.InputType['DatabaseEncryptionConfigurationArgs']]] = None, force_destroy: Optional[pulumi.Input[bool]] = None, name: Optional[pulumi.Input[str]] = None) -> 'Database': """ Get an existing Database resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] bucket: Name of s3 bucket to save the results of the query execution. :param pulumi.Input[pulumi.InputType['DatabaseEncryptionConfigurationArgs']] encryption_configuration: The encryption key block AWS Athena uses to decrypt the data in S3, such as an AWS Key Management Service (AWS KMS) key. An `encryption_configuration` block is documented below. :param pulumi.Input[bool] force_destroy: A boolean that indicates all tables should be deleted from the database so that the database can be destroyed without error. The tables are *not* recoverable. :param pulumi.Input[str] name: Name of the database to create. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["bucket"] = bucket __props__["encryption_configuration"] = encryption_configuration __props__["force_destroy"] = force_destroy __props__["name"] = name return Database(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def bucket(self) -> pulumi.Output[str]: """ Name of s3 bucket to save the results of the query execution. """ return pulumi.get(self, "bucket") @property @pulumi.getter(name="encryptionConfiguration") def encryption_configuration(self) -> pulumi.Output[Optional['outputs.DatabaseEncryptionConfiguration']]: """ The encryption key block AWS Athena uses to decrypt the data in S3, such as an AWS Key Management Service (AWS KMS) key. An `encryption_configuration` block is documented below. """ return pulumi.get(self, "encryption_configuration") @property @pulumi.getter(name="forceDestroy") def force_destroy(self) -> pulumi.Output[Optional[bool]]: """ A boolean that indicates all tables should be deleted from the database so that the database can be destroyed without error. The tables are *not* recoverable. """ return pulumi.get(self, "force_destroy") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Name of the database to create. """ return pulumi.get(self, "name") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
import unittest from selenium import webdriver class Typos(unittest.TestCase): def setUp(self): self.driver = webdriver.Chrome(executable_path = r'./chromedriver.exe') driver = self.driver driver.get('http://the-internet.herokuapp.com/') driver.find_element_by_link_text('Typos').click() def test_find_typo(self): driver = self.driver paragraph_to_check = driver.find_element_by_css_selector('#content > div > p:nth-child(3)') text_to_check = paragraph_to_check.text print(text_to_check) tries = 1 found = False correct_text = 'Sometimes you\'ll see a typo, other times you won\'t.' while text_to_check != correct_text: paragraph_to_check = driver.find_element_by_css_selector('#content > div > p:nth-child(3)') text_to_check = paragraph_to_check.text driver.refresh() tries += 1 while not found: if text_to_check == correct_text: driver.refresh() found = True self.assertEqual(found, True) print(f'it took {tries} to find the typo') def tearDown(self): self.driver.close() if __name__ == '__main__': unittest.main()
#!/bin/python3 import math import os import random import re import sys # # Complete the 'isValid' function below. # # The function is expected to return a STRING. # The function accepts STRING s as parameter. # def isValid(s): # Write your code here # Write your code here freq = {i : s.count(i) for i in set(s)} fv = list(freq.values()) ffreq = {v : list(fv).count(v) for v in set(fv)} print("s:",s, "\nfreq:", freq, "\nfv:", fv, "\nffreq:", ffreq) if len(ffreq)>2: return "NO" elif len(ffreq)<=1: return "YES" else: mx = max(ffreq) mn = min(ffreq) print("mx:", mx, " mn:", mn) if (mn==1) and ffreq.get(mn, 0)<=1: return "YES" if abs(mx - mn)>1: return "NO" if min(ffreq.values()) > 1: return "NO" else: return "YES" if __name__ == '__main__': fptr = open('CON', 'w') s = input() result = isValid(s) fptr.write(result + '\n') fptr.close()
# # Account information # # Copy this file to account.py and fill in the real values for the Minecraft account. # # # # account = { "user" : 'your@login.com', "password" : 'your_password', "master" : 'minecraft_name_who_the_bot_will_listen_to', "host" : 'exampleserver.whatever.com', "version" : '1.16.5', } # # List of world locations you can use in commands # locations = { "minedrop": [29,13,-19], "farmdrop": [42.5,89,-15.5], "minecenter": [20.5,12,-23.5], }
from django.shortcuts import render,redirect from django.contrib import messages from django.template import Context from .models import Court, CourtManager, SelectedCourt from apps.users.models import User from datetime import datetime from decimal import Decimal from django.contrib.auth.decorators import login_required # Create your views here. def index(request): return render(request, "courts/index.html") def main(request): context = { 'court' : Court.objects.all() } return render(request, "courts/main.html", context) def court(request, courtid): context = { 'one_court' : Court.objects.get(id=courtid) } return render(request, "courts/courts.html", context) def select(request): if 'user_id' not in request.session: context = { 'message' : "Please login" } return render(request, "courts/index.html", context) context = { 'courts' : Court.objects.all() } return render(request, "courts/select.html", context) """ This is logic that checks the times that a court has been reserved. """ def schedule(request): if 'user_id' not in request.session: context = { 'message' : "Please login" } return render(request, "courts/", context) usr = User(id=request.session['user_id']) crt = Court.objects.get(id=request.POST['courtid']) intime = request.POST['timein'] outtime = request.POST['timeout'] dform = "%Y-%m-%d %H:%M" diff = datetime.strptime(outtime, dform) - datetime.strptime(intime, dform) hours = diff.seconds/3600 if hours < 4 and hours > 0: total_price = Decimal(hours) * crt.price if intime > outtime: context = { 'courts' : Court.objects.all(), 'message': "End date/time is earlier than begin date/time." } elif intime <= datetime.now().strftime(dform): context = { 'courts' : Court.objects.all(), 'message': "Begin date/time is in the past." } else: SelectedCourt.objects.create(user=usr, court=crt, timein=intime, timeout=outtime, total_price=total_price) context = { 'courts' : Court.objects.all() } else: context = { 'courts' : Court.objects.all(), 'message': "Scheduled time is too long." } return render(request, "courts/select.html", context) """ This presents a dashboard which shows court reservations. """ def dashboard(request): if 'user_id' not in request.session: context = { 'message' : "Please login" } return render(request, "courts/index.html", context) usr = User(id=request.session['user_id']) context = { 'court_times' : SelectedCourt.objects.filter(user=usr) } return render(request, "courts/dashboard.html", context) def search(request): return render(request, "courts/search.html") def searchzip(request): return "HELLO WORLD"
import unittest import os import numpy as np import pandas as pd from scipy.signal import StateSpace import matplotlib.pyplot as plt import mshoot def cfun(xdf, ydf): """ :param ydf: DataFrame, model states :param ydf: DataFrame, model outputs :return: float """ qout = ydf['qout'].values c = np.sum(qout ** 2) / qout.size return c class TestMPC(unittest.TestCase): def setUp(self): fmupath = os.path.join('resources', 'fmus', 'R1C1', 'R1C1.fmu') parameters = {'C': 1e6, 'R': 0.01} self.model = mshoot.SimFMU( fmupath, outputs=['qout', 'Tr'], states=['heatCapacitor.T'], parameters=parameters, verbose=False) def tearDown(self): pass def test_mpc(self): # Inputs t = np.arange(0, 3600 * 10, 3600) inp = pd.DataFrame(index=pd.Index(t, name='time'), columns=['q', 'Tout']) inp['q'] = np.full(t.size, 0) inp['Tout'] = np.full(t.size, 273.15) # Bounds ubounds = [(0., 4000.)] xbounds = [(293.15, 296.15)] # Initial state x0 = [293.65] # Optimization mpc = mshoot.MPCEmulation(emumod=self.model, cfun=cfun) u, xctr, xemu, yemu, uhist = mpc.optimize( model=self.model, inp_ctr=inp.copy(), inp_emu=inp.copy(), free=['q'], ubounds=ubounds, xbounds=xbounds, x0=x0, ynominal=[4000., 293.15], step=1, horizon=3 ) # ax = u.plot(title='u') # ax.set_ylim(0, 4000) # ax = xemu.plot(title='xemu') # ax.set_ylim(292.15, 296.15) # plt.show() # Assert the solution is correct self.assertLess(abs(xemu['heatCapacitor.T'].iloc[-1] - 293.15), 0.3) # Ideally, should be even closer # Validate emulation with optimized control inp['q'] = u['q'] yvld, xvld = self.model.simulate(inp, x0) # self.assertTrue(((yvld - yemu).abs() < 1e-3).all().all()) # Might not be true for FMUs * self.assertTrue(((xvld - xemu).abs() < 1e-3).all().all()) # Might not be true for FMUs * # * FMU results might be shifted in time by one time step. # The reason is unknown, but FMU- or pyFMI-specific. def test_mpc_inp_clb(self): # Inputs t = np.arange(0, 3600 * 10, 3600) inp = pd.DataFrame(index=pd.Index(t, name='time'), columns=['q', 'Tout']) inp['q'] = np.full(t.size, 0) inp['Tout'] = np.full(t.size, 273.15) # Bounds ubounds = [(0., 4000.)] xbounds = [(293.15, 296.15)] # Initial state x0 = [293.65] # Input callback function def inp_clb(index): return inp.loc[index] # Optimization mpc = mshoot.MPCEmulation(emumod=self.model, cfun=cfun) u, xctr, xemu, yemu, uhist = mpc.optimize( model=self.model, inp_ctr=None, inp_clb=inp_clb, inp_emu=inp.copy(), free=['q'], ubounds=ubounds, xbounds=xbounds, x0=x0, ynominal=[4000., 293.15], step=1, horizon=3 ) # Assert the solution is correct self.assertLess(abs(xemu['heatCapacitor.T'].iloc[-1] - 293.15), 0.3) # Ideally, should be even closer # Validate emulation with optimized control inp['q'] = u['q'] yvld, xvld = self.model.simulate(inp, x0) # self.assertTrue(((yvld - yemu).abs() < 1e-3).all().all()) # Might not be true for FMUs * self.assertTrue(((xvld - xemu).abs() < 1e-3).all().all()) # Might not be true for FMUs * # * FMU results might be shifted in time by one time step. # The reason is unknown, but FMU- or pyFMI-specific. # def test_2_inputs(self): # """THE SOLVER HAS PROBLEMS WITH GETTING THE RIGHT SOLUTION. (?)""" # # Inputs # t = np.arange(0, 3600 * 10, 3600) # inp = pd.DataFrame(index=pd.Index(t, name='time'), columns=['q', 'Tout']) # inp['q'] = np.full(t.size, 0) # inp['Tout'] = np.full(t.size, 273.15) # # Bounds # ubounds = [(0., 10000.), (272.15, 275.)] # <-- Solver should try to yield Tout = 275 # xbounds = [(293.15, 296.15)] # # Initial state # x0 = [293.65] # # Optimization # mpc = mshoot.MPCEmulation(emumod=self.model, cfun=cfun) # u, xctr, xemu, yemu, uhist = mpc.optimize( # model=self.model, # inp=inp, # free=['q', 'Tout'], # ubounds=ubounds, # xbounds=xbounds, # x0=x0, # unominal=[4000., 273.15], # ynominal=[4000., 293.15], # step=1, # horizon=4 # ) # ax = u.plot(title='u', subplots=True) # ax = xemu.plot(title='xemu') # plt.show() # # Assert the solution is correct # self.assertLess(abs(xemu['heatCapacitor.T'].iloc[-1] - 293.15), 0.01) # # Validate emulation with optimized control # inp['q'] = u['q'] # yvld, xvld = self.model.simulate(inp, x0) # # self.assertTrue((yvld - yemu < 1e-3).all().all()) # Might not be true for FMUs * # # self.assertTrue((xvld - xemu < 1e-3).all().all()) # Might not be true for FMUs * # # * FMU results might be shifted in time by one time step. # # The reason is unknown, but FMU- or pyFMI-specific. if __name__ == '__main__': unittest.main()
# -*- coding: utf-8 -*- """ The main user-facing module of ``edges-cal``. This module contains wrappers around lower-level functions in other modules, providing a one-stop interface for everything related to calibration. """ from __future__ import annotations import attr import h5py import numpy as np import tempfile import warnings import yaml from abc import ABCMeta, abstractmethod from astropy.convolution import Gaussian1DKernel, convolve from copy import copy from edges_io import io from edges_io.logging import logger from functools import lru_cache from hashlib import md5 from matplotlib import pyplot as plt from pathlib import Path from scipy.interpolate import InterpolatedUnivariateSpline as Spline from typing import Any, Callable, Dict, List, Optional, Tuple, Union from . import DATA_PATH from . import modelling as mdl from . import receiver_calibration_func as rcf from . import reflection_coefficient as rc from . import s11_correction as s11 from . import tools from . import types as tp from . import xrfi from .cached_property import cached_property from .tools import EdgesFrequencyRange, FrequencyRange class S1P: def __init__( self, s1p: tp.PathLike | io.S1P, f_low: float | None = None, f_high: float | None = None, switchval: int | None = None, ): """ An object representing the measurements of a VNA. The measurements are read in via a .s1p file Parameters ---------- s1p : str, Path or :class:`io.S1P` The path to a valid .s1p file containing VNA measurements, or an S1P object of such a type. f_low, f_high : float The minimum/maximum frequency to keep. switchval : int The standard value of the switch for the component. """ try: s1p = Path(s1p) self.s1p = io.S1P(s1p) except TypeError: if isinstance(s1p, io.S1P): self.s1p = s1p else: raise TypeError( "s1p must be a path to an s1p file, or an io.S1P object" ) self.load_name = self.s1p.kind self.repeat_num = self.s1p.repeat_num spec = self.s1p.s11 f = self.s1p.freq self.freq = FrequencyRange(f, f_low, f_high) self.s11 = spec[self.freq.mask] self._switchval = switchval @cached_property def switchval(self): """The standard value of the switch for the component.""" if self._switchval is not None: return self._switchval * np.ones_like(self.freq.freq) else: return None # For backwards compatibility VNA = S1P class _S11Base(metaclass=ABCMeta): default_nterms = { "ambient": 37, "hot_load": 37, "open": 105, "short": 105, "AntSim2": 55, "AntSim3": 55, "AntSim4": 55, "lna": 37, } def __init__( self, *, load_s11: Union[io._S11SubDir, io.ReceiverReading], f_low: Optional[float] = None, f_high: Optional[float] = None, n_terms: Optional[int] = None, model_type: tp.Modelable = "fourier", ): """ A class representing relevant switch corrections for a load. Parameters ---------- load_s11 : :class:`io._S11SubDir` An instance of the basic ``io`` S11 folder. f_low : float Minimum frequency to use. Default is all frequencies. f_high : float Maximum frequency to use. Default is all frequencies. resistance : float The resistance of the switch (in Ohms). n_terms : int The number of terms to use in fitting a model to the S11 (used to both smooth and interpolate the data). Must be odd. """ self.load_s11 = load_s11 self.base_path = self.load_s11.path try: self.load_name = getattr(self.load_s11, "load_name") except AttributeError: self.load_name = None self.run_num = self.load_s11.run_num switchvals = {"open": 1, "short": -1, "match": 0} for name in self.load_s11.STANDARD_NAMES: setattr( self, name.lower(), S1P( s1p=self.load_s11.children[name.lower()], f_low=f_low, f_high=f_high, switchval=switchvals.get(name.lower()), ), ) # Expose one of the frequency objects self.freq = self.open.freq self._nterms = int(n_terms) if n_terms is not None else None self.model_type = model_type @cached_property def n_terms(self): """Number of terms to use (by default) in modelling the S11. Raises ------ ValueError If n_terms is even. """ res = self._nterms or self.default_nterms.get(self.load_name, None) if not (isinstance(res, int) and res % 2): raise ValueError( f"n_terms must be odd for S11 models. For {self.load_name} got " f"n_terms={res}." ) return res @classmethod @abstractmethod def from_path(cls, **kwargs): pass # pragma: no cover @cached_property @abstractmethod def measured_load_s11_raw(self): pass # pragma: no cover @cached_property def corrected_load_s11(self) -> np.ndarray: """The measured S11 of the load, corrected for internal switch.""" return self.measured_load_s11_raw @lru_cache() def get_corrected_s11_model( self, n_terms: int | None = None, model_type: tp.Modelable | None = None, ): """Generate a callable model for the S11 correction. This should closely match :method:`s11_correction`. Parameters ---------- n_terms : int Number of terms used in the fourier-based model. Not necessary if `load_name` is specified in the class. Returns ------- callable : A function of one argument, f, which should be a frequency in the same units as `self.freq.freq`. Raises ------ ValueError If n_terms is not an integer, or not odd. """ n_terms = n_terms or self.n_terms model_type = mdl.get_mdl(model_type or self.model_type) model = model_type( n_terms=n_terms, transform=mdl.UnitTransform(range=[self.freq.min, self.freq.max]), ) emodel = model.at(x=self.freq.freq) cmodel = mdl.ComplexMagPhaseModel(mag=emodel, phs=emodel) s11_correction = self.corrected_load_s11 return cmodel.fit(ydata=s11_correction) @cached_property def s11_model(self) -> callable: """The S11 model.""" return self.get_corrected_s11_model() def plot_residuals( self, fig=None, ax=None, color_abs="C0", color_diff="g", label=None, title=None, decade_ticks=True, ylabels=True, ) -> plt.Figure: """ Make a plot of the residuals of the S11 model and the correction data. Residuals obtained via :func:`get_corrected_s11_model` Returns ------- fig : Matplotlib Figure handle. """ if fig is None or ax is None or len(ax) != 4: fig, ax = plt.subplots( 4, 1, sharex=True, gridspec_kw={"hspace": 0.05}, facecolor="w" ) if decade_ticks: for axx in ax: axx.xaxis.set_ticks( [50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180], minor=[], ) axx.grid(True) ax[-1].set_xlabel("Frequency [MHz]") corr = self.corrected_load_s11 model = self.s11_model(self.freq.freq) ax[0].plot( self.freq.freq, 20 * np.log10(np.abs(model)), color=color_abs, label=label ) if ylabels: ax[0].set_ylabel(r"$|S_{11}|$") ax[1].plot(self.freq.freq, np.abs(model) - np.abs(corr), color_diff) if ylabels: ax[1].set_ylabel(r"$\Delta |S_{11}|$") ax[2].plot( self.freq.freq, np.unwrap(np.angle(model)) * 180 / np.pi, color=color_abs ) if ylabels: ax[2].set_ylabel(r"$\angle S_{11}$") ax[3].plot( self.freq.freq, np.unwrap(np.angle(model)) - np.unwrap(np.angle(corr)), color_diff, ) if ylabels: ax[3].set_ylabel(r"$\Delta \angle S_{11}$") if title is None: title = f"{self.load_name} Reflection Coefficient Models" if title: fig.suptitle(f"{self.load_name} Reflection Coefficient Models", fontsize=14) if label: ax[0].legend() return fig class LoadS11(_S11Base): def __init__(self, *, internal_switch: s11.InternalSwitch, **kwargs): """S11 for a lab calibration load. Parameters ---------- internal_switch : :class:`s11.InternalSwitch` The internal switch state corresponding to the load. Other Parameters ---------------- Passed through to :class:`_S11Base`. """ assert isinstance(internal_switch, s11.InternalSwitch) self.internal_switch = internal_switch super().__init__(**kwargs) @classmethod def from_path( cls, load_name: str, path: tp.PathLike, run_num_load: int = 1, run_num_switch: int = 1, repeat_num_load: int = None, repeat_num_switch: int = None, resistance: float = 50.166, model_internal_switch: mdl.Model = attr.NOTHING, **kwargs, ): """ Create a new object from a given path and load name. Parameters ---------- load_name : str The name of the load to create. path : str or Path The path to the overall calibration observation. run_num_load : int The run to use (default is last run available). run_num_switch : int The run to use for the switch S11 (default is last run available). kwargs All other arguments are passed through to the constructor of :class:`LoadS11`. Returns ------- s11 : :class:`LoadS11` The S11 of the load. """ antsim = load_name.startswith("AntSim") path = Path(path) if not antsim: load_name = io.LOAD_ALIASES[load_name] s11_load_dir = (io.AntSimS11 if antsim else io.LoadS11)( path / "S11" / f"{load_name}{run_num_load:02}", repeat_num=repeat_num_load ) internal_switch = s11.InternalSwitch( data=io.SwitchingState( path / "S11" / f"SwitchingState{run_num_switch:02}", repeat_num=repeat_num_switch, ), resistance=resistance, model=model_internal_switch, ) return cls(load_s11=s11_load_dir, internal_switch=internal_switch, **kwargs) @cached_property def measured_load_s11_raw(self): """The measured S11 of the load, calculated from raw internal standards.""" return rc.de_embed( self.open.switchval, self.short.switchval, self.match.switchval, self.open.s11, self.short.s11, self.match.s11, self.external.s11, )[0] @cached_property def corrected_load_s11(self) -> np.ndarray: """The measured S11 of the load, corrected for the internal switch.""" return rc.gamma_de_embed( self.internal_switch.s11_model(self.freq.freq), self.internal_switch.s12_model(self.freq.freq), self.internal_switch.s22_model(self.freq.freq), self.measured_load_s11_raw, ) class LNA(_S11Base): def __init__( self, load_s11: io.ReceiverReading, resistance: float = 50.009, **kwargs ): """A special case of :class:`SwitchCorrection` for the LNA. Parameters ---------- load_s11 : :class:`io.ReceiverReading` The Receiver Reading S11 measurements. resistance : float The resistance of the receiver. kwargs : All other arguments passed to :class:`SwitchCorrection`. """ super().__init__(load_s11=load_s11, **kwargs) self.resistance = resistance self.load_name = "lna" self.repeat_num = self.load_s11.repeat_num @classmethod def from_path( cls, path: Union[str, Path], repeat_num: Optional[int] = None, run_num: int = 1, **kwargs, ): """ Create an instance from a given path. Parameters ---------- path : str or Path Path to overall Calibration Observation. run_num_load : int The run to use for the LNA (default latest available). run_num_switch : int The run to use for the switching state (default lastest available). kwargs All other arguments passed through to :class:`SwitchCorrection`. Returns ------- lna : :class:`LNA` The LNA object. """ path = Path(path) load_s11 = io.ReceiverReading( path=path / "S11" / f"ReceiverReading{run_num:02}", repeat_num=repeat_num, fix=False, ) return cls(load_s11=load_s11, **kwargs) @cached_property def external(self): """VNA S11 measurements for the load.""" return S1P( self.load_s11.children["receiverreading"], f_low=self.freq.freq.min(), f_high=self.freq.freq.max(), ) @cached_property def measured_load_s11_raw(self): """Measured S11 of of the LNA.""" # Models of standards oa, sa, la = rc.agilent_85033E( self.freq.freq, self.resistance, match_delay=True ) # Correction at switch return rc.de_embed( oa, sa, la, self.open.s11, self.short.s11, self.match.s11, self.external.s11 )[0] class LoadSpectrum: def __init__( self, spec_obj: List[io.Spectrum], resistance_obj: io.Resistance, switch_correction: Optional[LoadS11] = None, f_low: float = 40.0, f_high: Optional[float] = None, ignore_times_percent: float = 5.0, rfi_removal: str = "1D2D", rfi_kernel_width_time: int = 16, rfi_kernel_width_freq: int = 16, rfi_threshold: float = 6, cache_dir: Optional[Union[str, Path]] = None, t_load: float = 300.0, t_load_ns: float = 400.0, ): """A class representing a measured spectrum from some Load. Parameters ---------- spec_obj : :class:`io.Spectrum` The base Spectrum object defining the on-disk spectra. resistance_obj : :class:`io.Resistance` The base Resistance object defining the on-disk resistance measurements. switch_correction : :class:`SwitchCorrection` A `SwitchCorrection` for this particular load. If not given, will be constructed automatically. f_low : float Minimum frequency to keep. f_high : float Maximum frequency to keep. ignore_times_percent : float Must be between 0 and 100. Number of time-samples in a file to reject from the start of the file. rfi_removal : str Either '1D', '2D' or '1D2D'. If given, will perform median and mean-filtered xRFI over either the 2D waterfall, or integrated 1D spectrum. The latter is usually reasonable for calibration sources, while the former is good for field data. "1D2D" is a hybrid approach in which the variance per-frequency is determined from the 2D data, but filtering occurs only over frequency. rfi_kernel_width_time : int The kernel width for the detrending of data for RFI removal in the time dimension (only used if `rfi_removal` is "2D"). rfi_kernel_width_freq : int The kernel width for the detrending of data for RFI removal in the frequency dimension. rfi_threshold : float The threshold (in equivalent standard deviation units) above which to flag data as RFI. cache_dir : str or Path An alternative directory in which to load/save cached reduced files. By default, the same as the path to the .mat files. If you don't have write permission there, it may be useful to use an alternative path. t_load Fiducial guess for the temperature of the internal load. t_load_ns Fiducial guess for the temperature of the internal load + noise source. """ self.spec_obj = spec_obj self.resistance_obj = resistance_obj self.load_name = self.spec_obj[0].load_name assert ( self.load_name == self.resistance_obj.load_name ), "spec and resistance load_name must be the same" self.spec_files = (spec_obj.path for spec_obj in self.spec_obj) self.resistance_file = self.resistance_obj.path self.run_num = self.spec_obj[0].run_num self.cache_dir = Path(cache_dir or ".") self.rfi_kernel_width_time = rfi_kernel_width_time self.rfi_kernel_width_freq = rfi_kernel_width_freq self.rfi_threshold = rfi_threshold assert rfi_removal in [ "1D", "2D", "1D2D", False, None, ], "rfi_removal must be either '1D', '2D', '1D2D, or False/None" self.rfi_removal = rfi_removal self.switch_correction = switch_correction self.ignore_times_percent = ignore_times_percent self.freq = EdgesFrequencyRange(f_low=f_low, f_high=f_high) self.t_load = t_load self.t_load_ns = t_load_ns @classmethod def from_load_name( cls, load_name: str, direc: Union[str, Path], run_num: Optional[int] = None, filetype: Optional[str] = None, **kwargs, ): """Instantiate the class from a given load name and directory. Parameters ---------- load_name : str The load name (one of 'ambient', 'hot_load', 'open' or 'short'). direc : str or Path The top-level calibration observation directory. run_num : int The run number to use for the spectra. filetype : str The filetype to look for (acq or h5). kwargs : All other arguments to :class:`LoadSpectrum`. Returns ------- :class:`LoadSpectrum`. """ direc = Path(direc) spec = io.Spectrum.from_load( load=load_name, direc=direc / "Spectra", run_num=run_num, filetype=filetype ) res = io.Resistance.from_load( load=load_name, direc=direc / "Resistance", run_num=run_num, filetype=filetype, ) return cls(spec_obj=spec, resistance_obj=res, **kwargs) @cached_property def averaged_Q(self) -> np.ndarray: """Ratio of powers averaged over time. Notes ----- The formula is .. math:: Q = (P_source - P_load)/(P_noise - P_load) """ # TODO: should also get weights! spec = self._ave_and_var_spec[0]["Q"] if self.rfi_removal == "1D": flags, _ = xrfi.xrfi_medfilt( spec, threshold=self.rfi_threshold, kf=self.rfi_kernel_width_freq ) spec[flags] = np.nan return spec @property def variance_Q(self) -> np.ndarray: """Variance of Q across time (see averaged_Q).""" return self._ave_and_var_spec[1]["Q"] @property def averaged_spectrum(self) -> np.ndarray: """T* = T_noise * Q + T_load.""" return self.averaged_Q * self.t_load_ns + self.t_load @property def variance_spectrum(self) -> np.ndarray: """Variance of uncalibrated spectrum across time (see averaged_spectrum).""" return self.variance_Q * self.t_load_ns ** 2 @property def ancillary(self) -> dict: """Ancillary measurement data.""" return [d.data["meta"] for d in self.spec_obj] @property def averaged_p0(self) -> np.ndarray: """Power of the load, averaged over time.""" return self._ave_and_var_spec[0]["p0"] @property def averaged_p1(self) -> np.ndarray: """Power of the noise-source, averaged over time.""" return self._ave_and_var_spec[0]["p1"] @property def averaged_p2(self) -> np.ndarray: """Power of the load plus noise-source, averaged over time.""" return self._ave_and_var_spec[0]["p2"] @property def variance_p0(self) -> np.ndarray: """Variance of the load, averaged over time.""" return self._ave_and_var_spec[1]["p0"] @property def variance_p1(self) -> np.ndarray: """Variance of the noise-source, averaged over time.""" return self._ave_and_var_spec[1]["p1"] @property def variance_p2(self) -> np.ndarray: """Variance of the load plus noise-source, averaged over time.""" return self._ave_and_var_spec[1]["p2"] @property def n_integrations(self) -> int: """The number of integrations recorded for the spectrum (after ignoring).""" return self._ave_and_var_spec[2] def _get_integrated_filename(self): """Determine a unique filename for the reduced data of this instance.""" params = ( self.rfi_threshold, self.rfi_kernel_width_time, self.rfi_kernel_width_freq, self.rfi_removal, self.ignore_times_percent, self.freq.min, self.freq.max, self.t_load, self.t_load_ns, tuple(path.name for path in self.spec_files), ) hsh = md5(str(params).encode()).hexdigest() return self.cache_dir / f"{self.load_name}_{hsh}.h5" @cached_property def _ave_and_var_spec(self) -> Tuple[Dict, Dict, int]: """Get the mean and variance of the spectra.""" fname = self._get_integrated_filename() kinds = ["p0", "p1", "p2", "Q"] if fname.exists(): logger.info( f"Reading in previously-created integrated {self.load_name} spectra..." ) means = {} variances = {} with h5py.File(fname, "r") as fl: for kind in kinds: means[kind] = fl[kind + "_mean"][...] variances[kind] = fl[kind + "_var"][...] n_integrations = fl.attrs.get("n_integrations", 0) return means, variances, n_integrations logger.info(f"Reducing {self.load_name} spectra...") spectra = self.get_spectra() means = {} variances = {} for key, spec in spectra.items(): # Weird thing where there are zeros in the spectra. spec[spec == 0] = np.nan mean = np.nanmean(spec, axis=1) var = np.nanvar(spec, axis=1) n_intg = spec.shape[1] if self.rfi_removal == "1D2D": nsample = np.sum(~np.isnan(spec), axis=1) varfilt = xrfi.flagged_filter( var, size=2 * self.rfi_kernel_width_freq + 1 ) resid = mean - xrfi.flagged_filter( mean, size=2 * self.rfi_kernel_width_freq + 1 ) flags = np.logical_or( resid > self.rfi_threshold * np.sqrt(varfilt / nsample), var - varfilt > self.rfi_threshold * np.sqrt(2 * varfilt ** 2 / (nsample - 1)), ) mean[flags] = np.nan var[flags] = np.nan means[key] = mean variances[key] = var if not self.cache_dir.exists(): self.cache_dir.mkdir() with h5py.File(fname, "w") as fl: logger.info(f"Saving reduced spectra to cache at {fname}") for kind in kinds: fl[kind + "_mean"] = means[kind] fl[kind + "_var"] = variances[kind] fl.attrs["n_integrations"] = n_intg return means, variances, n_intg def get_spectra(self) -> dict: """Read all spectra and remove RFI. Returns ------- dict : A dictionary with keys being different powers (p1, p2, p3, Q), and values being ndarrays. """ spec = self._read_spectrum() if self.rfi_removal == "2D": for key, val in spec.items(): # Need to set nans and zeros to inf so that median/mean detrending # can work. val[np.isnan(val)] = np.inf if key != "Q": val[val == 0] = np.inf flags, _ = xrfi.xrfi_medfilt( val, threshold=self.rfi_threshold, kt=self.rfi_kernel_width_time, kf=self.rfi_kernel_width_freq, ) val[flags] = np.nan spec[key] = val return spec def _read_spectrum(self) -> dict: """ Read the contents of the spectrum files into memory. Removes a starting percentage of times, and masks out certain frequencies. Returns ------- dict : A dictionary of the contents of the file. Usually p0, p1, p2 (un-normalised powers of source, load, and load+noise respectively), and ant_temp (the uncalibrated, but normalised antenna temperature). """ data = [spec_obj.data for spec_obj in self.spec_obj] n_times = sum(len(d["time_ancillary"]["times"]) for d in data) out = { "p0": np.empty((len(self.freq.freq), n_times)), "p1": np.empty((len(self.freq.freq), n_times)), "p2": np.empty((len(self.freq.freq), n_times)), "Q": np.empty((len(self.freq.freq), n_times)), } index_start_spectra = int((self.ignore_times_percent / 100) * n_times) for key, val in out.items(): nn = 0 for d in data: n = len(d["time_ancillary"]["times"]) val[:, nn : (nn + n)] = d["spectra"][key][self.freq.mask] nn += n out[key] = val[:, index_start_spectra:] return out @cached_property def thermistor(self) -> np.ndarray: """The thermistor readings.""" ary = self.resistance_obj.read()[0] return ary[int((self.ignore_times_percent / 100) * len(ary)) :] @cached_property def thermistor_temp(self): """The associated thermistor temperature in K.""" return rcf.temperature_thermistor(self.thermistor["load_resistance"]) @cached_property def temp_ave(self): """Average thermistor temperature (over time and frequency).""" return np.nanmean(self.thermistor_temp) def write(self, path=None): """ Write a HDF5 file containing the contents of the LoadSpectrum. Parameters ---------- path : str Directory into which to save the file, or full path to file. If a directory, filename will be <load_name>_averaged_spectrum.h5. Default is current directory. """ path = Path(path or ".") # Allow to pass in a directory name *or* full path. if path.is_dir(): path /= f"{self.load_name}_averaged_spectrum.h5" with h5py.File(path, "w") as fl: fl.attrs["load_name"] = self.load_name fl["freq"] = self.freq.freq fl["averaged_raw_spectrum"] = self.averaged_spectrum fl["temperature"] = self.thermistor_temp def plot( self, thermistor=False, fig=None, ax=None, xlabel=True, ylabel=True, **kwargs ): """ Make a plot of the averaged uncalibrated spectrum associated with this load. Parameters ---------- thermistor : bool Whether to plot the thermistor temperature on the same axis. fig : Figure Optionally, pass a matplotlib figure handle which will be used to plot. ax : Axis Optional, pass a matplotlib Axis handle which will be added to. xlabel : bool Whether to make an x-axis label. ylabel : bool Whether to plot the y-axis label kwargs : All other arguments are passed to `plt.subplots()`. """ if fig is None: fig, ax = plt.subplots( 1, 1, facecolor=kwargs.pop("facecolor", "white"), **kwargs ) if thermistor: ax.plot(self.freq.freq, self.thermistor_temp) if ylabel: ax.set_ylabel("Temperature [K]") else: ax.plot(self.freq.freq, self.averaged_spectrum) if ylabel: ax.set_ylabel("$T^*$ [K]") ax.grid(True) if xlabel: ax.set_xlabel("Frequency [MHz]") class HotLoadCorrection: _kinds = {"s11": 0, "s12": 1, "s22": 2} def __init__( self, path: Union[str, Path] = ":semi_rigid_s_parameters_WITH_HEADER.txt", f_low: Optional[float] = None, f_high: Optional[float] = None, n_terms: int = 21, ): """ Corrections for the hot load. Measurements required to define the HotLoad temperature, from Monsalve et al. (2017), Eq. 8+9. Parameters ---------- path : str or Path, optional Path to a file containing measurements of the semi-rigid cable reflection parameters. A preceding colon (:) indicates to prefix with DATA_PATH. The default file was measured in 2015, but there is also a file included that can be used from 2017: ":semi_rigid_s_parameters_2017.txt". f_low, f_high : float Lowest/highest frequency to retain from measurements. """ # Get the path to the S11 file. if not isinstance(path, Path): path = DATA_PATH / path[1:] if path[0] == ":" else Path(path) self.path = path data = np.genfromtxt(self.path) f = data[:, 0] self.freq = FrequencyRange(f, f_low, f_high) if data.shape[1] == 7: # Original file from 2015 self.data = data[self.freq.mask, 1::2] + 1j * data[self.freq.mask, 2::2] elif data.shape[1] == 6: # File from 2017 self.data = np.array( [ data[self.freq.mask, 1] + 1j * data[self.freq.mask, 2], data[self.freq.mask, 3], data[self.freq.mask, 4] + 1j * data[self.freq.mask, 5], ] ).T else: raise IOError("Semi-Rigid Cable file has wrong data format.") self.n_terms = int(n_terms) def _get_model_kind(self, kind): model = mdl.Polynomial( n_terms=self.n_terms, transform=mdl.UnitTransform(range=(self.freq.min, self.freq.max)), ) model = mdl.ComplexMagPhaseModel(mag=model, phs=model) return model.fit(xdata=self.freq.freq, ydata=self.data[:, self._kinds[kind]]) @cached_property def s11_model(self): """The reflection coefficient.""" return self._get_model_kind("s11") @cached_property def s12_model(self): """The transmission coefficient.""" return self._get_model_kind("s12") @cached_property def s22_model(self): """The reflection coefficient from the other side.""" return self._get_model_kind("s22") def power_gain(self, freq: np.ndarray, hot_load_s11: LoadS11) -> np.ndarray: """ Calculate the power gain. Parameters ---------- freq : np.ndarray The frequencies. hot_load_s11 : :class:`LoadS11` The S11 of the hot load. Returns ------- gain : np.ndarray The power gain as a function of frequency. """ assert isinstance( hot_load_s11, LoadS11 ), "hot_load_s11 must be a switch correction" assert ( hot_load_s11.load_name == "hot_load" ), "hot_load_s11 must be a hot_load s11" return self.get_power_gain( { "s11": self.s11_model(freq), "s12s21": self.s12_model(freq), "s22": self.s22_model(freq), }, hot_load_s11.s11_model(freq), ) @staticmethod def get_power_gain( semi_rigid_sparams: dict, hot_load_s11: np.ndarray ) -> np.ndarray: """Define Eq. 9 from M17. Parameters ---------- semi_rigid_sparams : dict A dictionary of reflection coefficient measurements as a function of frequency for the semi-rigid cable. hot_load_s11 : array-like The S11 measurement of the hot_load. Returns ------- gain : np.ndarray The power gain. """ rht = rc.gamma_de_embed( semi_rigid_sparams["s11"], semi_rigid_sparams["s12s21"], semi_rigid_sparams["s22"], hot_load_s11, ) return ( np.abs(semi_rigid_sparams["s12s21"]) * (1 - np.abs(rht) ** 2) / ( (np.abs(1 - semi_rigid_sparams["s11"] * rht)) ** 2 * (1 - np.abs(hot_load_s11) ** 2) ) ) class Load: def __init__( self, spectrum: LoadSpectrum, reflections: LoadS11, hot_load_correction: Optional[HotLoadCorrection] = None, ambient: Optional[LoadSpectrum] = None, ): """Wrapper class containing all relevant information for a given load. Parameters ---------- spectrum : :class:`LoadSpectrum` The spectrum for this particular load. reflections : :class:`SwitchCorrection` The S11 measurements for this particular load. hot_load_correction : :class:`HotLoadCorrection` If this is a hot load, provide a hot load correction. ambient : :class:`LoadSpectrum` If this is a hot load, need to provide an ambient spectrum to correct it. """ assert isinstance(spectrum, LoadSpectrum), "spectrum must be a LoadSpectrum" assert isinstance(reflections, LoadS11), "spectrum must be a SwitchCorrection" assert spectrum.load_name == reflections.load_name self.spectrum = spectrum self.reflections = reflections self.load_name = spectrum.load_name self.t_load = self.spectrum.t_load self.t_load_ns = self.spectrum.t_load_ns if self.load_name == "hot_load": self._correction = hot_load_correction self._ambient = ambient @classmethod def from_path( cls, path: Union[str, Path], load_name: str, f_low: Optional[float] = None, f_high: Optional[float] = None, reflection_kwargs: Optional[dict] = None, spec_kwargs: Optional[dict] = None, ): """ Define a full :class:`Load` from a path and name. Parameters ---------- path : str or Path Path to the top-level calibration observation. load_name : str Name of a load to define. f_low, f_high : float Min/max frequencies to keep in measurements. reflection_kwargs : dict Extra arguments to pass through to :class:`SwitchCorrection`. spec_kwargs : dict Extra arguments to pass through to :class:`LoadSpectrum`. Returns ------- load : :class:`Load` The load object, containing all info about spectra and S11's for that load. """ if not spec_kwargs: spec_kwargs = {} if not reflection_kwargs: reflection_kwargs = {} spec = LoadSpectrum.from_load_name( load_name, path, f_low=f_low, f_high=f_high, **spec_kwargs, ) refl = LoadS11.from_path( load_name, path, f_low=f_low, f_high=f_high, **reflection_kwargs, ) return cls(spec, refl) @property def s11_model(self): """The S11 model.""" return self.reflections.s11_model @cached_property def temp_ave(self): """The average temperature of the thermistor (over frequency and time).""" if self.load_name != "hot_load": return self.spectrum.temp_ave gain = self._correction.power_gain(self.freq.freq, self.reflections) # temperature return gain * self.spectrum.temp_ave + (1 - gain) * self._ambient.temp_ave @property def averaged_Q(self): """Averaged power ratio.""" return self.spectrum.averaged_Q @property def averaged_spectrum(self): """Averaged uncalibrated temperature.""" return self.spectrum.averaged_spectrum @property def freq(self): """A :class:`FrequencyRange` object corresponding to this measurement.""" return self.spectrum.freq class CalibrationObservation: _sources = ("ambient", "hot_load", "open", "short") def __init__( self, path: Union[str, Path], semi_rigid_path: Union[str, Path] = ":semi_rigid_s_parameters_WITH_HEADER.txt", f_low: Optional[float] = 40, f_high: Optional[float] = None, run_num: Union[None, int, dict] = None, repeat_num: Union[None, int, dict] = None, resistance_f: Optional[float] = None, cterms: int = 5, wterms: int = 7, load_kwargs: Optional[dict] = None, s11_kwargs: Optional[dict] = None, load_spectra: Optional[dict] = None, load_s11s: Optional[dict] = None, compile_from_def: bool = True, include_previous: bool = False, internal_switch_kwargs: Optional[Dict[str, Any]] = None, ): """ A composite object representing a full Calibration Observation. This includes spectra of all calibrators, and methods to find the calibration parameters. It strictly follows Monsalve et al. (2017) in its formalism. While by default the class uses the calibrator sources ("ambient", "hot_load", "open", "short"), it can be modified to take other sources by setting ``CalibrationObservation._sources`` to a new tuple of strings. Parameters ---------- path : str or Path Path to the directory containing all relevant measurements. It is assumed that in this directory is an `S11`, `Resistance` and `Spectra` directory. semi_rigid_path : str or Path, optional Path to a file containing S11 measurements for the semi rigid cable. Used to correct the hot load S11. Found automatically if not given. ambient_temp : int Ambient temperature (C) at which measurements were taken. f_low : float Minimum frequency to keep for all loads (and their S11's). If for some reason different frequency bounds are desired per-load, one can pass in full load objects through ``load_spectra``. f_high : float Maximum frequency to keep for all loads (and their S11's). If for some reason different frequency bounds are desired per-load, one can pass in full load objects through ``load_spectra``. run_num : int or dict Which run number to use for the calibrators. Default is to use the last run for each. Passing an int will attempt to use that run for each source. Pass a dict mapping sources to numbers to use different combinations. repeat_num : int or dict Which repeat number to use for the calibrators. Default is to use the last repeat for each. Passing an int will attempt to use that repeat for each source. Pass a dict mapping sources to numbers to use different combinations. resistance_f : float Female resistance (Ohms). Used for the LNA S11. cterms : int The number of terms to use for the polynomial fits to the calibration functions. wterms : int The number of terms to use for the polynomial fits to the noise-wave calibration functions. load_kwargs : dict Keyword arguments used to instantiate the calibrator :class:`LoadSpectrum` objects. See its documentation for relevant parameters. Parameters specified here are used for _all_ calibrator sources. s11_kwargs : dict Keyword arguments used to instantiate the calibrator :class:`LoadS11` objects. See its documentation for relevant parameters. Parameters specified here are used for _all_ calibrator sources. load_spectra : dict A dictionary mapping load names of calibration sources (eg. ambient, short) to either :class:`LoadSpectrum` instances or dictionaries of keywords to instantiate those objects. Useful for individually specifying properties of each load separately. Values in these dictionaries (if supplied) over-ride those given in ``load_kwargs`` (but values in ``load_kwargs`` are still used if not over-ridden). load_s11s : dict A dictionary mapping load names of calibration sources (eg. ambient, short) to :class:`LoadS11` instances or dictionaries of keywords to instantiate those objects. Useful for individually specifying properties of each load separately. Values in these dictionaries (if supplied) over-ride those given in ``s11_kwargs`` (but values in ``s11_kwargs`` are still used if not over-ridden). compile_from_def : bool Whether to attempt compiling a virtual observation from a ``definition.yaml`` inside the observation directory. This is the default behaviour, but can be turned off to enforce that the current directory should be used directly. include_previous : bool Whether to include the previous observation by default to supplement this one if required files are missing. Examples -------- This will setup an observation with all default options applied: >>> path = '/CalibrationObservations/Receiver01_25C_2019_11_26_040_to_200MHz' >>> calobs = CalibrationObservation(path) To specify some options for constructing the various calibrator load spectra: >>> calobs = CalibrationObservation( >>> path, >>> load_kwargs={"cache_dir":".", "ignore_times_percent": 50} >>> ) But if we typically wanted 50% of times ignored, but in one special case we'd like 80%: >>> calobs = CalibrationObservation( >>> path, >>> load_kwargs={"cache_dir":".", "ignore_times_percent": 50}, >>> load_spectra={"short": {"ignore_times_percent": 80}} >>> ) """ load_spectra = load_spectra or {} load_s11s = load_s11s or {} load_kwargs = load_kwargs or {} s11_kwargs = s11_kwargs or {} internal_switch_kwargs = internal_switch_kwargs or {} assert all(name in self._sources for name in load_spectra) assert all(name in self._sources + ("lna",) for name in load_s11s) self.io = io.CalibrationObservation( path, run_num=run_num, repeat_num=repeat_num, fix=False, compile_from_def=compile_from_def, include_previous=include_previous, ) self.compiled_from_def = compile_from_def self.previous_included = include_previous self.path = Path(self.io.path) hot_load_correction = HotLoadCorrection(semi_rigid_path, f_low, f_high) self.internal_switch = s11.InternalSwitch( data=self.io.s11.switching_state, resistance=self.io.definition["measurements"]["resistance_m"][ self.io.s11.switching_state.run_num ], **internal_switch_kwargs, ) self._loads = {} for source in self._sources: load = load_spectra.get(source, {}) if isinstance(load, dict): load = LoadSpectrum( spec_obj=getattr(self.io.spectra, source), resistance_obj=getattr(self.io.resistance, source), f_low=f_low, f_high=f_high, **{**load_kwargs, **load}, ) # Ensure that we finally have a LoadSpectrum if not isinstance(load, LoadSpectrum): raise TypeError("load_spectra must be a dict of LoadSpectrum or dicts.") refl = load_s11s.get(source, {}) if isinstance(refl, dict): refl = LoadS11( load_s11=getattr(self.io.s11, source), internal_switch=self.internal_switch, f_low=f_low, f_high=f_high, **{**s11_kwargs, **refl}, ) if source == "hot_load": self._loads[source] = Load( load, refl, hot_load_correction=hot_load_correction, ambient=self._loads["ambient"].spectrum, ) else: self._loads[source] = Load(load, refl) for name, load in self._loads.items(): setattr(self, name, load) refl = load_s11s.get("lna", {}) self.lna = LNA( load_s11=self.io.s11.receiver_reading, f_low=f_low, f_high=f_high, resistance=resistance_f or self.io.definition["measurements"]["resistance_f"][ self.io.s11.receiver_reading.run_num ], **{**s11_kwargs, **refl}, ) # We must use the most restricted frequency range available from all available # sources as well as the LNA. fmin = max( sum( ( [load.spectrum.freq.min, load.reflections.freq.min] for load in self._loads.values() ), [], ) + [self.lna.freq.min] ) fmax = min( sum( ( [load.spectrum.freq.max, load.reflections.freq.max] for load in self._loads.values() ), [], ) + [self.lna.freq.max] ) if fmax <= fmin: raise ValueError( "The inputs loads and S11s have non-overlapping frequency ranges!" ) self.freq = EdgesFrequencyRange(f_low=fmin, f_high=fmax) # Now make everything actually consistent in its frequency range. for load in self._loads.values(): load.spectrum.freq = self.freq self.cterms = cterms self.wterms = wterms self.t_load = self.ambient.t_load self.t_load_ns = self.ambient.t_load_ns @property def load_names(self) -> Tuple[str]: """Names of the loads.""" return tuple(self._loads.keys()) def new_load( self, load_name: str, run_num: int = 1, reflection_kwargs: Optional[dict] = None, spec_kwargs: Optional[dict] = None, ): """Create a new load with the given load name. Uses files inside the current observation. Parameters ---------- load_name : str The name of the load ('ambient', 'hot_load', 'open', 'short'). run_num_spec : dict or int Run number to use for the spectrum. run_num_load : dict or int Run number to use for the load's S11. reflection_kwargs : dict Keyword arguments to construct the :class:`SwitchCorrection`. spec_kwargs : dict Keyword arguments to construct the :class:`LoadSpectrum`. """ reflection_kwargs = reflection_kwargs or {} spec_kwargs = spec_kwargs or {} # Fill up kwargs with keywords from this instance if "resistance" not in reflection_kwargs: reflection_kwargs[ "resistance" ] = self.open.reflections.internal_switch.resistance for key in [ "ignore_times_percent", "rfi_removal", "rfi_kernel_width_freq", "rfi_kernel_width_time", "rfi_threshold", "cache_dir", "t_load", "t_load_ns", ]: if key not in spec_kwargs: spec_kwargs[key] = getattr(self.open.spectrum, key) reflection_kwargs["run_num_load"] = run_num reflection_kwargs["repeat_num_switch"] = self.io.s11.switching_state.repeat_num reflection_kwargs["run_num_switch"] = self.io.s11.switching_state.run_num spec_kwargs["run_num"] = run_num return Load.from_path( path=self.io.path, load_name=load_name, f_low=self.freq.min, f_high=self.freq.max, reflection_kwargs=reflection_kwargs, spec_kwargs=spec_kwargs, ) def plot_raw_spectra(self, fig=None, ax=None) -> plt.Figure: """ Plot raw uncalibrated spectra for all calibrator sources. Parameters ---------- fig : :class:`plt.Figure` A matplotlib figure on which to make the plot. By default creates a new one. ax : :class:`plt.Axes` A matplotlib Axes on which to make the plot. By default creates a new one. Returns ------- fig : :class:`plt.Figure` The figure on which the plot was made. """ if fig is None and ax is None: fig, ax = plt.subplots( len(self._sources), 1, sharex=True, gridspec_kw={"hspace": 0.05} ) for i, (name, load) in enumerate(self._loads.items()): load.spectrum.plot( fig=fig, ax=ax[i], xlabel=(i == (len(self._sources) - 1)) ) ax[i].set_title(name) return fig def plot_s11_models(self, **kwargs): """ Plot residuals of S11 models for all sources. Returns ------- dict: Each entry has a key of the source name, and the value is a matplotlib fig. """ out = { name: source.reflections.plot_residuals(**kwargs) for name, source in self._loads.items() } out.update({"lna": self.lna.plot_residuals(**kwargs)}) return out @cached_property def s11_correction_models(self): """Dictionary of S11 correction models, one for each source.""" try: return dict(self._injected_source_s11s) except (TypeError, AttributeError): return { name: source.s11_model(self.freq.freq) for name, source in self._loads.items() } @cached_property def source_thermistor_temps(self) -> Dict[str, Union[float, np.ndarray]]: """Dictionary of input source thermistor temperatures.""" if ( hasattr(self, "_injected_source_temps") and self._injected_source_temps is not None ): return self._injected_source_temps return {k: source.temp_ave for k, source in self._loads.items()} @cached_property def _calibration_coefficients(self): """The calibration polynomials, evaluated at `freq.freq`.""" if ( hasattr(self, "_injected_averaged_spectra") and self._injected_averaged_spectra is not None ): ave_spec = self._injected_averaged_spectra else: ave_spec = { k: source.averaged_spectrum for k, source in self._loads.items() } scale, off, Tu, TC, TS = rcf.get_calibration_quantities_iterative( self.freq.freq_recentred, temp_raw=ave_spec, gamma_rec=self.lna_s11, gamma_ant=self.s11_correction_models, temp_ant=self.source_thermistor_temps, cterms=self.cterms, wterms=self.wterms, temp_amb_internal=self.t_load, ) return scale, off, Tu, TC, TS @cached_property def C1_poly(self): # noqa: N802 """`np.poly1d` object describing the Scaling calibration coefficient C1. The polynomial is defined to act on normalized frequencies such that `freq.min` and `freq.max` map to -1 and 1 respectively. Use :func:`~C1` as a direct function on frequency. """ return self._calibration_coefficients[0] @cached_property def C2_poly(self): # noqa: N802 """`np.poly1d` object describing the offset calibration coefficient C2. The polynomial is defined to act on normalized frequencies such that `freq.min` and `freq.max` map to -1 and 1 respectively. Use :func:`~C2` as a direct function on frequency. """ return self._calibration_coefficients[1] @cached_property def Tunc_poly(self): # noqa: N802 """`np.poly1d` object describing the uncorrelated noise-wave parameter, Tunc. The polynomial is defined to act on normalized frequencies such that `freq.min` and `freq.max` map to -1 and 1 respectively. Use :func:`~Tunc` as a direct function on frequency. """ return self._calibration_coefficients[2] @cached_property def Tcos_poly(self): # noqa: N802 """`np.poly1d` object describing the cosine noise-wave parameter, Tcos. The polynomial is defined to act on normalized frequencies such that `freq.min` and `freq.max` map to -1 and 1 respectively. Use :func:`~Tcos` as a direct function on frequency. """ return self._calibration_coefficients[3] @cached_property def Tsin_poly(self): # noqa: N802 """`np.poly1d` object describing the sine noise-wave parameter, Tsin. The polynomial is defined to act on normalized frequencies such that `freq.min` and `freq.max` map to -1 and 1 respectively. Use :func:`~Tsin` as a direct function on frequency. """ return self._calibration_coefficients[4] def C1(self, f: Optional[Union[float, np.ndarray]] = None): # noqa: N802 """ Scaling calibration parameter. Parameters ---------- f : array-like The frequencies at which to evaluate C1. By default, the frequencies of this instance. """ if hasattr(self, "_injected_c1") and self._injected_c1 is not None: return np.array(self._injected_c1) fnorm = self.freq.freq_recentred if f is None else self.freq.normalize(f) return self.C1_poly(fnorm) def C2(self, f: Optional[Union[float, np.ndarray]] = None): # noqa: N802 """ Offset calibration parameter. Parameters ---------- f : array-like The frequencies at which to evaluate C2. By default, the frequencies of this instance. """ if hasattr(self, "_injected_c2") and self._injected_c2 is not None: return np.array(self._injected_c2) fnorm = self.freq.freq_recentred if f is None else self.freq.normalize(f) return self.C2_poly(fnorm) def Tunc(self, f: Optional[Union[float, np.ndarray]] = None): # noqa: N802 """ Uncorrelated noise-wave parameter. Parameters ---------- f : array-like The frequencies at which to evaluate Tunc. By default, the frequencies of thisinstance. """ if hasattr(self, "_injected_t_unc") and self._injected_t_unc is not None: return np.array(self._injected_t_unc) fnorm = self.freq.freq_recentred if f is None else self.freq.normalize(f) return self.Tunc_poly(fnorm) def Tcos(self, f: Optional[Union[float, np.ndarray]] = None): # noqa: N802 """ Cosine noise-wave parameter. Parameters ---------- f : array-like The frequencies at which to evaluate Tcos. By default, the frequencies of this instance. """ if hasattr(self, "_injected_t_cos") and self._injected_t_cos is not None: return np.array(self._injected_t_cos) fnorm = self.freq.freq_recentred if f is None else self.freq.normalize(f) return self.Tcos_poly(fnorm) def Tsin(self, f: Optional[Union[float, np.ndarray]] = None): # noqa: N802 """ Sine noise-wave parameter. Parameters ---------- f : array-like The frequencies at which to evaluate Tsin. By default, the frequencies of this instance. """ if hasattr(self, "_injected_t_sin") and self._injected_t_sin is not None: return np.array(self._injected_t_sin) fnorm = self.freq.freq_recentred if f is None else self.freq.normalize(f) return self.Tsin_poly(fnorm) @cached_property def lna_s11(self): """The corrected S11 of the LNA evaluated at the data frequencies.""" if hasattr(self, "_injected_lna_s11") and self._injected_lna_s11 is not None: return self._injected_lna_s11 else: return self.lna.s11_model(self.freq.freq) def get_linear_coefficients(self, load: Union[Load, str]): """ Calibration coefficients a,b such that T = aT* + b (derived from Eq. 7). Parameters ---------- load : str or :class:`Load` The load for which to get the linear coefficients. """ if isinstance(load, str): load_s11 = self.s11_correction_models[load] elif load.load_name in self.s11_correction_models: load_s11 = self.s11_correction_models[load.load_name] else: load_s11 = load.s11_model(self.freq.freq) return rcf.get_linear_coefficients( load_s11, self.lna_s11, self.C1(self.freq.freq), self.C2(self.freq.freq), self.Tunc(self.freq.freq), self.Tcos(self.freq.freq), self.Tsin(self.freq.freq), t_load=self.t_load, ) def calibrate(self, load: Union[Load, str], q=None, temp=None): """ Calibrate the temperature of a given load. Parameters ---------- load : :class:`Load` or str The load to calibrate. Returns ------- array : calibrated antenna temperature in K, len(f). """ load = self._load_str_to_load(load) a, b = self.get_linear_coefficients(load) if q is not None: temp = self.t_load_ns * q + self.t_load elif temp is None: temp = load.averaged_spectrum return a * temp + b def _load_str_to_load(self, load: Union[Load, str]): if isinstance(load, str): try: load = self._loads[load] except AttributeError: raise AttributeError( "load must be a Load object or a string (one of " "{ambient,hot_load,open,short})" ) else: assert isinstance( load, Load ), "load must be a Load instance, got the {} {}".format(load, type(Load)) return load def decalibrate( self, temp: np.ndarray, load: Union[Load, str], freq: np.ndarray = None ): """ Decalibrate a temperature spectrum, yielding uncalibrated T*. Parameters ---------- temp : array_like A temperature spectrum, with the same length as `freq.freq`. load : str or :class:`Load` The load to calibrate. freq : array-like The frequencies at which to decalibrate. By default, the frequencies of the instance. Returns ------- array_like : T*, the normalised uncalibrated temperature. """ if freq is None: freq = self.freq.freq if freq.min() < self.freq.freq.min(): warnings.warn( "The minimum frequency is outside the calibrated range " f"({self.freq.freq.min()} - {self.freq.freq.max()} MHz)" ) if freq.min() > self.freq.freq.max(): warnings.warn("The maximum frequency is outside the calibrated range ") a, b = self.get_linear_coefficients(load) return (temp - b) / a def get_K( self, freq: np.ndarray | None = None ) -> Dict[str, Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]]: """Get the source-S11-dependent factors of Monsalve (2017) Eq. 7.""" if freq is None: freq = self.freq.freq gamma_ants = self.s11_correction_models else: gamma_ants = { name: source.s11_model(freq) for name, source in self._loads.items() } lna_s11 = self.lna.s11_model(freq) return { name: rcf.get_K(gamma_rec=lna_s11, gamma_ant=gamma_ant) for name, gamma_ant in gamma_ants.items() } def plot_calibrated_temp( self, load: Union[Load, str], bins: int = 2, fig=None, ax=None, xlabel=True, ylabel=True, ): """ Make a plot of calibrated temperature for a given source. Parameters ---------- load : :class:`~LoadSpectrum` instance Source to plot. bins : int Number of bins to smooth over (std of Gaussian kernel) fig : Figure Optionally provide a matplotlib figure to add to. ax : Axis Optionally provide a matplotlib Axis to add to. xlabel : bool Whether to write the x-axis label ylabel : bool Whether to write the y-axis label Returns ------- fig : The matplotlib figure that was created. """ load = self._load_str_to_load(load) if fig is None and ax is None: fig, ax = plt.subplots(1, 1, facecolor="w") # binning temp_calibrated = self.calibrate(load) if bins > 0: freq_ave_cal = convolve( temp_calibrated, Gaussian1DKernel(stddev=bins), boundary="extend" ) else: freq_ave_cal = temp_calibrated freq_ave_cal[np.isinf(freq_ave_cal)] = np.nan rms = np.sqrt(np.mean((freq_ave_cal - np.mean(freq_ave_cal)) ** 2)) ax.plot( self.freq.freq, freq_ave_cal, label=f"Calibrated {load.spectrum.load_name} [RMS = {rms:.3f}]", ) temp_ave = self.source_thermistor_temps.get(load.load_name, load.temp_ave) if not hasattr(temp_ave, "__len__"): ax.axhline(temp_ave, color="C2", label="Average thermistor temp") else: ax.plot( self.freq.freq, temp_ave, color="C2", label="Average thermistor temp", ) ax.set_ylim([np.nanmin(freq_ave_cal), np.nanmax(freq_ave_cal)]) if xlabel: ax.set_xlabel("Frequency [MHz]") if ylabel: ax.set_ylabel("Temperature [K]") plt.ticklabel_format(useOffset=False) ax.grid() ax.legend() return plt.gcf() def get_load_residuals(self): """Get residuals of the calibrated temperature for a each load.""" out = {} for source in self._sources: load = self._load_str_to_load(source) cal = self.calibrate(load) true = self.source_thermistor_temps[source] out[source] = cal - true return out def get_rms(self, smooth: int = 4): """Return a dict of RMS values for each source. Parameters ---------- smooth : int The number of bins over which to smooth residuals before taking the RMS. """ resids = self.get_load_residuals() out = {} for name, res in resids.items(): if smooth > 1: res = convolve(res, Gaussian1DKernel(stddev=smooth), boundary="extend") out[name] = np.sqrt(np.nanmean(res ** 2)) return out def plot_calibrated_temps(self, bins=64, fig=None, ax=None): """ Plot all calibrated temperatures in a single figure. Parameters ---------- bins : int Number of bins in the smoothed spectrum Returns ------- fig : Matplotlib figure that was created. """ if fig is None or ax is None or len(ax) != len(self._sources): fig, ax = plt.subplots( len(self._sources), 1, sharex=True, gridspec_kw={"hspace": 0.05}, figsize=(10, 12), ) for i, source in enumerate(self._sources): self.plot_calibrated_temp( source, bins=bins, fig=fig, ax=ax[i], xlabel=i == (len(self._sources) - 1), ) fig.suptitle("Calibrated Temperatures for Calibration Sources", fontsize=15) return fig def write_coefficients(self, path: Optional[str] = None): """ Save a text file with the derived calibration co-efficients. Parameters ---------- path : str Directory in which to write the file. The filename starts with `All_cal-params` and includes parameters of the class in the filename. By default, current directory. """ path = Path(path or ".") if path.is_dir(): path /= ( f"calibration_parameters_fmin{self.freq.freq.min()}_" f"fmax{self.freq.freq.max()}_C{self.cterms}_W{self.wterms}.txt" ) np.savetxt( path, [ self.freq.freq, self.C1(), self.C2(), self.Tunc(), self.Tcos(), self.Tsin(), ], ) def plot_coefficients(self, fig=None, ax=None): """ Make a plot of the calibration models, C1, C2, Tunc, Tcos and Tsin. Parameters ---------- fig : Figure Optionally pass a matplotlib figure to add to. ax : Axis Optionally pass a matplotlib axis to pass to. Must have 5 axes. """ if fig is None or ax is None: fig, ax = plt.subplots( 5, 1, facecolor="w", gridspec_kw={"hspace": 0.05}, figsize=(10, 9) ) labels = [ "Scale ($C_1$)", "Offset ($C_2$) [K]", r"$T_{\rm unc}$ [K]", r"$T_{\rm cos}$ [K]", r"$T_{\rm sin}$ [K]", ] for i, (kind, label) in enumerate( zip(["C1", "C2", "Tunc", "Tcos", "Tsin"], labels) ): ax[i].plot(self.freq.freq, getattr(self, kind)()) ax[i].set_ylabel(label, fontsize=13) ax[i].grid() plt.ticklabel_format(useOffset=False) if i == 4: ax[i].set_xlabel("Frequency [MHz]", fontsize=13) fig.suptitle("Calibration Parameters", fontsize=15) return fig def invalidate_cache(self): """Invalidate all cached attributes so they must be recalculated.""" if not hasattr(self, "_cached_"): return for cache in self._cached_: del self.__dict__[cache] def update(self, **kwargs): """Update the class in-place, invalidating the cache as well. Parameters ---------- kwargs : All parameters to be updated. """ self.invalidate_cache() for k, v in kwargs.items(): setattr(self, k, v) def write(self, filename: Union[str, Path]): """ Write all information required to calibrate a new spectrum to file. Parameters ---------- filename : path The filename to write to. """ with h5py.File(filename, "w") as fl: # Write attributes fl.attrs["path"] = str(self.io.original_path) fl.attrs["cterms"] = self.cterms fl.attrs["wterms"] = self.wterms fl.attrs["switch_path"] = str(self.internal_switch.data.path) fl.attrs["switch_repeat_num"] = self.internal_switch.data.repeat_num fl.attrs["switch_resistance"] = self.internal_switch.resistance fl.attrs["switch_nterms"] = self.internal_switch.n_terms[0] fl.attrs["switch_model"] = str(self.internal_switch.model) fl.attrs["t_load"] = self.open.spectrum.t_load fl.attrs["t_load_ns"] = self.open.spectrum.t_load_ns fl["C1"] = self.C1_poly.coefficients fl["C2"] = self.C2_poly.coefficients fl["Tunc"] = self.Tunc_poly.coefficients fl["Tcos"] = self.Tcos_poly.coefficients fl["Tsin"] = self.Tsin_poly.coefficients fl["frequencies"] = self.freq.freq fl["lna_s11_real"] = self.lna.s11_model(self.freq.freq).real fl["lna_s11_imag"] = self.lna.s11_model(self.freq.freq).imag fl["internal_switch_s11_real"] = np.real( self.internal_switch.s11_model(self.freq.freq) ) fl["internal_switch_s11_imag"] = np.imag( self.internal_switch.s11_model(self.freq.freq) ) fl["internal_switch_s12_real"] = np.real( self.internal_switch.s12_model(self.freq.freq) ) fl["internal_switch_s12_imag"] = np.imag( self.internal_switch.s12_model(self.freq.freq) ) fl["internal_switch_s22_real"] = np.real( self.internal_switch.s22_model(self.freq.freq) ) fl["internal_switch_s22_imag"] = np.imag( self.internal_switch.s22_model(self.freq.freq) ) load_grp = fl.create_group("loads") for name, load in self._loads.items(): grp = load_grp.create_group(name) grp.attrs["s11_model"] = yaml.dump(load.s11_model) grp["averaged_Q"] = load.spectrum.averaged_Q grp["variance_Q"] = load.spectrum.variance_Q grp["temp_ave"] = load.temp_ave grp.attrs["n_integrations"] = load.spectrum.n_integrations def to_calfile(self): """Directly create a :class:`Calibration` object without writing to file.""" return Calibration.from_calobs(self) def inject( self, lna_s11: np.ndarray = None, source_s11s: Dict[str, np.ndarray] = None, c1: np.ndarray = None, c2: np.ndarray = None, t_unc: np.ndarray = None, t_cos: np.ndarray = None, t_sin: np.ndarray = None, averaged_spectra: Dict[str, np.ndarray] = None, thermistor_temp_ave: Dict[str, np.ndarray] = None, ) -> CalibrationObservation: """Make a new :class:`CalibrationObservation` based on this, with injections. Parameters ---------- lna_s11 The LNA S11 as a function of frequency to inject. source_s11s Dictionary of ``{source: S11}`` for each source to inject. c1 Scaling parameter as a function of frequency to inject. c2 : [type], optional Offset parameter to inject as a function of frequency. t_unc Uncorrelated temperature to inject (as function of frequency) t_cos Correlated temperature to inject (as function of frequency) t_sin Correlated temperature to inject (as function of frequency) averaged_spectra Dictionary of ``{source: spectrum}`` for each source to inject. Returns ------- :class:`CalibrationObservation` A new observation object with the injected models. """ new = copy(self) new.invalidate_cache() new._injected_lna_s11 = lna_s11 new._injected_source_s11s = source_s11s new._injected_c1 = c1 new._injected_c2 = c2 new._injected_t_unc = t_unc new._injected_t_cos = t_cos new._injected_t_sin = t_sin new._injected_averaged_spectra = averaged_spectra new._injected_source_temps = thermistor_temp_ave return new @attr.s class _LittleS11: s11_model: Callable = attr.ib() @attr.s class _LittleSpectrum: averaged_Q: np.ndarray = attr.ib() variance_Q: np.ndarray = attr.ib() n_integrations: int = attr.ib() @attr.s class _LittleLoad: reflections: _LittleS11 = attr.ib() spectrum: _LittleSpectrum = attr.ib() temp_ave: np.ndarray = attr.ib() class Calibration: def __init__(self, filename: Union[str, Path]): """ A class defining an interface to a HDF5 file containing calibration information. Parameters ---------- filename : str or Path The path to the calibration file. """ self.calfile = Path(filename) with h5py.File(filename, "r") as fl: self.calobs_path = fl.attrs["path"] self.cterms = int(fl.attrs["cterms"]) self.wterms = int(fl.attrs["wterms"]) self.t_load = fl.attrs.get("t_load", 300) self.t_load_ns = fl.attrs.get("t_load_ns", 400) self.C1_poly = np.poly1d(fl["C1"][...]) self.C2_poly = np.poly1d(fl["C2"][...]) self.Tcos_poly = np.poly1d(fl["Tcos"][...]) self.Tsin_poly = np.poly1d(fl["Tsin"][...]) self.Tunc_poly = np.poly1d(fl["Tunc"][...]) self.freq = FrequencyRange(fl["frequencies"][...]) self._loads = {} if "loads" in fl: lg = fl["loads"] self.load_names = list(lg.keys()) for name, grp in lg.items(): self._loads[name] = _LittleLoad( reflections=_LittleS11( s11_model=yaml.load( grp.attrs["s11_model"], Loader=yaml.FullLoader ).at(x=self.freq.freq) ), spectrum=_LittleSpectrum( averaged_Q=grp["averaged_Q"][...], variance_Q=grp["variance_Q"][...], n_integrations=grp.attrs["n_integrations"], ), temp_ave=grp["temp_ave"][...], ) self._lna_s11_rl = Spline(self.freq.freq, fl["lna_s11_real"][...]) self._lna_s11_im = Spline(self.freq.freq, fl["lna_s11_imag"][...]) self._intsw_s11_rl = Spline( self.freq.freq, fl["internal_switch_s11_real"][...] ) self._intsw_s11_im = Spline( self.freq.freq, fl["internal_switch_s11_imag"][...] ) self._intsw_s12_rl = Spline( self.freq.freq, fl["internal_switch_s12_real"][...] ) self._intsw_s12_im = Spline( self.freq.freq, fl["internal_switch_s12_imag"][...] ) self._intsw_s22_rl = Spline( self.freq.freq, fl["internal_switch_s22_real"][...] ) self._intsw_s22_im = Spline( self.freq.freq, fl["internal_switch_s22_imag"][...] ) @classmethod def from_calobs(cls, calobs: CalibrationObservation) -> Calibration: """Generate a :class:`Calibration` from an in-memory observation.""" tmp = tempfile.mktemp() calobs.write(tmp) return cls(tmp) def lna_s11(self, freq=None): """Get the LNA S11 at given frequencies.""" if freq is None: freq = self.freq.freq return self._lna_s11_rl(freq) + 1j * self._lna_s11_im(freq) def internal_switch_s11(self, freq=None): """Get the S11 of the internal switch at given frequencies.""" if freq is None: freq = self.freq.freq return self._intsw_s11_rl(freq) + 1j * self._intsw_s11_im(freq) def internal_switch_s12(self, freq=None): """Get the S12 of the internal switch at given frequencies.""" if freq is None: freq = self.freq.freq return self._intsw_s12_rl(freq) + 1j * self._intsw_s12_im(freq) def internal_switch_s22(self, freq=None): """Get the S22 of the internal switch at given frequencies.""" if freq is None: freq = self.freq.freq return self._intsw_s22_rl(freq) + 1j * self._intsw_s22_im(freq) def C1(self, freq=None): """Evaluate the Scale polynomial at given frequencies.""" if freq is None: freq = self.freq.freq return self.C1_poly(self.freq.normalize(freq)) def C2(self, freq=None): """Evaluate the Offset polynomial at given frequencies.""" if freq is None: freq = self.freq.freq return self.C2_poly(self.freq.normalize(freq)) def Tcos(self, freq=None): """Evaluate the cos temperature polynomial at given frequencies.""" if freq is None: freq = self.freq.freq return self.Tcos_poly(self.freq.normalize(freq)) def Tsin(self, freq=None): """Evaluate the sin temperature polynomial at given frequencies.""" if freq is None: freq = self.freq.freq return self.Tsin_poly(self.freq.normalize(freq)) def Tunc(self, freq=None): """Evaluate the uncorrelated temperature polynomial at given frequencies.""" if freq is None: freq = self.freq.freq return self.Tunc_poly(self.freq.normalize(freq)) def _linear_coefficients(self, freq, ant_s11): return rcf.get_linear_coefficients( ant_s11, self.lna_s11(freq), self.C1(freq), self.C2(freq), self.Tunc(freq), self.Tcos(freq), self.Tsin(freq), self.t_load, ) def calibrate_temp(self, freq: np.ndarray, temp: np.ndarray, ant_s11: np.ndarray): """ Calibrate given uncalibrated spectrum. Parameters ---------- freq : np.ndarray The frequencies at which to calibrate temp : np.ndarray The temperatures to calibrate (in K). ant_s11 : np.ndarray The antenna S11 for the load. Returns ------- temp : np.ndarray The calibrated temperature. """ a, b = self._linear_coefficients(freq, ant_s11) return temp * a + b def decalibrate_temp(self, freq, temp, ant_s11): """ De-calibrate given calibrated spectrum. Parameters ---------- freq : np.ndarray The frequencies at which to calibrate temp : np.ndarray The temperatures to calibrate (in K). ant_s11 : np.ndarray The antenna S11 for the load. Returns ------- temp : np.ndarray The calibrated temperature. Notes ----- Using this and then :method:`calibrate_temp` immediately should be an identity operation. """ a, b = self._linear_coefficients(freq, ant_s11) return (temp - b) / a def calibrate_Q( self, freq: np.ndarray, q: np.ndarray, ant_s11: np.ndarray ) -> np.ndarray: """ Calibrate given power ratio spectrum. Parameters ---------- freq : np.ndarray The frequencies at which to calibrate q : np.ndarray The power ratio to calibrate. ant_s11 : np.ndarray The antenna S11 for the load. Returns ------- temp : np.ndarray The calibrated temperature. """ uncal_temp = self.t_load_ns * q + self.t_load return self.calibrate_temp(freq, uncal_temp, ant_s11) def perform_term_sweep( calobs: CalibrationObservation, delta_rms_thresh: float = 0, max_cterms: int = 15, max_wterms: int = 15, explore_run_nums: bool = False, explore_repeat_nums: bool = False, direc=".", verbose=False, ) -> CalibrationObservation: """For a given calibration definition, perform a sweep over number of terms. There are options to save _every_ calibration solution, or just the "best" one. Parameters ---------- calobs: :class:`CalibrationObservation` instance The definition calibration class. The `cterms` and `wterms` in this instance should define the *lowest* values of the parameters to sweep over. delta_rms_thresh : float The threshold in change in RMS between one set of parameters and the next that will define where to cut off. If zero, will run all sets of parameters up to the maximum terms specified. max_cterms : int The maximum number of cterms to trial. max_wterms : int The maximum number of wterms to trial. explore_run_nums : bool Whether to iterate over S11 run numbers to find the best residuals. explore_repeat_nums : bool Whether to iterate over S11 repeat numbers to find the best residuals. direc : str Directory to write resultant :class:`Calibration` file to. verbose : bool Whether to write out the RMS values derived throughout the sweep. Notes ----- When exploring run/repeat nums, run nums are kept constant within a load (i.e. the match/short/open etc. all have either run_num=1 or run_num=2 for the same load. This is physically motivated. """ cterms = range(calobs.cterms, max_cterms) wterms = range(calobs.wterms, max_wterms) winner = np.zeros(len(cterms), dtype=int) s11_keys = ["switching_state", "receiver_reading"] + list(io.LOAD_ALIASES.keys()) if explore_repeat_nums: # Note that we don't explore run_nums for spectra/resistance, because it's rare # to have those, and they'll only exist if one got completely botched (and that # should be set by the user). rep_num = { k: range(1, getattr(calobs.io.s11, k).max_repeat_num + 1) for k in s11_keys } else: rep_num = {k: [getattr(calobs.io.s11, k).repeat_num] for k in s11_keys} rep_num = tools.dct_of_list_to_list_of_dct(rep_num) if explore_run_nums: run_num = { "switching_state": range( 1, calobs.io.s11.get_highest_run_num("SwitchingState") + 1 ), "receiver_reading": range( 1, calobs.io.s11.get_highest_run_num("ReceiverReading") + 1 ), } else: run_num = { "switching_state": [calobs.io.s11.switching_state.run_num], "receiver_reading": [calobs.io.s11.receiver_reading.run_num], } run_num = tools.dct_of_list_to_list_of_dct(run_num) best_rms = np.inf for this_rep_num in rep_num: for this_run_num in run_num: tmp_run_num = copy(calobs.io.run_num) tmp_run_num.update(this_run_num) # Change the base io.CalObs because it will change with rep/run. calobs.io = io.CalibrationObservation( path=calobs.io.path, run_num=tmp_run_num, repeat_num=this_rep_num, fix=False, compile_from_def=calobs.compiled_from_def, include_previous=calobs.previous_included, ) calobs.lna = LNA( calobs.io.s11.receiver_reading, f_low=calobs.freq.min, f_high=calobs.freq.max, resistance=calobs.lna.resistance, ) # If we're changing anything else, we need to change each load. for name, load in calobs._loads.items(): load.reflections = LoadS11.from_path( load_name=name, path=calobs.io.path, repeat_num_load=this_rep_num[name], run_num_switch=this_run_num["switching_state"], repeat_num_switch=this_rep_num["switching_state"], ) if verbose: print( f"SWEEPING SwSt={calobs.io.s11.switching_state.repeat_num}, " f"RcvRd={calobs.io.s11.receiver_reading.repeat_num} " f"[Sw={calobs.io.s11.switching_state.run_num}, " f"RR={calobs.io.s11.receiver_reading.run_num}, " f"open={calobs.io.s11.open.run_num}, " f"short={calobs.io.s11.short.run_num}, " f"ambient={calobs.io.s11.ambient.run_num}, " f"hot={calobs.io.s11.hot_load.run_num}]" ) print("-" * 30) rms = np.zeros((len(cterms), len(wterms))) for i, c in enumerate(cterms): for j, w in enumerate(wterms): calobs.update(cterms=c, wterms=w) res = calobs.get_load_residuals() dof = sum(len(r) for r in res.values()) - c - w rms[i, j] = np.sqrt( sum(np.nansum(np.square(x)) for x in res.values()) / dof ) if verbose: print(f"Nc = {c:02}, Nw = {w:02}; RMS/dof = {rms[i, j]:1.3e}") # If we've decreased by more than the threshold, this wterms becomes # the new winner (for this number of cterms) if j > 0 and rms[i, j] >= rms[i, j - 1] - delta_rms_thresh: winner[i] = j - 1 break if ( i > 0 and rms[i, winner[i]] >= rms[i - 1, winner[i - 1]] - delta_rms_thresh ): break if verbose: print( f"Best parameters found for Nc={cterms[i-1]}, " f"Nw={wterms[winner[i-1]]}, " f"with RMS = {rms[i-1, winner[i-1]]}." ) print() if rms[i - 1, winner[i - 1]] < best_rms: best_run_combo = ( calobs.io.run_num, calobs.io.s11.receiver_reading.repeat_num, calobs.io.s11.switching_state.repeat_num, ) best_cterms = cterms[i - 1] best_wterms = wterms[winner[i - 1]] if verbose and (explore_repeat_nums or explore_run_nums): print("The very best parameters were found were for:") print(f"\tSwitchingState Repeat = {best_run_combo[2]}") print(f"\tReceiverReading Repeat = {best_run_combo[1]}") print(f"\tRun Numbers = {best_run_combo[0]}") print(f"\t# C-terms = {best_cterms}") print(f"\t# W-terms = {best_wterms}") calobs.update(cterms=best_cterms, wterms=best_wterms) calobs.io = io.CalibrationObservation( path=calobs.io.path, run_num=best_run_combo[0], repeat_num={ "switching_state": best_run_combo[2], "receiver_reading": best_run_combo[1], }, fix=False, compile_from_def=calobs.compiled_from_def, include_previous=calobs.previous_included, ) calobs.lna = LNA( calobs.io.s11.receiver_reading, f_low=calobs.freq.min, f_high=calobs.freq.max, resistance=calobs.lna.resistance, ) if direc is not None: direc = Path(direc) if not direc.exists(): direc.mkdir(parents=True) pth = Path(calobs.path).parent.name pth = str(pth) + f"_c{calobs.cterms}_w{calobs.wterms}.h5" calobs.write(direc / pth) return calobs
# Copyright 2017-2019 EPAM Systems, Inc. (https://www.epam.com/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import time from abc import ABCMeta, abstractmethod from threading import RLock, Thread from fuse import fuse_get_context def get_lock(threads, monitoring_delay): return PathLock(monitoring_delay=monitoring_delay) if threads else DummyLock() def monitor_locks(monitor_lock, locks, timeout): while True: try: monitor_lock.acquire() logging.debug('Updating path lock status') free_paths = [path for path, lock in locks.iteritems() if lock.acquire(blocking=False)] logging.debug('Releasing %d locks' % len(free_paths)) for path in free_paths: del locks[path] logging.debug('Finished path lock status update') finally: monitor_lock.release() time.sleep(timeout) class FileSystemLock: __metaclass__ = ABCMeta @abstractmethod def lock(self, path): pass @abstractmethod def unlock(self, path): pass class DummyLock(FileSystemLock): def lock(self, path): pass def unlock(self, path): pass class PathLock(FileSystemLock): def __init__(self, monitoring_delay=600): self._mutex = RLock() self._monitor_lock = RLock() self._locks = {} self._monitor = Thread(target=monitor_locks, args=(self._monitor_lock, self._locks, monitoring_delay,)) self._monitor.daemon = True self._monitor.start() def lock(self, path): try: self._monitor_lock.acquire() logging.debug('Locking path %s for %s' % (path, str(fuse_get_context()))) path_lock = self._get_path_lock(path) self._lock_path(path_lock) logging.debug('Acquired lock for %s' % path) finally: self._monitor_lock.release() def unlock(self, path): logging.debug('Unlocking path %s for %s' % (path, str(fuse_get_context()))) self._release_path(path) def _release_path(self, path): try: self._mutex.acquire() if path not in self._locks: logging.debug('Cannot release non-existing lock.') else: self._locks[path].release() logging.debug('Released lock for %s' % path) finally: self._mutex.release() logging.debug('Finished unlocking for %s' % path) def _get_path_lock(self, path): try: self._mutex.acquire() if path not in self._locks: self._locks[path] = RLock() logging.debug('Created new lock for %s' % path) return self._locks[path] finally: self._mutex.release() def _lock_path(self, path_lock): try: path_lock.acquire() except: path_lock.release() raise
""" # # Exercise 2: Service Health Check # Create one or multiple filip clients and check if the corresponding services # are up and running by accessing their version information. # The input sections are marked with 'ToDo' # #### Steps to complete: # 1. Set up the missing parameters in the parameter section # 2. Create filip ngsi_v2 clients for the individual services and check for # their version # 3. Create a config object for the ngsi_v2 multi client (HttpClient), # create the multi client and again check for services' versions """ # ## Import packages from filip.clients.ngsi_v2 import \ HttpClient, \ HttpClientConfig, \ ContextBrokerClient, \ IoTAClient, \ QuantumLeapClient # ## Parameters # ToDo: Enter your context broker url and port, e.g. http://localhost:1026 CB_URL = "http://localhost:1026" # ToDo: Enter your IoT-Agent url and port, e.g. http://localhost:4041 IOTA_URL = "http://localhost:4041" # ToDo: Enter your QuantumLeap url and port, e.g. http://localhost:8668 QL_URL = "http://localhost:8668" # ## Main script if __name__ == "__main__": # ToDo: Create a single client for each service and check the service for # its version cbc = ContextBrokerClient(url=CB_URL) print(cbc.get_version()) iotac = IoTAClient(url=IOTA_URL) print(iotac.get_version()) qlc = QuantumLeapClient(url=QL_URL) print(qlc.get_version()) # ToDo: Create a configuration object for a multi client config = HttpClientConfig(cb_url=CB_URL, iota_url=IOTA_URL, ql_url=QL_URL) # ToDo: Create a multi client check again all services for their version multic = HttpClient(config=config) print(multic.cb.get_version()) print(multic.iota.get_version()) print(multic.timeseries.get_version())
from .base import AsyncUrbanClient, UrbanClient, UrbanDefinition, UrbanDictionaryError
# Copyright (c) 2015 Walt Chen # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 class ParserException(Exception): pass class Stock(object): # yesterday_close is yesterday close price # close is today close price # volume: unit of stock transacted # turnover: total transaction money def __init__(self, code, date, open, high, low, close, volume): self.code = code self.date = str(date) self.open = open self.high = high self.low = low self.close = close self.volume = volume def __str__(self): return "%s\tvol: %s\topen: %s\tHI: %s\t LO: %s\tclose: %s" %\ (self.date, self.volume, self.open, self.high, self.low, self.close) __all__ = ['ParserException', 'Stock']
from pathlib import Path import copy import time import torch.optim as optim import numpy as np import torch from torch.autograd import Variable from model import * from data_utils import * import torch.nn as nn from loguru import logger feature_dim = 8 block_size = 16 pad=2 n_conv=3 thresh=0.5 debug = False def test_bottom_io(): tsdf = [torch.from_numpy(np.random.rand(1, 1, block_size+2*pad+2*n_conv, block_size+2*pad+2*n_conv, block_size+2*pad+2*n_conv)).float().to(device)] prev = {(0, 0, 0): torch.from_numpy(np.random.rand(1, feature_dim, block_size//2+2*pad, block_size//2+2*pad, block_size//2+2*pad) ).float().to(device)} mod = BottomLevel(feature_dim, block_size=block_size) if device == 'cuda': mod.cuda() out = mod(tsdf, prev) assert type(out) == list assert len(out) == 1 out = out[0] assert len(out) == 1 for X in out.keys(): assert out[X].shape == (1, 2, block_size, block_size, block_size), out[X].shape def test_convtrans(): conv1 = nn.ConvTranspose3d(10, 10, kernel_size=4, stride=2, output_padding=0, padding=0, bias=False) dat = torch.ones(1, 10, block_size, block_size, block_size) y = conv1(dat) assert y.shape[-1] == block_size*2+2 , (y.shape, dat.shape) pad = nn.ReplicationPad3d(1) conv1 = nn.ConvTranspose3d(1, 1, kernel_size=3, stride=2, output_padding=1, padding=1, bias=False) dat = Variable(torch.ones(1, 1, 4, 4, 4)) y = conv1(dat) assert y.shape[-1] == 8, y.shape def test_data(): data = TsdfGenerator(64) vis = visdom.Visdom() gt, tsdf_in = data.__getitem__(0) assert np.abs(tsdf_in).max() < 33 def test_ellipsoid(): arr = ellipsoid(10, 10, 10, levelset=True)*10 # the output is ~normalized. multiple by 10 assert arr.shape == (23, 23, 23), arr.shape dist = np.sqrt(11**2*3)-10 assert np.abs(arr[0, 0, 0]) > dist, (arr[0, 0, 0], dist) print(arr[0, 0, 0], dist) a, b, c = 10, 15, 25 arr = ellipsoid(a, b, c, levelset=True) # if we move 1 voxel in space the sdf should also not change by more than 1 # compare to 1.01 for numeric reasons assert np.all(np.abs(np.diff(arr, axis=0)) <= 1.01), np.abs(np.diff(arr, axis=0)).max() assert np.all(np.abs(np.diff(arr, axis=1)) <= 1.01) assert np.all(np.abs(np.diff(arr, axis=2)) <= 1.01) def test_criteria_trivial(): data = TsdfGenerator(block_size, sigma=0.) gt, tsdf_in = data.__getitem_split__() gt = gt[None, :] # add dim for batch assert np.abs(tsdf_in).max() < 33 gt_label = np.zeros_like(gt) gt_label[gt >= 0] = 1 gt_label = torch.from_numpy(gt_label.astype(int)) criteria = OctreeCrossEntropyLoss(gt_label, block_size) assert len(criteria.gt_octree) == 1 mock_out = np.concatenate((tsdf_in[None,:]<0, tsdf_in[None,:]>=0), axis=1).astype(float) mock_out=1000*(mock_out-0.5) mock_out = [{(0,0,0):torch.from_numpy(mock_out).float()}] loss = criteria(mock_out) assert loss.dim()==0 assert loss < 0.01, loss def test_gt(): pass #get gt, #get gt_octree #retnder gt #render gt_octree def test_criteria(levels=2): res=2**(levels-1)*block_size data = TsdfGenerator(res, sigma=0.9) gt, tsdf_in = data.__getitem_split__() gt = gt[None, :] # add dim for batch assert np.abs(tsdf_in).max() < res #labels should be symetric def count_label(gt, label, level=1): gt_label = np.zeros_like(gt) gt_label[gt >= 0] = 1 gt_label = torch.from_numpy(gt_label.astype(int)) criteria = OctreeCrossEntropyLoss(gt_label, block_size) gt=criteria.gt_octree[level] return np.count_nonzero(np.array(list(gt.values()))==label) n_outside = count_label(gt, OUTSIDE) n_inside = count_label(gt, INSIDE) n_mixed = count_label(gt, MIXED) assert n_outside+n_inside+n_mixed==(2**(levels-2))**3 rev_inside = count_label(-gt, OUTSIDE) assert n_inside==rev_inside, (n_inside, rev_inside) gt_label = np.zeros_like(gt) gt_label[gt >= 0] = 1 gt_label = torch.from_numpy(gt_label.astype(int)) criteria = OctreeCrossEntropyLoss(gt_label, block_size) assert len(criteria.gt_octree) == levels assert len(criteria.gt_octree[0]) == (2**(levels-1))**3, len(criteria.gt_octree[0]) assert len(criteria.gt_octree[-1]) == 1, len(criteria.gt_octree[-1]) for l, level in enumerate(criteria.gt_octree): for k, v in level.items(): assert v.dim() > 0, (l, k, v) def test_basic_debug(): T = torch.zeros(1,1,36,36,36) outplane = 16 mod = nn.Conv3d(1, outplane, kernel_size=3, stride=1, padding=0, bias=False) T = mod(T) mod = nn.BatchNorm3d(outplane) T = mod(T) mod = nn.ReLU(inplace=True) T = mod(T) mod = nn.Conv3d(outplane, outplane, kernel_size=3, stride=1, padding=0, bias=False) T = mod(T) mod = nn.BatchNorm3d(outplane) T = mod(T) assert T.shape == (1,16,32,32,32) def test_simple_net_single_data(): data = TsdfGenerator(block_size, sigma=0.9) vis = visdom.Visdom() gt, tsdf_in = data.__getitem__(0) gt = gt[None, :] # add dim for batch assert np.abs(tsdf_in).max() < block_size gt_label = np.zeros_like(gt) gt_label[gt >= 0] = 1 gt_label = torch.from_numpy(gt_label.astype(int)).to(device) rep_pad = nn.ReplicationPad3d(pad+n_conv) tsdf = [rep_pad(torch.from_numpy(copy.copy(tsdf_in)[None, :]).float().to(device))] #prev = {(0, 0, 0): torch.rand(1, feature_dim, block_size//2, block_size//2, # block_size//2).float().to(device)} prev = {(0, 0, 0): torch.from_numpy(np.random.rand(1, feature_dim, block_size//2+2*pad, block_size//2+2*pad, block_size//2+2*pad) ).float().to(device)} #assert tsdf[0].shape == (1, 1, block_size, block_size, block_size) assert gt_label.shape == (1, block_size, block_size, block_size) criteria = OctreeCrossEntropyLoss(gt_label, block_size) mod = BottomLevel(feature_dim, block_size) if device=='cuda': mod.cuda() criteria.cuda() optimizer = optim.Adam(mod.parameters(), lr=0.001) # , momentum=0.9) for it in range(1, 100): out = mod(tsdf, prev) assert len(out) == 1 assert out[0][(0,0,0)].shape[1] == 2, out.shape loss = criteria(out) optimizer.zero_grad() loss.backward() optimizer.step() if (it+1) % 10 == 0: sdf_ = octree_to_sdf(out, block_size) print('level ', np.count_nonzero(sdf_ == 1)) err = plotVoxelVisdom(gt[0], sdf_, tsdf_in[0], vis) assert np.abs(tsdf_in).max() < 33 print(err) print(it, loss) assert err < 2 def test_bottom_layer( block_size = 32): dataset = TsdfGenerator(block_size, n_elips=1, sigma=0.9, epoch_size=1000) train_loader = torch.utils.data.DataLoader(dataset, batch_size=1, num_workers=4) vis = visdom.Visdom() mod = BottomLevel(feature_dim, block_size) if device=='cuda': mod.cuda() optimizer = optim.SGD(mod.parameters(), lr=0.0001, momentum=0.9) m = nn.ReplicationPad3d(mod.pad+mod.n_conv) prev = {(0, 0, 0): torch.rand(1, feature_dim, block_size//2+2*pad, block_size//2+2*pad, block_size//2+2*pad ).float().to(device)} gt_label = None for it, (gt, tsdf_in) in enumerate(train_loader): assert np.abs(tsdf_in).max() < 33 assert gt.max() > 1 and gt.min() < -1 gt_label = torch.ones_like(gt)*INSIDE gt_label[gt >= 0] = OUTSIDE gt_label = gt_label.long().to(device) tsdf = [m(tsdf_in).float().to(device)] for T in prev.values(): assert torch.all(torch.isfinite(T)) for T in tsdf: assert torch.all(torch.isfinite(T)) out = mod(tsdf, prev) assert out[0][(0,0,0)].max()>out[0][(0,0,0)].min() for oct in out: if not np.all([torch.all(torch.isfinite(o)) for o in oct.values()]): import ipdb; ipdb.set_trace() criteria = OctreeCrossEntropyLoss(gt_label, block_size) if device=='cuda': criteria.cuda() loss = criteria(out) optimizer.zero_grad() loss.backward() optimizer.step() print(it, loss) if it>1 and it%100 == 0: sdf_ = octree_to_sdf(out, block_size) err = plotVoxelVisdom(gt[0].numpy(), sdf_, tsdf_in[0][0].numpy(), vis) print(it, err) assert err < 2, err def test_2tier_net_single_data(): res = block_size*2 dataset = TsdfGenerator(res, n_elips=3, sigma=0.9, epoch_size=100) vis = visdom.Visdom() mod = TopLevel(feature_dim, BottomLevel(feature_dim, block_size), block_size=block_size) if device == 'cuda': mod.cuda() optimizer = optim.Adam(mod.parameters(), lr=0.01)#, momentum=0.9) gt, tsdf_in = dataset.__getitem__(0) assert np.abs(tsdf_in).max() < 33 assert gt.max() > 1 and gt.min() < -1 gt = torch.from_numpy(gt[None, :]) gt_label = torch.zeros_like(gt) gt_label[gt >= 0] = 1 gt_label = gt_label.long().to(device) criteria = OctreeCrossEntropyLoss(gt_label, block_size) if device == 'cuda': criteria.cuda() tsdf = torch.from_numpy(copy.copy(tsdf_in)[None, :]).float().to(device) for it in range(1000): out = mod(tsdf) assert len(out) == 2 for l in out[1:]: for v in l.values(): # only level 0 can have a full bloc assert v.shape[-1] < block_size, (v.shape) loss = criteria(out) assert len(out) == 2 optimizer.zero_grad() loss.backward() optimizer.step() print(it, loss) if (it+1) % 10 == 0: #mod.eval() sdf_ = octree_to_sdf(out, block_size) err = plotVoxelVisdom(gt[0].numpy(), sdf_, tsdf_in[0], vis) #mod.train() print(it, err) assert err < 2,err def test_4tier_data(block_size=block_size): res=block_size*(2**3) dataset = TsdfGenerator(res, n_elips=3, sigma=0.9, epoch_size=1000) gt, tsdf = dataset.__getitem__(0) mod = BottomLevel(feature_dim, block_size) for i in range(2): #add 2 mid layers print('adding mid layer') mod = MidLevel(feature_dim, feature_dim, mod, block_size, thresh=thresh, budget=4) mod = TopLevel(feature_dim, mod, block_size=block_size) out = mod(torch.from_numpy(tsdf[None,:]).float()) def test_2tier_net(res=64, block_size=block_size): dataset = TsdfGenerator(res, n_elips=1, sigma=0.9, epoch_size=10000, debug=False) train_loader = torch.utils.data.DataLoader(dataset, batch_size=1, num_workers=2) vis = visdom.Visdom() Force = False if not Force and Path('model_2tier.pth').exists(): mod = torch.load('model_2tier.pth') else: layers = [] layers.append(BottomLevel(feature_dim, block_size)) while block_size*2**len(layers) <= res/2: print('adding mid layer', len(layers)) layers.append(MidLevel(feature_dim, feature_dim, layers[-1], block_size, thresh=0.5, budget=4)) mod = TopLevel(feature_dim, layers[-1], block_size=block_size) if device == 'cuda': mod.cuda() optimizer = optim.SGD(mod.parameters(), lr=0.0001, momentum=0.95) for it, (gt, tsdf_in) in enumerate(train_loader): assert np.abs(tsdf_in).max() < res assert gt.max() > 1 and gt.min() < -1 gt_label = torch.zeros_like(gt, device=device) gt_label[gt >= 0] = 1 gt_label = gt_label.long().to(device) criteria = OctreeCrossEntropyLoss(gt_label, block_size) if device == 'cuda': criteria.cuda() #tsdf = tsdf_in.float().cuda() t_start = time.time() tsdf = tsdf_in.float().to(device) pred = mod(tsdf) forward_t = time.time()-t_start t = time.time() loss = criteria(pred) loss_t = time.time()-t t = time.time() optimizer.zero_grad() loss.backward() back_t = time.time()-t t = time.time() optimizer.step() step_t = time.time()-t t = time.time() print(it, loss.data) print('valuated ', [len(o) for o in pred]) print('GT voxels ', np.count_nonzero([o.numel()>3 for o in criteria.gt_octree])) print('timing:{total:.3f}. forward {forward_t:.3f}, loss {loss_t:.3f}, back {back_t:.3f}, step {step_t:.3f}'.format( total=t-t_start, forward_t=forward_t, loss_t=loss_t, back_t=back_t, step_t=step_t)) if (it+1) % 100 == 0: mod.eval() out = mod(tsdf) loss = criteria(out) for i in range(len(out)): resample = (2**i) print('Eval: level %d, %d/%d evaluated' % (i, len(out[i]), (res/block_size/resample)**3)) sdf_ = octree_to_sdf(out, block_size) err = plotVoxelVisdom(gt[0].numpy(), sdf_, tsdf_in[0][0].numpy(), vis) if loss.data<1: import ipdb; ipdb.set_trace() mod.train() print(it, err) torch.save(mod, 'model_2tier.pth') if err < 2 : break #assert err < 2 def create_model(block_size, feature_dim, res): layers = [] layers.append(BottomLevel(feature_dim, block_size)) while block_size*2**len(layers) <= res/2: print('adding mid layer', len(layers)) layers.append(MidLevel(feature_dim, feature_dim, layers[-1], block_size, thresh=0.1)) mod = TopLevel(feature_dim, layers[-1], block_size=block_size) return mod def test_simple_split(res=64, block_size=block_size): dataset = TsdfGenerator(res, n_elips=3, sigma=0.9, epoch_size=1000, debug=True) vis = visdom.Visdom() mod = torch.load('model.pth') if device == 'cuda': mod.cuda() mod.eval() gt, tsdf_in = dataset.__getitem_split__() gt = torch.from_numpy(gt[None, :]) tsdf_in = torch.from_numpy(tsdf_in[None, :]) gt_label = torch.zeros_like(gt, device=device) gt_label[gt >= 0] = 1 gt_label = gt_label.long().to(device) criteria = OctreeCrossEntropyLoss(gt_label, block_size) if device == 'cuda': criteria.cuda() tsdf = tsdf_in.float().to(device) pred = mod(tsdf) loss = criteria(pred) print(loss.data) print('evaluated ', [len(o) for o in pred]) for X in pred[0]: X_ = tuple(np.array(X)//2) print (X, pred[1][X_]) assert pred[1][X_][0,2]>0.5 sdf_ = octree_to_sdf(pred, block_size) err = plotVoxelVisdom(gt[0].numpy(), sdf_, tsdf_in[0][0].numpy(), vis) import ipdb; ipdb.set_trace() for X,v in criteria.gt_octree[0].items(): if v.numel()>1: assert X[2]==1 #that's how we built the space def test_split_subtree(padding=0): feat = torch.rand(1, feature_dim, block_size+2*padding, block_size+2*padding, block_size+2*padding ).float() split = split_tree(feat,padding=padding) assert len(split) == 8, len(split) assert torch.all(split[(0, 0, 0)][0, :, padding, padding, padding] == feat[0, :, padding, padding, padding]) assert torch.all(split[(1, 0, 0)][0, :, padding, padding, padding] == feat[0, :, block_size//2+padding, padding, padding]) split[(1, 0, 0)][0, 0, padding, padding, padding] = 12.13 #this is no longer true, I don't know how to do this inplace #assert feat[0, 0, block_size//2, 0, 0] == 12.13 def test_split_subtree_with_padding(): padding=2 feat = torch.rand(1, feature_dim, block_size, block_size, block_size).float() split = split_tree(feat, padding=2) assert len(split) == 8, len(split) octant = split[(0,0,0)] assert torch.all(octant[0, :padding, 0, 0, 0] == 0) assert torch.all(octant[0, -padding:, 0, 0, 0] == 0) assert octant.shape[-3:]==feat.shape[-3:]//2+padding*2 assert torch.all(octant[0, padding:-padding, 0, 0, 0] == feat[0, :, 0, 0, 0]) assert torch.all(octant[0, padding:-padding, 0, 0, 0] == feat[0, :, 0, 0, 0]) assert torch.all(split[(1, 0, 0)][0, :, padding, padding, padding] == feat[0, :, block_size//2, 0, 0]) split[(1, 0, 0)][0, 0, 0, 0, 0] = 12.13 assert feat[0, 0, block_size//2+padding, 0, 0] == 12.13 if __name__ == '__main__': import sys logger.remove() logger.add(sys.stderr , format="{time} {level} {message}", level="INFO") #test_4tier_data() #test_criteria_trivial() #test_criteria() #test_criteria(4) #test_data() #test_ellipsoid() #test_convtrans() #test_split_subtree() #test_split_subtree(padding=2) #test_basic_debug() #test_bottom_io() #test_simple_net_single_data() #test_bottom_layer() # TODO why does this not converge? interesting #test_2tier_net_single_data() #test_2tier_net(res=32, block_size=block_size) test_2tier_net(res=64, block_size=block_size) test_simple_split(res=64, block_size=block_size) import ipdb; ipdb.set_trace() test_2tier_net(res=128, block_size=block_size)
# # * This file is distributed under the terms in the attached LICENSE file. # * If you do not find this file, copies can be found by writing to: # * Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, # * Berkeley, CA, 94704. Attention: Intel License Inquiry. # * Or # * UC Berkeley EECS Computer Science Division, 387 Soda Hall #1776, # * Berkeley, CA, 94707. Attention: P2 Group. # ########### Description ########### # # # Given script runs aggregates.olg test and checks the test output # # Assumptions - Three nodes with ports 20202, 20203, 20204. Execute the following: # # * At 20202: # * tests/runOverLog -DME=\"localhost:20202\" -DNEIGHBOR1=\"localhost:20203\" -DNEIGHBOR2=\"localhost:20204\" -o unitTests/olg/aggregates.olg -n localhost -p 20202 # # * At 20203: # * tests/runOverLog -DME=\"localhost:20203\" -DNEIGHBOR1=\"localhost:20202\" -DNEIGHBOR2=\"localhost:20204\" -o unitTests/olg/aggregates.olg -n localhost -p 20203 # # * At 20204: # * tests/runOverLog -DME=\"localhost:20204\" -DNEIGHBOR1=\"localhost:20202\" -DNEIGHBOR2=\"localhost:20203\" -o unitTests/olg/aggregates.olg -n localhost -p 20204 # # Expected output - (multiple tuples may be present in the output and the order of the results can vary) # # * At 20202: # ##Print[RecvEvent!smallestNeighborOf!d2_eca!localhost:20202]: [smallestNeighborOf(localhost:20202, localhost:20203)] # ##Print[RecvEvent!smallestNeighborOf!d2_eca!localhost:20202]: [smallestNeighborOf(localhost:20202, localhost:20204)] # # * At 20203 # # ##Print[RecvEvent!smallestNeighborOf!d2_eca!localhost:20203]: [smallestNeighborOf(localhost:20203, localhost:20202)] # ##Print[RecvEvent!largestNeighborOf!d1_eca!localhost:20203]: [largestNeighborOf(localhost:20203, localhost:20204)] # # *At 20204 # ##Print[RecvEvent!largestNeighborOf!d1_eca!localhost:20204]: [largestNeighborOf(localhost:20204, localhost:20203)] # ##Print[RecvEvent!largestNeighborOf!d1_eca!localhost:20204]: [largestNeighborOf(localhost:20204, localhost:20202)] # # #################################### #!/usr/bin/python import os import time import threading import re import sys import getopt import subprocess # Usage function def usage(): print """ aggregates.py -E <planner path> -B <olg path> -T <time in seconds> -E planner path -B olg path -T time (secs) for test to run -h prints usage message """ # Function to parse the output file and check whether the output matches the expected value def script_output(stdout_20202, stdout_20203, stdout_20204): output = "" for line in stdout_20202.readlines(): output = output + line p = re.compile(r""" ([#][#]Print\[RecvEvent \s* RULE \s* d2\]: \s* \[smallestNeighborOf\(localhost:20202, \s* localhost:20203\)\] .* [#][#]Print\[RecvEvent \s* RULE \s* d2\]: \s* \[smallestNeighborOf\(localhost:20202, \s* localhost:20204\)\] | [#][#]Print\[RecvEvent \s* RULE \s* d2\]: \s* \[smallestNeighborOf\(localhost:20202, \s* localhost:20204\)\] .* [#][#]Print\[RecvEvent \s* RULE \s* d2\]: \s* \[smallestNeighborOf\(localhost:20202, \s* localhost:20203\)\]) """, re.VERBOSE|re.DOTALL) flag = p.search(output) if flag == 0: print "Test failed" return output = "" for line in stdout_20203.readlines(): output = output + line p = re.compile(r""" ([#][#]Print\[RecvEvent \s* RULE \s* d2\]: \s* \[smallestNeighborOf\(localhost:20203, \s* localhost:20202\)\] .* [#][#]Print\[RecvEvent \s* RULE \s* d1\]: \s* \[largestNeighborOf\(localhost:20203, \s* localhost:20204\)\] | [#][#]Print\[RecvEvent \s* RULE \s* d1\]: \s* \[largestNeighborOf\(localhost:20203, \s* localhost:20204\)\] .* [#][#]Print\[RecvEvent \s* RULE \s* d2\]: \s* \[smallestNeighborOf\(localhost:20203, \s* localhost:20202\)\]) """, re.VERBOSE|re.DOTALL) flag = p.search(output) if flag == 0: print "Test failed" return output = "" for line in stdout_20204.readlines(): output = output + line p = re.compile(r""" ([#][#]Print\[RecvEvent \s* RULE \s* d1\]: \s* \[largestNeighborOf\(localhost:20204, \s* localhost:20203\)\] .* [#][#]Print\[RecvEvent \s* RULE \s* d1\]: \s* \[largestNeighborOf\(localhost:20204, \s* localhost:20202\)\] | [#][#]Print\[RecvEvent \s* RULE \s* d1\]: \s* \[largestNeighborOf\(localhost:20204, \s* localhost:20202\)\] .* [#][#]Print\[RecvEvent \s* RULE \s* d1\]: \s* \[largestNeighborOf\(localhost:20204, \s* localhost:20203\)\]) """, re.VERBOSE|re.DOTALL) flag = p.search(output) if flag == 0: print "Test failed" return else: print "Test passed" #Function to kill the child after a set time def kill_pid(stdout_20202, stdout_20203, stdout_20204, pid_20202, pid_20203, pid_20204): #print "killing child" os.kill(pid_20202, 3) os.kill(pid_20203, 3) os.kill(pid_20204, 3) #print "program killed" script_output(stdout_20202, stdout_20203, stdout_20204) opt, arg = getopt.getopt(sys.argv[1:], 'B:E:T:h') for key,val in opt: if key=='-B': olg_path = val elif key == '-E': executable_path = val elif key == '-T': time_interval = val elif key == '-h': usage() sys.exit(0) try: args=[executable_path , '-DME=\"localhost:20202\"', '-DNEIGHBOR1=\"localhost:20203\"', '-DNEIGHBOR2=\"localhost:20204\"', '-o', os.path.join(olg_path,'aggregates.olg'), '-n', 'localhost', '-p', '20202', '2>&1'] p_20202 = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, close_fds=True) except OSError, e: #print "Execution failed" print e sys.exit(0) time.sleep(1) pid_20202 = p_20202.pid #print pid_20202 try: args=[executable_path , '-DME=\"localhost:20203\"', '-DNEIGHBOR1=\"localhost:20202\"', '-DNEIGHBOR2=\"localhost:20204\"', '-o', os.path.join(olg_path,'aggregates.olg'), '-n', 'localhost', '-p', '20203', '2>&1'] p_20203 = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, close_fds=True) except OSError, e: #print "Execution failed" print e sys.exit(0) time.sleep(1) pid_20203 = p_20203.pid #print pid_20203 try: args=[executable_path , '-DME=\"localhost:20204\"', '-DNEIGHBOR1=\"localhost:20202\"', '-DNEIGHBOR2=\"localhost:20203\"', '-o', os.path.join(olg_path,'aggregates.olg'), '-n', 'localhost', '-p', '20204', '2>&1'] p_20204 = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, close_fds=True) except OSError, e: #print "Execution failed" print e sys.exit(0) pid_20204 = p_20204.pid #print pid_20204 if os.getpid() != pid_20202 and os.getpid() != pid_20203 and os.getpid() != pid_20204: t = threading.Timer(int(time_interval), kill_pid, [p_20202.stdout, p_20203.stdout, p_20204.stdout, pid_20202, pid_20203, pid_20204]) t.start()
/usr/local/Cellar/python/2.7.14_2/Frameworks/Python.framework/Versions/2.7/lib/python2.7/fnmatch.py
# coding=utf-8 import nltk from classification_utils import get_lines_from_file, load_manually_labeled_tweets, aggregate_results from sklearn.svm import LinearSVC, NuSVC, NuSVR, OneClassSVM, SVC, SVR from nltk.classify.scikitlearn import SklearnClassifier __author__ = 'kiro' def get_list_of_possible_words_in_tweets(): """ Create frequency distribution of words from dictionaries. aka setting the dictionary consisting of all interesting words in the tweet set. @param negative_dict: list of positive words @param positive_dict: list of negative words @return: """ # TODO fix the shortcomings of not having the option of dynamically changing the feature we use. positive_dict, negative_dict = "kiro-monogram-positive.txt", "kiro-monogram-negative.txt" #positive_dict, negative_dict = "bigram-compiled-positive.txt", "bigram-compiled-negative.txt" dictionary_base = "/home/kiro/ntnu/master/code/dictionaries/" positive_dict = get_lines_from_file(dictionary_base + positive_dict) negative_dict = get_lines_from_file(dictionary_base + negative_dict) word_list = positive_dict + negative_dict # returns a list of all words that has an effect on the sentiment of a tweet return nltk.FreqDist(word_list).keys() def extract_features_from_text(text): """ Separating words from a tweet text. @param text: the tweet or to extract features from. @return: a list of words to be used for classification. """ dictionary = get_list_of_possible_words_in_tweets() document_words = set(text) features = {} # more precision to iterate the word of a tweet then the whole dictionary. # extracts all words that are both in the dictionary and in the tweet for word in document_words: features['contains(%s)' % word] = (word in dictionary) return features def initialize_classifier(classifier_class, tweets): """ Train and initialize classifier, then return it. @param tweets: list of tweets @param classifier_class: the nltk classifier class. Currently NaiveBayesClassifier and DecisionTreeClassifier tested @return: a nltk classifier. """ # get the training set. #print "INFO -- Compile training set for the classifier" training_set = nltk.classify.apply_features(extract_features_from_text, tweets) # create the classifier. print "INFO -- Training the classifier, this might take some time." classifier = classifier_class.train(training_set) #print "INFO -- Training complete." return classifier def classify(classifier_class, tweets): """ Run the classification of tweets @param classifier_class: the nltk classifier class that we will use for the classification @param tweets: the list of tweets to classify @return: list of classification result (positive/negative) """ # instantiate the classifier classifier = initialize_classifier(classifier_class, tweets) print "INFO -- Classifying tweets, this might take some time." results = [] # for all tweets for tweet in [tweet[0] for tweet in tweets]: #print tweet # classify the tweet and append the result to list. # runs classify() on the given classifier class in the nltk library. results.append(classifier.classify(extract_features_from_text(tweet))) #print results[-1], type(results[-1]) return results def run_classifier(tweet_file, classifier_class, text): """ Run the test of the classifier, so we can get some results. @param tweet_file: the file to load tweets from. @param classifier_class: the nltk classifier class to be used. @param text: text to be printed with the results. """ # load tweets classification_base = "/home/kiro/ntnu/master/code/classification/" tweets = load_manually_labeled_tweets(classification_base + tweet_file) # classifying all tweets as positive or negative. sentiment_classification = classify(classifier_class, tweets) # aggregate results counts, accuracy = aggregate_results(tweets, sentiment_classification) print "INFO -- ", text print "{failed classifications, correct classifications}, accuracy of the classifier" print counts, "%.4f" % accuracy, "\n" def test_svm_classes(): """ Testing all the possible classes of the sklearn.svm library. """ # SVM, Linear Support Vector Classification classifiers = [ LinearSVC(), NuSVC(), NuSVR(), OneClassSVM(), SVC(), SVR() ] for c in classifiers: print c classifier = SklearnClassifier(c) run_classifier("tweets_classified_manually", classifier, "Kiro tweets, SVM") # easy running if __name__ == "__main__": # list of [filename, description] tweet_sets = [ ["tweets_classified_manually", "Kiro compiled dataset"], ["obama_tweets_classified_manually", "Obama tweet set"] ] classification_classes = [ # Decision Tree classification. # Using this takes so long that I have always canceled the execution. #nltk.DecisionTreeClassifier, # Naive Bayes classification nltk.NaiveBayesClassifier, # SVM, Linear Support Vector Classification SklearnClassifier(LinearSVC()) ] for classification_class in classification_classes: for data_file, description in tweet_sets: print "--", description, "--" run_classifier(data_file, classification_class, str(classification_class))
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- from typing import cast, List, TYPE_CHECKING import time from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.exceptions import ServiceResponseTimeoutError from ._timer import Timer from .._utils import is_retryable_status_code from .._search_indexing_buffered_sender_base import SearchIndexingBufferedSenderBase from ...indexes.aio import SearchIndexClient as SearchServiceClient from .._generated.aio import SearchIndexClient from .._generated.models import IndexBatch, IndexingResult from .._search_documents_error import RequestEntityTooLargeError from ._index_documents_batch_async import IndexDocumentsBatch from ..._headers_mixin import HeadersMixin from ..._version import SDK_MONIKER if TYPE_CHECKING: # pylint:disable=unused-import,ungrouped-imports from typing import Any from azure.core.credentials import AzureKeyCredential class SearchIndexingBufferedSender(SearchIndexingBufferedSenderBase, HeadersMixin): """A buffered sender for document indexing actions. :param endpoint: The URL endpoint of an Azure search service :type endpoint: str :param index_name: The name of the index to connect to :type index_name: str :param credential: A credential to authorize search client requests :type credential: ~azure.core.credentials.AzureKeyCredential :keyword bool auto_flush: if the auto flush mode is on. Default to True. :keyword int auto_flush_interval: how many max seconds if between 2 flushes. This only takes effect when auto_flush is on. Default to 60 seconds. If a non-positive number is set, it will be default to 86400s (1 day) :keyword int initial_batch_action_count: The initial number of actions to group into a batch when tuning the behavior of the sender. The default value is 512. :keyword int max_retries: The number of times to retry a failed document. The default value is 3. :keyword callable on_new: If it is set, the client will call corresponding methods when there is a new IndexAction added. :keyword callable on_progress: If it is set, the client will call corresponding methods when there is a IndexAction succeeds. :keyword callable on_error: If it is set, the client will call corresponding methods when there is a IndexAction fails. :keyword callable on_remove: If it is set, the client will call corresponding methods when there is a IndexAction removed from the queue (succeeds or fails). :keyword str api_version: The Search API version to use for requests. """ # pylint: disable=too-many-instance-attributes def __init__(self, endpoint, index_name, credential, **kwargs): # type: (str, str, AzureKeyCredential, **Any) -> None super(SearchIndexingBufferedSender, self).__init__( endpoint=endpoint, index_name=index_name, credential=credential, **kwargs) self._index_documents_batch = IndexDocumentsBatch() self._client = SearchIndexClient( endpoint=endpoint, index_name=index_name, sdk_moniker=SDK_MONIKER, **kwargs ) # type: SearchIndexClient self._reset_timer() async def _cleanup(self, flush=True): # type: () -> None """Clean up the client. :param bool flush: flush the actions queue before shutdown the client Default to True. """ if flush: await self.flush() if self._auto_flush: self._timer.cancel() def __repr__(self): # type: () -> str return "<SearchIndexingBufferedSender [endpoint={}, index={}]>".format( repr(self._endpoint), repr(self._index_name) )[:1024] @property def actions(self): # type: () -> List[IndexAction] """The list of currently index actions in queue to index. :rtype: List[IndexAction] """ return self._index_documents_batch.actions @distributed_trace_async async def close(self, **kwargs): # pylint: disable=unused-argument # type: () -> None """Close the :class:`~azure.search.documents.aio.SearchClient` session.""" await self._cleanup(flush=True) return await self._client.close() @distributed_trace_async async def flush(self, timeout=86400, **kwargs): # pylint:disable=unused-argument # type: (bool) -> bool """Flush the batch. :param int timeout: time out setting. Default is 86400s (one day) :return: True if there are errors. Else False :rtype: bool """ has_error = False begin_time = int(time.time()) while len(self.actions) > 0: now = int(time.time()) remaining = timeout - (now - begin_time) if remaining < 0: raise ServiceResponseTimeoutError("Service response time out") result = await self._process(timeout=remaining, raise_error=False) if result: has_error = True return has_error async def _process(self, timeout=86400, **kwargs): # type: (int) -> bool raise_error = kwargs.pop("raise_error", True) actions = await self._index_documents_batch.dequeue_actions() has_error = False if not self._index_key: try: client = SearchServiceClient(self._endpoint, self._credential) result = await client.get_index(self._index_name) if result: for field in result.fields: if field.key: self._index_key = field.name break except Exception: # pylint: disable=broad-except pass self._reset_timer() try: results = await self._index_documents_actions(actions=actions, timeout=timeout) for result in results: try: action = next(x for x in actions if x.additional_properties.get(self._index_key) == result.key) if result.succeeded: await self._callback_succeed(action) elif is_retryable_status_code(result.status_code): await self._retry_action(action) has_error = True else: await self._callback_fail(action) has_error = True except StopIteration: pass return has_error except Exception: # pylint: disable=broad-except for action in actions: await self._retry_action(action) if raise_error: raise return True async def _process_if_needed(self): # type: () -> bool """ Every time when a new action is queued, this method will be triggered. It checks the actions already queued and flushes them if: 1. Auto_flush is on 2. There are self._batch_action_count actions queued """ if not self._auto_flush: return if len(self._index_documents_batch.actions) < self._batch_action_count: return await self._process(raise_error=False) def _reset_timer(self): # pylint: disable=access-member-before-definition try: self._timer.cancel() except AttributeError: pass if self._auto_flush: self._timer = Timer(self._auto_flush_interval, self._process) @distributed_trace_async async def upload_documents(self, documents, **kwargs): # pylint: disable=unused-argument # type: (List[dict]) -> None """Queue upload documents actions. :param documents: A list of documents to upload. :type documents: List[dict] """ actions = await self._index_documents_batch.add_upload_actions(documents) await self._callback_new(actions) await self._process_if_needed() @distributed_trace_async async def delete_documents(self, documents, **kwargs): # pylint: disable=unused-argument # type: (List[dict]) -> None """Queue delete documents actions :param documents: A list of documents to delete. :type documents: List[dict] """ actions = await self._index_documents_batch.add_delete_actions(documents) await self._callback_new(actions) await self._process_if_needed() @distributed_trace_async async def merge_documents(self, documents, **kwargs): # pylint: disable=unused-argument # type: (List[dict]) -> None """Queue merge documents actions :param documents: A list of documents to merge. :type documents: List[dict] """ actions = await self._index_documents_batch.add_merge_actions(documents) await self._callback_new(actions) await self._process_if_needed() @distributed_trace_async async def merge_or_upload_documents(self, documents, **kwargs): # pylint: disable=unused-argument # type: (List[dict]) -> None """Queue merge documents or upload documents actions :param documents: A list of documents to merge or upload. :type documents: List[dict] """ actions = await self._index_documents_batch.add_merge_or_upload_actions(documents) await self._callback_new(actions) await self._process_if_needed() @distributed_trace_async async def index_documents(self, batch, **kwargs): # type: (IndexDocumentsBatch, **Any) -> List[IndexingResult] """Specify a document operations to perform as a batch. :param batch: A batch of document operations to perform. :type batch: IndexDocumentsBatch :rtype: List[IndexingResult] :raises :class:`~azure.search.documents.RequestEntityTooLargeError` """ return await self._index_documents_actions(actions=batch.actions, **kwargs) async def _index_documents_actions(self, actions, **kwargs): # type: (List[IndexAction], **Any) -> List[IndexingResult] error_map = {413: RequestEntityTooLargeError} timeout = kwargs.pop('timeout', 86400) begin_time = int(time.time()) kwargs["headers"] = self._merge_client_headers(kwargs.get("headers")) try: index_documents = IndexBatch(actions=actions) batch_response = await self._client.documents.index(batch=index_documents, error_map=error_map, **kwargs) return cast(List[IndexingResult], batch_response.results) except RequestEntityTooLargeError: if len(actions) == 1: raise pos = round(len(actions) / 2) now = int(time.time()) remaining = timeout - (now - begin_time) if remaining < 0: raise ServiceResponseTimeoutError("Service response time out") batch_response_first_half = await self._index_documents_actions( actions=actions[:pos], error_map=error_map, **kwargs ) if len(batch_response_first_half) > 0: result_first_half = cast(List[IndexingResult], batch_response_first_half.results) else: result_first_half = [] now = int(time.time()) remaining = timeout - (now - begin_time) if remaining < 0: raise ServiceResponseTimeoutError("Service response time out") batch_response_second_half = await self._index_documents_actions( actions=actions[pos:], error_map=error_map, **kwargs ) if len(batch_response_second_half) > 0: result_second_half = cast(List[IndexingResult], batch_response_second_half.results) else: result_second_half = [] return result_first_half.extend(result_second_half) async def __aenter__(self): # type: () -> SearchIndexingBufferedSender await self._client.__aenter__() # pylint: disable=no-member return self async def __aexit__(self, *args): # type: (*Any) -> None await self.close() await self._client.__aexit__(*args) # pylint: disable=no-member async def _retry_action(self, action): # type: (IndexAction) -> None if not self._index_key: await self._callback_fail(action) return key = action.additional_properties.get(self._index_key) counter = self._retry_counter.get(key) if not counter: # first time that fails self._retry_counter[key] = 1 await self._index_documents_batch.enqueue_action(action) elif counter < self._max_retries - 1: # not reach retry limit yet self._retry_counter[key] = counter + 1 await self._index_documents_batch.enqueue_action(action) else: await self._callback_fail(action) async def _callback_succeed(self, action): # type: (IndexAction) -> None if self._on_remove: await self._on_remove(action) if self._on_progress: await self._on_progress(action) async def _callback_fail(self, action): # type: (IndexAction) -> None if self._on_remove: await self._on_remove(action) if self._on_error: await self._on_error(action) async def _callback_new(self, actions): # type: (List[IndexAction]) -> None if self._on_new: for action in actions: await self._on_new(action)
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations from django_countries import countries def populate_weights(apps, schema_editor): Weights = apps.get_model("reports", "Weights") db_alias = schema_editor.connection.alias for item in COUNTRY_WEIGHTS: country = item['Country'] item.pop('Country') item.pop('Region') for media_type, weight in item.iteritems(): if media_type != 'Country' or media_type != 'Region': w = Weights.objects.using(db_alias).create( country=country, media_type=media_type, weight=weight) w.save() def backwards(apps, schema_editor): pass class Migration(migrations.Migration): dependencies = [ ('reports', '0001_initial'), ] operations = [ migrations.RunPython( populate_weights, backwards, ), ] COUNTRY_WEIGHTS= [{'Country': 'AF', 'Internet': '0.37', 'Print': '0.33', 'Radio': '0.93', 'Region': 'Asia', 'Television': '0.93', 'Twitter': 1}, {'Country': 'AL', 'Internet': '0.36', 'Print': '1.02', 'Radio': '0.30', 'Region': 'Europe', 'Television': '0.30', 'Twitter': 1}, {'Country': 'AG', 'Internet': '0.08', 'Print': '0.68', 'Radio': '0.05', 'Region': 'Caribbean', 'Television': '0.05', 'Twitter': 1}, {'Country': 'AR', 'Internet': '1.34', 'Print': '0.74', 'Radio': '1.07', 'Region': 'Latin America', 'Television': '1.07', 'Twitter': 1}, {'Country': 'AM', 'Internet': '0.31', 'Print': '1.02', 'Radio': '0.29', 'Region': 'Europe', 'Television': '0.29', 'Twitter': 1}, {'Country': 'AU', 'Internet': '1.23', 'Print': '0.98', 'Radio': '0.81', 'Region': 'Pacific Islands', 'Television': '0.81', 'Twitter': 1}, {'Country': 'AT', 'Internet': '0.72', 'Print': '0.58', 'Radio': '0.48', 'Region': 'Europe', 'Television': '0.48', 'Twitter': 1}, {'Country': 'BS', 'Internet': '0.15', 'Print': '0.18', 'Radio': '0.10', 'Region': 'Caribbean', 'Television': '0.10', 'Twitter': 1}, {'Country': 'BD', 'Internet': '0.88', 'Print': '3.63', 'Radio': '2.09', 'Region': 'Asia', 'Television': '2.09', 'Twitter': 1}, {'Country': 'BB', 'Internet': '0.13', 'Print': '0.13', 'Radio': '0.09', 'Region': 'Caribbean', 'Television': '0.09', 'Twitter': 1}, {'Country': 'BY', 'Internet': '0.59', 'Print': '0.47', 'Radio': '0.51', 'Region': 'Europe', 'Television': '0.51', 'Twitter': 1}, {'Country': 'BE', 'Internet': '0.82', 'Print': '0.70', 'Radio': '0.55', 'Region': 'Europe', 'Television': '0.55', 'Twitter': 1}, {'Country': 'BZ', 'Internet': '0.08', 'Print': '0.68', 'Radio': '0.10', 'Region': 'Caribbean', 'Television': '0.10', 'Twitter': 1}, {'Country': 'BJ', 'Internet': '0.18', 'Print': '0.03', 'Radio': '0.54', 'Region': 'Africa', 'Television': '0.54', 'Twitter': 1}, {'Country': 'BT', 'Internet': '0.12', 'Print': '0.68', 'Radio': '0.14', 'Region': 'Asia', 'Television': '0.14', 'Twitter': 1}, {'Country': 'BO', 'Internet': '0.53', 'Print': '0.42', 'Radio': '0.55', 'Region': 'Latin America', 'Television': '0.55', 'Twitter': 1}, {'Country': 'BA', 'Internet': '0.43', 'Print': '0.68', 'Radio': '0.32', 'Region': 'Europe', 'Television': '0.32', 'Twitter': 1}, {'Country': 'BW', 'Internet': '0.14', 'Print': '0.18', 'Radio': '0.24', 'Region': 'Africa', 'Television': '0.24', 'Twitter': 1}, {'Country': 'BR', 'Internet': '2.78', 'Print': '1.64', 'Radio': '2.35', 'Region': 'Latin America', 'Television': '2.35', 'Twitter': 1}, {'Country': 'BG', 'Internet': '0.54', 'Print': '0.41', 'Radio': '0.44', 'Region': 'Europe', 'Television': '0.44', 'Twitter': 1}, {'Country': 'BF', 'Internet': '0.23', 'Print': '0.10', 'Radio': '0.69', 'Region': 'Africa', 'Television': '0.69', 'Twitter': 1}, {'Country': 'BI', 'Internet': '0.10', 'Print': '0.10', 'Radio': '0.54', 'Region': 'Africa', 'Television': '0.54', 'Twitter': 1}, {'Country': 'CM', 'Internet': '0.33', 'Print': '0.17', 'Radio': '0.79', 'Region': 'Africa', 'Television': '0.79', 'Twitter': 1}, {'Country': 'CA', 'Internet': '1.54', 'Print': '1.31', 'Radio': '0.99', 'Region': 'North America', 'Television': '0.99', 'Twitter': 1}, {'Country': 'CV', 'Internet': '0.12', 'Print': '0.18', 'Radio': '0.12', 'Region': 'Africa', 'Television': '0.12', 'Twitter': 1}, {'Country': 'CF', 'Internet': '0.11', 'Print': '0.68', 'Radio': '0.36', 'Region': 'Africa', 'Television': '0.36', 'Twitter': 1}, {'Country': 'TD', 'Internet': '0.15', 'Print': '0.00', 'Radio': '0.60', 'Region': 'Africa', 'Television': '0.60', 'Twitter': 1}, {'Country': 'CL', 'Internet': '0.92', 'Print': '0.37', 'Radio': '0.70', 'Region': 'Latin America', 'Television': '0.70', 'Twitter': 1}, {'Country': 'CN', 'Internet': '6.79', 'Print': '6.23', 'Radio': '6.18', 'Region': 'Asia', 'Television': '6.18', 'Twitter': 1}, {'Country': 'CO', 'Internet': '1.36', 'Print': '0.66', 'Radio': '1.16', 'Region': 'Latin America', 'Television': '1.16', 'Twitter': 1}, {'Country': 'KM', 'Internet': '0.06', 'Print': '0.68', 'Radio': '0.14', 'Region': 'Africa', 'Television': '0.14', 'Twitter': 1}, {'Country': 'CD', 'Internet': '0.08', 'Print': '0.28', 'Radio': '0.35', 'Region': 'Africa', 'Television': '0.35', 'Twitter': 1}, {'Country': 'CG', 'Internet': '0.33', 'Print': '0.11', 'Radio': '0.36', 'Region': 'Africa', 'Television': '0.36', 'Twitter': 1}, {'Country': 'CR', 'Internet': '0.42', 'Print': '0.34', 'Radio': '0.37', 'Region': 'Latin America', 'Television': '0.37', 'Twitter': 1}, {'Country': 'HR', 'Internet': '0.45', 'Print': '0.41', 'Radio': '0.34', 'Region': 'Europe', 'Television': '0.34', 'Twitter': 1}, {'Country': 'CU', 'Internet': '0.47', 'Print': '0.12', 'Radio': '0.56', 'Region': 'Caribbean', 'Television': '0.56', 'Twitter': 1}, {'Country': 'CY', 'Internet': '0.23', 'Print': '0.13', 'Radio': '0.18', 'Region': 'Middle East', 'Television': '0.18', 'Twitter': 1}, {'Country': 'DK', 'Internet': '0.50', 'Print': '0.74', 'Radio': '0.39', 'Region': 'Europe', 'Television': '0.39', 'Twitter': 1}, {'Country': 'DO', 'Internet': '0.60', 'Print': '0.68', 'Radio': '0.54', 'Region': 'Caribbean', 'Television': '0.54', 'Twitter': 1}, {'Country': 'EC', 'Internet': '0.66', 'Print': '0.72', 'Radio': '0.66', 'Region': 'Latin America', 'Television': '0.66', 'Twitter': 1}, {'Country': 'EG', 'Internet': '1.70', 'Print': '1.43', 'Radio': '1.51', 'Region': 'Middle East', 'Television': '1.51', 'Twitter': 1}, {'Country': 'SV', 'Internet': '0.35', 'Print': '0.32', 'Radio': '0.42', 'Region': 'Latin America', 'Television': '0.42', 'Twitter': 1}, {'Country': 'GQ', 'Internet': '0.09', 'Print': '0.68', 'Radio': '0.15', 'Region': 'Africa', 'Television': '0.15', 'Twitter': 1}, {'Country': 'EE', 'Internet': '0.27', 'Print': '0.27', 'Radio': '0.19', 'Region': 'Europe', 'Television': '0.19', 'Twitter': 1}, {'Country': 'ET', 'Internet': '0.34', 'Print': '0.39', 'Radio': '1.63', 'Region': 'Africa', 'Television': '1.63', 'Twitter': 1}, {'Country': 'FJ', 'Internet': '0.15', 'Print': '0.12', 'Radio': '0.16', 'Region': 'Pacific Islands', 'Television': '0.16', 'Twitter': 1}, {'Country': 'FI', 'Internet': '0.61', 'Print': '0.03', 'Radio': '0.39', 'Region': 'Europe', 'Television': '0.39', 'Twitter': 1}, {'Country': 'FR', 'Internet': '1.99', 'Print': '1.69', 'Radio': '1.33', 'Region': 'Europe', 'Television': '1.33', 'Twitter': 1}, {'Country': 'GA', 'Internet': '0.11', 'Print': '0.58', 'Radio': '0.22', 'Region': 'Africa', 'Television': '0.22', 'Twitter': 1}, {'Country': 'GM', 'Internet': '0.14', 'Print': '0.04', 'Radio': '0.23', 'Region': 'Africa', 'Television': '0.23', 'Twitter': 1}, {'Country': 'GE', 'Internet': '0.40', 'Print': '1.02', 'Radio': '0.34', 'Region': 'Europe', 'Television': '0.34', 'Twitter': 1}, {'Country': 'DE', 'Internet': '2.27', 'Print': '2.50', 'Radio': '1.51', 'Region': 'Europe', 'Television': '1.51', 'Twitter': 1}, {'Country': 'GH', 'Internet': '0.61', 'Print': '0.39', 'Radio': '0.85', 'Region': 'Africa', 'Television': '0.85', 'Twitter': 1}, {'Country': 'GR', 'Internet': '0.68', 'Print': '0.44', 'Radio': '0.55', 'Region': 'Europe', 'Television': '0.55', 'Twitter': 1}, {'Country': 'GD', 'Internet': '0.06', 'Print': '0.68', 'Radio': '0.05', 'Region': 'Caribbean', 'Television': '0.05', 'Twitter': 1}, {'Country': 'GT', 'Internet': '0.44', 'Print': '0.38', 'Radio': '0.66', 'Region': 'Latin America', 'Television': '0.66', 'Twitter': 1}, {'Country': 'GW', 'Internet': '0.06', 'Print': '0.68', 'Radio': '0.22', 'Region': 'Africa', 'Television': '0.22', 'Twitter': 1}, {'Country': 'GN', 'Internet': '0.68', 'Print': '1.67', 'Radio': '0.56', 'Region': 'Africa', 'Television': '0.56', 'Twitter': 1}, {'Country': 'GY', 'Internet': '0.15', 'Print': '0.15', 'Radio': '0.15', 'Region': 'Caribbean', 'Television': '0.15', 'Twitter': 1}, {'Country': 'HT', 'Internet': '0.30', 'Print': '0.17', 'Radio': '0.54', 'Region': 'Caribbean', 'Television': '0.54', 'Twitter': 1}, {'Country': 'HU', 'Internet': '0.73', 'Print': '0.68', 'Radio': '0.52', 'Region': 'Europe', 'Television': '0.52', 'Twitter': 1}, {'Country': 'IS', 'Internet': '0.15', 'Print': '0.18', 'Radio': '0.10', 'Region': 'Europe', 'Television': '0.10', 'Twitter': 1}, {'Country': 'IN', 'Internet': '4.18', 'Print': '5.72', 'Radio': '5.90', 'Region': 'Asia', 'Television': '5.90', 'Twitter': 1}, {'Country': 'IE', 'Internet': '0.52', 'Print': '0.18', 'Radio': '0.36', 'Region': 'Europe', 'Television': '0.36', 'Twitter': 1}, {'Country': 'IL', 'Internet': '0.65', 'Print': '0.89', 'Radio': '0.46', 'Region': 'Middle East', 'Television': '0.46', 'Twitter': 1}, {'Country': 'IT', 'Internet': '1.62', 'Print': '1.51', 'Radio': '1.29', 'Region': 'Europe', 'Television': '1.29', 'Twitter': 1}, {'Country': 'CI', 'Internet': '0.73', 'Print': '1.02', 'Radio': '0.79', 'Region': 'Africa', 'Television': '0.79', 'Twitter': 1}, {'Country': 'JM', 'Internet': '0.32', 'Print': '0.27', 'Radio': '0.28', 'Region': 'Caribbean', 'Television': '0.28', 'Twitter': 1}, {'Country': 'JP', 'Internet': '2.80', 'Print': '5.27', 'Radio': '1.87', 'Region': 'Asia', 'Television': '1.87', 'Twitter': 1}, {'Country': 'KZ', 'Internet': '0.84', 'Print': '0.58', 'Radio': '0.68', 'Region': 'Europe', 'Television': '0.68', 'Twitter': 1}, {'Country': 'KE', 'Internet': '1.10', 'Print': '0.44', 'Radio': '1.12', 'Region': 'Africa', 'Television': '1.12', 'Twitter': 1}, {'Country': 'KG', 'Internet': '0.31', 'Print': '0.05', 'Radio': '0.39', 'Region': 'Asia', 'Television': '0.39', 'Twitter': 1}, {'Country': 'LB', 'Internet': '0.49', 'Print': '0.30', 'Radio': '0.37', 'Region': 'Middle East', 'Television': '0.37', 'Twitter': 1}, {'Country': 'LS', 'Internet': '0.09', 'Print': '0.08', 'Radio': '0.24', 'Region': 'Africa', 'Television': '0.24', 'Twitter': 1}, {'Country': 'LR', 'Internet': '0.12', 'Print': '0.13', 'Radio': '0.35', 'Region': 'Africa', 'Television': '0.35', 'Twitter': 1}, {'Country': 'LU', 'Internet': '0.19', 'Print': '0.18', 'Radio': '0.12', 'Region': 'Europe', 'Television': '0.12', 'Twitter': 1}, {'Country': 'MK', 'Internet': '0.22', 'Print': '0.58', 'Radio': '0.24', 'Region': 'Europe', 'Television': '0.24', 'Twitter': 1}, {'Country': 'MG', 'Internet': '1.11', 'Print': '0.19', 'Radio': '0.80', 'Region': 'Africa', 'Television': '0.80', 'Twitter': 1}, {'Country': 'MW', 'Internet': '0.93', 'Print': '0.11', 'Radio': '0.68', 'Region': 'Africa', 'Television': '0.68', 'Twitter': 1}, {'Country': 'MY', 'Internet': '0.22', 'Print': '1.07', 'Radio': '0.91', 'Region': 'Asia', 'Television': '0.91', 'Twitter': 1}, {'Country': 'ML', 'Internet': '0.92', 'Print': '0.68', 'Radio': '0.66', 'Region': 'Africa', 'Television': '0.66', 'Twitter': 1}, {'Country': 'MT', 'Internet': '0.11', 'Print': '0.13', 'Radio': '0.11', 'Region': 'Europe', 'Television': '0.11', 'Twitter': 1}, {'Country': 'MR', 'Internet': '0.18', 'Print': '0.68', 'Radio': '0.33', 'Region': 'Africa', 'Television': '0.33', 'Twitter': 1}, {'Country': 'MU', 'Internet': '0.07', 'Print': '0.62', 'Radio': '0.19', 'Region': 'Africa', 'Television': '0.19', 'Twitter': 1}, {'Country': 'MX', 'Internet': '1.91', 'Print': '0.06', 'Radio': '1.84', 'Region': 'Latin America', 'Television': '1.84', 'Twitter': 1}, {'Country': 'MD', 'Internet': '0.33', 'Print': '0.16', 'Radio': '0.31', 'Region': 'Europe', 'Television': '0.31', 'Twitter': 1}, {'Country': 'MN', 'Internet': '0.19', 'Print': '0.14', 'Radio': '0.28', 'Region': 'Asia', 'Television': '0.28', 'Twitter': 1}, {'Country': 'ME', 'Internet': '0.16', 'Print': '0.00', 'Radio': '0.13', 'Region': 'Europe', 'Television': '0.13', 'Twitter': 1}, {'Country': 'MA', 'Internet': '1.20', 'Print': '0.38', 'Radio': '0.96', 'Region': 'Middle East', 'Television': '0.96', 'Twitter': 1}, {'Country': 'NA', 'Internet': '0.16', 'Print': '0.15', 'Radio': '0.25', 'Region': 'Africa', 'Television': '0.25', 'Twitter': 1}, {'Country': 'NP', 'Internet': '0.49', 'Print': '0.30', 'Radio': '0.88', 'Region': 'Asia', 'Television': '0.88', 'Twitter': 1}, {'Country': 'NL', 'Internet': '1.08', 'Print': '1.19', 'Radio': '0.68', 'Region': 'Europe', 'Television': '0.68', 'Twitter': 1}, {'Country': 'NZ', 'Internet': '0.55', 'Print': '0.68', 'Radio': '0.35', 'Region': 'Pacific Islands', 'Television': '0.35', 'Twitter': 1}, {'Country': 'NI', 'Internet': '0.25', 'Print': '0.26', 'Radio': '0.41', 'Region': 'Latin America', 'Television': '0.41', 'Twitter': 1}, {'Country': 'NE', 'Internet': '0.15', 'Print': '0.08', 'Radio': '0.71', 'Region': 'Africa', 'Television': '0.71', 'Twitter': 1}, {'Country': 'NG', 'Internet': '2.19', 'Print': '1.19', 'Radio': '2.21', 'Region': 'Africa', 'Television': '2.21', 'Twitter': 1}, {'Country': 'NO', 'Internet': '0.59', 'Print': '0.83', 'Radio': '0.37', 'Region': 'Europe', 'Television': '0.37', 'Twitter': 1}, {'Country': 'PK', 'Internet': '1.20', 'Print': '0.06', 'Radio': '2.25', 'Region': 'Asia', 'Television': '2.25', 'Twitter': 1}, {'Country': 'PS', 'Internet': '0.54', 'Print': '0.00', 'Radio': '0.59', 'Region': 'Middle East', 'Television': '0.59', 'Twitter': 1}, {'Country': 'PY', 'Internet': '0.38', 'Print': '0.31', 'Radio': '0.44', 'Region': 'Latin America', 'Television': '0.44', 'Twitter': 1}, {'Country': 'PE', 'Internet': '0.95', 'Print': '1.92', 'Radio': '0.92', 'Region': 'Latin America', 'Television': '0.92', 'Twitter': 1}, {'Country': 'PH', 'Internet': '1.68', 'Print': '1.65', 'Radio': '1.66', 'Region': 'Asia', 'Television': '1.66', 'Twitter': 1}, {'Country': 'PL', 'Internet': '1.36', 'Print': '1.11', 'Radio': '1.02', 'Region': 'Europe', 'Television': '1.02', 'Twitter': 1}, {'Country': 'PT', 'Internet': '0.71', 'Print': '0.63', 'Radio': '0.54', 'Region': 'Europe', 'Television': '0.54', 'Twitter': 1}, {'Country': 'PR', 'Internet': '0.38', 'Print': '0.53', 'Radio': '0.32', 'Region': 'Latin America', 'Television': '0.32', 'Twitter': 1}, {'Country': 'RO', 'Internet': '0.90', 'Print': '0.65', 'Radio': '0.77', 'Region': 'Europe', 'Television': '0.77', 'Twitter': 1}, {'Country': 'WS', 'Internet': '0.04', 'Print': '0.68', 'Radio': '0.07', 'Region': 'Pacific Islands', 'Television': '0.07', 'Twitter': 1}, {'Country': 'SN', 'Internet': '0.48', 'Print': '0.21', 'Radio': '0.63', 'Region': 'Africa', 'Television': '0.63', 'Twitter': 1}, {'Country': 'RS', 'Internet': '0.58', 'Print': '0.58', 'Radio': '0.51', 'Region': 'Europe', 'Television': '0.51', 'Twitter': 1}, {'Country': 'SL', 'Internet': '0.08', 'Print': '0.07', 'Radio': '0.41', 'Region': 'Africa', 'Television': '0.41', 'Twitter': 1}, {'Country': 'SK', 'Internet': '0.57', 'Print': '0.68', 'Radio': '0.39', 'Region': 'Europe', 'Television': '0.39', 'Twitter': 1}, {'Country': 'SI', 'Internet': '0.33', 'Print': '0.31', 'Radio': '0.24', 'Region': 'Europe', 'Television': '0.24', 'Twitter': 1}, {'Country': 'SB', 'Internet': '0.06', 'Print': '0.04', 'Radio': '0.13', 'Region': 'Pacific Islands', 'Television': '0.13', 'Twitter': 1}, {'Country': 'SO', 'Internet': '0.11', 'Print': '0.68', 'Radio': '0.54', 'Region': 'Africa', 'Television': '0.54', 'Twitter': 1}, {'Country': 'ZA', 'Internet': '1.34', 'Print': '0.76', 'Radio': '1.21', 'Region': 'Africa', 'Television': '1.21', 'Twitter': 1}, {'Country': 'KR', 'Internet': '1.80', 'Print': '1.67', 'Radio': '1.17', 'Region': 'Asia', 'Television': '1.17', 'Twitter': 1}, {'Country': 'ES', 'Internet': '1.59', 'Print': '1.35', 'Radio': '1.14', 'Region': 'Europe', 'Television': '1.14', 'Twitter': 1}, {'Country': 'LC', 'Internet': '0.06', 'Print': '0.18', 'Radio': '0.07', 'Region': 'Caribbean', 'Television': '0.07', 'Twitter': 1}, {'Country': 'VC', 'Internet': '0.05', 'Print': '0.68', 'Radio': '0.05', 'Region': 'Caribbean', 'Television': '0.05', 'Twitter': 1}, {'Country': 'SD', 'Internet': '0.82', 'Print': '0.60', 'Radio': '1.03', 'Region': 'Africa', 'Television': '1.03', 'Twitter': 1}, {'Country': 'SS', 'Internet': '0.15', 'Print': '0.18', 'Radio': '0.48', 'Region': 'Africa', 'Television': '0.48', 'Twitter': 1}, {'Country': 'SR', 'Internet': '0.12', 'Print': '0.12', 'Radio': '0.13', 'Region': 'Caribbean', 'Television': '0.13', 'Twitter': 1}, {'Country': 'SZ', 'Internet': '0.15', 'Print': '0.10', 'Radio': '0.19', 'Region': 'Africa', 'Television': '0.19', 'Twitter': 1}, {'Country': 'SE', 'Internet': '0.78', 'Print': '1.11', 'Radio': '0.51', 'Region': 'Europe', 'Television': '0.51', 'Twitter': 1}, {'Country': 'CH', 'Internet': '0.72', 'Print': '0.94', 'Radio': '0.47', 'Region': 'Europe', 'Television': '0.47', 'Twitter': 1}, {'Country': 'TW', 'Internet': '1.00', 'Print': '0.68', 'Radio': '0.80', 'Region': 'Asia', 'Television': '0.80', 'Twitter': 1}, {'Country': 'TZ', 'Internet': '0.74', 'Print': '0.35', 'Radio': '1.18', 'Region': 'Africa', 'Television': '1.18', 'Twitter': 1}, {'Country': 'TG', 'Internet': '0.15', 'Print': '0.07', 'Radio': '0.44', 'Region': 'Africa', 'Television': '0.44', 'Twitter': 1}, {'Country': 'TO', 'Internet': '0.05', 'Print': '0.05', 'Radio': '0.05', 'Region': 'Pacific Islands', 'Television': '0.05', 'Twitter': 1}, {'Country': 'TT', 'Internet': '0.25', 'Print': '0.18', 'Radio': '0.19', 'Region': 'Caribbean', 'Television': '0.19', 'Twitter': 1}, {'Country': 'TN', 'Internet': '0.60', 'Print': '0.31', 'Radio': '0.55', 'Region': 'Middle East', 'Television': '0.55', 'Twitter': 1}, {'Country': 'TR', 'Internet': '1.59', 'Print': '0.94', 'Radio': '1.44', 'Region': 'Europe', 'Television': '1.44', 'Twitter': 1}, {'Country': 'UG', 'Internet': '0.68', 'Print': '0.16', 'Radio': '1.03', 'Region': 'Africa', 'Television': '1.03', 'Twitter': 1}, {'Country': 'GB', 'Internet': '2.02', 'Print': '2.23', 'Radio': '1.32', 'Region': 'Europe', 'Television': '1.32', 'Twitter': 1}, {'Country': 'US', 'Internet': '4.48', 'Print': '4.43', 'Radio': '2.98', 'Region': 'North America', 'Television': '2.98', 'Twitter': 1}, {'Country': 'UY', 'Internet': '0.38', 'Print': '0.56', 'Radio': '0.31', 'Region': 'Latin America', 'Television': '0.31', 'Twitter': 1}, {'Country': 'VU', 'Internet': '0.05', 'Print': '0.58', 'Radio': '0.08', 'Region': 'Asia', 'Television': '0.08', 'Twitter': 1}, {'Country': 'VE', 'Internet': '1.02', 'Print': '1.01', 'Radio': '0.92', 'Region': 'Latin America', 'Television': '0.92', 'Twitter': 1}, {'Country': 'VN', 'Internet': '1.69', 'Print': '0.52', 'Radio': '1.59', 'Region': 'Asia', 'Television': '1.59', 'Twitter': 1}, {'Country': 'ZM', 'Internet': '0.41', 'Print': '0.15', 'Radio': '0.64', 'Region': 'Africa', 'Television': '0.64', 'Twitter': 1}, {'Country': 'ZW', 'Internet': '0.45', 'Print': '0.30', 'Radio': '0.63', 'Region': 'Africa', 'Television': '0.63', 'Twitter': 1}, {'Country': 'EN', 'Internet': '2.02', 'Print': '2.23', 'Radio': '1.32', 'Region': 'Europe', 'Television': '1.32', 'Twitter': 1}, {'Country': 'WL', 'Internet': '2.02', 'Print': '2.23', 'Radio': '1.32', 'Region': 'Europe', 'Television': '1.32', 'Twitter': 1}, {'Country': 'SQ', 'Internet': '2.02', 'Print': '2.23', 'Radio': '1.32', 'Region': 'Europe', 'Television': '1.32', 'Twitter': 1}, {'Country': 'EN', 'Internet': '2.02', 'Print': '2.23', 'Radio': '1.32', 'Region': 'Europe', 'Television': '1.32', 'Twitter': 1}, {'Country': 'B1', 'Internet': '0.82', 'Print': '0.70', 'Radio': '0.55', 'Region': 'Europe', 'Television': '0.55', 'Twitter': 1}, {'Country': 'B2', 'Internet': '0.82', 'Print': '0.70', 'Radio': '0.55', 'Region': 'Europe', 'Television': '0.55', 'Twitter': 1}]
from flask import render_template, redirect, request, url_for, flash from flask_login import login_user, logout_user, login_required, current_user from . import auth from .. import db from ..models import User from .forms import LoginForm, RegistrationForm, ChangePasswordForm, ResetPassword, ResetPasswordRequest, \ ChangeEmailForm from ..email import send_email @auth.before_app_request def before_request(): if current_user.is_authenticated: current_user.ping() if not current_user.confirmed \ and request.endpoint \ and request.blueprint != 'auth' \ and request.endpoint != 'static': return redirect(url_for('auth.unconfirmed')) @auth.route('/unconfirmed') def unconfirmed(): if current_user.is_anonymous or current_user.confirmed: return redirect(url_for('main.index')) return render_template('auth/unconfirmed.html') @auth.route('/login', methods=['GET', 'POST']) def login(): form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if user is not None and user.verify_password(form.password.data): login_user(user, form.remember_me.data) # 第二个参数为保持登录的Boolean next = request.args.get('next') if next is None or not next.startswith('/'): next = url_for('main.index') return redirect(next) flash('Invalid email or password.') return render_template('auth/login.html', form=form) @auth.route('/logout') @login_required def logout(): logout_user() flash('You have been logged out.') return redirect(url_for('main.index')) @auth.route('/register', methods=['GET', 'POST']) def register(): form = RegistrationForm() if form.validate_on_submit(): user = User(email=form.email.data, username=form.username.data, password=form.password.data) db.session.add(user) db.session.commit() token = user.generate_confirmation_token(3600) send_email(user.email, 'Confirm your account', 'auth/email/confirm', user=user, token=token) flash('A confirmation email has been sent to you by email.') return redirect(url_for('auth.login')) return render_template('auth/register.html', form=form) @auth.route('/confirm/<token>') @login_required def confirm(token): if current_user.confirmed: return redirect(url_for('main.index')) if current_user.confirm(token): db.session.commit() flash('Account has been confirmed.Thanks') else: flash('The confirmation link is invalid or has expired.') return redirect(url_for('main.index')) @auth.route('/confirm') @login_required def resend_confirmation(): token = current_user.generate_confirmation_token(3600) send_email(current_user.email, 'Confirm your account', 'auth/email/confirm', user=current_user, token=token) flash('A new confirmation email has been sent to you by email.') return redirect(url_for('main.index')) @auth.route('/change-password', methods=['GET', 'POST']) @login_required def change_password(): form = ChangePasswordForm() if form.validate_on_submit(): if current_user.verify_password(form.old_password.data): current_user.password = form.new_password.data db.session.add(current_user) db.session.commit() flash('New password has been updated.') return redirect(url_for('main.index')) else: flash('Invalid password') return render_template('auth/change_password.html', form=form) @auth.route('/reset', methods=['GET', 'POST']) def reset_password_request(): if not current_user.is_anonymous: return redirect(url_for('main.index')) form = ResetPasswordRequest() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if user: token = user.generate_reset_token() send_email(user.email, 'Reset your password', 'auth/email/reset_password', user=user, token=token) flash('An email with instructions to reset your password has been sent to you.') return redirect(url_for('auth/login')) return render_template('auth/reset_password.html', form=form) @auth.route('/reset/<token>', methods=['GET', 'POST']) def password_reset(token): if not current_user.is_anonymous: return redirect(url_for('main.index')) # 防止已登录用户误点击 form = ResetPassword() if form.validate_on_submit(): if User.reset_password(token, form.reset_password.data): db.session.commit() flash('Password had been updated') return redirect(url_for('auth.login')) else: flash('Error Please reset your password again') return redirect(url_for('auth.login')) return render_template('auth/reset_password.html', form=form) @auth.route('/change_email', methods=['GET', 'POST']) @login_required def change_email_request(): form = ChangeEmailForm() if form.validate_on_submit(): if current_user.verify_password(form.password.data): new_email = form.newemail.data token = current_user.generate_email_change_token(new_email) send_email(new_email, 'Update your Email Address', 'auth/email/change_email', user=current_user, token=token) flash('A confirmation link has been sent to your new Email address') return redirect(url_for('auth.login')) else: flash('Invalid email or password') return render_template('auth/change_email.html', form=form) @auth.route('/change_email/<token>') @login_required def email_change(token): if current_user.change_email(token): db.session.commit() flash('New Email address has been updated') else: flash('Invalid request') return redirect(url_for('main.index'))
# Copyright (C) 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # An example script that demonstrates converting a proprietary format to a # Google Transit Feed Specification file. # # You can load table.txt, the example input, in Excel. It contains three # sections: # 1) A list of global options, starting with a line containing the word # 'options'. Each option has an name in the first column and most options # have a value in the second column. # 2) A table of stops, starting with a line containing the word 'stops'. Each # row of the table has 3 columns: name, latitude, longitude # 3) A list of routes. There is an empty row between each route. The first row # for a route lists the short_name and long_name. After the first row the # left-most column lists the stop names visited by the route. Each column # contains the times a single trip visits the stops. # # This is very simple example which you could use as a base for your own # transit feed builder. import transitfeed from optparse import OptionParser import re stops = {} # table is a list of lists in this form # [ ['Short Name', 'Long Name'], # ['Stop 1', 'Stop 2', ...] # [time_at_1, time_at_2, ...] # times for trip 1 # [time_at_1, time_at_2, ...] # times for trip 2 # ... ] def add_route_to_schedule(schedule, table): if len(table) >= 2: r = schedule.add_route(short_name=table[0][0], long_name=table[0][1], route_type='Bus') for trip in table[2:]: if len(trip) > len(table[1]): print("ignoring %s" % trip[len(table[1]):]) trip = trip[0:len(table[1])] t = r.add_trip(schedule, headsign='My headsign') trip_stops = [] # Build a list of (time, stopname) tuples for i in range(0, len(trip)): if re.search(r'\S', trip[i]): trip_stops.append( (transitfeed.time_to_seconds_since_midnight(trip[i]), table[1][i]) ) trip_stops.sort() # Sort by time for (time, stopname) in trip_stops: t.add_stop_time(stop=stops[stopname.lower()], arrival_secs=time, departure_secs=time) def transpose_table(table): """Transpose a list of lists, using None to extend all input lists to the same length. For example: >>> transpose_table( [ [11, 12, 13], [21, 22], [31, 32, 33, 34]]) [ [11, 21, 31], [12, 22, 32], [13, None, 33], [None, None, 34]] """ transposed = [] rows = len(table) cols = max(len(row) for row in table) for x in range(cols): transposed.append([]) for y in range(rows): if x < len(table[y]): transposed[x].append(table[y][x]) else: transposed[x].append(None) return transposed def process_options(schedule, table): service_period = schedule.get_default_service_period() agency_name, agency_url, agency_timezone = (None, None, None) for row in table[1:]: command = row[0].lower() if command == 'weekday': service_period.set_weekday_service() elif command == 'start_date': service_period.set_start_date(row[1]) elif command == 'end_date': service_period.set_end_date(row[1]) elif command == 'add_date': service_period.set_date_has_service(date=row[1]) elif command == 'remove_date': service_period.set_date_has_service(date=row[1], has_service=False) elif command == 'agency_name': agency_name = row[1] elif command == 'agency_url': agency_url = row[1] elif command == 'agency_timezone': agency_timezone = row[1] if not (agency_name and agency_url and agency_timezone): print("You must provide agency information") schedule.new_default_agency(agency_name=agency_name, agency_url=agency_url, agency_timezone=agency_timezone) def add_stops(schedule, table): for name, lat_str, lng_str in table[1:]: stop = schedule.add_stop(lat=float(lat_str), lng=float(lng_str), name=name) stops[name.lower()] = stop def process_table(schedule, table): if table[0][0].lower() == 'options': process_options(schedule, table) elif table[0][0].lower() == 'stops': add_stops(schedule, table) else: transposed = [table[0]] # Keep route_short_name and route_long_name on first row # Transpose rest of table. Input contains the stop names in table[x][0], x # >= 1 with trips found in columns, so we need to transpose table[1:]. # As a diagram Transpose from # [['stop 1', '10:00', '11:00', '12:00'], # ['stop 2', '10:10', '11:10', '12:10'], # ['stop 3', '10:20', '11:20', '12:20']] # to # [['stop 1', 'stop 2', 'stop 3'], # ['10:00', '10:10', '10:20'], # ['11:00', '11:11', '11:20'], # ['12:00', '12:12', '12:20']] transposed.extend(transpose_table(table[1:])) add_route_to_schedule(schedule, transposed) def main(): parser = OptionParser() parser.add_option('--input', dest='input', help='Path of input file') parser.add_option('--output', dest='output', help='Path of output file, should end in .zip') parser.set_defaults(output='feed.zip') (options, args) = parser.parse_args() schedule = transitfeed.Schedule() table = [] for line in open(options.input): line = line.rstrip() if not line: process_table(schedule, table) table = [] else: table.append(line.split('\t')) process_table(schedule, table) schedule.write_google_transit_feed(options.output) if __name__ == '__main__': main()
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch.utils.data class FairseqDataset(torch.utils.data.Dataset): """A dataset that provides helpers for batching.""" def __getitem__(self, index): raise NotImplementedError def __len__(self): raise NotImplementedError def collater(self, samples): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch suitable for forwarding with a Model """ raise NotImplementedError def num_tokens(self, index): """Return the number of tokens in a sample. This value is used to enforce ``--max-tokens`` during batching.""" raise NotImplementedError def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" raise NotImplementedError def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" return np.arange(len(self)) @property def supports_prefetch(self): """Whether this dataset supports prefetching.""" return False def prefetch(self, indices): """Prefetch the data required for this epoch.""" raise NotImplementedError
import frappe from frappe.utils import flt def merge_bundled_items(self, method): bundles = {} item_meta = frappe.get_meta(self.doctype + " Item") count = 0 copy_fields = ['qty', 'stock_qty'] sum_fields = ['total_weight', 'amount', 'net_amount'] rate_fields = [('rate', 'amount'), ('net_rate', 'net_amount'), ('weight_per_unit', 'total_weight')] base_fields = [('base_' + f, f) for f in sum_fields if item_meta.has_field('base_' + f)] base_fields += [('base_' + f, f) for f in copy_fields if item_meta.has_field('base_' + f)] base_fields += [('base_' + t, t) for t, s in rate_fields if item_meta.has_field('base_' + t)] # Sum amounts in_bundle = 0 for item in self.items: if item.bsbt == 'Bundle Start': in_bundle = item.idx if not in_bundle or item.bsbt == 'Bundle Start': new_bundle = frappe._dict() for f in copy_fields: new_bundle[f] = item.get(f) bundles[item.idx] = new_bundle group_item = bundles[in_bundle or item.idx] if item.bsbt == 'Bundle Terminate': in_bundle = 0 for f in sum_fields: group_item[f] = group_item.get(f, 0) + flt(item.get(f)) group_item_serial_nos = group_item.setdefault('serial_no', []) if item.get('serial_no'): group_item_serial_nos += filter(lambda s: s, item.serial_no.split('\n')) # Calculate average rates and get serial nos string for group_item in bundles.values(): if group_item.qty: for target, source in rate_fields: group_item[target] = flt(group_item[source]) / flt(group_item.qty) else: for target, source in rate_fields: group_item[target] = 0 group_item.serial_no = '\n'.join(group_item.serial_no) # Calculate company currency values for group_item in bundles.values(): for target, source in base_fields: group_item[target] = group_item.get(source, 0) * self.conversion_rate # Remove duplicates and set aggregated values to_remove = [] for item in self.items: if item.idx in bundles.keys(): count += 1 item.update(bundles[item.idx]) del bundles[item.idx] item.idx = count else: to_remove.append(item) for item in to_remove: self.remove(item) self.total_qty = sum([d.qty for d in self.items])
from __future__ import absolute_import import six import string from django.utils.encoding import force_text from sentry.interfaces.base import Interface from sentry.utils.json import prune_empty_keys from sentry.utils.safe import get_path, trim __all__ = ("Contexts",) context_types = {} class _IndexFormatter(string.Formatter): def format_field(self, value, format_spec): if not format_spec and isinstance(value, bool): return value and "yes" or "no" return string.Formatter.format_field(self, value, format_spec) def format_index_expr(format_string, data): return six.text_type(_IndexFormatter().vformat(six.text_type(format_string), (), data).strip()) def contexttype(cls): context_types[cls.type] = cls return cls class ContextType(object): indexed_fields = None type = None def __init__(self, alias, data): self.alias = alias ctx_data = {} for key, value in six.iteritems(trim(data)): # we use simple checks here, rathern than ' in set()' to avoid # issues with maps/lists if value is not None and value != "": ctx_data[force_text(key)] = value self.data = ctx_data def to_json(self): rv = dict(self.data) rv["type"] = self.type return prune_empty_keys(rv) @classmethod def values_for_data(cls, data): rv = [] for context in six.itervalues(data.get("contexts") or {}): if context and context.get("type") == cls.type: rv.append(context) return rv @classmethod def primary_value_for_data(cls, data): val = get_path(data, "contexts", cls.type) if val and val.get("type") == cls.type: return val rv = cls.values_for_data(data) if len(rv) == 1: return rv[0] def iter_tags(self): if self.indexed_fields: for field, f_string in six.iteritems(self.indexed_fields): try: value = format_index_expr(f_string, self.data) except KeyError: continue if value: if not field: yield (self.alias, value) else: yield ("%s.%s" % (self.alias, field), value) # TODO(dcramer): contexts need to document/describe expected (optional) fields @contexttype class DefaultContextType(ContextType): type = "default" @contexttype class AppContextType(ContextType): type = "app" indexed_fields = {"device": u"{device_app_hash}"} @contexttype class DeviceContextType(ContextType): type = "device" indexed_fields = {"": u"{model}", "family": u"{family}"} # model_id, arch @contexttype class RuntimeContextType(ContextType): type = "runtime" indexed_fields = {"": u"{name} {version}", "name": u"{name}"} @contexttype class BrowserContextType(ContextType): type = "browser" indexed_fields = {"": u"{name} {version}", "name": u"{name}"} # viewport @contexttype class OsContextType(ContextType): type = "os" indexed_fields = {"": u"{name} {version}", "name": u"{name}", "rooted": u"{rooted}"} # build, rooted @contexttype class GpuContextType(ContextType): type = "gpu" indexed_fields = {"name": u"{name}", "vendor": u"{vendor_name}"} @contexttype class MonitorContextType(ContextType): type = "monitor" indexed_fields = {"id": u"{id}"} @contexttype class TraceContextType(ContextType): type = "trace" indexed_fields = {"": u"{trace_id}", "span": u"{span_id}", "ctx": u"{trace_id}-{span_id}"} class Contexts(Interface): """ This interface stores context specific information. """ display_score = 1100 score = 800 @classmethod def to_python(cls, data): rv = {} for alias, value in six.iteritems(data): # XXX(markus): The `None`-case should be handled in the UI and # other consumers of this interface if value is not None: rv[alias] = cls.normalize_context(alias, value) return cls(**rv) @classmethod def normalize_context(cls, alias, data): ctx_type = data.get("type", alias) ctx_cls = context_types.get(ctx_type, DefaultContextType) return ctx_cls(alias, data) def iter_contexts(self): return six.itervalues(self._data) def to_json(self): rv = {} for alias, inst in six.iteritems(self._data): rv[alias] = inst.to_json() return rv def iter_tags(self): for inst in self.iter_contexts(): for tag in inst.iter_tags(): yield tag