text
stringlengths
2
999k
# Generated by Django 4.0 on 2022-01-25 21:15 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0006_ticketimage_external_url_alter_warehousereply_files'), ] operations = [ migrations.RemoveField( model_name='warehousereply', name='files', ), migrations.AlterField( model_name='ticketimage', name='ticket', field=models.ManyToManyField(to='main.Tickets'), ), migrations.CreateModel( name='ReplyImage', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('file', models.FileField(blank=True, max_length=255, upload_to='replyfiles/%Y/%m/%d')), ('reply', models.ManyToManyField(to='main.WarehouseReply')), ], ), ]
class ProgressBarStyle(Enum,IComparable,IFormattable,IConvertible): """ Specifies the style that a System.Windows.Forms.ProgressBar uses to indicate the progress of an operation. enum ProgressBarStyle,values: Blocks (0),Continuous (1),Marquee (2) """ def __eq__(self,*args): """ x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y """ pass def __format__(self,*args): """ __format__(formattable: IFormattable,format: str) -> str """ pass def __ge__(self,*args): pass def __gt__(self,*args): pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __le__(self,*args): pass def __lt__(self,*args): pass def __ne__(self,*args): pass def __reduce_ex__(self,*args): pass def __str__(self,*args): pass Blocks=None Continuous=None Marquee=None value__=None
# -*- coding: utf-8 -*- import config as cfg import pyodbc """ Fill in closest Police Stations within 10 miles If there is no closest PS, then ClosestPSDistance = MeanPSDistance = 10.5 miles Latitude/Longitude distance coefficients: --Miles 3958.75 --Kilometers 6367.45 --Feet 20890584 --Meters 6367450 """ def calculate_distance(bankID, lat, lng): query = """ DECLARE @latitude float, @longitude float SELECT @latitude = ?, @longitude = ? SELECT [StationID] ,[Name] , [Address1] , [City] , [State] , Distance FROM ( SELECT [StationID] ,[Name] , [Address1] , [City] , [State] , ( 3959 * acos( cos( radians(@latitude) ) * cos( radians( Lat ) ) * cos( radians( Lng ) - radians(@longitude) ) + sin( radians(@latitude) ) * sin( radians( Lat ) ) ) ) AS Distance FROM PoliceStation ) as x WHERE Distance <= 10 ORDER BY Distance; """ cnxn = pyodbc.connect( 'DRIVER={ODBC Driver 13 for SQL Server};SERVER=' + cfg.mssql['server'] + ';DATABASE=' + cfg.mssql['database'] + ';UID=' + cfg.mssql['username'] + ';PWD=' + cfg.mssql['password'] ) cursor = cnxn.cursor() params = [lat, lng] rows = cursor.execute(query, params) #Calculate psCount = 0 totdist = 0 closestStationID = None for row in rows: totdist = totdist + float(row.Distance) if(psCount == 0): print(bankID, row.StationID, row.Name, row.City, row.Distance) closestStationID = row.StationID closestPSDistance = float(row.Distance) psCount = psCount + 1 meanPSDistance = totdist / psCount if psCount else None # Save back into table query2 = """ UPDATE Bank SET ClosestStationID = ? , ClosestPSDistance = ? , MeanPSDistance = ? , PSCount = ? WHERE BankID = ? ; """ over10 = 10.5 #over 10 miles if not closestStationID: #no closest station in 10 miles closestStationID = None closestPSDistance = over10 meanPSDistance = over10 psCount = 0 params2 = [closestStationID, closestPSDistance, meanPSDistance, psCount, bankID] cursor.execute(query2, params2) cnxn.commit() #---------------------------------------------- # Calculate distance for all rows cnxn = pyodbc.connect( 'DRIVER={ODBC Driver 13 for SQL Server};SERVER=' + cfg.mssql['server'] + ';DATABASE=' + cfg.mssql['database'] + ';UID=' + cfg.mssql['username'] + ';PWD=' + cfg.mssql['password'] ) cursor = cnxn.cursor() query = "SELECT bankID, lat, lng FROM Bank WHERE [ClosestPSDistance] IS NULL;" rows = cursor.execute(query) for row in rows: calculate_distance(row.bankID, row.lat, row.lng)
i = 0 while i < 21474826: i = i + 1 if i % 1000000 == 0: print i
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @author: Wesley # @time: 2020-12-11 10:47 import os import time import torch from torch import nn from models.dinknet34 import DinkNet34 from loss import dice_bce_loss from models.unet import UNet from dataset import MyDataset from torch.utils.data import DataLoader img_path = r'E:\PyCharmProject\datasets\5k\train_set\JPEGImages' mask_path = r'E:\PyCharmProject\datasets\5k\train_set\SegmentationClass' val_img_path = r'E:\PyCharmProject\datasets\5k\validate_set\JPEGImages' val_mask_path = r'E:\PyCharmProject\datasets\5k\validate_set\SegmentationClass' log = './dinknet.txt' device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') batch_size_per = 16 batch_size = batch_size_per * torch.cuda.device_count() epoch_limit = 10 net = DinkNet34().to(device) net = torch.nn.DataParallel(net, device_ids=range(torch.cuda.device_count())) weight = r'E:\PyCharmProject\Road-Detection\weights\dinknet34.pt' # if os.path.exists(weight): # net.load_state_dict(torch.load(weight)) train_dataset = MyDataset(img_path, mask_path) val_dataset = MyDataset(val_img_path, val_mask_path) train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_dataloader = DataLoader(val_dataset, batch_size=batch_size) adam = torch.optim.Adam(net.parameters(), lr=2e-4) sgd = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.9) loss_fun = dice_bce_loss() if __name__ == '__main__': epoch = 1 log = open(log, 'w', encoding='utf-8') log.write('epoch' + '\t' + 'loss' + '\t' + 'pa' + '\t' + 'iou' + '\t' + 'precision' + '\n') log.flush() while epoch < 300: s_time = time.time() print('epoch - {} - training'.format(epoch)) net.train() TP = FP = TN = FN = 0 pa = 0 iou = 0 stop = 0 flag = 0 train_loss = 0 batch = len(train_dataloader) for i, (img, mask) in enumerate(train_dataloader): img = img.to(device) mask = mask.to(device) out = net(img) loss = loss_fun(mask, out) adam.zero_grad() loss.backward() adam.step() if i % 10 == 0: print('{}: {}/{} - loss: {}'.format(epoch, i, batch, loss.item())) # torch.save(net.state_dict(), weight) # print('save success') train_loss += loss.item() epoch_loss = train_loss / len(train_dataloader) e_time = time.time() print('epoch - {} - epoch_loss: {}'.format(epoch, epoch_loss)) print('total-time: ', e_time - s_time) print('epoch - {} - evaluating'.format(epoch)) net.eval() for img, mask in val_dataloader: img = img.to(device) mask = mask.to(device) with torch.no_grad(): pred = net(img) pred[pred >= 0.5] = 1 pred[pred < 0.5] = 0 TP += ((pred == 1) & (mask == 1)).cpu().sum().item() TN += ((pred == 0) & (mask == 0)).cpu().sum().item() FN += ((pred == 0) & (mask == 1)).cpu().sum().item() FP += ((pred == 1) & (mask == 0)).cpu().sum().item() pa = (TP + TN) / (TP + TN + FP + FN) precision = TP / (TP + FN) iou = TP / (TP + FP + FN) print('pa: ', pa) print('iou: ', iou) print('precision', precision) log.write( str(epoch) + '\t' + str(epoch_loss) + '\t' + str(pa) + '\t' + str(iou) + '\t' + str(precision) + '\n') log.flush() if iou > stop: stop = iou torch.save(net.state_dict(), weight) print("save success,iou updated to: {}".format(iou)) flag = 0 else: flag += 1 print("pa为{},没有提升,参数未更新,iou为{},第{}次未更新".format(iou, stop, flag)) if flag >= epoch_limit: print("early stop at epoch {}, finally iou: {}".format(epoch, stop)) break epoch += 1 log.close()
""" Convert a large audio wav file (album length, i.e. > 30 minutes typically) into a series of videos consisting of the audio synchronized with images of the spectrogram. """ import os import sys import multiprocessing as mp import subprocess import tqdm import numpy as np import librosa.core import librosa.display import librosa.feature import matplotlib.pyplot as plt plt.switch_backend("agg") SAMPLERATE = 44.1e3 # samples/sec WAVPATH = sys.argv[1] BASENAME = os.path.basename(WAVPATH).replace(".wav", "") ROOT = "/mnt/nfs-share/music/data" FRAMEROOT = ROOT + "/frames/" + BASENAME DURATION = 20 # NUMPROC = 8 FFTFREQ = librosa.fft_frequencies(sr=SAMPLERATE) F_MAX = np.max(FFTFREQ) N_FFT = 2048 N_HOP = int(1.0 / 4 * N_FFT) FILETIME = librosa.core.get_duration(filename=WAVPATH) NFRAME = int(FILETIME) / DURATION # allow truncation DUMPFILE = "data.npy" FPS = 5 def single_image(argtuple): y, i_frame, i_second = argtuple fractional_second = float(i_second) / FPS abs_index = i_frame * DURATION * FPS + i_second time = DURATION*i_frame + fractional_second titlestr = "%s - file time %0.2f seconds" % (BASENAME, time) # display the spectrogram plt.figure(figsize=(18, 8)) librosa.display.specshow( y, x_axis='time', y_axis='mel', sr=SAMPLERATE, hop_length=N_HOP) plt.vlines( fractional_second, 0, F_MAX, linestyles='dashed', colors='w', alpha=0.6) plt.title(titlestr) plt.savefig(FRAMEROOT + "/%05d.png" % (abs_index)) plt.tight_layout() plt.close() def main(): """ main """ pbar = tqdm.tqdm(total=NFRAME) pool = mp.Pool(NUMPROC) init = False if not os.path.exists(FRAMEROOT): os.makedirs(FRAMEROOT) for i_frame in range(10, NFRAME): # load the audio x, sr = librosa.core.load( WAVPATH, sr=SAMPLERATE, offset=DURATION * i_frame, duration=DURATION) # compute the spectrogram x = librosa.power_to_db( librosa.feature.melspectrogram( y=x, hop_length=N_HOP, n_fft=N_FFT, sr=SAMPLERATE), ref=np.max) if not init: f_mean = np.sum(x, axis=1) init = True else: f_mean += np.sum(x, axis=1) # loop updates pbar.update(1) pool.map( single_image, [(x, i_frame, i_second) for i_second in range(FPS*DURATION)]) np.save(BASENAME + 'f_mean.npy', f_mean) pbar.close() subprocess.call([ "ffmpeg", '-r', '5', '-i', FRAMEROOT + '%05d.png', '-i', WAVPATH, '-shortest', '-c:v', 'libx264', '-c:a', 'aac', '-strict', '-2', '-pix_fmt', 'yuv420p', '-crf', '23', '-r', '5', '-y', ROOT + "/videos/" + BASENAME + '.mp4']) if __name__ == '__main__': main()
import requests parameters = { "amount": 10, "type": "multiple" } response = requests.get(url="https://opentdb.com/api.php", params=parameters) question_data = response.json()["results"] """ Sample Response [ { 'category': 'Sports', 'type': 'multiple', 'difficulty': 'medium', 'question': 'Which Formula One driver was nicknamed &#039;The Professor&#039;?', 'correct_answer': 'Alain Prost', 'incorrect_answers': [ 'Ayrton Senna', 'Niki Lauda', 'Emerson Fittipaldi' ] }, { 'category': 'Entertainment: Music', 'type': 'multiple', 'difficulty': 'medium', 'question': 'In which city did American rap producer DJ Khaled originate from?', 'correct_answer': 'Miami', 'incorrect_answers': [ 'New York', 'Detroit', 'Atlanta' ] } ] """
from imageio import imread import matplotlib.pyplot as plt def plot_animal_tree(ax=None): import graphviz if ax is None: ax = plt.gca() mygraph = graphviz.Digraph(node_attr={'shape': 'box'}, edge_attr={'labeldistance': "10.5"}, format="png") mygraph.node("0", "Has feathers?") mygraph.node("1", "Can fly?") mygraph.node("2", "Has fins?") mygraph.node("3", "Hawk") mygraph.node("4", "Penguin") mygraph.node("5", "Dolphin") mygraph.node("6", "Bear") mygraph.edge("0", "1", label="True") mygraph.edge("0", "2", label="False") mygraph.edge("1", "3", label="True") mygraph.edge("1", "4", label="False") mygraph.edge("2", "5", label="True") mygraph.edge("2", "6", label="False") mygraph.render("tmp") ax.imshow(imread("tmp.png")) ax.set_axis_off()
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2016-11-21 23:48 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('property_api', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='ckanresource', name='ckan_instance', ), migrations.AddField( model_name='ckanresource', name='slug', field=models.CharField(default='', max_length=200), preserve_default=False, ), migrations.DeleteModel( name='CKANInstance', ), ]
import _plotly_utils.basevalidators class SizemodeValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="sizemode", parent_name="scattercarpet.marker", **kwargs ): super(SizemodeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), values=kwargs.pop("values", ["diameter", "area"]), **kwargs, )
from typing import List from fastapi import APIRouter, Depends, HTTPException, Query from sqlalchemy.orm import Session from dispatch.database import get_db, search_filter_sort_paginate from .models import ( TeamContactCreate, TeamContactRead, TeamContactUpdate, TeamPagination, ) from .service import create, delete, get, get_by_email, update router = APIRouter() @router.get("/", response_model=TeamPagination) def get_teams( db_session: Session = Depends(get_db), page: int = 1, items_per_page: int = Query(5, alias="itemsPerPage"), query_str: str = Query(None, alias="q"), sort_by: List[str] = Query([], alias="sortBy[]"), descending: List[bool] = Query([], alias="descending[]"), fields: List[str] = Query([], alias="fields[]"), ops: List[str] = Query([], alias="ops[]"), values: List[str] = Query([], alias="values[]"), ): """ Get all team contacts. """ return search_filter_sort_paginate( db_session=db_session, model="TeamContact", query_str=query_str, page=page, items_per_page=items_per_page, sort_by=sort_by, descending=descending, fields=fields, values=values, ops=ops, ) @router.post("/", response_model=TeamContactRead) def create_team(*, db_session: Session = Depends(get_db), team_contact_in: TeamContactCreate): """ Create a new team contact. """ team = get_by_email(db_session=db_session, email=team_contact_in.email) if team: raise HTTPException(status_code=400, detail="The team with this email already exists.") team = create(db_session=db_session, team_contact_in=team_contact_in) return team @router.get("/{team_id}", response_model=TeamContactRead) def get_team(*, db_session: Session = Depends(get_db), team_contact_id: int): """ Get a team contact. """ team = get(db_session=db_session, team_contact_id=team_contact_id) if not team: raise HTTPException(status_code=404, detail="The team with this id does not exist.") return team @router.put("/{team_contact_id}", response_model=TeamContactRead) def update_team( *, db_session: Session = Depends(get_db), team_contact_id: int, team_contact_in: TeamContactUpdate, ): """ Update a team contact. """ team = get(db_session=db_session, team_contact_id=team_contact_id) if not team: raise HTTPException(status_code=404, detail="The team with this id does not exist.") team = update(db_session=db_session, team_contact=team, team_contact_in=team_contact_in) return team @router.delete("/{team_contact_id}", response_model=TeamContactRead) def delete_team(*, db_session: Session = Depends(get_db), team_contact_id: int): """ Delete a team contact. """ team = get(db_session=db_session, team_contact_id=team_contact_id) if not team: raise HTTPException(status_code=404, detail="The team with this id does not exist.") delete(db_session=db_session, team_contact_id=team_contact_id) return team
''' only for RRP Hopper Shihao Feng 2021.10.28 ''' import numpy as np import pybullet as p from leg_kinematics import LegKinematicsRRP import pinocchio as pin class JointPDController(object): def __init__ (self): self.kp = np.array([70, 70, 1500]) self.kd = np.array([2, 2, 10]) def solve(self, q_d, dq_d, q_state, dq_state): q = q_state[7:10] dq = dq_state[6:9] ddq_d = np.zeros(3) # 期望加速度计算量大,简单地设为0 tau_d = ddq_d + self.kd*(dq_d - dq) + self.kp*(q_d - q) # (3,) return tau_d class SLIPController(object): def __init__(self): self.q_d = np.array([0., 0., 0.]) # q_d[2] always 0 self.dq_d = np.array([0., 0., 0.]) # always 0 # 关节增益 self.kp = np.array([70., 70., 3000.]) self.kd = np.array([2., 2., 10.]) # 阻尼模拟能量损失, 同时防止腿抖动 # 身体姿态增益 self.kp_pose = 5. * np.ones(2) self.kd_pose = 1. * np.ones(2) # 水平速度增益 self.kp_vel = 0.1 * np.ones(2) self.leg_length_normal = 0.55 self.RRP = LegKinematicsRRP(L=self.leg_length_normal) # private methods def __w_to_drpy(self, rpy, w): ''' rpy -> (3,), w -> (3,),drpy -> (3,) ''' H = np.array([[np.cos(rpy[2])/np.cos(rpy[1]), np.sin(rpy[2])/np.cos(rpy[1]), 0.], [-np.sin(rpy[2]), np.cos(rpy[2]), 0.], [np.cos(rpy[2])*np.tan(rpy[1]), np.sin(rpy[2])*np.tan(rpy[1]), 0.]]) drpy = (H @ w.reshape(-1,1)).ravel() return drpy def solve(self, q_state, dq_state, robot_state_machine, T_s, vel, dir, F_thrust): tau_d = np.zeros(3) # 初始化 orn_body = q_state[3:7] # 身体姿态 四元数 rpy = np.array(p.getEulerFromQuaternion(orn_body)) w_body = dq_state[3:6] # 身体角速度 w drpy = self.__w_to_drpy(rpy, w_body) q = q_state[7:10] # 关节位置 dq = dq_state[6:9] # 关节速度 # 控制虚拟弹簧力 tau_d[2] = self.kd[2]*(self.dq_d[2] - dq[2]) \ + self.kp[2]*(self.q_d[2] - q[2]) # 弹簧伸长时,施加推力抵消能量损耗 if robot_state_machine == 'THRUST': tau_d[2] += F_thrust # 触地或者离地时,关节扭矩为0 if (robot_state_machine == 'LOADING' or robot_state_machine == 'UNLOADING'): tau_d[0:2] = np.zeros(2) # 弹簧压缩或者伸长时,施加关节扭矩控制身体姿态 if (robot_state_machine == 'COMPRESSION' or robot_state_machine == 'THRUST'): # 姿态线性伺服控制 tau_d[0:2] = - (self.kd_pose*(np.zeros(2) - drpy[0:2]) \ + self.kp_pose*(np.zeros(2) - rpy[0:2])) # (2,) # 飞行时,控制足端移动到落地点 if robot_state_machine == 'FLIGHT': vel_xy_d = np.array([vel*np.cos(dir), vel*np.sin(dir)]) v_body = dq_state[0:2] # 当前水平速度 # 相对于H系:坐标系原点与身体坐标系重合,方向与世界坐标系平行 xy_d = v_body*T_s/2 - self.kp_vel*(vel_xy_d - v_body) # 计算落脚点 r = q[2] + self.leg_length_normal z_d = - (r**2 - xy_d[0]**2 - xy_d[1]**2)**0.5 # 转换到B系:身体坐标系 R_HB = pin.rpy.rpyToMatrix(rpy) R_BH = R_HB.T p_H = np.array([xy_d[0], xy_d[1], z_d]) p_B = (R_BH @ p_H.reshape(-1,1)).ravel() # (3,) q_d = self.RRP.IK(p_B) self.q_d[0:2] = q_d[0:2] # 关节PD控制 tau_d[0:2] = self.kd[0:2]*(self.dq_d[0:2] - dq[0:2]) \ + self.kp[0:2]*(self.q_d[0:2] - q[0:2]) # (2,) print('tau_d: ', tau_d) return tau_d
"""A collection of classes and methods to deal with collections of rates that together make up a network.""" # Common Imports from __future__ import print_function import functools import math from operator import mul import os from collections import OrderedDict from ipywidgets import interact import matplotlib as mpl import matplotlib.pyplot as plt #from mpl_toolkits.axes_grid1 import make_axes_locatable import networkx as nx # Import Rate from pynucastro.rates import Rate, Nucleus, Library mpl.rcParams['figure.dpi'] = 100 class Composition(object): """a composition holds the mass fractions of the nuclei in a network -- useful for evaluating the rates """ def __init__(self, nuclei, small=1.e-16): """nuclei is an iterable of the nuclei (Nucleus objects) in the network""" if not isinstance(nuclei[0], Nucleus): raise ValueError("must supply an iterable of Nucleus objects") else: self.X = {k: small for k in nuclei} def set_solar_like(self, Z=0.02): """ approximate a solar abundance, setting p to 0.7, He4 to 0.3 - Z and the remainder evenly distributed with Z """ num = len(self.X) rem = Z/(num-2) for k in self.X: if k == Nucleus("p"): self.X[k] = 0.7 elif k.raw == "he4": self.X[k] = 0.3 - Z else: self.X[k] = rem self.normalize() def set_all(self, xval): """ set all species to a particular value """ for k in self.X: self.X[k] = xval def set_nuc(self, name, xval): """ set nuclei name to the mass fraction xval """ for k in self.X: if k.raw == name: self.X[k] = xval break def normalize(self): """ normalize the mass fractions to sum to 1 """ X_sum = sum([self.X[k] for k in self.X]) for k in self.X: self.X[k] /= X_sum def get_molar(self): """ return a dictionary of molar fractions""" molar_frac = {k: v/k.A for k, v in self.X.items()} return molar_frac def __str__(self): ostr = "" for k in self.X: ostr += " X({}) : {}\n".format(k, self.X[k]) return ostr class RateCollection(object): """ a collection of rates that together define a network """ pynucastro_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) def __init__(self, rate_files=None, libraries=None, rates=None): """ rate_files are the files that together define the network. This can be any iterable or single string. This can include Reaclib library files storing multiple rates. If libraries is supplied, initialize a RateCollection using the rates in the Library object(s) in list 'libraries'. If rates is supplied, initialize a RateCollection using the Rate objects in the list 'rates'. Any combination of these options may be combined. """ self.files = [] self.rates = [] self.library = None if rate_files: if isinstance(rate_files, str): rate_files = [rate_files] self._read_rate_files(rate_files) if rates: if isinstance(rates, Rate): rates = [rates] try: for r in rates: assert(isinstance(r, Rate)) except: print('Expected Rate object or list of Rate objects passed as the rates argument.') raise else: rlib = Library(rates=rates) if not self.library: self.library = rlib else: self.library = self.library + rlib if libraries: if isinstance(libraries, Library): libraries = [libraries] try: for lib in libraries: assert(isinstance(lib, Library)) except: print('Expected Library object or list of Library objects passed as the libraries argument.') raise else: if not self.library: self.library = libraries.pop(0) for lib in libraries: self.library = self.library + lib if self.library: self.rates = self.rates + self.library.get_rates() # get the unique nuclei u = [] for r in self.rates: t = set(r.reactants + r.products) u = set(list(u) + list(t)) self.unique_nuclei = sorted(u) # now make a list of each rate that touches each nucleus # we'll store this in a dictionary keyed on the nucleus self.nuclei_consumed = OrderedDict() self.nuclei_produced = OrderedDict() for n in self.unique_nuclei: self.nuclei_consumed[n] = [r for r in self.rates if n in r.reactants] self.nuclei_produced[n] = [r for r in self.rates if n in r.products] # Re-order self.rates so Reaclib rates come first, # followed by Tabular rates. This is needed if # reaclib coefficients are targets of a pointer array # in the Fortran network. # It is desired to avoid wasting array size # storing meaningless Tabular coefficient pointers. self.rates = sorted(self.rates, key=lambda r: r.chapter == 't') self.tabular_rates = [] self.reaclib_rates = [] for n, r in enumerate(self.rates): if r.chapter == 't': self.tabular_rates.append(n) elif isinstance(r.chapter, int): self.reaclib_rates.append(n) else: print('ERROR: Chapter type unknown for rate chapter {}'.format( str(r.chapter))) exit() def _read_rate_files(self, rate_files): # get the rates self.files = rate_files for rf in self.files: try: rflib = Library(rf) except: print("Error reading library from file: {}".format(rf)) raise else: if not self.library: self.library = rflib else: self.library = self.library + rflib def get_nuclei(self): """ get all the nuclei that are part of the network """ return self.unique_nuclei def evaluate_rates(self, rho, T, composition): """evaluate the rates for a specific density, temperature, and composition""" rvals = OrderedDict() ys = composition.get_molar() for r in self.rates: val = r.prefactor * rho**r.dens_exp * r.eval(T) yfac = functools.reduce(mul, [ys[q] for q in r.reactants]) rvals[r] = yfac * val return rvals def network_overview(self): """ return a verbose network overview """ ostr = "" for n in self.unique_nuclei: ostr += "{}\n".format(n) ostr += " consumed by:\n" for r in self.nuclei_consumed[n]: ostr += " {}\n".format(r.string) ostr += " produced by:\n" for r in self.nuclei_produced[n]: ostr += " {}\n".format(r.string) ostr += "\n" return ostr def write_network(self, *args, **kwargs): """Before writing the network, check to make sure the rates are distinguishable by name.""" assert self._distinguishable_rates(), "ERROR: Rates not uniquely identified by Rate.fname" self._write_network(*args, **kwargs) def _distinguishable_rates(self): """Every Rate in this RateCollection should have a unique Rate.fname, as the network writers distinguish the rates on this basis.""" names = [r.fname for r in self.rates] return len(set(names)) == len(self.rates) def _write_network(self, *args, **kwargs): """A stub for function to output the network -- this is implementation dependent.""" print('To create network integration source code, use a class that implements a specific network type.') return def plot(self, outfile=None, rho=None, T=None, comp=None, size=(800, 600), dpi=100): """Make a plot of the network structure showing the links between nuclei""" G = nx.MultiDiGraph() G.position = {} G.labels = {} fig, ax = plt.subplots() #divider = make_axes_locatable(ax) #cax = divider.append_axes('right', size='15%', pad=0.05) ax.plot([0, 0], [8, 8], 'b-') # nodes -- the node nuclei will be all of the heavies, but not # p, n, alpha, unless we have p + p, 3-a, etc. node_nuclei = [] for n in self.unique_nuclei: if n.raw not in ["p", "n", "he4"]: node_nuclei.append(n) else: for r in self.rates: if r.reactants.count(n) > 1: node_nuclei.append(n) break for n in node_nuclei: G.add_node(n) G.position[n] = (n.N, n.Z) G.labels[n] = r"${}$".format(n.pretty) if rho is not None and T is not None and comp is not None: ydots = self.evaluate_rates(rho, T, comp) else: ydots = None #for rr in ydots: # print("{}: {}".format(rr, ydots[rr])) # edges for n in node_nuclei: for r in self.nuclei_consumed[n]: for p in r.products: if p in node_nuclei: # networkx doesn't seem to keep the edges in # any particular order, so we associate data # to the edges here directly, in this case, # the reaction rate, which will be used to # color it if ydots is None: G.add_edges_from([(n, p)], weight=0.5) else: try: rate_weight = math.log10(ydots[r]) except ValueError: # if ydots[r] is zero, then set the weight # to roughly the minimum exponent possible # for python floats rate_weight = -308 except: raise G.add_edges_from([(n, p)], weight=rate_weight) nx.draw_networkx_nodes(G, G.position, node_color="#A0CBE2", alpha=1.0, node_shape="o", node_size=1000, linewidth=2.0, zorder=10, ax=ax) nx.draw_networkx_labels(G, G.position, G.labels, font_size=13, font_color="w", zorder=100, ax=ax) # get the edges and weights coupled in the same order edges, weights = zip(*nx.get_edge_attributes(G, 'weight').items()) edges_lc = nx.draw_networkx_edges(G, G.position, width=3, edgelist=edges, edge_color=weights, node_size=1000, edge_cmap=plt.cm.viridis, zorder=1, ax=ax) # for networkx <= 2.0 draw_networkx_edges returns a # LineCollection matplotlib type which we can use for the # colorbar directly. For networkx >= 2.1, it is a collection # of FancyArrowPatch-s, which we need to run through a # PatchCollection. See: # https://stackoverflow.com/questions/18658047/adding-a-matplotlib-colorbar-from-a-patchcollection if ydots is not None: pc = mpl.collections.PatchCollection(edges_lc, cmap=plt.cm.viridis) pc.set_array(weights) plt.colorbar(pc, label="log10(rate)") Ns = [n.N for n in node_nuclei] Zs = [n.Z for n in node_nuclei] plt.xlim(min(Ns)-1, max(Ns)+1) #plt.ylim(min(Zs)-1, max(Zs)+1) plt.xlabel(r"$N$", fontsize="large") plt.ylabel(r"$Z$", fontsize="large") ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.set_aspect("equal", "datalim") fig.set_size_inches(size[0]/dpi, size[1]/dpi) if outfile is None: plt.show() else: plt.tight_layout() plt.savefig(outfile, dpi=dpi) def __repr__(self): string = "" for r in self.rates: string += "{}\n".format(r.string) return string class Explorer(object): """ interactively explore a rate collection """ def __init__(self, rc, comp, size=(800, 600)): """ take a RateCollection and a composition """ self.rc = rc self.comp = comp self.size = size def _make_plot(self, logrho, logT): self.rc.plot(rho=10.0**logrho, T=10.0**logT, comp=self.comp, size=self.size) def explore(self, logrho=(2, 6, 0.1), logT=(7, 9, 0.1)): """Perform interactive exploration of the network structure.""" interact(self._make_plot, logrho=logrho, logT=logT)
#!/usr/bin/env python # coding: utf-8 # In[1]: import torch import numpy as np import matplotlib.pyplot as plt # from MMDBalancing import MMDBalancing as MMDB # from OptimalTransportBalancing import OptimalTransportBalancing as OTB # from NeuralAdversarialBalancing import NeuralAdversarialBalancing as NAB #get_ipython().run_line_magic('matplotlib', 'inline') import pandas as pd # utils from utils_balancing import * # In[2]: def static_simulation(): n = 5000 m = 5000 d = 1 r = lambda x:(x-3).square() + (x>-2)*(x+3).square() +x.abs() #r = lambda x:x.square() def get_data(n = 500,m = 500, r = r, d = d): def pi(x): return torch.sin(x)+ 2*torch.rand(x.shape)-1 def pi_ring(x): return torch.sin(x)+ 1*torch.rand(x.shape)-0.5 xi = torch.normal(mean = -1, std = 2, size = (n,d)) xi_ring = torch.zeros(size = (m,d)) for i in range(m): if torch.rand(1).item()>0.3: xi_ring[i,0] = torch.normal(mean = -4, std = 2, size = (1,)).item() else: xi_ring[i,0] = torch.normal(mean = 3, std = 0.2, size = (1,)).item() w = torch.ones(n) w_ring = torch.ones(m) xi_natural = torch.cat((xi, pi(xi)),axis = 1) xi_ring_natural = torch.cat((xi_ring, pi_ring(xi_ring)), axis = 1) Z =xi_natural[:,0]+xi_natural[:,1] + torch.rand((n,)) Z_ring =xi_ring_natural[:,0]+xi_ring_natural[:,1]+torch.rand((m,)) R = r(Z) return xi_natural,xi_ring_natural,R,Z,Z_ring # ## Reference value # In[7]: xi_natural, xi_ring_natural,R,Z,Z_ring = get_data(n = 50000, m = 50000) ref = r(Z_ring).mean() # ### Re-generate data set with $n=m=500$. # In[8]: n = 500 m = 500 xi_natural, xi_ring_natural,R,Z,Z_ring = get_data(n = n, m = m, r = r) # # GIPWE: DE and DRE # # 1. Data splitting (K-folds with K = 3) # In[9]: def get_split_ind(n,K = 3): I_n = torch.arange(n, dtype = float) rand_ind_n = torch.multinomial(I_n,len(I_n),replacement = False) num_folds_n = int(n/K) Ind = [] for i in range(K): if (i+1)*num_folds_n <= n: Ind.append(list(rand_ind_n[i*num_folds_n:(i+1)*num_folds_n].detach().numpy())) else: Ind.append(list(rand_ind_n[i*num_folds_n:].detach().numpy())) Ind_split = [] for i in range(K): list_n = [] for j in range(n): if j >= i*num_folds_n and j < (i+1)*num_folds_n: pass else: list_n.append(rand_ind_n[j].item()) Ind_split.append(list_n) return Ind_split,Ind # In[10]: K = 3 Ind_out, Ind_in = get_split_ind(n,K) # 2. Get GIPW weights # In[11]: from sklearn.ensemble import RandomForestRegressor import xgboost as xgb from sklearn.linear_model import LogisticRegression # In[12]: XGB = xgb.XGBRegressor(gamma = 5e0) RF = RandomForestRegressor(n_estimators = 20, min_samples_split = 20) LR = LogisticRegression() def get_GIPW_weights(model): eta = np.zeros(n) for k in range(K): SGIPW = Shallow_GIPW(xi_natural[Ind_out[k],:], xi_ring_natural) SGIPW.train(model,xi = np.array(xi_natural[Ind_in[k],:]),log=False) eta[Ind_in[k]] = SGIPW.weights*(SGIPW.weights>0) return eta eta_XGB = get_GIPW_weights(XGB) eta_RF = get_GIPW_weights(RF) eta_LR = get_GIPW_weights(LR) # In[13]: # OT OTB = OptimalTransportBalancing() eta_OT = OTB.get_weights(xi_natural,xi_ring_natural) eta_OT = eta_OT.detach().numpy() # In[17]: # MMD weights lambda_RKHS = 1e2 lambda_l2 = 1e-3 MMDB = MMDBalancing(xi_natural,xi_ring_natural,sigma = 5e-1,D = 2000) eta_MMD = MMDB.get_weights(lambda_RKHS = lambda_RKHS, lambda_l2 = lambda_l2) eta_MMD = eta_MMD.to("cpu").detach().numpy() # In[18]: # In[20]: # Neural Adversarial Balancing class NeuralNetwork(nn.Module): def __init__(self,input_dim = 1, num_nodes = 32): super(NeuralNetwork, self).__init__() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(input_dim, num_nodes), nn.ReLU(), #nn.Dropout(0.3), #nn.BatchNorm1d(num_nodes), nn.Linear(num_nodes, num_nodes), nn.ReLU(), nn.Linear(num_nodes, num_nodes), nn.ReLU(), #nn.Dropout(0.3), #nn.BatchNorm1d(num_nodes), #nn.Linear(num_nodes, num_nodes), #nn.ReLU(), # # #nn.Dropout(0.3), # # nn.BatchNorm1d(num_nodes), nn.Linear(num_nodes, 1), ) def forward(self, x): x = self.flatten(x) target = self.linear_relu_stack(x) return target # In[21]: AB = Adversarial_Balancing(xi_natural,xi_ring_natural) num_nodes_IPM = 24 model_IPM = NeuralNetwork(input_dim = d*2,num_nodes = 2*num_nodes_IPM).to(AB.dev) model_reweighting = NeuralNetwork(input_dim = d*2, num_nodes = num_nodes_IPM).to(AB.dev) learning_rate = 1e-3 optimizer_IPM = torch.optim.Adam(model_IPM.parameters(), lr=learning_rate, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=True) optimizer_reweighting = torch.optim.Adam(model_reweighting.parameters(), lr=learning_rate, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=True) # In[22]: epochs = 50 loss_trace = [] for t in range(epochs): #print(f"Epoch {t+1}\n-------------------------------") current_test_loss = AB.train_loop(model_IPM = model_IPM, model_reweighting = model_reweighting, optimizer_IPM = optimizer_IPM, optimizer_reweighting = optimizer_reweighting, IPM_steps = 3, reweight_steps = 3, lambda_l2_weight = 5e-2, lambda_l2_IPM = 1e-2, lambda_l1_IPM = 1e-2, ) loss_trace.append(current_test_loss.to("cpu").detach().numpy()) weights = model_reweighting(xi_natural.to("cuda:0")) #weights /=weights.mean() eta_NAB = weights.to("cpu").detach().numpy() # 4. Get $r^{\natural}$ estimation with the same K-fold splitting # In[26]: from sklearn.linear_model import LinearRegression RF_R = RandomForestRegressor(n_estimators = 20, min_samples_split = 5) #model_r = RF_R model_r = LinearRegression() # In[27]: def get_r_estimation(model, K = 3): r_hat = np.zeros(n) r_hat_ring = np.zeros(m) for k in range(K): SGIPW = Shallow_GIPW(xi_natural[Ind_out[k],:], xi_ring_natural) model_k = model model_k.fit(xi_natural[Ind_out[k],:].detach().numpy(), R[Ind_out[k]].detach().numpy()) r_hat[Ind_in[k]] = model_k.predict(xi_natural[Ind_in[k]].detach().numpy()) r_hat_ring += model_k.predict(xi_ring_natural.detach().numpy()) r_hat_ring /= K return r_hat, r_hat_ring # In[28]: r_hat,r_hat_ring = get_r_estimation(model_r) # In[29]: # ## Estimators # In[30]: def get_DE(eta, R = R, ref= ref): try: eta = torch.from_numpy(eta) except: pass pred = (eta*R).mean().item() error = torch.abs(pred - ref).item() return pred, error def get_DRE(eta,r_hat, r_hat_ring, R = R, ref = ref): try: eta = torch.from_numpy(eta) r_hat = torch.from_numpy(r_hat) except: pass pred = (eta*(R -r_hat)).mean() + r_hat_ring.mean() error = torch.abs(pred - ref).item() return pred.item(), error # In[31]: #pd.set_option("display.precision", 2) #pd.set_option('display.float_format', lambda x: '%.2f' % x) table_bad_reg = pd.DataFrame([[get_DE(eta_OT)[1],get_DRE(eta_OT,r_hat,r_hat_ring)[1]],[get_DE(eta_MMD)[1],get_DRE(eta_MMD,r_hat,r_hat_ring)[1]], [get_DE(eta_NAB)[1],get_DRE(eta_NAB,r_hat,r_hat_ring)[1]], [get_DE(eta_RF)[1],get_DRE(eta_RF,r_hat,r_hat_ring)[1]],[get_DE(eta_XGB)[1],get_DRE(eta_XGB,r_hat,r_hat_ring)[1]], [get_DE(eta_LR)[1],get_DRE(eta_LR,r_hat,r_hat_ring)[1]],[None, torch.abs(r_hat_ring.mean()-ref).item()]], columns = ("DE","DRE"), index = ("OT", "MMD","NAB", "GIPW-RF","GIPW-XGB","GIPW-LR","G-computation")) # ## Bad regression model: Linear regression # In[32]: # In[ ]: # ## Good regression model: XGBoosting # In[33]: XGB_R = xgb.XGBRegressor(n_estimators = 20, gamma = 1e-0) model_r = XGB_R r_hat,r_hat_ring = get_r_estimation(model_r) # In[34]: pd.set_option("display.precision", 2) table_good_reg = pd.DataFrame([[get_DE(eta_OT)[1],get_DRE(eta_OT,r_hat,r_hat_ring)[1]],[get_DE(eta_MMD)[1],get_DRE(eta_MMD,r_hat,r_hat_ring)[1]], [get_DE(eta_NAB)[1],get_DRE(eta_NAB,r_hat,r_hat_ring)[1]], [get_DE(eta_RF)[1],get_DRE(eta_RF,r_hat,r_hat_ring)[1]],[get_DE(eta_XGB)[1],get_DRE(eta_XGB,r_hat,r_hat_ring)[1]], [get_DE(eta_LR)[1],get_DRE(eta_LR,r_hat,r_hat_ring)[1]],[None, torch.abs(r_hat_ring.mean()-ref).item()]], columns = ("DE","DRE"), index = ("OT", "MMD","NAB", "GIPW-RF","GIPW-XGB","GIPW-LR","G-computation")) # In[35]: return table_bad_reg, table_good_reg
# -*- coding: utf-8 -*- import datetime from django.db.models import Count import os from django.db import models from django.contrib.auth.models import User from django.contrib.contenttypes.models import ContentType from django.core.urlresolvers import reverse from django.db.models.signals import post_save from django.dispatch import receiver from uuslug import uuslug as slugify from sorl.thumbnail import ImageField from tags.models import Tag, TaggedItem from comments.models import Comment, CommentAnswer def category_upload_path(instance, filename): from utils import timestampbased_filename category_slug = slugify(instance.title) path = os.path.join( 'article_category', category_slug, timestampbased_filename(filename) ) return path def article_upload_path(instance, filename): from utils import timestampbased_filename article_slug = slugify(instance.title) path = os.path.join( 'articles', article_slug, timestampbased_filename(filename) ) return path class ArticleCategory(models.Model): title = models.CharField("Заголовок", max_length=255) slug = models.SlugField("URL", unique=True) image = ImageField("Изображение", upload_to=category_upload_path, blank=True, null=True) image_alt = models.CharField("ALT изображения", max_length=255, blank=True, null=True) image_title = models.CharField("TITLE изображения", max_length=255, blank=True, null=True) add_watermark = models.BooleanField("Добавлять водяной знак?", default=False) description = models.TextField("Описание", blank=True, null=True) author = models.ForeignKey(User, verbose_name="Автор") published = models.BooleanField("Опубликовано", default=True) created = models.DateTimeField("Время создания", auto_now_add=True) updated = models.DateTimeField("Время последнего обновления", auto_now=True) visits_num = models.PositiveIntegerField("Кол. посещений", default=0, editable=False) def set_tags(self, tags): Tag.objects.update_tags(self, tags) def get_tags(self, tags): return Tag.objects.get_for_object(self) def inc_visits(self): self.visits_num += 1 self.save() @property def tags(self): content_type = ContentType.objects.get_for_model(self) try: tagged_item = TaggedItem.objects.get(content_type=content_type, object_id=self.id)\ .prefetch_related('tags') except TaggedItem.DoesNotExist: return [] return tagged_item.tags.all() def get_absolute_url(self): return reverse("articlecategory_details", args=(self.slug, )) def __unicode__(self): return self.title class Meta: verbose_name = "Категория статей" verbose_name_plural = "Категории статей" class Article(models.Model): title = models.CharField("Заголовок", max_length=255) slug = models.SlugField("URL", unique=True) old_id = models.IntegerField("Старый ID", unique=True, blank=True, null=True) image = models.ImageField("Изображение", upload_to=article_upload_path, blank=True, null=True ) image_alt = models.CharField("ALT изображения", max_length=255, blank=True, null=True) image_title = models.CharField("TITLE изображения", max_length=255, blank=True, null=True) add_watermark = models.BooleanField("Добавлять водяной знак?", default=False) description = models.TextField("Описание", blank=True, null=True) body = models.TextField("Текст статьи") author = models.ForeignKey(User, verbose_name="Автор") category = models.ForeignKey(ArticleCategory, verbose_name="Категория", related_name="articles") verified = models.BooleanField("Проверена", default=False) published = models.BooleanField("Опубликовано", default=True) pub_date = models.DateTimeField("Опубликовано", blank=True) created = models.DateTimeField("Создано", auto_now_add=True) updated = models.DateTimeField("Обновлено", auto_now=True) visits_num = models.PositiveIntegerField("Кол. посещений", default=0, editable=False) comments_num = models.PositiveIntegerField(u"Кол. коментариев", default=0, editable=False) def inc_visits(self): self.visits_num += 1 self.save() @property def num_comments(self): comments = Comment.objects.filter( content_type_id=ContentType.objects.get_for_model(self).id, object_id=self.id ).annotate(answer_count=Count('answers')).values_list('answer_count', flat=True) cnt = 0 for i in range(len(comments)): cnt += 1 + comments[i] return cnt @property def tags(self): content_type = ContentType.objects.get_for_model(self) try: tagged_item = TaggedItem.objects.get(content_type=content_type, object_id=self.id) except TaggedItem.DoesNotExist: return [] return tagged_item.tags.all() def save(self, *args, **kwargs): if not self.pub_date: self.pub_date = datetime.datetime.now() super(Article, self).save(*args, **kwargs) def get_absolute_url(self): return reverse("article_details", args=(self.slug, )) def get_contenttype_id(self): return ContentType.objects.get_for_model(Article).id def __unicode__(self): return self.title class Meta: verbose_name = "Статья" verbose_name_plural = "Статьи" @receiver(post_save, sender=Article) def publish_article_task(sender, instance, created, **kwargs): from articles.tasks import publish_article if not instance.published: publish_article.apply_async(args=(instance, ), eta=instance.pub_date) @receiver(post_save, sender=Article) def article_watermark(sender, instance, created, **kwargs): if not instance.add_watermark: return from utils import add_watermark marked_img = add_watermark(instance.image) if not marked_img: return instance.image = marked_img instance.save() @receiver(post_save, sender=ArticleCategory) def articlecategory_watermark(sender, instance, created, **kwargs): if not instance.add_watermark: return from utils import add_watermark marked_img = add_watermark(instance.image) if not marked_img: return instance.image = marked_img instance.save()
from pathlib import Path from PIL import Image, ImageOps def generate_thumbnail(file_path, max_height): size = (max_height, max_height) thumbnail = ImageOps.fit(Image.open(file_path), size, Image.ANTIALIAS) thumbnail.save(f'{Path(file_path).stem}_thumb_{max_height}.jpg', 'JPEG') return thumbnail
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """pytest fixtures for use with the aiida.restapi tests""" import pytest @pytest.fixture(scope='function') def restapi_server(): """Make REST API server""" from werkzeug.serving import make_server from aiida.restapi.common.config import CLI_DEFAULTS from aiida.restapi.run_api import configure_api def _restapi_server(restapi=None): if restapi is None: flask_restapi = configure_api() else: flask_restapi = configure_api(flask_api=restapi) return make_server( host=CLI_DEFAULTS['HOST_NAME'], port=int(CLI_DEFAULTS['PORT']), app=flask_restapi.app, threaded=True, processes=1, request_handler=None, passthrough_errors=True, ssl_context=None, fd=None ) return _restapi_server @pytest.fixture def server_url(): from aiida.restapi.common.config import CLI_DEFAULTS, API_CONFIG return f"http://{CLI_DEFAULTS['HOST_NAME']}:{CLI_DEFAULTS['PORT']}{API_CONFIG['PREFIX']}" @pytest.fixture def restrict_sqlalchemy_queuepool(aiida_profile): """Create special SQLAlchemy engine for use with QueryBuilder - backend-agnostic""" from aiida.manage.manager import get_manager backend_manager = get_manager().get_backend_manager() backend_manager.reset_backend_environment() backend_manager.load_backend_environment(aiida_profile, pool_timeout=1, max_overflow=0) @pytest.fixture def populate_restapi_database(clear_database_before_test): """Populates the database with a considerable set of nodes to test the restAPI""" # pylint: disable=unused-argument from aiida import orm struct_forcif = orm.StructureData().store() orm.StructureData().store() orm.StructureData().store() orm.Dict().store() orm.Dict().store() orm.CifData(ase=struct_forcif.get_ase()).store() orm.KpointsData().store() orm.FolderData().store() orm.CalcFunctionNode().store() orm.CalcJobNode().store() orm.CalcJobNode().store() orm.WorkFunctionNode().store() orm.WorkFunctionNode().store() orm.WorkChainNode().store()
import matplotlib.pyplot as plt import seaborn as sns class PlotTree(): def __init__(self,tree_class): self._tree_class=tree_class self._decision_node = dict(boxstyle="sawtooth", fc="0.8") self._leaf_node = dict(boxstyle="round4", fc="0.8") self._arrow_args = dict(arrowstyle="<-") def __get_tree_depth(self,tree): """获取树的深度""" depth = 0 # 定义的dict中首位储存的是节点信息,不计入计数 for key in ('Left', 'Right'): # 记录各子节点的深度 sub_tree = tree[key] if type(sub_tree).__name__ == "dict": # 如果该节点有分支,迭代计算该节点的深度 thisdepth = self.__get_tree_depth(sub_tree) else: # 否则深度为一 thisdepth = 1 # 比较各分支深度,保留最深记录 if thisdepth > depth: depth = thisdepth # 分支深度加一即为当前节点深度 return depth + 1 def __plot_node(self,node_txt, cntr_pt, prnt_pt, node_type): self._ax1.annotate(node_txt, xy=prnt_pt, xycoords='axes fraction', xytext=cntr_pt, textcoords='axes fraction', va="center", ha="center", bbox=node_type, arrowprops=self._arrow_args) def __plot_mid_text(self,cntr_pt, prnt_pt, txt_string): xMid = (prnt_pt[0] - cntr_pt[0]) / 2.0 + cntr_pt[0] yMid = (prnt_pt[1] - cntr_pt[1]) / 2.0 + cntr_pt[1] self._ax1.text(xMid, yMid, txt_string, va="center", ha="center", rotation=30) def __plot_tree(self,tree, prnt_pt, node_txt, branch=None): self._layer += 1 diff = 1 / 2**(self._layer) keys = list(tree.keys()) text = tree[keys[0]] if branch == 'Left': self._xOff -= diff elif branch == 'Right': self._xOff += diff else: pass cntr_pt = (self._xOff, self._yOff) self.__plot_mid_text(cntr_pt, prnt_pt, node_txt) self.__plot_node(text, cntr_pt, prnt_pt, self._decision_node) self._yOff = self._yOff - 1.0 / self._totalD for key in keys[1:]: sub_tree = tree[key] if type(sub_tree).__name__ == 'dict': self.__plot_tree(sub_tree, cntr_pt, str(key), key) else: if key == 'Left': x = self._xOff - diff / 2 elif key == 'Right': x = self._xOff + diff / 2 else: pass self.__plot_node(sub_tree, (x, self._yOff), cntr_pt, self._leaf_node) self.__plot_mid_text((x, self._yOff), cntr_pt, str(key)) if branch == 'Left': self._xOff += diff elif branch == 'Right': self._xOff -= diff else: pass self._layer -= 1 self._yOff = self._yOff + 1.0 / self._totalD def tree_structure_plot(self): fig = plt.figure(1, facecolor='white') fig.clf() axprops = dict(xticks=[], yticks=[]) self._ax1 = plt.subplot(111, frameon=False, **axprops) self._totalD = float(self.__get_tree_depth(self._tree_class.tree)) self._xOff = 0.5 self._yOff = 1.0 self._layer = 0 self.__plot_tree(self._tree_class.tree, (0.5, 1.0), '') plt.show() def confusion_matrix_plot(self): mat=self._tree_class.confusion_matrix if mat is None: print("The confusion matrix is not computed. Please use 'test()' in 'DecisionTree' class to get it.") else: fig, ax = plt.subplots(figsize=(6, 6)) sns.heatmap(mat,xticklabels=mat.columns,yticklabels=mat.index, cbar_kws={"shrink": .5}, ax=ax) plt.tight_layout() plt.show()
""" Delta E z. https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-25-13-15131&id=368272 """ from ..distance import DeltaE import math from .. import util from typing import TYPE_CHECKING, Any if TYPE_CHECKING: # pragma: no cover from ..color import Color class DEZ(DeltaE): """Delta E z class.""" NAME = "jz" @classmethod def distance(cls, color: 'Color', sample: 'Color', **kwargs: Any) -> float: """Delta E z color distance formula.""" jz1, az1, bz1 = util.no_nans(color.convert('jzazbz').coords()) jz2, az2, bz2 = util.no_nans(sample.convert('jzazbz').coords()) cz1 = math.sqrt(az1 ** 2 + bz1 ** 2) cz2 = math.sqrt(az2 ** 2 + bz2 ** 2) hz1 = math.atan2(bz1, az1) hz2 = math.atan2(bz2, az2) djz = jz1 - jz2 dcz = cz1 - cz2 dhz = 2 * math.sqrt(cz1 * cz2) * math.sin((hz1 - hz2) / 2) return math.sqrt(djz ** 2 + dcz ** 2 + dhz ** 2)
from typing import Union, Tuple, Sized, Container, Any, TypeVar, Callable from typing import Iterable, Iterator, Sequence, Dict, Generic, cast from typing import Optional, List, overload from dataclasses import dataclass import numpy import sys try: import cupy get_array_module = cupy.get_array_module except ImportError: get_array_module = lambda obj: numpy # Use typing_extensions for Python versions < 3.8 if sys.version_info < (3, 8): from typing_extensions import Protocol, Literal else: from typing import Protocol, Literal # noqa: F401 # fmt: off XY_YZ_OutT = TypeVar("XY_YZ_OutT") XY_XY_OutT = TypeVar("XY_XY_OutT") DeviceTypes = Literal["cpu", "gpu", "tpu"] Batchable = Union["Pairs", "Ragged", "Padded", "ArrayXd", List, Tuple] Xp = Union["numpy", "cupy"] # type: ignore Shape = Tuple[int, ...] DTypes = Literal["f", "i", "float16", "float32", "float64", "int32", "int64", "uint32", "uint64"] DTypesFloat = Literal["f", "float32", "float16", "float64"] DTypesInt = Literal["i", "int32", "int64", "uint32", "uint64"] Array1d = Union["Floats1d", "Ints1d"] Array2d = Union["Floats2d", "Ints2d"] Array3d = Union["Floats3d", "Ints3d"] Array4d = Union["Floats4d", "Ints4d"] FloatsXd = Union["Floats1d", "Floats2d", "Floats3d", "Floats4d"] IntsXd = Union["Ints1d", "Ints2d", "Ints3d", "Ints4d"] ArrayXd = Union[FloatsXd, IntsXd] List1d = Union[List["Floats1d"], List["Ints1d"]] List2d = Union[List["Floats2d"], List["Ints2d"]] List3d = Union[List["Floats3d"], List["Ints3d"]] List4d = Union[List["Floats4d"], List["Ints4d"]] ListXd = Union[List["FloatsXd"], List["IntsXd"]] ArrayT = TypeVar("ArrayT") SelfT = TypeVar("SelfT") Array1dT = TypeVar("Array1dT", bound="Array1d") # These all behave the same as far as indexing is concerned Slicish = Union[slice, List[int], "ArrayXd"] _1_KeyScalar = int _1_Key1d = Slicish _1_AllKeys = Union[_1_KeyScalar, _1_Key1d] _F1_AllReturns = Union[float, "Floats1d"] _I1_AllReturns = Union[int, "Ints1d"] _2_KeyScalar = Tuple[int, int] _2_Key1d = Union[int, Tuple[Slicish, int], Tuple[int, Slicish]] _2_Key2d = Union[Tuple[Slicish, Slicish], Slicish] _2_AllKeys = Union[_2_KeyScalar, _2_Key1d, _2_Key2d] _F2_AllReturns = Union[float, "Floats1d", "Floats2d"] _I2_AllReturns = Union[int, "Ints1d", "Ints2d"] _3_KeyScalar = Tuple[int, int, int] _3_Key1d = Union[Tuple[int, int], Tuple[int, int, Slicish], Tuple[int, Slicish, int], Tuple[Slicish, int, int]] _3_Key2d = Union[int, Tuple[int, Slicish], Tuple[Slicish, int], Tuple[int, Slicish, Slicish], Tuple[Slicish, int, Slicish], Tuple[Slicish, Slicish, int]] _3_Key3d = Union[Slicish, Tuple[Slicish, Slicish], Tuple[Slicish, Slicish, Slicish]] _3_AllKeys = Union[_3_KeyScalar, _3_Key1d, _3_Key2d, _3_Key3d] _F3_AllReturns = Union[float, "Floats1d", "Floats2d", "Floats3d"] _I3_AllReturns = Union[int, "Ints1d", "Ints2d", "Ints3d"] _4_KeyScalar = Tuple[int, int, int, int] _4_Key1d = Union[Tuple[int, int, int], Tuple[int, int, int, Slicish], Tuple[int, int, Slicish, int], Tuple[int, Slicish, int, int], Tuple[Slicish, int, int, int]] _4_Key2d = Union[Tuple[int, int], Tuple[int, int, Slicish], Tuple[int, Slicish, int], Tuple[Slicish, int, int], Tuple[int, int, Slicish, Slicish], Tuple[int, Slicish, int, Slicish], Tuple[int, Slicish, Slicish, int], Tuple[Slicish, int, int, Slicish], Tuple[Slicish, int, Slicish, int], Tuple[Slicish, Slicish, int, int]] _4_Key3d = Union[int, Tuple[int, Slicish], Tuple[Slicish, int], Tuple[int, Slicish, Slicish], Tuple[Slicish, int, Slicish], Tuple[Slicish, Slicish, int], Tuple[int, Slicish, Slicish, Slicish], Tuple[Slicish, int, Slicish, Slicish], Tuple[Slicish, Slicish, int, Slicish], Tuple[Slicish, Slicish, Slicish, int]] _4_Key4d = Union[Slicish, Tuple[Slicish, Slicish], Tuple[Slicish, Slicish, Slicish], Tuple[Slicish, Slicish, Slicish, Slicish]] _4_AllKeys = Union[_4_KeyScalar, _4_Key1d, _4_Key2d, _4_Key3d, _4_Key4d] _F4_AllReturns = Union[float, "Floats1d", "Floats2d", "Floats3d", "Floats4d"] _I4_AllReturns = Union[int, "Ints1d", "Ints2d", "Ints3d", "Ints4d"] # Typedefs for the reduction methods. Tru = Literal[True] Fal = Literal[False] OneAx = Union[int, Tuple[int]] TwoAx = Tuple[int, int] ThreeAx = Tuple[int, int, int] FourAx = Tuple[int, int, int, int] _1_AllAx = Optional[OneAx] _2_AllAx = Union[Optional[TwoAx], OneAx] _3_AllAx = Union[Optional[ThreeAx], TwoAx, OneAx] _4_AllAx = Union[Optional[FourAx], ThreeAx, TwoAx, OneAx] _1F_ReduceResults = Union[float, "Floats1d"] _2F_ReduceResults = Union[float, "Floats1d", "Floats2d"] _3F_ReduceResults = Union[float, "Floats1d", "Floats2d", "Floats3d"] _4F_ReduceResults = Union[float, "Floats1d", "Floats2d", "Floats3d", "Floats4d"] _1I_ReduceResults = Union[int, "Ints1d"] _2I_ReduceResults = Union[int, "Ints1d", "Ints2d"] _3I_ReduceResults = Union[int, "Ints1d", "Ints2d", "Ints3d"] _4I_ReduceResults = Union[int, "Ints1d", "Ints2d", "Ints3d", "Ints4d"] # TODO: # We need to get correct overloads in for the following reduction methods. # The 'sum' reduction is correct --- the others need to be just the same, # but with a different name. # max, min, prod, round, var, mean, ptp, std # There's also one *slightly* different function, cumsum. This doesn't # have a scalar version -- it always makes an array. class _Array(Sized, Container): @classmethod def __get_validators__(cls): """Runtime validation for pydantic.""" yield lambda v: validate_array(v) @property def dtype(self) -> DTypes: ... @property def data(self) -> memoryview: ... @property def flags(self) -> Any: ... @property def size(self) -> int: ... @property def itemsize(self) -> int: ... @property def nbytes(self) -> int: ... @property def ndim(self) -> int: ... @property def shape(self) -> Shape: ... @property def strides(self) -> Tuple[int, ...]: ... # TODO: Is ArrayT right? def astype(self: ArrayT, dtype: DTypes, order: str = ..., casting: str = ..., subok: bool = ..., copy: bool = ...) -> ArrayT: ... def copy(self: ArrayT, order: str = ...) -> ArrayT: ... def fill(self, value: Any) -> None: ... # Shape manipulation def reshape(self: ArrayT, shape: Shape, *, order: str = ...) -> ArrayT: ... def transpose(self: ArrayT, axes: Shape) -> ArrayT: ... # TODO: is this right? It returns 1d def flatten(self, order: str = ...): ... # TODO: is this right? It returns 1d def ravel(self, order: str = ...): ... def squeeze(self, axis: Union[int, Shape] = ...): ... def __len__(self) -> int: ... def __setitem__(self, key, value): ... def __iter__(self) -> Iterator[Any]: ... def __contains__(self, key) -> bool: ... def __index__(self) -> int: ... def __int__(self) -> int: ... def __float__(self) -> float: ... def __complex__(self) -> complex: ... def __bool__(self) -> bool: ... def __bytes__(self) -> bytes: ... def __str__(self) -> str: ... def __repr__(self) -> str: ... def __copy__(self, order: str = ...): ... def __deepcopy__(self, memo: dict) -> ArrayT: ... def __lt__(self, other): ... def __le__(self, other): ... def __eq__(self, other): ... def __ne__(self, other): ... def __gt__(self, other): ... def __ge__(self, other): ... def __add__(self, other): ... def __radd__(self, other): ... def __iadd__(self, other): ... def __sub__(self, other): ... def __rsub__(self, other): ... def __isub__(self, other): ... def __mul__(self, other): ... def __rmul__(self, other): ... def __imul__(self, other): ... def __truediv__(self, other): ... def __rtruediv__(self, other): ... def __itruediv__(self, other): ... def __floordiv__(self, other): ... def __rfloordiv__(self, other): ... def __ifloordiv__(self, other): ... def __mod__(self, other): ... def __rmod__(self, other): ... def __imod__(self, other): ... def __divmod__(self, other): ... def __rdivmod__(self, other): ... # NumPy's __pow__ doesn't handle a third argument def __pow__(self, other): ... def __rpow__(self, other): ... def __ipow__(self, other): ... def __lshift__(self, other): ... def __rlshift__(self, other): ... def __ilshift__(self, other): ... def __rshift__(self, other): ... def __rrshift__(self, other): ... def __irshift__(self, other): ... def __and__(self, other): ... def __rand__(self, other): ... def __iand__(self, other): ... def __xor__(self, other): ... def __rxor__(self, other): ... def __ixor__(self, other): ... def __or__(self, other): ... def __ror__(self, other): ... def __ior__(self, other): ... def __matmul__(self, other): ... def __rmatmul__(self, other): ... def __neg__(self: ArrayT) -> ArrayT: ... def __pos__(self: ArrayT) -> ArrayT: ... def __abs__(self: ArrayT) -> ArrayT: ... def __invert__(self: ArrayT) -> ArrayT: ... def get(self: ArrayT) -> ArrayT: ... def all(self, axis: int = -1, out: Optional[ArrayT] = None, keepdims: bool = False) -> ArrayT: ... def any(self, axis: int = -1, out: Optional[ArrayT] = None, keepdims: bool = False) -> ArrayT: ... # def argmax(self, axis: int = -1, out: Optional["Array"] = None, keepdims: Union[Tru, Fal]=False) -> Union[int, "Ints1d"]: ... def argmin(self, axis: int = -1, out: Optional[ArrayT] = None) -> ArrayT: ... def clip(self, a_min: Any, a_max: Any, out: Optional[ArrayT]) -> ArrayT: ... #def cumsum( self: ArrayT, axis: int = -1, dtype: Optional[DTypes] = None, out: Optional[ArrayT] = None) -> ArrayT: ... def max(self, axis: int = -1, out: Optional[ArrayT] = None) -> ArrayT: ... # def mean(self, axis: int = -1, dtype: Optional[DTypes] = None, out: Optional[SelfT] = None, keepdims: bool = False) -> "Array": ... def min(self, axis: int = -1, out: Optional[ArrayT] = None) -> ArrayT: ... def nonzero(self) -> ArrayT: ... def prod(self, axis: int = -1, dtype: Optional[DTypes] = None, out: Optional[ArrayT] = None, keepdims: bool = False) -> ArrayT: ... def round(self, decimals: int = 0, out: Optional[ArrayT] = None) -> ArrayT: ... # def sum(self, axis: int = -1, dtype: Optional[DTypes] = None, out: Optional[ArrayT] = None, keepdims: bool = False) -> ArrayT: ... def tobytes(self, order: str = "C") -> bytes: ... def tolist(self) -> List[Any]: ... def var(self: SelfT, axis: int = -1, dtype: Optional[DTypes] = None, out: Optional[ArrayT] = None, ddof: int = 0, keepdims: bool = False) -> SelfT: ... class _Floats(_Array): @property def dtype(self) -> DTypesFloat: ... def fill(self, value: float) -> None: ... def reshape(self, shape: Shape, *, order: str = ...) -> "_Floats": ... class _Ints(_Array): @property def dtype(self) -> DTypesInt: ... def fill(self, value: int) -> None: ... def reshape(self, shape: Shape, *, order: str = ...) -> "_Ints": ... """ Extensive overloads to represent __getitem__ behaviour. In an N+1 dimensional array, there will be N possible return types. For instance, if you have a 2d array, you could get back a float (array[i, j]), a floats1d (array[i]) or a floats2d (array[:i, :j]). You'll get the scalar if you have N ints in the index, a 1d array if you have N-1 ints, etc. So the trick here is to make a union with the various combinations that produce each result type, and then only have one overload per result. If we overloaded on each *key* type, that would get crazy, because there's tonnes of combinations. In each rank, we can use the same key-types for float and int, but we need a different return-type union. """ class _Array1d(_Array): """1-dimensional array.""" @classmethod def __get_validators__(cls): """Runtime validation for pydantic.""" yield lambda v: validate_array(v, ndim=1) @property def ndim(self) -> Literal[1]: ... @property def shape(self) -> Tuple[int]: ... def __iter__(self) -> Iterator[Union[float, int]]: ... def astype(self, dtype: DTypes, order: str = ..., casting: str = ..., subok: bool = ..., copy: bool = ...) -> "_Array1d": ... def flatten(self: SelfT, order: str = ...) -> SelfT: ... def ravel(self: SelfT, order: str = ...) -> SelfT: ... # These is actually a bit too strict: It's legal to say 'array1d + array2d' # That's kind of bad code though; it's better to write array2d + array1d. # We could relax this, but let's try the strict version. def __add__(self: SelfT, other: Union[float, int, "Array1d"]) -> SelfT: ... def __sub__(self: SelfT, other: Union[float, int, "Array1d"]) -> SelfT: ... def __mul__(self: SelfT, other: Union[float, int, "Array1d"]) -> SelfT: ... def __pow__(self: SelfT, other: Union[float, int, "Array1d"]) -> SelfT: ... def __matmul__(self: SelfT, other: Union[float, int, "Array1d"]) -> SelfT: ... # These are not too strict though: you can't do += with higher dimensional. def __iadd__(self, other: Union[float, int, "Array1d"]): ... def __isub__(self, other: Union[float, int, "Array1d"]): ... def __imul__(self, other: Union[float, int, "Array1d"]): ... def __ipow__(self, other: Union[float, int, "Array1d"]): ... @overload def argmax(self, keepdims: Fal = False, axis: int = -1, out: Optional[_Array] = None) -> int: ... @overload def argmax(self, keepdims: Tru, axis: int = -1, out: Optional[_Array] = None) -> "Ints1d": ... def argmax(self, keepdims: bool = False, axis: int = -1, out: Optional[_Array] = None) -> Union[int, "Ints1d"]: ... @overload def mean(self, keepdims: Tru, axis: int = -1, dtype: Optional[DTypes] = None, out: Optional["Floats1d"] = None) -> "Floats1d": ... @overload def mean(self, keepdims: Fal = False, axis: int = -1, dtype: Optional[DTypes] = None, out: Optional["Floats1d"] = None) -> float: ... def mean(self, keepdims: bool = False, axis: int = -1, dtype: Optional[DTypes] = None, out: Optional["Floats1d"] = None) -> Union["Floats1d", float]: ... class Floats1d(_Array1d, _Floats): """1-dimensional array of floats.""" T: "Floats1d" @classmethod def __get_validators__(cls): """Runtine validation for pydantic.""" yield lambda v: validate_array(v, ndim=1, dtype="f") def __iter__(self) -> Iterator[float]: ... @overload def __getitem__(self, key: _1_KeyScalar) -> float: ... @overload def __getitem__(self, key: _1_Key1d) -> "Floats1d": ... def __getitem__(self, key: _1_AllKeys) -> _F1_AllReturns: ... @overload def __setitem__(self, key: _1_KeyScalar, value: float) -> None: ... @overload def __setitem__(self, key: _1_Key1d, value: "Floats1d") -> None: ... def __setitem__(self, key: _1_AllKeys, _F1_AllReturns) -> None: ... @overload def cumsum(self, *, keepdims: Tru, axis: Optional[OneAx] = None, out: Optional["Floats1d"] = None) -> "Floats1d": ... @overload # Cumsum is unusual in this def cumsum(self, *, keepdims: Fal, axis: Optional[OneAx] = None, out: Optional["Floats1d"] = None) -> "Floats1d": ... def cumsum(self, *, keepdims: bool = False, axis: _1_AllAx = None, out: Optional["Floats1d"] = None) -> "Floats1d": ... @overload def sum(self, *, keepdims: Tru, axis: Optional[OneAx] = None, out: Optional["Floats1d"] = None) -> "Floats1d": ... @overload def sum(self, *, keepdims: Fal, axis: Optional[OneAx] = None, out = None) -> float: ... def sum(self, *, keepdims: bool = False, axis: _1_AllAx = None, out: Optional["Floats1d"] = None) -> _1F_ReduceResults: ... class Ints1d(_Array1d, _Ints): """1-dimensional array of ints.""" T: "Ints1d" @classmethod def __get_validators__(cls): """Runtime validation for pydantic.""" yield lambda v: validate_array(v, ndim=1, dtype="i") def __iter__(self) -> Iterator[int]: ... @overload def __getitem__(self, key: _1_KeyScalar) -> int: ... @overload def __getitem__(self, key: _1_Key1d) -> "Ints1d": ... def __getitem__(self, key: _1_AllKeys) -> _I1_AllReturns: ... @overload def __setitem__(self, key: _1_KeyScalar, value: int) -> None: ... @overload def __setitem__(self, key: _1_Key1d, value: Union[int, "Ints1d"]) -> None: ... def __setitem__(self, key: _1_AllKeys, _I1_AllReturns) -> None: ... @overload def cumsum(self, *, keepdims: Tru, axis: Optional[OneAx] = None, out: Optional["Ints1d"] = None) -> "Ints1d": ... @overload def cumsum(self, *, keepdims: Fal = False, axis: Optional[OneAx] = None, out: Optional["Ints1d"] = None) -> "Ints1d": ... def cumsum(self, *, keepdims: bool = False, axis: _1_AllAx = None, out: Optional["Ints1d"] = None) -> "Ints1d": ... @overload def sum(self, *, keepdims: Tru, axis: Optional[OneAx] = None, out: Optional["Ints1d"] = None) -> "Ints1d": ... @overload def sum(self, *, keepdims: Fal = False, axis: Optional[OneAx] = None, out = None) -> int: ... def sum(self, *, keepdims: bool = False, axis: _1_AllAx = None, out: Optional["Ints1d"] = None) -> _1I_ReduceResults: ... class _Array2d(_Array): @classmethod def __get_validators__(cls): """Runtime validation for pydantic.""" yield lambda v: validate_array(v, ndim=2) @property def ndim(self) -> Literal[2]: ... @property def shape(self) -> Tuple[int, int]: ... def __iter__(self) -> Iterator[Array1d]: ... def astype(self, dtype: DTypes, order: str = ..., casting: str = ..., subok: bool = ..., copy: bool = ...) -> "Array2d": ... # These is actually a bit too strict: It's legal to say 'array2d + array3d' # That's kind of bad code though; it's better to write array3d + array2d. # We could relax this, but let's try the strict version. def __add__(self: ArrayT, other: Union[float, int, Array1d, "Array2d"]) -> ArrayT: ... def __sub__(self: ArrayT, other: Union[float, int, Array1d, "Array2d"]) -> ArrayT: ... def __mul__(self: ArrayT, other: Union[float, int, Array1d, "Array2d"]) -> ArrayT: ... def __pow__(self: ArrayT, other: Union[float, int, Array1d, "Array2d"]) -> ArrayT: ... def __matmul__(self: ArrayT, other: Union[float, int, Array1d, "Array2d"]) -> ArrayT: ... # These are not too strict though: you can't do += with higher dimensional. def __iadd__(self, other: Union[float, int, Array1d, "Array2d"]): ... def __isub__(self, other: Union[float, int, Array1d, "Array2d"]): ... def __imul__(self, other: Union[float, int, Array1d, "Array2d"]): ... def __ipow__(self, other: Union[float, int, Array1d, "Array2d"]): ... @overload def argmax(self, keepdims: Fal = False, axis: int = -1, out: Optional[_Array] = None) -> Ints1d: ... @overload def argmax(self, keepdims: Tru, axis: int = -1, out: Optional[_Array] = None) -> "Ints2d": ... def argmax(self, keepdims: bool = False, axis: int = -1, out: Optional[_Array] = None) -> Union[Ints1d, "Ints2d"]: ... @overload def mean(self, keepdims: Fal = False, axis: int = -1, dtype: Optional[DTypes] = None, out: Optional["Floats2d"] = None) -> Floats1d: ... @overload def mean(self, keepdims: Tru, axis: int = -1, dtype: Optional[DTypes] = None, out: Optional["Floats2d"] = None) -> "Floats2d": ... def mean(self, keepdims: bool = False, axis: int = -1, dtype: Optional[DTypes] = None, out: Optional["Floats2d"] = None) -> Union["Floats2d", Floats1d]: ... class Floats2d(_Array2d, _Floats): """2-dimensional array of floats""" T: "Floats2d" @classmethod def __get_validators__(cls): """Runtime validation for pydantic.""" yield lambda v: validate_array(v, ndim=2, dtype="f") def __iter__(self) -> Iterator[Floats1d]: ... @overload def __getitem__(self, key: _2_KeyScalar) -> float: ... @overload def __getitem__(self, key: _2_Key1d) -> Floats1d: ... @overload def __getitem__(self, key: _2_Key2d) -> "Floats2d": ... def __getitem__(self, key: _2_AllKeys) -> _F2_AllReturns: ... @overload def __setitem__(self, key: _2_KeyScalar, value: float) -> None: ... @overload def __setitem__(self, key: _2_Key1d, value: Union[float, Floats1d]) -> None: ... @overload def __setitem__(self, key: _2_Key2d, value: _F2_AllReturns) -> None: ... def __setitem__(self, key: _2_AllKeys, value: _F2_AllReturns) -> None: ... @overload def sum(self, *, keepdims: Tru, axis: _2_AllAx = None, out: Optional["Floats2d"] = None) -> "Floats2d": ... @overload def sum(self, *, keepdims: Fal = False, axis: OneAx, out: Optional[Floats1d] = None) -> Floats1d: ... @overload def sum(self, *, keepdims: Fal = False, axis: TwoAx, out = None) -> float: ... def sum(self, *, keepdims: bool = False, axis: _2_AllAx = None, out: Union[None, "Floats1d", "Floats2d"] = None) -> _2F_ReduceResults: ... class Ints2d(_Array2d, _Ints): """2-dimensional array of ints.""" T: "Ints2d" @classmethod def __get_validators__(cls): """Runtime validation for pydantic.""" yield lambda v: validate_array(v, ndim=2, dtype="i") def __iter__(self) -> Iterator[Ints1d]: ... @overload def __getitem__(self, key: _2_KeyScalar) -> int: ... @overload def __getitem__(self, key: _2_Key1d) -> Ints1d: ... @overload def __getitem__(self, key: _2_Key2d) -> "Ints2d": ... def __getitem__(self, key: _2_AllKeys) -> _I2_AllReturns: ... @overload def __setitem__(self, key: _2_KeyScalar, value: int) -> None: ... @overload def __setitem__(self, key: _2_Key1d, value: Ints1d) -> None: ... @overload def __setitem__(self, key: _2_Key2d, value: "Ints2d") -> None: ... def __setitem__(self, key: _2_AllKeys, value: _I2_AllReturns) -> None: ... @overload def sum(self, keepdims: Fal = False, axis: int = -1, out: Optional["Ints1d"] = None) -> Ints1d: ... @overload def sum(self, keepdims: Tru, axis: int = -1, out: Optional["Ints2d"] = None) -> "Ints2d": ... def sum(self, keepdims: bool = False, axis: int = -1, out: Optional[Union["Ints1d", "Ints2d"]] = None) -> Union["Ints2d", Ints1d]: ... class _Array3d(_Array): """3-dimensional array of floats""" @classmethod def __get_validators__(cls): """Runtime validation for pydantic.""" yield lambda v: validate_array(v, ndim=3) @property def ndim(self) -> Literal[3]: ... @property def shape(self) -> Tuple[int, int, int]: ... def __iter__(self) -> Iterator[Array2d]: ... def astype(self, dtype: DTypes, order: str = ..., casting: str = ..., subok: bool = ..., copy: bool = ...) -> "Array3d": ... # These is actually a bit too strict: It's legal to say 'array2d + array3d' # That's kind of bad code though; it's better to write array3d + array2d. # We could relax this, but let's try the strict version. def __add__(self: SelfT, other: Union[float, int, Array1d, Array2d, "Array3d"]) -> SelfT: ... def __sub__(self: SelfT, other: Union[float, int, Array1d, Array2d, "Array3d"]) -> SelfT: ... def __mul__(self: SelfT, other: Union[float, int, Array1d, Array2d, "Array3d"]) -> SelfT: ... def __pow__(self: SelfT, other: Union[float, int, Array1d, Array2d, "Array3d"]) -> SelfT: ... def __matmul__(self: SelfT, other: Union[float, int, Array1d, Array2d, "Array3d"]) -> SelfT: ... # These are not too strict though: you can't do += with higher dimensional. def __iadd__(self, other: Union[float, int, Array1d, Array2d, "Array3d"]): ... def __isub__(self, other: Union[float, int, Array1d, Array2d, "Array3d"]): ... def __imul__(self, other: Union[float, int, Array1d, Array2d, "Array3d"]): ... def __ipow__(self, other: Union[float, int, Array1d, Array2d, "Array3d"]): ... @overload def argmax(self, keepdims: Fal = False, axis: int = -1, out: Optional[_Array] = None) -> Ints2d: ... @overload def argmax(self, keepdims: Tru, axis: int = -1, out: Optional[_Array] = None) -> "Ints3d": ... def argmax(self, keepdims: bool = False, axis: int = -1, out: Optional[_Array] = None) -> Union[Ints2d, "Ints3d"]: ... class Floats3d(_Array3d, _Floats): """3-dimensional array of floats""" T: "Floats3d" @classmethod def __get_validators__(cls): """Runtime validation for pydantic.""" yield lambda v: validate_array(v, ndim=3, dtype="f") def __iter__(self) -> Iterator[Floats2d]: ... @overload def __getitem__(self, key: _3_KeyScalar) -> float: ... @overload def __getitem__(self, key: _3_Key1d) -> Floats1d: ... @overload def __getitem__(self, key: _3_Key2d) -> Floats2d: ... @overload def __getitem__(self, key: _3_Key3d) -> "Floats3d": ... def __getitem__(self, key: _3_AllKeys) -> _F3_AllReturns: ... @overload def __setitem__(self, key: _3_KeyScalar, value: float) -> None: ... @overload def __setitem__(self, key: _3_Key1d, value: Floats1d) -> None: ... @overload def __setitem__(self, key: _3_Key2d, value: Floats2d) -> None: ... @overload def __setitem__(self, key: _3_Key3d, value: "Floats3d") -> None: ... def __setitem__(self, key: _3_AllKeys, value: _F3_AllReturns) -> None: ... @overload def sum(self, *, keepdims: Tru, axis: _3_AllAx = None, out: Optional["Floats3d"] = None) -> "Floats3d": ... @overload def sum(self, *, keepdims: Fal, axis: OneAx, out: Optional[Floats2d] = None) -> Floats2d: ... @overload def sum(self, *, keepdims: Fal, axis: TwoAx, out: Optional[Floats1d] = None) -> Floats1d: ... @overload def sum(self, *, keepdims: Fal, axis: Optional[ThreeAx], out = None) -> float: ... def sum(self, *, keepdims: bool = False, axis: _3_AllAx = None, out: Union[None, Floats1d, Floats2d, "Floats3d"] = None) -> _3F_ReduceResults: ... class Ints3d(_Array3d, _Ints): """3-dimensional array of ints.""" T: "Ints3d" @classmethod def __get_validators__(cls): """Runtime validation for pydantic.""" yield lambda v: validate_array(v, ndim=3, dtype="i") def __iter__(self) -> Iterator[Ints2d]: ... @overload def __getitem__(self, key: _3_KeyScalar) -> int: ... @overload def __getitem__(self, key: _3_Key1d) -> Ints1d: ... @overload def __getitem__(self, key: _3_Key2d) -> Ints2d: ... @overload def __getitem__(self, key: _3_Key3d) -> "Ints3d": ... def __getitem__(self, key: _3_AllKeys) -> _I3_AllReturns: ... @overload def __setitem__(self, key: _3_KeyScalar, value: int) -> None: ... @overload def __setitem__(self, key: _3_Key1d, value: Ints1d) -> None: ... @overload def __setitem__(self, key: _3_Key2d, value: Ints2d) -> None: ... @overload def __setitem__(self, key: _3_Key3d, value: "Ints3d") -> None: ... def __setitem__(self, key: _3_AllKeys, value: _I3_AllReturns) -> None: ... @overload def sum(self, *, keepdims: Tru, axis: _3_AllAx = None, out: Optional["Ints3d"] = None) -> "Ints3d": ... @overload def sum(self, *, keepdims: Fal, axis: OneAx, out: Optional[Ints2d] = None) -> Ints2d: ... @overload def sum(self, *, keepdims: Fal, axis: TwoAx, out: Optional[Ints1d] = None) -> Ints1d: ... @overload def sum(self, *, keepdims: Fal, axis: Optional[ThreeAx], out = None) -> int: ... def sum(self, *, keepdims: bool = False, axis: _3_AllAx = None, out: Union[None, Ints1d, Ints2d, "Ints3d"] = None) -> _3I_ReduceResults: ... class _Array4d(_Array): """4-dimensional array.""" @classmethod def __get_validators__(cls): """Runtime validation for pydantic.""" yield lambda v: validate_array(v, ndim=4) @property def ndim(self) -> Literal[4]: ... @property def shape(self) -> Tuple[int, int, int, int]: ... def __iter__(self) -> Iterator[Array3d]: ... def astype(self, dtype: DTypes, order: str = ..., casting: str = ..., subok: bool = ..., copy: bool = ...) -> "_Array4d": ... # These is actually a bit too strict: It's legal to say 'array4d + array5d' # That's kind of bad code though; it's better to write array5d + array4d. # We could relax this, but let's try the strict version. def __add__(self: SelfT, other: Union[float, int, Array1d, Array2d, Array3d, "Array4d"]) -> SelfT: ... def __sub__(self: SelfT, other: Union[float, int, Array1d, Array2d, Array3d, "Array4d"]) -> SelfT: ... def __mul__(self: SelfT, other: Union[float, int, Array1d, Array2d, Array3d, "Array4d"]) -> SelfT: ... def __pow__(self: SelfT, other: Union[float, int, Array1d, Array2d, Array3d, "Array4d"]) -> SelfT: ... def __matmul__(self: SelfT, other: Union[float, int, Array1d, Array2d, Array3d, "Array4d"]) -> SelfT: ... # These are not too strict though: you can't do += with higher dimensional. def __iadd__(self, other: Union[float, int, Array1d, Array2d, Array3d, "Array4d"]): ... def __isub__(self, other: Union[float, int, Array1d, Array2d, Array3d, "Array4d"]): ... def __imul__(self, other: Union[float, int, Array1d, Array2d, Array3d, "Array4d"]): ... def __ipow__(self, other: Union[float, int, Array1d, Array2d, Array3d, "Array4d"]): ... class Floats4d(_Array4d, _Floats): """4-dimensional array of floats.""" T: "Floats4d" @classmethod def __get_validators__(cls): """Runtime validation for pydantic.""" yield lambda v: validate_array(v, ndim=4, dtype="f") def __iter__(self) -> Iterator[Floats3d]: ... @overload def __getitem__(self, key: _4_KeyScalar) -> float: ... @overload def __getitem__(self, key: _4_Key1d) -> Floats1d: ... @overload def __getitem__(self, key: _4_Key2d) -> Floats2d: ... @overload def __getitem__(self, key: _4_Key3d) -> Floats3d: ... @overload def __getitem__(self, key: _4_Key4d) -> "Floats4d": ... def __getitem__(self, key: _4_AllKeys) -> _F4_AllReturns: ... @overload def __setitem__(self, key: _4_KeyScalar, value: float) -> None: ... @overload def __setitem__(self, key: _4_Key1d, value: Floats1d) -> None: ... @overload def __setitem__(self, key: _4_Key2d, value: Floats2d) -> None: ... @overload def __setitem__(self, key: _4_Key3d, value: Floats3d) -> None: ... @overload def __setitem__(self, key: _4_Key4d, value: "Floats4d") -> None: ... def __setitem__(self, key: _4_AllKeys, value: _F4_AllReturns) -> None: ... @overload def sum(self, *, keepdims: Tru, axis: _4_AllAx = None, out: Optional["Floats4d"] = None) -> "Floats4d": ... @overload def sum(self, *, keepdims: Fal = False, axis: OneAx, out: Optional[Floats3d] = None) -> Floats3d: ... @overload def sum(self, *, keepdims: Fal = False, axis: TwoAx, out: Optional[Floats2d] = None) -> Floats2d: ... @overload def sum(self, *, keepdims: Fal = False, axis: ThreeAx, out: Optional[Floats1d] = None) -> Floats1d: ... @overload def sum(self, *, keepdims: Fal = False, axis: Optional[FourAx], out = None) -> float: ... def sum(self, *, keepdims: bool = False, axis: _4_AllAx = None, out: Union[None, Floats1d, Floats2d, Floats3d, "Floats4d"] = None) -> _4F_ReduceResults: ... class Ints4d(_Array4d, _Ints): """4-dimensional array of ints.""" T: "Ints4d" @classmethod def __get_validators__(cls): """Runtime validation for pydantic.""" yield lambda v: validate_array(v, ndim=4, dtype="i") def __iter__(self) -> Iterator[Ints3d]: ... # def __getitem__(self, key: int) -> Ints3d: ... @overload def sum(self, *, keepdims: Tru, axis: _4_AllAx = None, out: Optional["Ints4d"] = None) -> "Ints4d": ... @overload def sum(self, *, keepdims: Fal = False, axis: OneAx, out: Optional[Ints3d] = None) -> Ints3d: ... @overload def sum(self, *, keepdims: Fal = False, axis: TwoAx, out: Optional[Ints2d] = None) -> Ints2d: ... @overload def sum(self, *, keepdims: Fal = False, axis: ThreeAx, out: Optional[Ints1d] = None) -> Ints1d: ... @overload def sum(self, *, keepdims: Fal = False, axis: Optional[FourAx] = None, out = None) -> int: ... def sum(self, *, keepdims: bool = False, axis: _4_AllAx = None, out: Optional[Union[Ints1d, Ints2d, Ints3d, "Ints4d"]] = None) -> _4I_ReduceResults: ... _DIn = TypeVar("_DIn") class Decorator(Protocol): """Protocol to mark a function as returning its child with identical signature.""" def __call__(self, name: str) -> Callable[[_DIn], _DIn]: ... # fmt: on class Generator(Iterator): """Custom generator type. Used to annotate function arguments that accept generators so they can be validated by pydantic (which doesn't support iterators/iterables otherwise). """ @classmethod def __get_validators__(cls): yield cls.validate @classmethod def validate(cls, v): if not hasattr(v, "__iter__") and not hasattr(v, "__next__"): raise TypeError("not a valid iterator") return v @dataclass class SizedGenerator: """A generator that has a __len__ and can repeatedly call the generator function. """ get_items: Callable[[], Generator] length: int def __len__(self): return self.length def __iter__(self): yield from self.get_items() @dataclass class Padded: """A batch of padded sequences, sorted by decreasing length. The data array is of shape (step, batch, ...). The auxiliary array size_at_t indicates the length of the batch at each timestep, so you can do data[:, :size_at_t[t]] to shrink the batch. The lengths array indicates the length of each row b, and the indices indicates the original ordering. """ data: Floats3d size_at_t: Ints1d lengths: Ints1d indices: Ints1d def copy(self): return Padded( self.data.copy(), self.size_at_t.copy(), self.lengths.copy(), self.indices.copy() ) def __len__(self) -> int: return self.lengths.shape[0] def __getitem__(self, index: Union[int, slice, Ints1d]) -> "Padded": if isinstance(index, int): # Slice to keep the dimensionality return Padded( self.data[:, index : index + 1], self.lengths[index : index + 1], self.lengths[index : index + 1], self.indices[index : index + 1], ) elif isinstance(index, slice): return Padded( self.data[:, index], self.lengths[index], self.lengths[index], self.indices[index], ) else: # If we get a sequence of indices, we need to be careful that # we maintain the length-sorting, while also keeping the mapping # back to the original order correct. sorted_index = list(sorted(index)) return Padded( self.data[sorted_index], self.size_at_t[sorted_index], self.lengths[sorted_index], self.indices[index], # Use original, to maintain order. ) @dataclass class Ragged: """A batch of concatenated sequences, that vary in the size of their first dimension. Ragged allows variable-length sequence data to be contiguous in memory, without padding. Indexing into Ragged is just like indexing into the *lengths* array, except it returns a Ragged object with the accompanying sequence data. For instance, you can write ragged[1:4] to get a Ragged object with sequences 1, 2 and 3. """ data: Array2d lengths: Ints1d data_shape: Tuple[int, ...] starts_ends: Optional[Ints1d] = None def __init__(self, data: _Array, lengths: Ints1d): self.lengths = lengths # Frustratingly, the -1 dimension doesn't work with 0 size... if data.size: self.data = cast(Array2d, data.reshape((data.shape[0], -1))) else: self.data = cast(Array2d, data.reshape((0, 0))) self.data_shape = (-1,) + data.shape[1:] @property def dataXd(self) -> ArrayXd: if self.data.size: reshaped = self.data.reshape(self.data_shape) else: reshaped = self.data.reshape((self.data.shape[0],) + self.data_shape[1:]) return cast(ArrayXd, reshaped) def __len__(self) -> int: return self.lengths.shape[0] def __getitem__(self, index: Union[int, slice, Array1d]) -> "Ragged": if isinstance(index, tuple): raise IndexError("Ragged arrays do not support 2d indexing.") starts = self._get_starts() ends = self._get_ends() if isinstance(index, int): s = starts[index] e = ends[index] return Ragged(self.data[s:e], self.lengths[index : index + 1]) elif isinstance(index, slice): lengths = self.lengths[index] if len(lengths) == 0: return Ragged(self.data[0:0].reshape(self.data_shape), lengths) start = starts[index][0] if index.start >= 1 else 0 end = ends[index][-1] return Ragged(self.data[start:end].reshape(self.data_shape), lengths) else: # There must be a way to do this "properly" :(. Sigh, hate numpy. xp = get_array_module(self.data) data = xp.vstack([self[int(i)].data for i in index]) return Ragged(data.reshape(self.data_shape), self.lengths[index]) def _get_starts_ends(self) -> Ints1d: if self.starts_ends is None: xp = get_array_module(self.lengths) self.starts_ends = xp.empty(self.lengths.size + 1, dtype="i") self.starts_ends[0] = 0 self.lengths.cumsum(out=self.starts_ends[1:]) return self.starts_ends def _get_starts(self) -> Ints1d: return self._get_starts_ends()[:-1] def _get_ends(self) -> Ints1d: return self._get_starts_ends()[1:] _P = TypeVar("_P", bound=Sequence) @dataclass class Pairs(Generic[_P]): """Dataclass for pairs of sequences that allows indexing into the sequences while keeping them aligned. """ one: _P two: _P def __getitem__(self, index) -> "Pairs[_P]": return Pairs(self.one[index], self.two[index]) def __len__(self) -> int: return len(self.one) @dataclass class ArgsKwargs: """A tuple of (args, kwargs) that can be spread into some function f: f(*args, **kwargs) """ args: Tuple[Any, ...] kwargs: Dict[str, Any] @classmethod def from_items(cls, items: Sequence[Tuple[Union[int, str], Any]]) -> "ArgsKwargs": """Create an ArgsKwargs object from a sequence of (key, value) tuples, such as produced by argskwargs.items(). Each key should be either a string or an integer. Items with int keys are added to the args list, and items with string keys are added to the kwargs list. The args list is determined by sequence order, not the value of the integer. """ args = [] kwargs = {} for key, value in items: if isinstance(key, int): args.append(value) else: kwargs[key] = value return cls(args=tuple(args), kwargs=kwargs) def keys(self) -> Iterable[Union[int, str]]: """Yield indices from self.args, followed by keys from self.kwargs.""" yield from range(len(self.args)) yield from self.kwargs.keys() def values(self) -> Iterable[Any]: """Yield elements of from self.args, followed by values from self.kwargs.""" yield from self.args yield from self.kwargs.values() def items(self) -> Iterable[Tuple[Union[int, str], Any]]: """Yield enumerate(self.args), followed by self.kwargs.items()""" yield from enumerate(self.args) yield from self.kwargs.items() @dataclass class Unserializable: """Wrap a value to prevent it from being serialized by msgpack.""" obj: Any def validate_array(obj, ndim=None, dtype=None): """Runtime validator for pydantic to validate array types.""" xp = get_array_module(obj) if not isinstance(obj, xp.ndarray): raise TypeError("not a valid numpy or cupy array") errors = [] if ndim is not None and obj.ndim != ndim: errors.append(f"wrong array dimensions (expected {ndim}, got {obj.ndim})") if dtype is not None: dtype_mapping = {"f": ["float32"], "i": ["int32", "int64", "uint32", "uint64"]} expected_types = dtype_mapping.get(dtype, []) if obj.dtype not in expected_types: expected = "/".join(expected_types) err = f"wrong array data type (expected {expected}, got {obj.dtype})" errors.append(err) if errors: raise ValueError(", ".join(errors)) return obj
"""Talk"""
"""Debugger basics""" import fnmatch import sys import os __all__ = ["BdbQuit", "Bdb", "Breakpoint"] class BdbQuit(Exception): """Exception to give up completely.""" class Bdb: """Generic Python debugger base class. This class takes care of details of the trace facility; a derived class should implement user interaction. The standard debugger class (pdb.Pdb) is an example. """ def __init__(self, skip=None): self.skip = set(skip) if skip else None self.breaks = {} self.fncache = {} def canonic(self, filename): if filename == "<" + filename[1:-1] + ">": return filename canonic = self.fncache.get(filename) if not canonic: canonic = os.path.abspath(filename) canonic = os.path.normcase(canonic) self.fncache[filename] = canonic return canonic def reset(self): import linecache linecache.checkcache() self.botframe = None self._set_stopinfo(None, None) def trace_dispatch(self, frame, event, arg): if self.quitting: return # None if event == 'line': return self.dispatch_line(frame) if event == 'call': return self.dispatch_call(frame, arg) if event == 'return': return self.dispatch_return(frame, arg) if event == 'exception': return self.dispatch_exception(frame, arg) if event == 'c_call': return self.trace_dispatch if event == 'c_exception': return self.trace_dispatch if event == 'c_return': return self.trace_dispatch print('bdb.Bdb.dispatch: unknown debugging event:', repr(event)) return self.trace_dispatch def dispatch_line(self, frame): if self.stop_here(frame) or self.break_here(frame): self.user_line(frame) if self.quitting: raise BdbQuit return self.trace_dispatch def dispatch_call(self, frame, arg): # XXX 'arg' is no longer used if self.botframe is None: # First call of dispatch since reset() self.botframe = frame.f_back # (CT) Note that this may also be None! return self.trace_dispatch if not (self.stop_here(frame) or self.break_anywhere(frame)): # No need to trace this function return # None self.user_call(frame, arg) if self.quitting: raise BdbQuit return self.trace_dispatch def dispatch_return(self, frame, arg): if self.stop_here(frame) or frame == self.returnframe: self.user_return(frame, arg) if self.quitting: raise BdbQuit return self.trace_dispatch def dispatch_exception(self, frame, arg): if self.stop_here(frame): self.user_exception(frame, arg) if self.quitting: raise BdbQuit return self.trace_dispatch # Normally derived classes don't override the following # methods, but they may if they want to redefine the # definition of stopping and breakpoints. def is_skipped_module(self, module_name): for pattern in self.skip: if fnmatch.fnmatch(module_name, pattern): return True return False def stop_here(self, frame): # (CT) stopframe may now also be None, see dispatch_call. # (CT) the former test for None is therefore removed from here. if self.skip and \ self.is_skipped_module(frame.f_globals.get('__name__')): return False if frame is self.stopframe: if self.stoplineno == -1: return False return frame.f_lineno >= self.stoplineno while frame is not None and frame is not self.stopframe: if frame is self.botframe: return True frame = frame.f_back return False def break_here(self, frame): filename = self.canonic(frame.f_code.co_filename) if filename not in self.breaks: return False lineno = frame.f_lineno if lineno not in self.breaks[filename]: # The line itself has no breakpoint, but maybe the line is the # first line of a function with breakpoint set by function name. lineno = frame.f_code.co_firstlineno if lineno not in self.breaks[filename]: return False # flag says ok to delete temp. bp (bp, flag) = effective(filename, lineno, frame) if bp: self.currentbp = bp.number if (flag and bp.temporary): self.do_clear(str(bp.number)) return True else: return False def do_clear(self, arg): raise NotImplementedError("subclass of bdb must implement do_clear()") def break_anywhere(self, frame): return self.canonic(frame.f_code.co_filename) in self.breaks # Derived classes should override the user_* methods # to gain control. def user_call(self, frame, argument_list): """This method is called when there is the remote possibility that we ever need to stop in this function.""" pass def user_line(self, frame): """This method is called when we stop or break at this line.""" pass def user_return(self, frame, return_value): """This method is called when a return trap is set here.""" pass def user_exception(self, frame, exc_info): """This method is called if an exception occurs, but only if we are to stop at or just below this level.""" pass def _set_stopinfo(self, stopframe, returnframe, stoplineno=0): self.stopframe = stopframe self.returnframe = returnframe self.quitting = False # stoplineno >= 0 means: stop at line >= the stoplineno # stoplineno -1 means: don't stop at all self.stoplineno = stoplineno # Derived classes and clients can call the following methods # to affect the stepping state. def set_until(self, frame, lineno=None): """Stop when the line with the line no greater than the current one is reached or when returning from current frame""" # the name "until" is borrowed from gdb if lineno is None: lineno = frame.f_lineno + 1 self._set_stopinfo(frame, frame, lineno) def set_step(self): """Stop after one line of code.""" self._set_stopinfo(None, None) def set_next(self, frame): """Stop on the next line in or below the given frame.""" self._set_stopinfo(frame, None) def set_return(self, frame): """Stop when returning from the given frame.""" self._set_stopinfo(frame.f_back, frame) def set_trace(self, frame=None): """Start debugging from `frame`. If frame is not specified, debugging starts from caller's frame. """ if frame is None: frame = sys._getframe().f_back self.reset() while frame: frame.f_trace = self.trace_dispatch self.botframe = frame frame = frame.f_back self.set_step() sys.settrace(self.trace_dispatch) def set_continue(self): # Don't stop except at breakpoints or when finished self._set_stopinfo(self.botframe, None, -1) if not self.breaks: # no breakpoints; run without debugger overhead sys.settrace(None) frame = sys._getframe().f_back while frame and frame is not self.botframe: del frame.f_trace frame = frame.f_back def set_quit(self): self.stopframe = self.botframe self.returnframe = None self.quitting = True sys.settrace(None) # Derived classes and clients can call the following methods # to manipulate breakpoints. These methods return an # error message is something went wrong, None if all is well. # Set_break prints out the breakpoint line and file:lineno. # Call self.get_*break*() to see the breakpoints or better # for bp in Breakpoint.bpbynumber: if bp: bp.bpprint(). def set_break(self, filename, lineno, temporary=False, cond=None, funcname=None): filename = self.canonic(filename) import linecache # Import as late as possible line = linecache.getline(filename, lineno) if not line: return 'Line %s:%d does not exist' % (filename, lineno) list = self.breaks.setdefault(filename, []) if lineno not in list: list.append(lineno) bp = Breakpoint(filename, lineno, temporary, cond, funcname) def _prune_breaks(self, filename, lineno): if (filename, lineno) not in Breakpoint.bplist: self.breaks[filename].remove(lineno) if not self.breaks[filename]: del self.breaks[filename] def clear_break(self, filename, lineno): filename = self.canonic(filename) if filename not in self.breaks: return 'There are no breakpoints in %s' % filename if lineno not in self.breaks[filename]: return 'There is no breakpoint at %s:%d' % (filename, lineno) # If there's only one bp in the list for that file,line # pair, then remove the breaks entry for bp in Breakpoint.bplist[filename, lineno][:]: bp.deleteMe() self._prune_breaks(filename, lineno) def clear_bpbynumber(self, arg): try: bp = self.get_bpbynumber(arg) except ValueError as err: return str(err) bp.deleteMe() self._prune_breaks(bp.file, bp.line) def clear_all_file_breaks(self, filename): filename = self.canonic(filename) if filename not in self.breaks: return 'There are no breakpoints in %s' % filename for line in self.breaks[filename]: blist = Breakpoint.bplist[filename, line] for bp in blist: bp.deleteMe() del self.breaks[filename] def clear_all_breaks(self): if not self.breaks: return 'There are no breakpoints' for bp in Breakpoint.bpbynumber: if bp: bp.deleteMe() self.breaks = {} def get_bpbynumber(self, arg): if not arg: raise ValueError('Breakpoint number expected') try: number = int(arg) except ValueError: raise ValueError('Non-numeric breakpoint number %s' % arg) try: bp = Breakpoint.bpbynumber[number] except IndexError: raise ValueError('Breakpoint number %d out of range' % number) if bp is None: raise ValueError('Breakpoint %d already deleted' % number) return bp def get_break(self, filename, lineno): filename = self.canonic(filename) return filename in self.breaks and \ lineno in self.breaks[filename] def get_breaks(self, filename, lineno): filename = self.canonic(filename) return filename in self.breaks and \ lineno in self.breaks[filename] and \ Breakpoint.bplist[filename, lineno] or [] def get_file_breaks(self, filename): filename = self.canonic(filename) if filename in self.breaks: return self.breaks[filename] else: return [] def get_all_breaks(self): return self.breaks # Derived classes and clients can call the following method # to get a data structure representing a stack trace. def get_stack(self, f, t): stack = [] if t and t.tb_frame is f: t = t.tb_next while f is not None: stack.append((f, f.f_lineno)) if f is self.botframe: break f = f.f_back stack.reverse() i = max(0, len(stack) - 1) while t is not None: stack.append((t.tb_frame, t.tb_lineno)) t = t.tb_next if f is None: i = max(0, len(stack) - 1) return stack, i def format_stack_entry(self, frame_lineno, lprefix=': '): import linecache, reprlib frame, lineno = frame_lineno filename = self.canonic(frame.f_code.co_filename) s = '%s(%r)' % (filename, lineno) if frame.f_code.co_name: s += frame.f_code.co_name else: s += "<lambda>" if '__args__' in frame.f_locals: args = frame.f_locals['__args__'] else: args = None if args: s += reprlib.repr(args) else: s += '()' if '__return__' in frame.f_locals: rv = frame.f_locals['__return__'] s += '->' s += reprlib.repr(rv) line = linecache.getline(filename, lineno, frame.f_globals) if line: s += lprefix + line.strip() return s # The following methods can be called by clients to use # a debugger to debug a statement or an expression. # Both can be given as a string, or a code object. def run(self, cmd, globals=None, locals=None): if globals is None: import __main__ globals = __main__.__dict__ if locals is None: locals = globals self.reset() if isinstance(cmd, str): cmd = compile(cmd, "<string>", "exec") sys.settrace(self.trace_dispatch) try: exec(cmd, globals, locals) except BdbQuit: pass finally: self.quitting = True sys.settrace(None) def runeval(self, expr, globals=None, locals=None): if globals is None: import __main__ globals = __main__.__dict__ if locals is None: locals = globals self.reset() sys.settrace(self.trace_dispatch) try: return eval(expr, globals, locals) except BdbQuit: pass finally: self.quitting = True sys.settrace(None) def runctx(self, cmd, globals, locals): # B/W compatibility self.run(cmd, globals, locals) # This method is more useful to debug a single function call. def runcall(self, func, *args, **kwds): self.reset() sys.settrace(self.trace_dispatch) res = None try: res = func(*args, **kwds) except BdbQuit: pass finally: self.quitting = True sys.settrace(None) return res def set_trace(): Bdb().set_trace() class Breakpoint: """Breakpoint class. Implements temporary breakpoints, ignore counts, disabling and (re)-enabling, and conditionals. Breakpoints are indexed by number through bpbynumber and by the file,line tuple using bplist. The former points to a single instance of class Breakpoint. The latter points to a list of such instances since there may be more than one breakpoint per line. """ # XXX Keeping state in the class is a mistake -- this means # you cannot have more than one active Bdb instance. next = 1 # Next bp to be assigned bplist = {} # indexed by (file, lineno) tuple bpbynumber = [None] # Each entry is None or an instance of Bpt # index 0 is unused, except for marking an # effective break .... see effective() def __init__(self, file, line, temporary=False, cond=None, funcname=None): self.funcname = funcname # Needed if funcname is not None. self.func_first_executable_line = None self.file = file # This better be in canonical form! self.line = line self.temporary = temporary self.cond = cond self.enabled = True self.ignore = 0 self.hits = 0 self.number = Breakpoint.next Breakpoint.next += 1 # Build the two lists self.bpbynumber.append(self) if (file, line) in self.bplist: self.bplist[file, line].append(self) else: self.bplist[file, line] = [self] def deleteMe(self): index = (self.file, self.line) self.bpbynumber[self.number] = None # No longer in list self.bplist[index].remove(self) if not self.bplist[index]: # No more bp for this f:l combo del self.bplist[index] def enable(self): self.enabled = True def disable(self): self.enabled = False def bpprint(self, out=None): if out is None: out = sys.stdout print(self.bpformat(), file=out) def bpformat(self): if self.temporary: disp = 'del ' else: disp = 'keep ' if self.enabled: disp = disp + 'yes ' else: disp = disp + 'no ' ret = '%-4dbreakpoint %s at %s:%d' % (self.number, disp, self.file, self.line) if self.cond: ret += '\n\tstop only if %s' % (self.cond,) if self.ignore: ret += '\n\tignore next %d hits' % (self.ignore,) if self.hits: if self.hits > 1: ss = 's' else: ss = '' ret += '\n\tbreakpoint already hit %d time%s' % (self.hits, ss) return ret def __str__(self): return 'breakpoint %s at %s:%s' % (self.number, self.file, self.line) # -----------end of Breakpoint class---------- def checkfuncname(b, frame): """Check whether we should break here because of `b.funcname`.""" if not b.funcname: # Breakpoint was set via line number. if b.line != frame.f_lineno: # Breakpoint was set at a line with a def statement and the function # defined is called: don't break. return False return True # Breakpoint set via function name. if frame.f_code.co_name != b.funcname: # It's not a function call, but rather execution of def statement. return False # We are in the right frame. if not b.func_first_executable_line: # The function is entered for the 1st time. b.func_first_executable_line = frame.f_lineno if b.func_first_executable_line != frame.f_lineno: # But we are not at the first line number: don't break. return False return True # Determines if there is an effective (active) breakpoint at this # line of code. Returns breakpoint number or 0 if none def effective(file, line, frame): """Determine which breakpoint for this file:line is to be acted upon. Called only if we know there is a bpt at this location. Returns breakpoint that was triggered and a flag that indicates if it is ok to delete a temporary bp. """ possibles = Breakpoint.bplist[file, line] for b in possibles: if not b.enabled: continue if not checkfuncname(b, frame): continue # Count every hit when bp is enabled b.hits += 1 if not b.cond: # If unconditional, and ignoring go on to next, else break if b.ignore > 0: b.ignore -= 1 continue else: # breakpoint and marker that it's ok to delete if temporary return (b, True) else: # Conditional bp. # Ignore count applies only to those bpt hits where the # condition evaluates to true. try: val = eval(b.cond, frame.f_globals, frame.f_locals) if val: if b.ignore > 0: b.ignore -= 1 # continue else: return (b, True) # else: # continue except: # if eval fails, most conservative thing is to stop on # breakpoint regardless of ignore count. Don't delete # temporary, as another hint to user. return (b, False) return (None, None) # -------------------- testing -------------------- class Tdb(Bdb): def user_call(self, frame, args): name = frame.f_code.co_name if not name: name = '???' print('+++ call', name, args) def user_line(self, frame): import linecache name = frame.f_code.co_name if not name: name = '???' fn = self.canonic(frame.f_code.co_filename) line = linecache.getline(fn, frame.f_lineno, frame.f_globals) print('+++', fn, frame.f_lineno, name, ':', line.strip()) def user_return(self, frame, retval): print('+++ return', retval) def user_exception(self, frame, exc_stuff): print('+++ exception', exc_stuff) self.set_continue() def foo(n): print('foo(', n, ')') x = bar(n*10) print('bar returned', x) def bar(a): print('bar(', a, ')') return a/2 def test(): t = Tdb() t.run('import bdb; bdb.foo(10)')
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import json import os ANSIBLE_SSH_PORT = '2222' def get_args(): from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('--list', action='store_true') parser.add_argument('--host') return parser.parse_args() def wd_to_script_dir(): import os path = os.path.abspath(__file__) dir = os.path.dirname(path) os.chdir(dir) def terraform_output(key): ret = os.popen('terraform output -json ' + key).read() return json.loads(ret) def main(): args = get_args() wd_to_script_dir() primary_managers = terraform_output('swarm-primary-managers') secondary_managers = terraform_output('swarm-secondary-managers') workers = terraform_output('swarm-workers') ssh_public_key = terraform_output('ssh-public-key') if args.list: inventory = { 'swarm-primary-managers': list(primary_managers.keys()), 'swarm-secondary-managers': list(secondary_managers.keys()), 'swarm-workers': list(workers.keys()) } print(json.dumps(inventory)) if args.host: hosts = {**primary_managers, **secondary_managers, **workers} print(json.dumps({ 'ansible_host': hosts[args.host], 'ansible_port': ANSIBLE_SSH_PORT, 'ssh_public_key': ssh_public_key })) if __name__ == "__main__": main()
"""ThreatConnect TI Address""" from ..indicator import Indicator class Address(Indicator): """Unique API calls for Address API Endpoints""" def __init__(self, tcex, **kwargs): """Initialize Class Properties. Args: ip (str): The value for this Indicator. active (bool, kwargs): If False the indicator is marked "inactive" in TC. confidence (str, kwargs): The threat confidence for this Indicator. date_added (str, kwargs): [Read-Only] The date timestamp the Indicator was created. last_modified (str, kwargs): [Read-Only] The date timestamp the Indicator was last modified. private_flag (bool, kwargs): If True the indicator is marked as private in TC. rating (str, kwargs): The threat rating for this Indicator. """ super().__init__( tcex, sub_type='Address', api_entity='address', api_branch='addresses', **kwargs ) self.unique_id = kwargs.get('unique_id', kwargs.get('ip')) self.data['ip'] = self.unique_id def _set_unique_id(self, json_response): """Set the unique_id provided a json response. Args: json_response: """ self.unique_id = json_response.get('ip', '') def can_create(self): """Return True if address can be created. If the ip address has been provided returns that the address can be created, otherwise returns that the address cannot be created. """ return not self.data.get('ip') is None # TODO: @burdy - is this correct for address? def dns_resolution(self): """Update the DNS resolution. Returns: """ if not self.can_update(): self._tcex.handle_error(910, [self.type]) return self.tc_requests.dns_resolution( self.api_type, self.api_branch, self.unique_id, owner=self.owner )
# # PySNMP MIB module A3COM-HUAWEI-LswIGSP-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/A3COM-HUAWEI-LswIGSP-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 16:51:01 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # lswCommon, = mibBuilder.importSymbols("A3COM-HUAWEI-OID-MIB", "lswCommon") ObjectIdentifier, OctetString, Integer = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "OctetString", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, ValueSizeConstraint, SingleValueConstraint, ConstraintsIntersection, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ValueSizeConstraint", "SingleValueConstraint", "ConstraintsIntersection", "ConstraintsUnion") InterfaceIndex, = mibBuilder.importSymbols("IF-MIB", "InterfaceIndex") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") IpAddress, Unsigned32, ModuleIdentity, MibIdentifier, MibScalar, MibTable, MibTableRow, MibTableColumn, Counter64, iso, TimeTicks, NotificationType, Counter32, Integer32, ObjectIdentity, Gauge32, Bits = mibBuilder.importSymbols("SNMPv2-SMI", "IpAddress", "Unsigned32", "ModuleIdentity", "MibIdentifier", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter64", "iso", "TimeTicks", "NotificationType", "Counter32", "Integer32", "ObjectIdentity", "Gauge32", "Bits") RowStatus, TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "RowStatus", "TextualConvention", "DisplayString") hwLswIgmpsnoopingMib = ModuleIdentity((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7)) hwLswIgmpsnoopingMib.setRevisions(('2001-06-29 00:00',)) if mibBuilder.loadTexts: hwLswIgmpsnoopingMib.setLastUpdated('200106290000Z') if mibBuilder.loadTexts: hwLswIgmpsnoopingMib.setOrganization('') class EnabledStatus(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2)) namedValues = NamedValues(("enabled", 1), ("disabled", 2)) hwLswIgmpsnoopingMibObject = MibIdentifier((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1)) hwIgmpSnoopingStatus = MibScalar((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 1), EnabledStatus()).setMaxAccess("readwrite") if mibBuilder.loadTexts: hwIgmpSnoopingStatus.setStatus('current') hwIgmpSnoopingRouterPortAge = MibScalar((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 1000)).clone(105)).setMaxAccess("readwrite") if mibBuilder.loadTexts: hwIgmpSnoopingRouterPortAge.setStatus('current') hwIgmpSnoopingResponseTime = MibScalar((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 25)).clone(10)).setMaxAccess("readwrite") if mibBuilder.loadTexts: hwIgmpSnoopingResponseTime.setStatus('current') hwIgmpSnoopingHostTime = MibScalar((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(200, 1000)).clone(260)).setMaxAccess("readwrite") if mibBuilder.loadTexts: hwIgmpSnoopingHostTime.setStatus('current') hwIgmpSnoopingGroupLimitTable = MibTable((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 5), ) if mibBuilder.loadTexts: hwIgmpSnoopingGroupLimitTable.setStatus('current') hwIgmpSnoopingGroupLimitEntry = MibTableRow((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 5, 1), ).setIndexNames((0, "A3COM-HUAWEI-LswIGSP-MIB", "hwIgmpSnoopingGroupIfIndex")) if mibBuilder.loadTexts: hwIgmpSnoopingGroupLimitEntry.setStatus('current') hwIgmpSnoopingGroupIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 5, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: hwIgmpSnoopingGroupIfIndex.setStatus('current') hwIgmpSnoopingGroupLimitNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 5, 1, 2), Unsigned32().clone(4294967295)).setMaxAccess("readwrite") if mibBuilder.loadTexts: hwIgmpSnoopingGroupLimitNumber.setStatus('current') hwIgmpSnoopingFastLeaveTable = MibTable((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 6), ) if mibBuilder.loadTexts: hwIgmpSnoopingFastLeaveTable.setStatus('current') hwIgmpSnoopingFastLeaveEntry = MibTableRow((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 6, 1), ).setIndexNames((0, "A3COM-HUAWEI-LswIGSP-MIB", "hwIgmpSnoopingFastLeaveIfIndex")) if mibBuilder.loadTexts: hwIgmpSnoopingFastLeaveEntry.setStatus('current') hwIgmpSnoopingFastLeaveIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 6, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: hwIgmpSnoopingFastLeaveIfIndex.setStatus('current') hwIgmpSnoopingFastLeaveStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 6, 1, 2), EnabledStatus().clone(2)).setMaxAccess("readwrite") if mibBuilder.loadTexts: hwIgmpSnoopingFastLeaveStatus.setStatus('current') hwIgmpSnoopingGroupPolicyTable = MibTable((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 7), ) if mibBuilder.loadTexts: hwIgmpSnoopingGroupPolicyTable.setStatus('current') hwIgmpSnoopingGroupPolicyEntry = MibTableRow((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 7, 1), ).setIndexNames((0, "A3COM-HUAWEI-LswIGSP-MIB", "hwIgmpSnoopingGroupPolicyIfIndex"), (0, "A3COM-HUAWEI-LswIGSP-MIB", "hwIgmpSnoopingGroupPolicyVlanID")) if mibBuilder.loadTexts: hwIgmpSnoopingGroupPolicyEntry.setStatus('current') hwIgmpSnoopingGroupPolicyIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 7, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: hwIgmpSnoopingGroupPolicyIfIndex.setStatus('current') hwIgmpSnoopingGroupPolicyVlanID = MibTableColumn((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 7, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 4094))) if mibBuilder.loadTexts: hwIgmpSnoopingGroupPolicyVlanID.setStatus('current') hwIgmpSnoopingGroupPolicyParameter = MibTableColumn((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 7, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(2000, 2999))).setMaxAccess("readcreate") if mibBuilder.loadTexts: hwIgmpSnoopingGroupPolicyParameter.setStatus('current') hwIgmpSnoopingGroupPolicyStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 7, 1, 4), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: hwIgmpSnoopingGroupPolicyStatus.setStatus('current') hwIgmpSnoopingNonFloodingStatus = MibScalar((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 8), EnabledStatus()).setMaxAccess("readwrite") if mibBuilder.loadTexts: hwIgmpSnoopingNonFloodingStatus.setStatus('current') hwIgmpSnoopingVlanStatusTable = MibTable((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 9), ) if mibBuilder.loadTexts: hwIgmpSnoopingVlanStatusTable.setStatus('current') hwIgmpSnoopingVlanStatusEntry = MibTableRow((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 9, 1), ).setIndexNames((0, "A3COM-HUAWEI-LswIGSP-MIB", "hwIgmpSnoopingVlanID")) if mibBuilder.loadTexts: hwIgmpSnoopingVlanStatusEntry.setStatus('current') hwIgmpSnoopingVlanID = MibTableColumn((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 9, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 4094))) if mibBuilder.loadTexts: hwIgmpSnoopingVlanID.setStatus('current') hwIgmpSnoopingVlanEnabled = MibTableColumn((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 9, 1, 2), EnabledStatus().clone('disabled')).setMaxAccess("readwrite") if mibBuilder.loadTexts: hwIgmpSnoopingVlanEnabled.setStatus('current') hwIgmpSnoopingStatsObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 10)) hwRecvIGMPGQueryNum = MibScalar((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 10, 1), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hwRecvIGMPGQueryNum.setStatus('current') hwRecvIGMPSQueryNum = MibScalar((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 10, 2), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hwRecvIGMPSQueryNum.setStatus('current') hwRecvIGMPV1ReportNum = MibScalar((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 10, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hwRecvIGMPV1ReportNum.setStatus('current') hwRecvIGMPV2ReportNum = MibScalar((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 10, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hwRecvIGMPV2ReportNum.setStatus('current') hwRecvIGMPLeaveNum = MibScalar((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 10, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hwRecvIGMPLeaveNum.setStatus('current') hwRecvErrorIGMPPacketNum = MibScalar((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 10, 6), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hwRecvErrorIGMPPacketNum.setStatus('current') hwSentIGMPSQueryNum = MibScalar((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 10, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hwSentIGMPSQueryNum.setStatus('current') hwIgmpSnoopingClearStats = MibScalar((1, 3, 6, 1, 4, 1, 43, 45, 1, 2, 23, 1, 7, 1, 10, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("clear", 1), ("counting", 2))).clone('counting')).setMaxAccess("readwrite") if mibBuilder.loadTexts: hwIgmpSnoopingClearStats.setStatus('current') mibBuilder.exportSymbols("A3COM-HUAWEI-LswIGSP-MIB", hwIgmpSnoopingStatus=hwIgmpSnoopingStatus, hwIgmpSnoopingResponseTime=hwIgmpSnoopingResponseTime, hwIgmpSnoopingGroupPolicyParameter=hwIgmpSnoopingGroupPolicyParameter, hwIgmpSnoopingRouterPortAge=hwIgmpSnoopingRouterPortAge, hwIgmpSnoopingHostTime=hwIgmpSnoopingHostTime, hwRecvIGMPV2ReportNum=hwRecvIGMPV2ReportNum, hwIgmpSnoopingGroupPolicyEntry=hwIgmpSnoopingGroupPolicyEntry, hwIgmpSnoopingGroupPolicyVlanID=hwIgmpSnoopingGroupPolicyVlanID, hwIgmpSnoopingGroupLimitEntry=hwIgmpSnoopingGroupLimitEntry, hwSentIGMPSQueryNum=hwSentIGMPSQueryNum, hwIgmpSnoopingGroupPolicyStatus=hwIgmpSnoopingGroupPolicyStatus, hwLswIgmpsnoopingMibObject=hwLswIgmpsnoopingMibObject, hwRecvIGMPSQueryNum=hwRecvIGMPSQueryNum, hwIgmpSnoopingGroupIfIndex=hwIgmpSnoopingGroupIfIndex, hwLswIgmpsnoopingMib=hwLswIgmpsnoopingMib, hwIgmpSnoopingVlanEnabled=hwIgmpSnoopingVlanEnabled, hwIgmpSnoopingClearStats=hwIgmpSnoopingClearStats, hwIgmpSnoopingStatsObjects=hwIgmpSnoopingStatsObjects, hwRecvErrorIGMPPacketNum=hwRecvErrorIGMPPacketNum, PYSNMP_MODULE_ID=hwLswIgmpsnoopingMib, hwIgmpSnoopingFastLeaveIfIndex=hwIgmpSnoopingFastLeaveIfIndex, hwRecvIGMPLeaveNum=hwRecvIGMPLeaveNum, hwIgmpSnoopingGroupLimitNumber=hwIgmpSnoopingGroupLimitNumber, hwIgmpSnoopingNonFloodingStatus=hwIgmpSnoopingNonFloodingStatus, hwIgmpSnoopingGroupLimitTable=hwIgmpSnoopingGroupLimitTable, hwIgmpSnoopingFastLeaveTable=hwIgmpSnoopingFastLeaveTable, hwRecvIGMPGQueryNum=hwRecvIGMPGQueryNum, EnabledStatus=EnabledStatus, hwIgmpSnoopingVlanStatusEntry=hwIgmpSnoopingVlanStatusEntry, hwIgmpSnoopingGroupPolicyIfIndex=hwIgmpSnoopingGroupPolicyIfIndex, hwIgmpSnoopingFastLeaveStatus=hwIgmpSnoopingFastLeaveStatus, hwIgmpSnoopingVlanID=hwIgmpSnoopingVlanID, hwIgmpSnoopingGroupPolicyTable=hwIgmpSnoopingGroupPolicyTable, hwIgmpSnoopingVlanStatusTable=hwIgmpSnoopingVlanStatusTable, hwIgmpSnoopingFastLeaveEntry=hwIgmpSnoopingFastLeaveEntry, hwRecvIGMPV1ReportNum=hwRecvIGMPV1ReportNum)
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Interfaces for Hadoop filesystem access via HttpFs/WebHDFS """ import errno import logging import posixpath import stat import threading import time from django.utils.encoding import smart_str from django.utils.translation import ugettext as _ from desktop.lib.rest import http_client, resource from hadoop.fs import normpath, SEEK_SET, SEEK_CUR, SEEK_END from hadoop.fs.hadoopfs import Hdfs from hadoop.fs.exceptions import WebHdfsException from hadoop.fs.webhdfs_types import WebHdfsStat, WebHdfsContentSummary from hadoop.conf import UPLOAD_CHUNK_SIZE from hadoop.hdfs_site import get_nn_sentry_prefixes import hadoop.conf import desktop.conf DEFAULT_HDFS_SUPERUSER = desktop.conf.DEFAULT_HDFS_SUPERUSER.get() # The number of bytes to read if not specified DEFAULT_READ_SIZE = 1024*1024 # 1MB LOG = logging.getLogger(__name__) class WebHdfs(Hdfs): """ WebHdfs implements the filesystem interface via the WebHDFS rest protocol. """ DEFAULT_USER = desktop.conf.DEFAULT_USER.get() # This should be the user running Hue TRASH_CURRENT = 'Current' def __init__(self, url, fs_defaultfs, logical_name=None, hdfs_superuser=None, security_enabled=False, temp_dir="/tmp", umask=01022): self._url = url self._superuser = hdfs_superuser self._security_enabled = security_enabled self._temp_dir = temp_dir self._umask = umask self._fs_defaultfs = fs_defaultfs self._logical_name = logical_name self._client = self._make_client(url, security_enabled) self._root = resource.Resource(self._client) # To store user info self._thread_local = threading.local() LOG.debug("Initializing Hadoop WebHdfs: %s (security: %s, superuser: %s)" % (self._url, self._security_enabled, self._superuser)) @classmethod def from_config(cls, hdfs_config): fs_defaultfs = hdfs_config.FS_DEFAULTFS.get() return cls(url=_get_service_url(hdfs_config), fs_defaultfs=fs_defaultfs, logical_name=hdfs_config.LOGICAL_NAME.get(), security_enabled=hdfs_config.SECURITY_ENABLED.get(), temp_dir=hdfs_config.TEMP_DIR.get(), umask=hdfs_config.UMASK.get()) def __str__(self): return "WebHdfs at %s" % self._url def _make_client(self, url, security_enabled): client = http_client.HttpClient( url, exc_class=WebHdfsException, logger=LOG) if security_enabled: client.set_kerberos_auth() return client @property def uri(self): return self._url @property def logical_name(self): return self._logical_name @classmethod def is_sentry_managed(cls, path): prefixes = get_nn_sentry_prefixes().split(',') return any([path.startswith(p) for p in prefixes if p]) @property def fs_defaultfs(self): return self._fs_defaultfs @property def umask(self): return self._umask @property def security_enabled(self): return self._security_enabled @property def superuser(self): if self._superuser is None: try: # The owner of '/' is usually the superuser sb = self.stats('/') self._superuser = sb.user except Exception, ex: LOG.exception('Failed to determine superuser of %s: %s' % (self, ex)) self._superuser = DEFAULT_HDFS_SUPERUSER return self._superuser @property def user(self): try: return self._thread_local.user except AttributeError: return WebHdfs.DEFAULT_USER @property def trash_path(self): return self.join(self.get_home_dir(), '.Trash') @property def current_trash_path(self): return self.join(self.trash_path, self.TRASH_CURRENT) def _getparams(self): return { "user.name" : WebHdfs.DEFAULT_USER, "doas" : self.user } def setuser(self, user): """Set a new user. Return the current user.""" curr = self.user self._thread_local.user = user return curr def listdir_stats(self, path, glob=None): """ listdir_stats(path, glob=None) -> [ WebHdfsStat ] Get directory listing with stats. """ path = Hdfs.normpath(path) params = self._getparams() if glob is not None: params['filter'] = glob params['op'] = 'LISTSTATUS' json = self._root.get(path, params) filestatus_list = json['FileStatuses']['FileStatus'] return [ WebHdfsStat(st, path) for st in filestatus_list ] def listdir(self, path, glob=None): """ listdir(path, glob=None) -> [ entry names ] Get directory entry names without stats. """ dirents = self.listdir_stats(path, glob) return [Hdfs.basename(x.path) for x in dirents] def get_content_summary(self, path): """ get_content_summary(path) -> WebHdfsContentSummary """ path = Hdfs.normpath(path) params = self._getparams() params['op'] = 'GETCONTENTSUMMARY' json = self._root.get(path, params) return WebHdfsContentSummary(json['ContentSummary']) def _stats(self, path): """This version of stats returns None if the entry is not found""" path = Hdfs.normpath(path) params = self._getparams() params['op'] = 'GETFILESTATUS' try: json = self._root.get(path, params) return WebHdfsStat(json['FileStatus'], path) except WebHdfsException, ex: if ex.server_exc == 'FileNotFoundException' or ex.code == 404: return None raise ex def stats(self, path): """ stats(path) -> WebHdfsStat """ res = self._stats(path) if res is not None: return res raise IOError(errno.ENOENT, _("File %s not found") % path) def exists(self, path): return self._stats(path) is not None def isdir(self, path): sb = self._stats(path) if sb is None: return False return sb.isDir def isfile(self, path): sb = self._stats(path) if sb is None: return False return not sb.isDir def _ensure_current_trash_directory(self): """Create trash directory for a user if it doesn't exist.""" if self.exists(self.current_trash_path): self.mkdir(self.current_trash_path) return self.current_trash_path def _trash(self, path, recursive=False): """ _trash(path, recursive=False) Move a file or directory to trash. Will create a timestamped directory underneath /user/<username>/.Trash. Trash must be enabled for this to work. """ if not self.exists(path): raise IOError(errno.ENOENT, _("File %s not found") % path) if not recursive and self.isdir(path): raise IOError(errno.EISDIR, _("File %s is a directory") % path) if path.startswith(self.trash_path): raise IOError(errno.EPERM, _("File %s is already trashed") % path) # Make path (with timestamp suffix if necessary) base_trash_path = self.join(self._ensure_current_trash_directory(), path[1:]) trash_path = base_trash_path while self.exists(trash_path): trash_path = base_trash_path + str(time.time()) # Move path to trash path self.mkdir(self.dirname(trash_path)) self.rename(path, trash_path) def _delete(self, path, recursive=False): """ _delete(path, recursive=False) Delete a file or directory. """ path = Hdfs.normpath(path) params = self._getparams() params['op'] = 'DELETE' params['recursive'] = recursive and 'true' or 'false' result = self._root.delete(path, params) # This part of the API is nonsense. # The lack of exception should indicate success. if not result['boolean']: raise IOError(_('Delete failed: %s') % path) def remove(self, path, skip_trash=False): """Delete a file.""" if skip_trash: self._delete(path, recursive=False) else: self._trash(path, recursive=False) def rmdir(self, path, skip_trash=False): """Delete a directory.""" self.remove(path, skip_trash) def rmtree(self, path, skip_trash=False): """Delete a tree recursively.""" if skip_trash: self._delete(path, recursive=True) else: self._trash(path, recursive=True) def restore(self, path): """ restore(path) The root of ``path`` will be /users/<current user>/.Trash/<timestamp>. Removing the root from ``path`` will provide the original path. Ensure parent directories exist and rename path. """ if not path.startswith(self.trash_path): raise IOError(errno.EPERM, _("File %s is not in trash") % path) # Build original path original_path = [] split_path = self.split(path) while split_path[0] != self.trash_path: original_path.append(split_path[1]) split_path = self.split(split_path[0]) original_path.reverse() original_path = self.join(posixpath.sep, *original_path) # move to original path # the path could have been expunged. if self.exists(original_path): raise IOError(errno.EEXIST, _("Path %s already exists.") % str(smart_str(original_path))) self.rename(path, original_path) def purge_trash(self): """ purge_trash() Purge all trash in users ``trash_path`` """ for timestamped_directory in self.listdir(self.trash_path): self.rmtree(self.join(self.trash_path, timestamped_directory), True) def mkdir(self, path, mode=None): """ mkdir(path, mode=None) Creates a directory and any parent directory if necessary. """ path = Hdfs.normpath(path) params = self._getparams() params['op'] = 'MKDIRS' if mode is None: mode = self.getDefaultDirPerms() params['permission'] = safe_octal(mode) success = self._root.put(path, params) if not success: raise IOError(_("Mkdir failed: %s") % path) def rename(self, old, new): """rename(old, new)""" old = Hdfs.normpath(old) if not new.startswith('/'): new = Hdfs.join(Hdfs.dirname(old), new) new = Hdfs.normpath(new) params = self._getparams() params['op'] = 'RENAME' # Encode `new' because it's in the params params['destination'] = smart_str(new) result = self._root.put(old, params) if not result['boolean']: raise IOError(_("Rename failed: %s -> %s") % (str(smart_str(old)), str(smart_str(new)))) def rename_star(self, old_dir, new_dir): """Equivalent to `mv old_dir/* new""" if not self.isdir(old_dir): raise IOError(errno.ENOTDIR, _("'%s' is not a directory") % old_dir) if not self.exists(new_dir): self.mkdir(new_dir) elif not self.isdir(new_dir): raise IOError(errno.ENOTDIR, _("'%s' is not a directory") % new_dir) ls = self.listdir(old_dir) for dirent in ls: self.rename(Hdfs.join(old_dir, dirent), Hdfs.join(new_dir, dirent)) def chown(self, path, user=None, group=None, recursive=False): """chown(path, user=None, group=None, recursive=False)""" path = Hdfs.normpath(path) params = self._getparams() params['op'] = 'SETOWNER' if user is not None: params['owner'] = user if group is not None: params['group'] = group if recursive: for xpath in self.listdir_recursive(path): self._root.put(xpath, params) else: self._root.put(path, params) def chmod(self, path, mode, recursive=False): """ chmod(path, mode, recursive=False) `mode' should be an octal integer or string. """ path = Hdfs.normpath(path) params = self._getparams() params['op'] = 'SETPERMISSION' params['permission'] = safe_octal(mode) if recursive: for xpath in self.listdir_recursive(path): self._root.put(xpath, params) else: self._root.put(path, params) def get_home_dir(self): """get_home_dir() -> Home directory for the current user""" params = self._getparams() params['op'] = 'GETHOMEDIRECTORY' res = self._root.get(params=params) return res['Path'] def read(self, path, offset, length, bufsize=None): """ read(path, offset, length[, bufsize]) -> data Read data from a file. """ path = Hdfs.normpath(path) params = self._getparams() params['op'] = 'OPEN' params['offset'] = long(offset) params['length'] = long(length) if bufsize is not None: params['bufsize'] = bufsize try: return self._root.get(path, params) except WebHdfsException, ex: if "out of the range" in ex.message: return "" raise ex def open(self, path, mode='r'): """ DEPRECATED! open(path, mode='r') -> File object This exists for legacy support and backwards compatibility only. Please use read(). """ return File(self, path, mode) def getDefaultFilePerms(self): return 0666 & (01777 ^ self.umask) def getDefaultDirPerms(self): return 01777 & (01777 ^ self.umask) def create(self, path, overwrite=False, blocksize=None, replication=None, permission=None, data=None): """ create(path, overwrite=False, blocksize=None, replication=None, permission=None) Creates a file with the specified parameters. `permission' should be an octal integer or string. """ path = Hdfs.normpath(path) params = self._getparams() params['op'] = 'CREATE' params['overwrite'] = overwrite and 'true' or 'false' if blocksize is not None: params['blocksize'] = long(blocksize) if replication is not None: params['replication'] = int(replication) if permission is None: permission = self.getDefaultFilePerms() params['permission'] = safe_octal(permission) self._invoke_with_redirect('PUT', path, params, data) def append(self, path, data): """ append(path, data) Append data to a given file. """ path = Hdfs.normpath(path) params = self._getparams() params['op'] = 'APPEND' self._invoke_with_redirect('POST', path, params, data) # e.g. ACLSPEC = user:joe:rwx,user::rw- def modify_acl_entries(self, path, aclspec): path = Hdfs.normpath(path) params = self._getparams() params['op'] = 'MODIFYACLENTRIES' params['aclspec'] = aclspec return self._root.put(path, params) def remove_acl_entries(self, path, aclspec): path = Hdfs.normpath(path) params = self._getparams() params['op'] = 'REMOVEACLENTRIES' params['aclspec'] = aclspec return self._root.put(path, params) def remove_default_acl(self, path): path = Hdfs.normpath(path) params = self._getparams() params['op'] = 'REMOVEDEFAULTACL' return self._root.put(path, params) def remove_acl(self, path): path = Hdfs.normpath(path) params = self._getparams() params['op'] = 'REMOVEACL' return self._root.put(path, params) def set_acl(self, path, aclspec): path = Hdfs.normpath(path) params = self._getparams() params['op'] = 'SETACL' params['aclspec'] = aclspec return self._root.put(path, params) def get_acl_status(self, path): path = Hdfs.normpath(path) params = self._getparams() params['op'] = 'GETACLSTATUS' return self._root.get(path, params) def copyfile(self, src, dst, skip_header=False): sb = self._stats(src) if sb is None: raise IOError(errno.ENOENT, _("Copy src '%s' does not exist") % src) if sb.isDir: raise IOError(errno.INVAL, _("Copy src '%s' is a directory") % src) if self.isdir(dst): raise IOError(errno.INVAL, _("Copy dst '%s' is a directory") % dst) offset = 0 while True: data = self.read(src, offset, UPLOAD_CHUNK_SIZE.get()) if offset == 0: if skip_header: n = data.index('\n') if n > 0: data = data[n + 1:] self.create(dst, overwrite=True, blocksize=sb.blockSize, replication=sb.replication, permission=oct(stat.S_IMODE(sb.mode)), data=data) if offset != 0: self.append(dst, data) cnt = len(data) if cnt < UPLOAD_CHUNK_SIZE.get(): break offset += cnt def copy_remote_dir(self, source, destination, dir_mode=None, owner=None): if owner is None: owner = self.DEFAULT_USER if dir_mode is None: dir_mode = self.getDefaultDirPerms() self.do_as_user(owner, self.mkdir, destination, mode=dir_mode) for stat in self.listdir_stats(source): source_file = stat.path destination_file = posixpath.join(destination, stat.name) if stat.isDir: self.copy_remote_dir(source_file, destination_file, dir_mode, owner) else: self.do_as_user(owner, self.copyfile, source_file, destination_file) self.do_as_superuser(self.chown, destination_file, owner, owner) def copy(self, src, dest, recursive=False, dir_mode=None, owner=None): """ Copy file, or directory, in HDFS to another location in HDFS. ``src`` -- The directory, or file, to copy from. ``dest`` -- the directory, or file, to copy to. If 'dest' is a directory that exists, copy 'src' into dest. If 'dest' is a file that exists and 'src' is a file, overwrite dest. If 'dest' does not exist, create 'src' as 'dest'. ``recursive`` -- Recursively copy contents of 'src' to 'dest'. This is required for directories. ``dir_mode`` and ``owner`` are used to define permissions on the newly copied files and directories. This method will overwrite any pre-existing files that collide with what is being copied. Copying a directory to a file is not allowed. """ if owner is None: owner = self.user # Hue was defauling permissions on copying files to the permissions # of the original file, but was not doing the same for directories # changed below for directories to remain consistent if dir_mode is None: sb = self._stats(src) dir_mode=oct(stat.S_IMODE(sb.mode)) src = self.abspath(src) dest = self.abspath(dest) if not self.exists(src): raise IOError(errno.ENOENT, _("File not found: %s") % src) if self.isdir(src): # 'src' is directory. # Skip if not recursive copy and 'src' is directory. if not recursive: LOG.debug("Skipping contents of %s" % src) return None # If 'dest' is a directory change 'dest' # to include 'src' basename. # create 'dest' if it doesn't already exist. if self.exists(dest): if self.isdir(dest): dest = self.join(dest, self.basename(src)) else: raise IOError(errno.EEXIST, _("Destination file %s exists and is not a directory.") % dest) self.do_as_user(owner, self.mkdir, dest, mode=dir_mode) # Copy files in 'src' directory to 'dest'. self.copy_remote_dir(src, dest, dir_mode, owner) else: # 'src' is a file. # If 'dest' is a directory, then copy 'src' into that directory. # Other wise, copy to 'dest'. if self.exists(dest) and self.isdir(dest): self.copyfile(src, self.join(dest, self.basename(src))) else: self.copyfile(src, dest) @staticmethod def urlsplit(url): return Hdfs.urlsplit(url) def get_hdfs_path(self, path): return posixpath.join(self.fs_defaultfs, path.lstrip('/')) def _invoke_with_redirect(self, method, path, params=None, data=None): """ Issue a request, and expect a redirect, and then submit the data to the redirected location. This is used for create, write, etc. Returns the response from the redirected request. """ next_url = None try: # Do not pass data in the first leg. self._root.invoke(method, path, params) except WebHdfsException, ex: # This is expected. We get a 307 redirect. # The following call may throw. next_url = self._get_redirect_url(ex) if next_url is None: raise WebHdfsException( _("Failed to create '%s'. HDFS did not return a redirect") % path) # Now talk to the real thing. The redirect url already includes the params. client = self._make_client(next_url, self.security_enabled) headers = {'Content-Type': 'application/octet-stream'} return resource.Resource(client).invoke(method, data=data, headers=headers) def _get_redirect_url(self, webhdfs_ex): """Retrieve the redirect url from an exception object""" try: # The actual HttpError (307) is wrapped inside http_error = webhdfs_ex.get_parent_ex() if http_error is None: raise webhdfs_ex if http_error.response.status_code not in (301, 302, 303, 307): LOG.error("Response is not a redirect: %s" % webhdfs_ex) raise webhdfs_ex return http_error.response.headers['location'] except Exception, ex: LOG.error("Failed to read redirect from response: %s (%s)" % (webhdfs_ex, ex)) raise webhdfs_ex def get_delegation_token(self, renewer): """get_delegation_token(user) -> Delegation token""" # Workaround for HDFS-3988 if self._security_enabled: self.get_home_dir() params = self._getparams() params['op'] = 'GETDELEGATIONTOKEN' params['renewer'] = renewer res = self._root.get(params=params) return res['Token']['urlString'] def do_as_user(self, username, fn, *args, **kwargs): prev_user = self.user try: self.setuser(username) return fn(*args, **kwargs) finally: self.setuser(prev_user) def do_as_superuser(self, fn, *args, **kwargs): return self.do_as_user(self.superuser, fn, *args, **kwargs) def do_recursively(self, fn, path, *args, **kwargs): for stat in self.listdir_stats(path): try: if stat.isDir: self.do_recursively(fn, stat.path, *args, **kwargs) fn(stat.path, *args, **kwargs) except Exception: pass class File(object): """ DEPRECATED! Represent an open file on HDFS. This exists to mirror the old thriftfs interface, for backwards compatibility only. """ def __init__(self, fs, path, mode='r'): self._fs = fs self._path = normpath(path) self._pos = 0 self._mode = mode try: self._stat = fs.stats(path) if self._stat.isDir: raise IOError(errno.EISDIR, _("Is a directory: '%s'") % path) except IOError, ex: if ex.errno == errno.ENOENT and 'w' in self._mode: self._fs.create(self._path) self.stat() else: raise ex def seek(self, offset, whence=0): """Set the file pointer to the given spot. @see file.seek""" if whence == SEEK_SET: self._pos = offset elif whence == SEEK_CUR: self._pos += offset elif whence == SEEK_END: self.stat() self._pos = self._fs.stats(self._path).size + offset else: raise IOError(errno.EINVAL, _("Invalid argument to seek for whence")) def stat(self): self._stat = self._fs.stats(self._path) return self._stat def tell(self): return self._pos def read(self, length=DEFAULT_READ_SIZE): data = self._fs.read(self._path, self._pos, length) self._pos += len(data) return data def write(self, data): """Append the data to the end of the file""" self.append(data) def append(self, data): if 'w' not in self._mode: raise IOError(errno.EINVAL, _("File not open for writing")) self._fs.append(self._path, data=data) def flush(self): pass def close(self): pass def safe_octal(octal_value): """ safe_octal(octal_value) -> octal value in string This correctly handles octal values specified as a string or as a numeric. """ try: return oct(octal_value) except TypeError: return str(octal_value) def _get_service_url(hdfs_config): override = hdfs_config.WEBHDFS_URL.get() if override: return override fs_defaultfs = hdfs_config.FS_DEFAULTFS.get() netloc = Hdfs.urlsplit(fs_defaultfs)[1] host = netloc.split(':')[0] port = hadoop.conf.DEFAULT_NN_HTTP_PORT return "http://%s:%s/webhdfs/v1" % (host, port) def test_fs_configuration(fs_config): """ This is a config validation method. Returns a list of [ (config_variable, error_message) ] """ fs = WebHdfs.from_config(fs_config) fs.setuser(fs.superuser) # Access root try: statbuf = fs.stats('/') if statbuf.user != DEFAULT_HDFS_SUPERUSER: return [(fs_config.WEBHDFS_URL, _("Filesystem root '/' should be owned by 'hdfs'"))] except Exception, ex: LOG.info("%s -- Validation error: %s" % (fs, ex)) return [(fs_config.WEBHDFS_URL, _('Failed to access filesystem root'))] # Write a file tmpname = fs.mktemp(prefix='hue_config_validation') try: fs.create(tmpname) except Exception, ex: LOG.info("%s -- Validation error: %s" % (fs, ex)) return [(fs_config.WEBHDFS_URL, _('Failed to create temporary file "%s"') % tmpname)] # Check superuser has super power try: try: fs.chown(tmpname, fs.superuser) except Exception, ex: LOG.info("%s -- Validation error: %s" % (fs, ex)) return [(fs_config.WEBHDFS_URL, 'Failed to chown file. Please make sure that the filesystem root ' 'is owned by the cluster superuser ("hdfs" in most cases).')] finally: try: fs.remove(tmpname) except Exception, ex: LOG.error("Failed to remove '%s': %s" % (tmpname, ex)) return [(fs_config.WEBHDFS_URL, _('Failed to remove temporary file "%s"') % tmpname)] return [ ]
#!/usr/bin/env python # # A library that provides a Python interface to the Telegram Bot API # Copyright (C) 2015-2020 # Leandro Toledo de Souza <devs@python-telegram-bot.org> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser Public License for more details. # # You should have received a copy of the GNU Lesser Public License # along with this program. If not, see [http://www.gnu.org/licenses/]. """This module contains the PicklePersistence class.""" import pickle from collections import defaultdict from copy import deepcopy from typing import Any, DefaultDict, Dict, Optional, Tuple from telegram.ext import BasePersistence from telegram.utils.types import ConversationDict class PicklePersistence(BasePersistence): """Using python's builtin pickle for making you bot persistent. Warning: :class:`PicklePersistence` will try to replace :class:`telegram.Bot` instances by :attr:`REPLACED_BOT` and insert the bot set with :meth:`telegram.ext.BasePersistence.set_bot` upon loading of the data. This is to ensure that changes to the bot apply to the saved objects, too. If you change the bots token, this may lead to e.g. ``Chat not found`` errors. For the limitations on replacing bots see :meth:`telegram.ext.BasePersistence.replace_bot` and :meth:`telegram.ext.BasePersistence.insert_bot`. Attributes: filename (:obj:`str`): The filename for storing the pickle files. When :attr:`single_file` is :obj:`False` this will be used as a prefix. store_user_data (:obj:`bool`): Optional. Whether user_data should be saved by this persistence class. store_chat_data (:obj:`bool`): Optional. Whether user_data should be saved by this persistence class. store_bot_data (:obj:`bool`): Optional. Whether bot_data should be saved by this persistence class. single_file (:obj:`bool`): Optional. When :obj:`False` will store 3 separate files of `filename_user_data`, `filename_chat_data` and `filename_conversations`. Default is :obj:`True`. on_flush (:obj:`bool`, optional): When :obj:`True` will only save to file when :meth:`flush` is called and keep data in memory until that happens. When :obj:`False` will store data on any transaction *and* on call to :meth:`flush`. Default is :obj:`False`. Args: filename (:obj:`str`): The filename for storing the pickle files. When :attr:`single_file` is :obj:`False` this will be used as a prefix. store_user_data (:obj:`bool`, optional): Whether user_data should be saved by this persistence class. Default is :obj:`True`. store_chat_data (:obj:`bool`, optional): Whether user_data should be saved by this persistence class. Default is :obj:`True`. store_bot_data (:obj:`bool`, optional): Whether bot_data should be saved by this persistence class. Default is :obj:`True` . single_file (:obj:`bool`, optional): When :obj:`False` will store 3 separate files of `filename_user_data`, `filename_chat_data` and `filename_conversations`. Default is :obj:`True`. on_flush (:obj:`bool`, optional): When :obj:`True` will only save to file when :meth:`flush` is called and keep data in memory until that happens. When :obj:`False` will store data on any transaction *and* on call to :meth:`flush`. Default is :obj:`False`. """ def __init__( self, filename: str, store_user_data: bool = True, store_chat_data: bool = True, store_bot_data: bool = True, single_file: bool = True, on_flush: bool = False, ): super().__init__( store_user_data=store_user_data, store_chat_data=store_chat_data, store_bot_data=store_bot_data, ) self.filename = filename self.single_file = single_file self.on_flush = on_flush self.user_data: Optional[DefaultDict[int, Dict]] = None self.chat_data: Optional[DefaultDict[int, Dict]] = None self.bot_data: Optional[Dict] = None self.conversations: Optional[Dict[str, Dict[Tuple, Any]]] = None def load_singlefile(self) -> None: try: filename = self.filename with open(self.filename, "rb") as file: data = pickle.load(file) self.user_data = defaultdict(dict, data['user_data']) self.chat_data = defaultdict(dict, data['chat_data']) # For backwards compatibility with files not containing bot data self.bot_data = data.get('bot_data', {}) self.conversations = data['conversations'] except IOError: self.conversations = dict() self.user_data = defaultdict(dict) self.chat_data = defaultdict(dict) self.bot_data = {} except pickle.UnpicklingError as exc: raise TypeError(f"File {filename} does not contain valid pickle data") from exc except Exception as exc: raise TypeError(f"Something went wrong unpickling {filename}") from exc @staticmethod def load_file(filename: str) -> Any: try: with open(filename, "rb") as file: return pickle.load(file) except IOError: return None except pickle.UnpicklingError as exc: raise TypeError(f"File {filename} does not contain valid pickle data") from exc except Exception as exc: raise TypeError(f"Something went wrong unpickling {filename}") from exc def dump_singlefile(self) -> None: with open(self.filename, "wb") as file: data = { 'conversations': self.conversations, 'user_data': self.user_data, 'chat_data': self.chat_data, 'bot_data': self.bot_data, } pickle.dump(data, file) @staticmethod def dump_file(filename: str, data: Any) -> None: with open(filename, "wb") as file: pickle.dump(data, file) def get_user_data(self) -> DefaultDict[int, Dict[Any, Any]]: """Returns the user_data from the pickle file if it exists or an empty :obj:`defaultdict`. Returns: :obj:`defaultdict`: The restored user data. """ if self.user_data: pass elif not self.single_file: filename = f"{self.filename}_user_data" data = self.load_file(filename) if not data: data = defaultdict(dict) else: data = defaultdict(dict, data) self.user_data = data else: self.load_singlefile() return deepcopy(self.user_data) # type: ignore[arg-type] def get_chat_data(self) -> DefaultDict[int, Dict[Any, Any]]: """Returns the chat_data from the pickle file if it exists or an empty :obj:`defaultdict`. Returns: :obj:`defaultdict`: The restored chat data. """ if self.chat_data: pass elif not self.single_file: filename = f"{self.filename}_chat_data" data = self.load_file(filename) if not data: data = defaultdict(dict) else: data = defaultdict(dict, data) self.chat_data = data else: self.load_singlefile() return deepcopy(self.chat_data) # type: ignore[arg-type] def get_bot_data(self) -> Dict[Any, Any]: """Returns the bot_data from the pickle file if it exists or an empty :obj:`dict`. Returns: :obj:`dict`: The restored bot data. """ if self.bot_data: pass elif not self.single_file: filename = f"{self.filename}_bot_data" data = self.load_file(filename) if not data: data = {} self.bot_data = data else: self.load_singlefile() return deepcopy(self.bot_data) # type: ignore[arg-type] def get_conversations(self, name: str) -> ConversationDict: """Returns the conversations from the pickle file if it exsists or an empty dict. Args: name (:obj:`str`): The handlers name. Returns: :obj:`dict`: The restored conversations for the handler. """ if self.conversations: pass elif not self.single_file: filename = f"{self.filename}_conversations" data = self.load_file(filename) if not data: data = {name: {}} self.conversations = data else: self.load_singlefile() return self.conversations.get(name, {}).copy() # type: ignore[union-attr] def update_conversation( self, name: str, key: Tuple[int, ...], new_state: Optional[object] ) -> None: """Will update the conversations for the given handler and depending on :attr:`on_flush` save the pickle file. Args: name (:obj:`str`): The handler's name. key (:obj:`tuple`): The key the state is changed for. new_state (:obj:`tuple` | :obj:`any`): The new state for the given key. """ if not self.conversations: self.conversations = dict() if self.conversations.setdefault(name, {}).get(key) == new_state: return self.conversations[name][key] = new_state if not self.on_flush: if not self.single_file: filename = f"{self.filename}_conversations" self.dump_file(filename, self.conversations) else: self.dump_singlefile() def update_user_data(self, user_id: int, data: Dict) -> None: """Will update the user_data and depending on :attr:`on_flush` save the pickle file. Args: user_id (:obj:`int`): The user the data might have been changed for. data (:obj:`dict`): The :attr:`telegram.ext.dispatcher.user_data` [user_id]. """ if self.user_data is None: self.user_data = defaultdict(dict) if self.user_data.get(user_id) == data: return self.user_data[user_id] = data if not self.on_flush: if not self.single_file: filename = f"{self.filename}_user_data" self.dump_file(filename, self.user_data) else: self.dump_singlefile() def update_chat_data(self, chat_id: int, data: Dict) -> None: """Will update the chat_data and depending on :attr:`on_flush` save the pickle file. Args: chat_id (:obj:`int`): The chat the data might have been changed for. data (:obj:`dict`): The :attr:`telegram.ext.dispatcher.chat_data` [chat_id]. """ if self.chat_data is None: self.chat_data = defaultdict(dict) if self.chat_data.get(chat_id) == data: return self.chat_data[chat_id] = data if not self.on_flush: if not self.single_file: filename = f"{self.filename}_chat_data" self.dump_file(filename, self.chat_data) else: self.dump_singlefile() def update_bot_data(self, data: Dict) -> None: """Will update the bot_data and depending on :attr:`on_flush` save the pickle file. Args: data (:obj:`dict`): The :attr:`telegram.ext.dispatcher.bot_data`. """ if self.bot_data == data: return self.bot_data = data.copy() if not self.on_flush: if not self.single_file: filename = f"{self.filename}_bot_data" self.dump_file(filename, self.bot_data) else: self.dump_singlefile() def flush(self) -> None: """Will save all data in memory to pickle file(s).""" if self.single_file: if self.user_data or self.chat_data or self.bot_data or self.conversations: self.dump_singlefile() else: if self.user_data: self.dump_file(f"{self.filename}_user_data", self.user_data) if self.chat_data: self.dump_file(f"{self.filename}_chat_data", self.chat_data) if self.bot_data: self.dump_file(f"{self.filename}_bot_data", self.bot_data) if self.conversations: self.dump_file(f"{self.filename}_conversations", self.conversations)
from telegram.ext import Updater, CommandHandler, MessageHandler, Filters import logging from lineuzinho import Lineuzinho def main(): logging.getLogger(__name__) logging.basicConfig(format='%(asctime)s [%(levelname)s]: %(message)s', level=logging.INFO) lineuzinho = Lineuzinho() updater = Updater(lineuzinho.API_TOKEN) dp = updater.dispatcher dp.add_handler(CommandHandler("start", lineuzinho.start)) dp.add_handler(CommandHandler("links", lineuzinho.getGeneralRelevantLinks)) dp.add_handler(CommandHandler("repo", lineuzinho.getRepo)) dp.add_handler(CommandHandler("contatinhos", lineuzinho.getContatinhosLink)) dp.add_handler(CommandHandler("feijao", lineuzinho.getBeanFlavor)) dp.add_handler(CommandHandler("docs", lineuzinho.getDocsChannel)) dp.add_handler(CommandHandler("save", lineuzinho.saveMessage)) dp.add_handler(CommandHandler("help", lineuzinho.getHelpText)) dp.add_handler(CommandHandler("pi_rank", lineuzinho.getPiRanking)) dp.add_handler(CommandHandler("pi_index", lineuzinho.publishUserPiRanking)) dp.add_handler(CommandHandler("birthday", lineuzinho.getBirthdaySongAudio)) dp.add_handler(CommandHandler("beni", lineuzinho.getBeniSongAudio)) dp.add_handler(CommandHandler("ain", lineuzinho.getRandomAin)) dp.add_handler(CommandHandler("grupos", lineuzinho.getSubjectsGroupsLinks)) dp.add_handler(CommandHandler("meet", lineuzinho.getSubjectMeetLinks)) dp.add_handler(MessageHandler(Filters.text, lineuzinho.agiotar)) dp.add_handler(MessageHandler(Filters.status_update.new_chat_members, lineuzinho.greet)) updater.start_polling() logging.info("=== Lineuzinho up&running! ===") updater.idle() logging.info("=== Lineuzinho shutting down :( ===") if __name__ == "__main__": main()
# Goal: get ebola/Lassa for Bonnie's plasma samples. # Simple clean and merge import pandas as pd import os os.chdir("/Users/laurahughes/GitHub/cvisb_data/sample-viewer-api/src/static/data/") import helpers df = pd.read_excel("/Users/laurahughes/GitHub/cvisb_data/sample-viewer-api/src/static/data/input_data/sample_rosters/one_offs/CViSB Plasma Samples_Bonnie_2019-06-03.xlsx") df.shape df['privatePatientID'] = df["Sample ID"].apply(helpers.interpretID) # id dictionary ids = pd.read_json("/Users/laurahughes/GitHub/cvisb_data/sample-viewer-api/src/static/data/output_data/patients/patients_2019-06-03_PRIVATE_dict.json") ids.reset_index(inplace=True) ids.head() merged = pd.merge(df, ids, how="left", left_on="privatePatientID", right_on="index", indicator=True) merged._merge.value_counts() merged[merged._merge == "left_only"] merged = merged[['Sample ID', "Date of collection", "Sample type", "cohort", "elisa", "sID", "gID", "patientID"]] merged.to_csv("/Users/laurahughes/GitHub/cvisb_data/sample-viewer-api/src/static/data/input_data/sample_rosters/one_offs/2019-06-03_CViSBplasma_Bonnie.csv", index = False)
#!/usr/bin/env python # # Licensed to the .NET Foundation under one or more agreements. # The .NET Foundation licenses this file to you under the MIT license. # ## # Title :run-pmi-diffs.py # # Notes: # # TODO: Instead of downloading and extracting the dotnet CLI, can we convert # to using init-tools.cmd/sh and the Tools/dotnetcli "last known good" # version? (This maybe should be done for format.py as well.) # # Script to automate running PMI diffs on a pull request # ########################################################################## ########################################################################## import argparse import distutils.dir_util import os import re import shutil import subprocess import urllib import sys import tarfile import zipfile # Version specific imports if sys.version_info.major < 3: import urllib else: import urllib.request sys.path.append(os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))), "scripts")) from coreclr_arguments import * ########################################################################## # Globals ########################################################################## testing = False Coreclr_url = 'https://github.com/dotnet/coreclr.git' Jitutils_url = 'https://github.com/dotnet/jitutils.git' # The Docker file and possibly options should be hoisted out to a text file to be shared between scripts. Docker_name_arm32 = 'mcr.microsoft.com/dotnet-buildtools/prereqs:ubuntu-14.04-cross-e435274-20180426002420' Docker_opts_arm32 = '-e ROOTFS_DIR=/crossrootfs/arm' Docker_name_arm64 = 'mcr.microsoft.com/dotnet-buildtools/prereqs:ubuntu-16.04-cross-arm64-a3ae44b-20180315221921' Docker_opts_arm64 = '-e ROOTFS_DIR=/crossrootfs/arm64' Is_illumos = ('illumos' in subprocess.Popen(["uname", "-o"], stdout=subprocess.PIPE, stderr=subprocess.PIPE).communicate()[0].decode('utf-8')) # This should be factored out of build.sh Unix_name_map = { 'Linux': 'Linux', 'Darwin': 'OSX', 'FreeBSD': 'FreeBSD', 'OpenBSD': 'OpenBSD', 'NetBSD': 'NetBSD', 'SunOS': 'illumos' if Is_illumos else 'Solaris' } Is_windows = (os.name == 'nt') Clr_os = 'windows' if Is_windows else Unix_name_map[os.uname()[0]] ########################################################################## # Delete protocol ########################################################################## def del_rw(action, name, exc): os.chmod(name, 0o651) os.remove(name) ########################################################################## # Argument Parser ########################################################################## description = 'Tool to generate JIT assembly diffs from the CoreCLR repo' parser = argparse.ArgumentParser(description=description) # base_root is normally expected to be None, in which case we'll clone the # coreclr tree and build it. If base_root is passed, we'll use it, and not # clone or build the base. parser.add_argument('-arch', dest='arch', default='x64') parser.add_argument('-ci_arch', dest='ci_arch', default=None) parser.add_argument('-build_type', dest='build_type', default='Checked') parser.add_argument('-base_root', dest='base_root', default=None) parser.add_argument('-diff_root', dest='diff_root', default=None) parser.add_argument('-scratch_root', dest='scratch_root', default=None) parser.add_argument('--skip_baseline_build', dest='skip_baseline_build', action='store_true', default=False) parser.add_argument('--skip_diffs', dest='skip_diffs', action='store_true', default=False) parser.add_argument('-target_branch', dest='target_branch', default='main') parser.add_argument('-commit_hash', dest='commit_hash', default=None) ########################################################################## # Class to change the current directory, and automatically restore the # directory back to what it used to be, on exit. ########################################################################## class ChangeDir: def __init__(self, dir): self.dir = dir self.cwd = None def __enter__(self): self.cwd = os.getcwd() log('[cd] %s' % self.dir) if not testing: os.chdir(self.dir) def __exit__(self, exc_type, exc_val, exc_tb): log('[cd] %s' % self.cwd) if not testing: os.chdir(self.cwd) ########################################################################## # Helper Functions ########################################################################## def validate_args(args): """ Validate all of the arguments parsed. Args: args (argparser.ArgumentParser) : Args parsed by the argument parser. Returns: args (CoreclrArguments) : Args parsed Notes: If the arguments are valid then return them all in a tuple. If not, raise an exception stating x argument is incorrect. """ coreclr_setup_args = CoreclrArguments(args, require_built_test_dir=False, require_built_core_root=True, require_built_product_dir=False) coreclr_setup_args.verify(args, "base_root", lambda directory: os.path.isdir(directory) if directory is not None else True, "Base root is not a valid directory") coreclr_setup_args.verify(args, "diff_root", lambda directory: os.path.isdir(directory) if directory is not None else True, "Diff root is not a valid directory", modify_arg=lambda directory: nth_dirname(os.path.abspath(sys.argv[0]), 3) if directory is None else os.path.abspath(directory)) coreclr_setup_args.verify(args, "scratch_root", lambda unused: True, "Error setting scratch_root", modify_arg=lambda directory: os.path.join(coreclr_setup_args.diff_root, '_', 'pmi') if directory is None else os.path.abspath(directory)) coreclr_setup_args.verify(args, "skip_baseline_build", lambda unused: True, "Error setting baseline build") coreclr_setup_args.verify(args, "skip_diffs", lambda unused: True, "Error setting skip_diffs") coreclr_setup_args.verify(args, "target_branch", lambda unused: True, "Error setting target_branch") coreclr_setup_args.verify(args, "commit_hash", lambda unused: True, "Error setting commit_hash") coreclr_setup_args.verify(args, "ci_arch", lambda ci_arch: ci_arch in coreclr_setup_args.valid_arches + ['x86_arm_altjit', 'x64_arm64_altjit'], "Error setting ci_arch") args = ( coreclr_setup_args.arch, coreclr_setup_args.ci_arch, coreclr_setup_args.build_type, coreclr_setup_args.base_root, coreclr_setup_args.diff_root, coreclr_setup_args.scratch_root, coreclr_setup_args.skip_baseline_build, coreclr_setup_args.skip_diffs, coreclr_setup_args.target_branch, coreclr_setup_args.commit_hash ) log('Configuration:') log(' arch: %s' % coreclr_setup_args.arch) log(' ci_arch: %s' % coreclr_setup_args.ci_arch) log(' build_type: %s' % coreclr_setup_args.build_type) log(' base_root: %s' % coreclr_setup_args.base_root) log(' diff_root: %s' % coreclr_setup_args.diff_root) log(' scratch_root: %s' % coreclr_setup_args.scratch_root) log(' skip_baseline_build: %s' % coreclr_setup_args.skip_baseline_build) log(' skip_diffs: %s' % coreclr_setup_args.skip_diffs) log(' target_branch: %s' % coreclr_setup_args.target_branch) log(' commit_hash: %s' % coreclr_setup_args.commit_hash) return args def nth_dirname(path, n): """ Find the Nth parent directory of the given path Args: path (str): path name containing at least N components n (int): num of basenames to remove Returns: outpath (str): path with the last n components removed Notes: If n is 0, path is returned unmodified """ assert n >= 0 for i in range(0, n): path = os.path.dirname(path) return path def log(message): """ Print logging information Args: message (str): message to be printed """ print('[%s]: %s' % (sys.argv[0], message)) def copy_files(source_dir, target_dir): """ Copy any files in the source_dir to the target_dir. The copy is not recursive. The directories must already exist. Args: source_dir (str): source directory path target_dir (str): target directory path Returns: Nothing """ global testing assert os.path.isdir(source_dir) assert os.path.isdir(target_dir) for source_filename in os.listdir(source_dir): source_pathname = os.path.join(source_dir, source_filename) if os.path.isfile(source_pathname): target_pathname = os.path.join(target_dir, source_filename) log('Copy: %s => %s' % (source_pathname, target_pathname)) if not testing: shutil.copy2(source_pathname, target_pathname) def run_command(command, command_env): """ Run a command (process) in a given environment. stdout/stderr are output piped through. Args: command (array): the command to run, with components of the command as separate elements. command_env (map): environment in which the command should be run Returns: The return code of the command. """ returncode = 0 log('Invoking: %s' % (' '.join(command))) if not testing: proc = subprocess.Popen(command, env=command_env) output,error = proc.communicate() returncode = proc.returncode if returncode != 0: log('Return code = %s' % returncode) return returncode ########################################################################## # Do baseline build: # 1. determine appropriate commit, # 2. clone coreclr, # 3. do build ########################################################################## def baseline_build(): if not testing: if os.path.isdir(baseCoreClrPath): log('Removing existing tree: %s' % baseCoreClrPath) shutil.rmtree(baseCoreClrPath, onerror=del_rw) # Find the baseline commit # Clone at that commit command = 'git clone -b %s --single-branch %s %s' % ( target_branch, Coreclr_url, baseCoreClrPath) log(command) returncode = 0 if testing else os.system(command) if returncode != 0: log('ERROR: git clone failed') return 1 # Change directory to the baseline root with ChangeDir(baseCoreClrPath): # Set up for possible docker usage scriptPath = '.' buildOpts = '' dockerCmd = '' if not Is_windows and (arch == 'arm' or arch == 'arm64'): # Linux arm and arm64 builds are cross-compilation builds using Docker. if arch == 'arm': dockerFile = Docker_name_arm32 dockerOpts = Docker_opts_arm32 else: # arch == 'arm64' dockerFile = Docker_name_arm64 dockerOpts = Docker_opts_arm64 dockerCmd = 'docker run -i --rm -v %s:%s -w %s %s %s ' % (baseCoreClrPath, baseCoreClrPath, baseCoreClrPath, dockerOpts, dockerFile) buildOpts = 'cross' scriptPath = baseCoreClrPath # Build a checked baseline jit if Is_windows: command = 'set __TestIntermediateDir=int&&build.cmd %s checked skiptests skipbuildpackages' % arch else: command = '%s%s/build.sh %s checked skipbuildpackages %s' % (dockerCmd, scriptPath, arch, buildOpts) log(command) returncode = 0 if testing else os.system(command) if returncode != 0: log('ERROR: build failed') return 1 # Build the layout (Core_Root) directory # For Windows, invoke build-test.cmd to restore packages before generating the layout. if Is_windows: command = 'build-test.cmd %s %s skipmanaged skipnative' % (build_type, arch) log(command) returncode = 0 if testing else os.system(command) if returncode != 0: log('ERROR: restoring packages failed') return 1 if Is_windows: command = 'tests\\runtest.cmd %s checked GenerateLayoutOnly' % arch else: command = '%s%s/build-test.sh %s checked generatelayoutonly' % (dockerCmd, scriptPath, arch) log(command) returncode = 0 if testing else os.system(command) if returncode != 0: log('ERROR: generating layout failed') return 1 return 0 ########################################################################## # Do PMI diff run: # 1. download dotnet CLI (needed by jitutils) # 2. clone jitutils repo # 3. build jitutils # 4. run PMI asm generation on baseline and diffs # 5. run jit-analyze to compare baseline and diff ########################################################################## def do_pmi_diffs(): global baseCoreClrPath # Setup scratch directories. Names are short to avoid path length problems on Windows. dotnetcliPath = os.path.abspath(os.path.join(scratch_root, 'cli')) jitutilsPath = os.path.abspath(os.path.join(scratch_root, 'jitutils')) asmRootPath = os.path.abspath(os.path.join(scratch_root, 'asm')) dotnet_tool = 'dotnet.exe' if Is_windows else 'dotnet' # Make sure the temporary directories do not exist. If they do already, delete them. if not testing: # If we can't delete the dotnet tree, it might be because a previous run failed or was # cancelled, and the build servers are still running. Try to stop it if that happens. if os.path.isdir(dotnetcliPath): try: log('Removing existing tree: %s' % dotnetcliPath) shutil.rmtree(dotnetcliPath, onerror=del_rw) except OSError: if os.path.isfile(os.path.join(dotnetcliPath, dotnet_tool)): log('Failed to remove existing tree; trying to shutdown the dotnet build servers before trying again.') # Looks like the dotnet too is still there; try to run it to shut down the build servers. temp_env = my_env temp_env["PATH"] = dotnetcliPath + os.pathsep + my_env["PATH"] log('Shutting down build servers') command = ["dotnet", "build-server", "shutdown"] returncode = run_command(command, temp_env) # Try again log('Trying again to remove existing tree: %s' % dotnetcliPath) shutil.rmtree(dotnetcliPath, onerror=del_rw) else: log('Failed to remove existing tree') return 1 if os.path.isdir(jitutilsPath): log('Removing existing tree: %s' % jitutilsPath) shutil.rmtree(jitutilsPath, onerror=del_rw) if os.path.isdir(asmRootPath): log('Removing existing tree: %s' % asmRootPath) shutil.rmtree(asmRootPath, onerror=del_rw) try: os.makedirs(dotnetcliPath) os.makedirs(jitutilsPath) os.makedirs(asmRootPath) except OSError: if not os.path.isdir(dotnetcliPath): log('ERROR: cannot create CLI install directory %s' % dotnetcliPath) return 1 if not os.path.isdir(jitutilsPath): log('ERROR: cannot create jitutils install directory %s' % jitutilsPath) return 1 if not os.path.isdir(asmRootPath): log('ERROR: cannot create asm directory %s' % asmRootPath) return 1 log('dotnet CLI install directory: %s' % dotnetcliPath) log('jitutils install directory: %s' % jitutilsPath) log('asm directory: %s' % asmRootPath) # Download .NET CLI log('Downloading .NET CLI') dotnetcliUrl = "" dotnetcliFilename = "" if Clr_os == 'Linux' and arch == 'x64': dotnetcliUrl = "https://dotnetcli.azureedge.net/dotnet/Sdk/2.1.402/dotnet-sdk-2.1.402-linux-x64.tar.gz" elif Clr_os == 'Linux' and arch == 'arm': dotnetcliUrl = "https://dotnetcli.blob.core.windows.net/dotnet/Sdk/release/2.1.4xx/dotnet-sdk-latest-linux-arm.tar.gz" elif Clr_os == 'Linux' and arch == 'arm64': # Use the latest (3.0) dotnet SDK. Earlier versions don't work. dotnetcliUrl = "https://dotnetcli.blob.core.windows.net/dotnet/Sdk/master/dotnet-sdk-latest-linux-arm64.tar.gz" elif Clr_os == 'OSX': dotnetcliUrl = "https://dotnetcli.azureedge.net/dotnet/Sdk/2.1.402/dotnet-sdk-2.1.402-osx-x64.tar.gz" elif Clr_os == 'windows': dotnetcliUrl = "https://dotnetcli.azureedge.net/dotnet/Sdk/2.1.402/dotnet-sdk-2.1.402-win-x64.zip" else: log('ERROR: unknown or unsupported OS (%s) architecture (%s) combination' % (Clr_os, arch)) return 1 if Is_windows: dotnetcliFilename = os.path.join(dotnetcliPath, 'dotnetcli-jitutils.zip') else: dotnetcliFilename = os.path.join(dotnetcliPath, 'dotnetcli-jitutils.tar.gz') log('Downloading: %s => %s' % (dotnetcliUrl, dotnetcliFilename)) if not testing: urlretrieve = urllib.urlretrieve if sys.version_info.major < 3 else urllib.request.urlretrieve urlretrieve(dotnetcliUrl, dotnetcliFilename) if not os.path.isfile(dotnetcliFilename): log('ERROR: Did not download .NET CLI') return 1 # Install .NET CLI log('Unpacking .NET CLI') if not testing: if Is_windows: with zipfile.ZipFile(dotnetcliFilename, "r") as z: z.extractall(dotnetcliPath) else: tar = tarfile.open(dotnetcliFilename) tar.extractall(dotnetcliPath) tar.close() if not os.path.isfile(os.path.join(dotnetcliPath, dotnet_tool)): log('ERROR: did not extract .NET CLI from download') return 1 # Add dotnet CLI to PATH we'll use to spawn processes. log('Add %s to my PATH' % dotnetcliPath) my_env["PATH"] = dotnetcliPath + os.pathsep + my_env["PATH"] # To aid diagnosing problems, do "dotnet --info" to output to any capturing logfile. command = ["dotnet", "--info"] returncode = run_command(command, my_env) # Clone jitutils command = 'git clone -b main --single-branch %s %s' % (Jitutils_url, jitutilsPath) log(command) returncode = 0 if testing else os.system(command) if returncode != 0: log('ERROR: cannot clone jitutils'); return 1 # We're going to start running dotnet CLI commands. Unfortunately, once you've done that, # the dotnet CLI sticks around with a set of build server processes running. Put all this # in a try/finally, and stop the build servers under any circumstance. try: # # Build jitutils, including "dotnet restore" # # Change directory to the jitutils root with ChangeDir(jitutilsPath): # Do "dotnet restore" command = ["dotnet", "restore"] returncode = run_command(command, my_env) # Do build command = ['build.cmd', '-p'] if Is_windows else ['bash', './build.sh', '-p'] returncode = run_command(command, my_env) if returncode != 0: log('ERROR: jitutils build failed') return 1 jitutilsBin = os.path.join(jitutilsPath, "bin") if not testing and not os.path.isdir(jitutilsBin): log("ERROR: jitutils not correctly built") return 1 jitDiffPath = os.path.join(jitutilsBin, "jit-diff.dll") if not testing and not os.path.isfile(jitDiffPath): log("ERROR: jit-diff.dll not built") return 1 jitAnalyzePath = os.path.join(jitutilsBin, "jit-analyze.dll") if not testing and not os.path.isfile(jitAnalyzePath): log("ERROR: jit-analyze.dll not built") return 1 # Add jitutils bin to path for spawned processes log('Add %s to my PATH' % jitutilsBin) my_env["PATH"] = jitutilsBin + os.pathsep + my_env["PATH"] # # Run PMI asm diffs # # We want this script as a whole to return 0 if it succeeds (even if there are diffs) and only # return non-zero if there are any fatal errors. # # TO DO: figure out how to differentiate fatal errors and a return code indicating there are diffs, # and have the invoking netci.groovy code act differently for each case. # Generate the diffs # # Invoke command like: # dotnet c:\gh\jitutils\artifacts\jit-diff.dll diff --pmi --base --base_root f:\gh\coreclr12 --diff --diff_root f:\gh\coreclr10 --arch x64 --build Checked --tag 1 --noanalyze --output f:\output --corelib # # We pass --noanalyze and call jit-analyze manually. This isn't really necessary, but it does give us better output # due to https://github.com/dotnet/jitutils/issues/175. altjit_args = [] if ci_arch is not None and (ci_arch == 'x86_arm_altjit' or ci_arch == 'x64_arm64_altjit'): altjit_args = ["--altjit", "protononjit.dll"] # Over which set of assemblies should we generate asm? # TODO: parameterize this asm_source_args = ["--frameworks", "--benchmarks"] command = ["dotnet", jitDiffPath, "diff", "--pmi", "--base", "--base_root", baseCoreClrPath, "--diff", "--diff_root", diff_root, "--arch", arch, "--build", build_type, "--tag", "1", "--noanalyze", "--output", asmRootPath] + asm_source_args + altjit_args returncode = run_command(command, my_env) # We ignore the return code: it is non-zero if there are any diffs. If there are fatal errors here, we will miss them. # Question: does jit-diff distinguish between non-zero fatal error code and the existence of diffs? # Did we get any diffs? baseOutputDir = os.path.join(asmRootPath, "1", "base") if not testing and not os.path.isdir(baseOutputDir): log("ERROR: base asm not generated") return 1 diffOutputDir = os.path.join(asmRootPath, "1", "diff") if not testing and not os.path.isdir(diffOutputDir): log("ERROR: diff asm not generated") return 1 # Do the jit-analyze comparison: # dotnet c:\gh\jitutils\artifacts\jit-analyze.dll --base f:\output\diffs\1\base --recursive --diff f:\output\diffs\1\diff command = ["dotnet", jitAnalyzePath, "--recursive", "--base", baseOutputDir, "--diff", diffOutputDir] returncode = run_command(command, my_env) if returncode != 0: # This is not a fatal error. log('Compare: %s %s' % (baseOutputDir, diffOutputDir)) finally: # Shutdown the dotnet build servers before cleaning things up # TODO: make this shutdown happen anytime after we've run any 'dotnet' commands. I.e., try/finally style. log('Shutting down build servers') command = ["dotnet", "build-server", "shutdown"] returncode = run_command(command, my_env) return 0 ########################################################################## # Main ########################################################################## def main(args): global arch, ci_arch, build_type, base_root, diff_root, scratch_root, skip_baseline_build, skip_diffs, target_branch, commit_hash global my_env global base_layout_root global diff_layout_root global baseCoreClrPath global testing arch, ci_arch, build_type, base_root, diff_root, scratch_root, skip_baseline_build, skip_diffs, target_branch, commit_hash = validate_args(args) my_env = os.environ if not testing and not os.path.isdir(diff_root): log('ERROR: root directory for coreclr diff tree not found: %s' % diff_root) return 1 # Check the diff layout directory before going too far. diff_layout_root = os.path.join(diff_root, 'bin', 'tests', '%s.%s.%s' % (Clr_os, arch, build_type), 'Tests', 'Core_Root') if not testing and not os.path.isdir(diff_layout_root): log('ERROR: diff test overlay not found or is not a directory: %s' % diff_layout_root) return 1 # Create the scratch root directory if not testing: try: os.makedirs(scratch_root) except OSError: if not os.path.isdir(scratch_root): log('ERROR: cannot create scratch directory %s' % scratch_root) return 1 # Set up baseline root directory. If one is passed to us, we use it. Otherwise, we create # a temporary directory. if base_root is None: # Setup scratch directories. Names are short to avoid path length problems on Windows. # No need to create this directory now, as the "git clone" will do it later. baseCoreClrPath = os.path.abspath(os.path.join(scratch_root, 'base')) else: baseCoreClrPath = os.path.abspath(base_root) if not testing and not os.path.isdir(baseCoreClrPath): log('ERROR: base root directory not found or is not a directory: %s' % baseCoreClrPath) return 1 # Do the baseline build, if needed if not skip_baseline_build and base_root is None: returncode = baseline_build() if returncode != 0: return 1 # Check that the baseline root directory was created. base_layout_root = os.path.join(baseCoreClrPath, 'bin', 'tests', '%s.%s.%s' % (Clr_os, arch, build_type), 'Tests', 'Core_Root') if not testing and not os.path.isdir(base_layout_root): log('ERROR: baseline test overlay not found or is not a directory: %s' % base_layout_root) return 1 # Do the diff run, if needed if not skip_diffs: returncode = do_pmi_diffs() if returncode != 0: return 1 return 0 ########################################################################## # setup for Main ########################################################################## if __name__ == '__main__': Args = parser.parse_args(sys.argv[1:]) return_code = main(Args) log('Exit code: %s' % return_code) sys.exit(return_code)
# coding: utf-8 import pprint import re import six from huaweicloudsdkcore.sdk_response import SdkResponse class ListApisBindedToRequestThrottlingPolicyV2Response(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'total': 'int', 'size': 'int', 'apis': 'list[ThrottleBindingApiResp]' } attribute_map = { 'total': 'total', 'size': 'size', 'apis': 'apis' } def __init__(self, total=None, size=None, apis=None): """ListApisBindedToRequestThrottlingPolicyV2Response - a model defined in huaweicloud sdk""" super().__init__() self._total = None self._size = None self._apis = None self.discriminator = None if total is not None: self.total = total if size is not None: self.size = size if apis is not None: self.apis = apis @property def total(self): """Gets the total of this ListApisBindedToRequestThrottlingPolicyV2Response. 满足条件的API总数 :return: The total of this ListApisBindedToRequestThrottlingPolicyV2Response. :rtype: int """ return self._total @total.setter def total(self, total): """Sets the total of this ListApisBindedToRequestThrottlingPolicyV2Response. 满足条件的API总数 :param total: The total of this ListApisBindedToRequestThrottlingPolicyV2Response. :type: int """ self._total = total @property def size(self): """Gets the size of this ListApisBindedToRequestThrottlingPolicyV2Response. 本次返回的API列表长度 :return: The size of this ListApisBindedToRequestThrottlingPolicyV2Response. :rtype: int """ return self._size @size.setter def size(self, size): """Sets the size of this ListApisBindedToRequestThrottlingPolicyV2Response. 本次返回的API列表长度 :param size: The size of this ListApisBindedToRequestThrottlingPolicyV2Response. :type: int """ self._size = size @property def apis(self): """Gets the apis of this ListApisBindedToRequestThrottlingPolicyV2Response. 本次查询返回的API列表 :return: The apis of this ListApisBindedToRequestThrottlingPolicyV2Response. :rtype: list[ThrottleBindingApiResp] """ return self._apis @apis.setter def apis(self, apis): """Sets the apis of this ListApisBindedToRequestThrottlingPolicyV2Response. 本次查询返回的API列表 :param apis: The apis of this ListApisBindedToRequestThrottlingPolicyV2Response. :type: list[ThrottleBindingApiResp] """ self._apis = apis def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ListApisBindedToRequestThrottlingPolicyV2Response): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .base_weapon import Weapon from ... import dice as D, material as M class BaseClub(Weapon): pass class Club(BaseClub): def __init__(self): super().__init__('club', weight=30, damage=D.Dice.from_str('d3'), material=M.Wood, hit=0) class Aklys(BaseClub): def __init__(self): super().__init__('aklys', weight=15, damage=D.Dice.from_str('d3'), material=M.Iron, hit=0)
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 6 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class AuditProgressProgress(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'protocol_audit_cee_time': 'int', 'protocol_audit_log_time': 'int', 'protocol_audit_syslog_time': 'int' } attribute_map = { 'protocol_audit_cee_time': 'protocol_audit_cee_time', 'protocol_audit_log_time': 'protocol_audit_log_time', 'protocol_audit_syslog_time': 'protocol_audit_syslog_time' } def __init__(self, protocol_audit_cee_time=None, protocol_audit_log_time=None, protocol_audit_syslog_time=None): # noqa: E501 """AuditProgressProgress - a model defined in Swagger""" # noqa: E501 self._protocol_audit_cee_time = None self._protocol_audit_log_time = None self._protocol_audit_syslog_time = None self.discriminator = None if protocol_audit_cee_time is not None: self.protocol_audit_cee_time = protocol_audit_cee_time if protocol_audit_log_time is not None: self.protocol_audit_log_time = protocol_audit_log_time if protocol_audit_syslog_time is not None: self.protocol_audit_syslog_time = protocol_audit_syslog_time @property def protocol_audit_cee_time(self): """Gets the protocol_audit_cee_time of this AuditProgressProgress. # noqa: E501 Specifies the last protocol audit event time consumed by the CEE forwarder. # noqa: E501 :return: The protocol_audit_cee_time of this AuditProgressProgress. # noqa: E501 :rtype: int """ return self._protocol_audit_cee_time @protocol_audit_cee_time.setter def protocol_audit_cee_time(self, protocol_audit_cee_time): """Sets the protocol_audit_cee_time of this AuditProgressProgress. Specifies the last protocol audit event time consumed by the CEE forwarder. # noqa: E501 :param protocol_audit_cee_time: The protocol_audit_cee_time of this AuditProgressProgress. # noqa: E501 :type: int """ if protocol_audit_cee_time is not None and protocol_audit_cee_time > 4294967295: # noqa: E501 raise ValueError("Invalid value for `protocol_audit_cee_time`, must be a value less than or equal to `4294967295`") # noqa: E501 if protocol_audit_cee_time is not None and protocol_audit_cee_time < 0: # noqa: E501 raise ValueError("Invalid value for `protocol_audit_cee_time`, must be a value greater than or equal to `0`") # noqa: E501 self._protocol_audit_cee_time = protocol_audit_cee_time @property def protocol_audit_log_time(self): """Gets the protocol_audit_log_time of this AuditProgressProgress. # noqa: E501 Specifies the last logged audit protocol event time. # noqa: E501 :return: The protocol_audit_log_time of this AuditProgressProgress. # noqa: E501 :rtype: int """ return self._protocol_audit_log_time @protocol_audit_log_time.setter def protocol_audit_log_time(self, protocol_audit_log_time): """Sets the protocol_audit_log_time of this AuditProgressProgress. Specifies the last logged audit protocol event time. # noqa: E501 :param protocol_audit_log_time: The protocol_audit_log_time of this AuditProgressProgress. # noqa: E501 :type: int """ if protocol_audit_log_time is not None and protocol_audit_log_time > 4294967295: # noqa: E501 raise ValueError("Invalid value for `protocol_audit_log_time`, must be a value less than or equal to `4294967295`") # noqa: E501 if protocol_audit_log_time is not None and protocol_audit_log_time < 0: # noqa: E501 raise ValueError("Invalid value for `protocol_audit_log_time`, must be a value greater than or equal to `0`") # noqa: E501 self._protocol_audit_log_time = protocol_audit_log_time @property def protocol_audit_syslog_time(self): """Gets the protocol_audit_syslog_time of this AuditProgressProgress. # noqa: E501 Specifies the last protocol audit event time consumed by the Syslog forwarder. # noqa: E501 :return: The protocol_audit_syslog_time of this AuditProgressProgress. # noqa: E501 :rtype: int """ return self._protocol_audit_syslog_time @protocol_audit_syslog_time.setter def protocol_audit_syslog_time(self, protocol_audit_syslog_time): """Sets the protocol_audit_syslog_time of this AuditProgressProgress. Specifies the last protocol audit event time consumed by the Syslog forwarder. # noqa: E501 :param protocol_audit_syslog_time: The protocol_audit_syslog_time of this AuditProgressProgress. # noqa: E501 :type: int """ if protocol_audit_syslog_time is not None and protocol_audit_syslog_time > 4294967295: # noqa: E501 raise ValueError("Invalid value for `protocol_audit_syslog_time`, must be a value less than or equal to `4294967295`") # noqa: E501 if protocol_audit_syslog_time is not None and protocol_audit_syslog_time < 0: # noqa: E501 raise ValueError("Invalid value for `protocol_audit_syslog_time`, must be a value greater than or equal to `0`") # noqa: E501 self._protocol_audit_syslog_time = protocol_audit_syslog_time def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, AuditProgressProgress): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
""" LoRaWAN Specification v1.0.2 Test Case Group: Functionality Test Name: FUN_02 """ ################################################################################# # MIT License # # Copyright (c) 2018, Pablo D. Modernell, Universitat Oberta de Catalunya (UOC), # Universidad de la Republica Oriental del Uruguay (UdelaR). # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. ################################################################################# import lorawan.lorawan_conformance.lorawan_steps as lorawan_steps import conformance_testing.test_step_sequence import conformance_testing.test_errors as test_errors class ActokToPingDelay(lorawan_steps.ActokToPing): """ Checks the tolerance to delays in timing from the specified start of the reception windows. Expected reception: Activation Ok. Sends after check: Ping message with an extra delay. """ def __init__(self, ctx_test_manager, step_name, delay, next_step, default_rx1_window=True): """ :param ctx_test_manager: Test Manager of the Test Case. :param step_name: string representation of the step name. :param delay: extra delay in microseconds (positive or negative). :param next_step: next step of the test. :param default_rx1_window: flag to indicate if the default behaviour should be sending downlink in RX1 (or RX2). """ super().__init__(ctx_test_manager=ctx_test_manager, step_name=step_name, default_rx1_window=default_rx1_window, next_step=next_step) self.delay = delay def step_handler(self, ch, method, properties, body): self.ctx_test_manager.device_under_test.loramac_params.rx1_delay += self.delay try: super().step_handler(ch, method, properties, body) except test_errors.TestingToolError as tt_e: raise tt_e finally: self.ctx_test_manager.device_under_test.loramac_params.rx1_delay -= self.delay class TestAppManager(conformance_testing.test_step_sequence.TestManager): """ The TestAppManager (Test Application Manager) is a TestManager defined in each test, it specifies the different steps that the test performs. LoRaWAN Test FUN 02: Test the node's tolerance to timing errors in the download reception windows. PRECONDITION: DUT (Device Under Test) is already in TEST MODE. """ def __init__(self, test_session_coordinator): super().__init__(test_name=__name__.split(".")[-1], ctx_test_session_coordinator=test_session_coordinator) # ----------------------------------------------------------------------------------------- self.s8_check_pong = lorawan_steps.PongFinalStep(ctx_test_manager=self, step_name="S8WaitPong", next_step=None) self.add_step_description(step_name="Step 8: 8WaitPong", description=( "Checks the reception of the PONG message.\n" "- Reception from DUT: PONG message.\n" "- TAS sends: None.\n")) # ----------------------------------------------------------------------------------------- self.s7_actok_to_ping_m20rx2 = ActokToPingDelay(ctx_test_manager=self, step_name="S7ActokToPingDelayMinus20", delay=-20, next_step=self.s8_check_pong, default_rx1_window=False) self.add_step_description( step_name="Step 7: S7ActokToPingDelayMinus20", description=( "Waits and Activation Ok message with the current downlink counter of " "the session and after it's received a PING PONG exchange will be initiated, " "using RX2 with a timing error of -20 micro seconds.\n" "- Reception from DUT: TAOK message with the downlink counter.\n" "- TAS sends: PING message with a -20 micro seconds delay in RX2.\n")) # ----------------------------------------------------------------------------------------- self.s6_check_pong = lorawan_steps.ProcessPong(ctx_test_manager=self, step_name="S6WaitPong", next_step=self.s7_actok_to_ping_m20rx2) self.add_step_description(step_name="Step 6: 6WaitPong", description=( "Checks the reception of the PONG message.\n" "- Reception from DUT: PONG message.\n" "- TAS sends: None.\n")) # ----------------------------------------------------------------------------------------- self.s5_actok_to_ping_m20rx1 = ActokToPingDelay(ctx_test_manager=self, step_name="S5ActokToPingDelay", delay=-20, next_step=self.s6_check_pong, default_rx1_window=True) self.add_step_description( step_name="Step 5: S5ActokToPingDelayMinus20", description=( "Waits and Activation Ok message with the current downlink counter of " "the session and after it's received a PING PONG exchange will be initiated, " "using RX1 with a timing error of -20 micro seconds.\n" "- Reception from DUT: TAOK message with the downlink counter.\n" "- TAS sends: PING message with a -20 micro seconds delay in RX1.\n")) # ----------------------------------------------------------------------------------------- self.s4_check_pong = lorawan_steps.ProcessPong(ctx_test_manager=self, step_name="S4WaitPong", next_step=self.s5_actok_to_ping_m20rx1) self.add_step_description(step_name="Step 4: S4WaitPong", description=( "Checks the reception of the PONG message.\n" "- Reception from DUT: PONG message.\n" "- TAS sends: None.\n")) # ----------------------------------------------------------------------------------------- self.s3_actok_to_ping_20rx2 = ActokToPingDelay(ctx_test_manager=self, step_name="S3ActokToPingDelayPlus20", delay=20, next_step=self.s4_check_pong, default_rx1_window=False) self.add_step_description( step_name="Step 2: S3ActokToPingDelayPlus20", description=( "Waits and Activation Ok message with the current downlink counter of " "the session and after it's received a PING PONG exchange will be initiated, " "using RX2 with a timing error of +20 micro seconds.\n" "- Reception from DUT: TAOK message with the downlink counter.\n" "- TAS sends: PING message with a +20 micro seconds delay in RX2.\n")) # ----------------------------------------------------------------------------------------- self.s2_check_pong = lorawan_steps.ProcessPong(ctx_test_manager=self, step_name="S2WaitPong", next_step=self.s3_actok_to_ping_20rx2) self.add_step_description(step_name="Step 2: S2WaitPong", description=( "Checks the reception of the PONG message.\n" "- Reception from DUT: PONG message.\n" "- TAS sends: None.\n")) # ----------------------------------------------------------------------------------------- self.s1_actok_to_ping_20rx1 = ActokToPingDelay(ctx_test_manager=self, step_name="S1ActokToPingDelayPlus20", delay=20, next_step=self.s2_check_pong, default_rx1_window=True) self.add_step_description( step_name="Step 1: S1ActokToPingDelayPlus20", description=( "Waits and Activation Ok message with the current downlink counter of " "the session and after it's received a PING PONG exchange will be " "initiated, using RX1 with a timing error of +20 micro seconds.\n" "- Reception from DUT: TAOK message with the downlink counter.\n" "- TAS sends: PING message with a +20 micro seconds delay in RX1.\n")) # ----------------------------------------------------------------------------------------- # Set Initial Step self.current_step = self.s1_actok_to_ping_20rx1 self.add_step_description( step_name="Test ID: TD_LoRaWAN_FUN_02", description=( "Objective: Test the node's tolerance to timing errors in the download " "reception windows. Verifies that downlink messages with +/- 20us in RX1 " "and RX2 are correctly received.\n" "References: LoRaWAN Specification v1.0.2.\n" "Pre-test conditions: The DUT is in Test Mode and supports " "Over The Air Activation (OTAA).\n"))
#!/usr/bin/env python """settings.py Udacity conference server-side Python App Engine app user settings $Id$ created/forked from conference.py by wesc on 2014 may 24 """ # Replace the following lines with client IDs obtained from the APIs # Console or Cloud Console. WEB_CLIENT_ID = '1006324622497-9qlhtun5go635oe57l2vevfrq3f16u57.apps.googleusercontent.com'
""" Another Main module. """ if __name__ == "__main__": import stuntcat.cli cli = stuntcat.cli.Cli() cli.cli_main()
import os, shutil, subprocess import ase.build import pypospack.io.vasp as vasp import pypospack.crystal as crystal import pypospack.io.slurm as slurm class VaspCalculateBulkProperties(object): def __init__(self,sim_dir,obj_structure): self.sim_dir = sim_dir self.sim_task_list = ['min0','conv_encut','conv_kpoints','minf','elas'] self.dir_dict = {} for task in self.sim_task_list: self.dir_dict[task] = os.path.join(self.sim_dir,task) # define the tasks self.sim_task_class_name = {} self.sim_task_class_name['min0'] = ['pypospack.task.vasp','VaspMinimizeStructure'] self.sim_task_class_name['conv_encut'] = ['pypospack.task.vasp','VaspConvergeEncut'] self.sim_task_class_name['conv_kpoints'] = ['pypospack.task.vasp','VaspConvergeKponts'] self.sim_task_class_name['minf'] = ['pypospack.task.vasp','VaspMinimizeStructure'] self.sim_task_class_name['elas'] = ['pypospack.task.vasp', 'VaspCalculateElastic'] # define dependency self.sim_task_dependency = {} self.sim_task_dependency['min' self.min_0_dir = os.path.join(self.sim_dir,'min_0') self.conv_encut_dir = os.path.join(self.sim_dir,'conv_encut') self.conv_kpoints_dir = os.path.join(self.sim_dir,'conv_kpoints') self.min_f_dir = os.path.join(self.sim_dir,'min_0') self.elas_dir = os.path.join(self.sim_dir,'elas') def run(self): self.sims = {} if os.path.exists(self.sim_dir): for task in self.sim_task_list: self.sim_task[task] = getattrself.sim_task_class_name else: os.mkdir(self.sim_dir) self.sims['min_0'] = VaspMinimizeStructure(\ sim_dir = self.min_0_dir, obj_structure = obj_structure) if self.sims['min_0'].is_job_completed: pass else: pass self.sims['conv_encut'] = VaspConvergeEncut() self.sims['conv_kpoints'] = VaspMinimizeStructure() is_encut_complete = self.sims['conv_encut'].is_job_complete is_kpoints_complete = self.sim['conv_kpoints'].is_job_complete if is_encut_complete and is_kpoints_complete: self.sims['min_f'] = VaspMinimizeStructure(\ sim_dir = self.min_f_dir, obj_structure = obj_structure) VaspConvergeKpoints() VaspMinimizeStructure() VaspCalculateElastic() class VaspMinimizeStructure(object): def __init__(self,sim_dir,obj_structure, xc = 'GGA'): assert isinstance(obj_structure,pypospack.crystal.SimulationCell) self.xc = xc self.sim_dir = sim_dir self.is_job_submitted = False self.is_job_completed = False if os.path.exists(self.sim_dir): self.is_job_submitted = os.path.exists(self.sim_dir,'job.submitted') self.is_job_completed = os.path.exists(self.sim_dir,'job.completed') if self.is_job_completed: self.postprocesses() else: os.mkdir(self.sim_dir) self.create_simulation() self.submit_job() def create_simulation(self): # initialize input files self.vs = vasp.VaspSimulation() self.vs.poscar = vasp.Poscar(obj_structure) self.vs.incar = vasp.Incar() self.vs.potcar = vasp.Potcar() self.vs.kpoints = vasp.Kpoints() self.vs.xc = self.xc self.vs.simulation_directory = self.sim_dir self.vs.symbols = self.vs.poscar.symbols # configure potcar file self.vs.potcar.symbols = self.vs.symbols self.vs.potcar.xc = self.vs.xc fn_potcar = os.path.join(self.vs.simulation_directory,'POTCAR') self.vs.potcar.write(fn_potcar) self.vs.potcar.read(fn_potcar) self.vs.encut = max(self.vs.potcar.encut_max) self.vs.natoms = self.vs.poscar.n_atoms # configure incar file magmom_0 = 1.0 self.vs.incar.ismear = 1 self.vs.incar.sigma = 0.20 self.vs.incar.ispin = 2 self.vs.incar.magmom = "{}*{}".format(self.vs.natoms,magmom_0) self.vs.incar.ibrion = 2 self.vs.incar.isif = 3 self.vs.incar.potim = 0.5 self.vs.incar.ediffg = -0.001 self.vs.poscar.write(os.path.join(\ self.vs.simulation_directory,"POSCAR")) self.vs.incar.write(os.path.join(\ self.vs.simulation_directory,"INCAR")) self.vs.kpoints.write(os.path.join(\ self.vs.simulation_directory,"KPOINTS")) def submit_job(self): pass def postprocess(self): pass class VaspConvergeEncut(object): pass class VaspConvergeKpoints(object): pass class VaspMinimizeStructure(object): pass class VaspCalculateElastic(object): pass def calculate_bulk_properties(sim_dir): os.mkdir(sim_dir) if __name__ == '__main__': structures = {} structures['Ni_fcc_cubic'] = {'symbols':['Ni'], 'sg':'fcc', 'a0':3.508, 'shape':'cubic'} structures['Ni_bcc_cubic'] = {'symbols':['Ni'], 'sg':'bcc', 'a0':3.508, 'shape':'cubic'} structures['Ni_hcp_cubic'] = {'symbols':['Ni'], 'sg':'hcp', 'a0':3.508, 'shape':'cubic'} structures['Ni_dia_cubic'] = {'symbols':['Ni'], 'sg':'diamond', 'a0':3.508, 'shape':'cubic'} structures['Ni_sc_cubic'] = {'symbols':['Ni'], 'sg':'sc', 'a0':3.508, 'shape':'cubic'} root_dir = os.getcwd() for k,v in structures.items(): sim_dir = os.path.join(root_dir,k) # add in aliases for space groups here if v['sg'] in ['dia']: v['sg'] = 'diamond' if v['sg'] in ['fcc','bcc','diamond','sc','hcp']: if isinstance(v['symbols'],list): if len(v['symbols']) == 1: v['symbols'] = v['symbols'][0] else: raise KeyError('cannot have more than one symbol in {}'.format(sg)) else: raise KeyError('sg is an unsupported space group, passed in {}'.format(sg)) obj_poscar = None if v['shape'] == 'cubic': obj_poscar = vasp.Poscar(\ ase.build.bulk(\ v['symbols'], v['sg'], a=v['a0'], cubic=True)) elif v['shape'] == 'ortho': obj_poscar= vasp.Poscar(\ ase.build.bulk(\ v['symbols'], v['sg'], a=v['a0'], ortho=True)) elif v['shape'] == 'prim': obj_poscar = vasp.Poscar(\ ase.build.bulk(\ v['symbols']. v['sg'], a0=v['a0'])) else: raise KeyError('sg is an unsupported space group, pass in {}'.format(sg)) VaspCalculateBulkProperties(sim_dir,obj_poscar)
import electric_car my_tesla = electric_car.ElectricCar('tesla', 'roadster', 2016) print(my_tesla.get_descriptive_name())
# -*- coding: utf-8 -*- """ Created on Thu Aug 23 22:07:01 2018 @author: yoelr """ from ._tank import MixTank from ._hx import HXutility class EnzymeTreatment(MixTank): """Create an EnzymeTreatment unit that is cost as a MixTank with a heat exchanger.""" _N_outs = 1 #: Residence time (hr) _tau = 1 def __init__(self, ID='', ins=None, outs=(), *, T): super().__init__(ID, ins, outs) self.T = T #: Operating temperature self._heat_exchanger = he = HXutility(None, None, T=T) self._heat_utilities = he._heat_utilities he._ins = self._ins he._outs = self._outs def _run(self): feed = self.ins[0] out = self.outs[0] out._mol[:] = self._mol_in out.phase = feed.phase out.P = feed.P out.T = self.T def _design(self): super()._design() self._heat_exchanger._design() def _cost(self): super()._cost() he = self._heat_exchanger he._cost() self._Cost['Heat exchanger'] = he._Cost['Heat exchanger']
# Copyright Contributors to the Amundsen project. # SPDX-License-Identifier: Apache-2.0 import datetime import logging import re from collections import defaultdict from operator import attrgetter from random import randint from typing import (Any, Dict, Generator, List, Optional, Set, Tuple, Type, Union) from amundsen_common.entity.resource_type import ResourceType from amundsen_common.models.dashboard import DashboardSummary from amundsen_common.models.feature import Feature from amundsen_common.models.generation_code import GenerationCode from amundsen_common.models.lineage import Lineage, LineageItem from amundsen_common.models.popular_table import PopularTable from amundsen_common.models.table import (Application, Badge, Column, ProgrammaticDescription, Reader, ResourceReport, Stat, Table, Tag, User, Watermark) from amundsen_common.models.user import User as UserEntity from amundsen_common.utils.atlas import (AtlasColumnKey, AtlasCommonParams, AtlasCommonTypes, AtlasDashboardTypes, AtlasStatus, AtlasTableKey, AtlasTableTypes) from apache_atlas.client.base_client import AtlasClient from apache_atlas.model.glossary import (AtlasGlossary, AtlasGlossaryHeader, AtlasGlossaryTerm) from apache_atlas.model.instance import (AtlasEntitiesWithExtInfo, AtlasEntity, AtlasEntityHeader, AtlasEntityWithExtInfo, AtlasRelatedObjectId) from apache_atlas.model.relationship import AtlasRelationship from apache_atlas.utils import type_coerce from beaker.cache import CacheManager from beaker.util import parse_cache_config_options from flask import current_app as app from werkzeug.exceptions import BadRequest from metadata_service.entity.dashboard_detail import \ DashboardDetail as DashboardDetailEntity from metadata_service.entity.dashboard_query import DashboardQuery from metadata_service.entity.description import Description from metadata_service.entity.tag_detail import TagDetail from metadata_service.exception import NotFoundException from metadata_service.proxy import BaseProxy from metadata_service.util import UserResourceRel LOGGER = logging.getLogger(__name__) # Expire cache every 11 hours + jitter _ATLAS_PROXY_CACHE_EXPIRY_SEC = 11 * 60 * 60 + randint(0, 3600) # noinspection PyMethodMayBeStatic class AtlasProxy(BaseProxy): """ Atlas Proxy client for the amundsen metadata {ATLAS_API_DOCS} = https://atlas.apache.org/api/v2/ """ DB_ATTRIBUTE = 'db' STATISTICS_FORMAT_SPEC = app.config['STATISTICS_FORMAT_SPEC'] # Qualified Name of the Glossary, that holds the user defined terms. # For Amundsen, we are using Glossary Terms as the Tags. AMUNDSEN_USER_TAGS = 'amundsen_user_tags' _CACHE = CacheManager(**parse_cache_config_options({'cache.regions': 'atlas_proxy', 'cache.atlas_proxy.type': 'memory', 'cache.atlas_proxy.expire': _ATLAS_PROXY_CACHE_EXPIRY_SEC})) def __init__(self, *, host: str, port: int, user: str = 'admin', password: str = '', encrypted: bool = False, validate_ssl: bool = False, client_kwargs: dict = dict()) -> None: """ Initiate the Apache Atlas client with the provided credentials """ protocol = 'https' if encrypted else 'http' self.client = AtlasClient(f'{protocol}://{host}:{port}', (user, password)) self.client.session.verify = validate_ssl def _parse_dashboard_bookmark_qn(self, bookmark_qn: str) -> Dict: """ Parse bookmark qualifiedName and extract the info :param bookmark_qn: Qualified Name of Bookmark entity :return: Dictionary object containing following information: product: dashboard product cluster: cluster information dashboard_group: Dashboard group name dashboard_id: Dashboard identifier user_id: User id """ pattern = re.compile(r""" ^(?P<product>[^.]*)_dashboard :// (?P<cluster>[^.]*) \. (?P<dashboard_group>[^.]*) / (?P<dashboard_id>[^.]*) / (?P<type>[^.]*) / bookmark / (?P<user_id>[^.]*) $ """, re.X) result = pattern.match(bookmark_qn) return result.groupdict() if result else dict() def _parse_table_bookmark_qn(self, bookmark_qn: str) -> Dict: """ Parse bookmark qualifiedName and extract the info :param bookmark_qn: Qualified Name of Bookmark entity :return: Dictionary object containing following information: cluster: cluster information db: Database name name: Table name """ pattern = re.compile(r""" ^(?P<db>[^.]*) \. (?P<table>[^.]*) \. (?P<entity_type>[^.]*) \. (?P<user_id>[^.]*)\.bookmark \@ (?P<cluster>.*) $ """, re.X) result = pattern.match(bookmark_qn) return result.groupdict() if result else dict() @classmethod def _filter_active(cls, entities: List[dict]) -> List[dict]: """ Filter out active entities based on entity end relationship status. """ result = [e for e in entities if e.get('relationshipStatus') == AtlasStatus.ACTIVE and e.get('entityStatus') == AtlasStatus.ACTIVE] return result def _get_table_entity(self, *, table_uri: str) -> AtlasEntityWithExtInfo: """ Fetch information from table_uri and then find the appropriate entity :param table_uri: The table URI coming from Amundsen Frontend :return: A table entity matching the Qualified Name derived from table_uri """ key = AtlasTableKey(table_uri) try: return self.client.entity.get_entity_by_attribute(type_name=key.entity_type, uniq_attributes=[ (AtlasCommonParams.qualified_name, key.qualified_name)]) except Exception as ex: LOGGER.exception(f'Table not found. {str(ex)}') raise NotFoundException(f'Table URI( {table_uri} ) does not exist') def _get_user_entity(self, user_id: str) -> AtlasEntityWithExtInfo: """ Fetches an user entity from an id :param user_id: User ID :return: A User entity matching the user_id """ try: return self.client.entity.get_entity_by_attribute(type_name=AtlasCommonTypes.user, uniq_attributes=[ (AtlasCommonParams.qualified_name, user_id)]) except Exception: raise NotFoundException(f'(User {user_id}) does not exist') def _create_bookmark(self, entity: AtlasEntityWithExtInfo, user_guid: str, bookmark_qn: str, entity_uri: str) -> None: """ Creates a bookmark entity for a specific user and entity uri. :param entity: bookmarked entity :param user_guid: User's guid :param bookmark_qn: Bookmark qualifiedName :param entity_uri: uri of bookmarked entity :return: """ bookmark_entity = { 'entity': { 'typeName': AtlasCommonTypes.bookmark, AtlasCommonParams.attributes: { AtlasCommonParams.qualified_name: bookmark_qn, AtlasStatus.ACTIVE.lower(): True, 'entityUri': entity_uri, 'entityName': entity.entity[AtlasCommonParams.attributes]['name'], 'user': {AtlasCommonParams.guid: user_guid}, 'entity': {AtlasCommonParams.guid: entity.entity[AtlasCommonParams.guid]}} } } bookmark_entity = type_coerce(bookmark_entity, AtlasEntityWithExtInfo) self.client.entity.create_entity(bookmark_entity) def _get_bookmark_entity(self, entity_uri: str, user_id: str, resource_type: ResourceType) -> AtlasEntityWithExtInfo: """ Fetch a Bookmark entity from parsing entity uri and user id. If Bookmark is not present, create one for the user. :param entity_uri: :param user_id: Qualified Name of a user :return: """ if resource_type == ResourceType.Table: entity_info = AtlasTableKey(entity_uri).get_details() schema = entity_info.get('schema') table = entity_info.get('table') database = entity_info.get('database', 'hive_table') cluster = entity_info.get('cluster') bookmark_qn = f'{schema}.{table}.{database}.{user_id}.bookmark@{cluster}' else: bookmark_qn = f'{entity_uri}/{resource_type.name.lower()}/bookmark/{user_id}' try: bookmark_entity = self.client.entity.get_entity_by_attribute(type_name=AtlasCommonTypes.bookmark, uniq_attributes=[ (AtlasCommonParams.qualified_name, bookmark_qn)]) except Exception as ex: LOGGER.exception(f'Bookmark not found. {str(ex)}') if resource_type == ResourceType.Table: bookmarked_entity = self._get_table_entity(table_uri=entity_uri) elif resource_type == ResourceType.Dashboard: bookmarked_entity = self._get_dashboard(qualified_name=entity_uri) else: raise NotImplementedError(f'Bookmarks for Resource Type ({resource_type}) are not yet implemented') # Fetch user entity from user_id for relation user_entity = self._get_user_entity(user_id) # Create bookmark entity with the user relation. self._create_bookmark(bookmarked_entity, user_entity.entity[AtlasCommonParams.guid], bookmark_qn, entity_uri) # Fetch bookmark entity after creating it. bookmark_entity = self.client.entity.get_entity_by_attribute(type_name=AtlasCommonTypes.bookmark, uniq_attributes=[ (AtlasCommonParams.qualified_name, bookmark_qn)]) return bookmark_entity def _get_column(self, *, table_uri: str, column_name: str) -> Dict: """ Fetch the column information from referredEntities of the table entity :param table_uri: :param column_name: :return: A dictionary containing the column details """ try: table_entity = self._get_table_entity(table_uri=table_uri) columns = table_entity.entity[AtlasCommonParams.relationships].get('columns') for column in columns or list(): col_details = table_entity.referredEntities[column[AtlasCommonParams.guid]] if column_name == col_details[AtlasCommonParams.attributes]['name']: return col_details raise NotFoundException(f'Column not found: {column_name}') except KeyError as ex: LOGGER.exception(f'Column not found: {str(ex)}') raise NotFoundException(f'Column not found: {column_name}') def _serialize_columns(self, *, entity: AtlasEntityWithExtInfo) -> \ Union[List[Column], List]: """ Helper function to fetch the columns from entity and serialize them using Column and Stat model. :param entity: AtlasEntityWithExtInfo object, along with relationshipAttributes :return: A list of Column objects, if there are any columns available, else an empty list. """ columns = list() for column in entity.entity[AtlasCommonParams.relationships].get('columns') or list(): column_status = column.get('entityStatus', 'inactive').lower() if column_status != 'active': continue col_entity = entity.referredEntities[column[AtlasCommonParams.guid]] col_attrs = col_entity[AtlasCommonParams.attributes] statistics = list() badges = list() for column_classification in col_entity.get('classifications') or list(): if column_classification.get('entityStatus') == AtlasStatus.ACTIVE: name = column_classification.get('typeName') badges.append(Badge(badge_name=name, category='default')) for stats in col_attrs.get('statistics') or list(): stats_attrs = stats[AtlasCommonParams.attributes] stat_type = stats_attrs.get('stat_name') stat_format = self.STATISTICS_FORMAT_SPEC.get(stat_type, dict()) if not stat_format.get('drop', False): stat_type = stat_format.get('new_name', stat_type) stat_val = stats_attrs.get('stat_val') format_val = stat_format.get('format') if format_val: stat_val = format_val.format(stat_val) else: stat_val = str(stat_val) start_epoch = stats_attrs.get('start_epoch') end_epoch = stats_attrs.get('end_epoch') statistics.append( Stat( stat_type=stat_type, stat_val=stat_val, start_epoch=start_epoch, end_epoch=end_epoch, ) ) columns.append( Column( name=col_attrs.get('name'), description=col_attrs.get('description') or col_attrs.get('comment'), col_type=col_attrs.get('type') or col_attrs.get('dataType') or col_attrs.get('data_type'), sort_order=col_attrs.get('position') or 9999, stats=statistics, badges=badges ) ) return sorted(columns, key=lambda item: item.sort_order) def _get_reports(self, guids: List[str]) -> List[ResourceReport]: reports = [] if guids: report_entities = self.client.entity.get_entities_by_guids(guids=guids) for report_entity in report_entities.entities: try: if report_entity.status == AtlasStatus.ACTIVE: report_attrs = report_entity.attributes reports.append( ResourceReport( name=report_attrs['name'], url=report_attrs['url'] ) ) except (KeyError, AttributeError): LOGGER.exception(f'Error while accessing table report: {str(report_entity)}', exc_info=True) parsed_reports = app.config['RESOURCE_REPORT_CLIENT'](reports) \ if app.config['RESOURCE_REPORT_CLIENT'] else reports return sorted(parsed_reports) def _get_owners(self, data_owners: list, fallback_owner: str = None) -> List[User]: owners_detail = list() active_owners_list = list() for owner in self._filter_active(data_owners): owner_qn = owner['displayText'] owner_data = self._get_user_details(owner_qn) owners_detail.append(User(**owner_data)) active_owners_list.append(owner_qn) # To avoid the duplication, # we are checking if the fallback is not in data_owners if fallback_owner and (fallback_owner not in active_owners_list): owners_detail.append(User(**self._get_user_details(fallback_owner))) return owners_detail def get_user(self, *, id: str) -> Union[UserEntity, None]: pass def create_update_user(self, *, user: User) -> Tuple[User, bool]: pass def get_users(self) -> List[UserEntity]: pass def _serialize_badges(self, entity: AtlasEntityWithExtInfo) -> List[Badge]: """ Return list of Badges for entity. Badges in Amundsen <> Atlas integration are based on Atlas Classification. :param entity: entity for which badges should be collected :return : List of Amundsen Badge objects. """ result = [] classifications = entity.get('classifications') for classification in classifications or list(): result.append(Badge(badge_name=classification.get('typeName'), category='default')) return result def _serialize_tags(self, entity: AtlasEntityWithExtInfo) -> List[Tag]: """ Return list of Tags for entity. Tags in Amundsen <> Atlas integration are based on Atlas Glossary. :param entity: entity for which tags should be collected :return : List of Amundsen Tag objects. """ result = [] meanings = self._filter_active(entity.get(AtlasCommonParams.relationships, dict()).get('meanings', [])) for term in meanings or list(): result.append(Tag(tag_name=term.get('displayText', ''), tag_type='default')) return result def get_table(self, *, table_uri: str) -> Table: """ Gathers all the information needed for the Table Detail Page. :param table_uri: :return: A Table object with all the information available or gathered from different entities. """ entity = self._get_table_entity(table_uri=table_uri) table_details = entity.entity try: attrs = table_details[AtlasCommonParams.attributes] programmatic_descriptions = self._get_programmatic_descriptions(attrs.get('parameters', dict()) or dict()) table_info = AtlasTableKey(attrs.get(AtlasCommonParams.qualified_name)).get_details() badges = self._serialize_badges(table_details) tags = self._serialize_tags(table_details) columns = self._serialize_columns(entity=entity) reports_guids = [report.get("guid") for report in attrs.get("reports") or list()] table_type = attrs.get('tableType') or 'table' is_view = 'view' in table_type.lower() readers = self._get_readers(table_details, Reader) application = self._get_application(table_details) table = Table( table_writer=application, database=AtlasTableKey(table_uri).get_details()['database'], cluster=table_info.get('cluster', ''), schema=table_info.get('schema', ''), name=attrs.get('name') or table_info.get('table', ''), badges=badges, tags=tags, description=attrs.get('description') or attrs.get('comment'), owners=self._get_owners( table_details[AtlasCommonParams.relationships].get('ownedBy', []), attrs.get('owner')), resource_reports=self._get_reports(guids=reports_guids), columns=columns, is_view=is_view, table_readers=readers, last_updated_timestamp=self._parse_date(table_details.get('updateTime')), programmatic_descriptions=programmatic_descriptions, watermarks=self._get_table_watermarks(table_details)) return table except KeyError: LOGGER.exception('Error while accessing table information. {}', exc_info=True) raise BadRequest(f'Some of the required attributes are missing in: {table_uri}') @staticmethod def _validate_date(text_date: str, date_format: str) -> Tuple[Optional[datetime.datetime], Optional[str]]: try: return datetime.datetime.strptime(text_date, date_format), date_format except (ValueError, TypeError): return None, None @staticmethod def _select_watermark_format(partition_names: Optional[List[Any]]) -> Optional[str]: result = None if partition_names: for partition_name in partition_names: # Assume that all partitions for given table have the same date format. Only thing that needs to be done # is establishing which format out of the supported ones it is and then we validate every partition # against it. for df in app.config['WATERMARK_DATE_FORMATS']: _, result = AtlasProxy._validate_date(partition_name, df) if result: LOGGER.debug('Established date format', extra=dict(date_format=result)) return result return result @staticmethod def _render_partition_key_name(entity: AtlasEntityWithExtInfo) -> Optional[str]: _partition_keys = [] for partition_key in entity.get(AtlasCommonParams.attributes, dict()).get('partitionKeys', []): partition_key_column_name = partition_key.get('displayName') if partition_key_column_name: _partition_keys.append(partition_key_column_name) partition_key = ' '.join(_partition_keys).strip() return partition_key def _get_table_watermarks(self, entity: AtlasEntityWithExtInfo) -> List[Watermark]: partition_value_format = '%Y-%m-%d %H:%M:%S' _partitions = entity.get(AtlasCommonParams.relationships, dict()).get('partitions', list()) names = [_partition.get('displayText') for _partition in self._filter_active(_partitions)] if not names: return [] partition_key = self._render_partition_key_name(entity) watermark_date_format = self._select_watermark_format(names) partitions = {} for _partition in _partitions: partition_name = _partition.get('displayText') if partition_name and watermark_date_format: partition_date, _ = self._validate_date(partition_name, watermark_date_format) if partition_date: common_values = {'partition_value': datetime.datetime.strftime(partition_date, partition_value_format), 'create_time': 0, 'partition_key': partition_key} partitions[partition_date] = common_values if partitions: low_watermark_date = min(partitions.keys()) high_watermark_date = max(partitions.keys()) low_watermark = Watermark(watermark_type='low_watermark', **partitions.get(low_watermark_date)) high_watermark = Watermark(watermark_type='high_watermark', **partitions.get(high_watermark_date)) return [low_watermark, high_watermark] else: return [] def delete_owner(self, *, table_uri: str, owner: str) -> None: """ :param table_uri: :param owner: :return: """ table = self._get_table_entity(table_uri=table_uri) table_entity = table.entity if table_entity[AtlasCommonParams.relationships].get("ownedBy"): try: active_owner = next(filter(lambda item: item['relationshipStatus'] == AtlasStatus.ACTIVE and item['displayText'] == owner, table_entity[AtlasCommonParams.relationships]['ownedBy']), None) if active_owner: self.client.relationship.delete_relationship_by_guid( guid=active_owner.get('relationshipGuid') ) else: raise BadRequest('You can not delete this owner.') except Exception: LOGGER.exception('Error while removing table data owner.', exc_info=True) def add_owner(self, *, table_uri: str, owner: str) -> None: """ Query on Atlas User entity to find if the entity exist for the owner string in parameter, if not create one. And then use that User entity's GUID and add a relationship between Table and User, on ownedBy field. :param table_uri: :param owner: Email address of the owner :return: None, as it simply adds the owner. """ owner_info = self._get_user_details(owner) if not owner_info: raise NotFoundException(f'User "{owner}" does not exist.') user_dict = type_coerce({ "entity": { "typeName": "User", "attributes": {"qualifiedName": owner}, } }, AtlasEntityWithExtInfo) # Get or Create a User user_entity = self.client.entity.create_entity(user_dict) user_guid = next(iter(user_entity.guidAssignments.values())) table = self._get_table_entity(table_uri=table_uri) entity_def = { "typeName": "DataSet_Users_Owner", "end1": { "guid": table.entity.get("guid"), "typeName": "Table", }, "end2": { "guid": user_guid, "typeName": "User", }, } try: relationship = type_coerce(entity_def, AtlasRelationship) self.client.relationship.create_relationship(relationship=relationship) except Exception: LOGGER.exception('Error while adding the owner information. {}', exc_info=True) raise BadRequest(f'User {owner} is already added as a data owner for table {table_uri}.') def get_table_description(self, *, table_uri: str) -> Union[str, None]: """ :param table_uri: :return: The description of the table as a string """ entity = self._get_table_entity(table_uri=table_uri) return entity.entity[AtlasCommonParams.attributes].get('description') def put_table_description(self, *, table_uri: str, description: str) -> None: """ Update the description of the given table. :param table_uri: :param description: Description string :return: None """ table = self._get_table_entity(table_uri=table_uri) self.client.entity.partial_update_entity_by_guid( entity_guid=table.entity.get("guid"), attr_value=description, attr_name='description' ) @_CACHE.cache('_get_user_defined_glossary_guid') def _get_user_defined_glossary_guid(self) -> str: """ This function look for a user defined glossary i.e., self.ATLAS_USER_DEFINED_TERMS If there is not one available, this will create a new glossary. The main reason to put this functionality into a separate function is to avoid the lookup each time someone assigns a tag to a data source. :return: Glossary object, that holds the user defined terms. """ # Check if the user glossary already exists glossaries = self.client.glossary.get_all_glossaries() for glossary in glossaries: if glossary.get(AtlasCommonParams.qualified_name) == self.AMUNDSEN_USER_TAGS: return glossary[AtlasCommonParams.guid] # If not already exists, create one glossary_def = AtlasGlossary({"name": self.AMUNDSEN_USER_TAGS, "shortDescription": "Amundsen User Defined Terms"}) glossary = self.client.glossary.create_glossary(glossary_def) return glossary.guid @_CACHE.cache('_get_create_glossary_term') def _get_create_glossary_term(self, term_name: str) -> Union[AtlasGlossaryTerm, AtlasEntityHeader]: """ Since Atlas does not provide any API to find a term directly by a qualified name, we need to look for AtlasGlossaryTerm via basic search, if found then return, else create a new glossary term under the user defined glossary. :param term_name: Name of the term. NOTE: this is different from qualified name. :return: Term Object. """ params = { 'typeName': "AtlasGlossaryTerm", 'excludeDeletedEntities': True, 'includeSubTypes': True, AtlasCommonParams.attributes: ["assignedEntities", ], 'entityFilters': {'condition': "AND", 'criterion': [{'attributeName': "name", 'operator': "=", 'attributeValue': term_name}] } } result = self.client.discovery.faceted_search(search_parameters=params) if result.approximateCount: term = result.entities[0] else: glossary_guid = self._get_user_defined_glossary_guid() glossary_def = AtlasGlossaryHeader({'glossaryGuid': glossary_guid}) term_def = AtlasGlossaryTerm({'name': term_name, 'anchor': glossary_def}) term = self.client.glossary.create_glossary_term(term_def) return term def add_tag(self, *, id: str, tag: str, tag_type: str = "default", resource_type: ResourceType = ResourceType.Table) -> None: """ Assign the Glossary Term to the give table. If the term is not there, it will create a new term under the Glossary self.ATLAS_USER_DEFINED_TERMS :param id: Table URI / Dashboard ID etc. :param tag: Tag Name :param tag_type :return: None """ entity = self._get_table_entity(table_uri=id) term = self._get_create_glossary_term(tag) related_entity = AtlasRelatedObjectId({AtlasCommonParams.guid: entity.entity[AtlasCommonParams.guid], "typeName": resource_type.name}) self.client.glossary.assign_term_to_entities(term.guid, [related_entity]) def add_badge(self, *, id: str, badge_name: str, category: str = '', resource_type: ResourceType) -> None: # Not implemented raise NotImplementedError def delete_tag(self, *, id: str, tag: str, tag_type: str, resource_type: ResourceType = ResourceType.Table) -> None: """ Removes the Glossary Term assignment from the provided source. :param id: Table URI / Dashboard ID etc. :param tag: Tag Name :return:None """ entity = self._get_table_entity(table_uri=id) term = self._get_create_glossary_term(tag) if not term: return assigned_entities = self.client.glossary.get_entities_assigned_with_term(term.guid, "ASC", -1, 0) for item in assigned_entities or list(): if item.get(AtlasCommonParams.guid) == entity.entity[AtlasCommonParams.guid]: related_entity = AtlasRelatedObjectId(item) return self.client.glossary.disassociate_term_from_entities(term.guid, [related_entity]) def delete_badge(self, *, id: str, badge_name: str, category: str, resource_type: ResourceType) -> None: # Not implemented raise NotImplementedError def put_column_description(self, *, table_uri: str, column_name: str, description: str) -> None: """ :param table_uri: :param column_name: Name of the column to update the description :param description: The description string :return: None, as it simply updates the description of a column """ column_detail = self._get_column( table_uri=table_uri, column_name=column_name) col_guid = column_detail[AtlasCommonParams.guid] self.client.entity.partial_update_entity_by_guid( entity_guid=col_guid, attr_value=description, attr_name='description' ) def get_column_description(self, *, table_uri: str, column_name: str) -> Union[str, None]: """ :param table_uri: :param column_name: :return: The column description using the referredEntities information of a table entity """ column_detail = self._get_column( table_uri=table_uri, column_name=column_name) return column_detail[AtlasCommonParams.attributes].get('description') def _serialize_popular_tables(self, entities: AtlasEntitiesWithExtInfo) -> List[PopularTable]: """ Gets a list of entities and serialize the popular tables. :param entities: List of entities from atlas client :return: a list of PopularTable objects """ popular_tables = list() for table in entities.entities or []: table_attrs = table.attributes table_info = AtlasTableKey(table_attrs.get(AtlasCommonParams.qualified_name)).get_details() table_name = table_info.get('table') or table_attrs.get('name') schema_name = table_info.get('schema', '') db_cluster = table_info.get('cluster', '') popular_table = PopularTable( database=table_info.get('database') or table.typeName, cluster=db_cluster, schema=schema_name, name=table_name, description=table_attrs.get('description') or table_attrs.get('comment')) popular_tables.append(popular_table) return popular_tables def get_popular_tables(self, *, num_entries: int, user_id: Optional[str] = None) -> List[PopularTable]: """ Generates a list of Popular tables to be shown on the home page of Amundsen. :param num_entries: Number of popular tables to fetch :return: A List of popular tables instances """ popular_query_params = {'typeName': AtlasTableTypes.table, 'sortBy': 'popularityScore', 'sortOrder': 'DESCENDING', 'excludeDeletedEntities': True, 'limit': num_entries} search_results = self.client.discovery.faceted_search(search_parameters=popular_query_params) return self._serialize_popular_tables(search_results) def get_latest_updated_ts(self) -> int: date = None metrics = self.client.admin.get_metrics() try: date = self._parse_date(metrics.general.get('stats', {}).get('Notification:lastMessageProcessedTime')) except AttributeError: pass return date or 0 def get_statistics(self) -> Dict[str, Any]: # Not implemented pass @_CACHE.cache('get_tags') def get_tags(self) -> List: """ Fetch all the glossary terms from atlas, along with their assigned entities as this will be used to generate the autocomplete on the table detail page :return: A list of TagDetail Objects """ tags = [] params = { 'typeName': "AtlasGlossaryTerm", 'limit': 1000, 'offset': 0, 'excludeDeletedEntities': True, 'includeSubTypes': True, AtlasCommonParams.attributes: ["assignedEntities", ] } glossary_terms = self.client.discovery.faceted_search(search_parameters=params) for item in glossary_terms.entities or list(): tags.append( TagDetail( tag_name=item.attributes.get("name"), tag_count=len(item.attributes.get("assignedEntities")) ) ) return tags @_CACHE.cache('get_badges') def get_badges(self) -> List: badges = list() metrics = self.client.admin.get_metrics() try: system_badges = metrics["tag"].get("tagEntities").keys() for item in system_badges: badges.append( Badge(badge_name=item, category="default") ) except AttributeError: LOGGER.info("No badges/classifications available in the system.") return badges def _get_resources_followed_by_user(self, user_id: str, resource_type: str) \ -> List[Union[PopularTable, DashboardSummary]]: """ Helper function to get the resource, table, dashboard etc followed by a user. :param user_id: User ID of a user :param resource_type: Type of a resource that returns, could be table, dashboard etc. :return: A list of PopularTable, DashboardSummary or any other resource. """ if resource_type == ResourceType.Table.name: bookmark_qn_search_pattern = f'_{resource_type.lower()}.{user_id}.bookmark' else: bookmark_qn_search_pattern = f'/{resource_type.lower()}/bookmark/{user_id}' params = { 'typeName': AtlasCommonTypes.bookmark, 'offset': '0', 'limit': '1000', 'excludeDeletedEntities': True, 'entityFilters': { 'condition': 'AND', 'criterion': [ { 'attributeName': AtlasCommonParams.qualified_name, 'operator': 'contains', 'attributeValue': bookmark_qn_search_pattern }, { 'attributeName': AtlasStatus.ACTIVE.lower(), 'operator': 'eq', 'attributeValue': 'true' } ] }, AtlasCommonParams.attributes: ['count', AtlasCommonParams.qualified_name, AtlasCommonParams.uri, 'entityName'] } # Fetches the bookmark entities based on filters search_results = self.client.discovery.faceted_search(search_parameters=params) resources: List[Union[PopularTable, DashboardSummary]] = [] for record in search_results.entities or []: if resource_type == ResourceType.Table.name: table_info = AtlasTableKey(record.attributes[AtlasCommonParams.uri]).get_details() res = self._parse_table_bookmark_qn(record.attributes[AtlasCommonParams.qualified_name]) resources.append(PopularTable( database=table_info['database'], cluster=res['cluster'], schema=res['db'], name=res['table'])) elif resource_type == ResourceType.Dashboard.name: dashboard_info = self._parse_dashboard_bookmark_qn(record.attributes[AtlasCommonParams.qualified_name]) resources.append(DashboardSummary( uri=record.attributes[AtlasCommonParams.uri], cluster=dashboard_info['cluster'], name=record.attributes['entityName'], group_name=dashboard_info['dashboard_group'], group_url='', product=dashboard_info['product'], url='' )) else: raise NotImplementedError(f'resource type {resource_type} is not supported') return resources def _get_resources_owned_by_user(self, user_id: str, resource_type: str) \ -> List[Union[PopularTable, DashboardSummary, Any]]: """ Helper function to get the resource, table, dashboard etc owned by a user. :param user_id: User ID of a user :param resource_type: Type of a resource that returns, could be table, dashboard etc. :return: A list of PopularTable, DashboardSummary or any other resource. """ resources: List[Union[PopularTable, DashboardSummary, Any]] = list() if resource_type == ResourceType.Table.name: type_regex = "(.*)_table$" entity_type = AtlasTableTypes.table serialize_function = self._serialize_popular_tables elif resource_type == ResourceType.Dashboard.name: type_regex = 'Dashboard' entity_type = AtlasDashboardTypes.metadata serialize_function = self._serialize_dashboard_summaries else: raise NotImplementedError(f'Resource Type ({resource_type}) is not yet implemented') user_entity = self.client.entity.get_entity_by_attribute(type_name=AtlasCommonTypes.user, uniq_attributes=[ ( AtlasCommonParams.qualified_name, user_id)]).entity if not user_entity: raise NotFoundException(f'User {user_id} not found.') resource_guids = set() for item in self._filter_active(user_entity[AtlasCommonParams.relationships].get('owns')) or list(): if re.compile(type_regex).match(item['typeName']): resource_guids.add(item[AtlasCommonParams.guid]) owned_resources_query = f'{entity_type} where owner like "{user_id.lower()}*" and __state = "ACTIVE"' entities = self.client.discovery.dsl_search(owned_resources_query) for entity in entities.entities or list(): resource_guids.add(entity.guid) if resource_guids: resource_guids_chunks = AtlasProxy.split_list_to_chunks(list(resource_guids), 100) for chunk in resource_guids_chunks: entities = self.client.entity.get_entities_by_guids(guids=list(chunk), ignore_relationships=True) resources += serialize_function(entities) else: LOGGER.info(f'User ({user_id}) does not own any "{resource_type}"') return resources @staticmethod def split_list_to_chunks(input_list: List[Any], n: int) -> Generator: """Yield successive n-sized chunks from lst.""" for i in range(0, len(input_list), n): yield input_list[i:i + n] def _get_resource_by_user_relation(self, user_email: str, relation_type: UserResourceRel, resource_type: ResourceType) -> Dict[str, Any]: resources: List[Union[PopularTable, DashboardSummary]] = list() if resource_type.name == ResourceType.Table.name: resource = ResourceType.Table.name.lower() elif resource_type.name == ResourceType.Dashboard.name: resource = ResourceType.Dashboard.name.lower() else: raise NotImplementedError(f'Resource type {resource_type.name} not supported.') if relation_type == UserResourceRel.follow: resources = self._get_resources_followed_by_user(user_id=user_email, resource_type=resource_type.name) elif relation_type == UserResourceRel.own: resources = self._get_resources_owned_by_user(user_id=user_email, resource_type=resource_type.name) return {resource: resources} def get_dashboard_by_user_relation(self, *, user_email: str, relation_type: UserResourceRel) -> Dict[str, Any]: return self._get_resource_by_user_relation(user_email, relation_type, ResourceType.Dashboard) def get_table_by_user_relation(self, *, user_email: str, relation_type: UserResourceRel) -> Dict[str, Any]: return self._get_resource_by_user_relation(user_email, relation_type, ResourceType.Table) def get_frequently_used_tables(self, *, user_email: str) -> Dict[str, List[PopularTable]]: user = self.client.entity.get_entity_by_attribute(type_name=AtlasCommonTypes.user, uniq_attributes=[ (AtlasCommonParams.qualified_name, user_email)]).entity readers_guids = [] for user_reads in self._filter_active(user[AtlasCommonParams.relationships].get('entityReads')): readers_guids.append(user_reads.get(AtlasCommonParams.guid)) readers = self.client.entity.get_entities_by_guids(guids=list(readers_guids), ignore_relationships=True) _results = {} for reader in readers.entities or list(): entity_uri = reader.attributes.get(AtlasCommonParams.uri) count = reader.attributes.get('count') if count: table_info = AtlasTableKey(entity_uri).get_details() _results[count] = dict(cluster=table_info.get('cluster'), name=table_info.get('table'), schema=table_info.get('schema'), database=table_info.get('database')) sorted_counts = sorted(_results.keys()) results = [] for count in sorted_counts: data: dict = _results.get(count, dict()) table = PopularTable(**data) results.append(table) return {'table': results} def add_resource_relation_by_user(self, *, id: str, user_id: str, relation_type: UserResourceRel, resource_type: ResourceType) -> None: if resource_type not in [ResourceType.Table, ResourceType.Dashboard]: raise NotImplementedError(f'resource type {resource_type} is not supported') entity = self._get_bookmark_entity(entity_uri=id, user_id=user_id, resource_type=resource_type) # type: ignore entity.entity[AtlasCommonParams.attributes][AtlasStatus.ACTIVE.lower()] = True self.client.entity.update_entity(entity) def delete_resource_relation_by_user(self, *, id: str, user_id: str, relation_type: UserResourceRel, resource_type: ResourceType) -> None: if resource_type not in [ResourceType.Table, ResourceType.Dashboard]: raise NotImplementedError(f'resource type {resource_type} is not supported') entity = self._get_bookmark_entity(entity_uri=id, user_id=user_id, resource_type=resource_type) # type: ignore entity.entity[AtlasCommonParams.attributes][AtlasStatus.ACTIVE.lower()] = False self.client.entity.update_entity(entity) def _parse_date(self, date: int) -> Optional[int]: try: date_str = str(date) date_trimmed = date_str[:10] assert len(date_trimmed) == 10 return int(date_trimmed) except Exception: return None def _get_readers(self, entity: AtlasEntityWithExtInfo, model: Any = Reader, top: Optional[int] = 15) \ -> List[Union[Reader, User]]: _readers = entity.get(AtlasCommonParams.relationships, dict()).get('readers', list()) guids = [_reader.get(AtlasCommonParams.guid) for _reader in self._filter_active(_readers)] if not guids: return [] readers = self.client.entity.get_entities_by_guids(guids=list(guids), ignore_relationships=False) _result = [] for _reader in readers.entities or list(): read_count = _reader.attributes['count'] if read_count >= int(app.config['POPULAR_RESOURCES_MINIMUM_READER_COUNT']): reader_qn = _reader.relationshipAttributes['user']['displayText'] reader_details = self._get_user_details(reader_qn) if model == Reader: reader = Reader(user=User(**reader_details), read_count=read_count) elif model == User: reader = User(**reader_details) else: return [] _result.append(reader) if model == Reader: result = sorted(_result, key=attrgetter('read_count'), reverse=True)[:top] else: result = _result result = result[:top] return result def _get_application(self, entity: AtlasEntityWithExtInfo) -> Optional[Application]: _applications = entity.get(AtlasCommonParams.relationships, dict()).get('applications', list()) guids = [a.get(AtlasCommonParams.guid) for a in self._filter_active(_applications)] if not guids: return None applications = self.client.entity.get_entities_by_guids(guids=list(guids), ignore_relationships=False) for _app in applications.entities or list(): url = _app.attributes.get('application_url', '') description = _app.attributes.get('description', '') id = _app.attributes.get('id', '') name = _app.attributes.get('name', '') app = Application(application_url=url, description=description, id=id, name=name) # only single app per table is supported break return app def _get_programmatic_descriptions(self, parameters: dict) -> List[ProgrammaticDescription]: programmatic_descriptions: Dict[str, ProgrammaticDescription] = {} for source, text in parameters.items(): use_parameter = True for regex_filter in app.config['PROGRAMMATIC_DESCRIPTIONS_EXCLUDE_FILTERS']: pattern = re.compile(regex_filter) if pattern.match(source): use_parameter = False break if use_parameter: source = re.sub("([a-z])([A-Z])", "\g<1> \g<2>", source).lower() programmatic_descriptions[source] = ProgrammaticDescription(source=source, text=text) result = dict(sorted(programmatic_descriptions.items())) return list(result.values()) def _serialize_dashboard_queries(self, queries: List[Dict]) -> List[DashboardQuery]: """ Renders DashboardQuery from attributes :param queries: list of dicts with query attributes :returns List of DashboardQuery objects. """ result = [] for query in queries: name = query.get('name', '') query_text = query.get('queryText', '') url = query.get('url', '') dashboard_query = DashboardQuery(name=name, query_text=query_text, url=url) result.append(dashboard_query) return result def _get_dashboard_group(self, group_guid: str) -> AtlasEntityWithExtInfo: """ Return raw DashboardGroup entity. :param group_guid: guid of dashboard group entity. :return : Atlas DashboardGroup entity. """ entity = self.client.entity.get_entities_by_guids(guids=[group_guid]).entities[0] return entity def _get_dashboard_summary(self, entity: AtlasEntityWithExtInfo, executions: List[AtlasEntity]) -> Dict: attributes = entity.entity[AtlasCommonParams.attributes] relationships = entity.entity[AtlasCommonParams.relationships] group = self._get_dashboard_group(relationships.get('group').get(AtlasCommonParams.guid))[ AtlasCommonParams.attributes] successful_executions = [e for e in executions if e.get('state') == 'succeeded'] try: last_successful_execution = successful_executions[0] except IndexError: last_successful_execution = dict(timestamp=0) chart_names = [e[AtlasCommonParams.attributes]['name'] for _, e in entity['referredEntities'].items() if e['typeName'] == AtlasDashboardTypes.chart] result = dict( uri=attributes.get(AtlasCommonParams.qualified_name, ''), cluster=attributes.get('cluster', ''), group_name=relationships.get('group', dict()).get('displayText', ''), group_url=group.get('url', ''), product=attributes.get('product', ''), name=attributes.get('name', ''), url=attributes.get('url', ''), last_successful_run_timestamp=last_successful_execution.get('timestamp', 0), description=attributes.get('description', ''), chart_names=chart_names) return result def _get_dashboard_details(self, entity: AtlasEntityWithExtInfo) -> Dict: try: attributes = entity.entity[AtlasCommonParams.attributes] relationships = entity.entity[AtlasCommonParams.relationships] referred_entities = entity['referredEntities'] badges = self._serialize_badges(entity) tags = self._serialize_tags(entity) _executions = [] _queries = [] for k, v in referred_entities.items(): entity_type = v.get('typeName') _attributes = v[AtlasCommonParams.attributes] if entity_type == AtlasDashboardTypes.execution: _executions.append(_attributes) elif entity_type == AtlasDashboardTypes.query: _queries.append(_attributes) queries = self._serialize_dashboard_queries(_queries) query_names = [q.name for q in queries] table_guids = [t.get(AtlasCommonParams.guid) for t in self._filter_active(relationships.get('tables', []))] if table_guids: _tables = self.client.entity.get_entities_by_guids(guids=table_guids) tables = self._serialize_popular_tables(_tables) else: tables = [] executions_attributes = sorted(_executions, key=lambda x: x.get('timestamp', 0), reverse=True) try: last_execution = executions_attributes[0] except IndexError: last_execution = dict(timestamp=0, state='Unknown') owners = self._get_owners(relationships.get('ownedBy', [])) readers = self._get_readers(entity.entity, User) result = self._get_dashboard_summary(entity, executions_attributes) extra_spec = dict( created_timestamp=attributes.get('createdTimestamp', 0), updated_timestamp=attributes.get('lastModifiedTimestamp', 0), owners=owners, last_run_timestamp=last_execution.get('timestamp', 0), last_run_state=last_execution.get('state', 'Unknown'), query_names=query_names, queries=queries, tables=tables, tags=tags, badges=badges, recent_view_count=attributes.get('popularityScore', 0), frequent_users=readers) result.update(extra_spec) return result except Exception as e: raise e def _get_dashboard(self, qualified_name: str) -> AtlasEntityWithExtInfo: """ Return raw Dasboard entity. :param qualified_name: qualified name of the dashboard :return : Atlas Dashboard entity. """ entity = self.client.entity.get_entity_by_attribute(type_name=AtlasDashboardTypes.metadata, uniq_attributes=[ (AtlasCommonParams.qualified_name, qualified_name)]) return entity def get_dashboard(self, id: str) -> DashboardDetailEntity: entity = self._get_dashboard(id) attributes = self._get_dashboard_details(entity) return DashboardDetailEntity(**attributes) def get_dashboard_description(self, *, id: str) -> Description: """ Return dashboard description. :param id: :return: The description of the dashboard as a string """ entity = self.client.entity.get_entity_by_attribute(type_name=AtlasDashboardTypes.metadata, uniq_attributes=[(AtlasCommonParams.qualified_name, id)]) return entity.entity[AtlasCommonParams.attributes].get('description') def put_dashboard_description(self, *, id: str, description: str) -> None: """ Update the description of the given dashboard. :param id: dashboard id (uri) :param description: Description string :return: None """ entity = self.client.entity.get_entity_by_attribute(type_name=AtlasDashboardTypes.metadata, uniq_attributes=[(AtlasCommonParams.qualified_name, id)]) self.client.entity.partial_update_entity_by_guid( entity_guid=entity.entity.get(AtlasCommonParams.guid), attr_value=description, attr_name='description' ) def _serialize_dashboard_summaries(self, entities: AtlasEntitiesWithExtInfo) -> List[DashboardSummary]: """ Returns dashboards summary for dashboards using specific table. """ result = [] for _dashboard in entities.entities: try: if _dashboard.status == AtlasStatus.ACTIVE: executions = [ entities['referredEntities'].get(e.get(AtlasCommonParams.guid))[AtlasCommonParams.attributes] for e in self._filter_active( _dashboard[AtlasCommonParams.relationships].get('executions', []))] dashboard = AtlasEntityWithExtInfo(attrs=dict(entity=_dashboard, referredEntities={})) summary = DashboardSummary(**self._get_dashboard_summary(dashboard, executions)) result.append(summary) except (KeyError, AttributeError): LOGGER.exception(f'Error while accessing table report: {str(dashboard)}.', exc_info=True) return result def get_resources_using_table(self, *, id: str, resource_type: ResourceType) -> Dict[str, List[DashboardSummary]]: if resource_type == ResourceType.Dashboard: resource = 'dashboards' serialize_function = self._serialize_dashboard_summaries else: raise NotImplementedError(f'{resource_type} is not supported') table = self._get_table_entity(table_uri=id) guids = [d.get(AtlasCommonParams.guid) for d in self._filter_active(table.entity[AtlasCommonParams.relationships].get(resource, []))] if guids: entities = self.client.entity.get_entities_by_guids(guids=guids) result = serialize_function(entities) else: result = [] return {resource: result} @classmethod def _generate_edges(cls, graph: Dict[str, List[str]]) -> List[Tuple[str, str]]: """ Generates list of edge pairs from the graph. :param graph: Graph of nodes :return: List of tuples with graph edges """ edges = [] # for each node in graph for node in graph: # for each neighbour node of a single node for neighbour in graph[node]: # if edge exists then append edges.append((node, neighbour)) return edges @classmethod def _find_shortest_path(cls, graph: Dict[str, List[str]], start: str, end: str, path: List[Any] = []) -> List[str]: """ Find shortest path between graph nodes. Used to calculate 'level' parameter __source__='https://www.python.org/doc/essays/graphs/' __author__='Guido van Rossum' :param graph: Dictionary of str (node key) and List[str] (connected nodes) :param start: Starting node for finding the path :param end: Ending node for finding the path :param path: Accumulator for recursive calls :return: Shortest path between start and end nodes """ path = path + [start] if start == end: return path if not graph.get(start): return [] shortest: List[str] = [] for node in graph[start]: if node not in path: newpath = AtlasProxy._find_shortest_path(graph, node, end, path) if newpath: if not shortest or len(newpath) < len(shortest): shortest = newpath return shortest @staticmethod def _find_parent_nodes(graph: Dict) -> Dict[str, Set[str]]: """ Rewrite graph dict to the form that makes it possible to easily :param graph: Dictionary of str (node key) and List[str] :return: Dict with keys (node) and values (parents of a node) """ relations: Dict[str, Set[str]] = {} for parent, ancestors in graph.items(): for ancestor in ancestors: if not relations.get(ancestor): relations[ancestor] = set() relations[ancestor].add(parent) return relations def _get_lineage_graph(self, lineage: Dict, entity_type: str, key_class: Any) -> Dict[str, List[str]]: """ Since Atlas bases lineage on additional entity (Process(input=A, output=B)) for capturing lineage we need to create graph that has direct A > B relationships and removes Process entities. :param lineage: Raw linage captured from Atlas :param entity_type: Type of entity for which lineage is captured :param key_class: Helper class used for Amundsen key <> Atlas qualified name serialization/deserialization :return: Graph of nodes with relations. """ processes: Dict[str, Dict[str, Any]] = dict() entity_type = entity_type.lower() entities = lineage.get('guidEntityMap', dict()) relations = lineage.get('relations', []) for relation in relations: input_guid = relation['fromEntityId'] input_type = entities.get(input_guid)['typeName'].lower() output_guid = relation['toEntityId'] output_type = entities.get(output_guid)['typeName'].lower() if input_type.endswith('process') and output_type.endswith(entity_type): output_qn = entities.get(output_guid)[AtlasCommonParams.attributes][AtlasCommonParams.qualified_name] output_key = key_class(output_qn, output_type).amundsen_key # type: ignore if not processes.get(input_guid): processes[input_guid] = dict(inputs=set(), outputs=set()) processes[input_guid]['outputs'].add(output_key) elif output_type.endswith('process') and input_type.endswith(entity_type): input_qn = entities.get(input_guid)[AtlasCommonParams.attributes][AtlasCommonParams.qualified_name] input_key = key_class(input_qn, input_type).amundsen_key # type: ignore if not processes.get(output_guid): processes[output_guid] = dict(inputs=set(), outputs=set()) processes[output_guid]['inputs'].add(input_key) graph: Dict[str, List[str]] = defaultdict(list) for _, spec in processes.items(): for input_key in spec['inputs']: for output_key in spec['outputs']: graph[input_key].append(output_key) return dict(graph) def _serialize_lineage_item(self, edge: Tuple[str, str], direction: str, key_class: Any, graph: Dict, root_node: str, parent_nodes: Dict[str, Set[str]]) -> List[LineageItem]: """ Serializes LineageItem object. :param edge: tuple containing two node keys that are connected with each other. :param direction: Lineage direction upstream/downstream :param key_class: Helper class used for managing Atlas <> Amundsen key formats. :param: graph: Graph from which the edge was derived from. Used to find distance between edge node and entity for which lineage is retrieved. :param parent_nodes: Dict of keys (nodes) with set of keys (parents). :return: Serialized LineageItem list. """ result: List[LineageItem] = [] if direction == 'upstream': key, _ = edge level = len(AtlasProxy._find_shortest_path(graph, key, root_node)) - 1 elif direction == 'downstream': _, key = edge level = len(AtlasProxy._find_shortest_path(graph, root_node, key)) - 1 else: raise ValueError(f'Direction {direction} not supported!') parents = parent_nodes.get(key, ['']) while True: try: parent = parents.pop() except Exception: break badges: List[str] = [] usage = 0 source = key_class(key).get_details()['database'] spec = dict(key=key, parent=parent, source=source, badges=badges, usage=usage, level=level) result.append(LineageItem(**spec)) return result def _serialize_lineage(self, lineage: dict, entity_type: str, root_node: str, direction: str, key_class: Union[Type[AtlasTableKey], Type[AtlasColumnKey]]) -> List[LineageItem]: """ Serializes lineage to Amundsen format based on Atlas lineage output. The assumption for Atlas <> Amundsen lineage is that every Process entity in Atlas lineage contains at least one entity of entity_type both in inputs and outputs. If your lineage is A > B > C where: A - is table B - is file C - is table It won't render A > C table lineage in Amundsen. The implementation follows simplified set of expectations and might be subject of change if such requirement arises. :param lineage: Raw lineage from Atlas :param entity_type: Type of the entity for which lineage is being retrieved :param root_node: key of entity for which lineage will be rendered. Required to calculate 'level' dynamically based on nodes distance. :param direction: upstream/downstream :param key_class: Class for serializing entities keys :return: The Lineage object with upstream & downstream lineage items """ result: List[LineageItem] = [] graph = self._get_lineage_graph(lineage, entity_type, key_class) edges = AtlasProxy._generate_edges(graph) parent_nodes = self._find_parent_nodes(graph) for edge in edges: lineage_items = self._serialize_lineage_item(edge, direction, key_class, graph, root_node, parent_nodes) result += lineage_items return result def get_lineage(self, *, id: str, resource_type: ResourceType, direction: str, depth: int) -> Lineage: """ Retrieves the lineage information for the specified resource type. :param id: Key of entity for which lineage will be collected :param resource_type: Type of the entity for which lineage is being retrieved :param direction: Whether to get the upstream/downstream or both directions :param depth: Depth or level of lineage information. 0=only parent, 1=immediate nodes, 2=... :return: The Lineage object with upstream & downstream lineage items """ lineage_spec: Dict[str, Any] = dict(key=id, direction=direction, depth=depth, upstream_entities=[], downstream_entities=[]) # Atlas returns complete lineage when depth=0. In Amundsen depth=0 means only parent. if depth > 0: key_class: Union[Type[AtlasTableKey], Type[AtlasColumnKey]] if resource_type == ResourceType.Column: key_class = AtlasColumnKey elif resource_type == ResourceType.Table: key_class = AtlasTableKey else: raise NotImplementedError(f'Resource {resource_type.name} not supported!') key = key_class(id) # type: ignore entity = self.client.entity.get_entity_by_attribute(type_name=resource_type.name, uniq_attributes=[(AtlasCommonParams.qualified_name, key.qualified_name)]) entity_guid = entity.entity.guid _upstream: Dict[str, Any] = {} _downstream: Dict[str, Any] = {} if not direction == 'downstream': _upstream = self.client.lineage.get_lineage_info(entity_guid, 'INPUT', depth) if not direction == 'upstream': _downstream = self.client.lineage.get_lineage_info(entity_guid, 'OUTPUT', depth) upstream = self._serialize_lineage(_upstream, resource_type.name, id, 'upstream', key_class) downstream = self._serialize_lineage(_downstream, resource_type.name, id, 'downstream', key_class) lineage_spec['upstream_entities'] = upstream lineage_spec['downstream_entities'] = downstream lineage = Lineage(**lineage_spec) return lineage def get_feature(self, *, feature_uri: str) -> Feature: pass def get_resource_description(self, *, resource_type: ResourceType, uri: str) -> Description: pass def put_resource_description(self, *, resource_type: ResourceType, uri: str, description: str) -> None: pass def add_resource_owner(self, *, uri: str, resource_type: ResourceType, owner: str) -> None: pass def delete_resource_owner(self, *, uri: str, resource_type: ResourceType, owner: str) -> None: pass def get_resource_generation_code(self, *, uri: str, resource_type: ResourceType) -> GenerationCode: pass def get_popular_resources(self, *, num_entries: int, resource_types: List[str], user_id: Optional[str] = None) -> Dict[str, List]: raise NotImplementedError
# -*- coding: utf-8 -*- """ Created on Wed Mar 25 12:13:19 2020 @author: metalcorebear """ from model import propagation_model import model_params import argparse import os import pandas as pd # Specify arguments def get_path(): parser = argparse.ArgumentParser() parser.add_argument('-o', '--output', help='Enter the output path.', required=True) args = vars(parser.parse_args()) output_path = str(args['output']) return output_path # Generate output file name parameters output_path = get_path() density = model_params.parameters['density'] nodes = model_params.parameters['network_size'] neg_bias = model_params.parameters['neg_bias'] filename = 'ABM_' + str(density) + '_' + str(nodes) + '_' + str(neg_bias) + '.csv' output_file = os.path.join(output_path, filename) # Instantiate model meme_model = propagation_model() # Number of steps to run model. steps = model_params.parameters['steps'] for i in range(steps): print("Step: " + str(i)) meme_model.step() # Generate output output_data = meme_model.datacollector.get_model_vars_dataframe() output_data.to_csv(output_file, encoding='UTF8') print (output_data) print('Filename:') print(filename) print('You are a great American!!')
# -*- coding: utf-8 -*- # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import sys from google.api_core.protobuf_helpers import get_messages from google.api import http_pb2 from google.cloud.vision_v1p2beta1.proto import geometry_pb2 from google.cloud.vision_v1p2beta1.proto import image_annotator_pb2 from google.cloud.vision_v1p2beta1.proto import text_annotation_pb2 from google.cloud.vision_v1p2beta1.proto import web_detection_pb2 from google.longrunning import operations_pb2 from google.protobuf import any_pb2 from google.protobuf import descriptor_pb2 from google.protobuf import empty_pb2 from google.protobuf import timestamp_pb2 from google.protobuf import wrappers_pb2 from google.rpc import status_pb2 from google.type import color_pb2 from google.type import latlng_pb2 _shared_modules = [ http_pb2, operations_pb2, any_pb2, descriptor_pb2, empty_pb2, timestamp_pb2, wrappers_pb2, status_pb2, color_pb2, latlng_pb2, ] _local_modules = [ geometry_pb2, image_annotator_pb2, text_annotation_pb2, web_detection_pb2, ] names = [] for module in _shared_modules: for name, message in get_messages(module).items(): setattr(sys.modules[__name__], name, message) names.append(name) for module in _local_modules: for name, message in get_messages(module).items(): message.__module__ = 'google.cloud.vision_v1p2beta1.types' setattr(sys.modules[__name__], name, message) names.append(name) __all__ = tuple(sorted(names))
# -*- coding: utf-8 -*- # from cms_bs3_theme.models import ThemeSite def settings(request): """ """ from . import conf conf = dict(vars(conf)) # conf.update(ThemeSite.objects.get_theme_conf(request=request, fail=False)) data = request.session.get('cms_bs3_theme_conf', {}) conf.update(data) return {'bs3_conf': conf}
#!/usr/bin/env python # ***********************IMPORTANT NMAP LICENSE TERMS************************ # * * # * The Nmap Security Scanner is (C) 1996-2013 Insecure.Com LLC. Nmap is * # * also a registered trademark of Insecure.Com LLC. This program is free * # * software; you may redistribute and/or modify it under the terms of the * # * GNU General Public License as published by the Free Software * # * Foundation; Version 2 ("GPL"), BUT ONLY WITH ALL OF THE CLARIFICATIONS * # * AND EXCEPTIONS DESCRIBED HEREIN. This guarantees your right to use, * # * modify, and redistribute this software under certain conditions. If * # * you wish to embed Nmap technology into proprietary software, we sell * # * alternative licenses (contact sales@insecure.com). Dozens of software * # * vendors already license Nmap technology such as host discovery, port * # * scanning, OS detection, version detection, and the Nmap Scripting * # * Engine. * # * * # * Note that the GPL places important restrictions on "derivative works", * # * yet it does not provide a detailed definition of that term. To avoid * # * misunderstandings, we interpret that term as broadly as copyright law * # * allows. For example, we consider an application to constitute a * # * derivative work for the purpose of this license if it does any of the * # * following with any software or content covered by this license * # * ("Covered Software"): * # * * # * o Integrates source code from Covered Software. * # * * # * o Reads or includes copyrighted data files, such as Nmap's nmap-os-db * # * or nmap-service-probes. * # * * # * o Is designed specifically to execute Covered Software and parse the * # * results (as opposed to typical shell or execution-menu apps, which will * # * execute anything you tell them to). * # * * # * o Includes Covered Software in a proprietary executable installer. The * # * installers produced by InstallShield are an example of this. Including * # * Nmap with other software in compressed or archival form does not * # * trigger this provision, provided appropriate open source decompression * # * or de-archiving software is widely available for no charge. For the * # * purposes of this license, an installer is considered to include Covered * # * Software even if it actually retrieves a copy of Covered Software from * # * another source during runtime (such as by downloading it from the * # * Internet). * # * * # * o Links (statically or dynamically) to a library which does any of the * # * above. * # * * # * o Executes a helper program, module, or script to do any of the above. * # * * # * This list is not exclusive, but is meant to clarify our interpretation * # * of derived works with some common examples. Other people may interpret * # * the plain GPL differently, so we consider this a special exception to * # * the GPL that we apply to Covered Software. Works which meet any of * # * these conditions must conform to all of the terms of this license, * # * particularly including the GPL Section 3 requirements of providing * # * source code and allowing free redistribution of the work as a whole. * # * * # * As another special exception to the GPL terms, Insecure.Com LLC grants * # * permission to link the code of this program with any version of the * # * OpenSSL library which is distributed under a license identical to that * # * listed in the included docs/licenses/OpenSSL.txt file, and distribute * # * linked combinations including the two. * # * * # * Any redistribution of Covered Software, including any derived works, * # * must obey and carry forward all of the terms of this license, including * # * obeying all GPL rules and restrictions. For example, source code of * # * the whole work must be provided and free redistribution must be * # * allowed. All GPL references to "this License", are to be treated as * # * including the special and conditions of the license text as well. * # * * # * Because this license imposes special exceptions to the GPL, Covered * # * Work may not be combined (even as part of a larger work) with plain GPL * # * software. The terms, conditions, and exceptions of this license must * # * be included as well. This license is incompatible with some other open * # * source licenses as well. In some cases we can relicense portions of * # * Nmap or grant special permissions to use it in other open source * # * software. Please contact fyodor@nmap.org with any such requests. * # * Similarly, we don't incorporate incompatible open source software into * # * Covered Software without special permission from the copyright holders. * # * * # * If you have any questions about the licensing restrictions on using * # * Nmap in other works, are happy to help. As mentioned above, we also * # * offer alternative license to integrate Nmap into proprietary * # * applications and appliances. These contracts have been sold to dozens * # * of software vendors, and generally include a perpetual license as well * # * as providing for priority support and updates. They also fund the * # * continued development of Nmap. Please email sales@insecure.com for * # * further information. * # * * # * If you received these files with a written license agreement or * # * contract stating terms other than the terms above, then that * # * alternative license agreement takes precedence over these comments. * # * * # * Source is provided to this software because we believe users have a * # * right to know exactly what a program is going to do before they run it. * # * This also allows you to audit the software for security holes (none * # * have been found so far). * # * * # * Source code also allows you to port Nmap to new platforms, fix bugs, * # * and add new features. You are highly encouraged to send your changes * # * to the dev@nmap.org mailing list for possible incorporation into the * # * main distribution. By sending these changes to Fyodor or one of the * # * Insecure.Org development mailing lists, or checking them into the Nmap * # * source code repository, it is understood (unless you specify otherwise) * # * that you are offering the Nmap Project (Insecure.Com LLC) the * # * unlimited, non-exclusive right to reuse, modify, and relicense the * # * code. Nmap will always be available Open Source, but this is important * # * because the inability to relicense code has caused devastating problems * # * for other Free Software projects (such as KDE and NASM). We also * # * occasionally relicense the code to third parties as discussed above. * # * If you wish to specify special license conditions of your * # * contributions, just say so when you send them. * # * * # * This program is distributed in the hope that it will be useful, but * # * WITHOUT ANY WARRANTY; without even the implied warranty of * # * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Nmap * # * license file for more details (it's in a COPYING file included with * # * Nmap, and also available from https://svn.nmap.org/nmap/COPYING * # * * # ***************************************************************************/ # This module has two classes. ScriptDB is responsible for parsing the # script.db file and fetching each script's name and categories. # ScriptMetadata gets the description, categories, @usage, @output, and # arguments from the script itself. import re import os import sys from zenmapCore.Paths import Path from zenmapCore.UmitLogging import log class ScriptDB (object): """Class responsible for parsing the script.db file, fetching script names and categories.""" LUA_STRING_ESCAPES = { "a": "\a", "b": "\b", "f": "\f", "n": "\n", "r": "\r", "t": "\t", "v": "\v", "\\": "\\", "\"": "\"", "'": "'", "0": "\0" } def __init__(self, script_db_path = None): self.unget_buf = "" self.f = open(script_db_path, "r") try: self.entries_list = self.parse() finally: self.f.close() def getchar(self): if self.unget_buf: c = self.unget_buf[-1] self.unget_buf = self.unget_buf[:-1] return c else: return self.f.read(1) def unget(self, data): if data: self.unget_buf += data def parse(self): """Parses a script.db entry and returns it as a dictionary. An entry looks like this: Entry { filename = "afp-brute.nse", categories = { "auth", "intrusive", } } """ entries = [] while True: entry = self.parse_entry() if not entry: break entries.append(entry) return entries def token(self): """Returns a tuple whose first element is a type ("string", "ident", or "delim") and whose second element is the token text.""" c = self.getchar() while c.isspace(): c = self.getchar() if not c: return None if c.isalpha() or c == "_": ident = [] while c.isalpha() or c.isdigit() or c == "_": ident.append(c) c = self.getchar() self.unget(c) return ("ident", "".join(ident)) elif c in "'\"": string = [] begin_quote = c c = self.getchar() while c != begin_quote: if c == "\\": repl = None c = self.getchar() if not c: raise ScriptDBSyntaxError() if c.isdigit(): d1 = c d2 = self.getchar() d3 = self.getchar() if d1 and d2 and d3: n = int(d1 + d2 + d3) if n > 255: raise ScriptDBSyntaxError() repl = chr(n) else: self.unget(d3) self.unget(d2) if not repl: repl = self.LUA_STRING_ESCAPES.get(c) if not repl: raise ScriptDBSyntaxError() c = repl string.append(c) c = self.getchar() return ("string", "".join(string)) elif c in "{},=": return ("delim", c) else: raise ScriptDBSyntaxError() def expect(self, tokens): for token in tokens: t = self.token() if t != token: raise ScriptDBSyntaxError() def parse_entry(self): entry = {} token = self.token() if not token: return None self.expect((("delim", "{"), ("ident", "filename"), ("delim", "="))) token = self.token() if not token or token[0] != "string": raise ScriptDBSyntaxError() entry["filename"] = token[1] self.expect((("delim", ","), ("ident", "categories"), ("delim", "="), ("delim", "{"))) entry["categories"] = [] token = self.token() if token and token[0] == "string": entry["categories"].append(token[1]) token = self.token() while token == ("delim", ","): token = self.token() if token and token[0] == "string": entry["categories"].append(token[1]) else: break token = self.token() if token != ("delim", "}"): raise ScriptDBSyntaxError() token = self.token() if token == ("delim", ","): token = self.token() if token != ("delim", "}"): raise ScriptDBSyntaxError() return entry def get_entries_list(self): return self.entries_list def nsedoc_tags_iter(f): in_doc_comment = False tag_name = None tag_text = None for line in f: # New LuaDoc comment? if re.match(r'^\s*---', line): in_doc_comment = True if not in_doc_comment: continue # New LuaDoc tag? m = re.match(r'^\s*--+\s*@(\w+)\s*(.*)', line, re.S) if m: if tag_name: yield tag_name, tag_text tag_name = None tag_text = None tag_name = m.group(1) tag_text = m.group(2) else: # Still in comment? m = re.match(r'^\s*--+\s*(.*)', line) if m: # Add to text if we're in a tag. if tag_name: tag_text += m.group(1) + "\n" else: in_doc_comment = False if tag_name: yield tag_name, tag_text tag_name = None tag_text = None class ScriptMetadata (object): """Class responsible for parsing all the script information.""" class Entry (object): """An instance of this class is used to store all the information related to a particular script.""" def __init__(self, filename): self.filename = filename self.categories = [] self.arguments = [] # Arguments including library arguments. self.license = "" self.author = "" self.description = "" self.output = "" self.usage = "" url = property(lambda self: "http://nmap.org/nsedoc/scripts/" + os.path.splitext(self.filename)[0] + ".html") def __init__(self, scripts_dir, nselib_dir): self.scripts_dir = scripts_dir self.nselib_dir = nselib_dir self.library_arguments = {} self.library_requires = {} self.construct_library_arguments() def get_metadata(self, filename): entry = self.Entry(filename) entry.description = self.get_string_variable(filename, "description") entry.arguments = self.get_arguments(entry.filename) entry.license = self.get_string_variable(filename, "license") entry.author = self.get_string_variable(filename, "author") filepath = os.path.join(self.scripts_dir, filename) f = open(filepath, "r") try: for tag_name, tag_text in nsedoc_tags_iter(f): if tag_name == "output" and not entry.output: entry.output = tag_text elif tag_name == "usage" and not entry.usage: entry.usage = tag_text finally: f.close() return entry @staticmethod def get_file_contents(filename): f = open(filename, "r") try: contents = f.read() finally: f.close() return contents def get_string_variable(self, filename, varname): contents = ScriptMetadata.get_file_contents(os.path.join(self.scripts_dir, filename)) # Short string? m = re.search(re.escape(varname) + r'\s*=\s*(["\'])(.*?[^\\])\1', contents) if m: return m.group(2) # Long string? m = re.search(re.escape(varname) + r'\s*=\s*\[(=*)\[(.*?)\]\1\]', contents, re.S) if m: return m.group(2) return None @staticmethod def get_requires(filename): f = open(filename, "r") try: requires = ScriptMetadata.get_requires_from_file(f) finally: f.close() return requires @staticmethod def get_requires_from_file(f): require_expr = re.compile(r'.*\brequire\s*\(?([\'\"])([\w._-]+)\1\)?') requires = [] for line in f.readlines(): m = require_expr.match(line) if m: requires.append(m.group(2)) return requires @staticmethod def get_script_args(filename): f = open(filename, "r") try: args = ScriptMetadata.get_script_args_from_file(f) finally: f.close() return args @staticmethod def get_script_args_from_file(f): """Extracts a list of script arguments from the file given. Results are returned as a list of (argname, description) tuples.""" args = [] for tag_name, tag_text in nsedoc_tags_iter(f): m = re.match(r'([\w._-]+)', tag_text) if (tag_name == "arg" or tag_name == "args") and m: args.append((m.group(1), re.sub(r'^[\w._-]+','',tag_text))) return args def get_arguments(self, filename): """Returns list of arguments including library arguments on passing the file name.""" filepath = os.path.join(self.scripts_dir, filename) script_args = self.get_script_args(filepath) # Recursively walk through the libraries required by the script (and # the libraries they require, etc.), adding all arguments. library_args = [] seen = set() pool = set(self.get_requires(filepath)) while pool: require = pool.pop() if require in seen: continue seen.add(require) sub_requires = self.library_requires.get(require) if sub_requires: pool.update(set(sub_requires)) require_args = self.library_arguments.get(require) if require_args: library_args += require_args return script_args + library_args def construct_library_arguments(self): """Constructs a dictionary of library arguments using library names as keys and arguments as values. Each argument is really a (name, description) tuple.""" for filename in os.listdir(self.nselib_dir): filepath = os.path.join(self.nselib_dir, filename) if not os.path.isfile(filepath): continue base, ext = os.path.splitext(filename) if ext == ".lua" or ext == ".luadoc": libname = base else: libname = filename self.library_arguments[libname] = self.get_script_args(filepath) self.library_requires[libname] = self.get_requires(filepath) def get_script_entries(scripts_dir, nselib_dir): """Merge the information obtained so far into one single entry for each script and return it.""" metadata = ScriptMetadata(scripts_dir, nselib_dir) try: scriptdb = ScriptDB(os.path.join(scripts_dir, "script.db")) except IOError: return [] entries = [] for dbentry in scriptdb.get_entries_list(): entry = metadata.get_metadata(dbentry["filename"]) # Categories is the only thing ScriptMetadata doesn't take care of. entry.categories = dbentry["categories"] entries.append(entry) return entries if __name__ == '__main__': for entry in get_script_entries(): print "*" * 75 print "Filename:", entry.filename print "Categories:", entry.categories print "License:", entry.license print "Author:", entry.author print "URL:", entry.url print "Description:", entry.description print "Arguments:", [x[0] for x in entry.arguments] print "Output:" print entry.output print "Usage:" print entry.usage print "*" * 75
import sys import cli intf= sys.argv[1:] intf = ''.join(intf[0]) print "\n\n *** Configuring interface %s with 'configurep' function *** \n\n" %intf cli.configurep(["interface loopback55","ip address 10.55.55.55 255.255.255.0","no shut","end"]) print "\n\n *** Configuring interface %s with 'configure' function *** \n\n" cmd='interface %s,logging event link-status ,end' % intf cli.configure(cmd.split(',')) print "\n\n *** Printing show cmd with 'executep' function *** \n\n" cli.executep('show ip interface brief') print "\n\n *** Printing show cmd with 'execute' function *** \n\n" output= cli.execute('show run interface %s' %intf) print (output) print "\n\n *** Printing show cmd with 'clip' function *** \n\n" cli.clip('show run interface %s' %intf)
from tello import Tello import sys from datetime import datetime import time import TelloPro tello = Tello() command_lst = [] command_lst.append(TelloPro.get_instance('takeoff', -1, "")) command_lst.append(TelloPro.get_instance('up', 30, "")) command_lst.append(TelloPro.get_instance('down', 30, "")) command_lst.append(TelloPro.get_instance('left', 30, "")) command_lst.append(TelloPro.get_instance('right', 30, "")) command_lst.append(TelloPro.get_instance('forward', 30, "")) command_lst.append(TelloPro.get_instance('back', 30, "")) command_lst.append(TelloPro.get_instance('cw', 60, "")) command_lst.append(TelloPro.get_instance('ccw', 60, "")) command_lst.append(TelloPro.get_instance('flip', -1, "l")) command_lst.append(TelloPro.get_instance('land', -1, "")) for command in command_lst: tello.send_command_instance(command)
""" Skeleton data structures """ #----------------------------------------------------------------------------- # Copyright (c) 2013, yt Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- from yt.data_objects.grid_patch import \ AMRGridPatch from yt.geometry.grid_geometry_handler import \ GridIndex from yt.data_objects.static_output import \ Dataset from .fields import SkeletonFieldInfo class SkeletonGrid(AMRGridPatch): _id_offset = 0 def __init__(self, id, index, level, start, dimensions): AMRGridPatch.__init__(self, id, filename=index.index_filename, index=index) self.Parent = [] self.Children = [] self.Level = level self.start_index = start.copy() self.stop_index = self.start_index + dimensions self.ActiveDimensions = dimensions.copy() def __repr__(self): return "SkeletonGrid_%04i (%s)" % (self.id, self.ActiveDimensions) class SkeletonHierarchy(GridIndex): grid = SkeletonGrid def __init__(self, ds, dataset_type='skeleton'): self.dataset_type = dataset_type # for now, the index file is the dataset! self.index_filename = self.dataset.parameter_filename self.directory = os.path.dirname(self.index_filename) GridIndex.__init__(self, ds, dataset_type) def _detect_output_fields(self): # This needs to set a self.field_list that contains all the available, # on-disk fields. # NOTE: Each should be a tuple, where the first element is the on-disk # fluid type or particle type. Convention suggests that the on-disk # fluid type is usually the dataset_type and the on-disk particle type # (for a single population of particles) is "io". pass def _count_grids(self): # This needs to set self.num_grids pass def _parse_index(self): # This needs to fill the following arrays, where N is self.num_grids: # self.grid_left_edge (N, 3) <= float64 # self.grid_right_edge (N, 3) <= float64 # self.grid_dimensions (N, 3) <= int # self.grid_particle_count (N, 1) <= int # self.grid_levels (N, 1) <= int # self.grids (N, 1) <= grid objects # pass def _populate_grid_objects(self): # For each grid, this must call: # grid._prepare_grid() # grid._setup_dx() # This must also set: # grid.Children <= list of child grids # grid.Parent <= parent grid # This is handled by the frontend because often the children must be # identified. pass class SkeletonDataset(Dataset): _index_class = SkeletonHierarchy _field_info_class = SkeletonFieldInfo def __init__(self, filename, dataset_type='skeleton', storage_filename=None, units_override=None): self.fluid_types += ('skeleton',) Dataset.__init__(self, filename, dataset_type, units_override=units_override) self.storage_filename = storage_filename def _set_code_unit_attributes(self): # This is where quantities are created that represent the various # on-disk units. These are the currently available quantities which # should be set, along with examples of how to set them to standard # values. # # self.length_unit = self.quan(1.0, "cm") # self.mass_unit = self.quan(1.0, "g") # self.time_unit = self.quan(1.0, "s") # self.time_unit = self.quan(1.0, "s") # # These can also be set: # self.velocity_unit = self.quan(1.0, "cm/s") # self.magnetic_unit = self.quan(1.0, "gauss") pass def _parse_parameter_file(self): # This needs to set up the following items. Note that these are all # assumed to be in code units; domain_left_edge and domain_right_edge # will be updated to be in code units at a later time. This includes # the cosmological parameters. # # self.unique_identifier # self.parameters <= full of code-specific items of use # self.domain_left_edge <= array of float64 # self.domain_right_edge <= array of float64 # self.dimensionality <= int # self.domain_dimensions <= array of int64 # self.periodicity <= three-element tuple of booleans # self.current_time <= simulation time in code units # # We also set up cosmological information. Set these to zero if # non-cosmological. # # self.cosmological_simulation <= int, 0 or 1 # self.current_redshift <= float # self.omega_lambda <= float # self.omega_matter <= float # self.hubble_constant <= float pass @classmethod def _is_valid(self, *args, **kwargs): # This accepts a filename or a set of arguments and returns True or # False depending on if the file is of the type requested. return False
from django.contrib import admin from .models import Article, Category, User from django import forms from pagedown.widgets import AdminPagedownWidget class ArticleForm(forms.ModelForm): text = forms.CharField(widget=AdminPagedownWidget()) class Meta: model = Article fields = '__all__' class ArticleAdmin(admin.ModelAdmin): list_display = ('title', 'publish_time', 'last_modify_time', 'id') class CategoryAdmin(admin.ModelAdmin): list_display = ('name', 'created_time', 'last_modify_time', 'id') class UserAdmin(admin.ModelAdmin): list_display = ('username', 'nickname', 'created_time', 'id') admin.site.register(Article, ArticleAdmin) admin.site.register(Category, CategoryAdmin) admin.site.register(User, UserAdmin)
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") load("//third_party:repo.bzl", "clean_dep") def configure_snappy(): http_archive( name = "com_github_google_snappy", build_file = clean_dep("//third_party/snappy:BUILD.bzl"), sha256 = "e170ce0def2c71d0403f5cda61d6e2743373f9480124bcfcd0fa9b3299d428d9", strip_prefix = "snappy-1.1.9", url = "https://github.com/google/snappy/archive/1.1.9.zip", )
#!/usr/bin/env python import logging import os import sys if os.environ.get("ALLENNLP_DEBUG"): LEVEL = logging.DEBUG else: level_name = os.environ.get("ALLENNLP_LOG_LEVEL") LEVEL = logging._nameToLevel.get(level_name, logging.INFO) sys.path.insert(0, os.path.dirname(os.path.abspath(os.path.join(__file__, os.pardir)))) logging.basicConfig(format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", level=LEVEL) # filelock emits too many messages, so tell it to be quiet unless it has something # important to say. _filelock_logger = logging.getLogger("filelock") _filelock_logger.setLevel(logging.WARNING) from allennlp.commands import main # noqa def run(): main(prog="allennlp") if __name__ == "__main__": run()
from datetime import datetime from jose import jwt from jose.utils import base64url_decode from jose.exceptions import JWTError from vds_vault_oauth.utilities import OAuthContainer # Token that stores the necessary tokens and provides the ability to decode & log them. class Token(): def __init__(self, token_value, token_type, logger): self.token_value = token_value self.token_type = token_type self.token_claims = dict() self.logger = logger def decodeTokens(self): if (self.token_value != None and self.token_type != "refresh_token"): try: claims = jwt.get_unverified_claims(self.token_value) headers = jwt.get_unverified_headers(self.token_value) self.token_claims.update(headers) self.token_claims.update(claims) except JWTError as e: import sys self.logger.log(("\t%s: %s\n" % (str(sys.exc_info()[0]), str(e)))) self.logger.log(("\t%s: %s\n\n" % ("Error", "Non-JWT token detected. Verifying against introspection endpoint."))) return False return True def verifyTokenClaims(self): self.logger.log(("\n\t" + '{s:{c}^{n}}'.format(s=" Verifying '" + self.token_type + "' Claims ",n=65,c='-') + "\n\n")) if ('sub' in self.token_claims): self.logger.log(("\t%s: %s\n" % ("The 'sub' claim exists", self.token_claims['sub']))) else: self.logger.log(("\n\tINVALID: The 'sub' claim does not exist. This is required.\n"), "ERROR") if ('aud' in self.token_claims): self.logger.log(("\t%s: %s\n" % ("The 'aud' claim exists", self.token_claims['aud']))) else: self.logger.log(("\n\tINVALID: The 'aud' claim does not exist. This is optionally required.\n"), "ERROR") if ('exp' in self.token_claims): expiry = datetime.utcfromtimestamp(int(self.token_claims['exp'])).strftime('%Y-%m-%d %H:%M:%S') self.logger.log(("\t%s: %s\n" % ("The 'exp' claim exists", str(self.token_claims['exp']) + " (" + str(expiry) + " UTC)"))) else: self.logger.log(("\n\tINVALID: The 'exp' claim does not exist.\n"), "ERROR") if self.token_type == "access_token": if ('cid' in self.token_claims): self.logger.log(("\t%s: %s\n" % ("The 'cid' claim exists", self.token_claims['cid']))) elif ('appid' in self.token_claims): self.logger.log(("\t%s: %s\n" % ("The 'appid' claim exists", self.token_claims['appid']))) else: self.logger.log(("\n\tINVALID: The 'cid' or 'appid' claim does not exist.\n"), "ERROR") self.logger.log(("\n\n")) def logTokenClaims(self): for key, value in self.token_claims.items(): self.logger.log(("\t%s: %s\n" % (key, value))) self.logger.log(("\n\t" + '{s:{c}^{n}}'.format(s='',n=65,c='-') + "\n\n")) self.logger.log(("\n"))
from django.views.generic import (TemplateView, ListView, DetailView, CreateView, UpdateView) from django.contrib.auth.mixins import LoginRequiredMixin from django.urls import reverse_lazy from django.conf import settings from .forms import ChildEditForm, ChildAddForm from .models import Child, MedicalUpdate from images.models import Photo from django.contrib.auth.models import User from django.shortcuts import render, get_object_or_404, redirect class ChildListView(LoginRequiredMixin, ListView): """View to see a list of all children.""" template_name = "child_list.html" login_url = reverse_lazy('auth_login') context_object_name = 'children' model = Child def get(self, *args, **kwargs): """get args and kwargs""" return super().get(*args, **kwargs) def get_context_data(self, **kwargs): """return context data""" context = super().get_context_data(**kwargs) return context class ChildMedicalUpdateView(LoginRequiredMixin, DetailView): template_name = 'child_medical_veiw.html' model = MedicalUpdate login_url = reverse_lazy('auth_url') context_object_name = 'medicalupdate' def get_queryset(self): return MedicalUpdate.objects.filter(child__id=self.kwargs['pk']) def get_context_data(self, *args, **kwargs): context = super().get_context_data(*args, **kwargs) context['child'] = Child.objects.filter(id=self.kwargs['pk']).first() context['medicalupdate'] = self.get_queryset() return context # # OLD VERSION:------------------------------------------------------ # don't delete until presentation # class ChildEditView(LoginRequiredMixin, UpdateView): # """Lets admin or super edit a child profile.""" # template_name = 'child_edit.html' # model = Child # form_class = ChildEditForm # login_url = reverse_lazy('auth_login') # success_url = reverse_lazy('children') # # DO # # change to use pk # slug_url_kwarg = 'username' # slug_field = 'user__username' # def get(self, *args, **kwargs): # """Get.""" # self.kwargs['username'] = self.request.user.get_username() # return super().get(*args, **kwargs) # def post(self, *args, **kwargs): # """Post.""" # self.kwargs['username'] = self.request.user.get_username() # return super().post(*args, **kwargs) # def get_form_kwargs(self): # """Get kwargs.""" # kwargs = super().get_form_kwargs() # kwargs.update({'username': self.request.user.get_username()}) # return kwargs # def form_valid(self, form): # """Validate form.""" # # form.instance.user.email = form.data['email'] # form.instance.user.first_name = form.data['first_name'] # form.instance.user.last_name = form.data['last_name'] # form.instance.user.save() # return super().form_valid(form) class ChildEditView(LoginRequiredMixin, UpdateView): """Lets admin or super edit a child profile.""" template_name = 'child_edit.html' model = Child form_class = ChildEditForm login_url = reverse_lazy('auth_login') success_url = reverse_lazy('childlist') def get(self, *args, **kwargs): """Get info""" # DO # maybe only need return super self.kwargs['username'] = self.request.user.get_username() return super().post(*args, **kwargs) def post(self, *args, **kwargs): """Post for child edit form.""" # Do # same as the get comment self.kwargs['username'] = self.request.user.get_username() return super().post(*args, **kwargs) def get_form_kwargs(self): """Get kwargs from edit form.""" kwargs = super().get_form_kwargs() kwargs.update({'username': self.request.user.get_username()}) return kwargs def form_valid(self, form): """Validate form data.""" # form.instance.user = self.request.user # form.instance.save() # import pdb; pdb.set_trace() photo = form.instance.photos.first() if photo and 'image' not in form.files: photo.delete() elif photo: photo.image = form.files['image'] photo.description = form.data['description'] photo.save() elif 'image' in form.files: # create new photo instance photo = Photo( child=form.instance, image=form.files['image'], description=form.data['description'] ) photo.save() return super().form_valid(form) class ChildDetailView(LoginRequiredMixin, DetailView): template_name = 'child_profile.html' model = Child login_url = reverse_lazy('auth_url') pk_url_kwarg = 'pk' # DON'T DELETE # NEED FOR REFERENCE ---------------------------------------- # def get_context_data(self, **kwargs): # context = super().get_context_data(**kwargs) # # photos = Photo.objects.filter(user__username=self.request.user.username) # # import pdb; pdb.set_trace() # # context['child_photos'] = photos # return context # def get_queryset(self): # return Child.objects.filter(published='PUBLIC') # ------------------------------------------------------------- class ChildCreateView(LoginRequiredMixin, CreateView): """Lets a staff with appropriate permissions add a child to the system.""" pass template_name = 'child_create.html' model = Child form_class = ChildAddForm success_url = reverse_lazy('childlist') login_url = reverse_lazy('auth_login') def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs.update({'username': self.request.user.username}) return kwargs def form_valid(self, form): form.instance.user = self.request.user form.instance.save() if 'image' in form.files: # create new photo instance photo = Photo( child=form.instance, image=form.files['image'], description=form.data['description'] ) photo.save() return super().form_valid(form)
# Generated by Django 3.1.7 on 2021-05-11 21:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('MatchApp', '0061_apadrinamiento'), ] operations = [ migrations.AlterField( model_name='apadrinamiento', name='tipo_ingreso', field=models.CharField(blank=True, choices=[('Combinado', 'Combinado'), ('Unico', 'Unico'), ('Directo Albergue', 'Directo Albergue')], max_length=20, null=True, verbose_name='Tipo de Ingreso'), ), ]
from torch import nn class ConvolutionalBlock(nn.Module): def __init__(self, in_channels=128, out_channels=256, kernel_size=3, padding=1, stride=1, padding_mode='zeros'): super().__init__() self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, padding=padding, stride=stride, padding_mode=padding_mode) self.bn1 = nn.BatchNorm1d(out_channels) self.relu1 = nn.ReLU() def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) return out
import sklearn.metrics as metrics import pandas as pd import numpy as np def repair_chrdata(df, tCol): ### Parameters: # df: input dataframe # tCol: targeted column label with NaN ### Output # df: repaired dataframe # word: string of related dataframe column with some records have NaN in targeted column # count: number of records fixed in the targeted column with NaN # work out number of NaN records need to fix dFrm = df[df[tCol].isnull()] count = len(dFrm) # work out the fill up string (most appearance) at targeted column for NULL tword = df[tCol].unique().tolist() # print(tword) wordLT = df[tCol].value_counts(dropna=False) word = '' wordCnt = 0 for index, value in wordLT.items(): print(f'[COUNT] Index: {index}, Value: {value}') if wordCnt < value: word = index wordCnt = value # print(word) # print(wordLT) # update the targeted NaN with the most frequent string mask = df[tCol].isnull() df.loc[mask, tCol] = word print(f'[REPAIR] "{tCol}" with string: {word}, Count: {count}') return df, word, count # Repair a single number data column contained NaN with median value def repair_numdata(df, tCol): ### Parameters: # df: input dataframe # tCol: targeted column label with NaN ### Output # df: repaired dataframe # medianVal: median value of related dataframe column with some records have NaN in targeted column # count: number of records fixed in the targeted column with NaN # work out number of NaN records need to fix dFrm = df[df[tCol].isnull()] count = len(dFrm) # work out the median value of the records from targeted column medianVal = df[tCol].median() # update the targeted NaN with the median value mask = df[tCol].isnull() df.loc[mask, tCol] = medianVal print(f'[REPAIR] "{tCol}" Median: {medianVal}, Count: {count}') return df, medianVal, count ### Work out the educated guess targets to repair dataframe with NaN in 'repair_rdata' function def repair_target(df, tCol, rCol): ### Parameters: # df: input dataframe # tCol: targeted column label with NaN # rCol: related column label without NaN for educated guess ### Output # target: column value of related column that have NaN in targeted column repair = df[df[tCol].isnull()] # print(repair[[rCol, tCol]]) target = sorted(repair[rCol].unique().tolist()) print(f'[TARGET] {tCol} NaN target: {target}') return target ### Educated guess to repair dataframe column contained NaN with mean value of related ### dataframe column def repair_rcdata(df, tCol, rCol, target): ### Parameters: # df: input dataframe # tCol: targeted column label with NaN # rCol: related column label without NaN for educated guess # target: column value of related column that have NaN in targeted column ### Output # df: repaired dataframe # meanVal: mean value of related dataframe column with some records have NaN in targeted column # count: number of records fixed in the targeted column with NaN ### Main coding # work out number of NaN records need to fix dFrm = df[df[tCol].isnull()] dFrm = dFrm[dFrm[rCol] == target] count = len(dFrm) # work out the mean value of the records from related column repair = df.loc[df[rCol] == target] meanVal = round(repair[tCol].mean(), 3) if np.isnan(meanVal): meanVal = np.float64(0) # update the targeted NaN with the calculated mean value of related records df[tCol] = df.apply( lambda row: meanVal if np.isnan(row[tCol]) & (row[rCol] == target) else row[tCol], axis=1 ) print(f'[REPAIR] {tCol}({target}) Mean: {meanVal}, Count: {count}') return df, meanVal, count def regression_results(y_true, y_pred): # Regression metrics explained_variance=metrics.explained_variance_score(y_true, y_pred) mean_absolute_error=metrics.mean_absolute_error(y_true, y_pred) mse=metrics.mean_squared_error(y_true, y_pred) # mean_squared_log_error=metrics.mean_squared_log_error(y_true, y_pred) # median_absolute_error=metrics.median_absolute_error(y_true, y_pred) r2=metrics.r2_score(y_true, y_pred) print('explained_variance: ', round(explained_variance,4)) # print('mean_squared_log_error: ', round(mean_squared_log_error,4)) print('r-squared (r2): ', round(r2,4)) print('mean_absolute_error (MAE): ', round(mean_absolute_error,4)) print('mean_squared_error (MSE): ', round(mse,4)) print('root_mean_squared_error (RMSE): ', round(np.sqrt(mse),4))
import os import numpy as np import pytest from ci_framework import FlopyTestSetup, base_test_dir import flopy base_dir = base_test_dir(__file__, rel_path="temp", verbose=True) ex_pth = os.path.join("..", "examples", "data", "mf2005_test") testmodels = [ os.path.join(ex_pth, f) for f in os.listdir(ex_pth) if f.endswith(".nam") ] @pytest.mark.parametrize( "namfile", testmodels, ) def test_checker_on_load(namfile): # load all of the models in the mf2005_test folder # model level checks are performed by default on load() checker_on_load(namfile) def checker_on_load(mfnam): f = os.path.basename(mfnam) d = os.path.dirname(mfnam) m = flopy.modflow.Modflow.load(f, model_ws=d) assert isinstance( m, flopy.modflow.Modflow ), "Not a flopy.modflow.Modflow instance" def test_bcs_check(): model_ws = f"{base_dir}_test_bcs_check" test_setup = FlopyTestSetup(verbose=True, test_dirs=model_ws) mf = flopy.modflow.Modflow(version="mf2005", model_ws=model_ws) # test check for isolated cells dis = flopy.modflow.ModflowDis( mf, nlay=2, nrow=3, ncol=3, top=100, botm=95 ) bas = flopy.modflow.ModflowBas(mf, ibound=np.ones((2, 3, 3), dtype=int)) chk = bas.check() dis = flopy.modflow.ModflowDis( mf, nlay=3, nrow=5, ncol=5, top=100, botm=95 ) ibound = np.zeros((3, 5, 5), dtype=int) ibound[1, 1, 1] = 1 # fully isolated cell ibound[0:2, 4, 4] = 1 # cell connected vertically to one other cell bas = flopy.modflow.ModflowBas(mf, ibound=ibound) mf._mg_resync = True chk = bas.check() assert chk.summary_array["desc"][0] == "isolated cells in ibound array" assert ( chk.summary_array.i[0] == 1 and chk.summary_array.i[0] == 1 and chk.summary_array.j[0] == 1 ) assert len(chk.summary_array) == 1 ghb = flopy.modflow.ModflowGhb( mf, stress_period_data={0: [0, 0, 0, 100, 1]} ) riv = flopy.modflow.ModflowRiv( mf, stress_period_data={ 0: [[0, 0, 0, 101, 10, 100], [0, 0, 1, 80, 10, 90]] }, ) chk = ghb.check() assert chk.summary_array["desc"][0] == "BC in inactive cell" chk = riv.check() assert chk.summary_array["desc"][4] == "RIV stage below rbots" assert np.array_equal(chk.summary_array["j"], np.array([0, 1, 1, 1, 1])) def test_properties_check(): # test that storage values ignored for steady state model_ws = f"{base_dir}_test_properties_check" test_setup = FlopyTestSetup(verbose=True, test_dirs=model_ws) mf = flopy.modflow.Modflow( version="mf2005", model_ws=model_ws, ) dis = flopy.modflow.ModflowDis( mf, nrow=2, ncol=2, top=np.array([[100, np.nan], [100, 100]]), nper=3, steady=True, ) chk = dis.check() assert len(chk.summary_array) == 1 kij = ( chk.summary_array["k"][0], chk.summary_array["i"][0], chk.summary_array["j"][0], ) assert kij == (0, 0, 1) lpf = flopy.modflow.ModflowLpf(mf, sy=np.ones((2, 2)), ss=np.ones((2, 2))) chk = lpf.check() assert len(chk.summary_array) == 0 # test k values check lpf = flopy.modflow.ModflowLpf( mf, hk=np.array([[1, 1e10], [1, -1]]), hani=np.array([[1, 1], [1, -1]]), vka=np.array([[1e10, 0], [1, 1e-20]]), ) chk = lpf.check() ind1 = np.array( [ True if list(inds) == [0, 1, 1] else False for inds in chk.view_summary_array_fields(["k", "i", "j"]) ] ) ind1_errors = chk.summary_array[ind1]["desc"] ind2 = np.array( [ True if list(inds) == [0, 0, 1] else False for inds in chk.view_summary_array_fields(["k", "i", "j"]) ] ) ind2_errors = chk.summary_array[ind2]["desc"] ind3 = np.array( [ True if list(inds) == [0, 0, 0] else False for inds in chk.view_summary_array_fields(["k", "i", "j"]) ] ) ind3_errors = chk.summary_array[ind3]["desc"] assert ( "zero or negative horizontal hydraulic conductivity values" in ind1_errors ) assert ( "horizontal hydraulic conductivity values below checker threshold of 1e-11" in ind1_errors ) assert "negative horizontal anisotropy values" in ind1_errors assert ( "vertical hydraulic conductivity values below checker threshold of 1e-11" in ind1_errors ) assert ( "horizontal hydraulic conductivity values above checker threshold of 100000.0" in ind2_errors ) assert ( "zero or negative vertical hydraulic conductivity values" in ind2_errors ) assert ( "vertical hydraulic conductivity values above checker threshold of 100000.0" in ind3_errors ) def test_oc_check(): m = flopy.modflow.Modflow() oc = flopy.modflow.mfoc.ModflowOc(m) chk = oc.check() assert len(chk.summary_array) == 1, len(chk.summary_array) assert "DIS package not available" in chk.summary_array[0]["desc"] flopy.modflow.ModflowDis(m) oc.stress_period_data = {(0, 0): ["save head", "save budget"]} chk = oc.check() # check passsed assert len(chk.summary_array) == 0, len(chk.summary_array) oc.stress_period_data = {(0, 0): ["save"]} chk = oc.check() assert len(chk.summary_array) == 1, len(chk.summary_array) assert "too few words" in chk.summary_array[0]["desc"] oc.stress_period_data = {(0, 0): ["save it"]} chk = oc.check() assert len(chk.summary_array) == 1, len(chk.summary_array) assert "action 'save it' ignored" in chk.summary_array[0]["desc"] oc.stress_period_data = {(1, 1): ["save head", "save budget"]} chk = oc.check() assert len(chk.summary_array) == 1, len(chk.summary_array) assert "OC stress_period_data ignored" in chk.summary_array[0]["desc"] if __name__ == "__main__": print(f"numpy version: {np.__version__}") for mfnam in testmodels: checker_on_load(mfnam) test_bcs_check() test_properties_check() test_oc_check()
from urlparse import urlparse from django import forms from tower import ugettext_lazy as _lazy import amo from mkt.api.forms import SluggableModelChoiceField from mkt.webapps.models import Addon class ReceiptForm(forms.Form): app = SluggableModelChoiceField( queryset=Addon.objects.filter(type=amo.ADDON_WEBAPP), sluggable_to_field_name='app_slug') class TestInstall(forms.Form): TYPE_CHOICES = (('none', _lazy('No receipt')), ('ok', _lazy(u'Test receipt')), ('expired', _lazy(u'Expired test receipt')), ('invalid', _lazy(u'Invalid test receipt')), ('refunded', _lazy(u'Refunded test receipt'))) receipt_type = forms.ChoiceField(choices=TYPE_CHOICES) manifest_url = forms.URLField() def clean(self): data = self.cleaned_data url = data.get('manifest_url') if url: parsed = urlparse(url) data['root'] = '%s://%s' % (parsed.scheme, parsed.netloc) return data
from entities.workflow import Workflow class Main(Workflow): def _run(self, job): return {}
import operator s1 = "#include <boost/" lines1 = {} with open('./boost_includes_1') as f: lines=f.readlines() for line in lines: if s1 in line: line1 = line[line.find('#'):line.find('\n')] if lines1.has_key(line1): lines1[line1] = lines1[line1] + 1 else: lines1[line1]=1; sorted_x = sorted(lines1.items(), key=operator.itemgetter(1)) for line in sorted_x: print line f.close() ''' sed scripts to remove some boost deps: make_shared: find . -type f -not -path '*/\.*' -exec sed -i 's/boost::make_shared/std::make_shared/g' {} + find . -type f -not -path '*/\.*' -exec sed -i 's/#include <boost\/make_shared.hpp>/#include <memory>/g' {} + shared_ptr: find . -type f -not -path '*/\.*' -exec sed -i 's/std::shared_ptr/std::shared_ptr/g' {} + find . -type f -not -path '*/\.*' -exec sed -i 's/#include <boost\/shared_ptr.hpp>/#include <memory>/g' {} + bind: find . -type f -not -path '*/\.*' -exec sed -i 's/boost::bind/std::bind/g' {} + find . -type f -not -path '*/\.*' -exec sed -i 's/#include <boost\/bind.hpp>/#include <functional>/g' {} + function: find . -type f -not -path '*/\.*' -exec sed -i 's/boost::function/std::function/g' {} + find . -type f -not -path '*/\.*' -exec sed -i 's/#include <boost\/function.hpp>/#include <functional>/g' {} + scoped_ptr find . -type f -not -path '*/\.*' -exec sed -i 's/boost::scoped_ptr/std::unique_ptr/g' {} + find . -type f -not -path '*/\.*' -exec sed -i 's/#include <boost\/scoped_ptr.hpp>/#include <memory>/g' {} + To remove: <boost/math/special_functions/fpclassify.hpp>: marketmodel.cpp, matrices.cpp, simulatedannealing.cpp change to <cmath> change boost::math::isnan to std::isnan and boost::math::isinf to std::isinf script: find . -type f -not -path '*/\.*' -not -path '*/extra' -exec sed -i 's/boost::math::isnan/std::isnan/g' {} + find . -type f -not -path '*/\.*' -not -path '*/extra' -exec sed -i 's/boost::math::isinf/std::isinf/g' {} + find */marketmodel.cpp */matrices.cpp */*/*/simulatedannealing.hpp -type f -not -path '*/\.*' -not -path '*/extra' -exec sed -i 's/#include <boost\/math\/special_functions\/fpclassify.hpp>/#include <cmath>/g' {} + Other math/special_functions also similar: gamma.hpp = not replacable - only gaama_q and gamma_q_inv in noarbsabr.cpp atanh.hpp: find . -type f -not -path '*/\.*' -exec sed -i 's/boost::math::atanh/std::atanh/g' {} + find blackformula.cpp -type f -not -path '*/\.*' -exec sed -i 's/#include <boost\/math\/special_functions\/atanh.hpp>/#include <cmath>/g' {} + erf.hpp find */*/*/*/gaussian1dmodel.cpp -type f -not -path '*/\.*' -not -path '*/extra' -exec sed -i 's/boost::math::erf/std::erf/g' {} + find */*/*/*/gaussian1dmodel.hpp -type f -not -path '*/\.*' -not -path '*/extra' -exec sed -i 's/#include <boost\/math\/special_functions\/erf.hpp>/#include <cmath>/g' {} + --- boost/atomic: find observable.hpp observable.cpp singleton.hpp -type f -not -path '*/\.*' -not -path '*/extra' -exec sed -i 's/boost::atomic/std::atomic/g' {} + find observable.hpp observable.cpp singleton.hpp -type f -not -path '*/\.*' -not -path '*/extra' -exec sed -i 's/#include <boost\/math\/special_functions\/erf.hpp>/#include <cmath>/g' {} + boost/random not doing for lambda as non-polymorphic only maybe not doing for thread at present '''
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from google.appengine.ext import ndb from ndb_relations.relations import OneToMany class User2(ndb.Model): name = ndb.StringProperty() class Order2(ndb.Model): pass class OrderItem2(ndb.Model): name = ndb.StringProperty() price = ndb.FloatProperty() class OrderOwner(OneToMany): origin = ndb.KeyProperty(User2) destin = ndb.KeyProperty(Order2) class Item(ndb.Model): name = ndb.StringProperty() class OrderItemRelation(OneToMany): origin = ndb.KeyProperty(Order2) destin = ndb.KeyProperty(Item)
# Copyright 2017 Google Inc. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Tests for VariantCalling CLIF python wrappers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest from third_party.nucleus.io import fasta from third_party.nucleus.io import sam from third_party.nucleus.util import ranges from deepvariant import testdata from deepvariant.protos import deepvariant_pb2 from deepvariant.python import allelecounter as _allelecounter from deepvariant.python import variant_calling def setUpModule(): testdata.init() class WrapVariantCallingTest(absltest.TestCase): def test_call_from_allele_counter(self): ref = fasta.IndexedFastaReader(testdata.CHR20_FASTA) sam_reader = sam.SamReader(testdata.CHR20_BAM) size = 1000 region = ranges.make_range('chr20', 10000000, 10000000 + size) allele_counter = _allelecounter.AlleleCounter( ref.c_reader, region, deepvariant_pb2.AlleleCounterOptions(partition_size=size)) caller = variant_calling.VariantCaller( deepvariant_pb2.VariantCallerOptions( min_count_snps=2, min_count_indels=2, min_fraction_snps=0.12, min_fraction_indels=0.12, sample_name='sample_name', p_error=0.001, max_gq=50, gq_resolution=1, ploidy=2)) # Grab all of the reads in our region and add them to the allele_counter. reads = list(sam_reader.query(region)) self.assertNotEmpty(reads) for read in reads: allele_counter.add(read) # Get the candidates records for this whole region. candidates = caller.calls_from_allele_counter(allele_counter) # We should have at least some candidates and some gvcf records. self.assertNotEmpty(candidates) # Each candidate should be a DeepVariantCall. for candidate in candidates: self.assertIsInstance(candidate, deepvariant_pb2.DeepVariantCall) if __name__ == '__main__': absltest.main()
from os import environ import os import time from urllib.parse import urlparse import aiohttp from pyshorteners import Shortener from bs4 import BeautifulSoup import requests import re from pyrogram import Client, filters API_ID = environ.get('API_ID') API_HASH = environ.get('API_HASH') BOT_TOKEN = environ.get('BOT_TOKEN') API_KEY = environ.get('API_KEY') CHANNEL = environ.get('CHANNEL') HOWTO = environ.get('HOWTO') bot = Client('Droplink bot', api_id=API_ID, api_hash=API_HASH, bot_token=BOT_TOKEN) @bot.on_message(filters.command('start') & filters.private) async def start(bot, message): await message.reply( f"**Hi {message.chat.first_name}!**\n\n" "I'm doodurl bot. Just send me link and get short link") @bot.on_message(filters.command('help') & filters.private) async def start(bot, message): await message.reply( f"**Hello, {message.chat.first_name}!**\n\n" "**If you send post which had doodstream Links, texts & images... Than I'll convert & replace all pdisk links with your doodurk links \nMessage me @mrpunisher52 For more help-**") @bot.on_message(filters.command('support') & filters.private) async def start(bot, message): await message.reply( f"**Hey, {message.chat.first_name}!**\n\n" "**please contact me on @mrpunisher52 or for more join @hornyworld22**") @bot.on_message(filters.text & filters.private) async def pdisk_uploader(bot, message): new_string = str(message.text) conv = await message.reply("Converting...") dele = conv["message_id"] try: pdisk_link = await multi_pdisk_up(new_string) await bot.delete_messages(chat_id=message.chat.id, message_ids=dele) await message.reply(f'{pdisk_link}' , quote=True) except Exception as e: await message.reply(f'Error: {e}', quote=True) @bot.on_message(filters.photo & filters.private) async def pdisk_uploader(bot, message): new_string = str(message.caption) conv = await message.reply("Converting...") dele = conv["message_id"] try: pdisk_link = await multi_pdisk_up(new_string) if(len(pdisk_link) > 1020): await bot.delete_messages(chat_id=message.chat.id, message_ids=dele) await message.reply(f'{pdisk_link}' , quote=True) else: await bot.delete_messages(chat_id=message.chat.id, message_ids=dele) await bot.send_photo(message.chat.id, message.photo.file_id, caption=f'{pdisk_link}') except Exception as e: await message.reply(f'Error: {e}', quote=True) async def pdisk_up(link): if ('pdisk' in link or 'kuklink' in link or 'kofilink' in link or 'cofilink' in link or 'bit' in link or 'vdshort' in link or 'vidrivers' in link or 'dplinks' in link or 'wslinker' in link or 'mdisk' in link or 'dood' in link): url = 'https://doodurl.in/api' params = {'api': API_KEY, 'url': link} async with aiohttp.ClientSession() as session: async with session.get(url, params=params, raise_for_status=True) as response: data = await response.json() v_url = data["shortenedUrl"] else: v_url = link return (v_url) async def multi_pdisk_up(ml_string): list_string = ml_string.splitlines() ml_string = ' \n'.join(list_string) new_ml_string = list(map(str, ml_string.split(" "))) new_ml_string = [sub.replace('https://t.me/Desi_Bhabhi_Aunty_hot_Video/41', 'https://t.me/Desi_Bhabhi_Aunty_hot_Video/61') for sub in new_ml_string] #new_ml_string = await remove_footer(new_ml_string) new_join_str = "".join(new_ml_string) urls = re.findall(r'(https?://[^\s]+)', new_join_str) nml_len = len(new_ml_string) u_len = len(urls) url_index = [] count = 0 for i in range(nml_len): for j in range(u_len): if (urls[j] in new_ml_string[i]): url_index.append(count) count += 1 new_urls = await new_pdisk_url(urls) url_index = list(dict.fromkeys(url_index)) i = 0 for j in url_index: new_ml_string[j] = new_ml_string[j].replace(urls[i], new_urls[i]) i += 1 new_string = " ".join(new_ml_string) #return await addFooter(new_string) return (new_string) async def new_pdisk_url(urls): new_urls = [] for i in urls: time.sleep(0.2) new_urls.append(await pdisk_up(i)) return new_urls '''async def remove_footer(new_List): for i in new_List: if('https://t.me/Desi_Bhabhi_Aunty_hot_Video/41' in i): i = i.replace("41","61") #new_List.remove(i) return new_List''' '''async def addFooter(str): footer = """ ━━━━━━━━━━━━━━━ ⚙️ How to Download / Watch Online :""" + HOWTO + """ ━━━━━━━━━━━━━━━ ⭐️JOIN CHANNEL ➡️ t.me/""" + CHANNEL return str + footer''' bot.run()
from .aggregate_interval_play import AggregateIntervalPlay from .milestone import Milestone from .models import ( AggregateDailyAppNameMetrics, AggregateDailyTotalUsersMetrics, AggregateDailyUniqueUsersMetrics, AggregateMonthlyAppNameMetrics, AggregateMonthlyPlays, AggregateMonthlyTotalUsersMetrics, AggregateMonthlyUniqueUsersMetrics, AggregatePlaylist, AggregatePlays, AggregateTrack, AggregateUser, AppMetricsAllTime, AppMetricsTrailingMonth, AppMetricsTrailingWeek, AppNameMetrics, AssociatedWallet, Base, BlacklistedIPLD, Block, BlockMixin, Challenge, ChallengeDisbursement, ChallengeType, Follow, HourlyPlayCounts, IndexingCheckpoints, IPLDBlacklistBlock, ListenStreakChallenge, Play, Playlist, PlaysArchive, ProfileCompletionChallenge, Remix, Repost, RepostType, RouteMetrics, RouteMetricsAllTime, RouteMetricsDayMatview, RouteMetricsMonthMatview, RouteMetricsTrailingMonth, RouteMetricsTrailingWeek, Save, SaveType, SkippedTransaction, SkippedTransactionLevel, Stem, TagTrackUserMatview, Track, URSMContentNode, User, UserBalance, UserBalanceChange, UserChallenge, UserListeningHistory, WalletChain, ) from .related_artist import RelatedArtist from .reward_manager import RewardManagerTransaction from .spl_token_transaction import SPLTokenTransaction from .track_route import TrackRoute from .track_trending_score import TrackTrendingScore from .trending_param import TrendingParam from .trending_result import TrendingResult from .user_bank import UserBankAccount, UserBankTransaction from .user_events import UserEvents __all__ = [ "AggregateDailyAppNameMetrics", "AggregateDailyTotalUsersMetrics", "AggregateDailyUniqueUsersMetrics", "AggregateMonthlyAppNameMetrics", "AggregateMonthlyTotalUsersMetrics", "AggregateMonthlyUniqueUsersMetrics", "AggregatePlaylist", "AggregatePlays", "AggregateMonthlyPlays", "AggregateTrack", "AggregateUser", "AggregateIntervalPlay", "AppMetricsAllTime", "AppMetricsTrailingMonth", "AppMetricsTrailingWeek", "AppNameMetrics", "AssociatedWallet", "Base", "BlacklistedIPLD", "Block", "BlockMixin", "Challenge", "ChallengeDisbursement", "ChallengeType", "Follow", "HourlyPlayCounts", "IPLDBlacklistBlock", "IndexingCheckpoints", "ListenStreakChallenge", "Milestone", "Play", "PlaysArchive", "Playlist", "ProfileCompletionChallenge", "RelatedArtist", "Remix", "Repost", "RepostType", "RewardManagerTransaction", "RouteMetrics", "RouteMetricsAllTime", "RouteMetricsDayMatview", "RouteMetricsMonthMatview", "RouteMetricsTrailingMonth", "RouteMetricsTrailingWeek", "Save", "SaveType", "SkippedTransaction", "SkippedTransactionLevel", "SPLTokenTransaction", "Stem", "TagTrackUserMatview", "Track", "TrackRoute", "TrackTrendingScore", "TrendingParam", "TrendingResult", "URSMContentNode", "User", "UserBalance", "UserBalanceChange", "UserChallenge", "UserBankTransaction", "UserBankAccount", "UserEvents", "UserListeningHistory", "WalletChain", ]
# -*- coding: utf-8 -*- from setuptools import setup, find_packages from pip.req import parse_requirements import re, ast # get version from __version__ variable in file_management/__init__.py _version_re = re.compile(r'__version__\s+=\s+(.*)') with open('file_management/__init__.py', 'rb') as f: version = str(ast.literal_eval(_version_re.search( f.read().decode('utf-8')).group(1))) requirements = parse_requirements("requirements.txt", session="") setup( name='file_management', version=version, description='App for managing File', author='Indictrans', author_email='sangram.p@indictranstech.com', packages=find_packages(), zip_safe=False, include_package_data=True, install_requires=[str(ir.req) for ir in requirements], dependency_links=[str(ir._link) for ir in requirements if ir._link] )
# Generated by Django 1.11.7 on 2018-01-12 17:21 from django.db import migrations class Migration(migrations.Migration): dependencies = [("letters", "0009_auto_20170826_0742")] operations = [ migrations.AlterModelOptions( name="letter", options={ "ordering": ["created"], "permissions": ( ("can_filter_eml", "Can filter eml"), ("recognize_letter", "Can recognize letter"), ), "verbose_name": "Letter", "verbose_name_plural": "Letters", }, ) ]
from ranger.api.commands import Command class paste_as_root(Command): def execute(self): if self.fm.do_cut: self.fm.execute_console('shell sudo mv %c .') else: self.fm.execute_console('shell sudo cp -r %c .') class fzf_select(Command): """ :fzf_select Find a file using fzf. With a prefix argument select only directories. See: https://github.com/junegunn/fzf """ def execute(self): import subprocess import os.path if self.quantifier: # match only directories command="find -L . \( -path '*/\.*' -o -fstype 'dev' -o -fstype 'proc' \) -prune \ -o -type d -print 2> /dev/null | sed 1d | cut -b3- | fzf +m --reverse --header='Jump to file'" else: # match files and directories command="find -L . \( -path '*/\.*' -o -fstype 'dev' -o -fstype 'proc' \) -prune \ -o -print 2> /dev/null | sed 1d | cut -b3- | fzf +m --reverse --header='Jump to filemap <C-f> fzf_select'" fzf = self.fm.execute_command(command, universal_newlines=True, stdout=subprocess.PIPE) stdout, stderr = fzf.communicate() if fzf.returncode == 0: fzf_file = os.path.abspath(stdout.rstrip('\n')) if os.path.isdir(fzf_file): self.fm.cd(fzf_file) else: self.fm.select_file(fzf_file) import os from ranger.core.loader import CommandLoader class extract_here(Command): def execute(self): """ extract selected files to current directory.""" cwd = self.fm.thisdir marked_files = tuple(cwd.get_selection()) def refresh(_): cwd = self.fm.get_directory(original_path) cwd.load_content() one_file = marked_files[0] cwd = self.fm.thisdir original_path = cwd.path au_flags = ['-x', cwd.path] au_flags += self.line.split()[1:] au_flags += ['-e'] self.fm.copy_buffer.clear() self.fm.cut_buffer = False if len(marked_files) == 1: descr = "extracting: " + os.path.basename(one_file.path) else: descr = "extracting files from: " + os.path.basename( one_file.dirname) obj = CommandLoader(args=['aunpack'] + au_flags + [f.path for f in marked_files], descr=descr, read=True) obj.signal_bind('after', refresh) self.fm.loader.add(obj) import os from ranger.core.loader import CommandLoader class compress(Command): def execute(self): """ Compress marked files to current directory """ cwd = self.fm.thisdir marked_files = cwd.get_selection() if not marked_files: return def refresh(_): cwd = self.fm.get_directory(original_path) cwd.load_content() original_path = cwd.path parts = self.line.split() au_flags = parts[1:] descr = "compressing files in: " + os.path.basename(parts[1]) obj = CommandLoader(args=['apack'] + au_flags + \ [os.path.relpath(f.path, cwd.path) for f in marked_files], descr=descr, read=True) obj.signal_bind('after', refresh) self.fm.loader.add(obj) def tab(self, tabnum): """ Complete with current folder name """ extension = ['.zip', '.tar.gz', '.rar', '.7z'] return ['compress ' + os.path.basename(self.fm.thisdir.path) + ext for ext in extension]
# This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.18 (https://github.com/warner/python-versioneer) """Git implementation of _version.py.""" import errno import os import re import subprocess import sys def get_keywords(): """Get the keywords needed to look up the version information.""" # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "$Format:%d$" git_full = "$Format:%H$" git_date = "$Format:%ci$" keywords = {"refnames": git_refnames, "full": git_full, "date": git_date} return keywords class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_config(): """Create, populate and return the VersioneerConfig() object.""" # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "pep440" cfg.tag_prefix = "" # replace mydatabase the same way you did in "setup.py" cfg.parentdir_prefix = "pyannote-db-callhome-" # replace MyDatabase the same way you did in "setup.py" cfg.versionfile_source = "CallHome/_version.py" cfg.verbose = False return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator """Decorator to mark a method as the handler for a particular VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False, env=None): """Call the given command(s).""" assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen([c] + args, cwd=cwd, env=env, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %s" % dispcmd) print(e) return None, None else: if verbose: print("unable to find command, tried %s" % (commands,)) return None, None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %s (error)" % dispcmd) print("stdout was %s" % stdout) return None, p.returncode return stdout, p.returncode def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory """ rootdirs = [] for i in range(3): dirname = os.path.basename(root) if dirname.startswith(parentdir_prefix): return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None, "date": None} else: rootdirs.append(root) root = os.path.dirname(root) # up a level if verbose: print("Tried directories %s but none started with prefix %s" % (str(rootdirs), parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if not keywords: raise NotThisMethod("no keywords at all, weird") date = keywords.get("date") if date is not None: # git-2.2.0 added "%cI", which expands to an ISO-8601 -compliant # datestamp. However we prefer "%ci" (which expands to an "ISO-8601 # -like" string, which we must then edit to make compliant), because # it's been around since git-1.5.3, and it's too difficult to # discover which version we're using, or to work around using an # older one. date = date.strip().replace(" ", "T", 1).replace(" ", "", 1) refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = set([r for r in refs if re.search(r'\d', r)]) if verbose: print("discarding '%s', no digits" % ",".join(refs - tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %s" % r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None, "date": date} # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags", "date": None} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] out, rc = run_command(GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=True) if rc != 0: if verbose: print("Directory %s not under git control" % root) raise NotThisMethod("'git rev-parse --git-dir' returned error") # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out, rc = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long", "--match", "%s*" % tag_prefix], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out, rc = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%s'" % describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = ("tag '%s' doesn't start with prefix '%s'" % (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out, rc = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits # commit date: see ISO-8601 comment in git_versions_from_keywords() date = run_command(GITS, ["show", "-s", "--format=%ci", "HEAD"], cwd=root)[0].strip() pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1) return pieces def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): """TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%d" % pieces["distance"] else: # exception #1 rendered = "0.post.dev%d" % pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"], "date": None} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None, "date": pieces.get("date")} def get_versions(): """Get version information or return default if unable to do so.""" # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for i in cfg.versionfile_source.split('/'): root = os.path.dirname(root) except NameError: return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree", "date": None} try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version", "date": None}
#!/usr/bin/env python3 # Copyright (c) 2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Check that it's not possible to start a second muskcoind instance using the same datadir or wallet.""" import os from test_framework.test_framework import BitcoinTestFramework from test_framework.test_node import ErrorMatch class FilelockTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 def setup_network(self): self.add_nodes(self.num_nodes, extra_args=None) self.nodes[0].start([]) self.nodes[0].wait_for_rpc_connection() def run_test(self): datadir = os.path.join(self.nodes[0].datadir, 'regtest') self.log.info("Using datadir {}".format(datadir)) self.log.info("Check that we can't start a second muskcoind instance using the same datadir") expected_msg = "Error: Cannot obtain a lock on data directory {}. Muskcoin Core is probably already running.".format(datadir) self.nodes[1].assert_start_raises_init_error(extra_args=['-datadir={}'.format(self.nodes[0].datadir), '-noserver'], expected_msg=expected_msg) if self.is_wallet_compiled(): wallet_dir = os.path.join(datadir, 'wallets') self.log.info("Check that we can't start a second muskcoind instance using the same wallet") expected_msg = "Error: Error initializing wallet database environment" self.nodes[1].assert_start_raises_init_error(extra_args=['-walletdir={}'.format(wallet_dir), '-noserver'], expected_msg=expected_msg, match=ErrorMatch.PARTIAL_REGEX) if __name__ == '__main__': FilelockTest().main()
from ConfigParser import SafeConfigParser import errno import logging import os import urllib2 class Config(object): # S3 settings AWS_ACCESS_KEY_CONFIG = ('aws', 'access_key', 'AWS_ACCESS_KEY') AWS_SECRET_KEY_CONFIG = ('aws', 'secret_key', 'AWS_SECRET_KEY') AWS_TEST_RESULT_BUCKET_CONFIG = ('aws', 'test_result_bucket', 'TEST_RESULT_BUCKET') # MySQL settings MYSQL_HOST_CONFIG = ('mysql', 'host', 'MYSQL_HOST') MYSQL_PORT_CONFIG = ('mysql', 'port', 'MYSQL_PORT') MYSQL_USER_CONFIG = ('mysql', 'user', 'MYSQL_USER') MYSQL_PWD_CONFIG = ('mysql', 'password', 'MYSQL_PWD') MYSQL_DB_CONFIG = ('mysql', 'database', 'MYSQL_DB') # Isolate settings ISOLATE_HOME_CONFIG = ('isolate', 'home', "ISOLATE_HOME") ISOLATE_SERVER_CONFIG = ('isolate', 'server', "ISOLATE_SERVER") ISOLATE_CACHE_DIR_CONFIG = ('isolate', 'cache_dir', "ISOLATE_CACHE_DIR") # Beanstalk settings BEANSTALK_HOST_CONFIG = ('beanstalk', 'host', 'BEANSTALK_HOST') # Dist test settings DIST_TEST_MASTER_CONFIG = ('dist_test', 'master', "DIST_TEST_MASTER") DIST_TEST_JOB_PATH_CONFIG = ('dist_test', 'job_path', 'DIST_TEST_JOB_PATH') DIST_TEST_USER_CONFIG = ('dist_test', 'user', 'DIST_TEST_USER') DIST_TEST_PASSWORD_CONFIG = ('dist_test', 'password', 'DIST_TEST_PASSWORD') DIST_TEST_URL_TIMEOUT_CONFIG = ('dist_test', 'url_timeout', 'DIST_TEST_URL_TIMEOUT') def __init__(self, path=None): if path is None: path = os.getenv("DIST_TEST_CNF") if path is None: path = os.path.join(os.getenv("HOME"), ".dist_test.cnf") logging.info("Reading configuration from %s", path) # Populate parser with default values defaults = { "log_dir" : os.path.join(os.path.dirname(os.path.realpath(__file__)), "logs"), "submit_gce_metrics" : "True", "allowed_ip_ranges": "0.0.0.0/0", "accounts": "{}", } self.config = SafeConfigParser(defaults) self.config.read(path) # Isolate settings self.ISOLATE_HOME = self._get_with_env_override(*self.ISOLATE_HOME_CONFIG) self.ISOLATE_SERVER = self._get_with_env_override(*self.ISOLATE_SERVER_CONFIG) self.ISOLATE_CACHE_DIR = self._get_with_env_override(*self.ISOLATE_CACHE_DIR_CONFIG) # S3 settings self.AWS_ACCESS_KEY = self._get_with_env_override(*self.AWS_ACCESS_KEY_CONFIG) self.AWS_SECRET_KEY = self._get_with_env_override(*self.AWS_SECRET_KEY_CONFIG) self.AWS_TEST_RESULT_BUCKET = self._get_with_env_override(*self.AWS_TEST_RESULT_BUCKET_CONFIG) # MySQL settings self.MYSQL_HOST = self._get_with_env_override(*self.MYSQL_HOST_CONFIG) try: self.MYSQL_PORT = int(self._get_with_env_override(*self.MYSQL_PORT_CONFIG)) except: self.MYSQL_PORT = 3306 self.MYSQL_USER = self._get_with_env_override(*self.MYSQL_USER_CONFIG) self.MYSQL_PWD = self._get_with_env_override(*self.MYSQL_PWD_CONFIG) self.MYSQL_DB = self._get_with_env_override(*self.MYSQL_DB_CONFIG) # Beanstalk settings self.BEANSTALK_HOST = self._get_with_env_override(*self.BEANSTALK_HOST_CONFIG) # dist_test settings if not self.config.has_section('dist_test'): self.config.add_section('dist_test') self.DIST_TEST_MASTER = self._get_with_env_override(*self.DIST_TEST_MASTER_CONFIG) self.DIST_TEST_JOB_PATH = self._get_with_env_override(*self.DIST_TEST_JOB_PATH_CONFIG) if self.DIST_TEST_JOB_PATH is None: self.DIST_TEST_JOB_PATH = os.path.expanduser("~/.dist-test-last-job") self.DIST_TEST_USER = self._get_with_env_override(*self.DIST_TEST_USER_CONFIG) self.DIST_TEST_PASSWORD = self._get_with_env_override(*self.DIST_TEST_PASSWORD_CONFIG) self.DIST_TEST_URL_TIMEOUT = self._get_with_env_override(*self.DIST_TEST_URL_TIMEOUT_CONFIG) if self.DIST_TEST_URL_TIMEOUT is not None: self.DIST_TEST_URL_TIMEOUT = float(self.DIST_TEST_URL_TIMEOUT) # dist_test master configs (in the 'dist_test' section) self.DIST_TEST_ALLOWED_IP_RANGES = self.config.get('dist_test', 'allowed_ip_ranges') self.ACCOUNTS = self.config.get('dist_test', 'accounts') self.log_dir = self.config.get('dist_test', 'log_dir') # Make the log directory if it doesn't exist Config.mkdir_p(self.log_dir) self.SERVER_ACCESS_LOG = os.path.join(self.log_dir, "server-access.log") self.SERVER_ERROR_LOG = os.path.join(self.log_dir, "server-error.log") self.SERVER_LOG = os.path.join(self.log_dir, "server.log") self.SLAVE_LOG = os.path.join(self.log_dir, "slave.log") @staticmethod def mkdir_p(path): """Similar to mkdir -p, make a directory ignoring EEXIST""" try: os.makedirs(path) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise def _get_with_env_override(self, section, option, env_key): env_value = os.environ.get(env_key) if env_value is not None: return env_value file_value = None if self.config.has_option(section, option): file_value = self.config.get(section, option) return file_value def ensure_aws_configured(self): self._ensure_configs([self.AWS_ACCESS_KEY_CONFIG, self.AWS_SECRET_KEY_CONFIG, self.AWS_TEST_RESULT_BUCKET_CONFIG]) def ensure_isolate_configured(self): self._ensure_configs([self.ISOLATE_HOME_CONFIG, self.ISOLATE_SERVER_CONFIG, self.ISOLATE_CACHE_DIR_CONFIG]) def ensure_mysql_configured(self): self._ensure_configs([self.MYSQL_HOST_CONFIG, self.MYSQL_USER_CONFIG, self.MYSQL_PWD_CONFIG, self.MYSQL_DB_CONFIG]) def ensure_beanstalk_configured(self): self._ensure_configs([self.BEANSTALK_HOST_CONFIG]) def ensure_dist_test_configured(self): self._ensure_configs([self.DIST_TEST_MASTER_CONFIG]) def _ensure_configs(self, configs): for config in configs: if self._get_with_env_override(*config) is None: raise Exception(("Missing configuration %s.%s. Please set in the config file or " + "set the environment variable %s.") % config) def configure_auth(self): """ Configure urllib2 to pass authentication information if provided in the configuration. """ if not self.DIST_TEST_USER: return password_mgr = urllib2.HTTPPasswordMgrWithDefaultRealm() password_mgr.add_password(None, self.DIST_TEST_MASTER, self.DIST_TEST_USER, self.DIST_TEST_PASSWORD) handler = urllib2.HTTPDigestAuthHandler(password_mgr) opener = urllib2.build_opener(handler) urllib2.install_opener(opener)
###################################################################### # This file should be kept compatible with Python 2.3, see PEP 291. # ###################################################################### """ Generic dylib path manipulation """ import re __all__ = ['dylib_info'] DYLIB_RE = re.compile(r"""(?x) (?P<location>^.*)(?:^|/) (?P<name> (?P<shortname>\w+?) (?:\.(?P<version>[^._]+))? (?:_(?P<suffix>[^._]+))? \.dylib$ ) """) def dylib_info(filename): """ A dylib name can take one of the following four forms: Location/Name.SomeVersion_Suffix.dylib Location/Name.SomeVersion.dylib Location/Name_Suffix.dylib Location/Name.dylib returns None if not found or a mapping equivalent to: dict( location='Location', name='Name.SomeVersion_Suffix.dylib', shortname='Name', version='SomeVersion', suffix='Suffix', ) Note that SomeVersion and Suffix are optional and may be None if not present. """ is_dylib = DYLIB_RE.match(filename) if not is_dylib: return None return is_dylib.groupdict() def test_dylib_info(): def d(location=None, name=None, shortname=None, version=None, suffix=None): return dict( location=location, name=name, shortname=shortname, version=version, suffix=suffix ) assert dylib_info('completely/invalid') is None assert dylib_info('completely/invalide_debug') is None assert dylib_info('P/Foo.dylib') == d('P', 'Foo.dylib', 'Foo') assert dylib_info('P/Foo_debug.dylib') == d('P', 'Foo_debug.dylib', 'Foo', suffix='debug') assert dylib_info('P/Foo.A.dylib') == d('P', 'Foo.A.dylib', 'Foo', 'A') assert dylib_info('P/Foo_debug.A.dylib') == d('P', 'Foo_debug.A.dylib', 'Foo_debug', 'A') assert dylib_info('P/Foo.A_debug.dylib') == d('P', 'Foo.A_debug.dylib', 'Foo', 'A', 'debug') if __name__ == '__main__': test_dylib_info()
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import math import operator import warnings from typing import Any, List, Union, Dict, Optional, Callable, Iterable, NoReturn, TypeVar import torch import torch.nn as nn from nni.common.serializer import Translatable from nni.retiarii.serializer import basic_unit from nni.retiarii.utils import STATE_DICT_PY_MAPPING_PARTIAL from .utils import Mutable, generate_new_label, get_fixed_value __all__ = ['LayerChoice', 'InputChoice', 'ValueChoice', 'Placeholder', 'ChosenInputs'] class LayerChoice(Mutable): """ Layer choice selects one of the ``candidates``, then apply it on inputs and return results. Layer choice does not allow itself to be nested. Parameters ---------- candidates : list of nn.Module or OrderedDict A module list to be selected from. prior : list of float Prior distribution used in random sampling. label : str Identifier of the layer choice. Attributes ---------- length : int Deprecated. Number of ops to choose from. ``len(layer_choice)`` is recommended. names : list of str Names of candidates. choices : list of Module Deprecated. A list of all candidate modules in the layer choice module. ``list(layer_choice)`` is recommended, which will serve the same purpose. Notes ----- ``candidates`` can be a list of modules or a ordered dict of named modules, for example, .. code-block:: python self.op_choice = LayerChoice(OrderedDict([ ("conv3x3", nn.Conv2d(3, 16, 128)), ("conv5x5", nn.Conv2d(5, 16, 128)), ("conv7x7", nn.Conv2d(7, 16, 128)) ])) Elements in layer choice can be modified or deleted. Use ``del self.op_choice["conv5x5"]`` or ``self.op_choice[1] = nn.Conv3d(...)``. Adding more choices is not supported yet. """ # FIXME: prior is designed but not supported yet @classmethod def create_fixed_module(cls, candidates: Union[Dict[str, nn.Module], List[nn.Module]], *, label: Optional[str] = None, **kwargs): chosen = get_fixed_value(label) if isinstance(candidates, list): result = candidates[int(chosen)] else: result = candidates[chosen] # map the named hierarchies to support weight inheritance for python engine if hasattr(result, STATE_DICT_PY_MAPPING_PARTIAL): # handle cases where layer choices are nested # already has a mapping, will merge with it prev_mapping = getattr(result, STATE_DICT_PY_MAPPING_PARTIAL) setattr(result, STATE_DICT_PY_MAPPING_PARTIAL, {k: f'{chosen}.{v}' for k, v in prev_mapping.items()}) else: # "result" needs to know where to map itself. # Ideally, we should put a _mapping_ in the module where "result" is located, # but it's impossible to put mapping into parent module here. setattr(result, STATE_DICT_PY_MAPPING_PARTIAL, {'__self__': str(chosen)}) return result def __init__(self, candidates: Union[Dict[str, nn.Module], List[nn.Module]], *, prior: Optional[List[float]] = None, label: Optional[str] = None, **kwargs): super(LayerChoice, self).__init__() if 'key' in kwargs: warnings.warn(f'"key" is deprecated. Assuming label.') label = kwargs['key'] if 'return_mask' in kwargs: warnings.warn(f'"return_mask" is deprecated. Ignoring...') if 'reduction' in kwargs: warnings.warn(f'"reduction" is deprecated. Ignoring...') self.candidates = candidates self.prior = prior or [1 / len(candidates) for _ in range(len(candidates))] assert abs(sum(self.prior) - 1) < 1e-5, 'Sum of prior distribution is not 1.' self._label = generate_new_label(label) self.names = [] if isinstance(candidates, dict): for name, module in candidates.items(): assert name not in ["length", "reduction", "return_mask", "_key", "key", "names"], \ "Please don't use a reserved name '{}' for your module.".format(name) self.add_module(name, module) self.names.append(name) elif isinstance(candidates, list): for i, module in enumerate(candidates): self.add_module(str(i), module) self.names.append(str(i)) else: raise TypeError("Unsupported candidates type: {}".format(type(candidates))) self._first_module = self._modules[self.names[0]] # to make the dummy forward meaningful @property def key(self): return self._key() @torch.jit.ignore def _key(self): warnings.warn('Using key to access the identifier of LayerChoice is deprecated. Please use label instead.', category=DeprecationWarning) return self._label @property def label(self): return self._label def __getitem__(self, idx): if isinstance(idx, str): return self._modules[idx] return list(self)[idx] def __setitem__(self, idx, module): key = idx if isinstance(idx, str) else self.names[idx] return setattr(self, key, module) def __delitem__(self, idx): if isinstance(idx, slice): for key in self.names[idx]: delattr(self, key) else: if isinstance(idx, str): key, idx = idx, self.names.index(idx) else: key = self.names[idx] delattr(self, key) del self.names[idx] def __len__(self): return len(self.names) def __iter__(self): return map(lambda name: self._modules[name], self.names) @property def choices(self): return self._choices() @torch.jit.ignore def _choices(self): warnings.warn("layer_choice.choices is deprecated. Use `list(layer_choice)` instead.", category=DeprecationWarning) return list(self) def forward(self, x): warnings.warn('You should not run forward of this module directly.') return self._first_module(x) def __repr__(self): return f'LayerChoice({self.candidates}, label={repr(self.label)})' try: from typing import Literal except ImportError: from typing_extensions import Literal ReductionType = Literal['mean', 'concat', 'sum', 'none'] class InputChoice(Mutable): """ Input choice selects ``n_chosen`` inputs from ``choose_from`` (contains ``n_candidates`` keys). Use ``reduction`` to specify how chosen inputs are reduced into one output. A few options are: * ``none``: do nothing and return the list directly. * ``sum``: summing all the chosen inputs. * ``mean``: taking the average of all chosen inputs. * ``concat``: concatenate all chosen inputs at dimension 1. We don't support customizing reduction yet. Parameters ---------- n_candidates : int Number of inputs to choose from. It is required. n_chosen : int Recommended inputs to choose. If None, mutator is instructed to select any. reduction : str ``mean``, ``concat``, ``sum`` or ``none``. prior : list of float Prior distribution used in random sampling. label : str Identifier of the input choice. """ @classmethod def create_fixed_module(cls, n_candidates: int, n_chosen: Optional[int] = 1, reduction: ReductionType = 'sum', *, prior: Optional[List[float]] = None, label: Optional[str] = None, **kwargs): return ChosenInputs(get_fixed_value(label), reduction=reduction) def __init__(self, n_candidates: int, n_chosen: Optional[int] = 1, reduction: str = 'sum', *, prior: Optional[List[float]] = None, label: Optional[str] = None, **kwargs): super(InputChoice, self).__init__() if 'key' in kwargs: warnings.warn(f'"key" is deprecated. Assuming label.') label = kwargs['key'] if 'return_mask' in kwargs: warnings.warn(f'"return_mask" is deprecated. Ignoring...') if 'choose_from' in kwargs: warnings.warn(f'"reduction" is deprecated. Ignoring...') self.n_candidates = n_candidates self.n_chosen = n_chosen self.reduction = reduction self.prior = prior or [1 / n_candidates for _ in range(n_candidates)] assert self.reduction in ['mean', 'concat', 'sum', 'none'] self._label = generate_new_label(label) @property def key(self): return self._key() @torch.jit.ignore def _key(self): warnings.warn('Using key to access the identifier of InputChoice is deprecated. Please use label instead.', category=DeprecationWarning) return self._label @property def label(self): return self._label def forward(self, candidate_inputs: List[torch.Tensor]) -> torch.Tensor: warnings.warn('You should not run forward of this module directly.') return candidate_inputs[0] def __repr__(self): return f'InputChoice(n_candidates={self.n_candidates}, n_chosen={self.n_chosen}, ' \ f'reduction={repr(self.reduction)}, label={repr(self.label)})' class ChosenInputs(nn.Module): """ A module that chooses from a tensor list and outputs a reduced tensor. The already-chosen version of InputChoice. When forward, ``chosen`` will be used to select inputs from ``candidate_inputs``, and ``reduction`` will be used to choose from those inputs to form a tensor. Attributes ---------- chosen : list of int Indices of chosen inputs. reduction : ``mean`` | ``concat`` | ``sum`` | ``none`` How to reduce the inputs when multiple are selected. """ def __init__(self, chosen: Union[List[int], int], reduction: ReductionType): super().__init__() self.chosen = chosen if isinstance(chosen, list) else [chosen] self.reduction = reduction def forward(self, candidate_inputs): return self._tensor_reduction(self.reduction, [candidate_inputs[i] for i in self.chosen]) def _tensor_reduction(self, reduction_type, tensor_list): if reduction_type == 'none': return tensor_list if not tensor_list: return None # empty. return None for now if len(tensor_list) == 1: return tensor_list[0] if reduction_type == 'sum': return sum(tensor_list) if reduction_type == 'mean': return sum(tensor_list) / len(tensor_list) if reduction_type == 'concat': return torch.cat(tensor_list, dim=1) raise ValueError(f'Unrecognized reduction policy: "{reduction_type}"') # the code in ValueChoice can be generated with this codegen # this is not done online because I want to have type-hint supports # $ python -c "from nni.retiarii.nn.pytorch.api import _valuechoice_codegen; _valuechoice_codegen(_internal=True)" def _valuechoice_codegen(*, _internal: bool = False): if not _internal: raise RuntimeError("This method is set to be internal. Please don't use it directly.") MAPPING = { # unary 'neg': '-', 'pos': '+', 'invert': '~', # binary 'add': '+', 'sub': '-', 'mul': '*', 'matmul': '@', 'truediv': '//', 'floordiv': '/', 'mod': '%', 'lshift': '<<', 'rshift': '>>', 'and': '&', 'xor': '^', 'or': '|', # no reflection 'lt': '<', 'le': '<=', 'eq': '==', 'ne': '!=', 'ge': '>=', 'gt': '>', # NOTE # Currently we don't support operators like __contains__ (b in a), # Might support them in future when we actually need them. } binary_template = """ def __{op}__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.{opt}, '{{}} {sym} {{}}', [self, other])""" binary_r_template = """ def __r{op}__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.{opt}, '{{}} {sym} {{}}', [other, self])""" unary_template = """ def __{op}__(self) -> 'ValueChoiceX': return ValueChoiceX(operator.{op}, '{sym}{{}}', [self])""" for op, sym in MAPPING.items(): if op in ['neg', 'pos', 'invert']: print(unary_template.format(op=op, sym=sym) + '\n') else: opt = op + '_' if op in ['and', 'or'] else op print(binary_template.format(op=op, opt=opt, sym=sym) + '\n') if op not in ['lt', 'le', 'eq', 'ne', 'ge', 'gt']: print(binary_r_template.format(op=op, opt=opt, sym=sym) + '\n') def _valuechoice_staticmethod_helper(orig_func): orig_func.__doc__ += """ Notes ----- This function performs lazy evaluation. Only the expression will be recorded when the function is called. The real evaluation happens when the inner value choice has determined its final decision. If no value choice is contained in the parameter list, the evaluation will be intermediate.""" return orig_func class ValueChoiceX(Translatable): """Internal API. Implementation note: The transformed (X) version of value choice. It can be the result of composition (transformation) of one or several value choices. For example, .. code-block:: python nn.ValueChoice([1, 2]) + nn.ValueChoice([3, 4]) + 5 The instance of base class cannot be created directly. Instead, they should be only the result of transformation of value choice. Therefore, there is no need to implement ``create_fixed_module`` in this class, because, 1. For python-engine, value choice itself has create fixed module. Consequently, the transformation is born to be fixed. 2. For graph-engine, it uses evaluate to calculate the result. Potentially, we have to implement the evaluation logic in oneshot algorithms. I believe we can postpone the discussion till then. """ def __init__(self, function: Callable[..., Any], repr_template: str, arguments: List[Any], dry_run: bool = True): super().__init__() if function is None: # this case is a hack for ValueChoice subclass # it will reach here only because ``__init__`` in ``nn.Module`` is useful. return self.function = function self.repr_template = repr_template self.arguments = arguments assert any(isinstance(arg, ValueChoiceX) for arg in self.arguments) if dry_run: # for sanity check self.dry_run() def inner_choices(self) -> Iterable['ValueChoice']: """ Return an iterable of all leaf value choices. Useful for composition of value choices. No deduplication on labels. Mutators should take care. """ for arg in self.arguments: if isinstance(arg, ValueChoiceX): yield from arg.inner_choices() def dry_run(self) -> Any: """ Dry run the value choice to get one of its possible evaluation results. """ # values are not used return self._evaluate(iter([]), True) def evaluate(self, values: Iterable[Any]) -> Any: """ Evaluate the result of this group. ``values`` should in the same order of ``inner_choices()``. """ return self._evaluate(iter(values), False) def _evaluate(self, values: Iterable[Any], dry_run: bool = False) -> Any: # "values" iterates in the recursion eval_args = [] for arg in self.arguments: if isinstance(arg, ValueChoiceX): # recursive evaluation eval_args.append(arg._evaluate(values, dry_run)) # the recursion will stop when it hits a leaf node (value choice) # the implementation is in `ValueChoice` else: # constant value eval_args.append(arg) return self.function(*eval_args) def _translate(self): """ Try to behave like one of its candidates when used in ``basic_unit``. """ return self.dry_run() def __repr__(self): reprs = [] for arg in self.arguments: if isinstance(arg, ValueChoiceX) and not isinstance(arg, ValueChoice): reprs.append('(' + repr(arg) + ')') # add parenthesis for operator priority else: reprs.append(repr(arg)) return self.repr_template.format(*reprs) # the following are a series of methods to create "ValueChoiceX" # which is a transformed version of value choice # https://docs.python.org/3/reference/datamodel.html#special-method-names # Special operators that can be useful in place of built-in conditional operators. @staticmethod @_valuechoice_staticmethod_helper def to_int(obj: 'ValueChoiceOrAny') -> Union['ValueChoiceX', int]: """ Convert a ``ValueChoice`` to an integer. """ if isinstance(obj, ValueChoiceX): return ValueChoiceX(int, 'int({})', [obj]) return int(obj) @staticmethod @_valuechoice_staticmethod_helper def to_float(obj: 'ValueChoiceOrAny') -> Union['ValueChoiceX', float]: """ Convert a ``ValueChoice`` to a float. """ if isinstance(obj, ValueChoiceX): return ValueChoiceX(float, 'float({})', [obj]) return float(obj) @staticmethod @_valuechoice_staticmethod_helper def condition(pred: 'ValueChoiceOrAny', true: 'ValueChoiceOrAny', false: 'ValueChoiceOrAny') -> 'ValueChoiceOrAny': """ Return ``true`` if the predicate ``pred`` is true else ``false``. Examples -------- >>> ValueChoice.condition(ValueChoice([1, 2]) > ValueChoice([0, 3]), 2, 1) """ if any(isinstance(obj, ValueChoiceX) for obj in [pred, true, false]): return ValueChoiceX(lambda t, c, f: t if c else f, '{} if {} else {}', [true, pred, false]) return true if pred else false @staticmethod @_valuechoice_staticmethod_helper def max(arg0: Union[Iterable['ValueChoiceOrAny'], 'ValueChoiceOrAny'], *args: List['ValueChoiceOrAny']) -> 'ValueChoiceOrAny': """ Returns the maximum value from a list of value choices. The usage should be similar to Python's built-in value choices, where the parameters could be an iterable, or at least two arguments. """ if not args: return ValueChoiceX.max(*list(arg0)) lst = [arg0] + list(args) if any(isinstance(obj, ValueChoiceX) for obj in lst): return ValueChoiceX(max, 'max({})', lst) return max(lst) @staticmethod @_valuechoice_staticmethod_helper def min(arg0: Union[Iterable['ValueChoiceOrAny'], 'ValueChoiceOrAny'], *args: List['ValueChoiceOrAny']) -> 'ValueChoiceOrAny': """ Returns the minunum value from a list of value choices. The usage should be similar to Python's built-in value choices, where the parameters could be an iterable, or at least two arguments. """ if not args: return ValueChoiceX.min(*list(arg0)) lst = [arg0] + list(args) if any(isinstance(obj, ValueChoiceX) for obj in lst): return ValueChoiceX(min, 'min({})', lst) return min(lst) def __hash__(self): # this is required because we have implemented ``__eq__`` return id(self) # NOTE: # Write operations are not supported. Reasons follow: # - Semantics are not clear. It can be applied to "all" the inner candidates, or only the chosen one. # - Implementation effort is too huge. # As a result, inplace operators like +=, *=, magic methods like `__getattr__` are not included in this list. def __getitem__(self, key: Any) -> 'ValueChoiceX': return ValueChoiceX(lambda x, y: x[y], '{}[{}]', [self, key]) # region implement int, float, round, trunc, floor, ceil # because I believe sometimes we need them to calculate #channels # `__int__` and `__float__` are not supported because `__int__` is required to return int. def __round__(self, ndigits: Optional[Any] = None) -> 'ValueChoiceX': if ndigits is not None: return ValueChoiceX(round, 'round({}, {})', [self, ndigits]) return ValueChoiceX(round, 'round({})', [self]) def __trunc__(self) -> 'ValueChoiceX': raise RuntimeError("Try to use `ValueChoice.to_int()` instead of `math.trunc()` on value choices.") def __floor__(self) -> 'ValueChoiceX': return ValueChoiceX(math.floor, 'math.floor({})', [self]) def __ceil__(self) -> 'ValueChoiceX': return ValueChoiceX(math.ceil, 'math.ceil({})', [self]) def __index__(self) -> NoReturn: # https://docs.python.org/3/reference/datamodel.html#object.__index__ raise RuntimeError("`__index__` is not allowed on ValueChoice, which means you can't " "use int(), float(), complex(), range() on a ValueChoice.") def __bool__(self) -> NoReturn: raise RuntimeError('Cannot use bool() on ValueChoice. That means, using ValueChoice in a if-clause is illegal. ' 'Please try methods like `ValueChoice.max(a, b)` to see whether that meets your needs.') # endregion # region the following code is generated with codegen (see above) # Annotated with "region" because I want to collapse them in vscode def __neg__(self) -> 'ValueChoiceX': return ValueChoiceX(operator.neg, '-{}', [self]) def __pos__(self) -> 'ValueChoiceX': return ValueChoiceX(operator.pos, '+{}', [self]) def __invert__(self) -> 'ValueChoiceX': return ValueChoiceX(operator.invert, '~{}', [self]) def __add__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.add, '{} + {}', [self, other]) def __radd__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.add, '{} + {}', [other, self]) def __sub__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.sub, '{} - {}', [self, other]) def __rsub__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.sub, '{} - {}', [other, self]) def __mul__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.mul, '{} * {}', [self, other]) def __rmul__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.mul, '{} * {}', [other, self]) def __matmul__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.matmul, '{} @ {}', [self, other]) def __rmatmul__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.matmul, '{} @ {}', [other, self]) def __truediv__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.truediv, '{} // {}', [self, other]) def __rtruediv__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.truediv, '{} // {}', [other, self]) def __floordiv__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.floordiv, '{} / {}', [self, other]) def __rfloordiv__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.floordiv, '{} / {}', [other, self]) def __mod__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.mod, '{} % {}', [self, other]) def __rmod__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.mod, '{} % {}', [other, self]) def __lshift__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.lshift, '{} << {}', [self, other]) def __rlshift__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.lshift, '{} << {}', [other, self]) def __rshift__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.rshift, '{} >> {}', [self, other]) def __rrshift__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.rshift, '{} >> {}', [other, self]) def __and__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.and_, '{} & {}', [self, other]) def __rand__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.and_, '{} & {}', [other, self]) def __xor__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.xor, '{} ^ {}', [self, other]) def __rxor__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.xor, '{} ^ {}', [other, self]) def __or__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.or_, '{} | {}', [self, other]) def __ror__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.or_, '{} | {}', [other, self]) def __lt__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.lt, '{} < {}', [self, other]) def __le__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.le, '{} <= {}', [self, other]) def __eq__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.eq, '{} == {}', [self, other]) def __ne__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.ne, '{} != {}', [self, other]) def __ge__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.ge, '{} >= {}', [self, other]) def __gt__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(operator.gt, '{} > {}', [self, other]) # endregion # __pow__, __divmod__, __abs__ are special ones. # Not easy to cover those cases with codegen. def __pow__(self, other: Any, modulo: Optional[Any] = None) -> 'ValueChoiceX': if modulo is not None: return ValueChoiceX(pow, 'pow({}, {}, {})', [self, other, modulo]) return ValueChoiceX(lambda a, b: a ** b, '{} ** {}', [self, other]) def __rpow__(self, other: Any, modulo: Optional[Any] = None) -> 'ValueChoiceX': if modulo is not None: return ValueChoiceX(pow, 'pow({}, {}, {})', [other, self, modulo]) return ValueChoiceX(lambda a, b: a ** b, '{} ** {}', [other, self]) def __divmod__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(divmod, 'divmod({}, {})', [self, other]) def __rdivmod__(self, other: Any) -> 'ValueChoiceX': return ValueChoiceX(divmod, 'divmod({}, {})', [other, self]) def __abs__(self) -> 'ValueChoiceX': return ValueChoiceX(abs, 'abs({})', [self]) ValueChoiceOrAny = TypeVar('ValueChoiceOrAny', ValueChoiceX, Any) class ValueChoice(ValueChoiceX, Mutable): """ ValueChoice is to choose one from ``candidates``. In most use scenarios, ValueChoice should be passed to the init parameters of a serializable module. For example, .. code-block:: python class Net(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(3, nn.ValueChoice([32, 64]), kernel_size=nn.ValueChoice([3, 5, 7])) def forward(self, x): return self.conv(x) In case, you want to search a parameter that is used repeatedly, this is also possible by sharing the same value choice instance. (Sharing the label should have the same effect.) For example, .. code-block:: python class Net(nn.Module): def __init__(self): super().__init__() hidden_dim = nn.ValueChoice([128, 512]) self.fc = nn.Sequential( nn.Linear(64, hidden_dim), nn.Linear(hidden_dim, 10) ) # the following code has the same effect. # self.fc = nn.Sequential( # nn.Linear(64, nn.ValueChoice([128, 512], label='dim')), # nn.Linear(nn.ValueChoice([128, 512], label='dim'), 10) # ) def forward(self, x): return self.fc(x) Note that ValueChoice should be used directly. Transformations like ``nn.Linear(32, nn.ValueChoice([64, 128]) * 2)`` are not supported. Another common use case is to initialize the values to choose from in init and call the module in forward to get the chosen value. Usually, this is used to pass a mutable value to a functional API like ``torch.xxx`` or ``nn.functional.xxx```. For example, .. code-block:: python class Net(nn.Module): def __init__(self): super().__init__() self.dropout_rate = nn.ValueChoice([0., 1.]) def forward(self, x): return F.dropout(x, self.dropout_rate()) Parameters ---------- candidates : list List of values to choose from. prior : list of float Prior distribution to sample from. label : str Identifier of the value choice. """ # FIXME: prior is designed but not supported yet @classmethod def create_fixed_module(cls, candidates: List[Any], *, label: Optional[str] = None, **kwargs): value = get_fixed_value(label) if value not in candidates: raise ValueError(f'Value {value} does not belong to the candidates: {candidates}.') return value def __init__(self, candidates: List[Any], *, prior: Optional[List[float]] = None, label: Optional[str] = None): super().__init__(None, None, None) self.candidates = candidates self.prior = prior or [1 / len(candidates) for _ in range(len(candidates))] assert abs(sum(self.prior) - 1) < 1e-5, 'Sum of prior distribution is not 1.' self._label = generate_new_label(label) self._accessor = [] @property def label(self): return self._label def forward(self): warnings.warn('You should not run forward of this module directly.') return self.candidates[0] def inner_choices(self) -> Iterable['ValueChoice']: # yield self because self is the only value choice here yield self def dry_run(self) -> Any: return self.candidates[0] def _evaluate(self, values: Iterable[Any], dry_run: bool = False) -> Any: if dry_run: return self.candidates[0] try: value = next(values) except StopIteration: raise ValueError(f'Value list {values} is exhausted when trying to get a chosen value of {self}.') if value not in self.candidates: raise ValueError(f'Value {value} does not belong to the candidates of {self}.') return value def __repr__(self): return f'ValueChoice({self.candidates}, label={repr(self.label)})' @basic_unit class Placeholder(nn.Module): """ The API that creates an empty module for later mutations. For advanced usages only. """ def __init__(self, label, **related_info): self.label = label self.related_info = related_info super().__init__() def forward(self, x): return x
# -*-coding:utf-8-*- import logging """避免被ban策略之一:使用useragent池。 使用注意:需在settings.py中进行相应的设置。 """ import random from scrapy.downloadermiddlewares.useragent import UserAgentMiddleware class RotateUserAgentMiddleware(UserAgentMiddleware): def __init__(self, user_agent=''): self.user_agent = user_agent def process_request(self, request, spider): ua = random.choice(self.user_agent_list) if ua: #显示当前使用的useragent #print "********Current UserAgent:%s************" %ua #记录 logging.log(msg='Current UserAgent: ' + ua, level=logging.DEBUG) request.headers.setdefault('User-Agent', ua) #the default user_agent_list composes chrome,I E,firefox,Mozilla,opera,netscape #for more user agent strings,you can find it in http://www.useragentstring.com/pages/useragentstring.php user_agent_list = [ "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 ", "(KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1", "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 ", "(KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 ", "(KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 ", "(KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6", "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1", "(KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5", "(KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5", "Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5", "(KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3", "(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3", "(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3", "(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3", "(KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3", "(KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3", "(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3", "(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3", "(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3", "(KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24", "(KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24", "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24", "(KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24", ]
# Copyright (C) 2010 Apple Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for jsonchecker.py.""" import unittest from blinkpy.style.checkers import jsonchecker class MockErrorHandler(object): def __init__(self, handle_style_error): self.turned_off_filtering = False self._handle_style_error = handle_style_error def turn_off_line_filtering(self): self.turned_off_filtering = True def __call__(self, line_number, category, confidence, message): self._handle_style_error(self, line_number, category, confidence, message) return True class JSONCheckerTest(unittest.TestCase): """Tests JSONChecker class.""" def test_line_number_from_json_exception(self): tests = ( (0, 'No JSON object could be decoded'), (2, 'Expecting property name: line 2 column 1 (char 2)'), (3, 'Expecting object: line 3 column 1 (char 15)'), (9, 'Expecting property name: line 9 column 21 (char 478)'), ) for expected_line, message in tests: self.assertEqual(expected_line, jsonchecker.JSONChecker.line_number_from_json_exception(ValueError(message))) def assert_no_error(self, json_data): def handle_style_error(mock_error_handler, line_number, category, confidence, message): self.fail('Unexpected error: %d %s %d %s' % (line_number, category, confidence, message)) error_handler = MockErrorHandler(handle_style_error) checker = jsonchecker.JSONChecker('foo.json', error_handler) checker.check(json_data.split('\n')) self.assertTrue(error_handler.turned_off_filtering) def assert_error(self, expected_line_number, expected_category, json_data): def handle_style_error(mock_error_handler, line_number, category, confidence, message): mock_error_handler.had_error = True self.assertEqual(expected_line_number, line_number) self.assertEqual(expected_category, category) self.assertIn(category, jsonchecker.JSONChecker.categories) error_handler = MockErrorHandler(handle_style_error) error_handler.had_error = False checker = jsonchecker.JSONChecker('foo.json', error_handler) checker.check(json_data.split('\n')) self.assertTrue(error_handler.had_error) self.assertTrue(error_handler.turned_off_filtering) def mock_handle_style_error(self): pass def test_conflict_marker(self): self.assert_error(0, 'json/syntax', '<<<<<<< HEAD\n{\n}\n') def test_single_quote(self): self.assert_error(2, 'json/syntax', "{\n'slaves': []\n}\n") def test_init(self): error_handler = MockErrorHandler(self.mock_handle_style_error) checker = jsonchecker.JSONChecker('foo.json', error_handler) self.assertEqual(checker._handle_style_error, error_handler) def test_no_error(self): self.assert_no_error("""{ "slaves": [ { "name": "test-slave", "platform": "*" }, { "name": "apple-xserve-4", "platform": "mac-snowleopard" } ], "builders": [ { "name": "SnowLeopard Intel Release (Build)", "type": "Build", "builddir": "snowleopard-intel-release", "platform": "mac-snowleopard", "configuration": "release", "architectures": ["x86_64"], "slavenames": ["apple-xserve-4"] } ], "schedulers": [ { "type": "PlatformSpecificScheduler", "platform": "mac-snowleopard", "branch": "trunk", "treeStableTimer": 45.0, "builderNames": ["SnowLeopard Intel Release (Build)", "SnowLeopard Intel Debug (Build)"] } ] } """)
"""Copyright 2021 Google LLC. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import logging import os import sys import time from typing import Any, Dict import yaml from oc_config_validate import (context, formatter, runner, schema, target, testbase) __version__ = "2.0.0" LOGGING_FORMAT = "%(levelname)s(%(filename)s:%(lineno)d):%(message)s" def createArgsParser() -> argparse.ArgumentParser: """Create parser for arguments passed into the program from the CLI. Returns: argparse.ArgumentParser object. """ parser = argparse.ArgumentParser( description="OpenConfig Configuration Validation utility.") parser.add_argument( "-tgt", "--target", type=str, help="The gNMI Target, as hostname:port.", ) parser.add_argument( "-user", "--username", type=str, help="Username to use when establishing a gNMI Channel to the Target.", ) parser.add_argument( "-pass", "--password", type=str, help="Password to use when establishing a gNMI Channel to the Target.", ) parser.add_argument( "-key", "--private_key", type=str, help="Path to the Private key to use when establishing" "a gNMI Channel to the Target.", ) parser.add_argument( "-ca", "--root_ca_cert", type=str, help="Path to Root CA to use when building the gNMI Channel.", ) parser.add_argument( "-cert", "--cert_chain", type=str, help="Path to Certificate chain to use when" "establishing a gNMI Channel to the Target.") parser.add_argument( "-tests", "--tests_file", type=str, action="store", help="YAML file to read the test to run.") parser.add_argument( "-init", "--init_config_file", type=str, action="store", help="JSON file with the initial full OpenConfig configuration to " "apply.") parser.add_argument( "-xpath", "--init_config_xpath", type=str, action="store", help="gNMI xpath where to apply the initial config.", default="/") parser.add_argument( "-results", "--results_file", type=str, action="store", help="Filename where to write the test results.") parser.add_argument( "-f", "--format", type=str, action="store", help="Format " "of the GetResponse to be printed. Default=JSON.", choices=["json", "protobuff"], default="json") parser.add_argument( "-v", "--version", help="Print program version", action="store_true") parser.add_argument( "-V", "--verbose", help="Enable gRPC debugging and extra logging.", action="store_true") parser.add_argument( "-models", "--oc_models_versions", help="Print OC models versions.", action="store_true") parser.add_argument( "--no_tls", help="gRPC insecure mode.", action="store_true") parser.add_argument( "-o", "--tls_host_override", type=str, action="store", help="Hostname to use during the TLS certificate check.", ) parser.add_argument( "-set_cooldown", "--gnmi_set_cooldown_secs", type=int, action="store", help="Seconds to wait after a successful gNMI Set message.", ) parser.add_argument( "--stop_on_error", action="store_true", help="Stop the execution if a test fails.", ) parser.add_argument( "--log_gnmi", action="store_true", help="Log the gnmi requests to the tests results.", ) return parser def validateArgs(args: Dict[str, Any]): """Returns True if the arguments are valid. Raises: ValueError if any argument is invalid. IOError is unable to open a file given in argument. """ def isFileOK(filename: str, writable: bool = False): try: file = open(filename, "w+" if writable else "r", encoding="utf8") file.close() except IOError as io_error: logging.error("Unable to open %s: %s", filename, io_error) raise # Mandatory args for tests for arg, write in [("tests_file", False), ("results_file", True)]: if not args[arg]: raise ValueError("Needed --%s file" % arg) isFileOK(args[arg], write) if args["init_config_file"]: isFileOK(args["init_config_file"], False) # Output format supported if (args["format"] and args["format"].lower() not in formatter.SUPPORTED_FORMATS): raise ValueError("Output format %s is not supported.") def main(): # noqa """Executes this library.""" argparser = createArgsParser() args = vars(argparser.parse_args()) if args["version"]: print(__version__) sys.exit() if args["oc_models_versions"]: print(schema.getOcModelsVersions()) sys.exit() if args["verbose"]: # os.environ["GRPC_TRACE"] = "all" os.environ["GRPC_VERBOSITY"] = "DEBUG" logging.basicConfig( level=logging.DEBUG if args["verbose"] else logging.INFO, format=LOGGING_FORMAT) try: validateArgs(args) except (IOError, ValueError) as error: sys.exit("Invalid arguments: %s" % error) if args["log_gnmi"]: testbase.LOG_GNMI = args["log_gnmi"] try: ctx = context.fromFile(args["tests_file"]) except IOError as io_error: sys.exit("Unable to read %s: %s" % (args["tests_file"], io_error)) except yaml.YAMLError as yaml_error: sys.exit("Unable to parse YAML file %s: %s" % (args["tests_file"], yaml_error)) logging.info("Read tests file '%s': %d tests to run", args["tests_file"], len(ctx.tests)) if not ctx.target: ctx.target = context.Target() # Override Target options for arg in ["target", "username", "password", "no_tls", "private_key", "cert_chain", "root_ca_cert", "tls_host_override", "gnmi_set_cooldown_secs"]: if args[arg]: setattr(ctx.target, arg, args[arg]) tgt = target.TestTarget(ctx.target) try: tgt.validate() except ValueError as error: sys.exit("Invalid Target: %s" % error) logging.info("Testing gNMI Target %s.", tgt) if tgt.gnmi_set_cooldown_secs: logging.info("Using gNMI Set Cooldown of %d secs", tgt.gnmi_set_cooldown_secs) # Apply initial configuration if args["init_config_file"]: ctx.init_configs.append(context.InitConfig(args["init_config_file"], args["init_config_xpath"])) if not runner.setInitConfigs(ctx, tgt, stop_on_error=args["stop_on_error"]): sys.exit(1) start_t = time.time() results = runner.runTests(ctx, tgt, stop_on_error=args["stop_on_error"]) end_t = time.time() test_run = testbase.TestRun(ctx) test_run.copyResults(results, start_t, end_t) logging.info("Results Summary: %s", test_run.summary()) try: fmtr = formatter.makeFormatter(args["format"]) fmtr.writeResultsToFile(test_run, args["results_file"]) logging.info("Test results written to %s", args["results_file"]) except IOError as io_error: logging.exception("Unable to write file %s: %s", args["results_file"], io_error) except TypeError as type_error: logging.exception("Unable to parse results into a JSON text: %s", type_error) if __name__ == "__main__": main()
#!/usr/bin/env python # # Copyright 2016 Cisco Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Create configuration for model openconfig-mpls. usage: nc-create-oc-mpls-54-ydk.py [-h] [-v] device positional arguments: device NETCONF device (ssh://user:password@host:port) optional arguments: -h, --help show this help message and exit -v, --verbose print debugging messages """ from argparse import ArgumentParser from urlparse import urlparse from ydk.services import CRUDService from ydk.providers import NetconfServiceProvider from ydk.models.openconfig import openconfig_mpls \ as oc_mpls from ydk.models.openconfig import openconfig_mpls_types as oc_mpls_types import logging def config_mpls(mpls): """Add config data to mpls object.""" # tunnel with protection requested tunnel = mpls.lsps.constrained_path.Tunnel() tunnel.name = "LER1-LER2-t54" tunnel.config.name = "LER1-LER2-t54" tunnel.config.type = oc_mpls_types.P2P() tunnel.config.protection_style_requested = oc_mpls_types.LinkProtectionRequested() tunnel.type = oc_mpls_types.P2P() p2p_primary_paths = tunnel.p2p_tunnel_attributes.P2PPrimaryPaths() p2p_primary_paths.name = "DYNAMIC" p2p_primary_paths.config.name = "DYNAMIC" p2p_primary_paths.config.preference = 10 path_computation_method = oc_mpls.LocallyComputed() p2p_primary_paths.config.path_computation_method = path_computation_method tunnel.p2p_tunnel_attributes.p2p_primary_paths.append(p2p_primary_paths) tunnel.p2p_tunnel_attributes.config.destination = "172.16.255.2" tunnel.bandwidth.config.set_bandwidth = 100000 mpls.lsps.constrained_path.tunnel.append(tunnel) if __name__ == "__main__": """Execute main program.""" parser = ArgumentParser() parser.add_argument("-v", "--verbose", help="print debugging messages", action="store_true") parser.add_argument("device", help="NETCONF device (ssh://user:password@host:port)") args = parser.parse_args() device = urlparse(args.device) # log debug messages if verbose argument specified if args.verbose: logger = logging.getLogger("ydk") logger.setLevel(logging.INFO) handler = logging.StreamHandler() formatter = logging.Formatter(("%(asctime)s - %(name)s - " "%(levelname)s - %(message)s")) handler.setFormatter(formatter) logger.addHandler(handler) # create NETCONF provider provider = NetconfServiceProvider(address=device.hostname, port=device.port, username=device.username, password=device.password, protocol=device.scheme) # create CRUD service crud = CRUDService() mpls = oc_mpls.Mpls() # create object config_mpls(mpls) # add object configuration # create configuration on NETCONF device crud.create(provider, mpls) exit() # End of script
""" Django settings for startupmoney project. Generated by 'django-admin startproject' using Django 2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '7_bcd_om-v=oud6403zs5#snm5(&_&d(l38#&qc2=(xb77g)^j' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.admindocs', 'handlemoney', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'startupmoney.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'startupmoney.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/'
from django.test import TestCase from core.govdelivery import MockGovDelivery from data_research.forms import ConferenceRegistrationForm from data_research.models import ConferenceRegistration class ConferenceRegistrationFormTests(TestCase): capacity = 100 govdelivery_code = 'TEST-CODE' govdelivery_question_id = '12345' govdelivery_answer_id = '67890' def test_invalid_form_if_fields_are_missing(self): form = ConferenceRegistrationForm( capacity=self.capacity, govdelivery_code=self.govdelivery_code, govdelivery_question_id=self.govdelivery_question_id, govdelivery_answer_id=self.govdelivery_answer_id, data={'foo': 'bar'} ) self.assertFalse(form.is_valid()) def get_valid_form( self, attendee_type=ConferenceRegistrationForm.ATTENDEE_IN_PERSON, govdelivery_question_id=None, govdelivery_answer_id=None ): return ConferenceRegistrationForm( capacity=self.capacity, govdelivery_code=self.govdelivery_code, govdelivery_question_id=govdelivery_question_id, govdelivery_answer_id=govdelivery_answer_id, data={ 'attendee_type': attendee_type, 'name': 'A User', 'organization': 'An Organization', 'email': 'user@domain.com', } ) def test_valid_form_if_required_fields_are_provided(self): form = self.get_valid_form() self.assertTrue(form.is_valid()) def test_form_save_commit_false_doesnt_save_user(self): form = self.get_valid_form() form.is_valid() form.save(commit=False) self.assertFalse(ConferenceRegistration.objects.exists()) def test_form_save_commit_false_doesnt_subscribe_to_govdelivery(self): calls_before = list(MockGovDelivery.calls) form = self.get_valid_form() form.is_valid() form.save(commit=False) self.assertEqual(MockGovDelivery.calls, calls_before) def test_form_save_sets_registration_code_and_details(self): form = self.get_valid_form() form.is_valid() registrant = form.save(commit=False) self.assertEqual(registrant.govdelivery_code, 'TEST-CODE') self.assertEqual(registrant.details, { 'attendee_type': ConferenceRegistrationForm.ATTENDEE_IN_PERSON, 'name': 'A User', 'organization': 'An Organization', 'email': 'user@domain.com', 'dietary_restrictions': [], 'other_dietary_restrictions': '', 'accommodations': [], 'other_accommodations': '', }) def test_form_save_commit_true_saves_to_db(self): form = self.get_valid_form() form.is_valid() registrant = form.save() self.assertEqual(registrant, ConferenceRegistration.objects.first()) def test_form_save_commit_true_subscribes_to_gd(self): form = self.get_valid_form() form.is_valid() form.save() self.assertEqual( MockGovDelivery.calls, [( 'set_subscriber_topics', (), { 'contact_details': 'user@domain.com', 'topic_codes': ['TEST-CODE'], 'send_notifications': True, } )] ) def test_form_save_commit_true_subscribes_and_sets_question(self): form = self.get_valid_form( govdelivery_question_id='12345', govdelivery_answer_id='67890' ) form.is_valid() form.save() self.assertEqual(MockGovDelivery.calls, [ ( 'set_subscriber_topics', (), { 'contact_details': 'user@domain.com', 'topic_codes': ['TEST-CODE'], 'send_notifications': True, } ), ( 'set_subscriber_answer_to_select_question', (), { 'contact_details': 'user@domain.com', 'question_id': '12345', 'answer_id': '67890', } ), ]) def make_capacity_registrants(self, govdelivery_code, attendee_type): registrant = ConferenceRegistration( govdelivery_code=govdelivery_code, details={'attendee_type': attendee_type} ) ConferenceRegistration.objects.bulk_create( [registrant] * self.capacity ) def test_form_not_at_capacity(self): self.assertFalse(self.get_valid_form().at_capacity) def test_form_at_capacity(self): self.make_capacity_registrants( self.govdelivery_code, ConferenceRegistrationForm.ATTENDEE_IN_PERSON ) self.assertTrue(self.get_valid_form().at_capacity) def test_form_at_capacity_for_some_other_code(self): self.make_capacity_registrants( 'some-other-code', ConferenceRegistrationForm.ATTENDEE_IN_PERSON ) self.assertFalse(self.get_valid_form().at_capacity) def test_form_at_capacity_invalid(self): self.make_capacity_registrants( self.govdelivery_code, ConferenceRegistrationForm.ATTENDEE_IN_PERSON ) form = self.get_valid_form() self.assertFalse(form.is_valid()) def test_form_at_capacity_still_valid_for_virtual_attendees(self): self.make_capacity_registrants( self.govdelivery_code, ConferenceRegistrationForm.ATTENDEE_IN_PERSON ) form = self.get_valid_form( attendee_type=ConferenceRegistrationForm.ATTENDEE_VIRTUALLY ) self.assertTrue(form.is_valid()) def test_form_virtual_attendees_dont_count_against_capacity(self): self.make_capacity_registrants( self.govdelivery_code, ConferenceRegistrationForm.ATTENDEE_VIRTUALLY ) self.assertFalse(self.get_valid_form().at_capacity)
# mysql/__init__.py # Copyright (C) 2005-2017 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php from . import base, mysqldb, oursql, \ pyodbc, zxjdbc, mysqlconnector, pymysql,\ gaerdbms, cymysql # default dialect base.dialect = mysqldb.dialect from .base import \ BIGINT, BINARY, BIT, BLOB, BOOLEAN, CHAR, DATE, DATETIME, \ DECIMAL, DOUBLE, ENUM, DECIMAL,\ FLOAT, INTEGER, INTEGER, JSON, LONGBLOB, LONGTEXT, MEDIUMBLOB, \ MEDIUMINT, MEDIUMTEXT, NCHAR, \ NVARCHAR, NUMERIC, SET, SMALLINT, REAL, TEXT, TIME, TIMESTAMP, \ TINYBLOB, TINYINT, TINYTEXT,\ VARBINARY, VARCHAR, YEAR, dialect from .dml import insert, Insert __all__ = ( 'BIGINT', 'BINARY', 'BIT', 'BLOB', 'BOOLEAN', 'CHAR', 'DATE', 'DATETIME', 'DECIMAL', 'DOUBLE', 'ENUM', 'DECIMAL', 'FLOAT', 'INTEGER', 'INTEGER', 'JSON', 'LONGBLOB', 'LONGTEXT', 'MEDIUMBLOB', 'MEDIUMINT', 'MEDIUMTEXT', 'NCHAR', 'NVARCHAR', 'NUMERIC', 'SET', 'SMALLINT', 'REAL', 'TEXT', 'TIME', 'TIMESTAMP', 'TINYBLOB', 'TINYINT', 'TINYTEXT', 'VARBINARY', 'VARCHAR', 'YEAR', 'dialect' )
# Southrn trees bare strage fruit days = "Mon Tue Wed Thu Fri Sat Sun" months = 'Jan\nFeb\nMar\nApr\nMay\nJun\nJul\nAug\nSep\nOct\nNov\nDec' print "Here are the days:", days print 'Here are the months:', months print """ There's something going on here. With the three double-quotes. We'll be able to type as much as we like ass. Even 4 lines if we want, or 5, or whack. """ print ''' ahashashas aashhsahsa '''
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkemr.endpoint import endpoint_data class ModifyFlowProjectClusterSettingRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Emr', '2016-04-08', 'ModifyFlowProjectClusterSetting','emr') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_UserLists(self): return self.get_query_params().get('UserLists') def set_UserLists(self,UserLists): for i in range(len(UserLists)): if UserLists[i] is not None: self.add_query_param('UserList.' + str(i + 1) , UserLists[i]); def get_QueueLists(self): return self.get_query_params().get('QueueLists') def set_QueueLists(self,QueueLists): for i in range(len(QueueLists)): if QueueLists[i] is not None: self.add_query_param('QueueList.' + str(i + 1) , QueueLists[i]); def get_HostLists(self): return self.get_query_params().get('HostLists') def set_HostLists(self,HostLists): for i in range(len(HostLists)): if HostLists[i] is not None: self.add_query_param('HostList.' + str(i + 1) , HostLists[i]); def get_ClusterId(self): return self.get_query_params().get('ClusterId') def set_ClusterId(self,ClusterId): self.add_query_param('ClusterId',ClusterId) def get_DefaultQueue(self): return self.get_query_params().get('DefaultQueue') def set_DefaultQueue(self,DefaultQueue): self.add_query_param('DefaultQueue',DefaultQueue) def get_ProjectId(self): return self.get_query_params().get('ProjectId') def set_ProjectId(self,ProjectId): self.add_query_param('ProjectId',ProjectId) def get_DefaultUser(self): return self.get_query_params().get('DefaultUser') def set_DefaultUser(self,DefaultUser): self.add_query_param('DefaultUser',DefaultUser)
from threading import Thread, Event from time import sleep def func1(): sleep(2) # Initially sleep for 2 secs myeventobj.set() # E2 print("func1 sleeping for 3 secs....") sleep(3) # E3 myeventobj.clear() # E4 def func2(): print("Initially myeventobj is: ", myeventobj.isSet()) # E1 myeventobj.wait() if myeventobj.isSet(): # E5 print("True when myeventobj.set() is called from func1 .i.e. Internal flag is set") print("func2 sleeping for 4 secs....") sleep(4) # E6 if myeventobj.isSet() == False: # E7 print("False when myeventobj.clear() is called from func1.i.e. Internal flag is reset") myeventobj = Event() myt1 = Thread(target=func1) myt2 = Thread(target=func2) myt1.start() myt2.start() myt1.join() myt2.join() print("Main Thread Completed")
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, tgamblin@llnl.gov, All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class RPhantompeakqualtools(RPackage): """Computes informative enrichment and quality measures for ChIP-seq/DNase-seq/FAIRE-seq/MNase-seq data. This is a modified version of r-spp to be used in conjunction with the phantompeakqualtools package.""" homepage = "https://github.com/kundajelab/phantompeakqualtools" url = "https://github.com/kundajelab/phantompeakqualtools/raw/master/spp_1.14.tar.gz" version('1.14', '4de207d570999170c1bf45bcba8c6d2d') depends_on('boost@1.41.0:') depends_on('r-catools', type=('build', 'run')) depends_on('r-snow', type=('build', 'run')) depends_on('r-snowfall', type=('build', 'run')) depends_on('r-bitops', type=('build', 'run')) depends_on('r-rsamtools', type=('build', 'run')) conflicts('%gcc@6:') def setup_environment(self, spack_env, run_env): spack_env.set('BOOST_ROOT', self.spec['boost'].prefix)
from typing import Tuple import unittest import numpy as np from openml.tasks import get_task from .test_task import OpenMLTaskTest class OpenMLSupervisedTaskTest(OpenMLTaskTest): """ A helper class. The methods of the test case are only executed in subclasses of the test case. """ __test__ = False @classmethod def setUpClass(cls): if cls is OpenMLSupervisedTaskTest: raise unittest.SkipTest( "Skip OpenMLSupervisedTaskTest tests," " it's a base class" ) super(OpenMLSupervisedTaskTest, cls).setUpClass() def setUp(self, n_levels: int = 1): super(OpenMLSupervisedTaskTest, self).setUp() def test_get_X_and_Y(self) -> Tuple[np.ndarray, np.ndarray]: task = get_task(self.task_id) X, Y = task.get_X_and_y() return X, Y
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Class CollectiveAllReduceStrategy implementing DistributionStrategy.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import threading import time import weakref from tensorflow.core.protobuf import rewriter_config_pb2 from tensorflow.core.protobuf import tensorflow_server_pb2 from tensorflow.python.distribute import collective_util from tensorflow.python.distribute import cross_device_ops as cross_device_ops_lib from tensorflow.python.distribute import cross_device_utils from tensorflow.python.distribute import device_util from tensorflow.python.distribute import distribute_lib from tensorflow.python.distribute import distribute_utils from tensorflow.python.distribute import distribution_strategy_context as ds_context from tensorflow.python.distribute import input_lib from tensorflow.python.distribute import mirrored_strategy from tensorflow.python.distribute import multi_worker_util from tensorflow.python.distribute import numpy_dataset from tensorflow.python.distribute import reduce_util from tensorflow.python.distribute import values from tensorflow.python.distribute.cluster_resolver import ClusterResolver from tensorflow.python.distribute.cluster_resolver import SimpleClusterResolver from tensorflow.python.distribute.cluster_resolver import TFConfigClusterResolver from tensorflow.python.eager import context from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import collective_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training.tracking import base from tensorflow.python.util import deprecation from tensorflow.python.util.tf_export import tf_export # pylint: disable=line-too-long @tf_export("distribute.MultiWorkerMirroredStrategy", v1=[]) class CollectiveAllReduceStrategy(distribute_lib.Strategy): """A distribution strategy for synchronous training on multiple workers. This strategy implements synchronous distributed training across multiple workers, each with potentially multiple GPUs. Similar to `tf.distribute.MirroredStrategy`, it replicates all variables and computations to each local device. The difference is that it uses a distributed collective implementation (e.g. all-reduce), so that multiple workers can work together. You need to launch your program on each worker and configure `cluster_resolver` correctly. For example, if you are using `tf.distribute.cluster_resolver.TFConfigClusterResolver`, each worker needs to have its corresponding `task_type` and `task_id` set in the `TF_CONFIG` environment variable. An example TF_CONFIG on worker-0 of a two worker cluster is: ``` TF_CONFIG = '{"cluster": {"worker": ["localhost:12345", "localhost:23456"]}, "task": {"type": "worker", "index": 0} }' ``` Your program runs on each worker as-is. Note that collectives require each worker to participate. All `tf.distribute` and non `tf.distribute` API may use collectives internally, e.g. checkpointing and saving since reading a `tf.Variable` with `tf.VariableSynchronization.ON_READ` all-reduces the value. Therefore it's recommended to run exactly the same program on each worker. Dispatching based on `task_type` or `task_id` of the worker is error-prone. `cluster_resolver.num_accelerators()` determines the number of GPUs the strategy uses. If it's zero, the strategy uses the CPU. All workers need to use the same number of devices, otherwise the behavior is undefined. This strategy is not intended for TPU. Use `tf.distribute.TPUStrategy` instead. After setting up TF_CONFIG, using this strategy is similar to using `tf.distribute.MirroredStrategy` and `tf.distribute.TPUStrategy`. ``` strategy = tf.distribute.MultiWorkerMirroredStrategy() with strategy.scope(): model = tf.keras.Sequential([ tf.keras.layers.Dense(2, input_shape=(5,)), ]) optimizer = tf.keras.optimizers.SGD(learning_rate=0.1) def dataset_fn(ctx): x = np.random.random((2, 5)).astype(np.float32) y = np.random.randint(2, size=(2, 1)) dataset = tf.data.Dataset.from_tensor_slices((x, y)) return dataset.repeat().batch(1, drop_remainder=True) dist_dataset = strategy.distribute_datasets_from_function(dataset_fn) model.compile() model.fit(dist_dataset) ``` You can also write your own training loop: ``` @tf.function def train_step(iterator): def step_fn(inputs): features, labels = inputs with tf.GradientTape() as tape: logits = model(features, training=True) loss = tf.keras.losses.sparse_categorical_crossentropy( labels, logits) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) strategy.run(step_fn, args=(next(iterator),)) for _ in range(NUM_STEP): train_step(iterator) ``` See [Multi-worker training with Keras](https://www.tensorflow.org/tutorials/distribute/multi_worker_with_keras) for a detailed tutorial. __Saving__ You need to save and checkpoint on all workers instead of just one. This is because variables whose synchronization=ON_READ triggers aggregation during saving. It's recommended to save to a different path on each worker to avoid race conditions. Each worker saves the same thing. See [Multi-worker training with Keras](https://www.tensorflow.org/tutorials/distribute/multi_worker_with_keras#model_saving_and_loading) tutorial for examples. __Known Issues__ * `tf.distribute.cluster_resolver.TFConfigClusterResolver` does not return the correct number of accelerators. The strategy uses all available GPUs if `cluster_resolver` is `tf.distribute.cluster_resolver.TFConfigClusterResolver` or `None`. * In eager mode, the strategy needs to be created before calling any other Tensorflow API. """ # pylint: enable=line-too-long # TODO(anjalisridhar): Update our guides with examples showing how we can use # the cluster_resolver argument. # The starting number for collective keys. This should only be set in tests. _collective_key_base = 0 def __init__(self, cluster_resolver=None, communication_options=None): """Creates the strategy. Args: cluster_resolver: optional `tf.distribute.cluster_resolver.ClusterResolver`. If `None`, `tf.distribute.cluster_resolver.TFConfigClusterResolver` is used. communication_options: optional `tf.distribute.experimental.CommunicationOptions`. This configures the default options for cross device communications. It can be overridden by options provided to the communication APIs like `tf.distribute.ReplicaContext.all_reduce`. See `tf.distribute.experimental.CommunicationOptions` for details. """ if communication_options is None: communication_options = collective_util.Options() super(CollectiveAllReduceStrategy, self).__init__( CollectiveAllReduceExtended( self, cluster_resolver=cluster_resolver, communication_options=communication_options)) distribute_lib.distribution_strategy_gauge.get_cell("V2").set( "MultiWorkerMirroredStrategy") # pylint: disable=protected-access distribute_lib.distribution_strategy_replica_gauge.get_cell( "num_workers").set(self.extended._num_workers) distribute_lib.distribution_strategy_replica_gauge.get_cell( "num_replicas_per_worker").set(self.extended._num_gpus_per_worker) @classmethod def _from_local_devices(cls, devices, communication_options=None): """A convenience method to create an object with a list of devices.""" obj = cls(communication_options=communication_options) obj.extended._initialize_local(TFConfigClusterResolver(), devices=devices) # pylint: disable=protected-access return obj @property def cluster_resolver(self): """Returns the cluster resolver associated with this strategy. As a multi-worker strategy, `tf.distribute.MultiWorkerMirroredStrategy` provides the associated `tf.distribute.cluster_resolver.ClusterResolver`. If the user provides one in `__init__`, that instance is returned; if the user does not, a default `TFConfigClusterResolver` is provided. """ return self.extended._cluster_resolver # pylint: disable=protected-access class _CollectiveAllReduceStrategyExperimentalMeta(type): @classmethod def __instancecheck__(cls, instance): # This is to make isinstance(tf.distribute.MultiWorkerMirroredStrategy(), # tf.distribute.experimental.MultiWorkerMirroredStrategy). Some libraries is # performing such check. return isinstance(instance, CollectiveAllReduceStrategy) @tf_export("distribute.experimental.MultiWorkerMirroredStrategy", v1=[]) class _CollectiveAllReduceStrategyExperimental( CollectiveAllReduceStrategy, metaclass=_CollectiveAllReduceStrategyExperimentalMeta): __doc__ = CollectiveAllReduceStrategy.__doc__ @deprecation.deprecated( None, "use distribute.MultiWorkerMirroredStrategy instead") def __init__(self, communication=collective_util.CommunicationImplementation.AUTO, cluster_resolver=None): """Creates the strategy. Args: communication: optional `tf.distribute.experimental.CommunicationImplementation`. This is a hint on the preferred collective communication implementation. Possible values include `AUTO`, `RING`, and `NCCL`. cluster_resolver: optional `tf.distribute.cluster_resolver.ClusterResolver`. If `None`, `tf.distribute.cluster_resolver.TFConfigClusterResolver` is used. """ communication_options = collective_util.Options( implementation=communication) super(_CollectiveAllReduceStrategyExperimental, self).__init__(cluster_resolver, communication_options) @classmethod def _from_local_devices( cls, devices, communication=collective_util.CommunicationImplementation.AUTO): """A convenience method to create an object with a list of devices.""" obj = cls(communication) obj.extended._initialize_local(TFConfigClusterResolver(), devices=devices) # pylint: disable=protected-access return obj _CollectiveAllReduceStrategyExperimental.__name__ = CollectiveAllReduceStrategy.__name__ @tf_export(v1=["distribute.experimental.MultiWorkerMirroredStrategy"]) # pylint: disable=missing-docstring class CollectiveAllReduceStrategyV1(distribute_lib.StrategyV1): __doc__ = CollectiveAllReduceStrategy.__doc__ # The starting number for collective keys. This should only be set in tests. _collective_key_base = 0 def __init__(self, communication=collective_util.CommunicationImplementation.AUTO, cluster_resolver=None): """Initializes the object.""" communication_options = collective_util.Options( implementation=communication) super(CollectiveAllReduceStrategyV1, self).__init__( CollectiveAllReduceExtended( self, cluster_resolver=cluster_resolver, communication_options=communication_options)) distribute_lib.distribution_strategy_gauge.get_cell("V1").set( "MultiWorkerMirroredStrategy") # pylint: disable=protected-access distribute_lib.distribution_strategy_replica_gauge.get_cell( "num_workers").set(self.extended._num_workers) distribute_lib.distribution_strategy_replica_gauge.get_cell( "num_gpu_per_worker").set(self.extended._num_gpus_per_worker) class CollectiveAllReduceExtended(mirrored_strategy.MirroredExtended): """Implementation of CollectiveAllReduceStrategy.""" # Whether to perdically check the health of the cluster. If any worker is not # reachable, collectives are aborted and the user program should get a # tf.errors.UnavailableError. It's required to restart in order to recover. _enable_check_health = True # Check health interval in seconds. _check_health_interval = 30 # Timeout in seconds for the first check health. The first check health needs # to wait for cluster, which may make a longer time. _check_health_initial_timeout = 0 # Times to retry before considering the peer is down. _check_health_retry_limit = 3 # Timeout in seconds the each check health. _check_health_timeout = 10 def __init__(self, container_strategy, cluster_resolver, communication_options): if not isinstance(communication_options, collective_util.Options): raise ValueError("communication_options must be an instance of " "tf.distribute.experimental.CommunicationOptions") self._cluster_resolver = cluster_resolver or TFConfigClusterResolver() if not isinstance(self._cluster_resolver, ClusterResolver): raise ValueError("cluster_resolver must be an instance of " "tf.distribute.cluster_resolver.ClusterResolver") distribute_lib.StrategyExtendedV1.__init__(self, container_strategy) self._communication_options = communication_options self._collective_key_base = container_strategy._collective_key_base # pylint: disable=protected-access self._initialize_strategy(self._cluster_resolver) self._cfer_fn_cache = weakref.WeakKeyDictionary() self.experimental_enable_get_next_as_optional = True assert isinstance(self._cross_device_ops, cross_device_ops_lib.CollectiveAllReduce) def _use_merge_call(self): """XLA is not supported for multi-worker strategy.""" return True def _initialize_strategy(self, cluster_resolver): if cluster_resolver.cluster_spec().as_dict(): self._initialize_multi_worker(cluster_resolver) else: self._initialize_local(cluster_resolver) def _initialize_local(self, cluster_resolver, devices=None): """Initializes the object for local training.""" self._is_chief = True self._num_workers = 1 if ops.executing_eagerly_outside_functions(): try: context.context().configure_collective_ops( scoped_allocator_enabled_ops=("CollectiveReduce",)) except RuntimeError: logging.warning("Collective ops is not configured at program startup. " "Some performance features may not be enabled.") self._collective_ops_configured = True # TODO(b/126786766): TFConfigClusterResolver returns wrong number of GPUs in # some cases. if isinstance(cluster_resolver, TFConfigClusterResolver): num_gpus = context.num_gpus() else: num_gpus = cluster_resolver.num_accelerators().get("GPU", 0) if devices: local_devices = devices else: if num_gpus: local_devices = tuple("/device:GPU:%d" % i for i in range(num_gpus)) else: local_devices = ("/device:CPU:0",) self._worker_device = device_util.canonicalize("/device:CPU:0") self._host_input_device = numpy_dataset.SingleDevice(self._worker_device) self._collective_keys = cross_device_utils.CollectiveKeys( group_key_start=1 + self._collective_key_base) self._cross_device_ops = cross_device_ops_lib.CollectiveAllReduce( devices=local_devices, group_size=len(local_devices), collective_keys=self._collective_keys) # CrossDeviceOps for per host tensors. self._host_cross_device_ops = cross_device_ops_lib.CollectiveAllReduce( devices=[self._worker_device], group_size=self._num_workers, collective_keys=self._collective_keys) super(CollectiveAllReduceExtended, self)._initialize_single_worker( local_devices) self._cluster_spec = None self._task_type = None self._task_id = None self._id_in_cluster = 0 # This is a mark to tell whether we are running with standalone client or # independent worker. Right now with standalone client, strategy object is # created as local strategy and then turn into multi-worker strategy via # configure call. self._local_or_standalone_client_mode = True # Save the num_gpus_per_worker and rpc_layer for configure method. self._num_gpus_per_worker = num_gpus self._rpc_layer = cluster_resolver.rpc_layer self._warn_nccl_no_gpu() logging.info( "Single-worker MultiWorkerMirroredStrategy with local_devices " "= %r, communication = %s", local_devices, self._communication_options.implementation) def _initialize_multi_worker(self, cluster_resolver): """Initializes the object for multi-worker training.""" cluster_spec = multi_worker_util.normalize_cluster_spec( cluster_resolver.cluster_spec()) task_type = cluster_resolver.task_type task_id = cluster_resolver.task_id if task_type is None or task_id is None: raise ValueError("When `cluster_spec` is given, you must also specify " "`task_type` and `task_id`.") self._cluster_spec = cluster_spec self._task_type = task_type self._task_id = task_id self._id_in_cluster = multi_worker_util.id_in_cluster( self._cluster_spec, self._task_type, self._task_id) self._num_workers = multi_worker_util.worker_count(cluster_spec, task_type) if not self._num_workers: raise ValueError("No `worker`, `chief` or `evaluator` tasks can be found " "in `cluster_spec`.") self._is_chief = multi_worker_util.is_chief(cluster_spec, task_type, task_id) self._worker_device = "/job:%s/task:%d" % (task_type, task_id) self._host_input_device = numpy_dataset.SingleDevice(self._worker_device) if (ops.executing_eagerly_outside_functions() and not getattr(self, "_local_or_standalone_client_mode", False)): context.context().configure_collective_ops( collective_leader=multi_worker_util.collective_leader( cluster_spec, task_type, task_id), scoped_allocator_enabled_ops=("CollectiveReduce",), device_filters=("/job:%s/task:%d" % (task_type, task_id),)) self._collective_ops_configured = True # Starting a std server in eager mode and in independent worker mode. if (context.executing_eagerly() and not getattr(self, "_std_server_started", False) and not getattr(self, "_local_or_standalone_client_mode", False)): # Checking _local_or_standalone_client_mode as well because we should not # create the std server in standalone client mode. config_proto = copy.deepcopy(context.context().config) config_proto = self._update_config_proto(config_proto) # If coordination service is enabled, use its internal heartbeat to detect # peer failures instead of the Python-level health check. if config_proto.experimental.coordination_service: self._enable_check_health = False if hasattr(cluster_resolver, "port"): port = cluster_resolver.port else: port = 0 server_def = tensorflow_server_pb2.ServerDef( cluster=cluster_spec.as_cluster_def(), default_session_config=config_proto, job_name=task_type, task_index=task_id, protocol=cluster_resolver.rpc_layer or "grpc", port=port) context.context().enable_collective_ops(server_def) self._std_server_started = True # The `ensure_initialized` is needed before calling # `context.context().devices()`. context.context().ensure_initialized() logging.info( "Enabled multi-worker collective ops with available devices: %r", context.context().devices()) # TODO(yuefengz): The `num_gpus` is only for this particular task. It # assumes all workers have the same number of GPUs. We should remove this # assumption by querying all tasks for their numbers of GPUs. # TODO(b/126786766): TFConfigClusterResolver returns wrong number of GPUs in # some cases. if isinstance(cluster_resolver, TFConfigClusterResolver): num_gpus = context.num_gpus() else: num_gpus = cluster_resolver.num_accelerators().get("GPU", 0) if num_gpus: local_devices = tuple("%s/device:GPU:%d" % (self._worker_device, i) for i in range(num_gpus)) else: local_devices = (self._worker_device,) self._collective_keys = cross_device_utils.CollectiveKeys( group_key_start=1 + self._collective_key_base) self._cross_device_ops = cross_device_ops_lib.CollectiveAllReduce( devices=local_devices, group_size=len(local_devices) * self._num_workers, collective_keys=self._collective_keys) # CrossDeviceOps for per host tensors. self._host_cross_device_ops = cross_device_ops_lib.CollectiveAllReduce( devices=[self._worker_device], group_size=self._num_workers, collective_keys=self._collective_keys) super(CollectiveAllReduceExtended, self)._initialize_single_worker( local_devices) # Add a default device so that ops without specified devices will not end up # on other workers. self._default_device = "/job:%s/task:%d" % (task_type, task_id) # Save the num_gpus_per_worker and rpc_layer for configure method. self._num_gpus_per_worker = num_gpus self._rpc_layer = cluster_resolver.rpc_layer self._warn_nccl_no_gpu() if self._enable_check_health and context.executing_eagerly(): self._start_check_health_thread() else: logging.info("Check health not enabled.") logging.info( "MultiWorkerMirroredStrategy with cluster_spec = %r, task_type = %r, " "task_id = %r, num_workers = %r, local_devices = %r, " "communication = %s", cluster_spec.as_dict(), task_type, task_id, self._num_workers, local_devices, self._communication_options.implementation) def __del__(self): self._stop_check_health_thread() def _input_workers_with_options(self, options=None): host_device = device_util.get_host_for_device(self._worker_device) if not options or options.experimental_fetch_to_device: return input_lib.InputWorkers([(host_device, self.worker_devices)]) else: return input_lib.InputWorkers([( host_device, [device_util.get_host_for_device(worker) for worker in self.worker_devices])]) @property def _input_workers(self): return self._input_workers_with_options() def _get_variable_creator_initial_value(self, replica_id, device, primary_var, **kwargs): if replica_id == 0: # First replica on each worker. assert device is not None assert primary_var is None def initial_value_fn(): # pylint: disable=g-missing-docstring # Only the first device participates in the broadcast of initial values. group_key = self._collective_keys.get_group_key([device]) group_size = self._num_workers collective_instance_key = ( self._collective_keys.get_instance_key(group_key, device)) with ops.device(device): initial_value = kwargs["initial_value"] if callable(initial_value): initial_value = initial_value() if isinstance(initial_value, base.CheckpointInitialValue): initial_value = initial_value.wrapped_value assert not callable(initial_value) initial_value = ops.convert_to_tensor( initial_value, dtype=kwargs.get("dtype", None)) if self._num_workers > 1: if self._is_chief: bcast_send = collective_ops.broadcast_send( initial_value, initial_value.shape, initial_value.dtype, group_size, group_key, collective_instance_key) with ops.control_dependencies([bcast_send]): return array_ops.identity(initial_value) else: return collective_ops.broadcast_recv(initial_value.shape, initial_value.dtype, group_size, group_key, collective_instance_key) return initial_value return initial_value_fn else: return super(CollectiveAllReduceExtended, self)._get_variable_creator_initial_value( replica_id=replica_id, device=device, primary_var=primary_var, **kwargs) def _make_input_context(self): input_context = distribute_lib.InputContext( num_input_pipelines=self._num_workers, input_pipeline_id=self._id_in_cluster, num_replicas_in_sync=self._num_replicas_in_sync) return input_context def _experimental_distribute_dataset(self, dataset, options): if (options and options.experimental_replication_mode == distribute_lib.InputReplicationMode.PER_REPLICA): raise NotImplementedError( "InputReplicationMode.PER_REPLICA " "is only supported in " "`distribute_datasets_from_function` " "of tf.distribute.MirroredStrategy" ) input_context = self._make_input_context() return input_lib.get_distributed_dataset( dataset, self._input_workers_with_options(options), self._container_strategy(), num_replicas_in_sync=self._num_replicas_in_sync, input_context=input_context, options=options) def _distribute_datasets_from_function(self, dataset_fn, options): if (options and options.experimental_replication_mode == distribute_lib.InputReplicationMode.PER_REPLICA): raise NotImplementedError( "InputReplicationMode.PER_REPLICA " "is only supported in " "`distribute_datasets_from_function` " "of tf.distribute.MirroredStrategy") input_context = self._make_input_context() return input_lib.get_distributed_datasets_from_function( dataset_fn=dataset_fn, input_workers=self._input_workers_with_options(options), input_contexts=[input_context], strategy=self._container_strategy(), options=options) def _experimental_distribute_values_from_function(self, value_fn): per_replica_values = [] num_local_replicas = len(self.worker_devices) for local_replica_id in range(num_local_replicas): replica_id = (self._id_in_cluster * num_local_replicas + local_replica_id) value_context = distribute_lib.ValueContext( replica_id, self._num_replicas_in_sync) per_replica_values.append(value_fn(value_context)) return distribute_utils.regroup(per_replica_values, always_wrap=True) def _make_dataset_iterator(self, dataset): """Distributes the dataset to each local GPU.""" input_context = self._make_input_context() return input_lib.DatasetIterator( dataset, self._input_workers, self._container_strategy(), num_replicas_in_sync=self._num_replicas_in_sync, input_context=input_context) def _make_input_fn_iterator( self, input_fn, replication_mode=distribute_lib.InputReplicationMode.PER_WORKER): """Distributes the input function to each local GPU.""" input_context = self._make_input_context() return input_lib.InputFunctionIterator(input_fn, self._input_workers, [input_context], self._container_strategy()) def _configure(self, session_config=None, cluster_spec=None, task_type=None, task_id=None): """Configures the object. Args: session_config: a `tf.compat.v1.ConfigProto` cluster_spec: a dict, ClusterDef or ClusterSpec object specifying the cluster configurations. task_type: the current task type, such as "worker". task_id: the current task id. Raises: ValueError: if `task_type` is not in the `cluster_spec`. """ if cluster_spec: # Use the num_gpus_per_worker recorded in constructor since _configure # doesn't take num_gpus. cluster_resolver = SimpleClusterResolver( cluster_spec=multi_worker_util.normalize_cluster_spec(cluster_spec), task_type=task_type, task_id=task_id, num_accelerators={"GPU": self._num_gpus_per_worker}, rpc_layer=self._rpc_layer) self._initialize_multi_worker(cluster_resolver) assert isinstance(self._cross_device_ops, cross_device_ops_lib.CollectiveAllReduce) if session_config: session_config.CopyFrom(self._update_config_proto(session_config)) def _update_config_proto(self, config_proto): updated_config = copy.deepcopy(config_proto) # Enable the scoped allocator optimization for CollectiveOps. This # optimization converts many small all-reduces into fewer larger # all-reduces. rewrite_options = updated_config.graph_options.rewrite_options rewrite_options.scoped_allocator_optimization = ( rewriter_config_pb2.RewriterConfig.ON) # We turn on ScopedAllocator only for CollectiveReduce op, i.e. enable_op = # ["CollectiveReduce"]. Since we can't assign to a repeated proto field, we # clear and then append. del rewrite_options.scoped_allocator_opts.enable_op[:] rewrite_options.scoped_allocator_opts.enable_op.append("CollectiveReduce") if (not ops.executing_eagerly_outside_functions() and self._communication_options.implementation == collective_util.CommunicationImplementation.NCCL): updated_config.experimental.collective_nccl = True if not self._cluster_spec: return updated_config assert self._task_type assert self._task_id is not None # Collective group leader is needed for collective ops to coordinate # workers. updated_config.experimental.collective_group_leader = ( multi_worker_util.collective_leader(self._cluster_spec, self._task_type, self._task_id)) # The device filters prevent communication between workers. del updated_config.device_filters[:] updated_config.device_filters.append( "/job:%s/task:%d" % (self._task_type, self._task_id)) return updated_config def _get_cross_device_ops(self, value): # CollectiveAllReduce works on a predefined set of devices. In most cases # they should be the compute devices, but certain use cases may reduce host # tensors as well (e.g. early stopping). We infer the cross_device_ops to # use based on the number of devices, since inputs don't always have device # annotations. The compute devices one is preferred since we can potentially # leverage NCCL. if isinstance(value, values.DistributedValues): num_devices = len(value._values) # pylint: disable=protected-access else: num_devices = 1 if num_devices == len(self.worker_devices): return self._cross_device_ops else: return self._host_cross_device_ops def _gather_to_implementation(self, value, destinations, axis, options): return self._get_cross_device_ops(value)._gather( # pylint: disable=protected-access value, destinations=destinations, axis=axis, options=options) def _reduce_to(self, reduce_op, value, destinations, options): if (isinstance(value, values.Mirrored) and reduce_op == reduce_util.ReduceOp.MEAN): return value assert not isinstance(value, values.Mirrored) if (isinstance(value, values.DistributedValues) and len(self.worker_devices) == 1): value = value.values[0] # When there are multiple workers, we need to reduce across workers using # collective ops. if (not isinstance(value, values.DistributedValues) and self._num_workers == 1): # This function handles reducing values that are not PerReplica or # Mirrored values. For example, the same value could be present on all # replicas in which case `value` would be a single value or value could # be 0. return cross_device_ops_lib.reduce_non_distributed_value( reduce_op, value, destinations, len(self.worker_devices)) return self._get_cross_device_ops(value).reduce( reduce_op, value, destinations=destinations, options=self._communication_options.merge(options)) def _replica_ctx_all_reduce(self, reduce_op, value, options=None): """Implements `StrategyExtendedV2._replica_ctx_all_reduce`.""" # This implementation avoids using `merge_call` and just launches collective # ops in one replica. if options is None: options = collective_util.Options() if context.executing_eagerly(): # In eager mode, falls back to the default implemenation that uses # `merge_call`. Replica functions are running sequentially in eager mode, # and due to the blocking nature of collective ops, execution will hang if # collective ops are to be launched sequentially. return super()._replica_ctx_all_reduce(reduce_op, value, options) replica_context = ds_context.get_replica_context() assert replica_context, ( "`StrategyExtended._replica_ctx_all_reduce` must be called in a " "replica context") return self._cross_device_ops._all_reduce( # pylint: disable=protected-access reduce_op, value, replica_context._replica_id, # pylint: disable=protected-access options) def _check_health(self): while True: if self._check_health_thread_should_stop.is_set(): return for job in self._cluster_spec.jobs: for task_id in range(self._cluster_spec.num_tasks(job)): peer = "/job:{}/replica:0/task:{}".format(job, task_id) attempts = 0 while True: attempts += 1 try: context.context().check_collective_ops_peer_health( peer, timeout_in_ms=self._check_health_timeout * 1000) # If check_collective_ops_peer_health doesn't raise an Exception, # the peer is healthy. break except (errors.UnavailableError, errors.FailedPreconditionError, errors.DeadlineExceededError) as e: # TODO(b/151232436): Always raise UnavailableError when a peer # fails. Now there could be many kinds of errors: # - Unavailable: when the peer is not reachable, e.g. it's down. # - FailedPrecondition: when the peer has restarted. if attempts < self._check_health_retry_limit: logging.warning("%s seems down, retrying %d/%d", peer, attempts, self._check_health_retry_limit) continue logging.error( "Cluster check alive failed, %s is down, " "aborting collectives: %s", peer, e) context.context().abort_collective_ops( errors.UNAVAILABLE, "cluster check alive failed, {} is down".format(peer)) return except Exception as e: # pylint: disable=broad-except logging.error("Unexpected exception in check alive: %s", e) context.context().abort_collective_ops( errors.INTERNAL, "unexecpted exception in check alive: %s" % e) return time.sleep(self._check_health_interval) def _start_check_health_thread(self): # Use a dummy all-reduce as a barrier to wait for all workers to be up, # otherwise the check health may fail immediately. # Use array_ops.identity to create the dummy tensor so that we have a new # Tensor. If we use constant it may be a cached from on a /job:localhost # device, which will cause some code that relies on tensor.device to error. # # TODO(b/151232436): change to an explicit barrier if we have it. dummy_value = array_ops.identity([]) logging.info("Waiting for the cluster, timeout = %s", self._check_health_initial_timeout or "inf") try: self._host_cross_device_ops.reduce( reduce_util.ReduceOp.SUM, dummy_value, dummy_value, options=collective_util.Options( timeout_seconds=self._check_health_initial_timeout, implementation=collective_util.CommunicationImplementation.RING)) if context.is_async(): context.async_wait() except errors.DeadlineExceededError: raise RuntimeError( "Timeout waiting for the cluster, timeout is %d seconds" % self._check_health_initial_timeout) logging.info("Cluster is ready.") self._check_health_thread_should_stop = threading.Event() # Start the thread as daemon to avoid it blocking the program from exiting. # We try best to shutdown the thread but __del__ is not guaranteed to be # called when program exists. self._check_health_thread = threading.Thread( target=self._check_health, daemon=True) self._check_health_thread.start() def _stop_check_health_thread(self): if getattr(self, "_check_health_thread", None): logging.info("stopping check health thread") self._check_health_thread_should_stop.set() self._check_health_thread.join() self._check_health_thread = None logging.info("check health thread stopped") def _warn_nccl_no_gpu(self): if ((self._communication_options.implementation == collective_util.CommunicationImplementation.NCCL) and self._num_gpus_per_worker == 0): logging.warning("Enabled NCCL communication but no GPUs detected/" "specified.") def _in_multi_worker_mode(self): """Whether this strategy indicates working in multi-worker settings.""" return self._num_workers > 1 @property def experimental_between_graph(self): return True @property def experimental_should_init(self): return True @property def should_checkpoint(self): return self._is_chief @property def should_save_summary(self): return self._is_chief @property def _num_replicas_in_sync(self): return len(self.worker_devices) * self._num_workers # TODO(priyag): Delete this once all strategies use global batch size. @property def _global_batch_size(self): """`make_dataset_iterator` and `make_numpy_iterator` use global batch size. `make_input_fn_iterator` assumes per-replica batching. Returns: Boolean. """ return True def _get_replica_id_in_sync_group(self, replica_id): return self._id_in_cluster * len(self.worker_devices) + replica_id def _get_local_replica_id(self, replica_id_in_sync_group): return (replica_id_in_sync_group - self._id_in_cluster * len(self.worker_devices)) def __deepcopy__(self, memo): # We check the check health thread instead of whether we are in eager mode # to limit the backward incompatibility. if hasattr(self, "_check_health_thread"): raise ValueError( "MultiWorkerMirroredStrategy cannot be deep copied in eager mode. " "If you're using Estimator and see this error message, call " "tf.compat.v1.disable_eager_execution() at the beginning of your " "program") # Otherwise, do a regular deepcopy. cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result for k, v in self.__dict__.items(): setattr(result, k, copy.deepcopy(v, memo)) return result
QUERY_HASH = '42323d64886122307be10013ad2dcc44' STORIES_QUERY_HASH = '45246d3fe16ccc6577e0bd297a5db1ab' SHORTCODE_QUERY_HASH = 'fead941d698dc1160a298ba7bec277ac' BASE_URL = "https://www.instagram.com" LOGIN_REFERER = f'{BASE_URL}/accounts/login' LOGIN_URL = f'{BASE_URL}/accounts/login/ajax/' LOGOUT_URL = f'{BASE_URL}/accounts/logout/' QUERY_URL = f'{BASE_URL}/graphql/query/' QUERY_POST_URL = f'{QUERY_URL}?' + \ f'query_hash={QUERY_HASH}&' + \ 'variables=%7B"id"%3A"{id}"%2C"first"%3A{first}%2C"after"%3A"{after}"%7D' SHORTCODE_URL = f'{QUERY_URL}?' + \ f'query_hash={SHORTCODE_QUERY_HASH}&' + \ 'variables=%7B"shortcode"%3A"{shortcode}"%2C"child_comment_count"%3A{child_comment_count}%2C"fetch_comment_count"%3A{fetch_comment_count}%2C"parent_comment_count"%3A{parent_comment_count}%2C"has_threaded_comments"%3A{has_threaded_comments}%7D' STORIES_API_URL = BASE_URL + '/graphql/query/?' + \ f'query_hash={STORIES_QUERY_HASH}&' + \ 'variables=%7B%22' + \ 'reel_ids%22%3A%5B%22{id}%22%5D%2C%22' + \ 'tag_names%22%3A%5B%5D%2C%22' + \ 'location_ids%22%3A%5B%5D%2C%22' + \ 'highlight_reel_ids%22%3A%5B%5D%2C%22' + \ 'precomposed_overlay%22%3Afalse%7D' # make my life easy # think python might already handle this null = None true = True false = False
#!/usr/bin/env python3 # -*- encoding: utf-8 -*- ''' @File : main.py @Author : guoliang.wgl @version : 1.0 @Description: smart_fan案例 - 智能控制小风扇 board.json - 硬件资源配置文件 ''' from fan import Fan from aht21b import AHT21B from driver import PWM, I2C import time from aliyunIoT import Device # iot组件是连接阿里云物联网平台的组件 import json # 物联网平台连接标志位 iot_connected = False wlan = None # 三元组信息 productKey = "产品密钥" deviceName = "设备名称" deviceSecret = "设备密钥" # 物联网设备实例 device = None # Wi-Fi SSID和Password设置 wifiSsid = "请输入您的路由器名称" wifiPassword = "请输入您的路由器密码" # 警报开关以及时间段控制(大于等于alarm_start 或者小于等于alarm_end ) gear1_temp = 22 gear2_temp = 27 gear3_temp = 32 FLAG_CUR_TEMP = "cur_temp" FLAG_GEAR1 = "gear1" FLAG_GEAR2 = "gear2" FLAG_GEAR3 = "gear3" cur_gear = 0 # 等待Wi-Fi成功连接到路由器 def get_wifi_status(): global wlan wifi_connected = False wlan.active(True) #激活界面 wlan.scan() #扫描接入点 #print("start to connect ", wifiSsid) # 连接到指定的路由器(路由器名称为wifiSsid, 密码为:wifiPassword) wlan.connect(wifiSsid, wifiPassword) while True: wifi_connected = wlan.isconnected() # 获取Wi-Fi连接路由器的状态信息 if wifi_connected: # Wi-Fi连接成功则退出while循环 break else: time.sleep(0.5) print("wifi_connected:", wifi_connected) ifconfig = wlan.ifconfig() #获取接口的IP/netmask/gw/DNS地址 print(ifconfig) time.sleep(0.5) # 物联网平台连接成功的回调函数 def on_connect(data): global iot_connected iot_connected = True # 设置props 事件接收函数(当云平台向设备下发属性时) def on_props(request): global FLAG_GEAR1, FLAG_GEAR2, FLAG_GEAR3, gear1_temp, gear2_temp, gear3_temp try: props = eval(request['params']) if FLAG_GEAR1 in props.keys(): gear1_temp = props[FLAG_GEAR1] print('on_props: name is {},value is {}'.format( FLAG_GEAR1, gear1_temp)) elif FLAG_GEAR2 in props.keys(): gear2_temp = props[FLAG_GEAR2] print('on_props: name is {},value is {}'.format( FLAG_GEAR2, gear2_temp)) elif FLAG_GEAR3 in props.keys(): gear3_temp = props[FLAG_GEAR3] print('on_props: name is {},value is {}'.format( FLAG_GEAR3, gear3_temp)) post_default_value() except Exception as e: print(e) def post_props(data): global device if isinstance(data, dict): data = {'params': json.dumps(data)} ret = device.postProps(data) return ret def connect_lk(productKey, deviceName, deviceSecret): global device, iot_connected key_info = { 'region': 'cn-shanghai', 'productKey': productKey, 'deviceName': deviceName, 'deviceSecret': deviceSecret, 'keepaliveSec': 60 } # 将三元组信息设置到iot组件中 device = Device() # 设定连接到物联网平台的回调函数,如果连接物联网平台成功,则调用on_connect函数 device.on(Device.ON_CONNECT, on_connect) # 配置收到云端属性控制指令的回调函数 # 如果收到物联网平台发送的属性控制消息,则调用on_props函数 device.on(Device.ON_PROPS, on_props) # 启动连接阿里云物联网平台过程 device.connect(key_info) # 等待设备成功连接到物联网平台 while True: if iot_connected: print('物联网平台连接成功') break else: print('sleep for 1 s') time.sleep(1) time.sleep(2) def post_default_value(): global FLAG_GEAR1, FLAG_GEAR2, FLAG_GEAR3, gear1_temp, gear2_temp, gear3_temp value = {FLAG_GEAR1: gear1_temp} post_props(value) value = {FLAG_GEAR2: gear2_temp} post_props(value) value = {FLAG_GEAR3: gear3_temp} post_props(value) def upload_temp(temp): value = {FLAG_CUR_TEMP: temp} post_props(value) if __name__ == '__main__': wlan = network.WLAN(network.STA_IF) #创建WLAN对象 # 请替换物联网平台申请到的产品和设备信息 # global productKey, deviceName, deviceSecret ,on_request, on_play get_wifi_status() connect_lk(productKey, deviceName, deviceSecret) post_default_value() # 初始化风扇控制pwm pwmObj = PWM() pwmObj.open("fan") fan = Fan(pwmObj) fan.control(0) # 初始化温度传感器 i2c = I2C() i2c.open('aht21b') aht = AHT21B(i2c) while True: temp = aht.getTemperature() print('cur temp is {}'.format(temp)) upload_temp(temp) if temp <= gear1_temp and cur_gear != 0: cur_gear = 0 fan.control(cur_gear) print('fan change to gear {}'.format(cur_gear)) elif temp > gear1_temp and temp <= gear2_temp and cur_gear != 1: cur_gear = 1 fan.control(cur_gear) print('fan change to gear {}'.format(cur_gear)) elif temp > gear2_temp and temp <= gear3_temp and cur_gear != 2: cur_gear = 2 fan.control(cur_gear) print('fan change to gear {}'.format(cur_gear)) elif temp > gear3_temp and cur_gear != 3: cur_gear = 3 fan.control(cur_gear) print('fan change to gear {}'.format(cur_gear))
# coding=utf-8 # # Copyright 2020 Heinrich Heine University Duesseldorf # # Part of this code is based on the source code of BERT-DST # (arXiv:1907.03040) # Part of this code is based on the source code of Transformers # (arXiv:1910.03771) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import json import logging import os import sys from typing import Dict, Union import hydra import numpy as np import torch import transformers from fairscale.nn.data_parallel.fully_sharded_data_parallel import FullyShardedDataParallel as FullyShardedDDP from fairscale.nn.wrap.auto_wrap import auto_wrap from fairscale.optim.grad_scaler import ShardedGradScaler from omegaconf import DictConfig, OmegaConf from torch import distributed as dist from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from torch.utils.data.distributed import DistributedSampler from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm, trange from transformers import (get_linear_schedule_with_warmup, AutoTokenizer, PreTrainedTokenizer) from general_util.logger import setting_logger from general_util.training_utils import batch_to_device, unwrap_model, set_seed, note_best_checkpoint, initialize_optimizer logger: logging.Logger # transformers.logging.set_verbosity_error() def save_model(model: Union[torch.nn.Module, FullyShardedDDP], cfg: DictConfig, output_dir: str, tokenizer: PreTrainedTokenizer = None): # Save model checkpoint. if cfg.local_rank != -1: state_dict = model.state_dict() if cfg.local_rank == 0: unwrap_model(model).save_pretrained(output_dir, state_dict=state_dict) else: model.save_pretrained(output_dir) # Save tokenizer and training args. if cfg.local_rank in [-1, 0]: if tokenizer is not None: tokenizer.save_pretrained(output_dir) OmegaConf.save(cfg, os.path.join(output_dir, "training_config.yaml")) logger.info("Saving model checkpoint to %s", output_dir) def forward_step(model, inputs: Dict[str, torch.Tensor], cfg, scaler): if cfg.fp16: with torch.cuda.amp.autocast(): outputs = model(**inputs) loss = outputs["loss"] # model outputs are always tuple in transformers (see doc) else: outputs = model(**inputs) loss = outputs["loss"] # model outputs are always tuple in pytorch-transformers (see doc) if cfg.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training if cfg.gradient_accumulation_steps > 1: loss = loss / cfg.gradient_accumulation_steps if cfg.fp16: scaler.scale(loss).backward() else: loss.backward() return loss.item() def train(cfg, train_dataset, features, model, tokenizer, continue_from_global_step=0): """ Train the model """ if cfg.local_rank in [-1, 0]: _dir_splits = cfg.output_dir.split('/') _log_dir = '/'.join([_dir_splits[0], 'runs'] + _dir_splits[1:]) tb_writer = SummaryWriter(log_dir=_log_dir) else: tb_writer = None cfg.train_batch_size = cfg.per_gpu_train_batch_size * max(1, cfg.n_gpu) train_sampler = RandomSampler(train_dataset) if cfg.local_rank == -1 else DistributedSampler(train_dataset) train_collator = hydra.utils.instantiate(cfg.collator) if "collator" in cfg and cfg.collator else None train_dataloader = DataLoader(dataset=train_dataset, sampler=train_sampler, batch_size=cfg.train_batch_size, collate_fn=train_collator, num_workers=cfg.num_workers, pin_memory=True, prefetch_factor=cfg.prefetch_factor) if "extended_vocab" in cfg and cfg.extended_vocab: logger.info(f"Extended extra vocab size: {cfg.extended_vocab}") model.resize_token_embeddings(model.config.vocab_size + cfg.extended_vocab) if cfg.max_steps > 0: t_total = cfg.max_steps cfg.num_train_epochs = cfg.max_steps // (len(train_dataloader) // cfg.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // cfg.gradient_accumulation_steps * cfg.num_train_epochs num_warmup_steps = int(t_total * cfg.warmup_proportion) if cfg.warmup_proportion else cfg.warmup_steps optimizer = scheduler = None # Prepare optimizer and schedule (linear warmup and decay) if cfg.local_rank == -1: no_decay = ['bias', 'LayerNorm.weight', 'layer_norm.weight'] optimizer_grouped_parameters = [ { 'params': [p for n, p in model.named_parameters() if (not any(nd in n for nd in no_decay)) and p.requires_grad], 'weight_decay': cfg.weight_decay }, { 'params': [p for n, p in model.named_parameters() if (any(nd in n for nd in no_decay)) and p.requires_grad], 'weight_decay': 0.0 } ] optimizer = initialize_optimizer(cfg, optimizer_grouped_parameters) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=t_total) if cfg.fp16: if cfg.local_rank != -1: scaler = ShardedGradScaler() else: from torch.cuda.amp.grad_scaler import GradScaler scaler = GradScaler() else: scaler = None # multi-gpu training (should be after apex fp16 initialization) model_single_gpu = model if cfg.n_gpu > 1: model = torch.nn.DataParallel(model_single_gpu) # Distributed training (should be after apex fp16 initialization) if cfg.local_rank != -1: model = auto_wrap(model) model = FullyShardedDDP(model, mixed_precision=cfg.fp16, flatten_parameters=getattr(cfg, "flatten_parameters", True), reshard_after_forward=cfg.reshard_after_forward, move_grads_to_cpu=cfg.move_grads_to_cpu, move_params_to_cpu=cfg.move_params_to_cpu) if not cfg.move_params_to_cpu: model = model.to(cfg.device) no_decay = ['bias', 'LayerNorm.weight', 'layer_norm.weight'] optimizer_grouped_parameters = [ { 'params': [p for n, p in model.named_parameters() if (not any(nd in n for nd in no_decay)) and p.requires_grad], 'weight_decay': cfg.weight_decay }, { 'params': [p for n, p in model.named_parameters() if (any(nd in n for nd in no_decay)) and p.requires_grad], 'weight_decay': 0.0 } ] optimizer = initialize_optimizer(cfg, optimizer_grouped_parameters) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=t_total) logger.info(optimizer) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", cfg.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", cfg.per_gpu_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", cfg.train_batch_size * cfg.gradient_accumulation_steps * (dist.get_world_size() if cfg.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", cfg.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) logger.info(" Warmup steps = %d", num_warmup_steps) if continue_from_global_step > 0: logger.info("Fast forwarding to global step %d to resume training from latest checkpoint...", continue_from_global_step) global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange(int(cfg.num_train_epochs), desc="Epoch", disable=cfg.local_rank not in [-1, 0]) set_seed(cfg) # Added here for reproducibility (even between python 2 and 3) for epoch in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=cfg.local_rank not in [-1, 0], dynamic_ncols=True) if cfg.local_rank != -1: train_dataloader.sampler.set_epoch(epoch) for step, batch in enumerate(epoch_iterator): # If training is continued from a checkpoint, fast forward # to the state of that checkpoint. if global_step < continue_from_global_step: if (step + 1) % cfg.gradient_accumulation_steps == 0: scheduler.step() # Update learning rate schedule global_step += 1 continue model.train() batch = batch_to_device(batch, cfg.device) if (step + 1) % cfg.gradient_accumulation_steps != 0 and cfg.local_rank != -1: # Avoid unnecessary DDP synchronization since there will be no backward pass on this example. with model.no_sync(): loss = forward_step(model, batch, cfg, scaler) else: loss = forward_step(model, batch, cfg, scaler) tr_loss += loss if (step + 1) % cfg.gradient_accumulation_steps == 0: if cfg.fp16: scaler.unscale_(optimizer) if cfg.max_grad_norm: if hasattr(optimizer, "clip_grad_norm"): optimizer.clip_grad_norm(cfg.max_grad_norm) elif hasattr(model, "clip_grad_norm_"): model.clip_grad_norm_(cfg.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), cfg.max_grad_norm) if cfg.fp16: scaler.step(optimizer) scaler.update() else: optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad(set_to_none=True) global_step += 1 # Log metrics if cfg.local_rank in [-1, 0] and cfg.logging_steps > 0 and global_step % cfg.logging_steps == 0: tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step) tb_writer.add_scalar('loss', (tr_loss - logging_loss) / cfg.logging_steps, global_step) logging_loss = tr_loss # Save model checkpoint if cfg.save_steps > 0 and global_step % cfg.save_steps == 0: output_dir = os.path.join(cfg.output_dir, 'checkpoint-{}'.format(global_step)) if cfg.local_rank in [-1, 0] and not os.path.exists(output_dir): os.makedirs(output_dir) save_model(model, cfg, output_dir, tokenizer) # Evaluation if cfg.evaluate_during_training and cfg.eval_steps > 0 and global_step % cfg.eval_steps == 0: state_dict = model.state_dict() if cfg.local_rank in [-1, 0]: results = evaluate(cfg, model, tokenizer, prefix=str(global_step), _split="dev") for key, value in results.items(): tb_writer.add_scalar(f"eval/{key}", value, global_step) sub_path = os.path.join(cfg.output_dir, 'checkpoint-{}'.format(global_step)) flag = note_best_checkpoint(cfg, results, sub_path) if cfg.save_best and flag: if cfg.local_rank == 0: unwrap_model(model).save_pretrained(cfg.output_dir, state_dict=state_dict) else: model.save_pretrained(cfg.output_dir) tokenizer.save_pretrained(cfg.output_dir) OmegaConf.save(cfg, os.path.join(cfg.output_dir, "training_config.yaml")) logger.info("Saving best model checkpoint to %s", cfg.output_dir) if 0 < cfg.max_steps < global_step: epoch_iterator.close() break if 0 < cfg.max_steps < global_step: train_iterator.close() break if cfg.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(cfg, model, tokenizer: PreTrainedTokenizer, prefix="", _split="dev"): dataset, features = load_and_cache_examples(cfg, tokenizer, _split=_split) if not os.path.exists(os.path.join(cfg.output_dir, prefix)): os.makedirs(os.path.join(cfg.output_dir, prefix)) cfg.eval_batch_size = cfg.per_gpu_eval_batch_size eval_sampler = SequentialSampler(dataset) # Note that DistributedSampler samples randomly eval_collator = hydra.utils.instantiate(cfg.collator) if "collator" in cfg and cfg.collator else None eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=cfg.eval_batch_size, collate_fn=eval_collator) single_model_gpu = unwrap_model(model) single_model_gpu.get_eval_log(reset=True) # Eval! torch.cuda.empty_cache() logger.info("***** Running evaluation {}.{} *****".format(_split, prefix)) logger.info(" Num examples = %d", len(dataset)) logger.info(" Batch size = %d", cfg.eval_batch_size) # Seems FSDP does not need to unwrap the model for evaluating. model.eval() pred_list = [] prob_list = [] for batch in tqdm(eval_dataloader, desc="Evaluating", dynamic_ncols=True): batch = batch_to_device(batch, cfg.device) with torch.cuda.amp.autocast(): with torch.no_grad(): outputs = model(**batch) probs = outputs["logits"].softmax(dim=-1).detach().float().cpu() prob, pred = probs.max(dim=-1) pred_list.extend(pred.tolist()) prob_list.extend(prob.tolist()) metric_log, results = single_model_gpu.get_eval_log(reset=True) logger.info("****** Evaluation Results ******") logger.info(f"Global Steps: {prefix}") logger.info(metric_log) prediction_file = os.path.join(cfg.output_dir, prefix, "eval_predictions.npy") np.save(prediction_file, pred_list) json.dump(prob_list, open(os.path.join(cfg.output_dir, prefix, "eval_probs.json"), "w")) return results def load_and_cache_examples(cfg, tokenizer: PreTrainedTokenizer, _split="train"): if cfg.local_rank not in [-1, 0] and _split == "train": dist.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache if _split == "train": input_file = cfg.train_file elif _split == "dev": input_file = cfg.dev_file elif _split == "test": input_file = cfg.test_file else: raise RuntimeError(_split) examples, features, tensors = hydra.utils.call(cfg.read_tensor, file_path=input_file, tokenizer=tokenizer) if cfg.local_rank == 0 and _split == "train": dist.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache dataset = TensorDataset(*tensors) return dataset, features @hydra.main(config_path="conf", config_name="config") def main(cfg: DictConfig): if cfg.local_rank == -1 or cfg.no_cuda: device = str(torch.device("cuda" if torch.cuda.is_available() and not cfg.no_cuda else "cpu")) cfg.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs torch.cuda.set_device(cfg.local_rank) device = str(torch.device("cuda", cfg.local_rank)) dist.init_process_group(backend='nccl') cfg.n_gpu = 1 cfg.world_size = dist.get_world_size() cfg.device = device global logger logger = setting_logger(cfg.output_dir, local_rank=cfg.local_rank) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", cfg.local_rank, device, cfg.n_gpu, bool(cfg.local_rank != -1), cfg.fp16) # Set seed set_seed(cfg) # Load pre-trained model and tokenizer if cfg.local_rank not in [-1, 0]: dist.barrier() # Make sure only the first process in distributed training will download model & vocab if cfg.pretrain: pretrain_state_dict = torch.load(cfg.pretrain, map_location='cpu') else: pretrain_state_dict = None tokenizer = AutoTokenizer.from_pretrained(cfg.model_name_or_path) model = hydra.utils.call(cfg.model, cfg.model_name_or_path, state_dict=pretrain_state_dict) if cfg.local_rank == 0: dist.barrier() # Make sure only the first process in distributed training will download model & vocab if cfg.local_rank == -1: # For FullyShardedDDP, place the model on cpu first. model.to(cfg.device) # logger.info("Training/evaluation parameters %s", OmegaConf.to_yaml(cfg)) if cfg.local_rank in [-1, 0] and cfg.do_train: if not os.path.exists(cfg.output_dir): os.makedirs(cfg.output_dir) OmegaConf.save(cfg, os.path.join(cfg.output_dir, "training_config.yaml")) # Training if cfg.do_train: # TODO: Add option for continuously training from checkpoint. # The operation should be introduced in ``train`` method since both the state dict # of schedule and optimizer (and scaler, if any) should be loaded. # If output files already exists, assume to continue training from latest checkpoint (unless overwrite_output_dir is set) continue_from_global_step = 0 # If set to 0, start training from the beginning # if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir: # checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/*/' + WEIGHTS_NAME, recursive=True))) # if len(checkpoints) > 0: # checkpoint = checkpoints[-1] # logger.info("Resuming training from the latest checkpoint: %s", checkpoint) # continue_from_global_step = int(checkpoint.split('-')[-1]) # model = model_class.from_pretrained(checkpoint) # model.to(args.device) train_dataset, features = load_and_cache_examples(cfg, tokenizer, _split="train") global_step, tr_loss = train(cfg, train_dataset, features, model, tokenizer, continue_from_global_step) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Test results = {} if cfg.do_eval and cfg.local_rank in [-1, 0]: checkpoints = [cfg.output_dir] if cfg.save_best: logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging elif cfg.prediction_cfg.best_checkpoint and os.path.exists(cfg.prediction_cfg.best_checkpoint): checkpoints = [cfg.prediction_cfg.best_checkpoint] logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging elif cfg.eval_sub_path: checkpoints = list( os.path.dirname(c) for c in sorted(glob.glob(cfg.output_dir + f"/{cfg.eval_sub_path}/" + "pytorch_model.bin", recursive=True)) ) logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging logger.info(" the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else "" split = "dev" model = hydra.utils.call(cfg.model, checkpoint) model.to(device) if cfg.test_file: prefix = f'test' + (f'-{prefix}' if prefix != "" else "") split = "test" result = evaluate(cfg, model, tokenizer, prefix=prefix, _split=split) result = dict((k + "_{}".format(global_step), v) for k, v in result.items()) results.update(result) return results if __name__ == "__main__": hydra_formatted_args = [] # convert the cli params added by torch.distributed.launch into Hydra format for arg in sys.argv: if arg.startswith("--"): hydra_formatted_args.append(arg[len("--"):]) else: hydra_formatted_args.append(arg) sys.argv = hydra_formatted_args main()
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2015, John McNamara, jmcnamara@cpan.org # from ..excel_comparsion_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.maxDiff = None filename = 'chart_axis17.xlsx' test_dir = 'xlsxwriter/test/comparison/' self.got_filename = test_dir + '_test_' + filename self.exp_filename = test_dir + 'xlsx_files/' + filename self.ignore_files = [] self.ignore_elements = {} def test_create_file(self): """Test the creation of a simple XlsxWriter file.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({'type': 'column'}) chart.axis_ids = [43812736, 45705088] data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column('A1', data[0]) worksheet.write_column('B1', data[1]) worksheet.write_column('C1', data[2]) chart.add_series({'values': '=Sheet1!$A$1:$A$5'}) chart.add_series({'values': '=Sheet1!$B$1:$B$5'}) chart.add_series({'values': '=Sheet1!$C$1:$C$5'}) chart.set_y_axis({'log_base': 10}) worksheet.insert_chart('E9', chart) workbook.close() self.assertExcelEqual()
# exported from PySB model 'model' from pysb import Model, Monomer, Parameter, Expression, Compartment, Rule, Observable, Initial, MatchOnce, Annotation, ANY, WILD Model() Monomer('Ligand', ['Receptor']) Monomer('ParpU', ['C3A']) Monomer('C8A', ['BidU', 'C3pro']) Monomer('SmacM', ['BaxA']) Monomer('BaxM', ['BidM', 'BaxA']) Monomer('Apop', ['C3pro', 'Xiap']) Monomer('Fadd', ['Receptor', 'C8pro']) Monomer('SmacC', ['Xiap']) Monomer('ParpC') Monomer('Xiap', ['SmacC', 'Apop', 'C3A']) Monomer('C9') Monomer('C3ub') Monomer('C8pro', ['Fadd', 'C6A']) Monomer('Bcl2', ['BidM', 'BaxA']) Monomer('C3pro', ['Apop', 'C8A']) Monomer('CytoCM', ['BaxA']) Monomer('CytoCC') Monomer('BaxA', ['BaxM', 'Bcl2', 'BaxA_1', 'BaxA_2', 'SmacM', 'CytoCM']) Monomer('ApafI') Monomer('BidU', ['C8A']) Monomer('BidT') Monomer('C3A', ['Xiap', 'ParpU', 'C6pro']) Monomer('ApafA') Monomer('BidM', ['BaxM', 'Bcl2']) Monomer('Receptor', ['Ligand', 'Fadd']) Monomer('C6A', ['C8pro']) Monomer('C6pro', ['C3A']) Parameter('bind_0_Ligand_binder_Receptor_binder_target_2kf', 1.0) Parameter('bind_0_Ligand_binder_Receptor_binder_target_1kr', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_2kf', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_1kr', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr', 1.0) Parameter('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr', 1.0) Parameter('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kf', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kr', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr', 1.0) Parameter('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr', 1.0) Parameter('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BidM_inh_target_2kf', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BidM_inh_target_1kr', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BaxA_inh_target_2kf', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BaxA_inh_target_1kr', 1.0) Parameter('pore_formation_0_BaxA_pore_2kf', 1.0) Parameter('pore_formation_0_BaxA_pore_1kr', 1.0) Parameter('pore_formation_1_BaxA_pore_2kf', 1.0) Parameter('pore_formation_1_BaxA_pore_1kr', 1.0) Parameter('pore_formation_2_BaxA_pore_2kf', 1.0) Parameter('pore_formation_2_BaxA_pore_1kr', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr', 1.0) Parameter('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('Ligand_0', 1000.0) Parameter('ParpU_0', 1000000.0) Parameter('C8A_0', 0.0) Parameter('SmacM_0', 100000.0) Parameter('BaxM_0', 40000.0) Parameter('Apop_0', 0.0) Parameter('Fadd_0', 130000.0) Parameter('SmacC_0', 0.0) Parameter('ParpC_0', 0.0) Parameter('Xiap_0', 4250.0) Parameter('C9_0', 100000.0) Parameter('C3ub_0', 0.0) Parameter('C8pro_0', 130000.0) Parameter('Bcl2_0', 328000.0) Parameter('C3pro_0', 21000.0) Parameter('CytoCM_0', 500000.0) Parameter('CytoCC_0', 0.0) Parameter('BaxA_0', 0.0) Parameter('ApafI_0', 100000.0) Parameter('BidU_0', 171000.0) Parameter('BidT_0', 0.0) Parameter('C3A_0', 0.0) Parameter('ApafA_0', 0.0) Parameter('BidM_0', 0.0) Parameter('Receptor_0', 100.0) Parameter('C6A_0', 0.0) Parameter('C6pro_0', 100.0) Observable('Ligand_obs', Ligand()) Observable('ParpU_obs', ParpU()) Observable('C8A_obs', C8A()) Observable('SmacM_obs', SmacM()) Observable('BaxM_obs', BaxM()) Observable('Apop_obs', Apop()) Observable('Fadd_obs', Fadd()) Observable('SmacC_obs', SmacC()) Observable('ParpC_obs', ParpC()) Observable('Xiap_obs', Xiap()) Observable('C9_obs', C9()) Observable('C3ub_obs', C3ub()) Observable('C8pro_obs', C8pro()) Observable('Bcl2_obs', Bcl2()) Observable('C3pro_obs', C3pro()) Observable('CytoCM_obs', CytoCM()) Observable('CytoCC_obs', CytoCC()) Observable('BaxA_obs', BaxA()) Observable('ApafI_obs', ApafI()) Observable('BidU_obs', BidU()) Observable('BidT_obs', BidT()) Observable('C3A_obs', C3A()) Observable('ApafA_obs', ApafA()) Observable('BidM_obs', BidM()) Observable('Receptor_obs', Receptor()) Observable('C6A_obs', C6A()) Observable('C6pro_obs', C6pro()) Rule('bind_0_Ligand_binder_Receptor_binder_target', Ligand(Receptor=None) + Receptor(Ligand=None, Fadd=None) | Ligand(Receptor=1) % Receptor(Ligand=1, Fadd=None), bind_0_Ligand_binder_Receptor_binder_target_2kf, bind_0_Ligand_binder_Receptor_binder_target_1kr) Rule('bind_0_Receptor_binder_Fadd_binder_target', Receptor(Ligand=ANY, Fadd=None) + Fadd(Receptor=None, C8pro=None) | Receptor(Ligand=ANY, Fadd=1) % Fadd(Receptor=1, C8pro=None), bind_0_Receptor_binder_Fadd_binder_target_2kf, bind_0_Receptor_binder_Fadd_binder_target_1kr) Rule('substrate_binding_0_Fadd_catalyzer_C8pro_substrate', Fadd(Receptor=ANY, C8pro=None) + C8pro(Fadd=None, C6A=None) | Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None), substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf, substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr) Rule('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product', Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None) >> Fadd(Receptor=ANY, C8pro=None) + C8A(BidU=None, C3pro=None), catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc) Rule('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=None, C3pro=None) + BidU(C8A=None) | C8A(BidU=1, C3pro=None) % BidU(C8A=1), catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf, catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr) Rule('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=1, C3pro=None) % BidU(C8A=1) >> C8A(BidU=None, C3pro=None) + BidT(), catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc) Rule('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex', ApafI() + CytoCC() | ApafA(), conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf, conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr) Rule('inhibition_0_SmacC_inhibitor_Xiap_inh_target', SmacC(Xiap=None) + Xiap(SmacC=None, Apop=None, C3A=None) | SmacC(Xiap=1) % Xiap(SmacC=1, Apop=None, C3A=None), inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf, inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr) Rule('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex', ApafA() + C9() | Apop(C3pro=None, Xiap=None), conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf, conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr) Rule('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=None, Xiap=None) + C3pro(Apop=None, C8A=None) | Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None), catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None) >> Apop(C3pro=None, Xiap=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('inhibition_0_Xiap_inhibitor_Apop_inh_target', Xiap(SmacC=None, Apop=None, C3A=None) + Apop(C3pro=None, Xiap=None) | Xiap(SmacC=None, Apop=1, C3A=None) % Apop(C3pro=None, Xiap=1), inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf, inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr) Rule('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=None) + C3A(Xiap=None, ParpU=None, C6pro=None) | Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None), catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf, catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr) Rule('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None) >> Xiap(SmacC=None, Apop=None, C3A=None) + C3ub(), catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc) Rule('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=None, C6pro=None) + ParpU(C3A=None) | C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1), catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf, catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr) Rule('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + ParpC(), catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc) Rule('equilibration_0_BidT_equil_a_BidM_equil_b', BidT() | BidM(BaxM=None, Bcl2=None), equilibration_0_BidT_equil_a_BidM_equil_b_1kf, equilibration_0_BidT_equil_a_BidM_equil_b_1kr) Rule('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=None, Bcl2=None) + BaxM(BidM=None, BaxA=None) | BidM(BaxM=1, Bcl2=None) % BaxM(BidM=1, BaxA=None), catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf, catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr) Rule('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=1, Bcl2=None) % BaxM(BidM=1, BaxA=None) >> BidM(BaxM=None, Bcl2=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc) Rule('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxM(BidM=None, BaxA=None) | BaxA(BaxM=1, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1), self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf, self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr) Rule('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=1, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1) >> BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc) Rule('inhibition_0_Bcl2_inhibitor_BidM_inh_target', Bcl2(BidM=None, BaxA=None) + BidM(BaxM=None, Bcl2=None) | Bcl2(BidM=1, BaxA=None) % BidM(BaxM=None, Bcl2=1), inhibition_0_Bcl2_inhibitor_BidM_inh_target_2kf, inhibition_0_Bcl2_inhibitor_BidM_inh_target_1kr) Rule('inhibition_0_Bcl2_inhibitor_BaxA_inh_target', Bcl2(BidM=None, BaxA=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) | Bcl2(BidM=None, BaxA=1) % BaxA(BaxM=None, Bcl2=1, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), inhibition_0_Bcl2_inhibitor_BaxA_inh_target_2kf, inhibition_0_Bcl2_inhibitor_BaxA_inh_target_1kr) Rule('pore_formation_0_BaxA_pore', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None), pore_formation_0_BaxA_pore_2kf, pore_formation_0_BaxA_pore_1kr) Rule('pore_formation_1_BaxA_pore', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None), pore_formation_1_BaxA_pore_2kf, pore_formation_1_BaxA_pore_1kr) Rule('pore_formation_2_BaxA_pore', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None), pore_formation_2_BaxA_pore_2kf, pore_formation_2_BaxA_pore_1kr) Rule('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacM(BaxA=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5), transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf, transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr) Rule('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5) >> BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacC(Xiap=None), transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc) Rule('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCM(BaxA=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5), transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf, transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr) Rule('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5) >> BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCC(), transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc) Rule('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=None) + C3pro(Apop=None, C8A=None) | C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1), catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1) >> C8A(BidU=None, C3pro=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=None) + C6pro(C3A=None) | C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1), catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf, catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr) Rule('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + C6A(C8pro=None), catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc) Rule('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=None) + C8pro(Fadd=None, C6A=None) | C6A(C8pro=1) % C8pro(Fadd=None, C6A=1), catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf, catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr) Rule('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=1) % C8pro(Fadd=None, C6A=1) >> C6A(C8pro=None) + C8A(BidU=None, C3pro=None), catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc) Initial(Ligand(Receptor=None), Ligand_0) Initial(ParpU(C3A=None), ParpU_0) Initial(C8A(BidU=None, C3pro=None), C8A_0) Initial(SmacM(BaxA=None), SmacM_0) Initial(BaxM(BidM=None, BaxA=None), BaxM_0) Initial(Apop(C3pro=None, Xiap=None), Apop_0) Initial(Fadd(Receptor=None, C8pro=None), Fadd_0) Initial(SmacC(Xiap=None), SmacC_0) Initial(ParpC(), ParpC_0) Initial(Xiap(SmacC=None, Apop=None, C3A=None), Xiap_0) Initial(C9(), C9_0) Initial(C3ub(), C3ub_0) Initial(C8pro(Fadd=None, C6A=None), C8pro_0) Initial(Bcl2(BidM=None, BaxA=None), Bcl2_0) Initial(C3pro(Apop=None, C8A=None), C3pro_0) Initial(CytoCM(BaxA=None), CytoCM_0) Initial(CytoCC(), CytoCC_0) Initial(BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), BaxA_0) Initial(ApafI(), ApafI_0) Initial(BidU(C8A=None), BidU_0) Initial(BidT(), BidT_0) Initial(C3A(Xiap=None, ParpU=None, C6pro=None), C3A_0) Initial(ApafA(), ApafA_0) Initial(BidM(BaxM=None, Bcl2=None), BidM_0) Initial(Receptor(Ligand=None, Fadd=None), Receptor_0) Initial(C6A(C8pro=None), C6A_0) Initial(C6pro(C3A=None), C6pro_0)
import tensorflow as tf import keras.backend as K import numpy as np from Utils import * from generators.MotionBlurGenerator import * from generators.CelebAGenerator import * K.set_learning_phase(0) from glob import glob import os # paths Orig_Path = './results/CelebA/Original Images/*.png' Range_Path = './results/CelebA/Range Images/*.png' Blur_Path = './results/CelebA/Original Blurs/Test Blurs.npy' # constants REGULARIZORS = [0.01 , 0.01] RANDOM_RESTARTS = 10 NOISE_STD = 0.01 STEPS = 10000 IMAGE_RANGE = [-1,1] def step_size(t): return 0.01 * np.exp( - t / 1000 ) SAVE_PATH = './results/CelebA/deblurring - alg1 - ' +str(int(NOISE_STD*100)) + 'perc noise - ' +str(RANDOM_RESTARTS) + 'RR/deblurring_' # ----------------------------------------------------------------------- # loading test blur images W = np.load(Blur_Path) BLUR_RES = W.shape[1] # loading test celeba images X_Orig = np.array([ imread(path) for path in glob(Orig_Path)])/255 X_Range = np.array([ imread(path) for path in glob(Range_Path)])/255 IMAGE_RES = X_Orig.shape[1] CHANNELS = X_Orig.shape[-1] # loading celeba generator CelebAGen = CelebAGenerator() CelebAGen.GenerateModel() CelebAGen.LoadWeights() CelebAGAN = CelebAGen.GetModels() celeba_latent_dim = CelebAGen.latent_dim # loading motion blur generator BLURGen = MotionBlur() BLURGen.GenerateModel() BLURGen.LoadWeights() blur_vae, blur_encoder, blur_decoder = BLURGen.GetModels() blur_latent_dim = BLURGen.latent_dim # check if save dir exists, if not create a new one try: os.stat(SAVE_PATH[:-11]) except: os.mkdir(SAVE_PATH[:-11]) # generating blurry images from test Y_np = [] Blurry_Images = [] for i in tqdm(range(len(X_Orig)), ascii=True, desc ='Gen-Test-Blurry'): x_np = X_Orig[i] w_np = W[i] y_np, y_f = GenerateBlurry(x_np, w_np, noise_std = NOISE_STD ) Y_np.append(y_np) for _ in range(RANDOM_RESTARTS): Blurry_Images.append(y_f) Y_np = np.array(Y_np) Blurry_Images = np.array(Blurry_Images) # generating blurry images from range Blurry_Images_range = [] Y_np_range = [] for i in tqdm(range(len(X_Orig)), ascii=True, desc ='Gen-Range-Blurry'): y_np, y_f = GenerateBlurry(X_Range[i], W[i], noise_std = NOISE_STD ) Y_np_range.append(y_np) for _ in range(RANDOM_RESTARTS): Blurry_Images_range.append(y_f) Y_np_range = np.array(Y_np_range) Blurry_Images_range = np.array(Blurry_Images_range) # alternating gradient descent for test images image_gradients, blur_gradients, get_loss = Generate_Gradient_Functions(rr = Blurry_Images.shape[0], reg = REGULARIZORS, image_range = IMAGE_RANGE, decoder = CelebAGAN, blur_decoder = blur_decoder, image_res = IMAGE_RES, blur_res = BLUR_RES, channels = CHANNELS) m_hat, h_hat, Loss = Optimize_Parallel(blurry_fourier = Blurry_Images, stepsize=step_size,steps = STEPS, image_grad = image_gradients , blur_grad = blur_gradients, getloss = get_loss, latent_image_dim = celeba_latent_dim , latent_blur_dim = blur_latent_dim) X_hat_test = [] W_hat_test = [] for i in range(len(X_Orig)): m_hat_i = m_hat[i*RANDOM_RESTARTS:(i+1)*RANDOM_RESTARTS] h_hat_i = h_hat[i*RANDOM_RESTARTS:(i+1)*RANDOM_RESTARTS] Loss_i = Loss[i*RANDOM_RESTARTS:(i+1)*RANDOM_RESTARTS] x_hat_test, w_hat_test, loss_last_iter_test = Get_Min_Loss(Loss_i, m_hat_i, h_hat_i, decoder = CelebAGAN, blur_decoder = blur_decoder, latent_image_dim = celeba_latent_dim, latent_blur_dim = blur_latent_dim, print_grad=False) X_hat_test.append(x_hat_test) W_hat_test.append(w_hat_test) X_hat_test = np.array(X_hat_test) W_hat_test = np.array(W_hat_test) # alternating gradient descent for range images m_hat, h_hat, Loss = Optimize_Parallel(blurry_fourier = Blurry_Images_range, stepsize=step_size,steps = STEPS, image_grad = image_gradients , blur_grad = blur_gradients, getloss = get_loss, latent_image_dim = celeba_latent_dim , latent_blur_dim = blur_latent_dim) X_hat_range = [] W_hat_range = [] for i in range(len(X_Orig)): m_hat_i = m_hat[i*RANDOM_RESTARTS:(i+1)*RANDOM_RESTARTS] h_hat_i = h_hat[i*RANDOM_RESTARTS:(i+1)*RANDOM_RESTARTS] Loss_i = Loss[i*RANDOM_RESTARTS:(i+1)*RANDOM_RESTARTS] x_hat_range, w_hat_range, loss_last_iter_range = Get_Min_Loss(Loss_i, m_hat_i, h_hat_i, decoder = CelebAGAN, blur_decoder = blur_decoder, latent_image_dim = celeba_latent_dim, latent_blur_dim = blur_latent_dim, print_grad=False) X_hat_range.append(x_hat_range) W_hat_range.append(w_hat_range) X_hat_range = np.array(X_hat_range) W_hat_range = np.array(W_hat_range) X_hat_test = (X_hat_test + 1)/2 X_hat_range = (X_hat_range + 1)/2 Max = 10**len(str(len(X_Orig)-1)) # saving results for i in range(len(X_Orig)): Save_Results(path = SAVE_PATH + str(i+Max)[1:], x_np = None, w_np = None, y_np = Y_np[i], y_np_range = Y_np_range[i] , x_hat_test = X_hat_test[i], w_hat_test = W_hat_test[i], x_range = None, x_hat_range = X_hat_range[i], w_hat_range = W_hat_range[i], clip=True)
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Base PXE Interface Methods """ from futurist import periodics from ironic_lib import metrics_utils from oslo_config import cfg from oslo_log import log as logging from ironic.common import boot_devices from ironic.common import dhcp_factory from ironic.common import exception from ironic.common.glance_service import service_utils from ironic.common.i18n import _ from ironic.common import pxe_utils from ironic.common import states from ironic.conductor import task_manager from ironic.conductor import utils as manager_utils from ironic.drivers.modules import boot_mode_utils from ironic.drivers.modules import deploy_utils from ironic.drivers import utils as driver_utils CONF = cfg.CONF LOG = logging.getLogger(__name__) METRICS = metrics_utils.get_metrics_logger(__name__) REQUIRED_PROPERTIES = { 'deploy_kernel': _("UUID (from Glance) of the deployment kernel. " "Required."), 'deploy_ramdisk': _("UUID (from Glance) of the ramdisk that is " "mounted at boot time. Required."), } RESCUE_PROPERTIES = { 'rescue_kernel': _('UUID (from Glance) of the rescue kernel. This value ' 'is required for rescue mode.'), 'rescue_ramdisk': _('UUID (from Glance) of the rescue ramdisk with agent ' 'that is used at node rescue time. This value is ' 'required for rescue mode.'), } OPTIONAL_PROPERTIES = { 'kernel_append_params': _("Additional kernel parameters to pass down to " "instance kernel. These parameters can be " "consumed by the kernel or by the applications " "by reading /proc/cmdline. Mind severe cmdline " "size limit. Overrides " "[pxe]/kernel_append_params ironic " "option."), } COMMON_PROPERTIES = REQUIRED_PROPERTIES.copy() COMMON_PROPERTIES.update(driver_utils.OPTIONAL_PROPERTIES) COMMON_PROPERTIES.update(RESCUE_PROPERTIES) COMMON_PROPERTIES.update(OPTIONAL_PROPERTIES) class PXEBaseMixin(object): ipxe_enabled = False def get_properties(self): """Return the properties of the interface. :returns: dictionary of <property name>:<property description> entries. """ return COMMON_PROPERTIES @METRICS.timer('PXEBaseMixin.clean_up_ramdisk') def clean_up_ramdisk(self, task): """Cleans up the boot of ironic ramdisk. This method cleans up the PXE environment that was setup for booting the deploy or rescue ramdisk. It unlinks the deploy/rescue kernel/ramdisk in the node's directory in tftproot and removes it's PXE config. :param task: a task from TaskManager. :param mode: Label indicating a deploy or rescue operation was carried out on the node. Supported values are 'deploy' and 'rescue'. Defaults to 'deploy', indicating deploy operation was carried out. :returns: None """ node = task.node mode = deploy_utils.rescue_or_deploy_mode(node) try: images_info = pxe_utils.get_image_info( node, mode=mode, ipxe_enabled=self.ipxe_enabled) except exception.MissingParameterValue as e: LOG.warning('Could not get %(mode)s image info ' 'to clean up images for node %(node)s: %(err)s', {'mode': mode, 'node': node.uuid, 'err': e}) else: pxe_utils.clean_up_pxe_env( task, images_info, ipxe_enabled=self.ipxe_enabled) @METRICS.timer('PXEBaseMixin.clean_up_instance') def clean_up_instance(self, task): """Cleans up the boot of instance. This method cleans up the environment that was setup for booting the instance. It unlinks the instance kernel/ramdisk in node's directory in tftproot and removes the PXE config. :param task: a task from TaskManager. :returns: None """ node = task.node try: images_info = pxe_utils.get_instance_image_info( task, ipxe_enabled=self.ipxe_enabled) except exception.MissingParameterValue as e: LOG.warning('Could not get instance image info ' 'to clean up images for node %(node)s: %(err)s', {'node': node.uuid, 'err': e}) else: pxe_utils.clean_up_pxe_env(task, images_info, ipxe_enabled=self.ipxe_enabled) boot_mode_utils.deconfigure_secure_boot_if_needed(task) @METRICS.timer('PXEBaseMixin.prepare_ramdisk') def prepare_ramdisk(self, task, ramdisk_params): """Prepares the boot of Ironic ramdisk using PXE. This method prepares the boot of the deploy or rescue kernel/ramdisk after reading relevant information from the node's driver_info and instance_info. :param task: a task from TaskManager. :param ramdisk_params: the parameters to be passed to the ramdisk. pxe driver passes these parameters as kernel command-line arguments. :returns: None :raises: MissingParameterValue, if some information is missing in node's driver_info or instance_info. :raises: InvalidParameterValue, if some information provided is invalid. :raises: IronicException, if some power or set boot boot device operation failed on the node. """ node = task.node # Label indicating a deploy or rescue operation being carried out on # the node, 'deploy' or 'rescue'. Unless the node is in a rescue like # state, the mode is set to 'deploy', indicating deploy operation is # being carried out. mode = deploy_utils.rescue_or_deploy_mode(node) if self.ipxe_enabled: # NOTE(mjturek): At this point, the ipxe boot script should # already exist as it is created at startup time. However, we # call the boot script create method here to assert its # existence and handle the unlikely case that it wasn't created # or was deleted. pxe_utils.create_ipxe_boot_script() # Generate options for both IPv4 and IPv6, and they can be # filtered down later based upon the port options. # TODO(TheJulia): This should be re-tooled during the Victoria # development cycle so that we call a single method and return # combined options. The method we currently call is relied upon # by two eternal projects, to changing the behavior is not ideal. dhcp_opts = pxe_utils.dhcp_options_for_instance( task, ipxe_enabled=self.ipxe_enabled, ip_version=4) dhcp_opts += pxe_utils.dhcp_options_for_instance( task, ipxe_enabled=self.ipxe_enabled, ip_version=6) provider = dhcp_factory.DHCPFactory() provider.update_dhcp(task, dhcp_opts) pxe_info = pxe_utils.get_image_info(node, mode=mode, ipxe_enabled=self.ipxe_enabled) # NODE: Try to validate and fetch instance images only # if we are in DEPLOYING state. if node.provision_state == states.DEPLOYING: pxe_info.update( pxe_utils.get_instance_image_info( task, ipxe_enabled=self.ipxe_enabled)) boot_mode_utils.sync_boot_mode(task) pxe_options = pxe_utils.build_pxe_config_options( task, pxe_info, ipxe_enabled=self.ipxe_enabled, ramdisk_params=ramdisk_params) # TODO(dtantsur): backwards compability hack, remove in the V release if ramdisk_params.get("ipa-api-url"): pxe_options["ipa-api-url"] = ramdisk_params["ipa-api-url"] if self.ipxe_enabled: pxe_config_template = deploy_utils.get_ipxe_config_template(node) else: pxe_config_template = deploy_utils.get_pxe_config_template(node) pxe_utils.create_pxe_config(task, pxe_options, pxe_config_template, ipxe_enabled=self.ipxe_enabled) manager_utils.node_set_boot_device(task, boot_devices.PXE, persistent=False) if self.ipxe_enabled and CONF.pxe.ipxe_use_swift: kernel_label = '%s_kernel' % mode ramdisk_label = '%s_ramdisk' % mode pxe_info.pop(kernel_label, None) pxe_info.pop(ramdisk_label, None) if pxe_info: pxe_utils.cache_ramdisk_kernel(task, pxe_info, ipxe_enabled=self.ipxe_enabled) LOG.debug('Ramdisk (i)PXE boot for node %(node)s has been prepared ' 'with kernel params %(params)s', {'node': node.uuid, 'params': pxe_options}) @METRICS.timer('PXEBaseMixin.prepare_instance') def prepare_instance(self, task): """Prepares the boot of instance. This method prepares the boot of the instance after reading relevant information from the node's instance_info. In case of netboot, it updates the dhcp entries and switches the PXE config. In case of localboot, it cleans up the PXE config. :param task: a task from TaskManager. :returns: None """ boot_mode_utils.sync_boot_mode(task) boot_mode_utils.configure_secure_boot_if_needed(task) node = task.node boot_option = deploy_utils.get_boot_option(node) boot_device = None instance_image_info = {} if boot_option == "ramdisk" or boot_option == "kickstart": instance_image_info = pxe_utils.get_instance_image_info( task, ipxe_enabled=self.ipxe_enabled) pxe_utils.cache_ramdisk_kernel(task, instance_image_info, ipxe_enabled=self.ipxe_enabled) if 'ks_template' in instance_image_info: ks_cfg = pxe_utils.validate_kickstart_template( instance_image_info['ks_template'][1] ) pxe_utils.validate_kickstart_file(ks_cfg) if (deploy_utils.is_iscsi_boot(task) or boot_option == "ramdisk" or boot_option == "kickstart"): pxe_utils.prepare_instance_pxe_config( task, instance_image_info, iscsi_boot=deploy_utils.is_iscsi_boot(task), ramdisk_boot=(boot_option == "ramdisk"), anaconda_boot=(boot_option == "kickstart"), ipxe_enabled=self.ipxe_enabled) pxe_utils.prepare_instance_kickstart_config( task, instance_image_info, anaconda_boot=(boot_option == "kickstart")) boot_device = boot_devices.PXE elif boot_option != "local": if task.driver.storage.should_write_image(task): # Make sure that the instance kernel/ramdisk is cached. # This is for the takeover scenario for active nodes. instance_image_info = pxe_utils.get_instance_image_info( task, ipxe_enabled=self.ipxe_enabled) pxe_utils.cache_ramdisk_kernel(task, instance_image_info, ipxe_enabled=self.ipxe_enabled) # If it's going to PXE boot we need to update the DHCP server dhcp_opts = pxe_utils.dhcp_options_for_instance( task, ipxe_enabled=self.ipxe_enabled, ip_version=4) dhcp_opts += pxe_utils.dhcp_options_for_instance( task, ipxe_enabled=self.ipxe_enabled, ip_version=6) provider = dhcp_factory.DHCPFactory() provider.update_dhcp(task, dhcp_opts) iwdi = task.node.driver_internal_info.get('is_whole_disk_image') try: root_uuid_or_disk_id = task.node.driver_internal_info[ 'root_uuid_or_disk_id' ] except KeyError: if not task.driver.storage.should_write_image(task): pass elif not iwdi: LOG.warning("The UUID for the root partition can't be " "found, unable to switch the pxe config from " "deployment mode to service (boot) mode for " "node %(node)s", {"node": task.node.uuid}) else: LOG.warning("The disk id for the whole disk image can't " "be found, unable to switch the pxe config " "from deployment mode to service (boot) mode " "for node %(node)s. Booting the instance " "from disk.", {"node": task.node.uuid}) pxe_utils.clean_up_pxe_config( task, ipxe_enabled=self.ipxe_enabled) boot_device = boot_devices.DISK else: pxe_utils.build_service_pxe_config( task, instance_image_info, root_uuid_or_disk_id, ipxe_enabled=self.ipxe_enabled) boot_device = boot_devices.PXE else: # NOTE(dtantsur): create a PXE configuration as a safety net for # hardware uncapable of persistent boot. If on a reboot it will try # to boot from PXE, this configuration will return it back. if CONF.pxe.enable_netboot_fallback: pxe_utils.build_service_pxe_config( task, instance_image_info, task.node.driver_internal_info.get('root_uuid_or_disk_id'), ipxe_enabled=self.ipxe_enabled, # PXE config for whole disk images is identical to what # we need to boot from local disk, so use True even # for partition images. is_whole_disk_image=True) else: # Clean up the deployment configuration pxe_utils.clean_up_pxe_config( task, ipxe_enabled=self.ipxe_enabled) boot_device = boot_devices.DISK # NOTE(pas-ha) do not re-set boot device on ACTIVE nodes # during takeover if boot_device and task.node.provision_state != states.ACTIVE: manager_utils.node_set_boot_device(task, boot_device, persistent=True) def _validate_common(self, task): node = task.node if not driver_utils.get_node_mac_addresses(task): raise exception.MissingParameterValue( _("Node %s does not have any port associated with it.") % node.uuid) if self.ipxe_enabled: if not CONF.deploy.http_url or not CONF.deploy.http_root: raise exception.MissingParameterValue(_( "iPXE boot is enabled but no HTTP URL or HTTP " "root was specified.")) # NOTE(zer0c00l): When 'kickstart' boot option is used we need to store # kickstart and squashfs files in http_root directory. These files # will be eventually requested by anaconda installer during deployment # over http(s). if deploy_utils.get_boot_option(node) == 'kickstart': if not CONF.deploy.http_url or not CONF.deploy.http_root: raise exception.MissingParameterValue(_( "'kickstart' boot option is set on the node but no HTTP " "URL or HTTP root was specified.")) if not CONF.anaconda.default_ks_template: raise exception.MissingParameterValue(_( "'kickstart' boot option is set on the node but no " "default kickstart template is specified.")) # Check the trusted_boot capabilities value. deploy_utils.validate_capabilities(node) if deploy_utils.is_trusted_boot_requested(node): # Check if 'boot_option' and boot mode is compatible with # trusted boot. if self.ipxe_enabled: # NOTE(TheJulia): So in theory (huge theory here, not put to # practice or tested), that one can define the kernel as tboot # and define the actual kernel and ramdisk as appended data. # Similar to how one can iPXE load the XEN hypervisor. # tboot mailing list seem to indicate pxe/ipxe support, or # more specifically avoiding breaking the scenarios of use, # but there is also no definitive documentation on the subject. LOG.warning('Trusted boot has been requested for %(node)s in ' 'concert with iPXE. This is not a supported ' 'configuration for an ironic deployment.', {'node': node.uuid}) pxe_utils.validate_boot_parameters_for_trusted_boot(node) # Check if we have invalid parameters being passed which will not work # for ramdisk configurations. if (node.instance_info.get('image_source') and node.instance_info.get('boot_iso')): raise exception.InvalidParameterValue(_( "An 'image_source' and 'boot_iso' parameter may not be " "specified at the same time.")) pxe_utils.parse_driver_info(node) @METRICS.timer('PXEBaseMixin.validate') def validate(self, task): """Validate the PXE-specific info for booting deploy/instance images. This method validates the PXE-specific info for booting the ramdisk and instance on the node. If invalid, raises an exception; otherwise returns None. :param task: a task from TaskManager. :returns: None :raises: InvalidParameterValue, if some parameters are invalid. :raises: MissingParameterValue, if some required parameters are missing. """ self._validate_common(task) node = task.node # NOTE(TheJulia): If we're not writing an image, we can skip # the remainder of this method. # NOTE(dtantsur): if we're are writing an image with local boot # the boot interface does not care about image parameters and # must not validate them. boot_option = deploy_utils.get_boot_option(node) if (not task.driver.storage.should_write_image(task) or boot_option == 'local'): return d_info = deploy_utils.get_image_instance_info(node) if node.driver_internal_info.get('is_whole_disk_image'): props = [] elif d_info.get('boot_iso'): props = ['boot_iso'] elif service_utils.is_glance_image(d_info['image_source']): props = ['kernel_id', 'ramdisk_id'] if boot_option == 'kickstart': props.append('squashfs_id') else: props = ['kernel', 'ramdisk'] deploy_utils.validate_image_properties(task.context, d_info, props) @METRICS.timer('PXEBaseMixin.validate_rescue') def validate_rescue(self, task): """Validate that the node has required properties for rescue. :param task: a TaskManager instance with the node being checked :raises: MissingParameterValue if node is missing one or more required parameters """ pxe_utils.parse_driver_info(task.node, mode='rescue') @METRICS.timer('PXEBaseMixin.validate_inspection') def validate_inspection(self, task): """Validate that the node has required properties for inspection. :param task: A TaskManager instance with the node being checked :raises: UnsupportedDriverExtension """ try: self._validate_common(task) except exception.MissingParameterValue: # Fall back to non-managed in-band inspection raise exception.UnsupportedDriverExtension( driver=task.node.driver, extension='inspection') _RETRY_ALLOWED_STATES = {states.DEPLOYWAIT, states.CLEANWAIT, states.RESCUEWAIT} @METRICS.timer('PXEBaseMixin._check_boot_timeouts') @periodics.periodic(spacing=CONF.pxe.boot_retry_check_interval, enabled=bool(CONF.pxe.boot_retry_timeout)) def _check_boot_timeouts(self, manager, context): """Periodically checks whether boot has timed out and retry it. :param manager: conductor manager. :param context: request context. """ filters = {'provision_state_in': self._RETRY_ALLOWED_STATES, 'reserved': False, 'maintenance': False, 'provisioned_before': CONF.pxe.boot_retry_timeout} node_iter = manager.iter_nodes(filters=filters) for node_uuid, driver, conductor_group in node_iter: try: lock_purpose = 'checking PXE boot status' with task_manager.acquire(context, node_uuid, shared=True, purpose=lock_purpose) as task: self._check_boot_status(task) except (exception.NodeLocked, exception.NodeNotFound): continue def _check_boot_status(self, task): if not isinstance(task.driver.boot, PXEBaseMixin): return if not _should_retry_boot(task.node): return task.upgrade_lock(purpose='retrying PXE boot') # Retry critical checks after acquiring the exclusive lock. if (task.node.maintenance or task.node.provision_state not in self._RETRY_ALLOWED_STATES or not _should_retry_boot(task.node)): return LOG.info('Booting the ramdisk on node %(node)s is taking more than ' '%(timeout)d seconds, retrying boot', {'node': task.node.uuid, 'timeout': CONF.pxe.boot_retry_timeout}) manager_utils.node_power_action(task, states.POWER_OFF) manager_utils.node_set_boot_device(task, boot_devices.PXE, persistent=False) manager_utils.node_power_action(task, states.POWER_ON) def _should_retry_boot(node): # NOTE(dtantsur): this assumes IPA, do we need to make it generic? for field in ('agent_last_heartbeat', 'last_power_state_change'): if manager_utils.value_within_timeout( node.driver_internal_info.get(field), CONF.pxe.boot_retry_timeout): # Alive and heartbeating, probably busy with something long LOG.debug('Not retrying PXE boot for node %(node)s; its ' '%(event)s happened less than %(timeout)d seconds ago', {'node': node.uuid, 'event': field, 'timeout': CONF.pxe.boot_retry_timeout}) return False return True
class cryto: def decryp_Vige() : cyphertext=input("cyphertext=") key=input("key=") print("plaintext=",end='') j=0 for i in cyphertext : c=ord(key[j]) if c < 97 : c=c+32 c=c-97 x=ord(i)+26 if x < 123 : x=x-c if x > 90 : x=x-26 else : x=x-c if x > 122 : x=x-26 print(chr(x),end='') j=j+1 print("\n") def encryp_Vige() : plaintext=input("plaintext=") key=input("key=") print() print("cyphertext=",end='') j=0 for i in plaintext : c=ord(key[j]) if c < 97 : c=c+32 c=c-97 x=ord(i)-26 if x < 65 : x=x+c if x < 65 : x=x+26 else : x=x+c if x < 97 : x=x+26 print(chr(x),end='') j=j+1 print("\n") def Make_a_rsa() : print("公鑰(n,e) 只能加密小於n的整数m!!!") while(1) : p,q=map(int,input("choose two Prime number :(split with space)").split()) if p > 1 : t=0 for i in range ( 2 , p ) : if ( p % i ) == 0 : print ( "請輸入質數",end="") t=1 break if t == 1 : continue if q > 1 : t=0 for i in range ( 2 , q ) : if ( q % i ) == 0 : print ( "請輸入質數",end="") t=1 break if t == 1 : continue break n=p*q r=(p-1)*(q-1) e=0 d=0 for i in range ( 2 , r ) : if ( r-int(r/i)*i ) == 1 : e=i break for i in range ( 2 , r ) : if ( (i*e) % r ) == 1 : d=i break print("Public key(N,e)=({0},{1})\nPrivate key(N,d)=({2},{3})".format(n, e, n, d)) def rsa_send() : import math import array as arr n,k=map(int,input("input your key :(split with space)").split()) name=input("enter the path of your bin :(Don't use the used name of bin!)") output_file = open(name+".bin", 'wb') text=input("plaintext/cyphertext=") fb=[] for i in text : i=ord(i) i=pow(i,k,n) fb.append(i) int_array = arr.array('i', fb) int_array.tofile(output_file) output_file.close() def rsa_read() : n,k=map(int,input("input your key :(split with space)").split()) name=input("enter the path of your bin :") with open(name + ".bin" , 'rb') as file: int_bytes = file.read() for i in int_bytes : if i == 0 : continue i=pow(i,k,n) print(chr(i), end="") def linr_radom() : text=input("plaintext/cyphertext=") LFSR=input("LFSR_4=") print() print("cyphertext/plaintext=",end='') a=int(LFSR[0]) b=int(LFSR[1]) c=int(LFSR[2]) d=int(LFSR[3]) for i in text : print(int(i) ^ a,end="") t= a ^ d d=a a=b b=c c=t print() def wood_decry() : text=input("input the cryto :") n=0 for i in text : if n%4==0 : print(i,end="") n=n+1 def wood_encry() : import random text=input("input the plaintext :") l=[] for i in range(48,122) : if (i>48 and i<57) or (i>65 and i<90) or (i>97 and i<122) : l.append(i) for i in text : print(i,end="") for j in range(3) : r=random.choice(l) print(chr(r),end="")
""" Calcualte p-values, ROC, AUC, and proportion of significant observations for a set of observations given the null hypothesis distribution Args: variable: array of observed values hypothesis: optional null hypotheis distribution (beta distribution by default) alpha: optional significance parameter (.05 by default) Returns: pvalues: for every observation in variable ROC: on a grid of 1000 points AUC: integral of ROC proportion of significant observations """ import numpy as np def pvalue(variable=None, hypothesis=None, alpha=.05): """ calcualte pvalues, AUC and fraction of significant observations """ #set model if variable is None: variable = np.random.beta(a=3, b=5, size=5000) else: variable = np.array(variable) #set null-hypothesis if hypothesis is None: hypothesis = np.random.beta(a=5, b=5, size=1000) else: hypothesis = np.array(hypothesis) #calculate prob of left-tail event p(H<=x|H) for every instance of X prob = [] for var in variable: prob.append((hypothesis <= var).sum()) #normalize p prob = np.divide(prob, hypothesis.size) #scan alpha from 0 to 1 and find prob(p<=alpha) scanprob = [] alphagrid = np.linspace(0, 1, num=1000) for val in alphagrid: #calculate prob p<=alpha scanprob.append((prob <= val).sum() / variable.size) return prob, scanprob, np.sum(prob) / alphagrid.size, (prob <= alpha).sum() /variable.size def lefttailpvalue(variable=None, hypothesis=None): """ calcualte left-tail pvalues """ #set model if variable is None: variable = np.random.beta(a=3, b=5, size=5000) else: variable = np.array(variable) #set null-hypothesis if hypothesis is None: hypothesis = np.random.beta(a=5, b=5, size=1000) else: hypothesis = np.array(hypothesis) #calculate prob of left-tail event p(H<=x|H) for every instance of X prob = [] for var in variable: prob.append((hypothesis <= var).sum()) #normalize p prob = np.divide(prob, hypothesis.size) return prob def righttailpvalue(variable=None, hypothesis=None): """ calcualte left-tail pvalues """ #set model if variable is None: variable = np.random.beta(a=3, b=5, size=5000) else: variable = np.array(variable) #set null-hypothesis if hypothesis is None: hypothesis = np.random.beta(a=5, b=5, size=1000) else: hypothesis = np.array(hypothesis) #calculate prob of right-tail event p(H>=x|H) for every instance of X prob = [] for var in variable: prob.append((hypothesis >= var).sum()) #normalize p prob = np.divide(prob, hypothesis.size) return prob
# Plot polynomial regression on 1d problem # Based on https://github.com/probml/pmtk3/blob/master/demos/linregPolyVsDegree.m import numpy as np import matplotlib.pyplot as plt from pyprobml_utils import save_fig from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn.preprocessing import MinMaxScaler import sklearn.metrics from sklearn.metrics import mean_squared_error as mse def make_1dregression_data(n=21): np.random.seed(0) xtrain = np.linspace(0.0, 20, n) xtest = np.arange(0.0, 20, 0.1) sigma2 = 4 w = np.array([-1.5, 1/9.]) fun = lambda x: w[0]*x + w[1]*np.square(x) ytrain = fun(xtrain) + np.random.normal(0, 1, xtrain.shape) * \ np.sqrt(sigma2) ytest= fun(xtest) + np.random.normal(0, 1, xtest.shape) * \ np.sqrt(sigma2) return xtrain, ytrain, xtest, ytest xtrain, ytrain, xtest, ytest = make_1dregression_data(n=21) #Rescaling data scaler = MinMaxScaler(feature_range=(-1, 1)) Xtrain = scaler.fit_transform(xtrain.reshape(-1, 1)) Xtest = scaler.transform(xtest.reshape(-1, 1)) degs = np.arange(1, 21, 1) ndegs = np.max(degs) mse_train = np.empty(ndegs) mse_test = np.empty(ndegs) ytest_pred_stored = np.empty(ndegs, dtype=np.ndarray) ytrain_pred_stored = np.empty(ndegs, dtype=np.ndarray) for deg in degs: model = LinearRegression() poly_features = PolynomialFeatures(degree=deg, include_bias=False) Xtrain_poly = poly_features.fit_transform(Xtrain) model.fit(Xtrain_poly, ytrain) ytrain_pred = model.predict(Xtrain_poly) ytrain_pred_stored[deg-1] = ytrain_pred Xtest_poly = poly_features.transform(Xtest) ytest_pred = model.predict(Xtest_poly) mse_train[deg-1] = mse(ytrain_pred, ytrain) mse_test[deg-1] = mse(ytest_pred, ytest) ytest_pred_stored[deg-1] = ytest_pred # Plot MSE vs degree fig, ax = plt.subplots() mask = degs <= 15 ax.plot(degs[mask], mse_test[mask], color = 'r', marker = 'x',label='test') ax.plot(degs[mask], mse_train[mask], color='b', marker = 's', label='train') ax.legend(loc='upper right', shadow=True) plt.xlabel('degree') plt.ylabel('mse') save_fig('polyfitVsDegree.pdf') plt.show() # Plot fitted functions chosen_degs = [1, 2, 14, 20] for deg in chosen_degs: fig, ax = plt.subplots() ax.scatter(xtrain, ytrain) ax.plot(xtest, ytest_pred_stored[deg-1]) ax.set_ylim((-10, 15)) plt.title('degree {}'.format(deg)) save_fig('polyfitDegree{}.pdf'.format(deg)) plt.show() # Plot residuals #https://blog.minitab.com/blog/adventures-in-statistics-2/why-you-need-to-check-your-residual-plots-for-regression-analysis chosen_degs = [1, 2, 14, 20] for deg in chosen_degs: fig, ax = plt.subplots() ypred = ytrain_pred_stored[deg-1] residuals = ytrain - ypred ax.plot(ypred, residuals, 'o') ax.set_xlabel('predicted y') ax.set_ylabel('residual') plt.title('degree {}. Predictions on the training set'.format(deg)) save_fig('polyfitDegree{}Residuals.pdf'.format(deg)) plt.show() # Plot fit vs actual # https://blog.minitab.com/blog/adventures-in-statistics-2/regression-analysis-how-do-i-interpret-r-squared-and-assess-the-goodness-of-fit chosen_degs = [1, 2, 14, 20] for deg in chosen_degs: for train in [True, False]: if train: ytrue = ytrain ypred = ytrain_pred_stored[deg-1] dataset = 'Train' else: ytrue = ytest ypred = ytest_pred_stored[deg-1] dataset = 'Test' fig, ax = plt.subplots() ax.scatter(ytrue, ypred) ax.plot(ax.get_xlim(), ax.get_ylim(), ls="--", c=".3") ax.set_xlabel('true y') ax.set_ylabel('predicted y') r2 = sklearn.metrics.r2_score(ytrue, ypred) plt.title('degree {}. R2 on {} = {:0.3f}'.format(deg, dataset, r2)) save_fig('polyfitDegree{}FitVsActual{}.pdf'.format(deg, dataset)) plt.show()
# coding: utf-8 """ LogicMonitor REST API LogicMonitor is a SaaS-based performance monitoring platform that provides full visibility into complex, hybrid infrastructures, offering granular performance monitoring and actionable data and insights. logicmonitor_sdk enables you to manage your LogicMonitor account programmatically. # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class Widget(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'last_updated_by': 'str', 'user_permission': 'str', 'dashboard_id': 'int', 'name': 'str', 'description': 'str', 'last_updated_on': 'int', 'theme': 'str', 'interval': 'int', 'id': 'int', 'type': 'str', 'timescale': 'str' } attribute_map = { 'last_updated_by': 'lastUpdatedBy', 'user_permission': 'userPermission', 'dashboard_id': 'dashboardId', 'name': 'name', 'description': 'description', 'last_updated_on': 'lastUpdatedOn', 'theme': 'theme', 'interval': 'interval', 'id': 'id', 'type': 'type', 'timescale': 'timescale' } discriminator_value_class_map = { 'batchjob': 'BatchJobWidget', 'netflow': 'NetflowWidget', 'html': 'HtmlWidget', 'sgraph': 'WebsiteGraphWidget', 'devicesla': 'DeviceSLAWidget', 'groupnetflowgraph': 'NetflowGroupGraphWidget', 'gauge': 'GaugeWidget', 'ograph': 'OverviewGraphWidget', 'statsd': 'StatsDWidget', 'netflowgraph': 'NetflowGraphWidget', 'devicestatus': 'DeviceStatus', 'text': 'TextWidget', 'flash': 'FlashWidget', 'ngraph': 'NormalGraphWidget', 'groupnetflow': 'NetflowGroupWidget', 'bignumber': 'BigNumberWidget', 'cgraph': 'CustomerGraphWidget', 'dynamictable': 'DynamicTableWidget', 'table': 'TableWidget', 'gmap': 'GoogleMapWidget', 'noc': 'NOCWidget', '': 'ServiceAlert', 'alert': 'AlertWidget', 'websiteindividualstatus': 'WebsiteIndividualsStatusWidget', 'websiteoverallstatus': 'WebsiteOverallStatusWidget', 'piechart': 'PieChartWidget', 'websiteoverview': 'WebsiteOverviewWidget', 'websitesla': 'WebsiteSLAWidget' } def __init__(self, last_updated_by=None, user_permission=None, dashboard_id=None, name=None, description=None, last_updated_on=None, theme=None, interval=None, id=None, type=None, timescale=None): # noqa: E501 """Widget - a model defined in Swagger""" # noqa: E501 self._last_updated_by = None self._user_permission = None self._dashboard_id = None self._name = None self._description = None self._last_updated_on = None self._theme = None self._interval = None self._id = None self._type = None self._timescale = None self.discriminator = 'type' if last_updated_by is not None: self.last_updated_by = last_updated_by if user_permission is not None: self.user_permission = user_permission self.dashboard_id = dashboard_id self.name = name if description is not None: self.description = description if last_updated_on is not None: self.last_updated_on = last_updated_on if theme is not None: self.theme = theme if interval is not None: self.interval = interval if id is not None: self.id = id self.type = type if timescale is not None: self.timescale = timescale @property def last_updated_by(self): """Gets the last_updated_by of this Widget. # noqa: E501 The user that last updated the widget # noqa: E501 :return: The last_updated_by of this Widget. # noqa: E501 :rtype: str """ return self._last_updated_by @last_updated_by.setter def last_updated_by(self, last_updated_by): """Sets the last_updated_by of this Widget. The user that last updated the widget # noqa: E501 :param last_updated_by: The last_updated_by of this Widget. # noqa: E501 :type: str """ self._last_updated_by = last_updated_by @property def user_permission(self): """Gets the user_permission of this Widget. # noqa: E501 The permission level of the user who last modified the widget # noqa: E501 :return: The user_permission of this Widget. # noqa: E501 :rtype: str """ return self._user_permission @user_permission.setter def user_permission(self, user_permission): """Sets the user_permission of this Widget. The permission level of the user who last modified the widget # noqa: E501 :param user_permission: The user_permission of this Widget. # noqa: E501 :type: str """ self._user_permission = user_permission @property def dashboard_id(self): """Gets the dashboard_id of this Widget. # noqa: E501 The id of the dashboard the widget belongs to # noqa: E501 :return: The dashboard_id of this Widget. # noqa: E501 :rtype: int """ return self._dashboard_id @dashboard_id.setter def dashboard_id(self, dashboard_id): """Sets the dashboard_id of this Widget. The id of the dashboard the widget belongs to # noqa: E501 :param dashboard_id: The dashboard_id of this Widget. # noqa: E501 :type: int """ if dashboard_id is None: raise ValueError("Invalid value for `dashboard_id`, must not be `None`") # noqa: E501 self._dashboard_id = dashboard_id @property def name(self): """Gets the name of this Widget. # noqa: E501 The name of the widget # noqa: E501 :return: The name of this Widget. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this Widget. The name of the widget # noqa: E501 :param name: The name of this Widget. # noqa: E501 :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 self._name = name @property def description(self): """Gets the description of this Widget. # noqa: E501 The description of the widget # noqa: E501 :return: The description of this Widget. # noqa: E501 :rtype: str """ return self._description @description.setter def description(self, description): """Sets the description of this Widget. The description of the widget # noqa: E501 :param description: The description of this Widget. # noqa: E501 :type: str """ self._description = description @property def last_updated_on(self): """Gets the last_updated_on of this Widget. # noqa: E501 The time that corresponds to when the widget was last updated, in epoch format # noqa: E501 :return: The last_updated_on of this Widget. # noqa: E501 :rtype: int """ return self._last_updated_on @last_updated_on.setter def last_updated_on(self, last_updated_on): """Sets the last_updated_on of this Widget. The time that corresponds to when the widget was last updated, in epoch format # noqa: E501 :param last_updated_on: The last_updated_on of this Widget. # noqa: E501 :type: int """ self._last_updated_on = last_updated_on @property def theme(self): """Gets the theme of this Widget. # noqa: E501 The color scheme of the widget. Options are: borderPurple | borderGray | borderBlue | solidPurple | solidGray | solidBlue | simplePurple | simpleBlue | simpleGray | newBorderGray | newBorderBlue | newBorderDarkBlue | newSolidGray | newSolidBlue | newSolidDarkBlue | newSimpleGray | newSimpleBlue |newSimpleDarkBlue # noqa: E501 :return: The theme of this Widget. # noqa: E501 :rtype: str """ return self._theme @theme.setter def theme(self, theme): """Sets the theme of this Widget. The color scheme of the widget. Options are: borderPurple | borderGray | borderBlue | solidPurple | solidGray | solidBlue | simplePurple | simpleBlue | simpleGray | newBorderGray | newBorderBlue | newBorderDarkBlue | newSolidGray | newSolidBlue | newSolidDarkBlue | newSimpleGray | newSimpleBlue |newSimpleDarkBlue # noqa: E501 :param theme: The theme of this Widget. # noqa: E501 :type: str """ self._theme = theme @property def interval(self): """Gets the interval of this Widget. # noqa: E501 The refresh interval of the widget, in minutes # noqa: E501 :return: The interval of this Widget. # noqa: E501 :rtype: int """ return self._interval @interval.setter def interval(self, interval): """Sets the interval of this Widget. The refresh interval of the widget, in minutes # noqa: E501 :param interval: The interval of this Widget. # noqa: E501 :type: int """ self._interval = interval @property def id(self): """Gets the id of this Widget. # noqa: E501 The Id of the widget # noqa: E501 :return: The id of this Widget. # noqa: E501 :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this Widget. The Id of the widget # noqa: E501 :param id: The id of this Widget. # noqa: E501 :type: int """ self._id = id @property def type(self): """Gets the type of this Widget. # noqa: E501 alert | deviceNOC | html | serviceOverallStatus | sgraph | ngraph | serviceNOC | serviceSLA | bigNumber | gmap | serviceIndividualStatus | gauge | pieChart | ngraph | batchjob # noqa: E501 :return: The type of this Widget. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this Widget. alert | deviceNOC | html | serviceOverallStatus | sgraph | ngraph | serviceNOC | serviceSLA | bigNumber | gmap | serviceIndividualStatus | gauge | pieChart | ngraph | batchjob # noqa: E501 :param type: The type of this Widget. # noqa: E501 :type: str """ if type is None: raise ValueError("Invalid value for `type`, must not be `None`") # noqa: E501 self._type = type @property def timescale(self): """Gets the timescale of this Widget. # noqa: E501 The default timescale of the widget # noqa: E501 :return: The timescale of this Widget. # noqa: E501 :rtype: str """ return self._timescale @timescale.setter def timescale(self, timescale): """Sets the timescale of this Widget. The default timescale of the widget # noqa: E501 :param timescale: The timescale of this Widget. # noqa: E501 :type: str """ self._timescale = timescale def get_real_child_model(self, data): """Returns the real base class specified by the discriminator""" discriminator_value = data[self.discriminator].lower() return self.discriminator_value_class_map.get(discriminator_value) def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(Widget, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Widget): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
from pydantic import BaseModel from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware import uvicorn import pkg_resources from typing import Any def build_api(handler, endpoint): def get_version(): pkg_name = "msgflow" try: version = pkg_resources.get_distribution(pkg_name).version except pkg_resources.DistributionNotFound: print(f"Package name not found: {pkg_name}") version = "package version info not found" return version app = FastAPI( title="msgFlow", description="", version=get_version(), ) app.add_api_route(endpoint, handler.handle, methods=["POST"]) return app class Request(BaseModel): text: str dialog_id: str = 0 data: dict[str, Any] = None class Response(BaseModel): texts: list[str] request: Request class Handler: def __init__(self, bot): self._bot = bot def handle(self, req: Request): msg = WebapiMessage(text=req.text, dialog_id=req.dialog_id, req=req) self._bot.handle(msg) return Response(texts=msg.msgs, request=req) class WebapiMessage: def __init__(self, text: str, dialog_id: str, req): """""" self._text = text self._cid = dialog_id self._req = req self._msgs = [] @property def text(self): return self._text @property def dialog_id(self) -> str: # In CliService, a conversation is identified by the user's name return self._cid def respond(self, text): self._msgs.append(text) @property def source(self) -> Any: return self._req @property def msgs(self): return self._msgs class WebapiService: def __init__(self, config): """ Args: config (Dict[str, Any]) """ # Set attributes self._config = config @classmethod def from_config(cls, config: dict[str, object]): cfg = WebapiConfig(**config) return cls(config=cfg) def flow(self, bot): handler = Handler(bot=bot) app = build_api( handler, endpoint=self._config.endpoint, ) uvicorn.run(app=app, host=self._config.host, port=self._config.port) def post(self, text): raise NotImplementedError() class WebapiConfig(BaseModel): host: str port: int endpoint: str = "/handle"
import os from montreal_forced_aligner.corpus.acoustic_corpus import AcousticCorpus def test_save_text_lab( basic_corpus_dir, generated_dir, ): output_directory = os.path.join(generated_dir, "gui_tests") corpus = AcousticCorpus( corpus_directory=basic_corpus_dir, use_mp=True, temporary_directory=output_directory, ) corpus._load_corpus() corpus.get_file(name="acoustic_corpus").save() def test_file_properties( stereo_corpus_dir, generated_dir, ): output_directory = os.path.join(generated_dir, "gui_tests") corpus = AcousticCorpus( corpus_directory=stereo_corpus_dir, use_mp=True, temporary_directory=output_directory, ) corpus._load_corpus() file = corpus.get_file(name="michaelandsickmichael") assert file.sound_file.num_channels == 2 assert file.num_speakers == 2 assert file.num_utterances == 7 x, y = file.sound_file.normalized_waveform() assert y.shape[0] == 2 def test_flac_tg(flac_tg_corpus_dir, generated_dir): output_directory = os.path.join(generated_dir, "gui_tests") corpus = AcousticCorpus( corpus_directory=flac_tg_corpus_dir, use_mp=True, temporary_directory=output_directory, ) corpus._load_corpus() corpus.get_file(name="61-70968-0000").save()
import os def tfoutputtoAzdo(outputlist, jsonObject): """ This function convert a dict to Azure DevOps pipelines variable outputlist : dict { terraform_output : azure devpops variable} jsonOject : the terraform output in Json format (terraform output -json) """ if(len(outputlist) > 0): for k, v in outputlist.items(): tfoutput_name = k azdovar = str(v) if tfoutput_name in jsonObject.keys(): var_value = jsonObject[tfoutput_name]["value"] print( "Run [echo ##vso[task.setvariable variable="+azdovar+";]"+var_value+"]") os.system( "echo ##vso[task.setvariable variable="+azdovar+";]"+var_value+"") else: print("key {} is not present in terraform output".format( tfoutput_name))
import numpy as np import torch import torch.nn as nn from torch.nn import functional as F from tqdm import tqdm class _BaseWrapper(): def __init__(self, model): super().__init__() self.model = model self.handlers = [] def forward(self, images): self.image_shape = images.shape[2:] print(self.image_shape) self.logits = self.model(images) self.probs = F.softmax(self.logits, dim=1) return self.probs.sort(dim=1, descending=True) def backward(self, ids): one_hot = F.one_hot(ids, self.logits.shape[-1]) one_hot = one_hot.squeeze() self.model.zero_grad() self.logits.backward(gradient=one_hot, retain_graph=True) # gradient는 해당 index에 대해서만 미분을 통한 backpropagation을 하겠다는 의미이다. # 즉, 내가 확인하고 싶은 class에 대해서 featuremap이 얼마나 영향을 미쳤는지 확인할 수 있다. def generate(self): raise NotImplementedError class GradCAM(_BaseWrapper): def __init__(self, model, layers=None): super().__init__(model) self.feature_map = {} self.grad_map = {} self.layers = layers def save_fmaps(key): def forward_hook(module, input, output): self.feature_map[key]=output.detach() return forward_hook def save_grads(key): def backward_hook(modeul, grad_in, grad_out): self.grad_map[key] = grad_out[0].detach() return backward_hook for name, module in self.model.named_modules(): if self.layers is None or name in self.layers: self.handlers.append(module.register_forward_hook(save_fmaps(name))) self.handlers.append(module.register_backward_hook(save_grads(name))) def findLayers(self, layers, target_layer): if target_layer in layers.keys(): return layers[target_layer] else: raise ValueError(f"{target_layer} not exists") def generate(self, target_layer): feature_maps = self.findLayers(self.feature_map, target_layer) grad_maps = self.findLayers(self.grad_map, target_layer) weights = F.adaptive_avg_pool2d(grad_maps, 1) grad_cam = torch.mul(feature_maps, weights).sum(dim=1, keepdim=True) grad_cam = F.relu(grad_cam) grad_cam = F.interpolate(grad_cam, self.image_shape, mode="bilinear", align_corners=False) B, C, H, W = grad_cam.shape # C는 1인듯? grad_cam = grad_cam.view(B, -1) grad_cam -= grad_cam.min(dim=1, keepdim=True)[0] # 양수 만들어주려고 하는듯 grad_cam /= grad_cam.max(dim=1, keepdim=True)[0] grad_cam = grad_cam.view(B, C, H, W) return grad_cam
import unittest import numpy as np from hmc.applications.cox_poisson import forward_transform, inverse_transform, generate_data, gaussian_posterior_factory, hyperparameter_posterior_factory from hmc.applications.cox_poisson.prior import log_prior, grad_log_prior, hess_log_prior, grad_hess_log_prior class TestCoxPoisson(unittest.TestCase): def test_prior(self): def transformed_log_prior(qt): return log_prior(*inverse_transform(qt)[0]) transformed_grad_log_prior = lambda qt: grad_log_prior(*qt) transformed_hess_log_prior = lambda qt: hess_log_prior(*qt) transformed_grad_hess_log_prior = lambda qt: grad_hess_log_prior(*qt) q = np.random.uniform(size=(2, )) qt, _ = forward_transform(q) delta = 1e-5 u = np.random.normal(size=qt.shape) fd = (transformed_log_prior(qt + 0.5*delta*u) - transformed_log_prior(qt - 0.5*delta*u)) / delta dd = transformed_grad_log_prior(qt)@u self.assertTrue(np.allclose(fd, dd)) fd = (transformed_grad_log_prior(qt + 0.5*delta*u) - transformed_grad_log_prior(qt - 0.5*delta*u)) / delta dd = transformed_hess_log_prior(qt)@u self.assertTrue(np.allclose(fd, dd)) fd = (transformed_hess_log_prior(qt + 0.5*delta*u) - transformed_hess_log_prior(qt - 0.5*delta*u)) / delta dd = transformed_grad_hess_log_prior(qt)@u self.assertTrue(np.allclose(fd, dd)) def test_gaussian_posterior(self): sigmasq, beta = np.random.uniform(size=(2, )) mu = np.log(126.0) - sigmasq / 2.0 dist, x, y = generate_data(10, mu, beta, sigmasq) euclidean_auxiliaries, metric = gaussian_posterior_factory(dist, mu, sigmasq, beta, y) log_posterior = lambda x: euclidean_auxiliaries(x)[0] grad_log_posterior = lambda x: euclidean_auxiliaries(x)[1] delta = 1e-6 u = np.random.normal(size=x.shape) fd = (log_posterior(x + 0.5*delta*u) - log_posterior(x - 0.5*delta*u)) / delta dd = grad_log_posterior(x)@u self.assertTrue(np.allclose(fd, dd)) def test_hyperparameter_posterior(self): sigmasq, beta = np.random.uniform(size=(2, )) mu = np.log(126.0) - sigmasq / 2.0 dist, x, y = generate_data(16, mu, beta, sigmasq) log_posterior, metric, _, euclidean_auxiliaries, riemannian_auxiliaries = hyperparameter_posterior_factory(dist, mu, x, y) grad_log_posterior = lambda qt: euclidean_auxiliaries(qt)[1] grad_metric = lambda qt: riemannian_auxiliaries(qt)[3] q = np.array([sigmasq, beta]) qt, _ = forward_transform(q) delta = 1e-4 u = np.random.normal(size=(2, )) fd = (log_posterior(qt + 0.5*delta*u) - log_posterior(qt - 0.5*delta*u)) / delta dd = grad_log_posterior(qt)@u self.assertTrue(np.allclose(fd, dd)) fd = (metric(qt + 0.5*delta*u) - metric(qt - 0.5*delta*u)) / delta dd = grad_metric(qt)@u self.assertTrue(np.allclose(fd, dd))