index
int64
repo_id
string
file_path
string
content
string
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/dt
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/dt/mrtasks/CountBinsSamplesCountsMRTask.java
package hex.tree.dt.mrtasks; import org.apache.commons.math3.util.Precision; import water.MRTask; import water.fvec.Chunk; import java.util.Arrays; import static hex.tree.dt.NumericFeatureLimits.LIMIT_MAX; import static hex.tree.dt.NumericFeatureLimits.LIMIT_MIN; import static hex.tree.dt.binning.NumericBin.*; /** * MR task for counting samples in bins. */ public class CountBinsSamplesCountsMRTask extends MRTask<CountBinsSamplesCountsMRTask> { public final int _featureSplit; // numCol x 2 - min and max for each feature final double[][] _featuresLimits; // binsCount x bin_encoding_len (5 or 3), depending on feature type: // for numeric feature bin_encoding_len = 5: {numeric flag (-1.0), count, count0, min, max} // for categorical feature bin_encoding_len = 3: {category, count, count0} public double[][] _bins; // indices for the serialized array public static final int NUMERICAL_FLAG = 0; // for both numeric and categorical features indices of count and count0 are the same public static final int COUNT = 1; public static final int COUNT_0 = 2; public CountBinsSamplesCountsMRTask(int featureSplit, double[][] featuresLimits, double[][] bins) { _featureSplit = featureSplit; _featuresLimits = featuresLimits; _bins = bins; } @Override public void map(Chunk[] cs) { // deep copy of bins array so the reduce phase performs correctly { double[][] tmpBins = new double[_bins.length][]; for (int b = 0; b < _bins.length; b++) { tmpBins[b] = Arrays.copyOf(_bins[b], _bins[b].length); } _bins = tmpBins; } int classFeature = cs.length - 1; int numRows = cs[0]._len; boolean conditionsFailed; // select only rows that fulfill all conditions for (int row = 0; row < numRows; row++) { conditionsFailed = false; for (int column = 0; column < cs.length - 1 /*exclude prediction column*/; column++) { if (!verifyLimits(cs[column].atd(row), column)) { conditionsFailed = true; break; } } if (!conditionsFailed) { if (!isNumerical(_featureSplit)) { for (int i = 0; i < _bins.length; i++) { // find bin by category if (_bins[i][0] == cs[_featureSplit].atd(row)) { _bins[i][COUNT]++; if (Precision.equals(cs[classFeature].atd(row), 0, Precision.EPSILON)) { _bins[i][COUNT_0]++; } } } } else { for (int i = 0; i < _bins.length; i++) { // count feature values in the current bin if (checkBinBelonging(cs[_featureSplit].atd(row), i)) { _bins[i][COUNT]++; if (Precision.equals(cs[classFeature].atd(row), 0, Precision.EPSILON)) { _bins[i][COUNT_0]++; } } } } } } } private boolean isNumerical(int feature) { return _featuresLimits[feature][NUMERICAL_FLAG] == -1.0; } private boolean verifyLimits(double featureValue, int column) { // verifying limits is different for numerical and categorical columns if (isNumerical(column)) { return featureValue > _featuresLimits[column][LIMIT_MIN] && featureValue <= _featuresLimits[column][LIMIT_MAX]; } else { // actual categorical value is true(1.0) in feature limits return _featuresLimits[column][(int) featureValue] == 1.0; } } private boolean checkBinBelonging(double featureValue, int bin) { return featureValue > _bins[bin][MIN_INDEX] && featureValue <= _bins[bin][MAX_INDEX]; } @Override public void reduce(CountBinsSamplesCountsMRTask mrt) { for (int i = 0; i < _bins.length; i++) { _bins[i][COUNT] += mrt._bins[i][COUNT]; _bins[i][COUNT_0] += mrt._bins[i][COUNT_0]; } } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/dt
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/dt/mrtasks/FeaturesLimitsMRTask.java
package hex.tree.dt.mrtasks; import hex.tree.dt.DT; import water.MRTask; import water.fvec.Chunk; import water.fvec.NewChunk; import java.util.Arrays; import static hex.tree.dt.NumericFeatureLimits.*; /** * MR task for calculating real features limits based on limits. Useful optimization equal-width binning. */ public class FeaturesLimitsMRTask extends MRTask<FeaturesLimitsMRTask> { // numCol x 2 - min and max for each feature double[][] _featuresLimits; // numCol x 2 - min and max for each feature - size is ok as it is linearly dependent on numCols public double[][] _realFeatureLimits; public FeaturesLimitsMRTask(double[][] featuresLimits) { _featuresLimits = featuresLimits; _realFeatureLimits = null; } /** * Update current minimum if the candidate value is less than the actual minimum. * * @param feature feature index * @param candidateValue new potential min */ private void tryUpdatingMin(int feature, double candidateValue) { if (_realFeatureLimits[feature][LIMIT_MIN] > candidateValue) { _realFeatureLimits[feature][LIMIT_MIN] = candidateValue - DT.EPSILON; } } /** * Update current maximum if the candidate value is grater than the actual maximum. * * @param feature feature index * @param candidateValue new potential max */ private void tryUpdatingMax(int feature, double candidateValue) { if (_realFeatureLimits[feature][LIMIT_MAX] < candidateValue) { _realFeatureLimits[feature][LIMIT_MAX] = candidateValue; } } /** * Mark new category - set the flag of the given category to 1.0 (true). * * @param feature feature index * @param category new category */ private void tryAddingCategory(int feature, double category) { _realFeatureLimits[feature][(int) category] = 1.0; } /** * Update current categories mask with given categories mask. * * @param feature feature index * @param categoriesMask categories to add to existing mask */ private void updateCategories(int feature, double[] categoriesMask) { for (int i = 0; i < categoriesMask.length; i++) { // set 1.0 (true) even if it is already 1.0 if (categoriesMask[i] == 1.0) { _realFeatureLimits[feature][i] = 1.0; } } } @Override public void map(Chunk[] cs, NewChunk[] nc) { // init real features limits - check if the feature is numerical or categorical _realFeatureLimits = Arrays.stream(_featuresLimits) .map(f -> f[NUMERICAL_FLAG] == -1.0 // Init max with min double and init min with max double so any real value is better than the init one ? new double[]{-1.0, Double.MAX_VALUE, (-1) * Double.MAX_VALUE} // Init with zeros to fill with present categories : new double[f.length]) .toArray(double[][]::new); int numCols = cs.length - 1; // exclude prediction column int numRows = cs[0]._len; boolean conditionsFailed; // select only rows that fulfill all conditions for (int row = 0; row < numRows; row++) { conditionsFailed = false; for (int column = 0; column < cs.length - 1 /*exclude prediction column*/; column++) { if (!verifyLimits(cs[column].atd(row), column)) { conditionsFailed = true; break; } } // update limits for each feature for rows that satisfy previous condition if (!conditionsFailed) { for (int column = 0; column < numCols; column++) { if (_featuresLimits[column][NUMERICAL_FLAG] == -1.0) { // numerical feature tryUpdatingMin(column, cs[column].atd(row)); tryUpdatingMax(column, cs[column].atd(row)); } else { // categorical feature tryAddingCategory(column, cs[column].atd(row)); } } } } } private boolean isNumerical(int feature) { return _featuresLimits[feature][NUMERICAL_FLAG] == -1.0; } private boolean verifyLimits(double featureValue, int column) { // verifying limits is different for numerical and categorical columns if (isNumerical(column)) { return featureValue > _featuresLimits[column][LIMIT_MIN] && featureValue <= _featuresLimits[column][LIMIT_MAX]; } else { // actual categorical value is true(1.0) in feature limits return _featuresLimits[column][(int) featureValue] == 1.0; } } @Override public void reduce(FeaturesLimitsMRTask mrt) { for (int column = 0; column < _featuresLimits.length; column++) { if (_realFeatureLimits[column][NUMERICAL_FLAG] == -1.0) { tryUpdatingMin(column, mrt._realFeatureLimits[column][LIMIT_MIN]); tryUpdatingMax(column, mrt._realFeatureLimits[column][LIMIT_MAX]); } else { updateCategories(column, mrt._realFeatureLimits[column]); } } } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/dt
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/dt/mrtasks/GetClassCountsMRTask.java
package hex.tree.dt.mrtasks; import water.MRTask; import water.fvec.Chunk; import static hex.tree.dt.NumericFeatureLimits.*; /** * MR task for counting classes. */ public class GetClassCountsMRTask extends MRTask<GetClassCountsMRTask> { public int _numClasses; // counts of samples for each class, class corresponds to the index in array: [count0, count1, ...] public int[] _countsByClass; private final double[][] _featuresLimits; public GetClassCountsMRTask(double[][] featuresLimits, int numClasses) { _numClasses = numClasses; _featuresLimits = featuresLimits; } @Override public void map(Chunk[] cs) { _countsByClass = new int[_numClasses]; int classColumn = cs.length - 1; // the last column int numRows = cs[0]._len; boolean conditionsFailed; // select only rows that fulfill all conditions for (int row = 0; row < numRows; row++) { conditionsFailed = false; // - 1 because of the class column - don't check limits on it for (int column = 0; column < cs.length - 1 /*exclude prediction column*/; column++) { if (!verifyLimits(cs[column].atd(row), column)) { conditionsFailed = true; break; } } if (!conditionsFailed) { _countsByClass[(int) cs[classColumn].atd(row)]++; } } } private boolean isNumerical(int feature) { return _featuresLimits[feature][NUMERICAL_FLAG] == -1.0; } private boolean verifyLimits(double featureValue, int column) { // verifying limits is different for numerical and categorical columns if (isNumerical(column)) { return featureValue > _featuresLimits[column][LIMIT_MIN] && featureValue <= _featuresLimits[column][LIMIT_MAX]; } else { // actual categorical value is true(1.0) in feature limits return _featuresLimits[column][(int) featureValue] == 1.0; } } @Override public void reduce(GetClassCountsMRTask mrt) { for (int c = 0; c < _numClasses; c++) { _countsByClass[c] += mrt._countsByClass[c]; } } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/dt
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/dt/mrtasks/ScoreDTTask.java
package hex.tree.dt.mrtasks; import hex.ModelMetrics; import hex.tree.dt.DTModel; import water.MRTask; import water.fvec.Chunk; public class ScoreDTTask extends MRTask<ScoreDTTask> { private DTModel _model; private int _responseIdx; private ModelMetrics.MetricBuilder _metricsBuilder; public ScoreDTTask(DTModel _model) { this._model = _model; this._responseIdx = _model._output.responseIdx(); } @Override public void map(Chunk[] cs) { _metricsBuilder = _model.makeMetricBuilder(_model._output._domains[_model._output.responseIdx()]); double [] preds = new double[3]; double [] tmp = new double[_model._output.nfeatures()]; for (int row = 0; row < cs[0]._len; row++) { preds = _model.score0(cs, 0, row, tmp, preds); _metricsBuilder.perRow(preds, new float[]{(float) cs[_responseIdx].atd(row)}, _model); } } @Override public void reduce(ScoreDTTask other) { _metricsBuilder.reduce(other._metricsBuilder); } public ModelMetrics.MetricBuilder getMetricsBuilder() { return _metricsBuilder; } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/gbm/GBM.java
package hex.tree.gbm; import hex.*; import hex.genmodel.MojoModel; import hex.genmodel.algos.gbm.GbmMojoModel; import hex.genmodel.utils.DistributionFamily; import hex.quantile.Quantile; import hex.quantile.QuantileModel; import hex.tree.*; import hex.tree.DTree.DecidedNode; import hex.tree.DTree.LeafNode; import hex.tree.DTree.UndecidedNode; import org.apache.log4j.Logger; import water.*; import water.exceptions.H2OModelBuilderIllegalArgumentException; import water.fvec.*; import water.util.*; import java.io.IOException; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.Random; import static hex.tree.ScoreBuildHistogram.DECIDED_ROW; import static hex.util.LinearAlgebraUtils.toEigenArray; /** Gradient Boosted Trees * * Based on "Elements of Statistical Learning, Second Edition, page 387" */ public class GBM extends SharedTree<GBMModel,GBMModel.GBMParameters,GBMModel.GBMOutput> { private static final Logger LOG = Logger.getLogger(GBM.class); @Override public ModelCategory[] can_build() { return new ModelCategory[]{ ModelCategory.Regression, ModelCategory.Binomial, ModelCategory.Multinomial, }; } // Called from an http request public GBM( GBMModel.GBMParameters parms ) { super(parms ); init(false); } public GBM( GBMModel.GBMParameters parms, Key<GBMModel> key) { super(parms, key); init(false); } public GBM(boolean startup_once) { super(new GBMModel.GBMParameters(),startup_once); } @Override protected int nModelsInParallel(int folds) { int defaultParallelization = nclasses() <= 2 ? 2 // for binomial and regression we can squeeze bit more performance by running 2 models in parallel : 1; // for multinomial we need to build a tree per class - this is already massively parallel; // adding another level of parallelism on top of that increases memory requirements and doesn't improve performance return nModelsInParallel(folds, defaultParallelization); } /** Start the GBM training Job on an F/J thread. */ @Override protected GBMDriver trainModelImpl() { return new GBMDriver(); } /** Initialize the ModelBuilder, validating all arguments and preparing the * training frame. This call is expected to be overridden in the subclasses * and each subclass will start with "super.init();". This call is made * by the front-end whenever the GUI is clicked, and needs to be fast; * heavy-weight prep needs to wait for the trainModel() call. * * Validate the learning rate and distribution family. */ @Override public void init(boolean expensive) { super.init(expensive); // Initialize response based on given distribution family. // Regression: initially predict the response mean // Binomial: just class 0 (class 1 in the exact inverse prediction) // Multinomial: Class distribution which is not a single value. // However there is this weird tension on the initial value for // classification: If you guess 0's (no class is favored over another), // then with your first GBM tree you'll typically move towards the correct // answer a little bit (assuming you have decent predictors) - and // immediately the Confusion Matrix shows good results which gradually // improve... BUT the Means Squared Error will suck for unbalanced sets, // even as the CM is good. That's because we want the predictions for the // common class to be large and positive, and the rare class to be negative // and instead they start around 0. Guessing initial zero's means the MSE // is so bad, that the R^2 metric is typically negative (usually it's // between 0 and 1). // If instead you guess the mean (reversed through the loss function), then // the zero-tree GBM model reports an MSE equal to the response variance - // and an initial R^2 of zero. More trees gradually improves the R^2 as // expected. However, all the minority classes have large guesses in the // wrong direction, and it takes a long time (lotsa trees) to correct that // - so your CM sucks for a long time. if (expensive) { if (error_count() > 0) throw H2OModelBuilderIllegalArgumentException.makeFromBuilder(GBM.this); if (_parms._distribution == DistributionFamily.AUTO) { if (_nclass == 1) _parms._distribution = DistributionFamily.gaussian; if (_nclass == 2) _parms._distribution = DistributionFamily.bernoulli; if (_nclass >= 3) _parms._distribution = DistributionFamily.multinomial; } checkDistributions(); if (hasOffsetCol() && isClassifier() && (_parms._distribution == DistributionFamily.multinomial || _parms._distribution == DistributionFamily.custom)) { error("_offset_column", "Offset is not supported for "+_parms._distribution+" distribution."); } if (_parms._monotone_constraints != null && _parms._monotone_constraints.length > 0 && !supportMonotoneConstraints(_parms._distribution)) { error("_monotone_constraints", "Monotone constraints are only supported for Gaussian, Bernoulli, Tweedie and Quantile distributions, your distribution: " + _parms._distribution + "."); } if (_origTrain != null && _origTrain != _train) { List<Double> projections = new ArrayList<>(); for (int i = 0; i < _origTrain.numCols(); i++) { Vec currentCol = _origTrain.vec(i); if (currentCol.isCategorical()) { double[] actProjection = toEigenArray(currentCol); for (double v : actProjection) { projections.add(v); } } } double[] primitive_projections = new double[projections.size()]; for (int i = 0; i < projections.size(); i++) { primitive_projections[i] = projections.get(i); } _orig_projection_array = primitive_projections; } } switch( _parms._distribution) { case bernoulli: if( _nclass != 2 /*&& !couldBeBool(_response)*/) error("_distribution", H2O.technote(2, "Binomial requires the response to be a 2-class categorical")); break; case quasibinomial: if ( !_response.isNumeric() ) error("_distribution", H2O.technote(2, "Quasibinomial requires the response to be numeric.")); if ( _nclass != 2) error("_distribution", H2O.technote(2, "Quasibinomial requires the response to be binary.")); break; case modified_huber: if( _nclass != 2 /*&& !couldBeBool(_response)*/) error("_distribution", H2O.technote(2, "Modified Huber requires the response to be a 2-class categorical.")); break; case multinomial: if (!isClassifier()) error("_distribution", H2O.technote(2, "Multinomial requires an categorical response.")); break; case huber: if (isClassifier()) error("_distribution", H2O.technote(2, "Huber requires the response to be numeric.")); break; case poisson: if (isClassifier()) error("_distribution", H2O.technote(2, "Poisson requires the response to be numeric.")); break; case gamma: if (isClassifier()) error("_distribution", H2O.technote(2, "Gamma requires the response to be numeric.")); break; case tweedie: if (isClassifier()) error("_distribution", H2O.technote(2, "Tweedie requires the response to be numeric.")); break; case gaussian: if (isClassifier()) error("_distribution", H2O.technote(2, "Gaussian requires the response to be numeric.")); break; case laplace: if (isClassifier()) error("_distribution", H2O.technote(2, "Laplace requires the response to be numeric.")); break; case quantile: if (isClassifier()) error("_distribution", H2O.technote(2, "Quantile requires the response to be numeric.")); break; case custom: if(_parms._custom_distribution_func == null) error("_distribution", H2O.technote(2, "Custom requires custom function loaded.")); break; case AUTO: break; default: error("_distribution","Invalid distribution: " + _parms._distribution); } if( !(0. < _parms._learn_rate && _parms._learn_rate <= 1.0) ) error("_learn_rate", "learn_rate must be between 0 and 1"); if( !(0. < _parms._learn_rate_annealing && _parms._learn_rate_annealing <= 1.0) ) error("_learn_rate_annealing", "learn_rate_annealing must be between 0 and 1"); if( !(0. < _parms._col_sample_rate && _parms._col_sample_rate <= 1.0) ) error("_col_sample_rate", "col_sample_rate must be between 0 and 1"); if (_parms._max_abs_leafnode_pred <= 0) error("_max_abs_leafnode_pred", "max_abs_leafnode_pred must be larger than 0."); if (_parms._pred_noise_bandwidth < 0) error("_pred_noise_bandwidth", "pred_noise_bandwidth must be >= 0."); if ((_train != null) && (_parms._monotone_constraints != null)) { TreeUtils.checkMonotoneConstraints(this, _train, _parms._monotone_constraints); } if ((_train != null) && (_parms._interaction_constraints != null)) { if(_parms._categorical_encoding != Model.Parameters.CategoricalEncodingScheme.AUTO && _parms._categorical_encoding != Model.Parameters.CategoricalEncodingScheme.OneHotInternal){ error("_categorical_encoding", "Interaction constraints can be used when the categorical encoding is set to ``AUTO`` (``one_hot_internal`` or ``OneHotInternal``) only."); } TreeUtils.checkInteractionConstraints(this, _train, _parms._interaction_constraints); if (error_count() == 0) { _ics = _parms.interactionConstraints(_train); } } } private boolean supportMonotoneConstraints(DistributionFamily distributionFamily){ switch (distributionFamily) { case gaussian: case bernoulli: case tweedie: case quantile: return true; default: return false; } } // ---------------------- private class GBMDriver extends Driver { private transient FrameMap frameMap; private transient long _skippedCnt; // #observations that will be skipped because they have 0 weight or NA label in the training frame @Override protected Frame makeValidWorkspace() { final int nClasses = numClassTrees(); final Vec[] tmp; if (validWorkspaceCanReuseTrainWorkspace()) { tmp = new Vec[nClasses]; for (int i = 0; i < nClasses; i++) { tmp[i] = _train.vec(idx_tree(i)); assert tmp[i].isVolatile(); } } else { tmp = _valid.anyVec().makeVolatileDoubles(nClasses); } String[] tmpNames = new String[tmp.length]; for (int i = 0; i < tmpNames.length; i++) tmpNames[i] = "__P_" + i; return new Frame(tmpNames, tmp); } private boolean validWorkspaceCanReuseTrainWorkspace() { // 1. only possible for CV models if (!_parms._is_cv_model) return false; // 2. and only if training frame and validation frame are identical (except for weights) // training frame can eg. be sub/over-sampled for imbalanced problems\ // shortcut: if responses are identical => frames must be identical as well (for CV models only!!!) return _vresponse._key.equals(_response._key); } @Override protected boolean doOOBScoring() { return false; } @Override protected void initializeModelSpecifics() { frameMap = new FrameMap(GBM.this); _mtry_per_tree = Math.max(1, (int)(_parms._col_sample_rate_per_tree * _ncols)); //per-tree assert _parms.useColSampling() || _mtry_per_tree == _ncols; if (!(1 <= _mtry_per_tree && _mtry_per_tree <= _ncols)) throw new IllegalArgumentException("Computed mtry_per_tree should be in interval <1,"+_ncols+"> but it is " + _mtry_per_tree); _mtry = Math.max(1, (int)(_parms._col_sample_rate * _parms._col_sample_rate_per_tree * _ncols)); //per-split assert _parms.useColSampling() || _mtry == _ncols; if (!(1 <= _mtry && _mtry <= _ncols)) throw new IllegalArgumentException("Computed mtry should be in interval <1,"+_ncols+"> but it is " + _mtry); // for Bernoulli, we compute the initial value with Newton-Raphson iteration, otherwise it might be NaN here DistributionFamily distr = _parms._distribution; _initialPrediction = _nclass > 2 || distr == DistributionFamily.laplace || distr == DistributionFamily.huber || distr == DistributionFamily.quantile ? 0 : getInitialValue(); if(distr == DistributionFamily.quasibinomial){ _model._output._quasibinomialDomains = new VecUtils.CollectDoubleDomain(null,2).doAll(_response).stringDomain(_response.isInt()); } if (distr == DistributionFamily.bernoulli || distr == DistributionFamily.quasibinomial) { if (hasOffsetCol()) _initialPrediction = getInitialValueBernoulliOffset(_train); } else if (distr == DistributionFamily.laplace || distr == DistributionFamily.huber) { _initialPrediction = getInitialValueQuantile(0.5); } else if (distr == DistributionFamily.quantile) { _initialPrediction = getInitialValueQuantile(_parms._quantile_alpha); } _model._output._init_f = _initialPrediction; //always write the initial value here (not just for Bernoulli) if (_model.evalAutoParamsEnabled) { _model.initActualParamValuesAfterOutputSetup(_nclass, isClassifier()); } // Set the initial prediction into the tree column 0 if (_initialPrediction != 0.0) { new FillVecWithConstant(_initialPrediction) .doAll(vec_tree(_train, 0), _parms._build_tree_one_node); // Only setting tree-column 0 } // Mark all rows that either have zero weights or the label is NA as decided // This is way we can avoid processing them when building trees final long zeroWeights = hasWeightCol() ? _weights.length() - _weights.nzCnt() : 0; if (zeroWeights > 0 || // has some zero weights or response().naCnt() > 0) { // there are NAs in the response Vec[] vecs = new Vec[]{_response}; if (hasWeightCol()) vecs = ArrayUtils.append(vecs, _weights); for (int k = 0; k < _nclass; k++) { Vec nidsVecK = vec_nids(_train, k); if (nidsVecK.min() == DECIDED_ROW) { // classes not present in the training frame are skipped assert _model._output._distribution[k] == 0; assert nidsVecK.isConst(); continue; } vecs = ArrayUtils.append(vecs, nidsVecK); } _skippedCnt = new MarkDecidedRows().doAll(vecs).markedCnt; assert _skippedCnt >= zeroWeights; assert _skippedCnt >= response().naCnt(); assert _skippedCnt <= response().naCnt() + zeroWeights; } else _skippedCnt = 0; } class MarkDecidedRows extends MRTask<MarkDecidedRows> { int markedCnt; @Override public void map(Chunk[] cs) { final int colStart; final Chunk y; final Chunk weights; if (hasWeightCol()) { y = cs[0]; weights = cs[1]; colStart = 2; } else { y = cs[0]; weights = new C0DChunk(1, cs[0]._len); colStart = 1; } for (int row = 0; row < y._len; row++) { if (weights.atd(row) == 0 || y.isNA(row)) { markedCnt++; for (int c = colStart; c < cs.length; c++) { cs[c].set(row, DECIDED_ROW); } } } } @Override public void reduce(MarkDecidedRows mrt) { markedCnt += mrt.markedCnt; } @Override protected boolean modifiesVolatileVecs() { return true; } } /** * Helper to compute the initial value for Laplace/Huber/Quantile (incl. optional offset and obs weights) * @return weighted median of response - offset */ private double getInitialValueQuantile(double quantile) { // obtain y - o Vec y = hasOffsetCol() ? new ResponseLessOffsetTask(frameMap).doAll(1, Vec.T_NUM, _train).outputFrame().anyVec() : response(); // Now compute (weighted) quantile of y - o double res; QuantileModel qm = null; Frame tempFrame = null; try { tempFrame = new Frame(Key.<Frame>make(H2O.SELF), new String[]{"y"}, new Vec[]{y}); if (hasWeightCol()) tempFrame.add("w", _weights); DKV.put(tempFrame); QuantileModel.QuantileParameters parms = new QuantileModel.QuantileParameters(); parms._train = tempFrame._key; parms._probs = new double[]{quantile}; parms._weights_column = hasWeightCol() ? "w" : null; Job<QuantileModel> job1 = new Quantile(parms).trainModel(); qm = job1.get(); res = qm._output._quantiles[0][0]; } finally { if (qm!=null) qm.remove(); if (tempFrame!=null) DKV.remove(tempFrame._key); } return res; } /** * Helper to compute the initial value for Bernoulli for offset != 0 */ private double getInitialValueBernoulliOffset(Frame train) { LOG.info("Running Newton-Raphson iteration to find the initial value since offsets are specified."); double delta; int count = 0; double tol = 1e-4; //From R GBM vignette: //For speed, gbm() does only one step of the Newton-Raphson algorithm //rather than iterating to convergence. No appreciable loss of accuracy //since the next boosting iteration will simply correct for the prior iterations //inadequacy. int N = 1; //one step is enough - same as R double init = 0; //start with initial value of 0 for convergence do { double newInit = new NewtonRaphson(frameMap, DistributionFactory.getDistribution(_parms), init).doAll(train).value(); delta = Math.abs(init - newInit); init = newInit; LOG.info("Iteration " + (++count) + ": initial value: " + init); } while (count < N && delta >= tol); if (delta > tol) LOG.warn("Not fully converged."); LOG.info("Newton-Raphson iteration ran for " + count + " iteration(s). Final residual: " + delta); return init; } private static final double MIN_LOG_TRUNC = -19; private static final double MAX_LOG_TRUNC = 19; private void truncatePreds(final DTree tree, int firstLeafIndex, DistributionFamily dist) { if (firstLeafIndex==tree._len) return; ComputeMinMax minMax = new ComputeMinMax(frameMap, firstLeafIndex, tree._len).doAll(_train); if (LOG.isTraceEnabled()) { LOG.trace("Number of leaf nodes: " + minMax._mins.length); LOG.trace("Min: " + Arrays.toString(minMax._mins)); LOG.trace("Max: " + Arrays.toString(minMax._maxs)); } //loop over leaf nodes only: starting at leaf index for (int i = 0; i < tree._len - firstLeafIndex; i++) { final LeafNode node = ((LeafNode) tree.node(firstLeafIndex + i)); int nidx = node.nid(); float nodeMin = minMax._mins[nidx- firstLeafIndex]; float nodeMax = minMax._maxs[nidx- firstLeafIndex]; if (LOG.isTraceEnabled()) LOG.trace("Node: " + nidx + " min/max: " + nodeMin + "/" + nodeMax); // https://github.com/cran/gbm/blob/master/src/poisson.cpp // https://github.com/harrysouthworth/gbm/blob/master/src/poisson.cpp // https://github.com/gbm-developers/gbm/blob/master/src/poisson.cpp // https://github.com/harrysouthworth/gbm/blob/master/src/gamma.cpp // https://github.com/gbm-developers/gbm/blob/master/src/gamma.cpp // https://github.com/harrysouthworth/gbm/blob/master/src/tweedie.cpp // https://github.com/gbm-developers/gbm/blob/master/src/tweedie.cpp double val = node._pred; if (dist == DistributionFamily.gamma || dist == DistributionFamily.tweedie) //only for gamma/tweedie val += nodeMax; if (val > MAX_LOG_TRUNC) { if (LOG.isDebugEnabled()) LOG.debug("Truncating large positive leaf prediction (log): " + node._pred + " to " + (MAX_LOG_TRUNC - nodeMax)); node._pred = (float) (MAX_LOG_TRUNC - nodeMax); } val = node._pred; if (dist == DistributionFamily.gamma || dist == DistributionFamily.tweedie) //only for gamma/tweedie val += nodeMin; if (val < MIN_LOG_TRUNC) { if (LOG.isDebugEnabled()) LOG.debug("Truncating large negative leaf prediction (log): " + node._pred + " to " + (MIN_LOG_TRUNC - nodeMin)); node._pred = (float) (MIN_LOG_TRUNC - nodeMin); } if (node._pred < MIN_LOG_TRUNC && node._pred > MAX_LOG_TRUNC) { LOG.warn("Terminal node prediction outside of allowed interval in log-space: " + node._pred + " (should be in " + MIN_LOG_TRUNC + "..." + MAX_LOG_TRUNC + ")."); } } } // -------------------------------------------------------------------------- // Build the next k-trees, which is trying to correct the residual error from // the prior trees. @Override protected boolean buildNextKTrees() { // We're going to build K (nclass) trees - each focused on correcting // errors for a single class. final DTree[] ktrees = new DTree[_nclass]; // Define a "working set" of leaf splits, from here to tree._len int[] leaves = new int[_nclass]; // Get distribution Distribution distributionImpl = DistributionFactory.getDistribution(_parms); // Compute predictions and resulting residuals // ESL2, page 387, Steps 2a, 2b // fills "Work" columns for all rows (incl. OOB) with the residuals double huberDelta = Double.NaN; if (_parms._distribution == DistributionFamily.huber) { // Jerome Friedman 1999: Greedy Function Approximation: A Gradient Boosting Machine // https://statweb.stanford.edu/~jhf/ftp/trebst.pdf // compute absolute diff |y-(f+o)| for all rows Vec diff = new ComputeAbsDiff(frameMap).doAll(1, (byte)3 /*numeric*/, _train).outputFrame().anyVec(); // compute weighted alpha-quantile of the absolute residual -> this is the delta for the huber loss huberDelta = MathUtils.computeWeightedQuantile(_weights, diff, _parms._huber_alpha); distributionImpl.setHuberDelta(huberDelta); // now compute residuals using the gradient of the huber loss (with a globally adjusted delta) new StoreResiduals(frameMap, distributionImpl).doAll(_train, _parms._build_tree_one_node); } else { // compute predictions and residuals in one shot new ComputePredAndRes(frameMap, _nclass, _model._output._distribution, distributionImpl) .doAll(_train, _parms._build_tree_one_node); } for (int k = 0; k < _nclass; k++) { if (LOG.isTraceEnabled() && ktrees[k]!=null) { LOG.trace("Updated predictions in WORK col for class " + k + ":\n" + new Frame(new String[]{"WORK"},new Vec[]{vec_work(_train, k)}).toTwoDimTable()); } } // ---- // ESL2, page 387. Step 2b ii. // One Big Loop till the ktrees are of proper depth. // Adds a layer to the trees each pass. Constraints cs = _parms.constraints(_train); // Initialize branch interaction constraints BranchInteractionConstraints bics = null; if(_parms._interaction_constraints != null) { bics = _parms.initialInteractionConstraints(_ics); } growTrees(ktrees, leaves, _rand, cs, bics); for (int k = 0; k < _nclass; k++) { if (LOG.isTraceEnabled() && ktrees[k]!=null) { LOG.trace("Grew trees. Updated NIDs for class " + k + ":\n" + new Frame(new String[]{"NIDS"},new Vec[]{vec_nids(_train, k)}).toTwoDimTable()); } } // ---- // ESL2, page 387. Step 2b iii. Compute the gammas (leaf node predictions === fit best constant), and store them back // into the tree leaves. Includes learn_rate. GammaPass gp = new GammaPass(frameMap, ktrees, leaves, distributionImpl, _nclass); gp.doAll(_train); if (_parms._distribution == DistributionFamily.laplace) { fitBestConstantsQuantile(ktrees, leaves[0], 0.5); //special case for Laplace: compute the median for each leaf node and store that as prediction } else if (_parms._distribution == DistributionFamily.quantile) { if(cs == null) { fitBestConstantsQuantile(ktrees, leaves[0], _parms._quantile_alpha); //compute the alpha-quantile for each leaf node and store that as prediction } else { fitBestConstants(ktrees, leaves, gp, cs); // compute quantile monotone constraints using precomputed parent prediction resetQuantileConstants(ktrees, _parms._quantile_alpha, cs); } } else if (_parms._distribution == DistributionFamily.huber) { fitBestConstantsHuber(ktrees, leaves[0], huberDelta); //compute the alpha-quantile for each leaf node and store that as prediction } else { fitBestConstants(ktrees, leaves, gp, cs); } // Apply a correction for strong mispredictions (otherwise deviance can explode) if (_parms._distribution == DistributionFamily.gamma || _parms._distribution == DistributionFamily.poisson || _parms._distribution == DistributionFamily.tweedie) { assert(_nclass == 1); truncatePreds(ktrees[0], leaves[0], _parms._distribution); } if ((cs != null) && constraintCheckEnabled()) { _job.update(0, "Checking monotonicity constraints on the final model"); checkConstraints(ktrees, leaves, cs); } // ---- // ESL2, page 387. Step 2b iv. Cache the sum of all the trees, plus the // new tree, in the 'tree' columns. Also, zap the NIDs for next pass. // Tree <== f(Tree) // Nids <== 0 new AddTreeContributions( frameMap, ktrees, _parms._pred_noise_bandwidth, _parms._seed, _parms._ntrees, _model._output._ntrees ).doAll(_train); // sanity check for (int k = 0; k < _nclass; k++) { assert ktrees[k] == null || vec_nids(_train, k).nzCnt() == _skippedCnt; } // Grow the model by K-trees _model._output.addKTrees(ktrees); // If there is no row/col-sampling and trees are just roots with 0 prediction (==no change) we can stop building if (!_parms.isStochastic()) { boolean converged = true; for (DTree tree : ktrees) { if (tree == null) continue; DTree.Node root = tree.root(); converged = root instanceof LeafNode && ((LeafNode) root)._pred == 0.0f; if (! converged) { break; } } if (converged) { LOG.warn("Model cannot be further improved by building more trees, " + "stopping with ntrees=" + _model._output._ntrees + ". Setting actual ntrees to the " + _model._output._ntrees+"."); _parms._ntrees = _model._output._ntrees; return true; } } boolean converged = effective_learning_rate() < 1e-6; if (converged) { LOG.warn("Effective learning rate dropped below 1e-6 (" + _parms._learn_rate + " * " + _parms._learn_rate_annealing + "^" + (_model._output._ntrees-1) + ") - stopping the model now."); } return converged; } /** * How may trees are actually calculated for the number of classes the model uses. * @return number of trees */ private int numClassTrees() { return _nclass == 2 ? 1 : _nclass; // Boolean Optimization (only one tree needed for 2-class problems) } /** * Grow k regression trees (k=1 for regression and binomial, k=N for classification with N classes) * @param ktrees k trees to grow (must be properly initialized) * @param leaves workspace to store the leaf node starting index (k-dimensional - one per tree) * @param rand PRNG for reproducibility */ private void growTrees(DTree[] ktrees, int[] leaves, Random rand, Constraints cs, BranchInteractionConstraints bics) { // Initial set of histograms. All trees; one leaf per tree (the root // leaf); all columns DHistogram hcs[][][] = new DHistogram[_nclass][1/*just root leaf*/][_ncols]; // Adjust real bins for the top-levels int adj_nbins = Math.max(_parms._nbins_top_level,_parms._nbins); long rseed = rand.nextLong(); // initialize trees for (int k = 0; k < numClassTrees(); k++) { // Initially setup as-if an empty-split had just happened if (_model._output._distribution[k] != 0) { ktrees[k] = new DTree(_train, _ncols, _mtry, _mtry_per_tree, rseed, _parms); DHistogram[] hist = DHistogram.initialHist(_train, _ncols, adj_nbins, hcs[k][0], rseed, _parms, getGlobalSplitPointsKeys(), cs, false, _ics); new UndecidedNode(ktrees[k], DTree.NO_PARENT, hist, cs, bics); // The "root" node } } // Sample - mark the lines by putting 'OUT_OF_BAG' into nid(<klass>) vector if (_parms.useRowSampling()) { Sample ss[] = new Sample[_nclass]; for (int k = 0; k < _nclass; k++) if (ktrees[k] != null) ss[k] = new Sample(ktrees[k], _parms._sample_rate, _parms._sample_rate_per_class).dfork(null, new Frame(vec_nids(_train, k), _response), _parms._build_tree_one_node); for (int k = 0; k < _nclass; k++) { if (ss[k] != null) { ss[k].getResult(); if (LOG.isTraceEnabled() && ktrees[k]!=null) { LOG.trace("Sampled OOB rows. NIDS:\n" + new Frame(vec_nids(_train, k)).toTwoDimTable()); } } } } // ---- // ESL2, page 387. Step 2b ii. // One Big Loop till the ktrees are of proper depth. // Adds a layer to the trees each pass. int depth = 0; for (; depth < _parms._max_depth; depth++) { hcs = buildLayer(_train, _parms._nbins, ktrees, leaves, hcs, _parms._build_tree_one_node); // If we did not make any new splits, then the tree is split-to-death if (hcs == null) break; } // Each tree bottomed-out in a DecidedNode; go 1 more level and insert // LeafNodes to hold predictions. for (int k = 0; k < _nclass; k++) { DTree tree = ktrees[k]; if (tree == null) continue; int leaf = tree.len(); leaves[k] = leaf; //record the size of the tree before splitting the bottom nodes as the starting index for the leaf node indices for (int nid = 0; nid < leaf; nid++) { if (tree.node(nid) instanceof DecidedNode) { DecidedNode dn = tree.decided(nid); if (dn._split == null) { // No decision here, no row should have this NID now if (nid == 0) // Handle the trivial non-splitting tree new LeafNode(tree, DTree.NO_PARENT, 0); continue; } for (int i = 0; i < dn._nids.length; i++) { //L/R children int cnid = dn._nids[i]; if (cnid == ScoreBuildHistogram.UNDECIDED_CHILD_NODE_ID || // Bottomed out (predictors or responses known constant) tree.node(cnid) instanceof UndecidedNode || // Or chopped off for depth (tree.node(cnid) instanceof DecidedNode && // Or not possible to split ((DecidedNode) tree.node(cnid))._split == null)) { dn._nids[i] = new LeafNode(tree, nid).nid(); // Mark a leaf here } } } } } // -- k-trees are done } // Jerome Friedman 1999: Greedy Function Approximation: A Gradient Boosting Machine // https://statweb.stanford.edu/~jhf/ftp/trebst.pdf private void fitBestConstantsHuber(DTree[] ktrees, int firstLeafIndex, double huberDelta) { if (firstLeafIndex == ktrees[0]._len) return; // no splits happened - nothing to do assert(_nclass==1); // get diff y-(f+o) and weights and strata (node idx) Vec diff = new ComputeDiff(frameMap).doAll(1, (byte)3 /*numeric*/, _train).outputFrame().anyVec(); Vec weights = hasWeightCol() ? _train.vecs()[idx_weight()] : null; Vec strata = vec_nids(_train,0); // compute median diff for each leaf node Quantile.StratifiedQuantilesTask sqt = new Quantile.StratifiedQuantilesTask(null, 0.5 /*median of weighted residuals*/, diff, weights, strata, QuantileModel.CombineMethod.INTERPOLATE); H2O.submitTask(sqt); sqt.join(); // subtract median(diff) from residuals for all observations of each leaf DiffMinusMedianDiff hp = new DiffMinusMedianDiff(strata, sqt._quantiles /*median residuals per leaf*/); Frame tmpFrame1 = new Frame(new String[]{"strata","diff"}, new Vec[]{strata,diff}); hp.doAll(tmpFrame1); Vec diffMinusMedianDiff = diff; // for each leaf, compute the mean of Math.signum(resMinusMedianRes) * Math.min(Math.abs(resMinusMedianRes), huberDelta), // where huberDelta is the alpha-percentile of the residual across all observations Frame tmpFrame2 = new Frame(_train.vecs()); tmpFrame2.add("resMinusMedianRes", diffMinusMedianDiff); double[] huberGamma = new HuberLeafMath(frameMap, huberDelta, strata).doAll(tmpFrame2)._huberGamma; // now assign the median per leaf + the above _huberCorrection[i] to each leaf final DTree tree = ktrees[0]; for (int i = 0; i < sqt._quantiles.length; i++) { double huber = (sqt._quantiles[i] /*median*/ + huberGamma[i]); if (Double.isNaN(sqt._quantiles[i])) continue; //no active rows for this NID double val = effective_learning_rate() * huber; assert !Double.isNaN(val) && !Double.isInfinite(val); if (val > _parms._max_abs_leafnode_pred) val = _parms._max_abs_leafnode_pred; if (val < -_parms._max_abs_leafnode_pred) val = -_parms._max_abs_leafnode_pred; ((LeafNode) tree.node(sqt._nids[i]))._pred = (float) val; if (LOG.isTraceEnabled()) { LOG.trace("Leaf " + sqt._nids[i] + " has huber value: " + huber); } } diffMinusMedianDiff.remove(); } private double effective_learning_rate() { return _parms._learn_rate * Math.pow(_parms._learn_rate_annealing, (_model._output._ntrees-1)); } private void fitBestConstantsQuantile(DTree[] ktrees, int firstLeafIndex, double quantile) { if (firstLeafIndex == ktrees[0]._len) return; // no splits happened - nothing to do assert(_nclass==1); Vec diff = new ComputeDiff(frameMap).doAll(1, (byte)3 /*numeric*/, _train).outputFrame().anyVec(); Vec weights = hasWeightCol() ? _train.vecs()[idx_weight()] : null; Vec strata = vec_nids(_train,0); // compute quantile for all leaf nodes QuantileModel.CombineMethod combine_method = QuantileModel.CombineMethod.INTERPOLATE; Quantile.StratifiedQuantilesTask sqt = new Quantile.StratifiedQuantilesTask(null, quantile, diff, weights, strata, combine_method); H2O.submitTask(sqt); sqt.join(); final DTree tree = ktrees[0]; for (int i = 0; i < sqt._quantiles.length; i++) { double leafQuantile = sqt._quantiles[i]; if (Double.isNaN(leafQuantile)) continue; //no active rows for this NID double val = effective_learning_rate() * leafQuantile; if (val > _parms._max_abs_leafnode_pred) val = _parms._max_abs_leafnode_pred; if (val < -_parms._max_abs_leafnode_pred) val = -_parms._max_abs_leafnode_pred; ((LeafNode) tree.node(sqt._nids[i]))._pred = (float) val; } } /** * This method recompute result leaf node prediction to get a more precise prediction but respecting * the column constraints in subtrees * @param ktrees array of all trained trees * @param quantile quantile alpha parameter * @param cs constraint object to get information about constraints for each column */ private void resetQuantileConstants(DTree[] ktrees, double quantile, Constraints cs) { Vec diff = new ComputeDiff(frameMap).doAll(1, (byte)3, _train).outputFrame().anyVec(); Vec weights = hasWeightCol() ? _train.vecs()[idx_weight()] : null; Vec strata = vec_nids(_train,0); // compute quantile for all leaf nodes QuantileModel.CombineMethod combine_method = QuantileModel.CombineMethod.INTERPOLATE; Quantile.StratifiedQuantilesTask sqt = new Quantile.StratifiedQuantilesTask(null, quantile, diff, weights, strata, combine_method); H2O.submitTask(sqt); sqt.join(); for (int k = 0; k < _nclass; k++) { final DTree tree = ktrees[k]; if (tree == null || tree.len() < 2) continue; float[] mins = new float[tree._len]; int[] min_ids = new int[tree._len]; float[] maxs = new float[tree._len]; int[] max_ids = new int[tree._len]; int dnSize = tree._len - tree._leaves; // calculate index where leaves starts rollupMinMaxPreds(tree, tree.root(), mins, min_ids, maxs, max_ids); for (int i = dnSize; i < tree.len(); i++) { LeafNode node = (LeafNode)tree.node(i); int quantileId = i - dnSize; double leafQuantile = sqt._quantiles[quantileId]; if (Double.isNaN(leafQuantile)) continue; // quantile can be NaN if CV or weights column is enabled boolean canBeReplaced = true; DTree.Node tmpNode = tree.node(i); while(tmpNode.pid() != DTree.NO_PARENT) { DecidedNode parent = (DecidedNode) tree.node(tmpNode._pid); int constraint = cs.getColumnConstraint(parent._split._col); if (parent._split.naSplitDir() == DHistogram.NASplitDir.NAvsREST || constraint == 0) { tmpNode = parent; continue; } if (constraint > 0) { if (leafQuantile > mins[parent._nids[0]] || leafQuantile < maxs[parent._nids[1]]) { canBeReplaced = false; break; } } else if (leafQuantile < maxs[parent._nids[0]] || leafQuantile > mins[parent._nids[1]]) { canBeReplaced = false; break; } tmpNode = parent; } if(canBeReplaced){ node._pred = (float) leafQuantile; } } } } private void fitBestConstants(DTree[] ktrees, int[] leafs, GammaPass gp, Constraints cs) { final boolean useSplitPredictions = cs != null && cs.useBounds(); double m1class = (_nclass > 1 && _parms._distribution == DistributionFamily.multinomial) || (_nclass > 2 && _parms._distribution == DistributionFamily.custom) ? (double) (_nclass - 1) / _nclass : 1.0; // K-1/K for multinomial for (int k = 0; k < _nclass; k++) { final DTree tree = ktrees[k]; if (tree == null) continue; if (LOG.isTraceEnabled()) { for (int i=0;i<ktrees[k]._len-leafs[k];++i) LOG.trace(ktrees[k].node(leafs[k]+i).toString()); } for (int i = 0; i < tree._len - leafs[k]; i++) { LeafNode leafNode = (LeafNode) ktrees[k].node(leafs[k] + i); final double gamma; if (useSplitPredictions) { gamma = gp.gamma(leafNode.getSplitPrediction()); } else { gamma = gp.gamma(k, i); } double gf = effective_learning_rate() * m1class * gamma; // In the multinomial case, check for very large values (which will get exponentiated later) // Note that gss can be *zero* while rss is non-zero - happens when some rows in the same // split are perfectly predicted true, and others perfectly predicted false. if (_parms._distribution == DistributionFamily.multinomial || (_parms._distribution == DistributionFamily.custom && _nclass > 2)) { if (gf > 1e4) gf = 1e4f; // Cap prediction, will already overflow during Math.exp(gf) else if (gf < -1e4) gf = -1e4f; } if (Double.isNaN(gf)) gf=0; else if (Double.isInfinite(gf)) gf=Math.signum(gf)*1e4f; if (gf > _parms._max_abs_leafnode_pred) gf = _parms._max_abs_leafnode_pred; if (gf < -_parms._max_abs_leafnode_pred) gf = -_parms._max_abs_leafnode_pred; leafNode._pred = (float) gf; } } } private boolean constraintCheckEnabled() { return Boolean.parseBoolean(getSysProperty("gbm.monotonicity.checkEnabled", "true")); } private void checkConstraints(DTree[] ktrees, int[] leafs, Constraints cs) { for (int k = 0; k < _nclass; k++) { final DTree tree = ktrees[k]; if (tree == null) continue; float[] mins = new float[tree._len]; int[] min_ids = new int[tree._len]; float[] maxs = new float[tree._len]; int[] max_ids = new int[tree._len]; rollupMinMaxPreds(tree, tree.root(), mins, min_ids, maxs, max_ids); for (int i = 0; i < tree._len - leafs.length; i++) { DTree.Node node = tree.node(i); if (! (node instanceof DecidedNode)) continue; DecidedNode dn = ((DecidedNode) node); if (dn._split == null) continue; int constraint = cs.getColumnConstraint(dn._split._col); if (dn._split.naSplitDir() == DHistogram.NASplitDir.NAvsREST) { // NAs are not subject to constraints, we don't have to check the monotonicity on "NA vs REST" type of splits continue; } if (constraint > 0) { if (maxs[dn._nids[0]] > mins[dn._nids[1]]) { String message = "Monotonicity constraint " + constraint + " violated on column '" + _train.name(dn._split._col) + "' (max(left) > min(right)): " + maxs[dn._nids[0]] + " > " + mins[dn._nids[1]] + "\nNode: " + node + "\nLeft Node (max): " + tree.node(max_ids[dn._nids[0]]) + "\nRight Node (min): " + tree.node(min_ids[dn._nids[1]]); throw new IllegalStateException(message); } } else if (constraint < 0) { if (mins[dn._nids[0]] < maxs[dn._nids[1]]) { String message = "Monotonicity constraint " + constraint + " violated on column '" + _train.name(dn._split._col) + "' (min(left) < max(right)): " + mins[dn._nids[0]] + " < " + maxs[dn._nids[1]] + "\nNode: " + node + "\nLeft Node (min): " + tree.node(min_ids[dn._nids[0]]) + "\nRight Node (max): " + tree.node(max_ids[dn._nids[1]]); throw new IllegalStateException(message); } } } } } private void rollupMinMaxPreds(DTree tree, DTree.Node node, float[] mins, int min_ids[], float[] maxs, int[] max_ids) { if (node instanceof LeafNode) { mins[node.nid()] = ((LeafNode) node)._pred; min_ids[node.nid()] = node.nid(); maxs[node.nid()] = ((LeafNode) node)._pred; max_ids[node.nid()] = node.nid(); return; } DecidedNode dn = (DecidedNode) node; rollupMinMaxPreds(tree, tree.node(dn._nids[0]), mins, min_ids, maxs, max_ids); rollupMinMaxPreds(tree, tree.node(dn._nids[1]), mins, min_ids, maxs, max_ids); final int min_id = mins[dn._nids[0]] < mins[dn._nids[1]] ? dn._nids[0] : dn._nids[1]; mins[node.nid()] = mins[min_id]; min_ids[node.nid()] = min_ids[min_id]; final int max_id = maxs[dn._nids[0]] > maxs[dn._nids[1]] ? dn._nids[0] : dn._nids[1]; maxs[node.nid()] = maxs[max_id]; max_ids[node.nid()] = max_ids[max_id]; } @Override protected GBMModel makeModel(Key<GBMModel> modelKey, GBMModel.GBMParameters parms) { return new GBMModel(modelKey, parms, new GBMModel.GBMOutput(GBM.this)); } @Override protected void doInTrainingCheckpoint() { try { String modelFile = _parms._in_training_checkpoints_dir + "/" + _model._key.toString() + ".ntrees_" + _model._output._ntrees; GBMModel modelClone = _model.clone(); modelClone.setInputParms(_parms); modelClone._key = Key.make(_model._key + "." + _model._output._ntrees); modelClone._output = (GBMModel.GBMOutput) _model._output.clone(); modelClone._output.changeModelMetricsKey(modelClone._key); modelClone.exportBinaryModel(modelFile, true); } catch (IOException e) { throw new RuntimeException("Failed to write GBM checkpoint" + _model._key.toString(), e); } } } //-------------------------------------------------------------------------------------------------------------------- private static class FillVecWithConstant extends MRTask<FillVecWithConstant> { private double init; public FillVecWithConstant(double d) { init = d; } @Override protected boolean modifiesVolatileVecs() { return true; } @Override public void map(Chunk tree) { if (tree instanceof C8DVolatileChunk) { Arrays.fill(((C8DVolatileChunk) tree).getValues(), init); } else { for (int i = 0; i < tree._len; i++) tree.set(i, init); } } } private static class ResponseLessOffsetTask extends MRTask<ResponseLessOffsetTask> { private FrameMap fm; public ResponseLessOffsetTask(FrameMap frameMap) { fm = frameMap; } @Override public void map(Chunk[] chks, NewChunk[] nc) { final Chunk resp = chks[fm.responseIndex]; final Chunk offset = chks[fm.offsetIndex]; for (int i = 0; i < chks[0]._len; ++i) nc[0].addNum(resp.atd(i) - offset.atd(i)); // y - o } } /** * Newton-Raphson fixpoint iteration to find a self-consistent initial value */ private static class NewtonRaphson extends MRTask<NewtonRaphson> { private FrameMap fm; private Distribution dist; private double _init; private double _numerator; private double _denominator; public NewtonRaphson(FrameMap frameMap, Distribution distribution, double initialValue) { assert frameMap != null && distribution != null; fm = frameMap; dist = distribution; _init = initialValue; _numerator = 0; _denominator = 0; } public double value() { return _init + _numerator / _denominator; } @Override public void map(Chunk[] chks) { Chunk ys = chks[fm.responseIndex]; Chunk offset = chks[fm.offsetIndex]; Chunk weight = fm.weightIndex >= 0 ? chks[fm.weightIndex] : new C0DChunk(1, chks[0]._len); for (int row = 0; row < ys._len; row++) { double w = weight.atd(row); if (w == 0) continue; if (ys.isNA(row)) continue; double y = ys.atd(row); double o = offset.atd(row); double p = dist.linkInv(o + _init); _numerator += w * (y - p); _denominator += w * p * (1. - p); } } @Override public void reduce(NewtonRaphson mrt) { _numerator += mrt._numerator; _denominator += mrt._denominator; } } /** * Compute Residuals * Do this for all rows, whether OOB or not */ private static class ComputePredAndRes extends MRTask<ComputePredAndRes> { private FrameMap fm; private int nclass; private boolean[] out; private Distribution dist; public ComputePredAndRes(FrameMap frameMap, int nClasses, double[] outputDistribution, Distribution distribution) { fm = frameMap; nclass = nClasses; dist = distribution; out = new boolean[outputDistribution.length]; for (int i = 0; i < out.length; i++) out[i] = (outputDistribution[i] != 0); } @Override public void map(Chunk[] chks) { Chunk ys = chks[fm.responseIndex]; Chunk offset = fm.offsetIndex >= 0 ? chks[fm.offsetIndex] : new C0DChunk(0, chks[0]._len); Chunk preds = chks[fm.tree0Index]; // Prior tree sums C8DVolatileChunk wk = (C8DVolatileChunk) chks[fm.work0Index]; // Place to store residuals Chunk weights = fm.weightIndex >= 0 ? chks[fm.weightIndex] : new C0DChunk(1, chks[0]._len); double[] fs = nclass > 1 ? new double[nclass + 1] : null; for (int row = 0; row < wk._len; row++) { double weight = weights.atd(row); if (weight == 0) continue; if (ys.isNA(row)) continue; double f = preds.atd(row) + offset.atd(row); double y = ys.atd(row); if (LOG.isTraceEnabled()) LOG.trace(f + " vs " + y); //expect that the model predicts very negative values for 0 and very positive values for 1 if ((dist._family == DistributionFamily.multinomial && fs != null) || (dist._family == DistributionFamily.custom && nclass > 2)) { double sum = score1static(chks, fm.tree0Index, 0.0 /*not used for multiclass*/, fs, row, dist, nclass); if (Double.isInfinite(sum)) { // Overflow (happens for constant responses) for (int k = 0; k < nclass; k++) { wk = (C8DVolatileChunk) chks[fm.work0Index + k]; wk.getValues()[row] = ((float) dist.negHalfGradient(y, (Double.isInfinite(fs[k + 1]) ? 1.0f : 0.0f), k)); } } else { for (int k = 0; k < nclass; k++) { // Save as a probability distribution if (out[k]) { wk = (C8DVolatileChunk) chks[fm.work0Index + k]; wk.getValues()[row] = ((float) dist.negHalfGradient(y, (float) (fs[k + 1] / sum), k)); } } } } else { wk.getValues()[row] = ((float) dist.negHalfGradient(y, f)); } } } } private static class ComputeMinMax extends MRTask<ComputeMinMax> { private FrameMap fm; int firstLeafIdx; int _totalNumNodes; float[] _mins; float[] _maxs; public ComputeMinMax(FrameMap frameMap, int firstLeafIndex, int totalNumNodes) { fm = frameMap; firstLeafIdx = firstLeafIndex; _totalNumNodes = totalNumNodes; } @Override public void map(Chunk[] chks) { int len = _totalNumNodes - firstLeafIdx; // number of leaves _mins = new float[len]; _maxs = new float[len]; Arrays.fill(_mins, Float.MAX_VALUE); Arrays.fill(_maxs, -Float.MAX_VALUE); Chunk ys = chks[fm.responseIndex]; Chunk offset = fm.offsetIndex >= 0 ? chks[fm.offsetIndex] : new C0DChunk(0, chks[0]._len); Chunk preds = chks[fm.tree0Index]; // Prior tree sums Chunk nids = chks[fm.nids0Index]; Chunk weights = fm.weightIndex >= 0 ? chks[fm.weightIndex] : new C0DChunk(1, chks[0]._len); for (int row = 0; row < preds._len; row++) { if (ys.isNA(row)) continue; if (weights.atd(row) == 0) continue; int nid = (int) nids.at8(row); assert (nid != ScoreBuildHistogram.UNDECIDED_CHILD_NODE_ID); if (nid < 0) continue; //skip OOB and otherwise skipped rows float f = (float) (preds.atd(row) + offset.atd(row)); int idx = nid - firstLeafIdx; _mins[idx] = Math.min(_mins[idx], f); _maxs[idx] = Math.max(_maxs[idx], f); } } @Override public void reduce(ComputeMinMax mrt) { ArrayUtils.reduceMin(_mins, mrt._mins); ArrayUtils.reduceMax(_maxs, mrt._maxs); } } private static class ComputeDiff extends MRTask<ComputeDiff> { private FrameMap fm; public ComputeDiff(FrameMap frameMap) { fm = frameMap; } @Override public void map(Chunk[] chks, NewChunk[] nc) { final Chunk y = chks[fm.responseIndex]; final Chunk o = fm.offsetIndex >= 0 ? chks[fm.offsetIndex] : new C0DChunk(0, chks[0]._len); final Chunk f = chks[fm.tree0Index]; for (int i = 0; i < chks[0].len(); ++i) nc[0].addNum(y.atd(i) - (f.atd(i) + o.atd(i))); } } private static class ComputeAbsDiff extends MRTask<ComputeAbsDiff> { private FrameMap fm; public ComputeAbsDiff(FrameMap frameMap) { fm = frameMap; } @Override public void map(Chunk[] chks, NewChunk[] nc) { final Chunk y = chks[fm.responseIndex]; final Chunk o = fm.offsetIndex >= 0 ? chks[fm.offsetIndex] : new C0DChunk(0, chks[0]._len); final Chunk f = chks[fm.tree0Index]; for (int i = 0; i < chks[0].len(); ++i) nc[0].addNum(Math.abs(y.atd(i) - (f.atd(i) + o.atd(i)))); } } public static class DiffMinusMedianDiff extends MRTask<DiffMinusMedianDiff> { private final int _strataMin; private double[] _terminalMedians; public DiffMinusMedianDiff(Vec strata, double[] terminalMedians) { _strataMin = (int) strata.min(); _terminalMedians = terminalMedians; } @Override public void map(Chunk[] chks) { final Chunk strata = chks[0]; final Chunk diff = chks[1]; for (int i = 0; i < chks[0].len(); ++i) { int nid = (int) strata.atd(i); diff.set(i, diff.atd(i) - _terminalMedians[nid - _strataMin]); } } } private static final class HuberLeafMath extends MRTask<HuberLeafMath> { // INPUT final FrameMap fm; final double _huberDelta; final Vec _strata; final int _strataMin; final int _strataMax; // OUTPUT double[/*leaves*/] _huberGamma, _wcounts; public HuberLeafMath(FrameMap frameMap, double huberDelta, Vec strata) { fm = frameMap; _huberDelta = huberDelta; _strata = strata; _strataMin = (int) _strata.min(); _strataMax = (int) _strata.max(); } @Override public void map(Chunk[] cs) { if (_strata.length() == 0) { LOG.warn("No Huber math can be done since there's no strata."); _huberGamma = new double[0]; return; } final int nstrata = _strataMax - _strataMin + 1; LOG.info("Computing Huber math for (up to) " + nstrata + " different strata."); _huberGamma = new double[nstrata]; _wcounts = new double[nstrata]; Chunk weights = fm.weightIndex >= 0 ? cs[fm.weightIndex] : new C0DChunk(1, cs[0]._len); Chunk stratum = cs[fm.nids0Index]; Chunk diffMinusMedianDiff = cs[cs.length - 1]; for (int row = 0; row < cs[0]._len; ++row) { int nidx = (int) stratum.at8(row) - _strataMin; //get terminal node for this row _huberGamma[nidx] += weights.atd(row) * Math.signum(diffMinusMedianDiff.atd(row)) * Math.min(Math.abs(diffMinusMedianDiff.atd(row)), _huberDelta); _wcounts[nidx] += weights.atd(row); } } @Override public void reduce(HuberLeafMath mrt) { ArrayUtils.add(_huberGamma, mrt._huberGamma); ArrayUtils.add(_wcounts, mrt._wcounts); } @Override protected void postGlobal() { for (int i = 0; i < _huberGamma.length; ++i) _huberGamma[i] /= _wcounts[i]; } } private static class StoreResiduals extends MRTask<StoreResiduals> { private FrameMap fm; private Distribution dist; public StoreResiduals(FrameMap frameMap, Distribution distribution) { fm = frameMap; dist = distribution; } @Override protected boolean modifiesVolatileVecs() { return true; } @Override public void map(Chunk[] chks) { Chunk ys = chks[fm.responseIndex]; Chunk offset = fm.offsetIndex >= 0 ? chks[fm.offsetIndex] : new C0DChunk(0, chks[0]._len); Chunk preds = chks[fm.tree0Index]; // Prior tree sums C8DVolatileChunk wk = (C8DVolatileChunk) chks[fm.work0Index]; // Place to store residuals Chunk weights = fm.weightIndex >= 0 ? chks[fm.weightIndex] : new C0DChunk(1, chks[0]._len); for (int row = 0; row < wk._len; row++) { double weight = weights.atd(row); if (weight == 0) continue; if (ys.isNA(row)) continue; double f = preds.atd(row) + offset.atd(row); double y = ys.atd(row); wk.getValues()[row] = ((float) dist.negHalfGradient(y, f)); } } } /** * Set terminal node estimates (gamma) * ESL2, page 387. Step 2b iii. * Nids <== f(Nids) * For classification (bernoulli): * <pre>{@code gamma_i = sum (w_i * res_i) / sum (w_i*p_i*(1 - p_i)) where p_i = y_i - res_i}</pre> * For classification (multinomial): * <pre>{@code gamma_i_k = (nclass-1)/nclass * (sum res_i / sum (|res_i|*(1-|res_i|)))}</pre> * For regression (gaussian): * <pre>{@code gamma_i = sum res_i / count(res_i)}</pre> */ private static class GammaPass extends MRTask<GammaPass> { private final FrameMap fm; private final DTree[] _trees; // Read-only, shared (except at the histograms in the Nodes) private final int[] _leafs; // Starting index of leaves (per class-tree) private final Distribution _dist; private final int _nclass; private double[/*tree/klass*/][/*tree-relative node-id*/] _num; private double[/*tree/klass*/][/*tree-relative node-id*/] _denom; public GammaPass(FrameMap frameMap, DTree[] trees, int[] leafs, Distribution distribution, int nClasses) { fm = frameMap; _leafs = leafs; _trees = trees; _dist = distribution; _nclass = nClasses; } double gamma(int tree, int nid) { return gamma(tree, nid, _num[tree][nid]); } double gamma(int tree, int nid, double num) { if (_denom[tree][nid] == 0) return 0; double g = num / _denom[tree][nid]; assert !Double.isInfinite(g) && !Double.isNaN(g); return gamma(g); } double gamma(double g) { if (_dist._family == DistributionFamily.poisson || _dist._family == DistributionFamily.gamma || _dist._family == DistributionFamily.tweedie) { return _dist.link(g); } else { return g; } } @Override protected boolean modifiesVolatileVecs() { return true; } @Override public void map(Chunk[] chks) { _denom = new double[_nclass][]; _num = new double[_nclass][]; final Chunk resp = chks[fm.responseIndex]; // Response for this frame // For all tree/klasses for (int k = 0; k < _nclass; k++) { final DTree tree = _trees[k]; final int leaf = _leafs[k]; if (tree == null) continue; // Empty class is ignored assert (tree._len - leaf >= 0); // A leaf-biased array of all active Tree leaves. final double[] denom = _denom[k] = new double[tree._len - leaf]; final double[] num = _num[k] = new double[tree._len - leaf]; final C4VolatileChunk nids = (C4VolatileChunk) chks[fm.nids0Index + k]; // Node-ids for this tree/class int[] nids_vals = nids.getValues(); final Chunk ress = chks[fm.work0Index + k]; // Residuals for this tree/class final Chunk offset = fm.offsetIndex >= 0 ? chks[fm.offsetIndex] : new C0DChunk(0, chks[0]._len); final Chunk preds = chks[fm.tree0Index + k]; final Chunk weights = fm.weightIndex >= 0 ? chks[fm.weightIndex] : new C0DChunk(1, chks[0]._len); // If we have all constant responses, then we do not split even the // root and the residuals should be zero. if (tree.root() instanceof LeafNode) continue; for (int row = 0; row < nids._len; row++) { // For all rows double w = weights.atd(row); if (w == 0) continue; double y = resp.atd(row); //response if (Double.isNaN(y)) continue; // Compute numerator and denominator of terminal node estimate (gamma) int nid = (int) nids.at8(row); // Get Node to decide from final boolean wasOOBRow = ScoreBuildHistogram.isOOBRow(nid); //same for all k if (wasOOBRow) nid = ScoreBuildHistogram.oob2Nid(nid); if (nid < 0) continue; DecidedNode dn = tree.decided(nid); // Must have a decision point if (dn._split == null) // Unable to decide? dn = tree.decided(dn.pid()); // Then take parent's decision int leafnid = dn.getChildNodeID(chks, row); // Decide down to a leafnode assert leaf <= leafnid && leafnid < tree._len : "leaf: " + leaf + " leafnid: " + leafnid + " tree._len: " + tree._len + "\ndn: " + dn; assert tree.node(leafnid) instanceof LeafNode; // Note: I can tell which leaf/region I end up in, but I do not care for // the prediction presented by the tree. For GBM, we compute the // sum-of-residuals (and sum/abs/mult residuals) for all rows in the // leaf, and get our prediction from that. nids_vals[row] = leafnid; assert !ress.isNA(row); // OOB rows get placed properly (above), but they don't affect the computed Gamma (below) // For Laplace/Quantile distribution, we need to compute the median of (y-offset-preds == y-f), will be done outside of here if (wasOOBRow || _dist._family == DistributionFamily.laplace || _dist._family == DistributionFamily.huber || _dist._family == DistributionFamily.quantile) continue; double z = ress.atd(row); // residual double f = preds.atd(row) + offset.atd(row); int idx = leafnid - leaf; num[idx] += _dist.gammaNum(w, y, z, f); denom[idx] += _dist.gammaDenom(w, y, z, f); } } } @Override public void reduce(GammaPass gp) { ArrayUtils.add(_denom, gp._denom); ArrayUtils.add(_num, gp._num); } } private static class AddTreeContributions extends MRTask<AddTreeContributions> { private FrameMap fm; private DTree[] _ktrees; private int _nclass; private double _pred_noise_bandwidth; private long _seed; private int _ntrees1; private int _ntrees2; public AddTreeContributions( FrameMap frameMap, DTree[] ktrees, double predictionNoiseBandwidth, long seed, int nTreesInp, int nTreesOut ) { fm = frameMap; _ktrees = ktrees; _nclass = ktrees.length; _pred_noise_bandwidth = predictionNoiseBandwidth; _seed = seed; _ntrees1 = nTreesInp; _ntrees2 = nTreesOut; } @Override protected boolean modifiesVolatileVecs() { return true; } @Override public void map(Chunk[] chks) { Random rand = RandomUtils.getRNG(_seed); // For all tree/klasses for (int k = 0; k < _nclass; k++) { final DTree tree = _ktrees[k]; if (tree == null) continue; final C4VolatileChunk nids = (C4VolatileChunk) chks[fm.nids0Index + k]; final int[] nids_vals = nids.getValues(); final C8DVolatileChunk ct = (C8DVolatileChunk) chks[fm.tree0Index + k]; double[] ct_vals = ct.getValues(); final Chunk y = chks[fm.responseIndex]; final Chunk weights = fm.weightIndex >= 0 ? chks[fm.weightIndex] : new C0DChunk(1, chks[0]._len); long baseseed = (0xDECAF + _seed) * (0xFAAAAAAB + k * _ntrees1 + _ntrees2); for (int row = 0; row < nids._len; row++) { int nid = nids_vals[row]; nids_vals[row] = ScoreBuildHistogram.FRESH; if (nid < 0) { if (weights.atd(row) == 0 || y.isNA(row)) nids_vals[row] = ScoreBuildHistogram.DECIDED_ROW; continue; } double factor = 1; if (_pred_noise_bandwidth != 0) { rand.setSeed(baseseed + nid); //bandwidth is a function of tree number, class and node id (but same for all rows in that node) factor += rand.nextGaussian() * _pred_noise_bandwidth; } // Prediction stored in Leaf is cut to float to be deterministic in reconstructing // <tree_klazz> fields from tree prediction ct_vals[row] = ((float) (ct.atd(row) + factor * ((LeafNode) tree.node(nid))._pred)); } } } } //-------------------------------------------------------------------------------------------------------------------- // Read the 'tree' columns, do model-specific math and put the results in the // fs[] array, and return the sum. Dividing any fs[] element by the sum // turns the results into a probability distribution. @Override protected double score1(Chunk[] chks, double weight, double offset, double[/*nclass*/] fs, int row) { return score1static(chks, idx_tree(0), offset, fs, row, DistributionFactory.getDistribution(_parms), _nclass); } // Read the 'tree' columns, do model-specific math and put the results in the // fs[] array, and return the sum. Dividing any fs[] element by the sum // turns the results into a probability distribution. private static double score1static(Chunk[] chks, int treeIdx, double offset, double[] fs, int row, Distribution dist, int nClasses) { double f = chks[treeIdx].atd(row) + offset; double p = dist.linkInv(f); if (dist._family == DistributionFamily.modified_huber || dist._family == DistributionFamily.bernoulli || dist._family == DistributionFamily.quasibinomial || (dist._family == DistributionFamily.custom && nClasses == 2)) { fs[2] = p; fs[1] = 1.0 - p; return 1; // f2 = 1.0 - f1; so f1+f2 = 1.0 } else if (dist._family == DistributionFamily.multinomial || (dist._family == DistributionFamily.custom && nClasses > 2)) { if (nClasses == 2) { // This optimization assumes the 2nd tree of a 2-class system is the // inverse of the first. Fill in the missing tree fs[1] = p; fs[2] = 1 / p; return fs[1] + fs[2]; } // Multinomial loss function; sum(exp(data)). Load tree data assert (offset == 0); fs[1] = f; for (int k = 1; k < nClasses; k++) fs[k + 1] = chks[treeIdx + k].atd(row); // Rescale to avoid Infinities; return sum(exp(data)) return hex.genmodel.GenModel.log_rescale(fs); } else { return fs[0] = p; } } @Override public PojoWriter makePojoWriter(Model<?, ?, ?> genericModel, MojoModel mojoModel) { GbmMojoModel gbmMojoModel = (GbmMojoModel) mojoModel; CompressedTree[][] trees = MojoUtils.extractCompressedTrees(gbmMojoModel); boolean binomialOpt = MojoUtils.isUsingBinomialOpt(gbmMojoModel, trees); return new GbmPojoWriter(genericModel, gbmMojoModel.getCategoricalEncoding(), binomialOpt, trees, gbmMojoModel._init_f, gbmMojoModel._balanceClasses, gbmMojoModel._family, LinkFunctionFactory.getLinkFunction(gbmMojoModel._link_function)); } @Override protected void raiseReproducibilityWarning(String datasetName, int chunks) { warn("auto_rebalance", "Rebalancing " + datasetName + " dataset into " + chunks + " chunks. This model won't be reproducible on the different hardware configuration."); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/gbm/GBMModel.java
package hex.tree.gbm; import hex.*; import hex.genmodel.algos.tree.SharedTreeNode; import hex.genmodel.algos.tree.SharedTreeSubgraph; import hex.genmodel.utils.DistributionFamily; import hex.tree.*; import hex.util.EffectiveParametersUtils; import water.*; import water.fvec.Chunk; import water.fvec.Frame; import water.fvec.NewChunk; import water.fvec.Vec; import water.util.Log; import water.util.TwoDimTable; import java.util.*; public class GBMModel extends SharedTreeModelWithContributions<GBMModel, GBMModel.GBMParameters, GBMModel.GBMOutput> implements Model.StagedPredictions, FeatureInteractionsCollector, FriedmanPopescusHCollector, Model.RowToTreeAssignment { public static class GBMParameters extends SharedTreeModel.SharedTreeParameters { public double _learn_rate; public double _learn_rate_annealing; public double _col_sample_rate; public double _max_abs_leafnode_pred; public double _pred_noise_bandwidth; public KeyValue[] _monotone_constraints; public String[][] _interaction_constraints; public GBMParameters() { super(); _learn_rate = 0.1; _learn_rate_annealing = 1.0; _col_sample_rate = 1.0; _sample_rate = 1.0; _ntrees = 50; _max_depth = 5; _max_abs_leafnode_pred = Double.MAX_VALUE; _pred_noise_bandwidth =0; } @Override public boolean useColSampling() { return super.useColSampling() || _col_sample_rate != 1.0; } public String algoName() { return "GBM"; } public String fullName() { return "Gradient Boosting Machine"; } public String javaName() { return GBMModel.class.getName(); } @Override public boolean forceStrictlyReproducibleHistograms() { // if monotone constraints are enabled -> use strictly reproducible histograms (we calculate values that // are not subject to reduce precision logic in DHistogram (the "float trick" cannot be applied) return usesMonotoneConstraints(); } private boolean usesMonotoneConstraints() { if (areMonotoneConstraintsEmpty()) return emptyConstraints(0) != null; return true; } private boolean areMonotoneConstraintsEmpty() { return _monotone_constraints == null || _monotone_constraints.length == 0; } public Constraints constraints(Frame f) { if (areMonotoneConstraintsEmpty()) { return emptyConstraints(f.numCols()); } int[] cs = new int[f.numCols()]; for (KeyValue spec : _monotone_constraints) { if (spec.getValue() == 0) continue; int col = f.find(spec.getKey()); if (col < 0) { throw new IllegalStateException("Invalid constraint specification, column '" + spec.getKey() + "' doesn't exist."); } cs[col] = spec.getValue() < 0 ? -1 : 1; } boolean useBounds = _distribution == DistributionFamily.gaussian || _distribution == DistributionFamily.bernoulli || _distribution == DistributionFamily.tweedie || _distribution == DistributionFamily.quasibinomial || _distribution == DistributionFamily.multinomial || _distribution == DistributionFamily.quantile; return new Constraints(cs, DistributionFactory.getDistribution(this), useBounds); } // allows to override the behavior in tests (eg. create empty constraints and test execution as if constraints were used) Constraints emptyConstraints(int nCols) { return null; } public GlobalInteractionConstraints interactionConstraints(Frame frame){ return new GlobalInteractionConstraints(this._interaction_constraints, frame.names()); } public BranchInteractionConstraints initialInteractionConstraints(GlobalInteractionConstraints ics){ return new BranchInteractionConstraints(ics.getAllAllowedColumnIndices()); } } public static class GBMOutput extends SharedTreeModel.SharedTreeOutput { public String[] _quasibinomialDomains; boolean _quasibinomial; int _nclasses; public int nclasses() { return _nclasses; } public GBMOutput(GBM b) { super(b); _quasibinomial = b._parms._distribution == DistributionFamily.quasibinomial; _nclasses = b.nclasses(); } @Override public String[] classNames() { String [] res = super.classNames(); if(_quasibinomial){ return _quasibinomialDomains; } return res; } } public GBMModel(Key<GBMModel> selfKey, GBMParameters parms, GBMOutput output) { super(selfKey,parms,output); } @Override public void initActualParamValues() { super.initActualParamValues(); EffectiveParametersUtils.initFoldAssignment(_parms); EffectiveParametersUtils.initHistogramType(_parms); EffectiveParametersUtils.initCategoricalEncoding(_parms, Parameters.CategoricalEncodingScheme.Enum); EffectiveParametersUtils.initCalibrationMethod(_parms); } public void initActualParamValuesAfterOutputSetup(int nclasses, boolean isClassifier) { EffectiveParametersUtils.initStoppingMetric(_parms, isClassifier); EffectiveParametersUtils.initDistribution(_parms, nclasses); } @Override protected SharedTreeModelWithContributions<GBMModel, GBMParameters, GBMOutput>.ScoreContributionsWithBackgroundTask getScoreContributionsWithBackgroundTask(SharedTreeModel model, Frame fr, Frame backgroundFrame, boolean expand, int[] catOffsets, ContributionsOptions options) { return new ScoreContributionsWithBackgroundTask(fr._key, backgroundFrame._key, options._outputPerReference, this, expand, catOffsets, options._outputSpace); } @Override protected ScoreContributionsTask getScoreContributionsTask(SharedTreeModel model) { return new ScoreContributionsTask(this); } @Override protected ScoreContributionsTask getScoreContributionsSoringTask(SharedTreeModel model, ContributionsOptions options) { return new ScoreContributionsSortingTask(model, options); } @Override public Frame scoreStagedPredictions(Frame frame, Key<Frame> destination_key) { Frame adaptFrm = new Frame(frame); adaptTestForTrain(adaptFrm, true, false); final String[] names = makeAllTreeColumnNames(); final int outputcols = names.length; return new StagedPredictionsTask(this) .doAll(outputcols, Vec.T_NUM, adaptFrm) .outputFrame(destination_key, names, null); } private static class StagedPredictionsTask extends MRTask<StagedPredictionsTask> { private final Key<GBMModel> _modelKey; private transient GBMModel _model; private StagedPredictionsTask(GBMModel model) { _modelKey = model._key; } @Override protected void setupLocal() { _model = _modelKey.get(); assert _model != null; } @Override public void map(Chunk chks[], NewChunk[] nc) { double[] input = new double[chks.length]; int contribOffset = _model._output.nclasses() == 1 ? 0 : 1; for (int row = 0; row < chks[0]._len; row++) { for (int i = 0; i < chks.length; i++) input[i] = chks[i].atd(row); double[] contribs = new double[contribOffset + _model._output.nclasses()]; double[] preds = new double[contribs.length]; int col = 0; for (int tidx = 0; tidx < _model._output._treeKeys.length; tidx++) { Key[] keys = _model._output._treeKeys[tidx]; for (int i = 0; i < keys.length; i++) { if (keys[i] != null) contribs[contribOffset + i] += DKV.get(keys[i]).<CompressedTree>get().score(input, _model._output._domains); preds[contribOffset + i] = contribs[contribOffset + i]; } _model.score0Probabilities(preds, 0); _model.score0PostProcessSupervised(preds, input); for (int i = 0; i < keys.length; i++) { if (keys[i] != null) nc[col++].addNum(preds[contribOffset + i]); } } assert (col == nc.length); } } } @Override protected final double[] score0Incremental(Score.ScoreIncInfo sii, Chunk[] chks, double offset, int row_in_chunk, double[] tmp, double[] preds) { assert _output.nfeatures() == tmp.length; for (int i = 0; i < tmp.length; i++) tmp[i] = chks[i].atd(row_in_chunk); if (sii._startTree == 0) Arrays.fill(preds,0); else for (int i = 0; i < sii._workspaceColCnt; i++) preds[sii._predsAryOffset + i] = chks[sii._workspaceColIdx + i].atd(row_in_chunk); score0(tmp, preds, offset, sii._startTree, _output._treeKeys.length); for (int i = 0; i < sii._workspaceColCnt; i++) chks[sii._workspaceColIdx + i].set(row_in_chunk, preds[sii._predsAryOffset + i]); score0Probabilities(preds, offset); score0PostProcessSupervised(preds, tmp); return preds; } /** Bulk scoring API for one row. Chunks are all compatible with the model, * and expect the last Chunks are for the final distribution and prediction. * Default method is to just load the data into the tmp array, then call * subclass scoring logic. */ @Override protected double[] score0(double data[/*ncols*/], double preds[/*nclasses+1*/], double offset, int ntrees) { super.score0(data, preds, offset, ntrees); // These are f_k(x) in Algorithm 10.4 return score0Probabilities(preds, offset); } private double[] score0Probabilities(double preds[/*nclasses+1*/], double offset) { if (_parms._distribution == DistributionFamily.bernoulli || _parms._distribution == DistributionFamily.quasibinomial || _parms._distribution == DistributionFamily.modified_huber || (_parms._distribution == DistributionFamily.custom && _output.nclasses() == 2)) { // custom distribution could be also binomial double f = preds[1] + _output._init_f + offset; //Note: class 1 probability stored in preds[1] (since we have only one tree) preds[2] = DistributionFactory.getDistribution(_parms).linkInv(f); preds[1] = 1.0 - preds[2]; } else if (_parms._distribution == DistributionFamily.multinomial // Kept the initial prediction for binomial || (_parms._distribution == DistributionFamily.custom && _output.nclasses() > 2) ) { // custom distribution could be also multinomial if (_output.nclasses() == 2) { //1-tree optimization for binomial preds[1] += _output._init_f + offset; //offset is not yet allowed, but added here to be future-proof preds[2] = -preds[1]; } hex.genmodel.GenModel.GBM_rescale(preds); } else { //Regression double f = preds[0] + _output._init_f + offset; preds[0] = DistributionFactory.getDistribution(_parms).linkInv(f); } return preds; } @Override protected SharedTreePojoWriter makeTreePojoWriter() { CompressedForest compressedForest = new CompressedForest(_output._treeKeys, _output._domains); CompressedForest.LocalCompressedForest localCompressedForest = compressedForest.fetch(); return new GbmPojoWriter(this, localCompressedForest._trees); } @Override public GbmMojoWriter getMojo() { return new GbmMojoWriter(this); } public FeatureInteractions getFeatureInteractions(int maxInteractionDepth, int maxTreeDepth, int maxDeepening) { FeatureInteractions featureInteractions = new FeatureInteractions(); int nclasses = this._output._nclasses > 2 ? this._output._nclasses : 1; for (int i = 0; i < this._parms._ntrees; i++) { for (int j = 0; j < nclasses; j++) { FeatureInteractions currentTreeFeatureInteractions = new FeatureInteractions(); SharedTreeSubgraph tree = this.getSharedTreeSubgraph(i, j); List<SharedTreeNode> interactionPath = new ArrayList<>(); Set<String> memo = new HashSet<>(); FeatureInteractions.collectFeatureInteractions(tree.rootNode, interactionPath, 0, 0, 1, 0, 0, currentTreeFeatureInteractions, memo, maxInteractionDepth, maxTreeDepth, maxDeepening, i, true); featureInteractions.mergeWith(currentTreeFeatureInteractions); } } if(featureInteractions.isEmpty()){ Log.warn("There is no feature interaction for this model."); return null; } return featureInteractions; } @Override public TwoDimTable[][] getFeatureInteractionsTable(int maxInteractionDepth, int maxTreeDepth, int maxDeepening) { return FeatureInteractions.getFeatureInteractionsTable(this.getFeatureInteractions(maxInteractionDepth,maxTreeDepth,maxDeepening)); } @Override public double getFriedmanPopescusH(Frame frame, String[] vars) { Frame adaptFrm = removeSpecialNNonNumericColumns(frame); for(int colId = 0; colId < adaptFrm.numCols(); colId++) { Vec col = adaptFrm.vec(colId); if (col.isBad()) { throw new UnsupportedOperationException( "Calculating of H statistics error: column " + adaptFrm.name(colId) + " is missing."); } if(!col.isNumeric()) { throw new UnsupportedOperationException( "Calculating of H statistics error: column " + adaptFrm.name(colId) + " is not numeric."); } } int nclasses = this._output._nclasses > 2 ? this._output._nclasses : 1; SharedTreeSubgraph[][] sharedTreeSubgraphs = new SharedTreeSubgraph[this._parms._ntrees][nclasses]; for (int i = 0; i < this._parms._ntrees; i++) { for (int j = 0; j < nclasses; j++) { sharedTreeSubgraphs[i][j] = this.getSharedTreeSubgraph(i, j); } } return FriedmanPopescusH.h(adaptFrm, vars, this._parms._learn_rate, sharedTreeSubgraphs); } @Override public Frame rowToTreeAssignment(Frame frame, Key<Frame> destination_key, Job<Frame> j) { Key<CompressedTree>[/*_ntrees*/][/*_nclass*/] treeKeys = _output._treeKeys; Sample[] ss = new Sample[treeKeys.length]; int[] cons = new int[treeKeys.length]; Vec[] vs = frame.vec(_parms._response_column).makeVolatileInts(cons); for (int treeId = 0; treeId < treeKeys.length; treeId++) { Key<CompressedTree> compressedTreeKey = treeKeys[treeId][0]; // Always pick the zero one, multinomial trees use the same subsample if (compressedTreeKey == null) continue; CompressedTree ct = DKV.getGet(compressedTreeKey); long seed = ct.getSeed(); ss[treeId] = new Sample(seed, _parms._sample_rate, _parms._sample_rate_per_class, 1, 0).dfork(vs[treeId], frame.vec(_parms._response_column)); } for (int treeId = 0; treeId < treeKeys.length; treeId++) { ss[treeId].getResult(); } int outputSize = treeKeys.length + 1; String[] names = new String[outputSize]; byte[] types = new byte[outputSize]; String[][] domains = new String[outputSize][2]; names[0] = "row_id"; types[0] = Vec.T_NUM; domains[0] = null; for (int i = 1; i < outputSize; i++) { types[i] = Vec.T_CAT; domains[i] = new String[]{"0", "1"}; names[i] = "tree_" + i; } return new MRTask(){ public void map(Chunk[] chk, NewChunk[] nchk) { for (int row = 0; row < chk[0]._len; row++) { nchk[0].addNum(row + chk[0].start()); for (int col = 0; col < chk.length; col++) { nchk[col+1].addNum(chk[col].atd(row)); } } } }.withPostMapAction(JobUpdatePostMap.forJob(j)).doAll(types, vs).outputFrame(destination_key, names, domains); } @Override public double score(double[] data) { double[] pred = score0(data, new double[_output.nclasses() + 1], 0, _output._ntrees); score0PostProcessSupervised(pred, data); return pred[0]; } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/gbm/GbmMojoWriter.java
package hex.tree.gbm; import hex.Distribution; import hex.DistributionFactory; import hex.tree.SharedTreeMojoWriter; import java.io.IOException; /** * MOJO support for GBM model. */ public class GbmMojoWriter extends SharedTreeMojoWriter<GBMModel, GBMModel.GBMParameters, GBMModel.GBMOutput> { @SuppressWarnings("unused") // Called through reflection in ModelBuildersHandler public GbmMojoWriter() {} public GbmMojoWriter(GBMModel model) { super(model); } @Override public String mojoVersion() { return "1.40"; } @Override protected void writeModelData() throws IOException { super.writeModelData(); Distribution dist = DistributionFactory.getDistribution(model._parms); writekv("distribution", dist._family); writekv("link_function", dist._linkFunction.linkFunctionType); writekv("init_f", model._output._init_f); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/gbm/GbmPojoWriter.java
package hex.tree.gbm; import hex.Distribution; import hex.DistributionFactory; import hex.LinkFunction; import hex.Model; import hex.genmodel.CategoricalEncoding; import hex.genmodel.utils.DistributionFamily; import hex.tree.CompressedTree; import hex.tree.SharedTreePojoWriter; import water.util.SBPrintStream; class GbmPojoWriter extends SharedTreePojoWriter { private final double _init_f; private final boolean _balance_classes; private final DistributionFamily _distribution_family; private final LinkFunction _link_function; GbmPojoWriter(GBMModel model, CompressedTree[][] trees) { super(model._key, model._output, model.getGenModelEncoding(), model.binomialOpt(), trees, model._output._treeStats); _init_f = model._output._init_f; _balance_classes = model._parms._balance_classes; Distribution distribution = DistributionFactory.getDistribution(model._parms); _distribution_family = distribution._family; _link_function = distribution._linkFunction; } GbmPojoWriter(Model<?, ?, ?> model, CategoricalEncoding encoding, boolean binomialOpt, CompressedTree[][] trees, double initF, boolean balanceClasses, DistributionFamily distributionFamily, LinkFunction linkFunction) { super(model._key, model._output, encoding, binomialOpt, trees, null); _init_f = initF; _balance_classes = balanceClasses; _distribution_family = distributionFamily; _link_function = linkFunction; } // Note: POJO scoring code doesn't support per-row offsets (the scoring API would need to be changed to pass in offsets) @Override protected void toJavaUnifyPreds(SBPrintStream body) { // Preds are filled in from the trees, but need to be adjusted according to // the loss function. if (_distribution_family == DistributionFamily.bernoulli || _distribution_family == DistributionFamily.quasibinomial || _distribution_family == DistributionFamily.modified_huber ) { body.ip("preds[2] = preds[1] + ").p(_init_f).p(";").nl(); body.ip("preds[2] = " + _link_function.linkInvString("preds[2]") + ";").nl(); body.ip("preds[1] = 1.0-preds[2];").nl(); if (_balance_classes) body.ip("hex.genmodel.GenModel.correctProbabilities(preds, PRIOR_CLASS_DISTRIB, MODEL_CLASS_DISTRIB);").nl(); body.ip("preds[0] = hex.genmodel.GenModel.getPrediction(preds, PRIOR_CLASS_DISTRIB, data, " + _output.defaultThreshold() + ");").nl(); return; } if (_output.nclasses() == 1) { // Regression body.ip("preds[0] += ").p(_init_f).p(";").nl(); body.ip("preds[0] = " + _link_function.linkInvString("preds[0]") + ";").nl(); return; } if (_output.nclasses() == 2) { // Kept the initial prediction for binomial body.ip("preds[1] += ").p(_init_f).p(";").nl(); body.ip("preds[2] = - preds[1];").nl(); } body.ip("hex.genmodel.GenModel.GBM_rescale(preds);").nl(); if (_balance_classes) body.ip("hex.genmodel.GenModel.correctProbabilities(preds, PRIOR_CLASS_DISTRIB, MODEL_CLASS_DISTRIB);").nl(); body.ip("preds[0] = hex.genmodel.GenModel.getPrediction(preds, PRIOR_CLASS_DISTRIB, data, " + _output.defaultThreshold() + ");").nl(); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isofor/IsolationForest.java
package hex.tree.isofor; import hex.ModelCategory; import hex.ModelMetricsBinomial; import hex.ScoreKeeper; import hex.genmodel.utils.DistributionFamily; import hex.quantile.Quantile; import hex.tree.*; import hex.tree.DTree.DecidedNode; import hex.tree.DTree.LeafNode; import hex.tree.DTree.UndecidedNode; import org.joda.time.format.DateTimeFormat; import org.joda.time.format.DateTimeFormatter; import water.Iced; import water.Job; import water.Key; import water.MRTask; import water.fvec.Chunk; import water.fvec.Frame; import water.fvec.Vec; import water.util.PrettyPrint; import water.util.TwoDimTable; import java.util.*; import static water.util.RandomUtils.getRNG; import static hex.tree.isofor.IsolationForestModel.IsolationForestParameters; import static hex.tree.isofor.IsolationForestModel.IsolationForestOutput; /** * Isolation Forest */ public class IsolationForest extends SharedTree<IsolationForestModel, IsolationForestParameters, IsolationForestOutput> { @Override public ModelCategory[] can_build() { return new ModelCategory[]{ ModelCategory.AnomalyDetection }; } @Override public BuilderVisibility builderVisibility() { return BuilderVisibility.Stable; } // Called from an http request public IsolationForest(IsolationForestParameters parms ) { super(parms ); init(false); } public IsolationForest(IsolationForestParameters parms, Key<IsolationForestModel> key) { super(parms, key); init(false); } public IsolationForest(IsolationForestParameters parms, Job job ) { super(parms, job); init(false); } public IsolationForest(boolean startup_once) { super(new IsolationForestParameters(), startup_once); } @Override protected Driver trainModelImpl() { return new IsolationForestDriver(); } @Override public boolean scoreZeroTrees() { return false; } @Override public boolean isSupervised() { return false; } @Override public boolean isResponseOptional() { return true; } @Override protected ScoreKeeper.ProblemType getProblemType() { return ScoreKeeper.ProblemType.anomaly_detection; } private transient VarSplits _var_splits; @Override public void init(boolean expensive) { super.init(expensive); // Initialize local variables if( _parms._mtries < 1 && _parms._mtries != -1 && _parms._mtries != -2 ) error("_mtries", "mtries must be -1 (converted to sqrt(features)) or -2 (All features) or >= 1 but it is " + _parms._mtries); if( _train != null ) { int ncols = _train.numCols(); if( _parms._mtries != -1 && _parms._mtries != -2 && !(1 <= _parms._mtries && _parms._mtries <= ncols)) error("_mtries","Computed mtries should be -1 or -2 or in interval [1," + ncols + "] but it is " + _parms._mtries); } if (_parms._distribution != DistributionFamily.AUTO && _parms._distribution != DistributionFamily.gaussian) { throw new IllegalStateException("Isolation Forest doesn't expect the distribution to be specified by the user"); } _parms._distribution = DistributionFamily.gaussian; if (_parms._contamination != -1 && (_parms._contamination <= 0 || _parms._contamination > 0.5)) { error("_contamination", "Contamination parameter needs to be in range (0, 0.5] or undefined (-1); but it is " + _parms._contamination); } if (_parms._valid != null) { if (_parms._response_column == null) { error("_response_column", "Response column needs to be defined when using a validation frame."); } else if (expensive && vresponse() == null) { error("_response_column", "Validation frame is missing response column `" + _parms._response_column + "`."); } if (_parms._contamination > 0) { error("_contamination", "Contamination parameter cannot be used together with a validation frame."); } } else { if (_parms._stopping_metric != ScoreKeeper.StoppingMetric.AUTO && _parms._stopping_metric != ScoreKeeper.StoppingMetric.anomaly_score) { error("_stopping_metric", "Stopping metric `" + _parms._stopping_metric + "` can only be used when a labeled validation frame is provided."); } } if (expensive) { if (vresponse() != null) { if (!vresponse().isBinary() || vresponse().domain()==null) { error("_response_column", "The response column of the validation frame needs to have a binary categorical domain (not anomaly/anomaly)."); } } if (response() != null) { error("_training_frame", "Training frame should not have a response column"); } } } @Override protected void validateRowSampleRate() { if (_parms._sample_rate == -1) { if (_parms._sample_size <= 0) { error("_sample_size", "Sample size needs to be a positive integer number but it is " + _parms._sample_size); } else if (_train != null && _train.numRows() > 0) { _parms._sample_rate = _parms._sample_size / (double) _train.numRows(); } } } @Override protected boolean validateStoppingMetric() { return false; // disable the default stopping metric validation } private void randomResp(final long seed, final int iteration) { new MRTask() { @Override public void map(Chunk chks[]) { Chunk c = chk_work(chks, 0); final long chunk_seed = seed + (c.start() * (1 + iteration)); for (int i = 0; i < c._len; i++) { double rnd = getRNG(chunk_seed + i).nextDouble(); chk_work(chks, 0).set(i, rnd); } } }.doAll(_train); } @Override protected DTree.DecidedNode makeDecided(DTree.UndecidedNode udn, DHistogram hs[], Constraints cs) { return new IFDecidedNode(udn, hs, cs); } private class IFDecidedNode extends DTree.DecidedNode { private IFDecidedNode(DTree.UndecidedNode n, DHistogram[] hs, Constraints cs) { super(n, hs, cs, null); } @Override public DTree.Split bestCol(DTree.UndecidedNode u, DHistogram hs[], Constraints cs) { if( hs == null ) return null; final int maxCols = u._scoreCols == null /* all cols */ ? hs.length : u._scoreCols.length; List<FindSplits> findSplits = new ArrayList<>(); for (int i=0; i<maxCols; i++) { int col = u._scoreCols == null ? i : u._scoreCols[i]; if( hs[col]==null || hs[col].nbins() <= 1 ) continue; findSplits.add(new FindSplits(hs, cs, col, u)); } Collections.shuffle(findSplits, _rand); for (FindSplits fs : findSplits) { DTree.Split s = fs.computeSplit(); if (s != null) { return s; } } return null; } } @Override protected void addCustomInfo(IsolationForestOutput out) { if (_var_splits != null) { out._var_splits = _var_splits; out._variable_splits = _var_splits.toTwoDimTable(out.features(), "Variable Splits"); } if (_parms._contamination > 0) { assert vresponse() == null; // contamination is not compatible with using validation frame assert _model.outputAnomalyFlag(); Frame fr = _model.score(_train); try { Vec score = fr.vec("score"); assert score != null; out._defaultThreshold = Quantile.calcQuantile(score, 1 - _parms._contamination); } finally { fr.delete(); } } else if (_model._output._validation_metrics instanceof ModelMetricsBinomial) { out._defaultThreshold = ((ModelMetricsBinomial) _model._output._validation_metrics)._auc.defaultThreshold(); } } // ---------------------- private class IsolationForestDriver extends Driver { @Override protected boolean doOOBScoring() { return true; } @Override protected void initializeModelSpecifics() { _mtry_per_tree = Math.max(1, (int)(_parms._col_sample_rate_per_tree * _ncols)); if (!(1 <= _mtry_per_tree && _mtry_per_tree <= _ncols)) throw new IllegalArgumentException("Computed mtry_per_tree should be in interval <1,"+_ncols+"> but it is " + _mtry_per_tree); if(_parms._mtries==-2){ //mtries set to -2 would use all columns in each split regardless of what column has been dropped during train _mtry = _ncols; }else if(_parms._mtries==-1) { _mtry = (isClassifier() ? Math.max((int) Math.sqrt(_ncols), 1) : Math.max(_ncols / 3, 1)); // classification: mtry=sqrt(_ncols), regression: mtry=_ncols/3 }else{ _mtry = _parms._mtries; } if (!(1 <= _mtry && _mtry <= _ncols)) { throw new IllegalArgumentException("Computed mtry should be in interval <1," + _ncols + "> but it is " + _mtry); } _initialPrediction = 0; _var_splits = new VarSplits(_ncols); if ((_parms._contamination > 0) || (vresponse() != null)) { _model._output._defaultThreshold = 0.5; assert _model.outputAnomalyFlag(); } } // -------------------------------------------------------------------------- // Build the next random k-trees representing tid-th tree @Override protected boolean buildNextKTrees() { // Create a Random response randomResp(_parms._seed, _model._output._ntrees); final long rseed = _rand.nextLong(); final DTree tree = new DTree(_train, _ncols, _mtry, _mtry_per_tree, rseed, _parms); final DTree[] ktrees = {tree}; new Sample(tree, _parms._sample_rate, null) .dfork(null, new Frame(vec_nids(_train, 0), vec_work(_train, 0)), _parms._build_tree_one_node) .getResult(); // Assign rows to nodes - fill the "NIDs" column(s) growTree(rseed, ktrees); // Reset NIDs CalculatePaths stats = new CalculatePaths(ktrees[0]).doAll(_train, _parms._build_tree_one_node); // Grow the model by K-trees _model._output.addKTrees(ktrees); _model._output._min_path_length = stats._minPathLength; _model._output._max_path_length = stats._maxPathLength; return false; // never stop early } // Assumes that the "Work" column are filled with copy of a random generated response private void growTree(long rseed, final DTree[] ktrees) { // Initial set of histograms. All trees; one leaf per tree (the root // leaf); all columns DHistogram hcs[][][] = new DHistogram[_nclass][1/*just root leaf*/][_ncols]; // Adjust real bins for the top-levels int adj_nbins = Math.max(_parms._nbins_top_level,_parms._nbins); // Initially setup as-if an empty-split had just happened final DTree tree = ktrees[0]; new UndecidedNode(tree, -1, DHistogram.initialHist(_train, _ncols, adj_nbins, hcs[0][0], rseed, _parms, getGlobalSplitPointsKeys(), null, false, null), null, null); // The "root" node // ---- // One Big Loop till the ktrees are of proper depth. // Adds a layer to the trees each pass. final int[] leafs = new int[1]; for(int depth=0 ; depth<_parms._max_depth; depth++ ) { hcs = buildLayer(_train, _parms._nbins, ktrees, leafs, hcs, _parms._build_tree_one_node); // If we did not make any new splits, then the tree is split-to-death if( hcs == null ) break; } // Each tree bottomed-out in a DecidedNode; go 1 more level and insert // LeafNodes to hold predictions. int leaf = tree.len(); int depths[] = new int[leaf]; for( int nid=0; nid<leaf; nid++ ) { if( tree.node(nid) instanceof DecidedNode ) { DecidedNode dn = tree.decided(nid); if( dn._split == null ) { // No decision here, no row should have this NID now if( nid==0 ) { // Handle the trivial non-splitting tree LeafNode ln = new LeafNode(tree, -1, 0); ln._pred = 0; } continue; } depths[nid] = dn._pid >= 0 ? depths[dn._pid] + 1 : 0; for( int i=0; i<dn._nids.length; i++ ) { int cnid = dn._nids[i]; if( cnid == -1 || // Bottomed out (predictors or responses known constant) tree.node(cnid) instanceof UndecidedNode || // Or chopped off for depth (tree.node(cnid) instanceof DecidedNode && // Or not possible to split ((DecidedNode)tree.node(cnid))._split==null) ) { LeafNode ln = new LeafNode(tree,nid); ln._pred = depths[nid]; // Set depth as the prediction into the leaf dn._nids[i] = ln.nid(); // Mark a leaf here } } } } updatePerFeatureInfo(tree, depths); } private void updatePerFeatureInfo(DTree tree, int[] depths) { for (int i = 0; i < tree._len; i++) { DTree.Node n = tree.node(i); if (! (n instanceof DecidedNode)) continue; DecidedNode dn = (DecidedNode) n; DTree.Split split = dn._split; if (split == null) continue; _var_splits.update(split.col(), split, depths[n.nid()]); } } // Collect and write predictions into leafs. private class CalculatePaths extends MRTask<CalculatePaths> { private final DTree _tree; // OUT private int _minPathLength = Integer.MAX_VALUE; private int _maxPathLength = 0; private CalculatePaths(DTree tree) { _tree = tree; } @Override public void map(Chunk[] chks) { final Chunk tree = chk_tree(chks, 0); final Chunk nids = chk_nids(chks, 0); // Node-ids for this tree/class final Chunk oobt = chk_oobt(chks); for (int row = 0; row < nids._len; row++) { final int rawNid = (int) chk_nids(chks,0).at8(row); final boolean wasOOBRow = ScoreBuildHistogram.isOOBRow(rawNid); final int nid = wasOOBRow ? ScoreBuildHistogram.oob2Nid(rawNid) : rawNid; final int depth = getNodeDepth(chks, row, nid); if (wasOOBRow) { double oobcnt = oobt.atd(row) + 1; oobt.set(row, oobcnt); } final int total_len = PathTracker.encodeNewPathLength(tree, row, depth, wasOOBRow); _maxPathLength = total_len > _maxPathLength ? total_len : _maxPathLength; _minPathLength = total_len < _minPathLength ? total_len : _minPathLength; // reset NIds nids.set(row, 0); } } @Override public void reduce(CalculatePaths mrt) { _minPathLength = Math.min(_minPathLength, mrt._minPathLength); _maxPathLength = Math.max(_maxPathLength, mrt._maxPathLength); } int getNodeDepth(Chunk[] chks, int row, int nid) { if (_tree.root() instanceof LeafNode) { return 0; } else { if (_tree.node(nid) instanceof UndecidedNode) // If we bottomed out the tree nid = _tree.node(nid).pid(); // Then take parent's decision DecidedNode dn = _tree.decided(nid); // Must have a decision point if (dn._split == null) // Unable to decide? dn = _tree.decided(_tree.node(nid).pid()); // Then take parent's decision int leafnid = dn.getChildNodeID(chks, row); // Decide down to a leafnode double depth = ((LeafNode) _tree.node(leafnid)).pred(); assert (int) depth == depth; return (int) depth; } } } @Override protected IsolationForestModel makeModel(Key modelKey, IsolationForestParameters parms) { return new IsolationForestModel(modelKey, parms, new IsolationForestOutput(IsolationForest.this)); } } @Override protected double score1(Chunk chks[], double weight, double offset, double fs[/*2*/], int row) { assert weight == 1; int len = PathTracker.decodeOOBPathLength(chk_tree(chks, 0), row); fs[1] = len / chk_oobt(chks).atd(row); // average tree path length fs[0] = _model.normalizePathLength(fs[1] * _model._output._ntrees); // score return fs[0]; } protected TwoDimTable createScoringHistoryTable() { List<String> colHeaders = new ArrayList<>(); List<String> colTypes = new ArrayList<>(); List<String> colFormat = new ArrayList<>(); colHeaders.add("Timestamp"); colTypes.add("string"); colFormat.add("%s"); colHeaders.add("Duration"); colTypes.add("string"); colFormat.add("%s"); colHeaders.add("Number of Trees"); colTypes.add("long"); colFormat.add("%d"); colHeaders.add("Mean Tree Path Length"); colTypes.add("double"); colFormat.add("%.5f"); colHeaders.add("Mean Anomaly Score"); colTypes.add("double"); colFormat.add("%.5f"); if (_parms._custom_metric_func != null) { colHeaders.add("Training Custom"); colTypes.add("double"); colFormat.add("%.5f"); } ScoreKeeper[] sks = _model._output._scored_train; int rows = 0; for (int i = 0; i < sks.length; i++) { if (i != 0 && Double.isNaN(sks[i]._anomaly_score)) continue; rows++; } TwoDimTable table = new TwoDimTable( "Scoring History", null, new String[rows], colHeaders.toArray(new String[0]), colTypes.toArray(new String[0]), colFormat.toArray(new String[0]), ""); int row = 0; for( int i = 0; i<sks.length; i++ ) { if (i != 0 && Double.isNaN(sks[i]._anomaly_score)) continue; int col = 0; DateTimeFormatter fmt = DateTimeFormat.forPattern("yyyy-MM-dd HH:mm:ss"); table.set(row, col++, fmt.print(_model._output._training_time_ms[i])); table.set(row, col++, PrettyPrint.msecs(_model._output._training_time_ms[i] - _job.start_time(), true)); table.set(row, col++, i); ScoreKeeper st = sks[i]; table.set(row, col++, st._anomaly_score); table.set(row, col++, st._anomaly_score_normalized); if (_parms._custom_metric_func != null) { table.set(row, col++, st._custom_metric); } assert col == colHeaders.size(); row++; } return table; } @Override public boolean havePojo() { return false; } @Override public boolean haveMojo() { return true; } public static class VarSplits extends Iced<VarSplits> { public final int[] _splitCounts; public final float[] _aggSplitRatios; public final long[] _splitDepths; private VarSplits(int ncols) { _splitCounts = new int[ncols]; _aggSplitRatios = new float[ncols]; _splitDepths = new long[ncols]; } void update(int col, DTree.Split split, int depth) { _aggSplitRatios[col] += Math.abs(split.n0() - split.n1()) / (split.n0() + split.n1()); _splitCounts[col]++; _splitDepths[col] += depth + 1; } public TwoDimTable toTwoDimTable(String[] coef_names, String table_header) { double[][] dblCellValues = new double[_splitCounts.length][]; for (int i = 0; i < _splitCounts.length; i++) { dblCellValues[i] = new double[]{_splitCounts[i], _aggSplitRatios[i], _splitDepths[i]}; } String[] col_headers = {"Count", "Aggregated Split Ratios", "Aggregated Split Depths"}; String[] col_types = {"int", "double", "long"}; String[] col_formats = {"%10d", "%5f", "%10d"}; return new TwoDimTable(table_header, null, coef_names, col_headers, col_types, col_formats, "Variable", new String[_splitCounts.length][], dblCellValues); } } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isofor/IsolationForestModel.java
package hex.tree.isofor; import hex.ModelCategory; import hex.ModelMetrics; import hex.genmodel.CategoricalEncoding; import hex.genmodel.utils.ArrayUtils; import hex.ScoreKeeper; import hex.genmodel.utils.DistributionFamily; import hex.tree.SharedTreeModel; import water.Key; import water.fvec.Frame; import water.util.SBPrintStream; import water.util.TwoDimTable; public class IsolationForestModel extends SharedTreeModel<IsolationForestModel, IsolationForestModel.IsolationForestParameters, IsolationForestModel.IsolationForestOutput> { public static class IsolationForestParameters extends SharedTreeModel.SharedTreeParameters { public String algoName() { return "IsolationForest"; } public String fullName() { return "Isolation Forest"; } public String javaName() { return IsolationForestModel.class.getName(); } public int _mtries; public long _sample_size; public double _contamination; public IsolationForestParameters() { super(); _mtries = -1; _sample_size = 256; _max_depth = 8; // log2(_sample_size) _sample_rate = -1; _min_rows = 1; _min_split_improvement = 0; _nbins = 2; _nbins_cats = 2; // _nbins_top_level = 2; _histogram_type = HistogramType.Random; _distribution = DistributionFamily.gaussian; // IF specific _contamination = -1; // disabled } @Override protected double defaultStoppingTolerance() { return 0.01; // (inherited value 0.001 would be too low for the default criterion anomaly_score) } } public static class IsolationForestOutput extends SharedTreeModel.SharedTreeOutput { public int _max_path_length; public int _min_path_length; public String _response_column; public String[] _response_domain; public IsolationForest.VarSplits _var_splits; public TwoDimTable _variable_splits; public IsolationForestOutput(IsolationForest b) { super(b); if (b.vresponse() != null) { _response_column = b._parms._response_column; _response_domain = b.vresponse().domain(); } } @Override public ModelCategory getModelCategory() { return ModelCategory.AnomalyDetection; } @Override public double defaultThreshold() { return _defaultThreshold; } @Override public String responseName() { return _response_column; } @Override public boolean hasResponse() { return _response_column != null; } @Override public int responseIdx() { return _names.length; } } public IsolationForestModel(Key<IsolationForestModel> selfKey, IsolationForestParameters parms, IsolationForestOutput output ) { super(selfKey, parms, output); } @Override public void initActualParamValues() { super.initActualParamValues(); if (_parms._stopping_metric == ScoreKeeper.StoppingMetric.AUTO){ if (_parms._stopping_rounds == 0) { _parms._stopping_metric = null; } else { _parms._stopping_metric = ScoreKeeper.StoppingMetric.anomaly_score; } } if (_parms._categorical_encoding == Parameters.CategoricalEncodingScheme.AUTO) { _parms._categorical_encoding = Parameters.CategoricalEncodingScheme.Enum; } } @Override public ModelMetrics.MetricBuilder makeMetricBuilder(String[] domain) { // note: in the context of scoring on a training frame during model building domain will be null if (domain != null && _output.hasResponse()) { return new MetricBuilderAnomalySupervised(domain); } else { return new ModelMetricsAnomaly.MetricBuilderAnomaly("Isolation Forest Metrics", outputAnomalyFlag()); } } @Override protected String[] makeScoringNames() { if (outputAnomalyFlag()) { return new String[]{"predict", "score", "mean_length"}; } else { return new String[]{"predict", "mean_length"}; } } @Override protected String[][] makeScoringDomains(Frame adaptFrm, boolean computeMetrics, String[] names) { assert outputAnomalyFlag() ? names.length == 3 : names.length == 2; String[][] domains = new String[names.length][]; if (outputAnomalyFlag()) { domains[0] = _output._response_domain != null ? _output._response_domain : new String[]{"0", "1"}; } return domains; } /** Bulk scoring API for one row. Chunks are all compatible with the model, * and expect the last Chunks are for the final distribution and prediction. * Default method is to just load the data into the tmp array, then call * subclass scoring logic. */ @Override protected double[] score0(double[] data, double[] preds, double offset, int ntrees) { super.score0(data, preds, offset, ntrees); boolean outputAnomalyFlag = outputAnomalyFlag(); int off = outputAnomalyFlag ? 1 : 0; if (ntrees >= 1) preds[off + 1] = preds[0] / ntrees; preds[off] = normalizePathLength(preds[0]); if (outputAnomalyFlag) preds[0] = preds[1] >= _output._defaultThreshold ? 1 : 0; return preds; } final double normalizePathLength(double pathLength) { return normalizePathLength(pathLength, _output._min_path_length, _output._max_path_length); } static double normalizePathLength(double pathLength, int minPathLength, int maxPathLength) { if (maxPathLength > minPathLength) { return (maxPathLength - pathLength) / (maxPathLength - minPathLength); } else { return 1; } } @Override public IsolationForestMojoWriter getMojo() { return new IsolationForestMojoWriter(this); } @Override public String[] adaptTestForTrain(Frame test, boolean expensive, boolean computeMetrics) { if (!computeMetrics || _output._response_column == null) { return super.adaptTestForTrain(test, expensive, computeMetrics); } else { return adaptTestForTrain( test, _output._origNames, _output._origDomains, ArrayUtils.append(_output._names, _output._response_column), ArrayUtils.append(_output._domains, _output._response_domain), _parms, expensive, true, _output.interactionBuilder(), getToEigenVec(), _toDelete, false ); } } final boolean outputAnomalyFlag() { return _output._defaultThreshold >= 0; } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isofor/IsolationForestMojoWriter.java
package hex.tree.isofor; import hex.genmodel.CategoricalEncoding; import hex.tree.SharedTreeMojoWriter; import java.io.IOException; import static hex.tree.isofor.IsolationForestModel.IsolationForestParameters; import static hex.tree.isofor.IsolationForestModel.IsolationForestOutput; /** * Mojo definition for Isolation Forest model. */ public class IsolationForestMojoWriter extends SharedTreeMojoWriter<IsolationForestModel, IsolationForestParameters, IsolationForestOutput> { @SuppressWarnings("unused") // Called through reflection in ModelBuildersHandler public IsolationForestMojoWriter() {} public IsolationForestMojoWriter(IsolationForestModel model) { super(model); } @Override public String mojoVersion() { return "1.40"; } @Override protected void writeModelData() throws IOException { super.writeModelData(); if (model.getGenModelEncoding() != CategoricalEncoding.AUTO) { throw new IllegalArgumentException("Only default categorical encoding scheme is supported for MOJO"); } writekv("max_path_length", model._output._max_path_length); writekv("min_path_length", model._output._min_path_length); writekv("output_anomaly_flag", model.outputAnomalyFlag()); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isofor/MetricBuilderAnomalySupervised.java
package hex.tree.isofor; import hex.*; import water.fvec.Frame; public class MetricBuilderAnomalySupervised extends ModelMetricsBinomial.MetricBuilderBinomial<MetricBuilderAnomalySupervised> { public MetricBuilderAnomalySupervised(String[] domain) { super(domain); } /** * Create a ModelMetrics for a given model and frame * @param m Model * @param f Frame * @param frameWithWeights Frame that contains extra columns such as weights (not used by MetricBuilderAnomalySupervised) * @param preds optional predictions (can be null, not used by MetricBuilderAnomalySupervised) * @return ModelMetricsBinomial */ @Override public ModelMetrics makeModelMetrics(final Model m, final Frame f, Frame frameWithWeights, final Frame preds) { final double sigma; final double mse; final double logloss; final AUC2 auc; if (_wcount > 0) { sigma = weightedSigma(); mse = _sumsqe / _wcount; logloss = _logloss / _wcount; auc = new AUC2(_auc); } else { sigma = Double.NaN; mse = Double.NaN; logloss = Double.NaN; auc = AUC2.emptyAUC(); } ModelMetricsBinomial mm = new ModelMetricsBinomial(m, f, _count, mse, _domain, sigma, auc, logloss, null, _customMetric); if (m != null) { m.addModelMetrics(mm); } return mm; } @Override public double[] perRow(double[] ds, float[] yact, double w, double o, Model m) { adaptPreds(ds); return super.perRow(ds, yact, w, o, m); } private static void adaptPreds(double[] ds) { ds[2] = Math.min(ds[1], 1.0); ds[1] = 1 - ds[2]; ds[0] = -1; } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isofor/ModelMetricsAnomaly.java
package hex.tree.isofor; import hex.*; import water.fvec.Frame; public class ModelMetricsAnomaly extends ModelMetricsUnsupervised implements ScoreKeeper.ScoreKeeperAware { /** * The raw number that an algorithm is using to count final anomaly score. * E.g. raw number for Isolation Forest algorithm to count final anomaly score is mean path length * of the observation (input row) from root to a leaf. */ public final double _mean_score; /** * Mean normalized score should be (but not necessary is) a number between 0 and 1. Try to follow convention that higher number means * "more anomalous" observation (input row) and number more close to 0 means standard (not anomalous) observation (input row). * * Always refer to the algorithm's documentation for proper definition of this number. * E.g. formula for normalization of Isolation Forest's score is different from the formula for Extended Isolation Forest. */ public final double _mean_normalized_score; public ModelMetricsAnomaly(Model model, Frame frame, CustomMetric customMetric, long nobs, double totalScore, double totalNormScore, String description) { super(model, frame, nobs, description, customMetric); _mean_score = totalScore / nobs; _mean_normalized_score = totalNormScore / nobs; } @Override public void fillTo(ScoreKeeper sk) { sk._anomaly_score = _mean_score; sk._anomaly_score_normalized = _mean_normalized_score; } @Override protected StringBuilder appendToStringMetrics(StringBuilder sb) { sb.append(" Number of Observations: ").append(_nobs).append("\n"); sb.append(" Mean Score: ").append(_mean_score).append("\n"); sb.append(" Mean Normalized Anomaly Score: ").append(_mean_normalized_score).append("\n"); return sb; } public static class MetricBuilderAnomaly extends MetricBuilderUnsupervised<MetricBuilderAnomaly> { private transient String _description; private double _total_score = 0; private double _total_norm_score = 0; private long _nobs = 0; public MetricBuilderAnomaly() { this("", false); } public MetricBuilderAnomaly(String description, boolean outputAnomalyFlag) { _work = new double[outputAnomalyFlag ? 3 : 2]; _description = description; } @Override public double[] perRow(double[] preds, float[] dataRow, Model m) { if (preds[0] < 0) return preds; _total_norm_score += preds[0]; _total_score += preds[1]; _nobs++; return preds; } @Override public void reduce(MetricBuilderAnomaly mb) { _total_score += mb._total_score; _total_norm_score += mb._total_norm_score; _nobs += mb._nobs; super.reduce(mb); } @Override public ModelMetrics makeModelMetrics(Model m, Frame f) { return m.addModelMetrics(new ModelMetricsAnomaly(m, f, _customMetric, _nobs, _total_score, _total_norm_score, _description)); } } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isofor/PathTracker.java
package hex.tree.isofor; import water.fvec.Chunk; /** * Helper class - encodes lengths of paths for observations separately for OOB and when they were used for tree building. */ class PathTracker { static int encodeNewPathLength(Chunk tree, int row, int depth, boolean wasOOB) { final long old_len_enc = tree.at8(row); final long len_enc = addNewPathLength(old_len_enc, depth, wasOOB); tree.set(row, len_enc); return decodeTotalPathLength(len_enc); } static int decodeOOBPathLength(Chunk tree, int row) { return decodeOOBPathLength(tree.at8(row)); } private static int decodeTotalPathLength(long lengthEncoded) { long total_len = (lengthEncoded >> 31) + (lengthEncoded & 0x7fffffff); assert total_len == (int) total_len; return (int) total_len; } static int decodeOOBPathLength(long lengthEncoded) { return (int) (lengthEncoded >> 31); } static long addNewPathLength(long oldLengthEncoded, int depth, boolean wasOOB) { if (wasOOB) { return oldLengthEncoded + ((long) depth << 31); } else { return oldLengthEncoded + depth; } } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isoforextended/ExtendedIsolationForest.java
package hex.tree.isoforextended; import hex.ModelBuilder; import hex.ModelCategory; import hex.ModelMetrics; import hex.ScoreKeeper; import hex.tree.isoforextended.isolationtree.CompressedIsolationTree; import hex.tree.isoforextended.isolationtree.IsolationTree; import hex.tree.isoforextended.isolationtree.IsolationTreeStats; import org.apache.log4j.Level; import org.apache.log4j.Logger; import org.joda.time.format.DateTimeFormat; import org.joda.time.format.DateTimeFormatter; import water.DKV; import water.H2O; import water.Job; import water.Key; import water.exceptions.H2OModelBuilderIllegalArgumentException; import water.fvec.Frame; import water.util.*; import java.util.ArrayList; import java.util.List; import java.util.Random; /** * Extended isolation forest implementation. Algorithm comes from https://arxiv.org/pdf/1811.02141.pdf paper. * * @author Adam Valenta */ public class ExtendedIsolationForest extends ModelBuilder<ExtendedIsolationForestModel, ExtendedIsolationForestModel.ExtendedIsolationForestParameters, ExtendedIsolationForestModel.ExtendedIsolationForestOutput> { transient private static final Logger LOG = Logger.getLogger(ExtendedIsolationForest.class); public static final int MAX_NTREES = 100_000; public static final int MAX_SAMPLE_SIZE = 100_000; private ExtendedIsolationForestModel _model; transient Random _rand; transient IsolationTreeStats isolationTreeStats; // Called from an http request public ExtendedIsolationForest(ExtendedIsolationForestModel.ExtendedIsolationForestParameters parms) { super(parms); init(false); } public ExtendedIsolationForest(ExtendedIsolationForestModel.ExtendedIsolationForestParameters parms, Key<ExtendedIsolationForestModel> key) { super(parms, key); init(false); } public ExtendedIsolationForest(ExtendedIsolationForestModel.ExtendedIsolationForestParameters parms, Job job) { super(parms, job); init(false); } public ExtendedIsolationForest(boolean startup_once) { super(new ExtendedIsolationForestModel.ExtendedIsolationForestParameters(), startup_once); } @Override protected void checkMemoryFootPrint_impl() { int heightLimit = (int) Math.ceil(MathUtils.log2(_parms._sample_size)); double numInnerNodes = Math.pow(2, heightLimit) - 1; double numLeafNodes = Math.pow(2, heightLimit); double sizeOfInnerNode = 2 * _train.numCols() * Double.BYTES; double sizeOfLeafNode = Integer.BYTES; long maxMem = H2O.SELF._heartbeat.get_free_mem(); // IsolationTree is sparse for large data, count only with 25% of the full tree double oneTree = 0.25 * numInnerNodes * sizeOfInnerNode + numLeafNodes * sizeOfLeafNode; long estimatedMemory = (long) (_parms._ntrees * oneTree); long estimatedComputingMemory = 5 * estimatedMemory; if (estimatedComputingMemory > H2O.SELF._heartbeat.get_free_mem() || estimatedComputingMemory < 0 /* long overflow **/) { String msg = "Extended Isolation Forest computation won't fit in the driver node's memory (" + PrettyPrint.bytes(estimatedComputingMemory) + " > " + PrettyPrint.bytes(maxMem) + ") - try reducing the number of columns and/or the number of trees and/or the sample_size parameter. " + "You can disable memory check by setting the attribute " + H2O.OptArgs.SYSTEM_PROP_PREFIX + "debug.noMemoryCheck."; error("_train", msg); } } @Override public void init(boolean expensive) { super.init(expensive); if (_parms.train() != null) { if (expensive) { // because e.g. OneHotExplicit categorical encoding can change the dimension long extensionLevelMax = _train.numCols() - 1; if (_parms._extension_level < 0 || _parms._extension_level > extensionLevelMax) { error("extension_level", "Parameter extension_level must be in interval [0, " + extensionLevelMax + "] but it is " + _parms._extension_level); } } long sampleSizeMax = _parms.train().numRows(); if (_parms._sample_size < 2 || _parms._sample_size > MAX_SAMPLE_SIZE || _parms._sample_size > sampleSizeMax) { error("sample_size","Parameter sample_size must be in interval [2, " + MAX_SAMPLE_SIZE + "] but it is " + _parms._sample_size); } if(_parms._ntrees < 1 || _parms._ntrees > MAX_NTREES) error("ntrees", "Parameter ntrees must be in interval [1, " + MAX_NTREES + "] but it is " + _parms._ntrees); } if (expensive && error_count() == 0) checkMemoryFootPrint(); } @Override protected Driver trainModelImpl() { return new ExtendedIsolationForestDriver(); } @Override public ModelCategory[] can_build() { return new ModelCategory[]{ ModelCategory.AnomalyDetection }; } @Override public boolean isSupervised() { return false; } @Override public boolean havePojo() { return false; } @Override public boolean haveMojo() { return true; } private class ExtendedIsolationForestDriver extends Driver { @Override public void computeImpl() { _model = null; try { init(true); if(error_count() > 0) { throw H2OModelBuilderIllegalArgumentException.makeFromBuilder(ExtendedIsolationForest.this); } _rand = RandomUtils.getRNG(_parms._seed); isolationTreeStats = new IsolationTreeStats(); _model = new ExtendedIsolationForestModel(dest(), _parms, new ExtendedIsolationForestModel.ExtendedIsolationForestOutput(ExtendedIsolationForest.this)); _model.delete_and_lock(_job); buildIsolationTreeEnsemble(); if (_parms._disable_training_metrics) { _model._output._model_summary = createModelSummaryTable(); LOG.info(_model.toString()); } // if model is scored then it is already done in the buildIsolationTreeEnsemble() in final scoring } finally { if(_model != null) _model.unlock(_job); } } private void buildIsolationTreeEnsemble() { _model._output._iTreeKeys = new Key[_parms._ntrees]; _model._output._scored_train = new ScoreKeeper[_parms._ntrees + 1]; _model._output._scored_train[0] = new ScoreKeeper(); _model._output._training_time_ms = new long[_parms._ntrees + 1]; _model._output._training_time_ms[0] = System.currentTimeMillis(); long timeLastScoreStart = 0; long timeLastScoreEnd = 0; long sinceLastScore = 0; int heightLimit = (int) Math.ceil(MathUtils.log2(_parms._sample_size)); IsolationTree isolationTree = new IsolationTree(heightLimit, _parms._extension_level); for (int tid = 0; tid < _parms._ntrees; tid++) { Timer timer = new Timer(); Frame subSample = MRUtils.sampleFrameSmall(_train, _parms._sample_size, _rand); double[][] subSampleArray = FrameUtils.asDoubles(subSample); CompressedIsolationTree compressedIsolationTree = isolationTree.buildTree(subSampleArray, _parms._seed + _rand.nextInt(), tid); if (LOG.isDebugEnabled()) { isolationTree.logNodesNumRows(Level.DEBUG); isolationTree.logNodesHeight(Level.DEBUG); } _model._output._iTreeKeys[tid] = compressedIsolationTree._key; DKV.put(compressedIsolationTree); _job.update(1); _model.update(_job); _model._output._training_time_ms[tid + 1] = System.currentTimeMillis(); LOG.info((tid + 1) + ". tree was built in " + timer); isolationTreeStats.updateBy(isolationTree); long now = System.currentTimeMillis(); sinceLastScore = now - timeLastScoreStart; boolean timeToScore = (now-_job.start_time() < _parms._initial_score_interval) || // Score every time for 4 secs // Throttle scoring to keep the cost sane; limit to a 10% duty cycle & every 4 secs (sinceLastScore > _parms._score_interval && // Limit scoring updates to every 4sec (double)(timeLastScoreEnd - timeLastScoreStart)/sinceLastScore < 0.1); //10% duty cycle boolean manualInterval = _parms._score_tree_interval > 0 && (tid +1) % _parms._score_tree_interval == 0; boolean finalScoring = _parms._ntrees == (tid + 1); boolean scored = false; _model._output._scored_train[tid + 1] = new ScoreKeeper(); if (_parms._score_each_iteration || manualInterval || finalScoring || (timeToScore && _parms._score_tree_interval == 0) && !_parms._disable_training_metrics) { _model._output._scored_train[tid + 1] = new ScoreKeeper(); timeLastScoreStart = System.currentTimeMillis(); ModelMetrics.MetricBuilder metricsBuilder = new ScoreExtendedIsolationForestTask(_model).doAll(_train).getMetricsBuilder(); ModelMetrics modelMetrics = metricsBuilder.makeModelMetrics(_model, _parms.train(), null, null); _model._output._training_metrics = modelMetrics; _model._output._scored_train[tid + 1].fillFrom(modelMetrics); scored = true; timeLastScoreEnd = System.currentTimeMillis(); } final boolean printout = (_parms._score_each_iteration || finalScoring || (sinceLastScore > _parms._score_interval && scored)) && !_parms._disable_training_metrics; if (printout) { _model._output._model_summary = createModelSummaryTable(); _model._output._scoring_history = createScoringHistoryTable(tid+1); LOG.info(_model.toString()); } } } } public TwoDimTable createModelSummaryTable() { List<String> colHeaders = new ArrayList<>(); List<String> colTypes = new ArrayList<>(); List<String> colFormat = new ArrayList<>(); colHeaders.add("Number of Trees"); colTypes.add("int"); colFormat.add("%d"); colHeaders.add("Size of Subsample"); colTypes.add("int"); colFormat.add("%d"); colHeaders.add("Extension Level"); colTypes.add("int"); colFormat.add("%d"); colHeaders.add("Seed"); colTypes.add("long"); colFormat.add("%d"); colHeaders.add("Number of trained trees"); colTypes.add("long"); colFormat.add("%d"); colHeaders.add("Min. Depth"); colTypes.add("long"); colFormat.add("%d"); colHeaders.add("Max. Depth"); colTypes.add("long"); colFormat.add("%d"); colHeaders.add("Mean Depth"); colTypes.add("float"); colFormat.add("%d"); colHeaders.add("Min. Leaves"); colTypes.add("long"); colFormat.add("%d"); colHeaders.add("Max. Leaves"); colTypes.add("long"); colFormat.add("%d"); colHeaders.add("Mean Leaves"); colTypes.add("float"); colFormat.add("%d"); colHeaders.add("Min. Isolated Point"); colTypes.add("long"); colFormat.add("%d"); colHeaders.add("Max. Isolated Point"); colTypes.add("long"); colFormat.add("%d"); colHeaders.add("Mean Isolated Point"); colTypes.add("float"); colFormat.add("%d"); colHeaders.add("Min. Not Isolated Point"); colTypes.add("long"); colFormat.add("%d"); colHeaders.add("Max. Not Isolated Point"); colTypes.add("long"); colFormat.add("%d"); colHeaders.add("Mean Not Isolated Point"); colTypes.add("float"); colFormat.add("%d"); colHeaders.add("Min. Zero Splits"); colTypes.add("long"); colFormat.add("%d"); colHeaders.add("Max. Zero Splits"); colTypes.add("long"); colFormat.add("%d"); colHeaders.add("Mean Zero Splits"); colTypes.add("float"); colFormat.add("%d"); final int rows = 1; TwoDimTable table = new TwoDimTable( "Model Summary", null, new String[rows], colHeaders.toArray(new String[0]), colTypes.toArray(new String[0]), colFormat.toArray(new String[0]), ""); int row = 0; int col = 0; table.set(row, col++, _parms._ntrees); table.set(row, col++, _parms._sample_size); table.set(row, col++, _parms._extension_level); table.set(row, col++, _parms._seed); table.set(row, col++, isolationTreeStats._numTrees); table.set(row, col++, isolationTreeStats._minDepth); table.set(row, col++, isolationTreeStats._maxDepth); table.set(row, col++, isolationTreeStats._meanDepth); table.set(row, col++, isolationTreeStats._minLeaves); table.set(row, col++, isolationTreeStats._maxLeaves); table.set(row, col++, isolationTreeStats._meanLeaves); table.set(row, col++, isolationTreeStats._minIsolated); table.set(row, col++, isolationTreeStats._maxIsolated); table.set(row, col++, isolationTreeStats._meanIsolated); table.set(row, col++, isolationTreeStats._minNotIsolated); table.set(row, col++, isolationTreeStats._maxNotIsolated); table.set(row, col++, isolationTreeStats._meanNotIsolated); table.set(row, col++, isolationTreeStats._minZeroSplits); table.set(row, col++, isolationTreeStats._maxZeroSplits); table.set(row, col, isolationTreeStats._meanZeroSplits); return table; } protected TwoDimTable createScoringHistoryTable(int ntreesTrained) { List<String> colHeaders = new ArrayList<>(); List<String> colTypes = new ArrayList<>(); List<String> colFormat = new ArrayList<>(); colHeaders.add("Timestamp"); colTypes.add("string"); colFormat.add("%s"); colHeaders.add("Duration"); colTypes.add("string"); colFormat.add("%s"); colHeaders.add("Number of Trees"); colTypes.add("long"); colFormat.add("%d"); colHeaders.add("Mean Tree Path Length"); colTypes.add("double"); colFormat.add("%.5f"); colHeaders.add("Mean Anomaly Score"); colTypes.add("double"); colFormat.add("%.5f"); if (_parms._custom_metric_func != null) { colHeaders.add("Training Custom"); colTypes.add("double"); colFormat.add("%.5f"); } ScoreKeeper[] sks = _model._output._scored_train; int rows = 0; for (int i = 0; i <= ntreesTrained; i++) { if (i != 0 && sks[i] != null && Double.isNaN(sks[i]._anomaly_score) || sks[i] == null) continue; rows++; } TwoDimTable table = new TwoDimTable( "Scoring History", null, new String[rows], colHeaders.toArray(new String[0]), colTypes.toArray(new String[0]), colFormat.toArray(new String[0]), ""); int row = 0; for( int i = 0; i<=ntreesTrained; i++ ) { if (i != 0 && sks[i] != null && Double.isNaN(sks[i]._anomaly_score) || sks[i] == null) continue; int col = 0; DateTimeFormatter fmt = DateTimeFormat.forPattern("yyyy-MM-dd HH:mm:ss"); table.set(row, col++, fmt.print(_model._output._training_time_ms[i])); table.set(row, col++, PrettyPrint.msecs(_model._output._training_time_ms[i] - _job.start_time(), true)); table.set(row, col++, i); ScoreKeeper st = sks[i]; table.set(row, col++, st._anomaly_score); table.set(row, col++, st._anomaly_score_normalized); if (_parms._custom_metric_func != null) { table.set(row, col++, st._custom_metric); } assert col == colHeaders.size(); row++; } return table; } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isoforextended/ExtendedIsolationForestModel.java
package hex.tree.isoforextended; import hex.Model; import hex.ModelCategory; import hex.ModelMetrics; import hex.ScoreKeeper; import hex.tree.isofor.ModelMetricsAnomaly; import hex.tree.isoforextended.isolationtree.CompressedIsolationTree; import org.apache.log4j.Logger; import water.*; import water.fvec.Frame; import static hex.genmodel.algos.isoforextended.ExtendedIsolationForestMojoModel.anomalyScore; /** * * @author Adam Valenta */ public class ExtendedIsolationForestModel extends Model<ExtendedIsolationForestModel, ExtendedIsolationForestModel.ExtendedIsolationForestParameters, ExtendedIsolationForestModel.ExtendedIsolationForestOutput> { private static final Logger LOG = Logger.getLogger(ExtendedIsolationForestModel.class); public ExtendedIsolationForestModel(Key<ExtendedIsolationForestModel> selfKey, ExtendedIsolationForestParameters parms, ExtendedIsolationForestOutput output) { super(selfKey, parms, output); } @Override public ModelMetrics.MetricBuilder makeMetricBuilder(String[] domain) { return new ModelMetricsAnomaly.MetricBuilderAnomaly("Extended Isolation Forest Metrics", false); } @Override protected String[] makeScoringNames(){ return new String[]{"anomaly_score", "mean_length"}; } @Override protected String[][] makeScoringDomains(Frame adaptFrm, boolean computeMetrics, String[] names) { assert names.length == 2; return new String[2][]; } @Override protected double[] score0(double[] data, double[] preds) { assert _output._iTreeKeys != null : "Output has no trees, check if trees are properly set to the output."; // compute score for given point double pathLength = 0; int numberOfTrees = 0; for (Key<CompressedIsolationTree> iTreeKey : _output._iTreeKeys) { if (iTreeKey == null) continue; numberOfTrees++; CompressedIsolationTree iTree = DKV.getGet(iTreeKey); double iTreeScore = iTree.computePathLength(data); pathLength += iTreeScore; LOG.trace("iTreeScore " + iTreeScore); } pathLength = pathLength / numberOfTrees; LOG.trace("Path length " + pathLength); double anomalyScore = anomalyScore(pathLength, _output._sample_size); LOG.trace("Anomaly score " + anomalyScore); preds[0] = anomalyScore; preds[1] = pathLength; return preds; } public static class ExtendedIsolationForestParameters extends Model.Parameters { @Override public String algoName() { return "ExtendedIsolationForest"; } @Override public String fullName() { return "Extended Isolation Forest"; } @Override public String javaName() { return ExtendedIsolationForestModel.class.getName(); } @Override public long progressUnits() { return _ntrees; } /** * Number of trees in the forest */ public int _ntrees; /** * Maximum is N - 1 (N = numCols). Minimum is 0. EIF with extension_level = 0 behaves like Isolation Forest. */ public int _extension_level; /** * Number of randomly selected rows from original data before each tree build. */ public int _sample_size; /** * Score every so many trees (no matter what) */ public int _score_tree_interval; /** * Disable calculating training metrics (expensive on large datasets). */ public boolean _disable_training_metrics; /** * For _initial_score_interval milliseconds - score each iteration of the algorithm. */ public int _initial_score_interval = 4000; /** * After each _score_interval milliseconds - run scoring * * But limit the scoring time consumption to 10% of whole training time. */ public int _score_interval = 4000; public ExtendedIsolationForestParameters() { super(); _ntrees = 100; _sample_size = 256; _extension_level = 0; _score_tree_interval = 0; _disable_training_metrics = true; } } public static class ExtendedIsolationForestOutput extends Model.Output { public int _ntrees; public long _sample_size; public ScoreKeeper[] _scored_train; public long[] _training_time_ms; public Key<CompressedIsolationTree>[] _iTreeKeys; public ExtendedIsolationForestOutput(ExtendedIsolationForest eif) { super(eif); _ntrees = eif._parms._ntrees; _sample_size = eif._parms._sample_size; } @Override public ModelCategory getModelCategory() { return ModelCategory.AnomalyDetection; } } @Override protected Futures remove_impl(Futures fs, boolean cascade) { for (Key<CompressedIsolationTree> iTreeKey : _output._iTreeKeys) { Keyed.remove(iTreeKey, fs, true); } return super.remove_impl(fs, cascade); } @Override protected AutoBuffer writeAll_impl(AutoBuffer ab) { for (Key<CompressedIsolationTree> iTreeKey : _output._iTreeKeys) { ab.putKey(iTreeKey); } return super.writeAll_impl(ab); } @Override protected Keyed readAll_impl(AutoBuffer ab, Futures fs) { for (Key<CompressedIsolationTree> iTreeKey : _output._iTreeKeys) { ab.getKey(iTreeKey, fs); } return super.readAll_impl(ab,fs); } @Override public ExtendedIsolationForestMojoWriter getMojo() { return new ExtendedIsolationForestMojoWriter(this); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isoforextended/ExtendedIsolationForestMojoWriter.java
package hex.tree.isoforextended; import hex.ModelMojoWriter; import hex.pca.PCAModel; import hex.tree.isoforextended.isolationtree.CompressedIsolationTree; import water.DKV; import water.MemoryManager; import java.io.IOException; import java.nio.ByteBuffer; public class ExtendedIsolationForestMojoWriter extends ModelMojoWriter<ExtendedIsolationForestModel, ExtendedIsolationForestModel.ExtendedIsolationForestParameters, ExtendedIsolationForestModel.ExtendedIsolationForestOutput> { @SuppressWarnings("unused") // Called through reflection in ModelBuildersHandler public ExtendedIsolationForestMojoWriter() {} public ExtendedIsolationForestMojoWriter(ExtendedIsolationForestModel model) { super(model); } @Override public String mojoVersion() { return "1.00"; } @Override protected void writeModelData() throws IOException { writekv("ntrees", model._output._ntrees); writekv("sample_size", model._output._sample_size); for (int i = 0; i < model._output._ntrees; i++) { CompressedIsolationTree compressedIsolationTree = DKV.getGet(model._output._iTreeKeys[i]); writeblob(String.format("trees/t%02d.bin", i), compressedIsolationTree.toBytes()); } } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isoforextended/ScoreExtendedIsolationForest.java
package hex.tree.isoforextended; import hex.tree.isofor.ModelMetricsAnomaly; import water.MRTask; import water.fvec.Chunk; class ScoreExtendedIsolationForestTask extends MRTask<ScoreExtendedIsolationForestTask> { private ExtendedIsolationForestModel _model; // output private ModelMetricsAnomaly.MetricBuilderAnomaly _metricsBuilder; public ScoreExtendedIsolationForestTask(ExtendedIsolationForestModel _model) { this._model = _model; } @Override public void map(Chunk[] cs) { _metricsBuilder = (ModelMetricsAnomaly.MetricBuilderAnomaly) _model.makeMetricBuilder(null); double [] preds = new double[2]; double [] tmp = new double[cs.length]; for (int row = 0; row < cs[0]._len; row++) { preds = _model.score0(cs, 0, row, tmp, preds); _metricsBuilder.perRow(preds, null, _model); } } @Override public void reduce(ScoreExtendedIsolationForestTask other) { _metricsBuilder.reduce(other._metricsBuilder); } public ModelMetricsAnomaly.MetricBuilderAnomaly getMetricsBuilder() { return _metricsBuilder; } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isoforextended
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isoforextended/isolationtree/AbstractCompressedNode.java
package hex.tree.isoforextended.isolationtree; import water.AutoBuffer; import water.Iced; /** * Upper class for {@link CompressedNode} and {@link CompressedLeaf} used to access both types from array. */ public abstract class AbstractCompressedNode extends Iced<AbstractCompressedNode> { private final int _height; public AbstractCompressedNode(int height) { _height = height; } public int getHeight() { return _height; } /** * Serialize Node to the byte buffer */ public abstract void toBytes(AutoBuffer ab); }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isoforextended
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isoforextended/isolationtree/CompressedIsolationTree.java
package hex.tree.isoforextended.isolationtree; import water.AutoBuffer; import water.Key; import water.Keyed; import water.util.ArrayUtils; import static hex.genmodel.algos.isoforextended.ExtendedIsolationForestMojoModel.*; /** * IsolationTree structure with better memory performance. Store only the data that are needed for scoring. */ public class CompressedIsolationTree extends Keyed<CompressedIsolationTree> { private final AbstractCompressedNode[] _nodes; public CompressedIsolationTree(int heightLimit) { _key = Key.make("CompressedIsolationTree" + Key.rand()); _nodes = new AbstractCompressedNode[(int) Math.pow(2, heightLimit + 1) - 1]; } public AbstractCompressedNode[] getNodes() { return _nodes; } private CompressedNode compressedNode(AbstractCompressedNode node) { assert node instanceof CompressedNode : "AbstractCompressedNode cannot be cast to CompressedNode"; return (CompressedNode) node; } private CompressedLeaf compressedLeaf(AbstractCompressedNode node) { assert node instanceof CompressedLeaf : "AbstractCompressedNode cannot be cast to CompressedLeaf"; return (CompressedLeaf) node; } private boolean isLeaf(AbstractCompressedNode node) { return node instanceof CompressedLeaf; } /** * Implementation of Algorithm 3 (pathLength) from paper. * * @param row a row of the input data * @return how deep the data are in the isolation tree plus estimation in case that heightLimit is hit */ public double computePathLength(double[] row) { int position = 0; AbstractCompressedNode node = _nodes[0]; while (!isLeaf(node)) { CompressedNode compressedNode = compressedNode(node); double mul = ArrayUtils.subAndMul(row, compressedNode.getP(), compressedNode.getN()); if (mul <= 0) { position = leftChildIndex(position); } else { position = rightChildIndex(position); } if (position < _nodes.length) node = _nodes[position]; else break; } return node.getHeight() + averagePathLengthOfUnsuccessfulSearch(compressedLeaf(node).getNumRows()); } /** * The structure of the bytes is: * * sizeOfInternalArrays -> size of random slope and intercept (size of both is always equal) * nodeNumber -> index of the node in the array, byte arrays always starts with the root and ends with some * leaf. Null node is skipped. * AbstractCompressedNode -> refer to implementations for the detail of byte array * * |sizeOfInternalArrays|nodeNumber|CompressedNode|nodeNumber|AbstractCompressedNode|....|nodeNumber|CompressedLeaf| * * @return CompressedIsolationTree serialized as array of bytes */ public byte[] toBytes() { AutoBuffer ab = new AutoBuffer(); assert _nodes[0] != null : "Tree is empty, there are zero nodes in the tree"; ab.put4(compressedNode(_nodes[0]).getN().length); // size of the internal arrays for(int i = 0; i < _nodes.length; i++) { if (_nodes[i] != null) { ab.put4(i); // node number _nodes[i].toBytes(ab); } } return ab.bufClose(); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isoforextended
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isoforextended/isolationtree/CompressedLeaf.java
package hex.tree.isoforextended.isolationtree; import water.AutoBuffer; import static hex.genmodel.algos.isoforextended.ExtendedIsolationForestMojoModel.LEAF; /** * IsolationTree Leaf Node with better memory performance. Store only the data that are needed for scoring. */ public class CompressedLeaf extends AbstractCompressedNode { private final int _numRows; public CompressedLeaf(IsolationTree.Node node) { this(node.getHeight(), node.getNumRows()); } public CompressedLeaf(int currentHeight, int numRows) { super(currentHeight); _numRows = numRows; } public int getNumRows() { return _numRows; } /** * The structure of the bytes is: * * |identifierOfTheNodeType|numRows| */ @Override public void toBytes(AutoBuffer ab) { ab.put1(LEAF); // identifier of this node type ab.put4(_numRows); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isoforextended
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isoforextended/isolationtree/CompressedNode.java
package hex.tree.isoforextended.isolationtree; import water.AutoBuffer; import java.util.Arrays; import static hex.genmodel.algos.isoforextended.ExtendedIsolationForestMojoModel.NODE; /** * IsolationTree Node with better memory performance. Store only the data that are needed for scoring. * Naming convention comes from Algorithm 2 (iTree) in paper. */ public class CompressedNode extends AbstractCompressedNode { /** * Random slope */ private final double[] _n; /** * Random intercept point */ private final double[] _p; public CompressedNode(IsolationTree.Node node) { this(node.getN(), node.getP(), node.getHeight()); } public CompressedNode(double[] n, double[] p, int currentHeight) { super(currentHeight); this._n = n == null ? null : Arrays.copyOf(n, n.length); this._p = p == null ? null : Arrays.copyOf(p, p.length); } public double[] getN() { return _n; } public double[] getP() { return _p; } /** * The structure of the bytes is: * * |identifierOfTheNodeType|nvalues|pvalues| */ @Override public void toBytes(AutoBuffer ab) { ab.put1(NODE); // identifier of this node type for (double v : _n) { ab.put8d(v); } for (double v : _p) { ab.put8d(v); } } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isoforextended
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isoforextended/isolationtree/IsolationTree.java
package hex.tree.isoforextended.isolationtree; import org.apache.log4j.Level; import org.apache.log4j.Logger; import water.util.ArrayUtils; import water.util.RandomUtils; import java.util.Random; /** * IsolationTree class implements Algorithm 2 (iTree) * Naming convention comes from the Extended Isolation Forest paper. * * @author Adam Valenta */ public class IsolationTree { private static final Logger LOG = Logger.getLogger(IsolationTree.class); private Node[] _nodes; private final int _heightLimit; private final int _extensionLevel; private int _isolatedPoints = 0; private long _notIsolatedPoints = 0; private int _zeroSplits = 0; private int _leaves = 0; private int _depth = 0; public IsolationTree(int _heightLimit, int _extensionLevel) { this._heightLimit = _heightLimit; this._extensionLevel = _extensionLevel; } /** * Implementation of Algorithm 2 (iTree) from paper. */ public CompressedIsolationTree buildTree(double[][] data, final long seed, final int treeNum) { int maxNumNodesInTree = (int) Math.pow(2, _heightLimit + 1) - 1; _isolatedPoints = 0; _notIsolatedPoints = 0; _zeroSplits = 0; _leaves = 0; _depth = 0; this._nodes = new Node[maxNumNodesInTree]; CompressedIsolationTree compressedIsolationTree = new CompressedIsolationTree(_heightLimit); _nodes[0] = new Node(data, data[0].length, 0); for (int i = 0; i < _nodes.length; i++) { LOG.trace((i + 1) + " from " + _nodes.length + " is being prepared on tree " + treeNum); Node node = _nodes[i]; if (node == null || node._external) { continue; } double[][] nodeData = node._data; int currentHeight = node._height; if (node._height >= _heightLimit || nodeData[0].length <= 1) { node._external = true; node._numRows = nodeData[0].length; node._height = currentHeight; node._data = null; // attempt to inform Java GC the data are not longer needed compressedIsolationTree.getNodes()[i] = new CompressedLeaf(node); if (nodeData[0].length == 1) _isolatedPoints++; if (nodeData[0].length > 1) _notIsolatedPoints += node._numRows; _leaves++; } else { if (rightChildIndex(i) < _nodes.length) { currentHeight++; _depth = currentHeight; node._p = ArrayUtils.uniformDistFromArray(nodeData, seed + i); node._n = gaussianVector( nodeData.length, nodeData.length - _extensionLevel - 1, seed + i); FilteredData ret = extendedIsolationForestSplit(nodeData, node._p, node._n); compressedIsolationTree.getNodes()[i] = new CompressedNode(node); if (ret.left != null) { _nodes[leftChildIndex(i)] = new Node(ret.left, ret.left[0].length, currentHeight); compressedIsolationTree.getNodes()[leftChildIndex(i)] = new CompressedNode(_nodes[leftChildIndex(i)]); } else { _nodes[leftChildIndex(i)] = new Node(null, 0, currentHeight); _nodes[leftChildIndex(i)]._external = true; compressedIsolationTree.getNodes()[leftChildIndex(i)] = new CompressedLeaf(_nodes[leftChildIndex(i)]); _leaves++; _zeroSplits++; } if (ret.right != null) { _nodes[rightChildIndex(i)] = new Node(ret.right, ret.right[0].length, currentHeight); compressedIsolationTree.getNodes()[rightChildIndex(i)] = new CompressedNode(_nodes[rightChildIndex(i)]); } else { _nodes[rightChildIndex(i)] = new Node(null, 0, currentHeight); _nodes[rightChildIndex(i)]._external = true; compressedIsolationTree.getNodes()[rightChildIndex(i)] = new CompressedLeaf(_nodes[rightChildIndex(i)]); _leaves++; _zeroSplits++; } } else { compressedIsolationTree.getNodes()[i] = new CompressedLeaf(node); _leaves++; } node._data = null; // attempt to inform Java GC the data are not longer needed } } return compressedIsolationTree; } private int leftChildIndex(int i) { return 2 * i + 1; } private int rightChildIndex(int i) { return 2 * i + 2; } /** * Helper method. Print nodes' size of the tree. */ public void logNodesNumRows(Level level) { StringBuilder logMessage = new StringBuilder(); for (int i = 0; i < _nodes.length; i++) { if (_nodes[i] == null) logMessage.append(". "); else logMessage.append(_nodes[i]._numRows + " "); } LOG.log(level, logMessage.toString()); } /** * Helper method. Print height (length of path from root) of each node in trees. Root is 0. */ public void logNodesHeight(Level level) { StringBuilder logMessage = new StringBuilder(); for (int i = 0; i < _nodes.length; i++) { if (_nodes[i] == null) logMessage.append(". "); else logMessage.append(_nodes[i]._height + " "); } LOG.log(level, logMessage.toString()); } /** * IsolationTree Node. Naming convention comes from Algorithm 2 (iTree) in paper. * _data should be always null after buildTree() method because only number of rows in data is needed for * scoring (evaluation) stage. */ public static class Node { /** * Data in this node. After computation should be null, because only _numRows is important. */ private double[][] _data; /** * Random slope */ private double[] _n; /** * Random intercept point */ private double[] _p; private int _height; private boolean _external = false; private int _numRows; public Node(double[][] data, int numRows, int currentHeight) { this._data = data; this._numRows = numRows; this._height = currentHeight; } public double[] getN() { return _n; } public double[] getP() { return _p; } public int getHeight() { return _height; } public int getNumRows() { return _numRows; } } /** * Compute Extended Isolation Forest split point and filter input data with this split point in the same time. * <p> * See Algorithm 2 (iTree) in the paper. * * @return Object containing data for Left and Right branch of the tree. */ public static FilteredData extendedIsolationForestSplit(double[][] data, double[] p, double[] n) { double[] res = new double[data[0].length]; int leftLength = 0; int rightLength = 0; for (int row = 0; row < data[0].length; row++) { for (int col = 0; col < data.length; col++) { res[row] += (data[col][row] - p[col]) * n[col]; } if (res[row] <= 0) { leftLength++; } else { rightLength++; } } double[][] left = null; if (leftLength > 0) { left = new double[data.length][leftLength]; } double[][] right = null; if (rightLength > 0) { right = new double[data.length][rightLength]; } for (int row = 0, rowLeft = 0, rowRight = 0; row < data[0].length; row++) { if (res[row] <= 0) { for (int col = 0; col < data.length; col++) { left[col][rowLeft] = data[col][row]; } rowLeft++; } else { for (int col = 0; col < data.length; col++) { right[col][rowRight] = data[col][row]; } rowRight++; } } return new FilteredData(left, right); } public static class FilteredData { private final double[][] left; private final double[][] right; public FilteredData(double[][] left, double[][] right) { this.left = left; this.right = right; } public double[][] getLeft() { return left; } public double[][] getRight() { return right; } } /** * Make a new array initialized to random Gaussian N(0,1) values with the given seed. * Make randomly selected {@code zeroNum} items zeros (based on extensionLevel value). * * @param n length of generated vector * @param zeroNum set randomly selected {@code zeroNum} items of vector to zero * @return array with gaussian values. Randomly selected {@code zeroNum} item values are zeros. */ public static double[] gaussianVector(int n, int zeroNum, long seed) { double[] gaussian = ArrayUtils.gaussianVector(n, seed); Random r = RandomUtils.getRNG(seed); while (zeroNum > 0) { int pos = r.nextInt(n); if (!Double.isNaN(gaussian[pos])) { gaussian[pos] = Double.NaN; zeroNum--; } } for (int i = 0; i < gaussian.length; i++) { if (Double.isNaN(gaussian[i])) gaussian[i] = 0; } return gaussian; } public int getIsolatedPoints() { return _isolatedPoints; } public long getNotIsolatedPoints() { return _notIsolatedPoints; } public int getZeroSplits() { return _zeroSplits; } public int getLeaves() { return _leaves; } public int getDepth() { return _depth; } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isoforextended
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/isoforextended/isolationtree/IsolationTreeStats.java
package hex.tree.isoforextended.isolationtree; /** * Inspired by TreeStats */ public class IsolationTreeStats { public int _minDepth = -1; public int _maxDepth = -1; public float _meanDepth; public int _minLeaves = -1; public int _maxLeaves = -1; public float _meanLeaves; public int _minIsolated = -1; public int _maxIsolated = -1; public float _meanIsolated; public long _minNotIsolated = -1; public long _maxNotIsolated = -1; public float _meanNotIsolated; public int _minZeroSplits = -1; public int _maxZeroSplits = -1; public float _meanZeroSplits; public int _numTrees = 0; private long _sumDepth = 0; private long _sumLeaves = 0; private long _sumIsolated = 0; private long _sumNotIsolated = 0; private long _sumZeroSplits = 0; public void updateBy(IsolationTree tree) { if (tree == null) return; if (_minDepth == -1 || _minDepth > tree.getDepth()) _minDepth = tree.getDepth(); if (_maxDepth == -1 || _maxDepth < tree.getDepth()) _maxDepth = tree.getDepth(); if (_minLeaves == -1 || _minLeaves > tree.getLeaves()) _minLeaves = tree.getLeaves(); if (_maxLeaves == -1 || _maxLeaves < tree.getLeaves()) _maxLeaves = tree.getLeaves(); if (_minIsolated == -1 || _minIsolated > tree.getIsolatedPoints()) _minIsolated = tree.getIsolatedPoints(); if (_maxIsolated == -1 || _maxIsolated < tree.getIsolatedPoints()) _maxIsolated = tree.getIsolatedPoints(); if (_minNotIsolated == -1 || _minNotIsolated > tree.getNotIsolatedPoints()) _minNotIsolated = tree.getNotIsolatedPoints(); if (_maxNotIsolated == -1 || _maxNotIsolated < tree.getNotIsolatedPoints()) _maxNotIsolated = tree.getNotIsolatedPoints(); if (_minZeroSplits == -1 || _minZeroSplits > tree.getZeroSplits()) _minZeroSplits = tree.getZeroSplits(); if (_maxZeroSplits == -1 || _maxZeroSplits < tree.getZeroSplits()) _maxZeroSplits = tree.getZeroSplits(); _sumDepth += tree.getDepth(); _sumLeaves += tree.getLeaves(); _sumIsolated += tree.getIsolatedPoints(); _sumNotIsolated += tree.getNotIsolatedPoints(); _sumZeroSplits += tree.getZeroSplits(); _numTrees++; updateMeans(); } private void updateMeans() { _meanDepth = ((float) _sumDepth / _numTrees); _meanLeaves = ((float) _sumLeaves / _numTrees); _meanIsolated = ((float) _sumIsolated / _numTrees); _meanNotIsolated = ((float) _sumNotIsolated / _numTrees); _meanZeroSplits = ((float) _sumZeroSplits / _numTrees); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/uplift/ChiSquaredDivergence.java
package hex.tree.uplift; public class ChiSquaredDivergence extends EuclideanDistance { @Override public double metric(double prCT1, double prCT0) { return ((prCT1 - prCT0) * (prCT1 - prCT0)) / (prCT0 == 0 ? Divergence.ZERO_TO_DIVIDE : prCT0); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/uplift/Divergence.java
package hex.tree.uplift; import water.Iced; /** * Divergence class used to calculate gain to split the node in Uplift trees algorithms. * Currently only UpliftRandomForest uses this class. * Source: https://link.springer.com/content/pdf/10.1007/s10115-011-0434-0.pdf page 308 * */ public abstract class Divergence extends Iced<Divergence> { public static double ZERO_TO_DIVIDE = 1e-6; /** * Calculate distance divergence metric between two probabilities. * @param prCT1 * @param prCT0 * @return distance divergence metric */ public abstract double metric(double prCT1, double prCT0); /** * Calculate distance metric between two probabilities in the node. * @param prCT1 probability of treatment group * @param prCT0 probability of control group * @return distance divergence metric in the node */ public double node(double prCT1, double prCT0) { return metric(prCT1, prCT0) + metric(1 - prCT1, 1 - prCT0); } /** * Calculate gain after split * @param prL probability of response in left node * @param prLY1CT1 probability of response = 1 in treatment group in left node * @param prLY1CT0 probability of response = 1 in control group in left node * @param prR probability of response in right node * @param prRY1CT1 probability of response = 1 in treatment group in right node * @param prRY1CT0 probability of response = 1 in control group in right node * @return gain after split */ public double split( double prL, double prLY1CT1, double prLY1CT0, double prR, double prRY1CT1, double prRY1CT0) { double klL = node(prLY1CT1, prLY1CT0); double klR = node(prRY1CT1, prRY1CT0); return prL * klL + prR * klR; } /** * Calculate overall gain as divergence between split gain and node gain. * @param prY1CT1 probability of response = 1 in treatment group before split * @param prY1CT0 probability of response = 1 in control group before * @param prL probability of response in left node * @param prLY1CT1 probability of response = 1 in treatment group in left node * @param prLY1CT0 probability of response = 1 in control group in left node * @param prR probability of response in right node * @param prRY1CT1 probability of response = 1 in treatment group in right node * @param prRY1CT0 probability of response = 1 in control group in right node * @return overall gain */ public double gain(double prY1CT1, double prY1CT0, double prL, double prLY1CT1, double prLY1CT0, double prR, double prRY1CT1, double prRY1CT0) { return split(prL, prLY1CT1, prLY1CT0, prR, prRY1CT1, prRY1CT0) - node(prY1CT1, prY1CT0); } /** * Calculate normalization factor to normalize gain. * @param prCT1 probability of treatment group * @param prCT0 probability of control group * @param prLCT1 probability of treatment group in left node * @param prLCT0 probability of control group in left node * @return normalization factor */ public abstract double norm(double prCT1, double prCT0, double prLCT1, double prLCT0); /** * Calculate normalized gain as result value to select best split. * @param prY1CT1 probability of response = 1 in treatment group before split * @param prY1CT0 probability of response = 1 in control group before * @param prL probability of response in left node * @param prLY1CT1 probability of response = 1 in treatment group in left node * @param prLY1CT0 probability of response = 1 in control group in left node * @param prR probability of response in right node * @param prRY1CT1 probability of response = 1 in treatment group in right node * @param prRY1CT0 probability of response = 1 in control group in right node * @param prCT1 probability of treatment group * @param prCT0 probability of control group * @param prLCT1 probability of treatment group in left node * @param prLCT0 probability of control group in left node * @return normalized gain */ public double value(double prY1CT1, double prY1CT0, double prL, double prLY1CT1, double prLY1CT0, double prR, double prRY1CT1, double prRY1CT0, double prCT1, double prCT0, double prLCT1, double prLCT0) { return gain(prY1CT1, prY1CT0, prL, prLY1CT1, prLY1CT0, prR, prRY1CT1, prRY1CT0) / norm(prCT1, prCT0, prLCT1, prLCT0); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/uplift/EuclideanDistance.java
package hex.tree.uplift; public class EuclideanDistance extends Divergence { @Override public double metric(double prCT1, double prCT0) { return (prCT1 - prCT0) * (prCT1 - prCT0); } @Override public double norm( double prCT1, double prCT0, double prLCT1, double prLCT0 ) { double nodeCT = node(prLCT1, prLCT0); double giniCT = 2 * prCT1 * (1 - prCT1); double giniCT1 = 2 * prLCT1 * (1 - prLCT1); double giniCT0 = 2 * prLCT0 * (1 - prLCT0); return giniCT * nodeCT + giniCT1 * prCT1 + giniCT0 * prCT0 + 0.5; } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/uplift/KLDivergence.java
package hex.tree.uplift; import static water.util.MathUtils.log2; public class KLDivergence extends Divergence { @Override public double metric(double prCT1, double prCT0) { return prCT1 * log2(prCT1 / prCT0 == 0 ? ZERO_TO_DIVIDE : prCT0); } @Override public double norm( double prCT1, double prCT0, double prLCT1, double prLCT0 ) { double klCT = node(prCT1, prCT0); double entCT = -(prCT1 * log2(prCT1) + prCT0 * log2(prCT0)); double entCT1 = -(prLCT1 * log2(prLCT1) + (1 - prLCT1) * log2((1 - prLCT1))); double entCT0 = -(prLCT0 * log2(prLCT0) + (1 - prLCT0) * log2((1 - prLCT0))); return klCT * entCT + prCT1 * entCT1 + prCT0 * entCT0 + 0.5; } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/uplift/UpliftDRF.java
package hex.tree.uplift; import hex.*; import hex.genmodel.MojoModel; import hex.genmodel.algos.upliftdrf.UpliftDrfMojoModel; import hex.genmodel.utils.DistributionFamily; import hex.tree.*; import org.apache.log4j.Logger; import org.joda.time.format.DateTimeFormat; import org.joda.time.format.DateTimeFormatter; import water.H2O; import water.Job; import water.Key; import water.MRTask; import water.fvec.C0DChunk; import water.fvec.Chunk; import water.fvec.Frame; import water.fvec.Vec; import water.util.PrettyPrint; import water.util.TwoDimTable; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.Random; public class UpliftDRF extends SharedTree<UpliftDRFModel, UpliftDRFModel.UpliftDRFParameters, UpliftDRFModel.UpliftDRFOutput> { private static final Logger LOG = Logger.getLogger(UpliftDRF.class); public enum UpliftMetricType { AUTO, KL, ChiSquared, Euclidean } @Override public boolean isUplift() {return true;} // Called from an http request public UpliftDRF(hex.tree.uplift.UpliftDRFModel.UpliftDRFParameters parms) { super(parms); init(false); } public UpliftDRF(hex.tree.uplift.UpliftDRFModel.UpliftDRFParameters parms, Key<UpliftDRFModel> key) { super(parms, key); init(false); } public UpliftDRF(hex.tree.uplift.UpliftDRFModel.UpliftDRFParameters parms, Job job) { super(parms, job); init(false); } public UpliftDRF(boolean startup_once) { super(new hex.tree.uplift.UpliftDRFModel.UpliftDRFParameters(), startup_once); } @Override public boolean haveMojo() { return true; } @Override public boolean havePojo() { return false; } @Override public ModelCategory[] can_build() { return new ModelCategory[]{ ModelCategory.BinomialUplift }; } /** Start the DRF training Job on an F/J thread. */ @Override protected Driver trainModelImpl() { return new UpliftDRFDriver(); } @Override public boolean scoreZeroTrees() { return false; } /** Initialize the ModelBuilder, validating all arguments and preparing the * training frame. This call is expected to be overridden in the subclasses * and each subclass will start with "super.init();". This call is made * by the front-end whenever the GUI is clicked, and needs to be fast; * heavy-weight prep needs to wait for the trainModel() call. */ @Override public void init(boolean expensive) { super.init(expensive); // Initialize local variables if( _parms._mtries < 1 && _parms._mtries != -1 && _parms._mtries != -2 ) error("_mtries", "mtries must be -1 (converted to sqrt(features)) or -2 (All features) or >= 1 but it is " + _parms._mtries); if( _train != null ) { int ncols = _train.numCols(); if( _parms._mtries != -1 && _parms._mtries != -2 && !(1 <= _parms._mtries && _parms._mtries < ncols /*ncols includes the response*/)) error("_mtries","Computed mtries should be -1 or -2 or in interval [1,"+ncols+"[ but it is " + _parms._mtries); } if (_parms._sample_rate == 1f && _valid == null) warn("_sample_rate", "Sample rate is 100% and no validation dataset. There are no out-of-bag data to compute error estimates on the training data!"); if (hasOffsetCol()) error("_offset_column", "Offsets are not yet supported for Uplift DRF."); if (hasWeightCol()) error("_weight_column", "Weights are not yet supported for Uplift DRF."); if (hasFoldCol()) error("_fold_column", "Cross-validation is not yet supported for Uplift DRF."); if (_parms._nfolds > 0) error("_nfolds", "Cross-validation is not yet supported for Uplift DRF."); if (_nclass == 1) error("_distribution", "UpliftDRF currently support binomial classification problems only."); if (_nclass > 2 || _parms._distribution.equals(DistributionFamily.multinomial)) error("_distribution", "UpliftDRF currently does not support multinomial distribution."); if (_parms._treatment_column == null) error("_treatment_column", "The treatment column has to be defined."); if (_parms._custom_distribution_func != null) error("_custom_distribution_func", "The custom distribution is not yet supported for Uplift DRF."); } // ---------------------- private class UpliftDRFDriver extends Driver { @Override protected boolean doOOBScoring() { return true; } @Override protected void initializeModelSpecifics() { _mtry_per_tree = Math.max(1, (int) (_parms._col_sample_rate_per_tree * _ncols)); if (!(1 <= _mtry_per_tree && _mtry_per_tree <= _ncols)) throw new IllegalArgumentException("Computed mtry_per_tree should be in interval <1," + _ncols + "> but it is " + _mtry_per_tree); if (_parms._mtries == -2) { //mtries set to -2 would use all columns in each split regardless of what column has been dropped during train _mtry = _ncols; } else if (_parms._mtries == -1) { _mtry = (isClassifier() ? Math.max((int) Math.sqrt(_ncols), 1) : Math.max(_ncols / 3, 1)); // classification: mtry=sqrt(_ncols), regression: mtry=_ncols/3 } else { _mtry = _parms._mtries; } if (!(1 <= _mtry && _mtry <= _ncols)) { throw new IllegalArgumentException("Computed mtry should be in interval <1," + _ncols + "> but it is " + _mtry); } new MRTask() { @Override public void map(Chunk chks[]) { Chunk cy = chk_resp(chks); for (int i = 0; i < cy._len; i++) { if (cy.isNA(i)) continue; int cls = (int) cy.at8(i); chk_work(chks, cls).set(i, 1L); } } }.doAll(_train); } // -------------------------------------------------------------------------- // Build the next random k-trees representing tid-th tree @Override protected boolean buildNextKTrees() { // We're going to build K (nclass) trees - each focused on correcting // errors for a single class. final DTree[] ktrees = new DTree[_nclass]; // Define a "working set" of leaf splits, from leafs[i] to tree._len for each tree i int[] leafs = new int[_nclass]; // Assign rows to nodes - fill the "NIDs" column(s) growTrees(ktrees, leafs, _rand); // Move rows into the final leaf rows - fill "Tree" and OUT_BAG_TREES columns and zap the NIDs column UpliftCollectPreds cp = new UpliftCollectPreds(ktrees,leafs).doAll(_train,_parms._build_tree_one_node); // Grow the model by K-trees _model._output.addKTrees(ktrees); return false; //never stop early } // Assumes that the "Work" column are filled with horizontalized (0/1) class memberships per row (or copy of regression response) private void growTrees(DTree[] ktrees, int[] leafs, Random rand) { // Initial set of histograms. All trees; one leaf per tree (the root // leaf); all columns DHistogram hcs[][][] = new DHistogram[_nclass][1/*just root leaf*/][_ncols]; // Adjust real bins for the top-levels int adj_nbins = Math.max(_parms._nbins_top_level,_parms._nbins); // Use for all k-trees the same seed. NOTE: this is only to make a fair // view for all k-trees long rseed = rand.nextLong(); // Initially setup as-if an empty-split had just happened for (int k = 0; k < _nclass; k++) { if (_model._output._distribution[k] != 0) { // Ignore missing classes ktrees[k] = new DTree(_train, _ncols, _mtry, _mtry_per_tree, rseed, _parms); new DTree.UndecidedNode(ktrees[k], -1, DHistogram.initialHist(_train, _ncols, adj_nbins, hcs[k][0], rseed, _parms, getGlobalSplitPointsKeys(), null, false, null), null, null); // The "root" node } } // Sample - mark the lines by putting 'OUT_OF_BAG' into nid(<klass>) vector Sample s = new Sample(ktrees[0], _parms._sample_rate, _parms._sample_rate_per_class).dfork(null,new Frame(vec_nids(_train,0),vec_resp(_train)), _parms._build_tree_one_node).getResult(); // ---- // One Big Loop till the ktrees are of proper depth. // Adds a layer to the trees each pass. int depth=0; for( ; depth<_parms._max_depth; depth++ ) { hcs = buildLayer(_train, _parms._nbins, ktrees[0], leafs, hcs, _parms._build_tree_one_node); // If we did not make any new splits, then the tree is split-to-death if( hcs == null ) break; } // Each tree bottomed-out in a DecidedNode; go 1 more level and insert // LeafNodes to hold predictions. DTree treeTr = ktrees[0]; ktrees[1] = new DTree(ktrees[0]); // make a deep copy of the tree to assign control prediction to the leaves DTree treeCt = ktrees[1]; int leaf = leafs[0] = treeTr.len(); for (int nid = 0; nid < leaf; nid++) { if (treeTr.node(nid) instanceof DTree.DecidedNode) { // Should be the same for treatment and control tree DTree.DecidedNode dnTr = treeTr.decided(nid); // Treatment tree node DTree.DecidedNode dnCt = treeCt.decided(nid); // Control tree node if (dnTr._split == null) { // No decision here, no row should have this NID now if (nid == 0) { // Handle the trivial non-splitting tree DTree.LeafNode lnTr = new DTree.LeafNode(treeTr, -1, 0); lnTr._pred = (float) (_model._output._priorClassDist[1]); DTree.LeafNode lnCt = new DTree.LeafNode(treeCt, -1, 0); lnCt._pred = (float) (_model._output._priorClassDist[0]); } continue; } for (int i = 0; i < dnTr._nids.length; i++) { int cnid = dnTr._nids[i]; if (cnid == -1 || // Bottomed out (predictors or responses known constant) treeTr.node(cnid) instanceof DTree.UndecidedNode || // Or chopped off for depth (treeTr.node(cnid) instanceof DTree.DecidedNode && // Or not possible to split ((DTree.DecidedNode) treeTr.node(cnid))._split == null)) { DTree.LeafNode lnTr = new DTree.LeafNode(treeTr, nid); lnTr._pred = (float) dnTr.predTreatment(i); // Set prediction into the treatment leaf dnTr._nids[i] = lnTr.nid(); // Mark a leaf here for treatment DTree.LeafNode lnCt = new DTree.LeafNode(treeCt, nid); lnCt._pred = (float) dnCt.predControl(i); // Set prediction into the control leaf dnCt._nids[i] = lnCt.nid(); // Mark a leaf here for control } } } } } // Collect and write predictions into leaves. private class UpliftCollectPreds extends MRTask<UpliftCollectPreds> { /* @IN */ final DTree _trees[]; // Read-only, shared (except at the histograms in the Nodes) /* @OUT */ double allRows; // number of all OOB rows (sampled by this tree) UpliftCollectPreds(DTree trees[], int leafs[]) { _trees=trees;} @Override public void map( Chunk[] chks ) { final Chunk y = chk_resp(chks); // Response final Chunk oobt = chk_oobt(chks); // Out-of-bag rows counter over all trees final Chunk weights = hasWeightCol() ? chk_weight(chks) : new C0DChunk(1, chks[0]._len); // Out-of-bag rows counter over all trees // Iterate over all rows for( int row=0; row<oobt._len; row++ ) { double weight = weights.atd(row); final boolean wasOOBRow = ScoreBuildHistogram.isOOBRow((int)chk_nids(chks,0).at8(row)); //final boolean wasOOBRow = false; // For all tree (i.e., k-classes) final Chunk nids = chk_nids(chks, 0); // Node-ids for treatment group class final Chunk nids1 = chk_nids(chks, 1); // Node-ids for control group class if (weight!=0) { final DTree treeT = _trees[0]; final DTree treeC = _trees[1]; if (treeT == null) continue; // Empty class is ignored int nid = (int) nids.at8(row); // Get Node to decide from // Update only out-of-bag rows // This is out-of-bag row - but we would like to track on-the-fly prediction for the row if (wasOOBRow) { nid = ScoreBuildHistogram.oob2Nid(nid); if (treeT.node(nid) instanceof DTree.UndecidedNode) // If we bottomed out the tree nid = treeT.node(nid).pid(); // Then take parent's decision int leafnid; if (treeT.root() instanceof DTree.LeafNode) { leafnid = 0; } else { DTree.DecidedNode dn = treeT.decided(nid); // Must have a decision point if (dn._split == null) // Unable to decide? dn = treeT.decided(treeT.node(nid).pid()); // Then take parent's decision leafnid = dn.getChildNodeID(chks, row); // Decide down to a leafnode } // Setup Tree(i) - on the fly prediction of i-tree for row-th row // - for uplift: cumulative sum of prediction of each tree - has to be normalized by number of trees final Chunk ct1 = chk_tree(chks, 0); // treatment tree working column holding votes for given row ct1.set(row, (float) (ct1.atd(row) + ((DTree.LeafNode) treeT.node(leafnid)).pred())); final Chunk ct0 = chk_tree(chks, 1); // control group tree working column holding votes for given row ct0.set(row, (float) (ct0.atd(row) + ((DTree.LeafNode) treeC.node(leafnid)).pred())); } } // reset help column for this row and this k-class nids.set(row, 0); nids1.set(row, 0); // For this tree this row is out-of-bag - i.e., a tree voted for this row if (wasOOBRow) oobt.set(row, oobt.atd(row) + weight); // track number of trees if (weight != 0) { if (wasOOBRow && !y.isNA(row)) { allRows+=weight; } } } } @Override public void reduce(UpliftCollectPreds mrt) { allRows += mrt.allRows; } } @Override protected UpliftDRFModel makeModel( Key modelKey, UpliftDRFModel.UpliftDRFParameters parms) { return new UpliftDRFModel(modelKey,parms,new UpliftDRFModel.UpliftDRFOutput(UpliftDRF.this)); } } /** * Read the 'tree' columns, do model-specific math and put the results in the * fs[] array, and return the sum. Dividing any fs[] element by the sum * turns the results into a probability distribution. */ @Override protected double score1( Chunk chks[], double weight, double offset, double fs[], int row ) { double sum = 0; fs[1] = weight * chk_tree(chks, 0).atd(row) / chk_oobt(chks).atd(row); fs[2] = weight * chk_tree(chks, 1).atd(row) / chk_oobt(chks).atd(row); fs[0] = fs[1] - fs[2]; return sum; } protected DHistogram[][][] buildLayer(final Frame fr, final int nbins, final DTree tree, final int leafs[], final DHistogram hcs[][][], boolean build_tree_one_node) { // Build 1 uplift tree // Build up the next-generation tree splits from the current histograms. // Nearly all leaves will split one more level. This loop nest is // O( #active_splits * #bins * #ncols ) // but is NOT over all the data. ScoreBuildOneTree sb1t = null; Vec vecs[] = fr.vecs(); // Build a frame with just a single tree (& work & nid) columns, so the // nested MRTask ScoreBuildHistogram in ScoreBuildOneTree does not try // to close other tree's Vecs when run in parallel. int k = 0; if( tree != null ) { int selectedCol = _ncols + 2; final String[] fr2cols = Arrays.copyOf(fr._names, selectedCol); final Vec[] fr2vecs = Arrays.copyOf(vecs, selectedCol); Frame fr2 = new Frame(fr2cols, fr2vecs); //predictors, weights and the actual response if (isSupervised() && fr2.find(_parms._response_column) == -1) { fr2.add(_parms._response_column, fr.vec(_parms._response_column)); } // Add temporary workspace vectors (optional weights are taken over from fr) int respIdx = fr2.find(_parms._response_column); int weightIdx = fr2.find(_parms._weights_column); int treatmentIdx = fr2.find(_parms._treatment_column); int predsIdx = fr2.numCols(); fr2.add(fr._names[idx_tree(k)],vecs[idx_tree(k)]); //tree predictions int workIdx = fr2.numCols(); fr2.add(fr._names[idx_work(k)],vecs[idx_work(k)]); //target value to fit (copy of actual response for DRF, residual for GBM) int nidIdx = fr2.numCols(); fr2.add(fr._names[idx_nids(k)],vecs[idx_nids(k)]); //node indices for tree construction if (LOG.isTraceEnabled()) LOG.trace("Building a layer for class " + k + ":\n" + fr2.toTwoDimTable()); // Async tree building // step 1: build histograms // step 2: split nodes H2O.submitTask(sb1t = new ScoreBuildOneTree(this,k, nbins, tree, leafs, hcs, fr2, build_tree_one_node, _improvPerVar, _model._parms._distribution, respIdx, weightIdx, predsIdx, workIdx, nidIdx, treatmentIdx)); } // Block for all K trees to complete. boolean did_split=false; if( sb1t != null ) { sb1t.join(); if( sb1t._did_split ) did_split=true; if (LOG.isTraceEnabled()) { LOG.info("Done with this layer for class " + k + ":\n" + new Frame( new String[]{"TREE", "WORK", "NIDS"}, new Vec[]{ vecs[idx_tree(k)], vecs[idx_work(k)], vecs[idx_nids(k)] } ).toTwoDimTable()); } } // The layer is done. return did_split ? hcs : null; } @Override protected TwoDimTable createScoringHistoryTable() { UpliftDRFModel.UpliftDRFOutput out = _model._output; return createUpliftScoringHistoryTable(out, out._scored_train, out._scored_valid, _job, out._training_time_ms, _parms._custom_metric_func != null); } static TwoDimTable createUpliftScoringHistoryTable(Model.Output _output, ScoreKeeper[] _scored_train, ScoreKeeper[] _scored_valid, Job job, long[] _training_time_ms, boolean hasCustomMetric) { List<String> colHeaders = new ArrayList<>(); List<String> colTypes = new ArrayList<>(); List<String> colFormat = new ArrayList<>(); colHeaders.add("Timestamp"); colTypes.add("string"); colFormat.add("%s"); colHeaders.add("Duration"); colTypes.add("string"); colFormat.add("%s"); colHeaders.add("Number of Trees"); colTypes.add("long"); colFormat.add("%d"); colHeaders.add("Training ATE"); colTypes.add("double"); colFormat.add("%d"); colHeaders.add("Training ATT"); colTypes.add("double"); colFormat.add("%d"); colHeaders.add("Training ATC"); colTypes.add("double"); colFormat.add("%d"); colHeaders.add("Training AUUC nbins"); colTypes.add("int"); colFormat.add("%d"); colHeaders.add("Training AUUC"); colTypes.add("double"); colFormat.add("%.5f"); colHeaders.add("Training AUUC normalized"); colTypes.add("double"); colFormat.add("%.5f"); colHeaders.add("Training Qini value"); colTypes.add("double"); colFormat.add("%.5f"); if (hasCustomMetric) { colHeaders.add("Training Custom"); colTypes.add("double"); colFormat.add("%.5f"); } if (_output._validation_metrics != null) { colHeaders.add("Validation ATE"); colTypes.add("double"); colFormat.add("%d"); colHeaders.add("Validation ATT"); colTypes.add("double"); colFormat.add("%d"); colHeaders.add("Validation ATC"); colTypes.add("double"); colFormat.add("%d"); colHeaders.add("Validation AUUC nbins"); colTypes.add("int"); colFormat.add("%d"); colHeaders.add("Validation AUUC"); colTypes.add("double"); colFormat.add("%.5f"); colHeaders.add("Validation AUUC normalized"); colTypes.add("double"); colFormat.add("%.5f"); colHeaders.add("Validation Qini value"); colTypes.add("double"); colFormat.add("%.5f"); if (hasCustomMetric) { colHeaders.add("Validation Custom"); colTypes.add("double"); colFormat.add("%.5f"); } } int rows = 0; for( int i = 0; i<_scored_train.length; i++ ) { if (i != 0 && Double.isNaN(_scored_train[i]._AUUC) && (_scored_valid == null || Double.isNaN(_scored_valid[i]._AUUC))) continue; rows++; } TwoDimTable table = new TwoDimTable( "Scoring History", null, new String[rows], colHeaders.toArray(new String[0]), colTypes.toArray(new String[0]), colFormat.toArray(new String[0]), ""); int row = 0; for( int i = 0; i<_scored_train.length; i++ ) { if (i != 0 && Double.isNaN(_scored_train[i]._AUUC) && (_scored_valid == null || Double.isNaN(_scored_valid[i]._AUUC))) continue; int col = 0; DateTimeFormatter fmt = DateTimeFormat.forPattern("yyyy-MM-dd HH:mm:ss"); table.set(row, col++, fmt.print(_training_time_ms[i])); table.set(row, col++, PrettyPrint.msecs(_training_time_ms[i] - job.start_time(), true)); table.set(row, col++, i); ScoreKeeper st = _scored_train[i]; table.set(row, col++, st._ate); table.set(row, col++, st._att); table.set(row, col++, st._atc); table.set(row, col++, st._auuc_nbins); table.set(row, col++, st._AUUC); table.set(row, col++, st._auuc_normalized); table.set(row, col++, st._qini); if (hasCustomMetric) table.set(row, col++, st._custom_metric); if (_output._validation_metrics != null) { st = _scored_valid[i]; table.set(row, col++, st._ate); table.set(row, col++, st._att); table.set(row, col++, st._atc); table.set(row, col++, st._auuc_nbins); table.set(row, col++, st._AUUC); table.set(row, col++, st._auuc_normalized); table.set(row, col++, st._qini); if (hasCustomMetric) table.set(row, col++, st._custom_metric); } row++; } return table; } @Override protected void addCustomInfo(UpliftDRFModel.UpliftDRFOutput out) { if(out._validation_metrics != null){ out._defaultAuucThresholds = ((ModelMetricsBinomialUplift)out._validation_metrics)._auuc._ths; } else { out._defaultAuucThresholds = ((ModelMetricsBinomialUplift)out._training_metrics)._auuc._ths; } } @Override protected UpliftScoreExtension makeScoreExtension() { return new UpliftScoreExtension(); } private static class UpliftScoreExtension extends Score.ScoreExtension { public UpliftScoreExtension() { } @Override protected double getPrediction(double[] cdist) { return cdist[1] - cdist[2]; } @Override protected int[] getResponseComplements(SharedTreeModel<?, ?, ?> m) { return new int[]{m._output.treatmentIdx()}; } } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/uplift/UpliftDRFModel.java
package hex.tree.uplift; import hex.*; import hex.tree.CompressedForest; import hex.tree.SharedTreeModel; import hex.tree.SharedTreeModelWithContributions; import hex.tree.SharedTreePojoWriter; import hex.util.EffectiveParametersUtils; import water.Key; public class UpliftDRFModel extends SharedTreeModel<UpliftDRFModel, UpliftDRFModel.UpliftDRFParameters, UpliftDRFModel.UpliftDRFOutput> { public static class UpliftDRFParameters extends SharedTreeModel.SharedTreeParameters { public String algoName() { return "UpliftDRF"; } public String fullName() { return "Uplift Distributed Random Forest"; } public String javaName() { return UpliftDRFModel.class.getName(); } public enum UpliftMetricType { AUTO, KL, ChiSquared, Euclidean } public UpliftMetricType _uplift_metric = UpliftMetricType.AUTO; public int _mtries = -2; //number of columns to use per split. default depeonds on the algorithm and problem (classification/regression) public UpliftDRFParameters() { super(); // Set Uplift DRF specific defaults (can differ from SharedTreeModel's defaults) _max_depth = 20; _min_rows = 1; _treatment_column = "treatment"; } @Override public long progressUnits() { return _ntrees*2; } } public static class UpliftDRFOutput extends SharedTreeModelWithContributions.SharedTreeOutput { public double[] _defaultAuucThresholds; // thresholds for AUUC to calculate metrics public UpliftDRFOutput( UpliftDRF b) { super(b); } @Override public ModelCategory getModelCategory() { return ModelCategory.BinomialUplift; } @Override public boolean isBinomialClassifier() { return true; } public void setDefaultAuucThresholds(double[] defaultAuucThresholds) { this._defaultAuucThresholds = defaultAuucThresholds; } } public UpliftDRFModel(Key<UpliftDRFModel> selfKey, UpliftDRFParameters parms, UpliftDRFOutput output ) { super(selfKey, parms, output); } @Override public void initActualParamValues() { super.initActualParamValues(); EffectiveParametersUtils.initHistogramType(_parms); EffectiveParametersUtils.initCategoricalEncoding(_parms, Parameters.CategoricalEncodingScheme.Enum); EffectiveParametersUtils.initUpliftMetric(_parms); } @Override public boolean binomialOpt() { return false; } /** Bulk scoring API for one row. Chunks are all compatible with the model, * and expect the last Chunks are for the final distribution and prediction. * Default method is to just load the data into the tmp array, then call * subclass scoring logic. */ @Override protected double[] score0(double[] data, double[] preds, double offset, int ntrees) { super.score0(data, preds, offset, ntrees); int N = _output._ntrees; preds[1] /= N; preds[2] /= N; preds[0] = preds[1] - preds[2]; return preds; } @Override public ModelMetrics.MetricBuilder makeMetricBuilder(String[] domain) { return new ModelMetricsBinomialUplift.MetricBuilderBinomialUplift(domain, _output._defaultAuucThresholds); } @Override public UpliftDrfMojoWriter getMojo() { return new UpliftDrfMojoWriter(this); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/tree/uplift/UpliftDrfMojoWriter.java
package hex.tree.uplift; import hex.tree.SharedTreeMojoWriter; import java.io.IOException; public class UpliftDrfMojoWriter extends SharedTreeMojoWriter<UpliftDRFModel, UpliftDRFModel.UpliftDRFParameters, UpliftDRFModel.UpliftDRFOutput> { @SuppressWarnings("unused") // Called through reflection in ModelBuildersHandler public UpliftDrfMojoWriter() {} public UpliftDrfMojoWriter(UpliftDRFModel model) { super(model); } @Override public String mojoVersion() { return "1.40"; } @Override protected void writeModelData() throws IOException { super.writeModelData(); writekv("default_auuc_thresholds", model._output._defaultAuucThresholds); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/util/CheckpointUtils.java
package hex.util; import hex.Model; import hex.ModelBuilder; import water.Value; import water.exceptions.H2OIllegalArgumentException; import water.util.ArrayUtils; import water.util.PojoUtils; import java.lang.reflect.Field; import java.util.Arrays; public class CheckpointUtils { /** * This method will take actual parameters and validate them with parameters of * requested checkpoint. In case of problem, it throws an API exception. * * @param params model parameters * @param nonModifiableFields params if changed will raise an error * @param checkpointParameters checkpoint parameters */ private static void validateWithCheckpoint( Model.Parameters params, String[] nonModifiableFields, Model.Parameters checkpointParameters ) { for (Field fAfter : params.getClass().getFields()) { // only look at non-modifiable fields if (ArrayUtils.contains(nonModifiableFields, fAfter.getName())) { for (Field fBefore : checkpointParameters.getClass().getFields()) { if (fBefore.equals(fAfter)) { try { if (!PojoUtils.equals(params, fAfter, checkpointParameters, checkpointParameters.getClass().getField(fAfter.getName()))) { throw new H2OIllegalArgumentException(fAfter.getName(), "TreeBuilder", "Field " + fAfter.getName() + " cannot be modified if checkpoint is specified!"); } } catch (NoSuchFieldException e) { throw new H2OIllegalArgumentException(fAfter.getName(), "TreeBuilder", "Field " + fAfter.getName() + " is not supported by checkpoint!"); } } } } } } private static void validateNTrees(ModelBuilder builder, Model.GetNTrees params, Model.GetNTrees output) { if (params.getNTrees() < output.getNTrees() + 1) { builder.error("_ntrees", "If checkpoint is specified then requested ntrees must be higher than " + (output.getNTrees() + 1)); } } public static <M extends Model<M, P, O>, P extends Model.Parameters, O extends Model.Output> M getAndValidateCheckpointModel( ModelBuilder<M, P, O> builder, String[] nonModifiableFields, Value cv ) { M checkpointModel = cv.get(); try { validateWithCheckpoint(builder._input_parms, nonModifiableFields, checkpointModel._input_parms); if (builder.isClassifier() != checkpointModel._output.isClassifier()) throw new IllegalArgumentException("Response type must be the same as for the checkpointed model."); if (!Arrays.equals(builder.train().names(), checkpointModel._output._names)) { throw new IllegalArgumentException("The columns of the training data must be the same as for the checkpointed model"); } if (!Arrays.deepEquals(builder.train().domains(), checkpointModel._output._domains)) { throw new IllegalArgumentException("Categorical factor levels of the training data must be the same as for the checkpointed model"); } } catch (H2OIllegalArgumentException e) { builder.error(e.values.get("argument").toString(), e.values.get("value").toString()); } if (builder._parms instanceof Model.GetNTrees && checkpointModel._output instanceof Model.GetNTrees) { validateNTrees(builder, (Model.GetNTrees) builder._parms, (Model.GetNTrees) checkpointModel._output); } return checkpointModel; } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/util/ClusteringUtils.java
package hex.util; import hex.ClusteringModel; import water.util.TwoDimTable; public class ClusteringUtils { static public TwoDimTable createCenterTable(ClusteringModel.ClusteringOutput output, boolean standardized) { String name = standardized ? "Standardized Cluster Means" : "Cluster Means"; if(output._size == null || output._names == null || output._domains == null || output._centers_raw == null || (standardized && output._centers_std_raw == null)) { TwoDimTable table = new TwoDimTable(name, null, new String[] {"1"}, new String[]{"C1"}, new String[]{"double"}, new String[]{"%f"}, "Centroid"); table.set(0,0,Double.NaN); return table; } String[] rowHeaders = new String[output._size.length]; for(int i = 0; i < rowHeaders.length; i++) rowHeaders[i] = String.valueOf(i+1); String[] colTypes = new String[output._names.length]; String[] colFormats = new String[output._names.length]; for (int i = 0; i < output._domains.length; ++i) { colTypes[i] = output._domains[i] == null ? "double" : "String"; colFormats[i] = output._domains[i] == null ? "%f" : "%s"; } TwoDimTable table = new TwoDimTable(name, null, rowHeaders, output._names, colTypes, colFormats, "Centroid"); // Internal weights/folds column is included in domain length int domain_length = output.hasWeights()? output._domains.length - 1 : output._domains.length; for (int j=0; j < domain_length; ++j) { boolean string = output._domains[j] != null; if (string) { for (int i=0; i<output._centers_raw.length; ++i) { table.set(i, j, output._domains[j][(int)output._centers_raw[i][j]]); } } else { for (int i=0; i<output._centers_raw.length; ++i) { table.set(i, j, standardized ? output._centers_std_raw[i][j] : output._centers_raw[i][j]); } } } return table; } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/util/DimensionReductionUtils.java
package hex.util; import hex.DataInfo; import org.joda.time.format.DateTimeFormat; import org.joda.time.format.DateTimeFormatter; import water.fvec.Frame; import water.util.ArrayUtils; import water.util.PrettyPrint; import water.util.TwoDimTable; import java.util.ArrayList; import java.util.LinkedHashMap; import java.util.List; import static java.lang.Math.sqrt; import static water.util.ArrayUtils.*; /** * Created by wendycwong on 2/9/17. */ public class DimensionReductionUtils { /** * This method will calculate the importance of principal components for PCA/GLRM methods. * * @param std_deviation: array of singular values * @param totVar: sum of squared singular values * @param vars: array of singular values squared * @param prop_var: var[i]/totVar for each i * @param cum_var: cumulative sum of var[i]/totVar from index 0 to index i. */ public static void generateIPC(double[] std_deviation, double totVar, double[] vars, double[] prop_var, double[] cum_var) { int arrayLen = std_deviation.length; if (totVar > 0) { for (int i = 0; i < arrayLen; i++) { vars[i] = std_deviation[i] * std_deviation[i]; prop_var[i] = vars[i] / totVar; cum_var[i] = i == 0 ? prop_var[0] : cum_var[i-1] + prop_var[i]; } } double lastCum = cum_var[arrayLen-1]; if (lastCum > 1) { // GLRM sometimes screw up the matrix estimation pretty bad double multF = 1/lastCum; ArrayUtils.mult(prop_var, multF); ArrayUtils.mult(cum_var, multF); ArrayUtils.mult(vars, multF); ArrayUtils.mult(std_deviation, sqrt(multF)); } } /** * Create the scoring history for dimension reduction algorithms like PCA/SVD. We do make the following assumptions * about your scoring_history. First we assume that you will always have the following field: * 1. Timestamp: long denoting the time in ms; * 2. All other fields are double. * * The following field will be generated for you automatically: Duration and Iteration. * * @param scoreTable: HashMap containing column headers and arraylist containing the history of values collected. * @param tableName: title/name of your scoring table * @param startTime: time your model building job was first started. * @return: TwoDimTable containing the scoring history. */ public static TwoDimTable createScoringHistoryTableDR(LinkedHashMap<String, ArrayList> scoreTable, String tableName, long startTime) { List<String> colHeaders = new ArrayList<>(); List<String> colTypes = new ArrayList<>(); List<String> colFormat = new ArrayList<>(); ArrayList<String> otherTableEntries = new ArrayList<String>(); for (String fieldName:scoreTable.keySet()) { if (fieldName.equals("Timestamp")) { colHeaders.add("Timestamp"); colTypes.add("string"); colFormat.add("%s"); colHeaders.add("Duration"); colTypes.add("string"); colFormat.add("%s"); colHeaders.add("Iterations"); colTypes.add("long"); colFormat.add("%d"); } else { otherTableEntries.add(fieldName); colHeaders.add(fieldName); colTypes.add("double"); colFormat.add("%.5f"); } } int rows = scoreTable.get("Timestamp").size(); // number of entries of training history TwoDimTable table = new TwoDimTable( tableName, null, new String[rows], colHeaders.toArray(new String[0]), colTypes.toArray(new String[0]), colFormat.toArray(new String[0]), ""); assert (rows <= table.getRowDim()); for (int row = 0; row < rows; row++) { int col = 0; // take care of Timestamp, Duration, Iteration. DateTimeFormatter fmt = DateTimeFormat.forPattern("yyyy-MM-dd HH:mm:ss"); table.set(row, col++, fmt.print((long) scoreTable.get("Timestamp").get(row))); table.set(row, col++, PrettyPrint.msecs((long) scoreTable.get("Timestamp").get(row) - startTime, true)); table.set(row, col++, row); // take care of the extra field for (int remaining_cols = 0; remaining_cols < otherTableEntries.size(); remaining_cols++) { table.set(row, col++, (double) scoreTable.get(otherTableEntries.get(remaining_cols)).get(row)); } } return table; } /** * This function will tranform the eigenvectors calculated for a matrix T(A) to the ones calculated for * matrix A. * * @param dinfo * @param vEigenIn * @return transformed eigenvectors */ public static double[][] getTransformedEigenvectors(DataInfo dinfo, double[][] vEigenIn) { Frame tempFrame = new Frame(dinfo._adaptedFrame); Frame eigFrame = new water.util.ArrayUtils().frame(vEigenIn); tempFrame.add(eigFrame); LinearAlgebraUtils.SMulTask stsk = new LinearAlgebraUtils.SMulTask(dinfo, eigFrame.numCols(), dinfo._numOffsets[dinfo._numOffsets.length - 1]); // will allocate new memory for _atq double[][] eigenVecs = stsk.doAll(tempFrame)._atq; if (eigFrame != null) { // delete frame to prevent leak keys. eigFrame.delete(); } // need to normalize eigenvectors after multiplication by transpose(A) so that they have unit norm double[][] eigenVecsTranspose = transpose(eigenVecs); // transpose will allocate memory double[] eigenNormsI = new double[eigenVecsTranspose.length]; for (int vecIndex = 0; vecIndex < eigenVecsTranspose.length; vecIndex++) { eigenNormsI[vecIndex] = 1.0 / l2norm(eigenVecsTranspose[vecIndex]); } return transpose(mult(eigenVecsTranspose, eigenNormsI)); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/util/DistributionUtils.java
package hex.util; import hex.genmodel.utils.DistributionFamily; import hex.glm.GLMModel; import water.exceptions.H2OIllegalArgumentException; import static hex.genmodel.utils.DistributionFamily.bernoulli; import static hex.glm.GLMModel.GLMParameters.Family.*; public class DistributionUtils { public static DistributionFamily familyToDistribution(GLMModel.GLMParameters.Family aFamily) { if (aFamily == GLMModel.GLMParameters.Family.binomial) { return bernoulli; } try { return Enum.valueOf(DistributionFamily.class, aFamily.toString()); } catch (IllegalArgumentException e) { throw new H2OIllegalArgumentException("DistributionFamily not supported for Family: " + aFamily); } } public static GLMModel.GLMParameters.Family distributionToFamily(DistributionFamily distribution) { if (bernoulli.equals(distribution)) return binomial; try { return Enum.valueOf(GLMModel.GLMParameters.Family.class, distribution.toString()); } catch (IllegalArgumentException e) { throw new H2OIllegalArgumentException("Family not supported for DistributionFamily: " + distribution); } } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/util/EffectiveParametersUtils.java
package hex.util; import hex.Model; import hex.ScoreKeeper; import hex.genmodel.utils.DistributionFamily; import hex.tree.CalibrationHelper; import hex.tree.SharedTreeModel; import hex.tree.uplift.UpliftDRFModel; public class EffectiveParametersUtils { public static void initFoldAssignment( Model.Parameters params ) { if (params._fold_assignment == Model.Parameters.FoldAssignmentScheme.AUTO) { if (params._nfolds > 0 && params._fold_column == null) { params._fold_assignment = Model.Parameters.FoldAssignmentScheme.Random; } else { params._fold_assignment = null; } } } public static void initHistogramType( SharedTreeModel.SharedTreeParameters params ) { if (params._histogram_type == SharedTreeModel.SharedTreeParameters.HistogramType.AUTO) { params._histogram_type = SharedTreeModel.SharedTreeParameters.HistogramType.UniformAdaptive; } } public static void initStoppingMetric( Model.Parameters params, boolean isClassifier ) { if (params._stopping_metric == ScoreKeeper.StoppingMetric.AUTO) { if (params._stopping_rounds == 0) { params._stopping_metric = null; } else { if (isClassifier) { params._stopping_metric = ScoreKeeper.StoppingMetric.logloss; } else { params._stopping_metric = ScoreKeeper.StoppingMetric.deviance; } } } } public static void initDistribution( Model.Parameters params, int nclasses ) { if (params._distribution == DistributionFamily.AUTO) { if (nclasses == 1) { params._distribution = DistributionFamily.gaussian;} if (nclasses == 2) { params._distribution = DistributionFamily.bernoulli;} if (nclasses >= 3) { params._distribution = DistributionFamily.multinomial;} } } public static void initCategoricalEncoding( Model.Parameters params, Model.Parameters.CategoricalEncodingScheme scheme ) { if (params._categorical_encoding == Model.Parameters.CategoricalEncodingScheme.AUTO) { params._categorical_encoding = scheme; } } public static void initUpliftMetric(UpliftDRFModel.UpliftDRFParameters params ) { if (params._uplift_metric == UpliftDRFModel.UpliftDRFParameters.UpliftMetricType.AUTO) { params._uplift_metric = UpliftDRFModel.UpliftDRFParameters.UpliftMetricType.KL; } } public static void initCalibrationMethod(CalibrationHelper.ParamsWithCalibration params) { if (params.getCalibrationMethod() == CalibrationHelper.CalibrationMethod.AUTO) { params.setCalibrationMethod(CalibrationHelper.CalibrationMethod.PlattScaling); } } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/util/EigenPair.java
package hex.util; public class EigenPair implements Comparable<EigenPair> { public double eigenvalue; public double[] eigenvector; public EigenPair(double eigenvalue, double[] eigenvector) { this.eigenvalue = eigenvalue; this.eigenvector = eigenvector; } /** * Compare an eigenPair = (eigenvalue, eigenVector) against otherEigenPair based on respective eigenValues */ @Override public int compareTo(EigenPair otherEigenPair) { return eigenvalue < otherEigenPair.eigenvalue ? -1 : (eigenvalue > otherEigenPair.eigenvalue ? 1 : 0); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/util/LinearAlgebraUtils.java
package hex.util; import Jama.EigenvalueDecomposition; import Jama.Matrix; import Jama.QRDecomposition; import hex.DataInfo; import hex.FrameTask; import hex.Interaction; import hex.ToEigenVec; import hex.gam.MatrixFrameUtils.TriDiagonalMatrix; import hex.gram.Gram; import jsr166y.ForkJoinTask; import jsr166y.RecursiveAction; import water.*; import water.fvec.Chunk; import water.fvec.Frame; import water.fvec.NewChunk; import water.fvec.Vec; import water.util.ArrayUtils; import water.util.Log; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import static java.util.Arrays.sort; import static org.apache.commons.lang.ArrayUtils.reverse; import static water.util.ArrayUtils.*; public class LinearAlgebraUtils { /* * Forward substitution: Solve Lx = b for x with L = lower triangular matrix, b = real vector */ public static double[] forwardSolve(double[][] L, double[] b) { assert L != null && L.length == b.length; // && L.length == L[0].length, allow true lower triangular matrix double[] res = new double[b.length]; for(int i = 0; i < b.length; i++) { res[i] = b[i]; for(int j = 0; j < i; j++) res[i] -= L[i][j] * res[j]; res[i] /= L[i][i]; } return res; } /** * Given a matrix aMat as a double [][] array, this function will return an array that is the * square root of the diagonals of aMat. Note that the first index is column and the second index * is row. * @param aMat * @return */ public static double[] sqrtDiag(double[][] aMat) { int matrixSize = aMat.length; double[] answer = new double[matrixSize]; for (int index=0; index < matrixSize; index++) answer[index] = Math.sqrt(aMat[index][index]); return answer; } public static double[][] chol2Inv(final double[][] cholR, boolean upperTriag) { final int matrixSize = cholR.length; // cholR is actuall transpose(R) from QR double[][] cholL = upperTriag?ArrayUtils.transpose(cholR):cholR; // this is R from QR final double[][] inverted = new double[matrixSize][]; RecursiveAction[] ras = new RecursiveAction[matrixSize]; for (int index=0; index<matrixSize; index++) { final double[] oneColumn = new double[matrixSize]; oneColumn[index] = 1.0; final int i = index; ras[i] = new RecursiveAction() { @Override protected void compute() { double[] upperColumn = forwardSolve(cholL, oneColumn); inverted[i] = Arrays.copyOf(upperColumn, matrixSize); } }; } ForkJoinTask.invokeAll(ras); double[][] cholRNew = upperTriag?cholR:ArrayUtils.transpose(cholR); for (int index=0; index<matrixSize; index++) { final double[] oneColumn = new double[matrixSize]; oneColumn[index] = 1.0; final int i = index; ras[i] = new RecursiveAction() { @Override protected void compute() { double[] lowerColumn = new double[matrixSize]; backwardSolve(cholRNew, inverted[i], lowerColumn); inverted[i] = Arrays.copyOf(lowerColumn, matrixSize); } }; } ForkJoinTask.invokeAll(ras); return inverted; } /** * Given the cholesky decomposition of X = QR, this method will return the inverse of * transpose(X)*X by attempting to solve for transpose(R)*R*XTX_inverse = Identity matrix * * @param cholR * @return */ public static double[][] chol2Inv(final double[][] cholR) { return chol2Inv(cholR, true); } /*** * Generate D matrix as a lower diagonal matrix since it is symmetric and contains only 3 diagonals * @param hj * @return */ public static double[][] generateTriDiagMatrix(final double[] hj) { final int matrixSize = hj.length-1; // matrix size is numKnots-2 final double[][] lowDiag = new double[matrixSize][]; RecursiveAction[] ras = new RecursiveAction[matrixSize]; for (int index=0; index<matrixSize; index++) { final int rowSize = index+1; final int i = index; final double hjIndex = hj[index]; final double hjIndexP1 = hj[index+1]; final double oneO3 = 1.0/3.0; final double oneO6 = 1.0/6.0; final double[] tempDiag = MemoryManager.malloc8d(rowSize); ras[i] = new RecursiveAction() { @Override protected void compute() { ; tempDiag[i] = (hjIndex+hjIndexP1)*oneO3; if (i > 0) tempDiag[i-1] = hjIndex*oneO6; lowDiag[i] = Arrays.copyOf(tempDiag, rowSize); } }; } ForkJoinTask.invokeAll(ras); return lowDiag; } /*** * Given an matrix, a QR decomposition is carried out to the matrix as starT = QR. Given Q, an orthogonal bais * that is complement to Q is generated consisting of numBasis vectors. * * @param starT: double array that will have a QR decomposition carried out on * @param numBasis: integer denoting number of basis in the orthogonal complement * @return */ public static double[][] generateOrthogonalComplement(final double[][] orthMat, final double[][] starT, final int numBasis, long seed) { final int numOrthVec = orthMat[0].length; // number of vectors in original orthogonal basis final int vecSize = orthMat.length; // size of vector final double[][] orthMatT = transpose(orthMat); double[][] orthMatCompT = new double[numBasis][vecSize]; // store transpose of orthogonal complement double[][] orthMatCompT2 = new double[numBasis][vecSize]; double[][] orthMatCompT3; double[] innerProd = new double[numOrthVec]; double[] scaleProd = new double[vecSize]; // take the difference between random vectors and qMat orthMatCompT3 = subtract(generateIdentityMat(vecSize), ArrayUtils.multArrArr(orthMat, orthMatT)); for (int index = 0; index < numBasis; index++) { System.arraycopy(orthMatCompT3[index], 0, orthMatCompT2[index], 0, vecSize); } applyGramSchmit(orthMatCompT2); for (int index = 0; index < numBasis; index++) { orthMatCompT[index] = ArrayUtils.gaussianVector(seed + index, orthMatCompT[index]); genInnerProduct(orthMatT, orthMatCompT[index], innerProd); for (int basisInd = 0; basisInd < numOrthVec; basisInd++) { System.arraycopy(orthMatT[basisInd], 0, scaleProd, 0, vecSize); mult(scaleProd, innerProd[basisInd]); subtract(orthMatCompT[index], scaleProd, orthMatCompT[index]); } } // go through random vectors with orthogonal vector basis subtracted from it, make them orthogonal to each other applyGramSchmit(orthMatCompT); return orthMatCompT; } public static double[][] generateIdentityMat(int size) { double[][] identity = new double[size][size]; for (int index = 0; index < size; index++) identity[index][index] = 1.0; return identity; } public static double[][] generateQR(final double[][] starT) { Matrix starTMat = new Matrix(starT); // generate Zcs as in 3.3 QRDecomposition starTMat_qr = new QRDecomposition(starTMat); return starTMat_qr.getQ().getArray(); } public static void genInnerProduct(double[][] mat, double[] vector, double[] innerProd) { int numVec = mat.length; for (int index = 0; index < numVec; index++) { innerProd[index] = ArrayUtils.innerProduct(mat[index], vector); } } public static void applyGramSchmit(double[][] matT) { int numVec = matT.length; int vecSize = matT[0].length; double[] innerProd = new double[numVec]; double[] scaleVec = new double[vecSize]; for (int index = 0; index < numVec; index++) { genInnerProduct(matT, matT[index], innerProd); for (int indexJ = 0; indexJ < index; indexJ++) { // take the difference between random vectors System.arraycopy(matT[indexJ], 0, scaleVec, 0, vecSize); mult(scaleVec, innerProd[indexJ]); subtract(matT[index], scaleVec, matT[index]); } double mag = 1.0/l2norm(matT[index]); ArrayUtils.mult(matT[index], mag); // make vector to have unit magnitude } } public static double[][] expandLowTrian2Ful(double[][] cholL) { int numRows = cholL.length; final double[][] result = new double[numRows][]; RecursiveAction[] ras = new RecursiveAction[numRows]; for (int index = 0; index < numRows; index++) { final int i = index; final double[] tempResult = MemoryManager.malloc8d(numRows); ras[i] = new RecursiveAction() { @Override protected void compute() { for (int colIndex = 0; colIndex <= i; colIndex++) tempResult[colIndex] = cholL[i][colIndex]; result[i] = Arrays.copyOf(tempResult, numRows); } }; } ForkJoinTask.invokeAll(ras); return result; } public static double[][] matrixMultiply(double[][] A, double[][] B ) { int arow = A[0].length; // number of rows of result int acol = A.length; // number columns in A int bcol = B.length; // number of columns of B final double[][] result = new double[bcol][]; RecursiveAction[] ras = new RecursiveAction[acol]; for (int index = 0; index < acol; index++) { final int i = index; final double[] tempResult = new double[arow]; ras[i] = new RecursiveAction() { @Override protected void compute() { ArrayUtils.multArrVec(A, B[i], tempResult); result[i] = Arrays.copyOf(tempResult, arow); } }; } ForkJoinTask.invokeAll(ras); return ArrayUtils.transpose(result); } /** * * @param A * @param B * @param transposeResult: true will return A*B. Otherwise will return transpose(A*B) * @return */ public static double[][] matrixMultiplyTriagonal(double[][] A, TriDiagonalMatrix B, boolean transposeResult) { int arow = A.length; // number of rows of result final int bcol = B._size+2; // number of columns of B, K final int lastCol = bcol-1; // last column of B final int secondLastCol = bcol-2; // last column final int kMinus1 = bcol-3; // should be k-2 but we count from 0 and not 1, hence bcol-3 and not bcol-2 final int kMinus2 = bcol-4; final double[][] result = new double[bcol][]; RecursiveAction[] ras = new RecursiveAction[bcol]; for (int index = 0; index < bcol; index++) { // go through each column of TriDiagonalMatrix B final int i = index; final double[] tempResult = new double[arow]; final double[] bColVec = new double[B._size]; ras[i] = new RecursiveAction() { // multiply each column of B with A @Override protected void compute() { if (i==0) { bColVec[0] = B._first_diag[0]; } else if (i==1) { bColVec[0] = B._second_diag[0]; if (B._first_diag.length > 1) bColVec[1] = B._first_diag[1]; } else if (i==lastCol) { bColVec[kMinus1] = B._third_diag[kMinus1]; } else if (i==secondLastCol) { bColVec[kMinus2] = B._third_diag[kMinus2]; bColVec[kMinus1] =B._second_diag[kMinus1]; } else { bColVec[i-2] = B._third_diag[i-2]; bColVec[i-1] = B._second_diag[i-1]; bColVec[i] = B._first_diag[i]; } ArrayUtils.multArrVec(A, bColVec, tempResult); result[i] = Arrays.copyOf(tempResult, arow); } }; } ForkJoinTask.invokeAll(ras); return transposeResult?ArrayUtils.transpose(result):result; } public static double[] backwardSolve(double[][] L, double[] b, double[] res) { assert L != null && L.length == L[0].length && L.length == b.length; if (res==null) // only allocate memory if needed res = new double[b.length]; int lastIndex = b.length-1; for (int rowIndex = lastIndex; rowIndex >= 0; rowIndex--) { res[rowIndex] = b[rowIndex]; for (int colIndex = lastIndex; colIndex > rowIndex; colIndex--) { res[rowIndex] -= L[rowIndex][colIndex]*res[colIndex]; } res[rowIndex] /= L[rowIndex][rowIndex]; } return res; } /* * Impute missing values and transform numeric value x in col of dinfo._adaptedFrame */ private static double modifyNumeric(double x, int col, DataInfo dinfo) { double y = (Double.isNaN(x) && dinfo._imputeMissing) ? dinfo._numNAFill[col] : x; // Impute missing value if (dinfo._normSub != null && dinfo._normMul != null) // Transform x if requested y = (y - dinfo._normSub[col]) * dinfo._normMul[col]; return y; } /* * Return row with categoricals expanded in array tmp */ public static double[] expandRow(double[] row, DataInfo dinfo, double[] tmp, boolean modify_numeric) { // Categorical columns int cidx; for(int col = 0; col < dinfo._cats; col++) { if (Double.isNaN(row[col])) { if (dinfo._imputeMissing) cidx = dinfo.catNAFill()[col]; else if (!dinfo._catMissing[col]) continue; // Skip if entry missing and no NA bucket. All indicators will be zero. else cidx = dinfo._catOffsets[col+1]-1; // Otherwise, missing value turns into extra (last) factor } else { if ((dinfo._catOffsets[col + 1] - dinfo._catOffsets[col]) == 1) cidx = dinfo.getCategoricalId(col, 0); else cidx = dinfo.getCategoricalId(col, (int) row[col]); } if (((dinfo._catOffsets[col+1]-dinfo._catOffsets[col]) == 1) && cidx >=0) // binary data here, no column expansion, copy data tmp[cidx] = row[col]; else if(cidx >= 0) tmp[cidx] = 1; } // Numeric columns int chk_cnt = dinfo._cats; int exp_cnt = dinfo.numStart(); for(int col = 0; col < dinfo._nums; col++) { // Only do imputation and transformation if requested tmp[exp_cnt] = modify_numeric ? modifyNumeric(row[chk_cnt], col, dinfo) : row[chk_cnt]; exp_cnt++; chk_cnt++; } return tmp; } public static double[][] reshape1DArray(double[] arr, int m, int n) { double[][] arr2D = new double[m][n]; for (int i = 0; i < m; i++) { System.arraycopy(arr, i * n, arr2D[i], 0, n); } return arr2D; } public static EigenPair[] createSortedEigenpairs(double[] eigenvalues, double[][] eigenvectors) { int count = eigenvalues.length; EigenPair eigenPairs[] = new EigenPair[count]; for (int i = 0; i < count; i++) { eigenPairs[i] = new EigenPair(eigenvalues[i], eigenvectors[i]); } sort(eigenPairs); return eigenPairs; } public static EigenPair[] createReverseSortedEigenpairs(double[] eigenvalues, double[][] eigenvectors) { EigenPair[] eigenPairs = createSortedEigenpairs(eigenvalues, eigenvectors); reverse(eigenPairs); return eigenPairs; } public static double[] extractEigenvaluesFromEigenpairs(EigenPair[] eigenPairs) { int count = eigenPairs.length; double[] eigenvalues = new double[count]; for (int i = 0; i < count; i++) { eigenvalues[i] = eigenPairs[i].eigenvalue; } return eigenvalues; } public static double[][] extractEigenvectorsFromEigenpairs(EigenPair[] eigenPairs) { int count = eigenPairs.length; double[][] eigenvectors = new double[count][]; for (int i = 0; i < count; i++) { eigenvectors[i] = eigenPairs[i].eigenvector; } return eigenvectors; } public static class FindMaxIndex extends MRTask<FindMaxIndex> { public long _maxIndex = -1; int _colIndex; double _maxValue; public FindMaxIndex(int colOfInterest, double maxValue) { _colIndex = colOfInterest; _maxValue = maxValue; } @Override public void map(Chunk[] cs) { int rowLen = cs[0].len(); long startRowIndex = cs[0].start(); for (int rowIndex=0; rowIndex < rowLen; rowIndex++) { double rowVal = cs[_colIndex].atd(rowIndex); if (rowVal == _maxValue) { _maxIndex = startRowIndex+rowIndex; } } } @Override public void reduce(FindMaxIndex other) { if (this._maxIndex < 0) this._maxIndex = other._maxIndex; else if (this._maxIndex > other._maxIndex) this._maxIndex = other._maxIndex; } } public static class CopyQtoQMatrix extends MRTask<CopyQtoQMatrix> { @Override public void map(Chunk[] cs) { int totColumn = cs.length; // all columns in cs. int halfColumn = totColumn/2; // start of Q matrix int totRows = cs[0].len(); for (int rowIndex=0; rowIndex < totRows; rowIndex++) { for (int colIndex=0; colIndex < halfColumn; colIndex++) { cs[colIndex].set(rowIndex, cs[colIndex+halfColumn].atd(rowIndex)); } } } } /** * Computes B = XY where X is n by k and Y is k by p, saving result in new vecs * Input: dinfo = X (large frame) with dinfo._adaptedFrame passed to doAll * yt = Y' = transpose of Y (small matrix) * Output: XY (large frame) is n by p */ public static class BMulTask extends FrameTask<BMulTask> { final double[][] _yt; // _yt = Y' (transpose of Y) public BMulTask(Key<Job> jobKey, DataInfo dinfo, double[][] yt) { super(jobKey, dinfo); _yt = yt; } @Override protected void processRow(long gid, DataInfo.Row row, NewChunk[] outputs) { for(int p = 0; p < _yt.length; p++) { double x = row.innerProduct(_yt[p]); outputs[p].addNum(x); } } } /** * Compute B = XY where where X is n by k and Y is k by p and they are both stored as Frames. The * result will be stored in part of X as X|B. Make sure you allocate the correct memory to your X * frame. In addition, this will only work with numerical columns. * * Note that there are a size limitation on y Frame. It needs to have row indexed by integer values only and * not long. Otherwise, the result will be jibberish. */ public static class BMulTaskMatrices extends MRTask<BMulTaskMatrices> { final Frame _y; // frame to store y final int _nyChunks; // number of chunks of y Frame final int _yColNum; public BMulTaskMatrices(Frame y) { _y = y; _nyChunks = _y.anyVec().nChunks(); _yColNum = _y.numCols(); } private void mulResultPerYChunk(Chunk[] xChunk, Chunk[] yChunk) { int xChunkLen = xChunk[0].len(); int yColLen = yChunk.length; int yChunkLen = yChunk[0].len(); int resultColOffset = xChunk.length-yColLen; // start of result column in xChunk int xChunkColOffset = (int) yChunk[0].start(); for (int colIndex=0; colIndex < yColLen; colIndex++) { int resultColIndex = colIndex+resultColOffset; for (int rowIndex=0; rowIndex < xChunkLen; rowIndex++) { double origResult = xChunk[resultColIndex].atd(rowIndex); for (int interIndex=0; interIndex < yChunkLen; interIndex++) { origResult += xChunk[interIndex+xChunkColOffset].atd(rowIndex)*yChunk[colIndex].atd(interIndex); } xChunk[resultColIndex].set(rowIndex, origResult); } } } @Override public void map(Chunk[] xChunk) { Chunk[] ychunk = new Chunk[_y.numCols()]; for (int ychunkInd=0; ychunkInd < _nyChunks; ychunkInd++) { for (int chkIndex =0 ; chkIndex < _yColNum; chkIndex++) // grab a y chunk ychunk[chkIndex] = _y.vec(chkIndex).chunkForChunkIdx(ychunkInd); mulResultPerYChunk(xChunk, ychunk); } } } /** * Computes B = XY where X is n by k and Y is k by p, saving result in same frame * Input: [X,B] (large frame) passed to doAll, where we write to B * yt = Y' = transpose of Y (small matrix) * ncolX = number of columns in X */ public static class BMulInPlaceTask extends MRTask<BMulInPlaceTask> { final DataInfo _xinfo; // Info for frame X final double[][] _yt; // _yt = Y' (transpose of Y) final int _ncolX; // Number of cols in X public boolean _originalImplementation = true; // if true will produce xB+b0. If false, just inner product public BMulInPlaceTask(DataInfo xinfo, double[][] yt, int nColsExp) { assert yt != null && yt[0].length == nColsExp; _xinfo = xinfo; _ncolX = xinfo._adaptedFrame.numCols(); _yt = yt; } public BMulInPlaceTask(DataInfo xinfo, double[][] yt, int nColsExp, boolean originalWay) { assert yt != null && yt[0].length == nColsExp; _xinfo = xinfo; _ncolX = xinfo._adaptedFrame.numCols(); _yt = yt; _originalImplementation = originalWay; } @Override public void map(Chunk[] cs) { assert cs.length == _ncolX + _yt.length; int lastColInd = _ncolX-1; // Copy over only X frame chunks Chunk[] xchk = new Chunk[_ncolX]; // only refer to X part, old part of frame DataInfo.Row xrow = _xinfo.newDenseRow(); System.arraycopy(cs,0,xchk,0,_ncolX); double sum; for(int row = 0; row < cs[0]._len; row++) { // Extract row of X _xinfo.extractDenseRow(xchk, row, xrow); if (xrow.isBad()) continue; int bidx = _ncolX; for (double[] ps : _yt ) { // Inner product of X row with Y column (Y' row) sum = _originalImplementation?xrow.innerProduct(ps):xrow.innerProduct(ps)-ps[lastColInd]; cs[bidx].set(row, sum); // Save inner product to B, new part of frame bidx++; } assert bidx == cs.length; } } } /** * Computes A'Q where A is n by p and Q is n by k * Input: [A,Q] (large frame) passed to doAll * Output: atq = A'Q (small matrix) is \tilde{p} by k where \tilde{p} = number of cols in A with categoricals expanded */ public static class SMulTask extends MRTask<SMulTask> { final DataInfo _ainfo; // Info for frame A final int _ncolA; // Number of cols in A final int _ncolExp; // Number of cols in A with categoricals expanded final int _ncolQ; // Number of cols in Q public double[][] _atq; // Output: A'Q is p_exp by k, where p_exp = number of cols in A with categoricals expanded public SMulTask(DataInfo ainfo, int ncolQ) { _ainfo = ainfo; _ncolA = ainfo._adaptedFrame.numCols(); _ncolExp = numColsExp(ainfo._adaptedFrame,true); _ncolQ = ncolQ; } public SMulTask(DataInfo ainfo, int ncolQ, int ncolExp) { _ainfo = ainfo; _ncolA = ainfo._adaptedFrame.numCols(); _ncolExp = ncolExp; // when call from GLRM or PCA _ncolQ = ncolQ; } @Override public void map(Chunk cs[]) { assert (_ncolA + _ncolQ) == cs.length; _atq = new double[_ncolExp][_ncolQ]; // not okay to share. for(int k = _ncolA; k < (_ncolA + _ncolQ); k++) { // Categorical columns int cidx; for(int p = 0; p < _ainfo._cats; p++) { for(int row = 0; row < cs[0]._len; row++) { if(cs[p].isNA(row) && _ainfo._skipMissing) continue; double q = cs[k].atd(row); double a = cs[p].atd(row); if (Double.isNaN(a)) { if (_ainfo._imputeMissing) cidx = _ainfo.catNAFill()[p]; else if (!_ainfo._catMissing[p]) continue; // Skip if entry missing and no NA bucket. All indicators will be zero. else cidx = _ainfo._catOffsets[p+1]-1; // Otherwise, missing value turns into extra (last) factor } else cidx = _ainfo.getCategoricalId(p, (int)a); if(cidx >= 0) _atq[cidx][k-_ncolA] += q; // Ignore categorical levels outside domain } } // Numeric columns int pnum = 0; int pexp = _ainfo.numStart(); for(int p = _ainfo._cats; p < _ncolA; p++) { for(int row = 0; row < cs[0]._len; row++) { if(cs[p].isNA(row) && _ainfo._skipMissing) continue; double q = cs[k].atd(row); double a = cs[p].atd(row); a = modifyNumeric(a, pnum, _ainfo); _atq[pexp][k-_ncolA] += q * a; } pexp++; pnum++; } assert pexp == _atq.length; } } @Override public void reduce(SMulTask other) { ArrayUtils.add(_atq, other._atq); } } /*** * compute the cholesky of xx which stores the lower part of a symmetric square tridiagonal matrix. We assume * that all the elements are positive and it is in place replacement where L will be stored back in the input * xx. * @param xx * @return */ public static void choleskySymDiagMat(double[][] xx) { xx[0][0] = Math.sqrt(xx[0][0]); int rowNumber = xx.length; for (int row = 1; row < rowNumber; row++) { // deals with lower diagonal element int lowerDiag = row-1; if (lowerDiag > 0) { int kMinus2 = lowerDiag - 1; xx[row][lowerDiag] = (xx[row][lowerDiag] - xx[row][kMinus2])/xx[lowerDiag][lowerDiag]; } else { xx[row][lowerDiag] = xx[row][lowerDiag]/xx[lowerDiag][lowerDiag]; } // deals with diagonal element xx[row][row] = Math.sqrt(xx[row][row]-xx[row][lowerDiag]*xx[row][lowerDiag]); } } /** * Get R = L' from Cholesky decomposition Y'Y = LL' (same as R from Y = QR) * @param jobKey Job key for Gram calculation * @param yinfo DataInfo for Y matrix * @param transpose Should result be transposed to get L? * @return L or R matrix from Cholesky of Y Gram */ public static double[][] computeR(Key<Job> jobKey, DataInfo yinfo, boolean transpose) { // Calculate Cholesky of Y Gram to get R' = L matrix Gram.GramTask gtsk = new Gram.GramTask(jobKey, yinfo); // Gram is Y'Y/n where n = nrow(Y) gtsk.doAll(yinfo._adaptedFrame); Gram.Cholesky chol = gtsk._gram.cholesky(null); // If Y'Y = LL' Cholesky, then R = L' double[][] L = chol.getL(); ArrayUtils.mult(L, Math.sqrt(gtsk._nobs)); // Must scale since Cholesky of Y'Y/n where nobs = nrow(Y) return transpose ? L : ArrayUtils.transpose(L); } /** * Solve for Q from Y = QR factorization and write into new frame * @param jobKey Job key for Gram calculation * @param yinfo DataInfo for Y matrix * @param ywfrm Input frame [Y,W] where we write into W * @return l2 norm of Q - W, where W is old matrix in frame, Q is computed factorization */ public static double computeQ(Key<Job> jobKey, DataInfo yinfo, Frame ywfrm, double[][] xx) { xx = computeR(jobKey, yinfo, true); ForwardSolve qrtsk = new ForwardSolve(yinfo, xx); qrtsk.doAll(ywfrm); return qrtsk._sse; // \sum (Q_{i,j} - W_{i,j})^2 } public static double[][] computeQ(Key<Job> jobKey, DataInfo yinfo, Frame ywfrm) { double[][] xx = computeR(jobKey, yinfo, true); ForwardSolve qrtsk = new ForwardSolve(yinfo, xx); qrtsk.doAll(ywfrm); return xx; // \sum (Q_{i,j} - W_{i,j})^2 } /** * Solve for Q from Y = QR factorization and write into Y frame * @param jobKey Job key for Gram calculation * @param yinfo DataInfo for Y matrix */ public static double[][] computeQInPlace(Key<Job> jobKey, DataInfo yinfo) { double[][] cholL = computeR(jobKey, yinfo, true); ForwardSolveInPlace qrtsk = new ForwardSolveInPlace(yinfo, cholL); qrtsk.doAll(yinfo._adaptedFrame); return cholL; } /** * Given lower triangular L, solve for Q in QL' = A (LQ' = A') using forward substitution * Dimensions: A is n by p, Q is n by p, R = L' is p by p * Input: [A,Q] (large frame) passed to doAll, where we write to Q */ public static class ForwardSolve extends MRTask<ForwardSolve> { final DataInfo _ainfo; // Info for frame A final int _ncols; // Number of cols in A and in Q final double[][] _L; public double _sse; // Output: Sum-of-squared difference between old and new Q public ForwardSolve(DataInfo ainfo, double[][] L) { assert L != null && L.length == L[0].length && L.length == ainfo._adaptedFrame.numCols(); _ainfo = ainfo; _ncols = ainfo._adaptedFrame.numCols(); _L = L; _sse = 0; } @Override public void map(Chunk cs[]) { assert 2 * _ncols == cs.length; // Copy over only A frame chunks Chunk[] achks = new Chunk[_ncols]; System.arraycopy(cs,0,achks,0,_ncols); for(int row = 0; row < cs[0]._len; row++) { // 1) Extract single expanded row of A DataInfo.Row arow = _ainfo.newDenseRow(); _ainfo.extractDenseRow(achks, row, arow); if (arow.isBad()) continue; double[] aexp = arow.expandCats(); // 2) Solve for single row of Q using forward substitution double[] qrow = forwardSolve(_L, aexp); // 3) Save row of solved values into Q int i = 0; for(int d = _ncols; d < 2 * _ncols; d++) { double qold = cs[d].atd(row); double diff = qrow[i] - qold; _sse += diff * diff; // Calculate SSE between Q_new and Q_old cs[d].set(row, qrow[i++]); } assert i == qrow.length; } } } /** * Given lower triangular L, solve for Q in QL' = A (LQ' = A') using forward substitution * Dimensions: A is n by p, Q is n by p, R = L' is p by p * Input: A (large frame) passed to doAll, where we overwrite each row of A with its row of Q */ public static class ForwardSolveInPlace extends MRTask<ForwardSolveInPlace> { final DataInfo _ainfo; // Info for frame A final int _ncols; // Number of cols in A final double[][] _L; public ForwardSolveInPlace(DataInfo ainfo, double[][] L) { assert L != null && L.length == L[0].length && L.length == ainfo._adaptedFrame.numCols(); _ainfo = ainfo; _ncols = ainfo._adaptedFrame.numCols(); _L = L; } @Override public void map(Chunk cs[]) { assert _ncols == cs.length; // Copy over only A frame chunks Chunk[] achks = new Chunk[_ncols]; System.arraycopy(cs,0,achks,0,_ncols); for(int row = 0; row < cs[0]._len; row++) { // 1) Extract single expanded row of A DataInfo.Row arow = _ainfo.newDenseRow(); _ainfo.extractDenseRow(achks, row, arow); if (arow.isBad()) continue; double[] aexp = arow.expandCats(); // 2) Solve for single row of Q using forward substitution double[] qrow = forwardSolve(_L, aexp); assert qrow.length == _ncols; // 3) Overwrite row of A with row of solved values Q for(int d = 0; d < _ncols; d++) cs[d].set(row, qrow[d]); } } } /** Number of columns with categoricals expanded. * @return Number of columns with categoricals expanded into indicator columns */ public static int numColsExp(Frame fr, boolean useAllFactorLevels) { final int uAFL = useAllFactorLevels ? 0 : 1; int cols = 0; for( Vec vec : fr.vecs() ) cols += (vec.isCategorical() && vec.domain() != null) ? vec.domain().length - uAFL : 1; return cols; } static double[] multiple(double[] diagYY /*diagonal*/, int nTot, int nVars) { int ny = diagYY.length; for (int i = 0; i < ny; i++) { diagYY[i] *= nTot; } double[][] uu = new double[ny][ny]; for (int i = 0; i < ny; i++) { for (int j = 0; j < ny; j++) { double yyij = i==j ? diagYY[i] : 0; uu[i][j] = (yyij - diagYY[i] * diagYY[j] / nTot) / (nVars * Math.sqrt(diagYY[i] * diagYY[j])); if (Double.isNaN(uu[i][j])) { uu[i][j] = 0; } } } EigenvalueDecomposition eigen = new EigenvalueDecomposition(new Matrix(uu)); double[] eigenvalues = eigen.getRealEigenvalues(); double[][] eigenvectors = eigen.getV().getArray(); int maxIndex = ArrayUtils.maxIndex(eigenvalues); return eigenvectors[maxIndex]; } static class ProjectOntoEigenVector extends MRTask<ProjectOntoEigenVector> { ProjectOntoEigenVector(double[] yCoord) { _yCoord = yCoord; } final double[] _yCoord; //projection @Override public void map(Chunk[] cs, NewChunk[] nc) { for (int i=0;i<cs[0]._len;++i) { if (cs[0].isNA(i)) { nc[0].addNA(); } else { int which = (int) cs[0].at8(i); nc[0].addNum((float)_yCoord[which]); //make it more reproducible by casting to float } } } } public static double[] toEigenArray(Vec src) { Key<Frame> source = Key.make(); Key<Frame> dest = Key.make(); Frame train = new Frame(source, new String[]{"enum"}, new Vec[]{src}); int maxLevels = 1024; // keep eigen projection method reasonably fast boolean created=false; if (src.cardinality()>maxLevels) { DKV.put(train); created=true; Log.info("Reducing the cardinality of a categorical column with " + src.cardinality() + " levels to " + maxLevels); train = Interaction.getInteraction(train._key, train.names(), maxLevels).execImpl(dest).get(); } DataInfo dinfo = new DataInfo(train, null, 0, true /*_use_all_factor_levels*/, DataInfo.TransformType.NONE, DataInfo.TransformType.NONE, /* skipMissing */ false, /* imputeMissing */ true, /* missingBucket */ false, /* weights */ false, /* offset */ false, /* fold */ false, /* intercept */ false); DKV.put(dinfo); Gram.GramTask gtsk = new Gram.GramTask(null, dinfo).doAll(dinfo._adaptedFrame); // round the numbers to float precision to be more reproducible double[] rounded = new double[gtsk._gram._diag.length]; for (int i = 0; i < rounded.length; ++i) rounded[i] = (float) gtsk._gram._diag[i]; dinfo.remove(); double [] array = multiple(rounded, (int) gtsk._nobs, 1); if (created) { train.remove(); DKV.remove(source); } return array; } public static Vec toEigen(Vec src) { Key<Frame> source = Key.make(); Key<Frame> dest = Key.make(); Frame train = new Frame(source, new String[]{"enum"}, new Vec[]{src}); int maxLevels = 1024; // keep eigen projection method reasonably fast boolean created=false; if (src.cardinality()>maxLevels) { DKV.put(train); created=true; Log.info("Reducing the cardinality of a categorical column with " + src.cardinality() + " levels to " + maxLevels); train = Interaction.getInteraction(train._key, train.names(), maxLevels).execImpl(dest).get(); } Vec v = new ProjectOntoEigenVector(toEigenArray(src)).doAll(1, (byte) 3, train).outputFrame().anyVec(); if (created) { train.remove(); DKV.remove(source); } return v; } public static ToEigenVec toEigen = new ToEigenVec() { @Override public Vec toEigenVec(Vec src) { return toEigen(src); } }; public static double[] toEigenProjectionArray(Frame _origTrain, Frame _train, boolean expensive) { if (expensive && _origTrain != null && _origTrain != _train) { List<Double> projections = new ArrayList<>(); for (int i = 0; i < _origTrain.numCols(); i++) { Vec currentCol = _origTrain.vec(i); if (currentCol.isCategorical()) { double[] actProjection = toEigenArray(currentCol); for (double v : actProjection) { projections.add(v); } } } double[] primitive_projections = new double[projections.size()]; for (int i = 0; i < projections.size(); i++) { primitive_projections[i] = projections.get(i); } return primitive_projections; } return null; } public static String getMatrixInString(double[][] matrix) { int dimX = matrix.length; if (dimX <= 0) { return ""; } int dimY = matrix[0].length; for (int x = 1; x < dimX; x++) { if (matrix[x].length != dimY) { return "Stacked matrix!"; } } StringBuilder stringOfMatrix = new StringBuilder(); for (int x = 0; x < dimX; x++) { for (int y = 0; y < dimY; y++) { if (matrix[x][y] > 0) { stringOfMatrix.append(' '); // a leading space before a number } stringOfMatrix.append(String.format("%.4f\t", matrix[x][y])); } stringOfMatrix.append('\n'); } return stringOfMatrix.toString(); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/word2vec/HBWTree.java
package hex.word2vec; import water.Key; import water.Keyed; import java.util.Arrays; class HBWTree extends Keyed<HBWTree> { private static final int MAX_CODE_LENGTH = 40; int[][] _code; int[][] _point; public HBWTree() {} private HBWTree(Key<HBWTree> key, int size) { super(key); _code = new int[size][]; _point = new int[size][]; } static HBWTree buildHuffmanBinaryWordTree(long[] wordCounts) { final int size = wordCounts.length; long[] count = new long[size * 2 - 1]; int[] binary = new int[size * 2 - 1]; int[] parent_node = new int[size * 2 - 1]; System.arraycopy(wordCounts, 0, count, 0, size); Arrays.fill(count, size, size * 2 - 1, (long) 1e15); // Following algorithm constructs the Huffman tree by adding one node at a time int min1i, min2i, pos1, pos2; pos1 = size - 1; pos2 = size; for (int i = 0; i < size - 1; i++) { // First, find two smallest nodes 'min1, min2' if (pos1 >= 0) { if (count[pos1] < count[pos2]) { min1i = pos1; pos1--; } else { min1i = pos2; pos2++; } } else { min1i = pos2; pos2++; } if (pos1 >= 0) { if (count[pos1] < count[pos2]) { min2i = pos1; pos1--; } else { min2i = pos2; pos2++; } } else { min2i = pos2; pos2++; } count[size + i] = count[min1i] + count[min2i]; parent_node[min1i] = size + i; parent_node[min2i] = size + i; binary[min2i] = 1; } HBWTree t = new HBWTree(Key.<HBWTree>make(), size); int[] point = new int[MAX_CODE_LENGTH]; int[] code = new int[MAX_CODE_LENGTH]; // Now assign binary code to each vocabulary word for (int j = 0; j < size; j++) { int k = j; int m = 0; while (true) { int val = binary[k]; code[m] = val; point[m] = k; m++; k = parent_node[k]; if (k == 0) break; } t._code[j] = new int[m]; t._point[j] = new int[m + 1]; t._point[j][0] = size - 2; for (int l = 0; l < m; l++) { t._code[j][m - l - 1] = code[l]; t._point[j][m - l] = point[l] - size; } } return t; } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/word2vec/Word2Vec.java
package hex.word2vec; import hex.ModelBuilder; import hex.ModelCategory; import hex.word2vec.Word2VecModel.*; import water.Job; import water.fvec.Frame; import water.fvec.Vec; import water.util.Log; import water.util.StringUtils; import java.util.LinkedList; import java.util.List; public class Word2Vec extends ModelBuilder<Word2VecModel,Word2VecModel.Word2VecParameters,Word2VecModel.Word2VecOutput> { public enum WordModel { SkipGram, CBOW } public enum NormModel { HSM } @Override public ModelCategory[] can_build() { return new ModelCategory[]{ ModelCategory.WordEmbedding, }; } @Override public BuilderVisibility builderVisibility() { return BuilderVisibility.Stable; } @Override public boolean isSupervised() { return false; } public Word2Vec(boolean startup_once) { super(new Word2VecParameters(), startup_once); } public Word2Vec(Word2VecModel.Word2VecParameters parms) { super(parms); init(false); } @Override protected Word2VecDriver trainModelImpl() { return new Word2VecDriver(); } /** Initialize the ModelBuilder, validating all arguments and preparing the * training frame. This call is expected to be overridden in the subclasses * and each subclass will start with "super.init();". * * Verify that at the first column contains strings. Validate _vec_size, _window_size, * _sent_sample_rate, _init_learning_rate, and epochs for values within range. */ @Override public void init(boolean expensive) { super.init(expensive); if (_parms._train != null) { // Can be called without an existing frame, but when present check for a string col if (_parms.train().vecs().length == 0 || ! _parms.trainVec().isString()) error("_train", "The first column of the training input frame has to be column of Strings."); } if (_parms._vec_size > Word2VecParameters.MAX_VEC_SIZE) error("_vec_size", "Requested vector size of "+_parms._vec_size +" in Word2Vec, exceeds limit of "+Word2VecParameters.MAX_VEC_SIZE+"."); if (_parms._vec_size < 1) error("_vec_size", "Requested vector size of " + _parms._vec_size + " in Word2Vec, is not allowed."); if (_parms._window_size < 1) error("_window_size", "Negative window size not allowed for Word2Vec. Expected value > 0, received " + _parms._window_size); if (_parms._sent_sample_rate < 0.0) error("_sent_sample_rate", "Negative sentence sample rate not allowed for Word2Vec. Expected a value > 0.0, received " + _parms._sent_sample_rate); if (_parms._init_learning_rate < 0.0) error("_init_learning_rate", "Negative learning rate not allowed for Word2Vec. Expected a value > 0.0, received " + _parms._init_learning_rate); if (_parms._epochs < 1) error("_epochs", "Negative epoch count not allowed for Word2Vec. Expected value > 0, received " + _parms._epochs); } @Override protected void ignoreBadColumns(int npredictors, boolean expensive) { // Do not remove String columns - these are the ones we need! } @Override public boolean haveMojo() { return true; } private class Word2VecDriver extends Driver { @Override public void computeImpl() { Word2VecModel model = null; try { init(! _parms.isPreTrained()); // expensive == true IFF the model is not pre-trained // The model to be built model = new Word2VecModel(_job._result, _parms, new Word2VecOutput(Word2Vec.this)); model.delete_and_lock(_job); if (_parms.isPreTrained()) convertToModel(_parms._pre_trained.get(), model); else trainModel(model); } finally { if (model != null) model.unlock(_job); } } private void trainModel(Word2VecModel model) { Log.info("Word2Vec: Initializing model training."); Word2VecModelInfo modelInfo = Word2VecModelInfo.createInitialModelInfo(_parms); // main loop Log.info("Word2Vec: Starting to train model, " + _parms._epochs + " epochs."); long tstart = System.currentTimeMillis(); for (int i = 0; i < _parms._epochs; i++) { long start = System.currentTimeMillis(); WordVectorTrainer trainer = new WordVectorTrainer(_job, modelInfo).doAll(_parms.trainVec()); long stop = System.currentTimeMillis(); long actProcessedWords = trainer._processedWords; long estProcessedWords = trainer._nodeProcessedWords._val; if (estProcessedWords < 0.95 * actProcessedWords) Log.warn("Estimated number processed words " + estProcessedWords + " is significantly lower than actual number processed words " + actProcessedWords); trainer.updateModelInfo(modelInfo); model.update(_job); // Early version of model is visible double duration = (stop - start) / 1000.0; Log.info("Epoch " + i + " took " + duration + "s; Words trained/s: " + actProcessedWords / duration); model._output._epochs=i; if (stop_requested()) { // do at least one iteration to avoid null model being returned and all hell will break loose break; } } long tstop = System.currentTimeMillis(); Log.info("Total time: " + (tstop - tstart) / 1000.0); Log.info("Finished training the Word2Vec model."); model.buildModelOutput(modelInfo); } private void convertToModel(Frame preTrained, Word2VecModel model) { if (_parms._vec_size != preTrained.numCols() - 1) { throw new IllegalStateException("Frame with pre-trained model doesn't conform to the specified vector length."); } WordVectorConverter result = new WordVectorConverter(_job, _parms._vec_size, (int) preTrained.numRows()).doAll(preTrained); model.buildModelOutput(result._words, result._syn0); } } public static Job<Word2VecModel> fromPretrainedModel(Frame model) { if (model == null || model.numCols() < 2) { throw new IllegalArgumentException("Frame representing an external word2vec needs to have at least 2 columns."); } if (model.vec(0).get_type() != Vec.T_STR) { throw new IllegalArgumentException("First column is expected to contain the dictionary words and be represented as String, " + "instead got " + model.vec(0).get_type_str()); } List<String> colErrors = new LinkedList<>(); for (int i = 1; i < model.numCols(); i++) { if (model.vec(i).get_type() != Vec.T_NUM) { colErrors.add(model.name(i) + " (type " + model.vec(i).get_type_str() + ")"); } } if (! colErrors.isEmpty()) { throw new IllegalArgumentException("All components of word2vec mapping are expected to be numeric. Invalid columns: " + StringUtils.join(", ", colErrors)); } Word2VecModel.Word2VecParameters p = new Word2VecModel.Word2VecParameters(); p._vec_size = model.numCols() - 1; p._pre_trained = model._key; return new Word2Vec(p).trainModel(); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/word2vec/Word2VecModel.java
package hex.word2vec; import hex.Model; import hex.ModelCategory; import hex.ModelMetrics; import hex.word2vec.Word2VecModel.Word2VecOutput; import hex.word2vec.Word2VecModel.Word2VecParameters; import water.*; import water.fvec.Chunk; import water.fvec.Frame; import water.fvec.NewChunk; import water.fvec.Vec; import water.parser.BufferedString; import water.util.IcedHashMap; import water.util.IcedHashMapGeneric; import water.util.IcedLong; import water.util.RandomUtils; import java.util.*; public class Word2VecModel extends Model<Word2VecModel, Word2VecParameters, Word2VecOutput> { public Word2VecModel(Key<Word2VecModel> selfKey, Word2VecParameters params, Word2VecOutput output) { super(selfKey, params, output); assert(Arrays.equals(_key._kb, selfKey._kb)); } @Override public ModelMetrics.MetricBuilder makeMetricBuilder(String[] domain) { throw H2O.unimpl("No Model Metrics for Word2Vec."); } @Override public double[] score0(Chunk[] cs, int foo, double data[], double preds[]) { throw H2O.unimpl(); } @Override protected double[] score0(double data[], double preds[]) { throw H2O.unimpl(); } @Override public Word2VecMojoWriter getMojo() { return new Word2VecMojoWriter(this); } /** * Converts this word2vec model to a Frame. * @return Frame made of columns: Word, V1, .., Vn. Word column holds the vocabulary associated * with this word2vec model, and columns V1, .., Vn represent the embeddings in the n-dimensional space. */ public Frame toFrame() { Vec zeroVec = null; try { zeroVec = Vec.makeZero(_output._words.length); byte[] types = new byte[1 + _output._vecSize]; Arrays.fill(types, Vec.T_NUM); types[0] = Vec.T_STR; String[] colNames = new String[types.length]; colNames[0] = "Word"; for (int i = 1; i < colNames.length; i++) colNames[i] = "V" + i; return new ConvertToFrameTask(this).doAll(types, zeroVec).outputFrame(colNames, null); } finally { if (zeroVec != null) zeroVec.remove(); } } private static class ConvertToFrameTask extends MRTask<ConvertToFrameTask> { private Key<Word2VecModel> _modelKey; private transient Word2VecModel _model; public ConvertToFrameTask(Word2VecModel model) { _modelKey = model._key; } @Override protected void setupLocal() { _model = DKV.getGet(_modelKey); } @Override public void map(Chunk[] cs, NewChunk[] ncs) { assert cs.length == 1; assert ncs.length == _model._output._vecSize + 1; Chunk chk = cs[0]; int wordOffset = (int) chk.start(); int vecPos = _model._output._vecSize * wordOffset; for (int i = 0; i < chk._len; i++) { ncs[0].addStr(_model._output._words[wordOffset + i]); for (int j = 1; j < ncs.length; j++) ncs[j].addNum(_model._output._vecs[vecPos++]); } } } /** * Takes an input string can return the word vector for that word. * * @param target - String of desired word * @return float array containing the word vector values or null if * the word isn't present in the vocabulary. */ public float[] transform(String target) { return transform(new BufferedString(target)); } private float[] transform(BufferedString word) { if (! _output._vocab.containsKey(word)) return null; int wordIdx = _output._vocab.get(word); return Arrays.copyOfRange(_output._vecs, wordIdx * _output._vecSize, (wordIdx + 1) * _output._vecSize); } public enum AggregateMethod { NONE, AVERAGE } public Frame transform(Vec wordVec, AggregateMethod aggregateMethod) { if (wordVec.get_type() != Vec.T_STR) { throw new IllegalArgumentException("Expected a string vector, got " + wordVec.get_type_str() + " vector."); } byte[] types = new byte[_output._vecSize]; Arrays.fill(types, Vec.T_NUM); MRTask<?> transformTask = aggregateMethod == AggregateMethod.AVERAGE ? new Word2VecAggregateTask(this) : new Word2VecTransformTask(this); return transformTask.doAll(types, wordVec).outputFrame(Key.<Frame>make(), null, null); } private static class Word2VecTransformTask extends MRTask<Word2VecTransformTask> { private Word2VecModel _model; public Word2VecTransformTask(Word2VecModel model) { _model = model; } @Override public void map(Chunk[] cs, NewChunk[] ncs) { assert cs.length == 1; Chunk chk = cs[0]; BufferedString tmp = new BufferedString(); for (int i = 0; i < chk._len; i++) { if (chk.isNA(i)) { for (NewChunk nc : ncs) nc.addNA(); } else { BufferedString word = chk.atStr(tmp, i); float[] vs = _model.transform(word); if (vs == null) for (NewChunk nc : ncs) nc.addNA(); else for (int j = 0; j < ncs.length; j++) ncs[j].addNum(vs[j]); } } } } private static class Word2VecAggregateTask extends MRTask<Word2VecAggregateTask> { private Word2VecModel _model; public Word2VecAggregateTask(Word2VecModel model) { _model = model; } @Override public void map(Chunk[] cs, NewChunk[] ncs) { assert cs.length == 1; Chunk chk = cs[0]; // skip words that belong to a sequence started in a previous chunk int offset = 0; if (chk.cidx() > 0) { // first chunk doesn't have an offset int naPos = findNA(chk); if (naPos < 0) return; // chunk doesn't contain an end of sequence and should not be processed offset = naPos + 1; } // process this chunk, if the last sequence is not terminated in this chunk, roll-over to the next chunk float[] aggregated = new float[ncs.length]; int seqLength = 0; boolean seqOpen = false; BufferedString tmp = new BufferedString(); chunkLoop: do { for (int i = offset; i < chk._len; i++) { if (chk.isNA(i)) { writeAggregate(seqLength, aggregated, ncs); Arrays.fill(aggregated, 0.0f); seqLength = 0; seqOpen = false; if (chk != cs[0]) break chunkLoop; // we just closed a sequence that was left open in one of the previous chunks } else { BufferedString word = chk.atStr(tmp, i); float[] vs = _model.transform(word); if (vs != null) { for (int j = 0; j < ncs.length; j++) aggregated[j] += vs[j]; seqLength++; } seqOpen = true; } } offset = 0; } while ((chk = chk.nextChunk()) != null); // last sequence doesn't have to be terminated by NA if (seqOpen) writeAggregate(seqLength, aggregated, ncs); } private void writeAggregate(int seqLength, float[] aggregated, NewChunk[] ncs) { if (seqLength == 0) for (NewChunk nc : ncs) nc.addNA(); else for (int j = 0; j < ncs.length; j++) ncs[j].addNum(aggregated[j] / seqLength); } private int findNA(Chunk chk) { for (int i = 0; i < chk._len; i++) if (chk.isNA(i)) return i; return -1; } } /** * Find synonyms (i.e. word-vectors with the highest cosine similarity) * * @param target String of desired word * @param cnt Number of synonyms to find */ public Map<String, Float> findSynonyms(String target, int cnt) { float[] vec = transform(target); if ((vec == null) || (cnt == 0)) return Collections.emptyMap(); int[] synonyms = new int[cnt]; float[] scores = new float[cnt]; int min = 0; for (int i = 0; i < cnt; i++) { synonyms[i] = i; scores[i] = cosineSimilarity(vec, i * vec.length, _output._vecs); if (scores[i] < scores[min]) min = i; } final int vocabSize = _output._vocab.size(); for (int i = cnt; i < vocabSize; i++) { float score = cosineSimilarity(vec, i * vec.length, _output._vecs); if ((score <= scores[min]) || (score >= 0.999999)) continue; synonyms[min] = i; scores[min] = score; // find a new min min = 0; for (int j = 1; j < cnt; j++) if (scores[j] < scores[min]) min = j; } Map<String, Float> result = new HashMap<>(cnt); for (int i = 0; i < cnt; i++) result.put(_output._words[synonyms[i]].toString(), scores[i]); return result; } /** * Basic calculation of cosine similarity * @param target - a word vector * @param pos - position in vecs * @param vecs - learned word vectors * @return cosine similarity between the two word vectors */ private float cosineSimilarity(float[] target, int pos, float[] vecs) { float dotProd = 0, tsqr = 0, csqr = 0; for(int i = 0; i < target.length; i++) { dotProd += target[i] * vecs[pos + i]; tsqr += Math.pow(target[i], 2); csqr += Math.pow(vecs[pos + i], 2); } return (float) (dotProd / (Math.sqrt(tsqr) * Math.sqrt(csqr))); } void buildModelOutput(Word2VecModelInfo modelInfo) { IcedHashMapGeneric<BufferedString, Integer> vocab = ((Vocabulary) DKV.getGet(modelInfo._vocabKey))._data; BufferedString[] words = new BufferedString[vocab.size()]; for (BufferedString str : vocab.keySet()) words[vocab.get(str)] = str; _output._vecSize = _parms._vec_size; _output._vecs = modelInfo._syn0; _output._words = words; _output._vocab = vocab; } void buildModelOutput(BufferedString[] words, float[] syn0) { IcedHashMapGeneric<BufferedString, Integer> vocab = new IcedHashMapGeneric<>(); for (int i = 0; i < words.length; i++) vocab.put(words[i], i); _output._vecSize = _parms._vec_size; _output._vecs = syn0; _output._words = words; _output._vocab = vocab; } public static class Word2VecParameters extends Model.Parameters { public String algoName() { return "Word2Vec"; } public String fullName() { return "Word2Vec"; } public String javaName() { return Word2VecModel.class.getName(); } @Override public long progressUnits() { return isPreTrained() ? _pre_trained.get().anyVec().nChunks() : train().vec(0).nChunks() * _epochs; } static final int MAX_VEC_SIZE = 10000; public Word2Vec.WordModel _word_model = Word2Vec.WordModel.SkipGram; public Word2Vec.NormModel _norm_model = Word2Vec.NormModel.HSM; public int _min_word_freq = 5; public int _vec_size = 100; public int _window_size = 5; public int _epochs = 5; public float _init_learning_rate = 0.025f; public float _sent_sample_rate = 1e-3f; public Key<Frame> _pre_trained; // key of a frame that contains a pre-trained word2vec model boolean isPreTrained() { return _pre_trained != null; } Vec trainVec() { return train().vec(0); } } public static class Word2VecOutput extends Model.Output { public int _vecSize; public int _epochs; public Word2VecOutput(Word2Vec b) { super(b); } public BufferedString[] _words; public float[] _vecs; public IcedHashMapGeneric<BufferedString, Integer> _vocab; @Override public ModelCategory getModelCategory() { return ModelCategory.WordEmbedding; } } public static class Word2VecModelInfo extends Iced { long _vocabWordCount; long _totalProcessedWords = 0L; float[] _syn0, _syn1; Key<HBWTree> _treeKey; Key<Vocabulary> _vocabKey; Key<WordCounts> _wordCountsKey; private Word2VecParameters _parameters; public final Word2VecParameters getParams() { return _parameters; } public Word2VecModelInfo() {} private Word2VecModelInfo(Word2VecParameters params, WordCounts wordCounts) { _parameters = params; long vocabWordCount = 0L; List<Map.Entry<BufferedString, IcedLong>> wordCountList = new ArrayList<>(wordCounts._data.size()); for (Map.Entry<BufferedString, IcedLong> wc : wordCounts._data.entrySet()) { if (wc.getValue()._val >= _parameters._min_word_freq) { wordCountList.add(wc); vocabWordCount += wc.getValue()._val; } } Collections.sort(wordCountList, new Comparator<Map.Entry<BufferedString, IcedLong>>() { @Override public int compare(Map.Entry<BufferedString, IcedLong> o1, Map.Entry<BufferedString, IcedLong> o2) { long x = o1.getValue()._val; long y = o2.getValue()._val; return (x < y) ? -1 : ((x == y) ? 0 : 1); } }); int vocabSize = wordCountList.size(); long[] countAry = new long[vocabSize]; Vocabulary vocab = new Vocabulary(new IcedHashMapGeneric<BufferedString, Integer>()); int idx = 0; for (Map.Entry<BufferedString, IcedLong> wc : wordCountList) { countAry[idx] = wc.getValue()._val; vocab._data.put(wc.getKey(), idx++); } HBWTree t = HBWTree.buildHuffmanBinaryWordTree(countAry); _vocabWordCount = vocabWordCount; _treeKey = publish(t); _vocabKey = publish(vocab); _wordCountsKey = publish(wordCounts); //initialize weights to random values Random rand = RandomUtils.getRNG(0xDECAF, 0xDA7A); _syn1 = MemoryManager.malloc4f(_parameters._vec_size * vocabSize); _syn0 = MemoryManager.malloc4f(_parameters._vec_size * vocabSize); for (int i = 0; i < _parameters._vec_size * vocabSize; i++) _syn0[i] = (rand.nextFloat() - 0.5f) / _parameters._vec_size; } public static Word2VecModelInfo createInitialModelInfo(Word2VecParameters params) { Vec v = params.trainVec(); WordCounts wordCounts = new WordCounts(new WordCountTask().doAll(v)._counts); return new Word2VecModelInfo(params, wordCounts); } private static <T extends Keyed<T>> Key<T> publish(T keyed) { Scope.track_generic(keyed); DKV.put(keyed); return keyed._key; } } // wraps Vocabulary map into a Keyed object public static class Vocabulary extends Keyed<Vocabulary> { IcedHashMapGeneric<BufferedString, Integer> _data; Vocabulary(IcedHashMapGeneric<BufferedString, Integer> data) { super(Key.<Vocabulary>make()); _data = data; } } // wraps Word-Count map into a Keyed object public static class WordCounts extends Keyed<WordCounts> { IcedHashMap<BufferedString, IcedLong> _data; WordCounts(IcedHashMap<BufferedString, IcedLong> data) { super(Key.<WordCounts>make()); _data = data; } } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/word2vec/Word2VecMojoWriter.java
package hex.word2vec; import hex.ModelMojoWriter; import water.MemoryManager; import water.parser.BufferedString; import java.io.IOException; import java.nio.ByteBuffer; /** * MOJO serializer for word2vec model. */ public class Word2VecMojoWriter extends ModelMojoWriter<Word2VecModel, Word2VecModel.Word2VecParameters, Word2VecModel.Word2VecOutput> { @SuppressWarnings("unused") // Called through reflection in ModelBuildersHandler public Word2VecMojoWriter() {} public Word2VecMojoWriter(Word2VecModel model) { super(model); } @Override public String mojoVersion() { return "1.00"; } @Override protected void writeModelData() throws IOException { writekv("vec_size", model._parms._vec_size); writekv("vocab_size", model._output._words.length); // Vocabulary startWritingTextFile("vocabulary"); for (BufferedString word : model._output._words) { writeln(word.toString(), true); } finishWritingTextFile(); // Vectors ByteBuffer bb = ByteBuffer.wrap(MemoryManager.malloc1(model._output._vecs.length * 4)); for (float v : model._output._vecs) bb.putFloat(v); writeblob("vectors", bb.array()); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/word2vec/WordCountTask.java
package hex.word2vec; import water.AutoBuffer; import water.MRTask; import water.fvec.Chunk; import water.parser.BufferedString; import water.util.IcedHashMap; import water.util.IcedLong; import java.util.HashMap; /** * Reduce a string column of a given Vec to a set of unique words * and their frequency counts * * Currently the array is consolidated on the calling node. Given * the limited vocabulary size of most languages, the resulting * array is presumed to easily fit in memory. */ public class WordCountTask extends MRTask<WordCountTask> { // OUT IcedHashMap<BufferedString, IcedLong> _counts; WordCountTask() {} @Override public void map(Chunk cs) { _counts = new IcedHashMap<>(); for (int i = 0; i < cs._len; i++) { if (cs.isNA(i)) continue; BufferedString str = cs.atStr(new BufferedString(), i); IcedLong count = _counts.get(str); if (count != null) count._val++; else _counts.put(str, new IcedLong(1)); } } @Override public void reduce(WordCountTask other) { assert _counts != null; assert other._counts != null; for (BufferedString str : other._counts.keySet()) { IcedLong myCount = _counts.get(str); if (myCount == null) _counts.put(str, other._counts.get(str)); else myCount._val += other._counts.get(str)._val; } } public final AutoBuffer write_impl(AutoBuffer ab) { if( _counts != null ) for (BufferedString key : _counts.keySet()) ab.put2((char)key.length()).putA1(key.getBuffer(), key.getOffset(), key.getOffset() + key.length()) .put8(_counts.get(key)._val); return ab.put2((char)65535); // End of map marker } public final WordCountTask read_impl(AutoBuffer ab) { _counts = new IcedHashMap<>(); int len; while ((len = ab.get2()) != 65535) { // Read until end-of-map marker byte[] bs = ab.getA1(len); long cnt = ab.get8(); _counts.put(new BufferedString(new String(bs)), new IcedLong(cnt)); } return this; } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/word2vec/WordVectorConverter.java
package hex.word2vec; import water.Job; import water.MRTask; import water.MemoryManager; import water.fvec.Chunk; import water.parser.BufferedString; import water.util.ArrayUtils; public class WordVectorConverter extends MRTask<WordVectorConverter> { // Job private final Job<Word2VecModel> _job; private final int _wordVecSize; private final int _vocabWordCount; float[] _syn0; BufferedString[] _words; public WordVectorConverter(Job<Word2VecModel> job, int wordVecSize, int vocabWordCount) { super(null); _job = job; _wordVecSize = wordVecSize; _vocabWordCount = vocabWordCount; } @Override protected void setupLocal() { _syn0 = MemoryManager.malloc4f(_wordVecSize * _vocabWordCount); _words = new BufferedString[_vocabWordCount]; } @Override public void map(Chunk[] cs) { int wordPos = (int) cs[0].start(); int pos = _wordVecSize * wordPos; for (int i = 0; i < cs[0]._len; i++) { _words[wordPos++] = cs[0].atStr(new BufferedString(), i); for (int j = 1; j < cs.length; j++) _syn0[pos++] = (float) cs[j].atd(i); } _job.update(1); } @Override public void reduce(WordVectorConverter other) { if (_syn0 != other._syn0) { ArrayUtils.add(_syn0, other._syn0); for (int i = 0; i < _vocabWordCount; i++) { if (other._words[i] != null) _words[i] = other._words[i]; } } } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex
java-sources/ai/h2o/h2o-algos/3.46.0.7/hex/word2vec/WordVectorTrainer.java
package hex.word2vec; import water.DKV; import water.Job; import water.Key; import water.MRTask; import water.fvec.Chunk; import water.parser.BufferedString; import hex.word2vec.Word2VecModel.*; import water.util.ArrayUtils; import water.util.IcedHashMap; import water.util.IcedHashMapGeneric; import water.util.IcedLong; import java.util.Iterator; public class WordVectorTrainer extends MRTask<WordVectorTrainer> { private static final int MAX_SENTENCE_LEN = 1000; private static final int EXP_TABLE_SIZE = 1000; private static final int MAX_EXP = 6; private static final float[] _expTable = calcExpTable(); private static final float LEARNING_RATE_MIN_FACTOR = 0.0001F; // learning rate stops decreasing at (initLearningRate * this factor) // Job private final Job<Word2VecModel> _job; // Params private final Word2Vec.WordModel _wordModel; private final int _wordVecSize, _windowSize, _epochs; private final float _initLearningRate; private final float _sentSampleRate; private final long _vocabWordCount; // Model IN private final Key<Vocabulary> _vocabKey; private final Key<WordCounts> _wordCountsKey; private final Key<HBWTree> _treeKey; private final long _prevTotalProcessedWords; // Model IN & OUT // _syn0 represents the matrix of synaptic weights connecting the input layer of the NN to the hidden layer, // similarly _syn1 corresponds to the weight matrix of the synapses connecting the hidden layer to the output layer // both matrices are represented in a 1D array, where M[i,j] == array[i * VEC_SIZE + j] float[] _syn0, _syn1; long _processedWords = 0L; // Node-Local (Shared) IcedLong _nodeProcessedWords; // mutable long, approximates the total number of words processed by this node private transient IcedHashMapGeneric<BufferedString, Integer> _vocab; private transient IcedHashMap<BufferedString, IcedLong> _wordCounts; private transient int[][] _HBWTCode; private transient int[][] _HBWTPoint; private float _curLearningRate; private long _seed = System.nanoTime(); public WordVectorTrainer(Job<Word2VecModel> job, Word2VecModelInfo input) { super(null); _job = job; _treeKey = input._treeKey; _vocabKey = input._vocabKey; _wordCountsKey = input._wordCountsKey; // Params _wordModel = input.getParams()._word_model; _wordVecSize = input.getParams()._vec_size; _windowSize = input.getParams()._window_size; _sentSampleRate = input.getParams()._sent_sample_rate; _epochs = input.getParams()._epochs; _initLearningRate = input.getParams()._init_learning_rate; _vocabWordCount = input._vocabWordCount; _prevTotalProcessedWords = input._totalProcessedWords; _syn0 = input._syn0; _syn1 = input._syn1; _curLearningRate = calcLearningRate(_initLearningRate, _epochs, _prevTotalProcessedWords, _vocabWordCount); } @Override protected void setupLocal() { _vocab = ((Vocabulary) DKV.getGet(_vocabKey))._data; _wordCounts = ((WordCounts) DKV.getGet(_wordCountsKey))._data; HBWTree t = DKV.getGet(_treeKey); _HBWTCode = t._code; _HBWTPoint = t._point; _nodeProcessedWords = new IcedLong(0L); } // Precompute the exp() table private static float[] calcExpTable() { float[] expTable = new float[EXP_TABLE_SIZE]; for (int i = 0; i < EXP_TABLE_SIZE; i++) { expTable[i] = (float) Math.exp((i / (float) EXP_TABLE_SIZE * 2 - 1) * MAX_EXP); expTable[i] = expTable[i] / (expTable[i] + 1); // Precompute f(x) = x / (x + 1) } return expTable; } @Override public void map(Chunk chk) { final int winSize = _windowSize, vecSize = _wordVecSize; float[] neu1 = new float[vecSize]; float[] neu1e = new float[vecSize]; ChunkSentenceIterator sentIter = new ChunkSentenceIterator(chk); int wordCount = 0; while (sentIter.hasNext()) { int sentLen = sentIter.nextLength(); int[] sentence = sentIter.next(); for (int sentIdx = 0; sentIdx < sentLen; sentIdx++) { int curWord = sentence[sentIdx]; int bagSize = 0; if (_wordModel == Word2Vec.WordModel.CBOW) { for (int j = 0; j < vecSize; j++) neu1[j] = 0; for (int j = 0; j < vecSize; j++) neu1e[j] = 0; } // for each item in the window (except curWord), update neu1 vals int winSizeMod = cheapRandInt(winSize); for (int winIdx = winSizeMod; winIdx < winSize * 2 + 1 - winSizeMod; winIdx++) { if (winIdx != winSize) { // skips curWord in sentence int winWordSentIdx = sentIdx - winSize + winIdx; if (winWordSentIdx < 0 || winWordSentIdx >= sentLen) continue; int winWord = sentence[winWordSentIdx]; if (_wordModel == Word2Vec.WordModel.SkipGram) skipGram(curWord, winWord, neu1e); else { // CBOW for (int j = 0; j < vecSize; j++) neu1[j] += _syn0[j + winWord * vecSize]; bagSize++; } } } // end for each item in the window if (_wordModel == Word2Vec.WordModel.CBOW && bagSize > 0) { CBOW(curWord, sentence, sentIdx, sentLen, winSizeMod, bagSize, neu1, neu1e); } wordCount++; // update learning rate if (wordCount % 10000 == 0) { _nodeProcessedWords._val += 10000; long totalProcessedWordsEst = _prevTotalProcessedWords + _nodeProcessedWords._val; _curLearningRate = calcLearningRate(_initLearningRate, _epochs, totalProcessedWordsEst, _vocabWordCount); } } // for each item in the sentence } // while more sentences _processedWords = wordCount; _nodeProcessedWords._val += wordCount % 10000; _job.update(1); } @Override public void reduce(WordVectorTrainer other) { _processedWords += other._processedWords; if (_syn0 != other._syn0) { // other task worked on a different syn0 float c = (float) other._processedWords / _processedWords; ArrayUtils.add(1.0f - c, _syn0, c, other._syn0); ArrayUtils.add(1.0f - c, _syn1, c, other._syn1); // for diagnostics only _nodeProcessedWords._val += other._nodeProcessedWords._val; } } private void skipGram(int curWord, int winWord, float[] neu1e) { final int vecSize = _wordVecSize; final int l1 = winWord * vecSize; for (int i = 0; i < vecSize; i++) neu1e[i] = 0; hierarchicalSoftmaxSG(curWord, l1, neu1e); // Learned weights input -> hidden for (int i = 0; i < vecSize; i++) _syn0[i + l1] += neu1e[i]; } private void hierarchicalSoftmaxSG(final int targetWord, final int l1, float[] neu1e) { final int vecSize = _wordVecSize, tWrdCodeLen = _HBWTCode[targetWord].length; final float alpha = _curLearningRate; for (int i = 0; i < tWrdCodeLen; i++) { int l2 = _HBWTPoint[targetWord][i] * vecSize; float f = 0; // Propagate hidden -> output (calc sigmoid) for (int j = 0; j < vecSize; j++) f += _syn0[j + l1] * _syn1[j + l2]; if (f <= -MAX_EXP) continue; else if (f >= MAX_EXP) continue; else f = _expTable[(int) ((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]; float gradient = (1 - _HBWTCode[targetWord][i] - f) * alpha; // Propagate errors output -> hidden for (int j = 0; j < vecSize; j++) neu1e[j] += gradient * _syn1[j + l2]; // Learn weights hidden -> output for (int j = 0; j < vecSize; j++) _syn1[j + l2] += gradient * _syn0[j + l1]; } } private void CBOW( int curWord, int[] sentence, int sentIdx, int sentLen, int winSizeMod, int bagSize, float[] neu1, float[] neu1e ) { int winWordSentIdx, winWord; final int vecSize = _wordVecSize, winSize = _windowSize; final int curWinSize = winSize * 2 + 1 - winSize; for (int i = 0; i < vecSize; i++) neu1[i] /= bagSize; hierarchicalSoftmaxCBOW(curWord, neu1, neu1e); // hidden -> in for (int winIdx = winSizeMod; winIdx < curWinSize; winIdx++) { if (winIdx != winSize) { winWordSentIdx = sentIdx - winSize + winIdx; if (winWordSentIdx < 0 || winWordSentIdx >= sentLen) continue; winWord = sentence[winWordSentIdx]; for (int i = 0; i < vecSize; i++) _syn0[i + winWord * vecSize] += neu1e[i]; } } } private void hierarchicalSoftmaxCBOW(final int targetWord, float[] neu1, float[] neu1e) { final int vecSize = _wordVecSize, tWrdCodeLen = _HBWTCode[targetWord].length; final float alpha = _curLearningRate; float gradient, f = 0; int l2; for (int i = 0; i < tWrdCodeLen; i++, f = 0) { l2 = _HBWTPoint[targetWord][i] * vecSize; // Propagate hidden -> output (calc sigmoid) for (int j = 0; j < vecSize; j++) f += neu1[j] * _syn1[j + l2]; if (f <= -MAX_EXP) continue; else if (f >= MAX_EXP) continue; else f = _expTable[(int) ((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]; gradient = (1 - _HBWTCode[targetWord][i] - f) * alpha; // Propagate errors output -> hidden for (int j = 0; j < vecSize; j++) neu1e[j] += gradient * _syn1[j + l2]; // Learn weights hidden -> output for (int j = 0; j < vecSize; j++) _syn1[j + l2] += gradient * neu1[j]; } } /** * Calculates a new global learning rate for the next round * of map/reduce calls. * The learning rate is a coefficient that controls the amount that * newly learned information affects current learned information. */ private static float calcLearningRate(float initLearningRate, int epochs, long totalProcessed, long vocabWordCount) { float rate = initLearningRate * (1 - totalProcessed / (float) (epochs * vocabWordCount + 1)); if (rate < initLearningRate * LEARNING_RATE_MIN_FACTOR) rate = initLearningRate * LEARNING_RATE_MIN_FACTOR; return rate; } public void updateModelInfo(Word2VecModelInfo modelInfo) { modelInfo._syn0 = _syn0; modelInfo._syn1 = _syn1; modelInfo._totalProcessedWords += _processedWords; } /** * This is cheap and moderate in quality. * * @param max - Upper range limit. * @return int between 0-(max-1). */ private int cheapRandInt(int max) { _seed ^= ( _seed << 21); _seed ^= ( _seed >>> 35); _seed ^= ( _seed << 4); int r = (int) _seed % max; return r > 0 ? r : -r; } private class ChunkSentenceIterator implements Iterator<int[]> { private Chunk _chk; private int _pos = 0; private int _len = -1; private int[] _sent = new int[MAX_SENTENCE_LEN + 1]; private ChunkSentenceIterator(Chunk chk) { _chk = chk; } @Override public boolean hasNext() { return nextLength() >= 0; } private int nextLength() { if (_len >= 0) return _len; if (_pos >= _chk._len) return -1; _len = 0; BufferedString tmp = new BufferedString(); for (; _pos < _chk._len && ! _chk.isNA(_pos) && _len < MAX_SENTENCE_LEN; _pos++) { BufferedString str = _chk.atStr(tmp, _pos); if (! _vocab.containsKey(str)) continue; // not in the vocab, skip if (_sentSampleRate > 0) { // sub-sampling while creating a sentence long count = _wordCounts.get(str)._val; float ran = (float) ((Math.sqrt(count / (_sentSampleRate * _vocabWordCount)) + 1) * (_sentSampleRate * _vocabWordCount) / count); if (ran * 65536 < cheapRandInt(0xFFFF)) continue; } _sent[_len++] = _vocab.get(tmp); } _sent[_len] = -1; _pos++; return _len; } @Override public int[] next() { if (hasNext()) { _len = -1; return _sent; } else return null; } @Override public void remove() { throw new UnsupportedOperationException("Remove is not supported"); } // should never be called } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/water
java-sources/ai/h2o/h2o-algos/3.46.0.7/water/api/ModelMetricsAnomalyV3.java
package water.api; import hex.tree.isofor.ModelMetricsAnomaly; import water.api.schemas3.ModelMetricsBaseV3; public class ModelMetricsAnomalyV3 extends ModelMetricsBaseV3<ModelMetricsAnomaly, ModelMetricsAnomalyV3> { @API(help = "Mean Anomaly Score.", direction = API.Direction.OUTPUT) public double mean_score; @API(help = "Mean Normalized Anomaly Score.", direction = API.Direction.OUTPUT) public double mean_normalized_score; @Override public ModelMetricsAnomalyV3 fillFromImpl(ModelMetricsAnomaly modelMetrics) { ModelMetricsAnomalyV3 mma = super.fillFromImpl(modelMetrics); return mma; } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/water
java-sources/ai/h2o/h2o-algos/3.46.0.7/water/api/ModelMetricsGLRMV99.java
package water.api; import hex.glrm.ModelMetricsGLRM; import water.api.schemas3.ModelMetricsBaseV3; public class ModelMetricsGLRMV99 extends ModelMetricsBaseV3<ModelMetricsGLRM, ModelMetricsGLRMV99> { @API(help="Sum of Squared Error (Numeric Cols)") public double numerr; @API(help="Misclassification Error (Categorical Cols)") public double caterr; @API(help="Number of Non-Missing Numeric Values") public long numcnt; @API(help="Number of Non-Missing Categorical Values") public long catcnt; }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/water
java-sources/ai/h2o/h2o-algos/3.46.0.7/water/api/ModelMetricsPCAV3.java
package water.api; import hex.pca.ModelMetricsPCA; import water.api.schemas3.ModelMetricsBaseV3; public class ModelMetricsPCAV3 extends ModelMetricsBaseV3<ModelMetricsPCA, ModelMetricsPCAV3> { // Empty since PCA has no model metrics }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/water
java-sources/ai/h2o/h2o-algos/3.46.0.7/water/api/ModelMetricsSVDV99.java
package water.api; import hex.svd.SVDModel.ModelMetricsSVD; import water.api.schemas3.ModelMetricsBaseV3; public class ModelMetricsSVDV99 extends ModelMetricsBaseV3<ModelMetricsSVD, ModelMetricsSVDV99> { // Empty since SVD has no model metrics }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/water/rapids
java-sources/ai/h2o/h2o-algos/3.46.0.7/water/rapids/prims/AstPredictedVsActualByVar.java
package water.rapids.prims; import hex.Model; import water.MRTask; import water.fvec.*; import water.rapids.Env; import water.rapids.ast.AstPrimitive; import water.rapids.ast.AstRoot; import water.rapids.vals.ValFrame; import water.util.ArrayUtils; import java.util.Arrays; public class AstPredictedVsActualByVar extends AstPrimitive<AstPredictedVsActualByVar> { @Override public String[] args() { return new String[]{"model"}; } @Override public int nargs() { return 1 + 4; } // (predicted.vs.actual.by.var model frame variable predicted) @Override public String str() { return "predicted.vs.actual.by.var"; } @Override public ValFrame apply(Env env, Env.StackHelp stk, AstRoot[] asts) { Model<?, ?, ?> model = (Model<?, ?, ?>) stk.track(asts[1].exec(env)).getModel(); if (!model.isSupervised()) { throw new IllegalArgumentException("Only supervised models are supported for calculating predicted v actual"); } if (model._output.isMultinomialClassifier()) { throw new IllegalArgumentException("Multinomial classification models are not supported by predicted v actual"); } Frame frame = stk.track(asts[2].exec(env)).getFrame(); String variable = stk.track(asts[3].exec(env)).getStr(); if (frame.vec(variable) == null) { throw new IllegalArgumentException("Frame doesn't contain column '" + variable + "'."); } Frame preds = stk.track(asts[4].exec(env)).getFrame(); if (frame.numRows() != preds.numRows()) { throw new IllegalArgumentException("Input frame and frame of predictions need to have same number of columns."); } Vec predicted = preds.vec(0); Vec actual = frame.vec(model._output.responseName()); Vec weights = frame.vec(model._output.weightsName()); if ((actual.domain() != predicted.domain()) && !Arrays.equals(actual.domain(), predicted.domain())) { // null or equals throw new IllegalArgumentException("Actual and predicted need to have identical domain."); } Vec varVec = frame.vec(variable); Vec[] vs = new Vec[]{predicted, actual, varVec}; if (weights != null) { vs = ArrayUtils.append(vs, weights); } PredictedVsActualByVar pva = new PredictedVsActualByVar(varVec).doAll(vs); String[] domainExt = ArrayUtils.append(varVec.domain(), null); // last one for NA Vec[] resultVecs = new Vec[]{ Vec.makeVec(domainExt, Vec.newKey()), Vec.makeVec(pva._preds, Vec.newKey()), Vec.makeVec(pva._acts, Vec.newKey()) }; Frame result = new Frame(new String[]{variable, preds.name(0), "actual"}, resultVecs); return new ValFrame(result); } static class PredictedVsActualByVar extends MRTask<PredictedVsActualByVar> { private final int _s; private double[] _preds; private double[] _acts; private double[] _weights; public PredictedVsActualByVar(Vec varVec) { _s = varVec.domain().length + 1; } @Override public void map(Chunk[] cs) { _preds = new double[_s]; _acts = new double[_s]; _weights = new double[_s]; Chunk predChunk = cs[0]; Chunk actChunk = cs[1]; Chunk varChunk = cs[2]; Chunk weightChunk = cs.length == 4 ? cs[3] : new C0DChunk(1, predChunk._len); for (int i = 0; i < actChunk._len; i++) { if (actChunk.isNA(i) || weightChunk.atd(i) == 0) continue; int level = varChunk.isNA(i) ? _s - 1 : (int) varChunk.atd(i); double weight = weightChunk.atd(i); _preds[level] += weight * predChunk.atd(i); _acts[level] += weight * actChunk.atd(i); _weights[level] += weight; } } @Override public void reduce(PredictedVsActualByVar mrt) { _preds = ArrayUtils.add(_preds, mrt._preds); _acts = ArrayUtils.add(_acts, mrt._acts); _weights = ArrayUtils.add(_weights, mrt._weights); } @Override protected void postGlobal() { for (int i = 0; i < _weights.length; i++) { if (_weights[i] == 0) continue; _preds[i] /= _weights[i]; _acts[i] /= _weights[i]; } } } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/water/rapids
java-sources/ai/h2o/h2o-algos/3.46.0.7/water/rapids/prims/AstSetCalibrationModel.java
package water.rapids.prims; import hex.Model; import hex.tree.CalibrationHelper; import water.rapids.Env; import water.rapids.ast.AstPrimitive; import water.rapids.ast.AstRoot; import water.rapids.vals.ValStr; public class AstSetCalibrationModel extends AstPrimitive<AstSetCalibrationModel> { @Override public String[] args() { return new String[]{"model", "calibrationModel"}; } @Override public int nargs() { return 1 + 2; } // (set.calibration.model model calibrationModel) @Override public String str() { return "set.calibration.model"; } @Override public ValStr apply(Env env, Env.StackHelp stk, AstRoot asts[]) { Model<?, ?, ?> model = (Model<?, ?, ?>) stk.track(asts[1].exec(env)).getModel(); if (! (model._output instanceof CalibrationHelper.OutputWithCalibration)) { throw new IllegalArgumentException("Models of type " + model._parms.algoName() + " don't support calibration."); } Model<?, ?, ?> calibrationModel = (Model<?, ?, ?>) stk.track(asts[2].exec(env)).getModel(); try { model.write_lock(); ((CalibrationHelper.OutputWithCalibration) model._output).setCalibrationModel(calibrationModel); model.update(); } finally { model.unlock(); } return new ValStr("OK"); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/water/rapids/prims
java-sources/ai/h2o/h2o-algos/3.46.0.7/water/rapids/prims/isotonic/AstPoolAdjacentViolators.java
package water.rapids.prims.isotonic; import hex.isotonic.PoolAdjacentViolatorsDriver; import water.fvec.Frame; import water.rapids.Env; import water.rapids.ast.AstPrimitive; import water.rapids.ast.AstRoot; import water.rapids.prims.rulefit.AstPredictRule; import water.rapids.vals.ValFrame; public class AstPoolAdjacentViolators extends AstPrimitive<AstPredictRule> { @Override public String[] args() { return new String[]{"frame"}; } @Override public int nargs() { return 1 + 1; } // (isotonic.pav frame ) @Override public String str() { return "isotonic.pav"; } @Override public ValFrame apply(Env env, Env.StackHelp stk, AstRoot[] asts) { Frame frame = stk.track(asts[1].exec(env)).getFrame(); Frame result = PoolAdjacentViolatorsDriver.runPAV(frame); return new ValFrame(result); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/water/rapids/prims
java-sources/ai/h2o/h2o-algos/3.46.0.7/water/rapids/prims/rulefit/AstPredictRule.java
package water.rapids.prims.rulefit; import hex.rulefit.RuleFitModel; import water.fvec.Frame; import water.rapids.Env; import water.rapids.ast.AstPrimitive; import water.rapids.ast.AstRoot; import water.rapids.vals.ValFrame; /** * Evaluates validity of the given rules on the given data. */ public class AstPredictRule extends AstPrimitive<AstPredictRule> { @Override public String[] args() { return new String[]{"model"}; } @Override public int nargs() { return 1 + 3; } // (rulefit.predict.rules model frame ruleIds) @Override public String str() { return "rulefit.predict.rules"; } @Override public ValFrame apply(Env env, Env.StackHelp stk, AstRoot asts[]) { RuleFitModel model = (RuleFitModel) stk.track(asts[1].exec(env)).getModel(); Frame frame = stk.track(asts[2].exec(env)).getFrame(); String[] ruleIds = stk.track(asts[3].exec(env)).getStrs(); Frame result = model.predictRules(frame, ruleIds); return new ValFrame(result); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/water/rapids/prims
java-sources/ai/h2o/h2o-algos/3.46.0.7/water/rapids/prims/tree/AstTreeUpdateWeights.java
package water.rapids.prims.tree; import hex.Model; import water.fvec.Frame; import water.rapids.Env; import water.rapids.ast.AstPrimitive; import water.rapids.ast.AstRoot; import water.rapids.vals.ValStr; /** * Re-weights auxiliary trees in a TreeModel */ public class AstTreeUpdateWeights extends AstPrimitive<AstTreeUpdateWeights> { @Override public String[] args() { return new String[]{"model"}; } @Override public int nargs() { return 1 + 3; } // (tree.update.weights model frame weightsColumn) @Override public String str() { return "tree.update.weights"; } @Override public ValStr apply(Env env, Env.StackHelp stk, AstRoot asts[]) { Model.UpdateAuxTreeWeights model = (Model.UpdateAuxTreeWeights) stk.track(asts[1].exec(env)).getModel(); Frame frame = stk.track(asts[2].exec(env)).getFrame(); String weightsColumn = stk.track(asts[3].exec(env)).getStr(); Model.UpdateAuxTreeWeights.UpdateAuxTreeWeightsReport report = model.updateAuxTreeWeights(frame, weightsColumn); if (report.hasWarnings()) { return new ValStr(makeShortWarning(report)); } else return new ValStr("OK"); } private static String makeShortWarning(Model.UpdateAuxTreeWeights.UpdateAuxTreeWeightsReport report) { return "Some of the updated nodes have zero weights " + "(eg.: tree #" + (report._warn_trees[0] + 1) + ", class #" + (report._warn_classes[0] + 1) + ")."; } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/water/rapids/prims
java-sources/ai/h2o/h2o-algos/3.46.0.7/water/rapids/prims/word2vec/AstWord2VecToFrame.java
package water.rapids.prims.word2vec; import hex.word2vec.Word2VecModel; import water.rapids.Env; import water.rapids.ast.AstPrimitive; import water.rapids.ast.AstRoot; import water.rapids.vals.ValFrame; /** * Converts a word2vec model to a Frame */ public class AstWord2VecToFrame extends AstPrimitive { @Override public String[] args() { return new String[]{"model"}; } @Override public int nargs() { return 1 + 1; } // (word2vec.to.frame model) @Override public String str() { return "word2vec.to.frame"; } @Override public ValFrame apply(Env env, Env.StackHelp stk, AstRoot asts[]) { Word2VecModel model = (Word2VecModel) stk.track(asts[1].exec(env)).getModel(); return new ValFrame(model.toFrame()); } }
0
java-sources/ai/h2o/h2o-algos/3.46.0.7/water
java-sources/ai/h2o/h2o-algos/3.46.0.7/water/tools/MojoConvertTool.java
package water.tools; import hex.generic.Generic; import hex.generic.GenericModel; import water.ExtensionManager; import water.H2O; import water.Paxos; import java.io.File; import java.io.IOException; import java.nio.charset.StandardCharsets; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.Paths; /** * Convenience command line tool for converting H2O MOJO to POJO */ public class MojoConvertTool { private final File _mojo_file; private final File _pojo_file; public MojoConvertTool(File mojoFile, File pojoFile) { _mojo_file = mojoFile; _pojo_file = pojoFile; } void convert() throws IOException { GenericModel mojo = Generic.importMojoModel(_mojo_file.getAbsolutePath(), true); String pojo = mojo.toJava(false, true); Path pojoPath = Paths.get(_pojo_file.toURI()); Files.write(pojoPath, pojo.getBytes(StandardCharsets.UTF_8)); } public static void main(String[] args) throws IOException { try { mainInternal(args); } catch (IllegalArgumentException e) { System.err.println(e.getMessage()); System.exit(1); } } public static void mainInternal(String[] args) throws IOException { if (args.length < 2 || args[0] == null || args[1] == null) { throw new IllegalArgumentException("java -cp h2o.jar " + MojoConvertTool.class.getName() + " source_mojo.zip target_pojo.java"); } File mojoFile = new File(args[0]); if (!mojoFile.exists() || !mojoFile.isFile()) { throw new IllegalArgumentException("Specified MOJO file (" + mojoFile.getAbsolutePath() + ") doesn't exist!"); } File pojoFile = new File(args[1]); if (pojoFile.isDirectory() || (pojoFile.getParentFile() != null && !pojoFile.getParentFile().isDirectory())) { throw new IllegalArgumentException("Invalid target POJO file (" + pojoFile.getAbsolutePath() + ")! Please specify a file in an existing directory."); } System.out.println(); System.out.println("Starting local H2O instance to facilitate MOJO to POJO conversion."); System.out.println(); H2O.main(new String[]{"-disable_web", "-ip", "localhost", "-disable_net"}); ExtensionManager.getInstance().registerRestApiExtensions(); H2O.waitForCloudSize(1, 60_000); Paxos.lockCloud("H2O is started in a single node configuration."); System.out.println(); System.out.println("Converting " + mojoFile + " to " + pojoFile + "..."); new MojoConvertTool(mojoFile, pojoFile).convert(); System.out.println("DONE"); } }
0
java-sources/ai/h2o/h2o-app/3.46.0.7
java-sources/ai/h2o/h2o-app/3.46.0.7/water/H2OApp.java
package water; public class H2OApp extends H2OStarter { public static int BAD_JAVA_VERSION_RETURN_CODE = 3; public static void main(String[] args) { if (H2O.checkUnsupportedJava(args)) System.exit(BAD_JAVA_VERSION_RETURN_CODE); start(args, System.getProperty("user.dir")); } @SuppressWarnings("unused") public static void main2(String relativeResourcePath) { start(new String[0], relativeResourcePath); } }
0
java-sources/ai/h2o/h2o-app/3.46.0.7
java-sources/ai/h2o/h2o-app/3.46.0.7/water/H2OClientApp.java
package water; /** * Simple client application wrapper. * * CAUTION: * This is used by Sparkling Water and other environments where an H2O client node is needed. * A client node is a node that can launch and monitor work, but doesn't do any work. * Don't use this unless you know what you are doing. You probably really just want to use * H2OApp directly. */ public class H2OClientApp { public static void main(String[] args) { // Prepend "-client" parameter. String[] args2 = new String[args.length + 1]; args2[0] = "-client"; int i = 1; for (String s : args) { args2[i] = s; i++; } // Call regular H2OApp. H2OApp.main(args2); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/Algo.java
package ai.h2o.automl; import water.ExtensionManager; import water.H2O; import static water.util.OSUtils.isLinux; // if we need to make the Algo list dynamic, we should just turn this enum into a class... // implementation of AutoML.algo can be safely removed once we get rid of this interface: current purpose // is to keep backward compatibility with {@link AutoML.algo} public enum Algo implements IAlgo { GLM, DRF, GBM, DeepLearning, StackedEnsemble, XGBoost() { private static final String DISTRIBUTED_XGBOOST_ENABLED = H2O.OptArgs.SYSTEM_PROP_PREFIX + "automl.xgboost.multinode.enabled"; @Override public boolean enabled() { // on single node, XGBoost is enabled by default if the extension is enabled. // on multinode, the same condition applies, but only on Linux by default: needs to be activated explicitly for other platforms. boolean enabledOnMultinode = Boolean.parseBoolean(System.getProperty(DISTRIBUTED_XGBOOST_ENABLED, isLinux() ? "true" : "false")); return ExtensionManager.getInstance().isCoreExtensionEnabled(this.name()) && (H2O.CLOUD.size() == 1 || enabledOnMultinode); } }, ; }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/AutoML.java
package ai.h2o.automl; import ai.h2o.automl.AutoMLBuildSpec.AutoMLBuildModels; import ai.h2o.automl.AutoMLBuildSpec.AutoMLInput; import ai.h2o.automl.AutoMLBuildSpec.AutoMLStoppingCriteria; import ai.h2o.automl.StepResultState.ResultStatus; import ai.h2o.automl.WorkAllocations.Work; import ai.h2o.automl.events.EventLog; import ai.h2o.automl.events.EventLogEntry; import ai.h2o.automl.events.EventLogEntry.Stage; import ai.h2o.automl.leaderboard.ModelGroup; import ai.h2o.automl.leaderboard.ModelProvider; import ai.h2o.automl.leaderboard.ModelStep; import ai.h2o.automl.preprocessing.PreprocessingStep; import hex.Model; import hex.ScoreKeeper.StoppingMetric; import hex.genmodel.utils.DistributionFamily; import hex.leaderboard.*; import hex.splitframe.ShuffleSplitFrame; import water.*; import water.automl.api.schemas3.AutoMLV99; import water.exceptions.H2OAutoMLException; import water.exceptions.H2OIllegalArgumentException; import water.fvec.Frame; import water.fvec.Vec; import water.logging.Logger; import water.logging.LoggerFactory; import water.nbhm.NonBlockingHashMap; import water.util.*; import java.text.SimpleDateFormat; import java.util.*; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.AtomicLong; import java.util.stream.Collectors; import java.util.stream.Stream; import static ai.h2o.automl.AutoMLBuildSpec.AutoMLStoppingCriteria.AUTO_STOPPING_TOLERANCE; /** * H2O AutoML * * AutoML is used for automating the machine learning workflow, which includes automatic training and * tuning of many models within a user-specified time-limit. Stacked Ensembles will be automatically * trained on collections of individual models to produce highly predictive ensemble models which, in most cases, * will be the top performing models in the AutoML Leaderboard. */ public final class AutoML extends Lockable<AutoML> implements TimedH2ORunnable { public enum Constraint { MODEL_COUNT, TIMEOUT, FAILURE_COUNT, } public static final Comparator<AutoML> byStartTime = Comparator.comparing(a -> a._startTime); public static final String keySeparator = "@@"; private static final int DEFAULT_MAX_CONSECUTIVE_MODEL_FAILURES = 10; private static final boolean verifyImmutability = true; // check that trainingFrame hasn't been messed with private static final ThreadLocal<SimpleDateFormat> timestampFormatForKeys = ThreadLocal.withInitial(() -> new SimpleDateFormat("yyyyMMdd_HHmmss")); private static final Logger log = LoggerFactory.getLogger(AutoML.class); private static LeaderboardExtensionsProvider createLeaderboardExtensionProvider(AutoML automl) { final Key<AutoML> amlKey = automl._key; return new LeaderboardExtensionsProvider() { @Override public LeaderboardCell[] createExtensions(Model model) { final AutoML aml = amlKey.get(); ModelingStep step = aml.session().getModelingStep(model.getKey()); return new LeaderboardCell[] { new TrainingTime(model), new ScoringTimePerRow(model, aml.getLeaderboardFrame() == null ? aml.getTrainingFrame() : aml.getLeaderboardFrame()), // new ModelSize(model._key) new AlgoName(model), new ModelProvider(model, step), new ModelStep(model, step), new ModelGroup(model, step), }; } }; } /** * Instantiate an AutoML object and start it running. Progress can be tracked via its job(). * * @param buildSpec * @return a new running AutoML instance. */ public static AutoML startAutoML(AutoMLBuildSpec buildSpec) { AutoML aml = new AutoML(buildSpec); aml.submit(); return aml; } static AutoML startAutoML(AutoMLBuildSpec buildSpec, boolean testMode) { AutoML aml = new AutoML(buildSpec); aml._testMode = testMode; aml.submit(); return aml; } @Override public Class<AutoMLV99.AutoMLKeyV3> makeSchema() { return AutoMLV99.AutoMLKeyV3.class; } private AutoMLBuildSpec _buildSpec; // all parameters for doing this AutoML build private Frame _origTrainingFrame; // untouched original training frame public AutoMLBuildSpec getBuildSpec() { return _buildSpec; } public Frame getTrainingFrame() { return _trainingFrame; } public Frame getValidationFrame() { return _validationFrame; } public Frame getBlendingFrame() { return _blendingFrame; } public Frame getLeaderboardFrame() { return _leaderboardFrame; } public Vec getResponseColumn() { return _responseColumn; } public Vec getFoldColumn() { return _foldColumn; } public Vec getWeightsColumn() { return _weightsColumn; } public DistributionFamily getDistributionFamily() { return _distributionFamily; } public double[] getClassDistribution() { if (_classDistribution == null) _classDistribution = (new MRUtils.ClassDist(_responseColumn)).doAll(_responseColumn).dist(); return _classDistribution; } public StepDefinition[] getActualModelingSteps() { return _actualModelingSteps; } Frame _trainingFrame; // required training frame: can add and remove Vecs, but not mutate Vec data in place. Frame _validationFrame; // optional validation frame; the training_frame is split automatically if it's not specified. Frame _blendingFrame; // optional blending frame for SE (usually if xval is disabled). Frame _leaderboardFrame; // optional test frame used for leaderboard scoring; if not specified, leaderboard will use xval metrics. Vec _responseColumn; Vec _foldColumn; Vec _weightsColumn; DistributionFamily _distributionFamily; private double[] _classDistribution; Date _startTime; Countdown _runCountdown; Job<AutoML> _job; // the Job object for the build of this AutoML. WorkAllocations _workAllocations; StepDefinition[] _actualModelingSteps; // the output definition, listing only the steps that were actually used int _maxConsecutiveModelFailures = DEFAULT_MAX_CONSECUTIVE_MODEL_FAILURES; AtomicInteger _consecutiveModelFailures = new AtomicInteger(); AtomicLong _incrementalSeed = new AtomicLong(); private String _runId; private ModelingStepsExecutor _modelingStepsExecutor; private AutoMLSession _session; private Leaderboard _leaderboard; private EventLog _eventLog; // check that we haven't messed up the original Frame private Vec[] _originalTrainingFrameVecs; private String[] _originalTrainingFrameNames; private long[] _originalTrainingFrameChecksums; private transient NonBlockingHashMap<Key, String> _trackedKeys = new NonBlockingHashMap<>(); private transient ModelingStep[] _executionPlan; private transient PreprocessingStep[] _preprocessing; transient StepResultState[] _stepsResults; private boolean _useAutoBlending; private boolean _testMode; // when on, internal states are kept for inspection /** * DO NOT USE explicitly: for schema/reflection only. */ public AutoML() { super(null); } public AutoML(AutoMLBuildSpec buildSpec) { this(new Date(), buildSpec); } public AutoML(Key<AutoML> key, AutoMLBuildSpec buildSpec) { this(key, new Date(), buildSpec); } /** * @deprecated use {@link #AutoML(AutoMLBuildSpec) instead} */ @Deprecated public AutoML(Date startTime, AutoMLBuildSpec buildSpec) { this(null, startTime, buildSpec); } /** * @deprecated use {@link #AutoML(Key, AutoMLBuildSpec) instead} */ @Deprecated public AutoML(Key<AutoML> key, Date startTime, AutoMLBuildSpec buildSpec) { super(key == null ? buildSpec.makeKey() : key); try { _startTime = startTime; _session = AutoMLSession.getInstance(_key.toString()); _eventLog = EventLog.getOrMake(_key); eventLog().info(Stage.Workflow, "Project: "+buildSpec.project()); validateBuildSpec(buildSpec); _buildSpec = buildSpec; // now that buildSpec is validated, we can assign it: all future logic can now safely access parameters through _buildSpec. _runId = _buildSpec.instanceId(); _runCountdown = Countdown.fromSeconds(_buildSpec.build_control.stopping_criteria.max_runtime_secs()); _incrementalSeed.set(_buildSpec.build_control.stopping_criteria.seed()); prepareData(); initLeaderboard(); initPreprocessing(); _modelingStepsExecutor = new ModelingStepsExecutor(_leaderboard, _eventLog, _runCountdown); } catch (Exception e) { delete(); //cleanup potentially leaked keys throw e; } } /** * Validates all buildSpec parameters and provide reasonable defaults dynamically or parameter cleaning if necessary. * * Ideally, validation should be fast as we should be able to call it in the future * directly from client (e.g. Flow) to validate parameters before starting the AutoML run. * That's also the reason why validate methods should not modify data, * only possibly read them to validate parameters that may depend on data. * * In the future, we may also reuse ModelBuilder.ValidationMessage to return all validation results at once to the client (cf. ModelBuilder). * * @param buildSpec all the AutoML parameters to validate. */ private void validateBuildSpec(AutoMLBuildSpec buildSpec) { validateInput(buildSpec.input_spec); validateModelValidation(buildSpec); validateModelBuilding(buildSpec.build_models); validateEarlyStopping(buildSpec.build_control.stopping_criteria, buildSpec.input_spec); validateReproducibility(buildSpec); } private void validateInput(AutoMLInput input) { if (DKV.getGet(input.training_frame) == null) throw new H2OIllegalArgumentException("No training data has been specified, either as a path or a key, or it is not available anymore."); final Frame trainingFrame = DKV.getGet(input.training_frame); final Frame validationFrame = DKV.getGet(input.validation_frame); final Frame blendingFrame = DKV.getGet(input.blending_frame); final Frame leaderboardFrame = DKV.getGet(input.leaderboard_frame); Map<String, Frame> compatibleFrames = new LinkedHashMap<String, Frame>(){{ put("training", trainingFrame); put("validation", validationFrame); put("blending", blendingFrame); put("leaderboard", leaderboardFrame); }}; for (Map.Entry<String, Frame> entry : compatibleFrames.entrySet()) { Frame frame = entry.getValue(); if (frame != null && frame.find(input.response_column) < 0) { throw new H2OIllegalArgumentException("Response column '"+input.response_column+"' is not in the "+entry.getKey()+" frame."); } } if (input.fold_column != null && trainingFrame.find(input.fold_column) < 0) { throw new H2OIllegalArgumentException("Fold column '"+input.fold_column+"' is not in the training frame."); } if (input.weights_column != null && trainingFrame.find(input.weights_column) < 0) { throw new H2OIllegalArgumentException("Weights column '"+input.weights_column+"' is not in the training frame."); } if (input.ignored_columns != null) { List<String> ignoredColumns = new ArrayList<>(Arrays.asList(input.ignored_columns)); Map<String, String> doNotIgnore = new LinkedHashMap<String, String>(){{ put("response_column", input.response_column); put("fold_column", input.fold_column); put("weights_column", input.weights_column); }}; for (Map.Entry<String, String> entry: doNotIgnore.entrySet()) { if (entry.getValue() != null && ignoredColumns.contains(entry.getValue())) { eventLog().info(Stage.Validation, "Removing "+entry.getKey()+" '"+entry.getValue()+"' from list of ignored columns."); ignoredColumns.remove(entry.getValue()); } } input.ignored_columns = ignoredColumns.toArray(new String[0]); } } private void validateModelValidation(AutoMLBuildSpec buildSpec) { if (buildSpec.input_spec.fold_column != null) { eventLog().warn(Stage.Validation, "Fold column " + buildSpec.input_spec.fold_column + " will be used for cross-validation. nfolds parameter will be ignored."); buildSpec.build_control.nfolds = 0; } else if (buildSpec.build_control.nfolds == -1) { Frame trainingFrame = DKV.getGet(buildSpec.input_spec.training_frame); long nrows = trainingFrame.numRows(); long ncols = trainingFrame.numCols() - (buildSpec.getNonPredictors().length + (buildSpec.input_spec.ignored_columns != null ? buildSpec.input_spec.ignored_columns.length : 0)); double max_runtime = buildSpec.build_control.stopping_criteria.max_runtime_secs(); long nthreads = Stream.of(H2O.CLOUD.members()) .mapToInt((h2o) -> h2o._heartbeat._nthreads) .sum(); boolean use_blending = ((ncols * nrows) / (max_runtime * nthreads)) > 2064; if (max_runtime > 0 && use_blending && !(buildSpec.build_control.keep_cross_validation_predictions || buildSpec.build_control.keep_cross_validation_models || buildSpec.build_control.keep_cross_validation_fold_assignment)) { _useAutoBlending = true; buildSpec.build_control.nfolds = 0; eventLog().info(Stage.Validation, "Blending will be used."); } else { buildSpec.build_control.nfolds = 5; eventLog().info(Stage.Validation, "5-fold cross-validation will be used."); } } else if (buildSpec.build_control.nfolds <= 1) { eventLog().info(Stage.Validation, "Cross-validation disabled by user: no fold column nor nfolds > 1."); buildSpec.build_control.nfolds = 0; } if ((buildSpec.build_control.nfolds > 0 || buildSpec.input_spec.fold_column != null) && DKV.getGet(buildSpec.input_spec.validation_frame) != null) { eventLog().warn(Stage.Validation, "User specified a validation frame with cross-validation still enabled." + " Please note that the models will still be validated using cross-validation only," + " the validation frame will be used to provide purely informative validation metrics on the trained models."); } if (Arrays.asList( DistributionFamily.fractionalbinomial, DistributionFamily.quasibinomial, DistributionFamily.ordinal ).contains(buildSpec.build_control.distribution)) { throw new H2OIllegalArgumentException("Distribution \"" + buildSpec.build_control.distribution.name() + "\" is not supported in AutoML!"); } } private void validateModelBuilding(AutoMLBuildModels modelBuilding) { if (modelBuilding.exclude_algos != null && modelBuilding.include_algos != null) { throw new H2OIllegalArgumentException("Parameters `exclude_algos` and `include_algos` are mutually exclusive: please use only one of them if necessary."); } if (modelBuilding.exploitation_ratio > 1) { throw new H2OIllegalArgumentException("`exploitation_ratio` must be between 0 and 1."); } } private void validateEarlyStopping(AutoMLStoppingCriteria stoppingCriteria, AutoMLInput input) { if (stoppingCriteria.max_models() <= 0 && stoppingCriteria.max_runtime_secs() <= 0) { stoppingCriteria.set_max_runtime_secs(3600); eventLog().info(Stage.Validation, "User didn't set any runtime constraints (max runtime or max models), using default 1h time limit"); } Frame refFrame = DKV.getGet(input.training_frame); if (stoppingCriteria.stopping_tolerance() == AUTO_STOPPING_TOLERANCE) { stoppingCriteria.set_default_stopping_tolerance_for_frame(refFrame); eventLog().info(Stage.Validation, "Setting stopping tolerance adaptively based on the training frame: "+stoppingCriteria.stopping_tolerance()); } else { eventLog().info(Stage.Validation, "Stopping tolerance set by the user: "+stoppingCriteria.stopping_tolerance()); double defaultTolerance = AutoMLStoppingCriteria.default_stopping_tolerance_for_frame(refFrame); if (stoppingCriteria.stopping_tolerance() < 0.7 * defaultTolerance){ eventLog().warn(Stage.Validation, "Stopping tolerance set by the user is < 70% of the recommended default of "+defaultTolerance+", so models may take a long time to converge or may not converge at all."); } } } private void validateReproducibility(AutoMLBuildSpec buildSpec) { eventLog().info(Stage.Validation, "Build control seed: " + buildSpec.build_control.stopping_criteria.seed() + (buildSpec.build_control.stopping_criteria.seed() == -1 ? " (random)" : "")); } private void initLeaderboard() { String sortMetric = _buildSpec.input_spec.sort_metric; sortMetric = sortMetric == null || StoppingMetric.AUTO.name().equalsIgnoreCase(sortMetric) ? null : sortMetric.toLowerCase(); if ("deviance".equalsIgnoreCase(sortMetric)) { sortMetric = "mean_residual_deviance"; //compatibility with names used in leaderboard } _leaderboard = Leaderboard.getInstance(_key.toString(), eventLog().asLogger(Stage.ModelTraining), _leaderboardFrame, sortMetric, Leaderboard.ScoreData.auto); if (null != _leaderboard) { eventLog().warn(Stage.Workflow, "New models will be added to existing leaderboard "+_key.toString() +" (leaderboard frame="+(_leaderboardFrame == null ? null : _leaderboardFrame._key)+") with already "+_leaderboard.getModelKeys().length+" models."); } else { _leaderboard = Leaderboard.getOrMake(_key.toString(), eventLog().asLogger(Stage.ModelTraining), _leaderboardFrame, sortMetric, Leaderboard.ScoreData.auto); } _leaderboard.setExtensionsProvider(createLeaderboardExtensionProvider(this)); } private void initPreprocessing() { _preprocessing = _buildSpec.build_models.preprocessing == null ? null : Arrays.stream(_buildSpec.build_models.preprocessing) .map(def -> def.newPreprocessingStep(this)) .toArray(PreprocessingStep[]::new); } PreprocessingStep[] getPreprocessing() { return _preprocessing; } ModelingStep[] getExecutionPlan() { if (_executionPlan == null) { _executionPlan = session().getModelingStepsRegistry().getOrderedSteps(selectModelingPlan(null), this); } return _executionPlan; } StepDefinition[] selectModelingPlan(StepDefinition[] plan) { if (_buildSpec.build_models.modeling_plan == null) { // as soon as user specifies max_models, consider that user expects reproducibility. _buildSpec.build_models.modeling_plan = plan != null ? plan : _buildSpec.build_control.stopping_criteria.max_models() > 0 ? ModelingPlans.REPRODUCIBLE : ModelingPlans.defaultPlan(); } return _buildSpec.build_models.modeling_plan; } void planWork() { Set<IAlgo> skippedAlgos = new HashSet<>(); if (_buildSpec.build_models.exclude_algos != null) { skippedAlgos.addAll(Arrays.asList(_buildSpec.build_models.exclude_algos)); } else if (_buildSpec.build_models.include_algos != null) { skippedAlgos.addAll(Arrays.asList(Algo.values())); skippedAlgos.removeAll(Arrays.asList(_buildSpec.build_models.include_algos)); } for (Algo algo : Algo.values()) { if (!skippedAlgos.contains(algo) && !algo.enabled()) { boolean isMultinode = H2O.CLOUD.size() > 1; _eventLog.warn(Stage.Workflow, isMultinode ? "AutoML: "+algo.name()+" is not available in multi-node cluster; skipping it." + " See http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html#experimental-features for details." : "AutoML: "+algo.name()+" is not available; skipping it." ); skippedAlgos.add(algo); } } WorkAllocations workAllocations = new WorkAllocations(); for (ModelingStep step: getExecutionPlan()) { workAllocations.allocate(step.makeWork()); } for (IAlgo skippedAlgo : skippedAlgos) { eventLog().info(Stage.Workflow, "Disabling Algo: "+skippedAlgo+" as requested by the user."); workAllocations.remove(skippedAlgo); } eventLog().debug(Stage.Workflow, "Defined work allocations: "+workAllocations); distributeExplorationVsExploitationWork(workAllocations); eventLog().debug(Stage.Workflow, "Actual work allocations: "+workAllocations); workAllocations.freeze(); _workAllocations = workAllocations; } private void distributeExplorationVsExploitationWork(WorkAllocations allocations) { if (_buildSpec.build_models.exploitation_ratio < 0) return; int sumExploration = allocations.remainingWork(ModelingStep.isExplorationWork); int sumExploitation = allocations.remainingWork(ModelingStep.isExploitationWork); double explorationRatio = 1 - _buildSpec.build_models.exploitation_ratio; int newTotal = (int)Math.round(sumExploration / explorationRatio); int newSumExploration = sumExploration; // keeping the same weight for exploration steps (principle of less surprise). int newSumExploitation = newTotal - newSumExploration; for (Work work : allocations.getAllocations(ModelingStep.isExplorationWork)) { work._weight = (int)Math.round((double)work._weight * newSumExploration/sumExploration); } for (Work work : allocations.getAllocations(ModelingStep.isExploitationWork)) { work._weight = (int)Math.round((double)work._weight * newSumExploitation/sumExploitation); } } /** * Creates a job for the current AutoML instance and submits it to the task runner. * Calling this on an already running AutoML instance has no effect. */ public void submit() { if (_job == null || !_job.isRunning()) { planWork(); H2OJob<AutoML> j = new H2OJob<>(this, _key, _runCountdown.remainingTime()); _job = j._job; eventLog().info(Stage.Workflow, "AutoML job created: " + EventLogEntry.dateTimeFormat.get().format(_startTime)) .setNamedValue("creation_epoch", _startTime, EventLogEntry.epochFormat.get()); j.start(_workAllocations.remainingWork()); DKV.put(this); } } @Override public void run() { _modelingStepsExecutor.start(); eventLog().info(Stage.Workflow, "AutoML build started: " + EventLogEntry.dateTimeFormat.get().format(_runCountdown.start_time())) .setNamedValue("start_epoch", _runCountdown.start_time(), EventLogEntry.epochFormat.get()); try { learn(); } finally { stop(); } } @Override public void stop() { if (null == _modelingStepsExecutor) return; // already stopped _modelingStepsExecutor.stop(); eventLog().info(Stage.Workflow, "AutoML build stopped: " + EventLogEntry.dateTimeFormat.get().format(_runCountdown.stop_time())) .setNamedValue("stop_epoch", _runCountdown.stop_time(), EventLogEntry.epochFormat.get()); eventLog().info(Stage.Workflow, "AutoML build done: built " + _modelingStepsExecutor.modelCount() + " models"); eventLog().info(Stage.Workflow, "AutoML duration: "+ PrettyPrint.msecs(_runCountdown.duration(), true)) .setNamedValue("duration_secs", Math.round(_runCountdown.duration() / 1000.)); log.info("AutoML run summary:"); for (EventLogEntry event : eventLog()._events) log.info(event.toString()); if (0 < leaderboard().getModelKeys().length) { log.info(leaderboard().toLogString()); } else { long max_runtime_secs = (long)_buildSpec.build_control.stopping_criteria.max_runtime_secs(); eventLog().warn(Stage.Workflow, "Empty leaderboard.\n" +"AutoML was not able to build any model within a max runtime constraint of "+max_runtime_secs+" seconds, " +"you may want to increase this value before retrying."); } session().detach(); possiblyVerifyImmutability(); if (!_buildSpec.build_control.keep_cross_validation_predictions) { cleanUpModelsCVPreds(); } } /** * Holds until AutoML's job is completed, if a job exists. */ public void get() { if (_job != null) _job.get(); } public Job<AutoML> job() { if (null == _job) return null; return DKV.getGet(_job._key); } public Model leader() { return leaderboard() == null ? null : _leaderboard.getLeader(); } public AutoMLSession session() { _session = _session == null ? null : _session._key.get(); if (_session != null) _session.attach(this, false); return _session; } public Leaderboard leaderboard() { return _leaderboard == null ? null : (_leaderboard = _leaderboard._key.get()); } public EventLog eventLog() { return _eventLog == null ? null : (_eventLog = _eventLog._key.get()); } public String projectName() { return _buildSpec == null ? null : _buildSpec.project(); } public long timeRemainingMs() { return _runCountdown.remainingTime(); } public int remainingModels() { if (_buildSpec.build_control.stopping_criteria.max_models() == 0) return Integer.MAX_VALUE; return _buildSpec.build_control.stopping_criteria.max_models() - _modelingStepsExecutor.modelCount(); } @Override public boolean keepRunning() { return !_runCountdown.timedOut() && remainingModels() > 0; } public boolean isCVEnabled() { return _buildSpec.build_control.nfolds > 0 || _buildSpec.input_spec.fold_column != null; } //***************** Data Preparation Section *****************// private void optionallySplitTrainingDataset() { // If no cross-validation and validation or leaderboard frame are missing, // then we need to create one out of the original training set. if (!isCVEnabled()) { double[] splitRatios = null; double validationRatio = null == _validationFrame ? 0.1 : 0; double blendingRatio = (_useAutoBlending && null == _blendingFrame) ? 0.2 : 0; if (validationRatio + blendingRatio > 0) { splitRatios = new double[]{ 1 - (validationRatio + blendingRatio), validationRatio, blendingRatio }; ArrayList<String> frames = new ArrayList(); if (null == _validationFrame) frames.add("validation"); if (null == _blendingFrame && _useAutoBlending) frames.add("blending"); String framesStr = String.join(", ", frames); String ratioStr = Arrays.stream(splitRatios) .mapToObj(d -> Integer.toString((int) (d * 100))) .collect(Collectors.joining("/")); eventLog().info(Stage.DataImport, "Since cross-validation is disabled, and " + framesStr + " frame(s) were not provided, " + "automatically split the training data into training, " + framesStr + " frame(s) in the ratio " + ratioStr + "."); } if (splitRatios != null) { Key[] keys = new Key[] { Key.make(_runId+"_training_"+ _origTrainingFrame._key), Key.make(_runId+"_validation_"+ _origTrainingFrame._key), Key.make(_runId+"_blending_"+ _origTrainingFrame._key), }; Frame[] splits = ShuffleSplitFrame.shuffleSplitFrame( _origTrainingFrame, keys, splitRatios, _buildSpec.build_control.stopping_criteria.seed() ); _trainingFrame = splits[0]; if (_validationFrame == null && splits[1].numRows() > 0) { _validationFrame = splits[1]; } else { splits[1].delete(); } if (_blendingFrame == null && splits[2].numRows() > 0) { _blendingFrame = splits[2]; } else { splits[2].delete(); } } if (_leaderboardFrame == null) _leaderboardFrame = _validationFrame; } } private DistributionFamily inferDistribution(Vec response) { int numOfDomains = response.domain() == null ? 0 : response.domain().length; if (_buildSpec.build_control.distribution == DistributionFamily.AUTO) { if (numOfDomains == 0) return DistributionFamily.gaussian; if (numOfDomains == 2) return DistributionFamily.bernoulli; if (numOfDomains > 2) return DistributionFamily.multinomial; throw new RuntimeException("Number of classes is equal to 1."); } else { DistributionFamily distribution = _buildSpec.build_control.distribution; if (numOfDomains > 2) { if (!Arrays.asList( DistributionFamily.multinomial, DistributionFamily.ordinal, DistributionFamily.custom ).contains(distribution)) { throw new H2OAutoMLException("Wrong distribution specified! Number of classes of response is greater than 2." + " Possible distribution values: \"multinomial\"," + /*" \"ordinal\"," + */ // Currently unsupported in AutoML " \"custom\"."); } } else if (numOfDomains == 2) { if (!Arrays.asList( DistributionFamily.bernoulli, DistributionFamily.quasibinomial, DistributionFamily.fractionalbinomial, DistributionFamily.custom ).contains(distribution)) { throw new H2OAutoMLException("Wrong distribution specified! Number of classes of response is 2." + " Possible distribution values: \"bernoulli\"," + /*" \"quasibinomial\", \"fractionalbinomial\"," + */ // Currently unsupported in AutoML " \"custom\"."); } } else { if (!Arrays.asList( DistributionFamily.gaussian, DistributionFamily.poisson, DistributionFamily.negativebinomial, DistributionFamily.gamma, DistributionFamily.laplace, DistributionFamily.quantile, DistributionFamily.huber, DistributionFamily.tweedie, DistributionFamily.custom ).contains(distribution)) { throw new H2OAutoMLException("Wrong distribution specified! Response type suggests a regression task." + " Possible distribution values: \"gaussian\", \"poisson\", \"negativebinomial\", \"gamma\", " + "\"laplace\", \"quantile\", \"huber\", \"tweedie\", \"custom\"."); } } return distribution; } } private void prepareData() { final AutoMLInput input = _buildSpec.input_spec; _origTrainingFrame = DKV.getGet(input.training_frame); _validationFrame = DKV.getGet(input.validation_frame); _blendingFrame = DKV.getGet(input.blending_frame); _leaderboardFrame = DKV.getGet(input.leaderboard_frame); optionallySplitTrainingDataset(); if (null == _trainingFrame) { // when nfolds>0, let trainingFrame be the original frame // but cloning to keep an internal ref just in case the original ref gets deleted from client side // (can occur in some corner cases with Python GC for example if frame get's out of scope during an AutoML rerun) _trainingFrame = new Frame(_origTrainingFrame); _trainingFrame._key = Key.make(_runId+"_training_" + _origTrainingFrame._key); DKV.put(_trainingFrame); } _responseColumn = _trainingFrame.vec(input.response_column); _foldColumn = _trainingFrame.vec(input.fold_column); _weightsColumn = _trainingFrame.vec(input.weights_column); _distributionFamily = inferDistribution(_responseColumn); eventLog().info(Stage.DataImport, "training frame: "+_trainingFrame.toString().replace("\n", " ")+" checksum: "+_trainingFrame.checksum()); if (null != _validationFrame) { eventLog().info(Stage.DataImport, "validation frame: "+_validationFrame.toString().replace("\n", " ")+" checksum: "+_validationFrame.checksum()); } else { eventLog().info(Stage.DataImport, "validation frame: NULL"); } if (null != _leaderboardFrame) { eventLog().info(Stage.DataImport, "leaderboard frame: "+_leaderboardFrame.toString().replace("\n", " ")+" checksum: "+_leaderboardFrame.checksum()); } else { eventLog().info(Stage.DataImport, "leaderboard frame: NULL"); } if (null != _blendingFrame) { this.eventLog().info(Stage.DataImport, "blending frame: "+_blendingFrame.toString().replace("\n", " ")+" checksum: "+_blendingFrame.checksum()); } else { this.eventLog().info(Stage.DataImport, "blending frame: NULL"); } eventLog().info(Stage.DataImport, "response column: "+input.response_column); eventLog().info(Stage.DataImport, "fold column: "+_foldColumn); eventLog().info(Stage.DataImport, "weights column: "+_weightsColumn); if (verifyImmutability) { // check that we haven't messed up the original Frame _originalTrainingFrameVecs = _origTrainingFrame.vecs().clone(); _originalTrainingFrameNames = _origTrainingFrame.names().clone(); _originalTrainingFrameChecksums = new long[_originalTrainingFrameVecs.length]; for (int i = 0; i < _originalTrainingFrameVecs.length; i++) _originalTrainingFrameChecksums[i] = _originalTrainingFrameVecs[i].checksum(); } } //***************** Training Jobs *****************// private void learn() { List<ModelingStep> completed = new ArrayList<>(); if (_preprocessing != null) { for (PreprocessingStep preprocessingStep : _preprocessing) preprocessingStep.prepare(); } for (ModelingStep step : getExecutionPlan()) { if (!exceededSearchLimits(step)) { StepResultState state = _modelingStepsExecutor.submit(step, job()); log.info("AutoML step returned with state: "+state.toString()); if (_testMode) _stepsResults = ArrayUtils.append(_stepsResults, state); if (state.is(ResultStatus.success)) { _consecutiveModelFailures.set(0); completed.add(step); } else if (state.is(ResultStatus.failed)) { if (!step.ignores(Constraint.FAILURE_COUNT) && _consecutiveModelFailures.incrementAndGet() >= _maxConsecutiveModelFailures) { throw new H2OAutoMLException("Aborting AutoML after too many consecutive model failures", state.error()); } if (state.error() instanceof H2OAutoMLException) { // if a step throws this exception, this will immediately abort the entire AutoML run. throw (H2OAutoMLException) state.error(); } } } } if (_preprocessing != null) { for (PreprocessingStep preprocessingStep : _preprocessing) preprocessingStep.dispose(); } _actualModelingSteps = session().getModelingStepsRegistry().createDefinitionPlanFromSteps(completed.toArray(new ModelingStep[0])); eventLog().info(Stage.Workflow, "Actual modeling steps: "+Arrays.toString(_actualModelingSteps)); } public Key makeKey(String algoName, String type, boolean with_counter) { List<String> tokens = new ArrayList<>(); tokens.add(algoName); if (!StringUtils.isNullOrEmpty(type)) tokens.add(type); if (with_counter) tokens.add(Integer.toString(session().nextModelCounter(algoName, type))); tokens.add(_runId); return Key.make(String.join("_", tokens)); } public void trackKeys(Key... keys) { String whereFrom = Arrays.toString(Thread.currentThread().getStackTrace()); for (Key key : keys) _trackedKeys.put(key, whereFrom); } private boolean exceededSearchLimits(ModelingStep step) { if (_job.stop_requested()) { eventLog().debug(EventLogEntry.Stage.ModelTraining, "AutoML: job cancelled; skipping "+step._description); return true; } if (!step.ignores(Constraint.TIMEOUT) && _runCountdown.timedOut()) { eventLog().debug(EventLogEntry.Stage.ModelTraining, "AutoML: out of time; skipping "+step._description); return true; } if (!step.ignores(Constraint.MODEL_COUNT) && remainingModels() <= 0) { eventLog().debug(EventLogEntry.Stage.ModelTraining, "AutoML: hit the max_models limit; skipping "+step._description); return true; } return false; } //***************** Clean Up + other utility functions *****************// /** * Delete the AutoML-related objects, including the grids and models that it built if cascade=true */ @Override protected Futures remove_impl(Futures fs, boolean cascade) { Key<Job> jobKey = _job == null ? null : _job._key; log.debug("Cleaning up AutoML "+jobKey); if (_buildSpec != null) { // If the Frame was made here (e.g. buildspec contained a path, then it will be deleted if (_buildSpec.input_spec.training_frame == null && _origTrainingFrame != null) { _origTrainingFrame.delete(jobKey, fs, true); } if (_buildSpec.input_spec.validation_frame == null && _validationFrame != null) { _validationFrame.delete(jobKey, fs, true); } } if (_trainingFrame != null && _origTrainingFrame != null) Frame.deleteTempFrameAndItsNonSharedVecs(_trainingFrame, _origTrainingFrame); if (leaderboard() != null) leaderboard().remove(fs, cascade); if (eventLog() != null) eventLog().remove(fs, cascade); if (session() != null) session().remove(fs, cascade); if (cascade && _preprocessing != null) { for (PreprocessingStep preprocessingStep : _preprocessing) { preprocessingStep.remove(); } } for (Key key : _trackedKeys.keySet()) Keyed.remove(key, fs, true); return super.remove_impl(fs, cascade); } private boolean possiblyVerifyImmutability() { boolean warning = false; if (verifyImmutability) { // check that we haven't messed up the original Frame eventLog().debug(Stage.Workflow, "Verifying training frame immutability. . ."); Vec[] vecsRightNow = _origTrainingFrame.vecs(); String[] namesRightNow = _origTrainingFrame.names(); if (_originalTrainingFrameVecs.length != vecsRightNow.length) { log.warn("Training frame vec count has changed from: " + _originalTrainingFrameVecs.length + " to: " + vecsRightNow.length); warning = true; } if (_originalTrainingFrameNames.length != namesRightNow.length) { log.warn("Training frame vec count has changed from: " + _originalTrainingFrameNames.length + " to: " + namesRightNow.length); warning = true; } for (int i = 0; i < _originalTrainingFrameVecs.length; i++) { if (!_originalTrainingFrameVecs[i].equals(vecsRightNow[i])) { log.warn("Training frame vec number " + i + " has changed keys. Was: " + _originalTrainingFrameVecs[i] + " , now: " + vecsRightNow[i]); warning = true; } if (!_originalTrainingFrameNames[i].equals(namesRightNow[i])) { log.warn("Training frame vec number " + i + " has changed names. Was: " + _originalTrainingFrameNames[i] + " , now: " + namesRightNow[i]); warning = true; } if (_originalTrainingFrameChecksums[i] != vecsRightNow[i].checksum()) { log.warn("Training frame vec number " + i + " has changed checksum. Was: " + _originalTrainingFrameChecksums[i] + " , now: " + vecsRightNow[i].checksum()); warning = true; } } if (warning) eventLog().warn(Stage.Workflow, "Training frame was mutated! This indicates a bug in the AutoML software."); else eventLog().debug(Stage.Workflow, "Training frame was not mutated (as expected)."); } else { eventLog().debug(Stage.Workflow, "Not verifying training frame immutability. . . This is turned off for efficiency."); } return warning; } private void cleanUpModelsCVPreds() { log.info("Cleaning up all CV Predictions for AutoML"); for (Model model : leaderboard().getModels()) { model.deleteCrossValidationPreds(); } } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/AutoMLBuildSpec.java
package ai.h2o.automl; import ai.h2o.automl.preprocessing.PreprocessingStepDefinition; import hex.Model; import hex.ScoreKeeper.StoppingMetric; import hex.genmodel.utils.DistributionFamily; import hex.grid.HyperSpaceSearchCriteria; import water.H2O; import water.Iced; import water.Key; import water.exceptions.H2OIllegalValueException; import water.fvec.Frame; import water.util.*; import water.util.PojoUtils.FieldNaming; import java.util.*; import java.util.concurrent.atomic.AtomicInteger; import java.util.stream.Stream; import java.text.DateFormat; import java.text.SimpleDateFormat; /** * Parameters which specify the build (or extension) of an AutoML build job. */ public class AutoMLBuildSpec extends Iced { private static final ThreadLocal<DateFormat> instanceTimeStampFormat = ThreadLocal.withInitial(() -> new SimpleDateFormat("yyyyMMdd_Hmmss")); private final static AtomicInteger amlInstanceCounter = new AtomicInteger(); /** * The specification of overall build parameters for the AutoML process. */ public static final class AutoMLBuildControl extends Iced { public final AutoMLStoppingCriteria stopping_criteria; /** * Identifier for models that should be grouped together in the leaderboard (e.g., "airlines" and "iris"). */ public String project_name = null; // Pass through to all algorithms public boolean balance_classes = false; public float[] class_sampling_factors; public float max_after_balance_size = 5.0f; public int nfolds = -1; public DistributionFamily distribution = DistributionFamily.AUTO; public String custom_distribution_func; public double tweedie_power = 1.5; public double quantile_alpha = 0.5; public double huber_alpha = 0.9; public String custom_metric_func; public boolean keep_cross_validation_predictions = false; public boolean keep_cross_validation_models = false; public boolean keep_cross_validation_fold_assignment = false; public String export_checkpoints_dir = null; public AutoMLBuildControl() { stopping_criteria = new AutoMLStoppingCriteria(); } } public static final class AutoMLStoppingCriteria extends Iced { public static final int AUTO_STOPPING_TOLERANCE = -1; public static double default_stopping_tolerance_for_frame(Frame frame) { return HyperSpaceSearchCriteria.RandomDiscreteValueSearchCriteria.default_stopping_tolerance_for_frame(frame); } private final HyperSpaceSearchCriteria.RandomDiscreteValueSearchCriteria _searchCriteria = new HyperSpaceSearchCriteria.RandomDiscreteValueSearchCriteria(); private double _max_runtime_secs_per_model = 0; public AutoMLStoppingCriteria() { // reasonable defaults: set_max_models(0); // no limit set_max_runtime_secs(0); // no limit set_max_runtime_secs_per_model(0); // no limit set_stopping_rounds(3); set_stopping_tolerance(AUTO_STOPPING_TOLERANCE); set_stopping_metric(StoppingMetric.AUTO); } public double max_runtime_secs_per_model() { return _max_runtime_secs_per_model; } public void set_max_runtime_secs_per_model(double max_runtime_secs_per_model) { _max_runtime_secs_per_model = max_runtime_secs_per_model; } public long seed() { return _searchCriteria.seed(); } public int max_models() { return _searchCriteria.max_models(); } public double max_runtime_secs() { return _searchCriteria.max_runtime_secs(); } public int stopping_rounds() { return _searchCriteria.stopping_rounds(); } public StoppingMetric stopping_metric() { return _searchCriteria.stopping_metric(); } public double stopping_tolerance() { return _searchCriteria.stopping_tolerance(); } public void set_seed(long seed) { _searchCriteria.set_seed(seed); } public void set_max_models(int max_models) { _searchCriteria.set_max_models(max_models); } public void set_max_runtime_secs(double max_runtime_secs) { _searchCriteria.set_max_runtime_secs(max_runtime_secs); } public void set_stopping_rounds(int stopping_rounds) { _searchCriteria.set_stopping_rounds(stopping_rounds); } public void set_stopping_metric(StoppingMetric stopping_metric) { _searchCriteria.set_stopping_metric(stopping_metric); } public void set_stopping_tolerance(double stopping_tolerance) { _searchCriteria.set_stopping_tolerance(stopping_tolerance); } public void set_default_stopping_tolerance_for_frame(Frame frame) { _searchCriteria.set_default_stopping_tolerance_for_frame(frame); } public HyperSpaceSearchCriteria.RandomDiscreteValueSearchCriteria getSearchCriteria() { return _searchCriteria; } } /** * The specification of the datasets to be used for the AutoML process. * The user can specify a directory path, a file path (including HDFS, s3 or the like), * or the ID of an already-parsed Frame in the H2O cluster. Paths are processed * as usual in H2O. */ public static final class AutoMLInput extends Iced { public Key<Frame> training_frame; public Key<Frame> validation_frame; public Key<Frame> blending_frame; public Key<Frame> leaderboard_frame; public String response_column; public String fold_column; public String weights_column; public String[] ignored_columns; public String sort_metric = StoppingMetric.AUTO.name(); } /** * The specification of the parameters for building models for a single algo (e.g., GBM), including base model parameters and hyperparameter search. */ public static final class AutoMLBuildModels extends Iced { public Algo[] exclude_algos; public Algo[] include_algos; public StepDefinition[] modeling_plan; public double exploitation_ratio = -1; public AutoMLCustomParameters algo_parameters = new AutoMLCustomParameters(); public PreprocessingStepDefinition[] preprocessing; } public static final class AutoMLCustomParameters extends Iced { // convenient property to allow us to modify our model (and later grids) definitions // and benchmark them without having to rebuild the backend for each change. static final String ALGO_PARAMS_ALL_ENABLED = H2O.OptArgs.SYSTEM_PROP_PREFIX + "automl.algo_parameters.all.enabled"; // let's limit the list of allowed custom parameters by default for now: we can always decide to open this later. private static final String[] ALLOWED_PARAMETERS = { "monotone_constraints", // "ntrees", }; private static final String ROOT_PARAM = "algo_parameters"; public static final class AutoMLCustomParameter<V> extends Iced { private AutoMLCustomParameter(String name, V value) { _name = name; _value = value; } private AutoMLCustomParameter(IAlgo algo, String name, V value) { _algo = algo; _name = name; _value = value; } private IAlgo _algo; private String _name; private V _value; } public static final class Builder { private final transient List<AutoMLCustomParameter> _anyAlgoParams = new ArrayList<>(); private final transient List<AutoMLCustomParameter> _specificAlgoParams = new ArrayList<>(); public <V> Builder add(String param, V value) { assertParameterAllowed(param); _anyAlgoParams.add(new AutoMLCustomParameter<>(param, value)); return this; } public <V> Builder add(IAlgo algo, String param, V value) { assertParameterAllowed(param); _specificAlgoParams.add(new AutoMLCustomParameter<>(algo, param, value)); return this; } /** * Builder is necessary here as the custom parameters must be applied in a certain order, * and we can't assume that the consumer of this API will add them in the right order. * @return a new AutoMLCustomParameters instance with custom parameters properly assigned. */ public AutoMLCustomParameters build() { AutoMLCustomParameters instance = new AutoMLCustomParameters(); // apply "all" scope first, then algo-specific ones. for (AutoMLCustomParameter param : _anyAlgoParams) { if (!instance.addParameter(param._name, param._value)) throw new H2OIllegalValueException(param._name, ROOT_PARAM, param._value); } for (AutoMLCustomParameter param : _specificAlgoParams) { if (!instance.addParameter(param._algo, param._name, param._value)) throw new H2OIllegalValueException(param._name, ROOT_PARAM, param._value); } return instance; } private void assertParameterAllowed(String param) { if (!Boolean.parseBoolean(System.getProperty(ALGO_PARAMS_ALL_ENABLED, "false")) && !ArrayUtils.contains(ALLOWED_PARAMETERS, param)) throw new H2OIllegalValueException(ROOT_PARAM, param); } } public static Builder create() { return new Builder(); } private final IcedHashMap<String, String[]> _algoParameterNames = new IcedHashMap<>(); // stores the parameters names overridden, by algo name private final IcedHashMap<String, Model.Parameters> _algoParameters = new IcedHashMap<>(); //stores the parameters values, by algo name public boolean hasCustomParams(IAlgo algo) { return _algoParameterNames.get(algo.name()) != null; } public boolean hasCustomParam(IAlgo algo, String param) { return ArrayUtils.contains(_algoParameterNames.get(algo.name()), param); } public void applyCustomParameters(IAlgo algo, Model.Parameters destParams) { if (hasCustomParams(algo)) { String[] paramNames = getCustomParameterNames(algo); String[] onlyParamNames = Stream.of(paramNames).map(p -> "_"+p).toArray(String[]::new); PojoUtils.copyProperties(destParams, getCustomizedDefaults(algo), FieldNaming.CONSISTENT, null, onlyParamNames); } } String[] getCustomParameterNames(IAlgo algo) { return _algoParameterNames.get(algo.name()); } Model.Parameters getCustomizedDefaults(IAlgo algo) { if (!_algoParameters.containsKey(algo.name())) { Model.Parameters defaults = defaultParameters(algo); if (defaults != null) _algoParameters.put(algo.name(), defaults); } return _algoParameters.get(algo.name()); } private Model.Parameters defaultParameters(IAlgo algo) { return algo.enabled() ? ModelingStepsRegistry.defaultParameters(algo.name()) : null; } private void addParameterName(IAlgo algo, String param) { if (!_algoParameterNames.containsKey(algo.name())) { _algoParameterNames.put(algo.name(), new String[] {param}); } else { String[] names = _algoParameterNames.get(algo.name()); if (!ArrayUtils.contains(names, param)) { _algoParameterNames.put(algo.name(), ArrayUtils.append(names, param)); } } } private <V> boolean addParameter(String param, V value) { boolean added = false; for (Algo algo : Algo.values()) { added |= addParameter(algo, param, value); } return added; } private <V> boolean addParameter(IAlgo algo, String param, V value) { Model.Parameters customParams = getCustomizedDefaults(algo); try { if (customParams != null && (setField(customParams, param, value, FieldNaming.DEST_HAS_UNDERSCORES) || setField(customParams, param, value, FieldNaming.CONSISTENT))) { addParameterName(algo, param); return true; } else { Log.debug("Could not set custom param " + param + " for algo " + algo); return false; } } catch (IllegalArgumentException iae) { throw new H2OIllegalValueException(param, ROOT_PARAM, value); } } private <D, V> boolean setField(D dest, String fieldName, V value, FieldNaming naming) { try { PojoUtils.setField(dest, fieldName, value, naming); return true; } catch (IllegalArgumentException iae) { // propagate exception iff the value was wrong (conversion issue), ignore if the field doesn't exist. try { PojoUtils.getFieldValue(dest, fieldName, naming); } catch (IllegalArgumentException ignored){ return false; } throw iae; } } } public final AutoMLBuildControl build_control = new AutoMLBuildControl(); public final AutoMLInput input_spec = new AutoMLInput(); public final AutoMLBuildModels build_models = new AutoMLBuildModels(); private String instanceId; public String project() { if (build_control.project_name == null) { build_control.project_name = instanceId(); } return build_control.project_name; } public String instanceId() { if (instanceId == null) { instanceId = "AutoML_"+amlInstanceCounter.incrementAndGet()+"_"+ instanceTimeStampFormat.get().format(new Date()); } return instanceId; } public Key<AutoML> makeKey() { // if user offers a different response column, // the new models will be added to a new Leaderboard, without removing the previous one. // otherwise, the new models will be added to the existing leaderboard. return Key.make(project() + AutoML.keySeparator + StringUtils.sanitizeIdentifier(input_spec.response_column)); } public String[] getNonPredictors() { return Arrays.stream(new String[]{input_spec.weights_column, input_spec.fold_column, input_spec.response_column}) .filter(Objects::nonNull) .toArray(String[]::new); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/AutoMLSession.java
package ai.h2o.automl; import water.*; import water.nbhm.NonBlockingHashMap; import water.util.IcedHashMap; import water.util.IcedHashSet; import java.util.concurrent.atomic.AtomicInteger; public class AutoMLSession extends Lockable<AutoMLSession> { private static Key<AutoMLSession> makeKey(String projectName) { return Key.make("AutoMLSession_"+projectName); } public static AutoMLSession getInstance(String projectName) { AutoMLSession session = DKV.getGet(makeKey(projectName)); if (session == null) { session = new AutoMLSession(projectName); DKV.put(session); } return session; } private final String _projectName; private final ModelingStepsRegistry _modelingStepsRegistry; private IcedHashSet<Key<Keyed>> _resumableKeys = new IcedHashSet(); private IcedHashMap<Key, String[]> _keySources = new IcedHashMap<>(); private NonBlockingHashMap<String, AtomicInteger> _modelCounters = new NonBlockingHashMap<>(); private transient NonBlockingHashMap<String, ModelingSteps> _availableStepsByProviderName = new NonBlockingHashMap<>(); private transient AutoML _aml; AutoMLSession(String projectName) { super(makeKey(projectName)); _projectName = projectName; _modelingStepsRegistry = new ModelingStepsRegistry(); } public ModelingStepsRegistry getModelingStepsRegistry() { return _modelingStepsRegistry; } void attach(AutoML aml, boolean resume) { assert _projectName.equals(aml._key.toString()): "AutoMLSession can only be attached to an AutoML instance from project '"+_projectName+"', but got: "+aml._key; if (_aml == null) { _aml = aml; if (!resume) _availableStepsByProviderName.clear(); } } void detach() { for (ModelingSteps steps : _availableStepsByProviderName.values()) steps.cleanup(); _aml = null; DKV.put(this); } public ModelingStep getModelingStep(Key key) { if (!_keySources.containsKey(key)) return null; String[] identifiers = _keySources.get(key); assert identifiers.length > 1; return getModelingStep(identifiers[0], identifiers[1]); } public ModelingStep getModelingStep(String providerName, String id) { ModelingSteps steps = getModelingSteps(providerName); return steps == null ? null : steps.getStep(id).orElse(null); } ModelingSteps getModelingSteps(String providerName) { if (!_availableStepsByProviderName.containsKey(providerName)) { ModelingStepsProvider provider = _modelingStepsRegistry.stepsByName.get(providerName); if (provider == null) { throw new IllegalArgumentException("Missing provider for modeling steps '"+providerName+"'"); } ModelingSteps steps = provider.newInstance(_aml); if (steps != null) _availableStepsByProviderName.put(providerName, steps); } return _availableStepsByProviderName.get(providerName); } public void registerKeySource(Key key, ModelingStep step) { if (key != null && !_keySources.containsKey(key)) atomicUpdate(() -> _keySources.put(key, new String[]{step.getProvider(), step.getId()})); } public void addResumableKey(Key key) { atomicUpdate(() -> _resumableKeys.add(key)); } public Key[] getResumableKeys(String providerName, String id) { ModelingStep step = getModelingStep(providerName, id); if (step == null) return new Key[0]; return _resumableKeys.stream() .filter(k -> step.equals(getModelingStep(k))) .toArray(Key[]::new); } public int nextModelCounter(String algoName, String type) { String key = algoName+"_"+type; if (!_modelCounters.containsKey(key)) { synchronized (_modelCounters) { if (!_modelCounters.containsKey(key)) atomicUpdate(() -> _modelCounters.put(key, new AtomicInteger(0))); } } AtomicInteger c = new AtomicInteger(); atomicUpdate(() -> c.set(_modelCounters.get(key).incrementAndGet())); return c.get(); } @Override protected Futures remove_impl(Futures fs, boolean cascade) { _resumableKeys.clear(); _keySources.clear(); _availableStepsByProviderName.clear(); return super.remove_impl(fs, cascade); } private void atomicUpdate(Runnable update) { // atomic updates are unnecessary for now: // if the session can be shared by multiple AutoML instances when there are reruns of the same project, // only one instance at a time is using the session, so we don't need to update the DKV on each modification. // AutoMLUtils.atomicUpdate(this, update, null); update.run(); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/H2OJob.java
package ai.h2o.automl; import water.H2O; import water.Job; import water.Key; import water.Keyed; public class H2OJob<T extends Keyed & H2ORunnable> { protected final T _target; protected Key<Job> _jobKey; Job<T> _job; public H2OJob(T runnable, long max_runtime_msecs) { this(runnable, Key.make(), max_runtime_msecs); } public H2OJob(T runnable, Key<T> key, long max_runtime_msecs) { _target = runnable; _job = new Job<>(key, _target.getClass().getName(), _target.getClass().getSimpleName() + " build"); _jobKey = _job._key; _job._max_runtime_msecs = max_runtime_msecs; } public Job<T> start() { return this.start(1); } public Job<T> start(int work) { return _job.start(new H2O.H2OCountedCompleter() { @Override public void compute2() { _target.run(); tryComplete(); } }, work); } public void stop() { _jobKey.get().stop(); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/H2ORunnable.java
package ai.h2o.automl; /** * * The <code>H2ORunnable</code> interface should be implemented by any class whose * instances are intended to be submitted to the H2O forkjoin pool via * <code>H2O.submitTask</code>. The class must define a method of no arguments called * <code>run</code>. * */ public interface H2ORunnable { void run(); void stop(); }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/IAlgo.java
package ai.h2o.automl; import java.io.Serializable; public interface IAlgo extends Serializable { String name(); default String urlName() { return name().toLowerCase(); } default boolean enabled() { return true; } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/ModelParametersProvider.java
package ai.h2o.automl; import hex.Model.Parameters; public interface ModelParametersProvider<P extends Parameters> { P newDefaultParameters(); }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/ModelSelectionStrategies.java
package ai.h2o.automl; import hex.Model; import hex.leaderboard.Leaderboard; import org.apache.log4j.Logger; import water.Key; import water.util.ArrayUtils; import java.util.Arrays; import java.util.function.Predicate; import java.util.function.Supplier; public final class ModelSelectionStrategies { private static final Logger LOG = Logger.getLogger(ModelSelectionStrategies.class); public static abstract class LeaderboardBasedSelectionStrategy<M extends Model> implements ModelSelectionStrategy<M> { final Supplier<LeaderboardHolder> _leaderboardSupplier; public LeaderboardBasedSelectionStrategy(Supplier<LeaderboardHolder> leaderboardSupplier) { _leaderboardSupplier = leaderboardSupplier; } LeaderboardHolder makeSelectionLeaderboard() { return _leaderboardSupplier.get(); } } public static class KeepBestN<M extends Model> extends LeaderboardBasedSelectionStrategy<M>{ private final int _N; public KeepBestN(int N, Supplier<LeaderboardHolder> leaderboardSupplier) { super(leaderboardSupplier); _N = N; } @Override @SuppressWarnings("unchecked") public Selection<M> select(Key<M>[] originalModels, Key<M>[] newModels) { LeaderboardHolder lbHolder = makeSelectionLeaderboard(); Leaderboard tmpLeaderboard = lbHolder.get(); tmpLeaderboard.addModels((Key<Model>[]) originalModels); tmpLeaderboard.addModels((Key<Model>[]) newModels); if (LOG.isDebugEnabled()) LOG.debug(tmpLeaderboard.toLogString()); Key<Model>[] sortedKeys = tmpLeaderboard.getModelKeys(); Key<Model>[] bestN = ArrayUtils.subarray(sortedKeys, 0, Math.min(sortedKeys.length, _N)); Key<M>[] toAdd = Arrays.stream(bestN).filter(k -> !ArrayUtils.contains(originalModels, k)).toArray(Key[]::new); Key<M>[] toRemove = Arrays.stream(originalModels).filter(k -> !ArrayUtils.contains(bestN, k)).toArray(Key[]::new); Selection selection = new Selection<>(toAdd, toRemove); lbHolder.cleanup(); return selection; } } public static class KeepBestConstantSize<M extends Model> extends LeaderboardBasedSelectionStrategy<M> { public KeepBestConstantSize(Supplier<LeaderboardHolder> leaderboardSupplier) { super(leaderboardSupplier); } @Override public Selection<M> select(Key<M>[] originalModels, Key<M>[] newModels) { return new KeepBestN<M>(originalModels.length, _leaderboardSupplier).select(originalModels, newModels); } } public static class KeepBestNFromSubgroup<M extends Model> extends LeaderboardBasedSelectionStrategy<M> { private final Predicate<Key<M>> _criterion; private final int _N; public KeepBestNFromSubgroup(int N, Predicate<Key<M>> criterion, Supplier<LeaderboardHolder> leaderboardSupplier) { super(leaderboardSupplier); _criterion = criterion; _N = N; } @Override public Selection<M> select(Key<M>[] originalModels, Key<M>[] newModels) { Key<M>[] originalModelsSubgroup = Arrays.stream(originalModels).filter(_criterion).toArray(Key[]::new); Key<M>[] newModelsSubGroup = Arrays.stream(newModels).filter(_criterion).toArray(Key[]::new); return new KeepBestN<M>(_N, _leaderboardSupplier).select(originalModelsSubgroup, newModelsSubGroup); } } public interface LeaderboardHolder { Leaderboard get(); default void cleanup() {}; } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/ModelSelectionStrategy.java
package ai.h2o.automl; import hex.Model; import water.Key; @FunctionalInterface public interface ModelSelectionStrategy<M extends Model>{ class Selection<M extends Model> { final Key<M>[] _add; //models that should be added to the original population final Key<M>[] _remove; //models that should be removed from the original population public Selection(Key<M>[] add, Key<M>[] remove) { _add = add; _remove = remove; } } Selection<M> select(Key<M>[] originalModels, Key<M>[] newModels); }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/ModelingPlans.java
package ai.h2o.automl; import ai.h2o.automl.StepDefinition.Step; import java.util.stream.IntStream; import java.util.stream.Stream; import static ai.h2o.automl.ModelingStep.GridStep.DEFAULT_GRID_GROUP; import static ai.h2o.automl.ModelingStep.GridStep.DEFAULT_GRID_TRAINING_WEIGHT; import static ai.h2o.automl.ModelingStep.ModelStep.DEFAULT_MODEL_GROUP; import static ai.h2o.automl.ModelingStep.ModelStep.DEFAULT_MODEL_TRAINING_WEIGHT; final class ModelingPlans { /** * Plan reflecting the behaviour of H2O AutoML prior v3.34 as close as possible. * * Keeping it mainly for reference and for tests. */ final static StepDefinition[] ONE_LAYERED = { new StepDefinition(Algo.XGBoost.name(), StepDefinition.Alias.defaults), new StepDefinition(Algo.GLM.name(), StepDefinition.Alias.defaults), new StepDefinition(Algo.DRF.name(), "def_1"), new StepDefinition(Algo.GBM.name(), StepDefinition.Alias.defaults), new StepDefinition(Algo.DeepLearning.name(), StepDefinition.Alias.defaults), new StepDefinition(Algo.DRF.name(), "XRT"), new StepDefinition(Algo.XGBoost.name(), new Step("grid_1", DEFAULT_MODEL_GROUP, 3*DEFAULT_GRID_TRAINING_WEIGHT)), new StepDefinition(Algo.GBM.name(), new Step("grid_1", DEFAULT_MODEL_GROUP, 2*DEFAULT_GRID_TRAINING_WEIGHT)), new StepDefinition(Algo.DeepLearning.name(), new Step("grid_1", DEFAULT_MODEL_GROUP, DEFAULT_GRID_TRAINING_WEIGHT/2), new Step("grid_2", DEFAULT_MODEL_GROUP, DEFAULT_GRID_TRAINING_WEIGHT/2), new Step("grid_3", DEFAULT_MODEL_GROUP, DEFAULT_GRID_TRAINING_WEIGHT/2)), new StepDefinition(Algo.GBM.name(), new Step("lr_annealing", DEFAULT_MODEL_GROUP, DEFAULT_MODEL_TRAINING_WEIGHT)), new StepDefinition(Algo.XGBoost.name(), new Step("lr_search", DEFAULT_MODEL_GROUP, DEFAULT_GRID_TRAINING_WEIGHT)), new StepDefinition(Algo.StackedEnsemble.name(), new Step("best_of_family", DEFAULT_MODEL_GROUP, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("all", DEFAULT_MODEL_GROUP, DEFAULT_MODEL_TRAINING_WEIGHT)), }; /** * A simple improvement on the one-layered version using mainly default settings: * <ul> * <li>the first layer attempts to train all the base models.</li> * <li>if this layer completes, a second layer trains all the grids.</li> * <li>an optional 3rd layer is trained if exploitation ratio is on.</li> * <li>2 SEs are trained at the end of each layer</li> * </ul> * * Keeping this as an example of simple plan, mainly used for tests. */ final static StepDefinition[] TWO_LAYERED = { new StepDefinition(Algo.XGBoost.name(), StepDefinition.Alias.defaults), new StepDefinition(Algo.GLM.name(), StepDefinition.Alias.defaults), new StepDefinition(Algo.DRF.name(), StepDefinition.Alias.defaults), new StepDefinition(Algo.GBM.name(), StepDefinition.Alias.defaults), new StepDefinition(Algo.DeepLearning.name(), StepDefinition.Alias.defaults), new StepDefinition(Algo.XGBoost.name(), StepDefinition.Alias.grids), new StepDefinition(Algo.GBM.name(), StepDefinition.Alias.grids), new StepDefinition(Algo.DeepLearning.name(), StepDefinition.Alias.grids), new StepDefinition(Algo.GBM.name(), new Step("lr_annealing", DEFAULT_GRID_GROUP+1, Step.DEFAULT_WEIGHT)), new StepDefinition(Algo.XGBoost.name(), new Step("lr_search", DEFAULT_GRID_GROUP+1, Step.DEFAULT_WEIGHT)), new StepDefinition(Algo.StackedEnsemble.name(), StepDefinition.Alias.defaults), }; /** * a multi-layered plan: * <ol> * <li>a short first layer with only 3 base models to be able to produce at least a few decent models * on larger datasets if time budget is small, * followed by an SE of those models.</li> * <li>another layer with more base models if all the models in the first layer were able to converge * + SEs for that layer/li> * <li>another layer with the remaining base models + SEs</li> * <li>another layer with the usually fast and best performing grids + SEs</li> * <li>another layer with the remaining grids + SEs</li> * <li>another layer doing a learning_rate search on the best GBM+XGB and adding some optional SEs</li> * <li>another layer with more optional SEs</li> * <li>a final layer resuming the best 2 grids so far, this time running without grid early stopping, * and followed by 2 final SEs</li> * </ol> * */ final static StepDefinition[] TEN_LAYERED = { // order of step definitions and steps defines the order of steps in the same priority group. new StepDefinition(Algo.XGBoost.name(), new Step("def_2", 1, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("def_1", 2, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("def_3", 3, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("grid_1", 4, 3*DEFAULT_GRID_TRAINING_WEIGHT), new Step("lr_search", 6, DEFAULT_GRID_TRAINING_WEIGHT) ), new StepDefinition(Algo.GLM.name(), new Step("def_1", 1, DEFAULT_MODEL_TRAINING_WEIGHT) ), new StepDefinition(Algo.DRF.name(), new Step("def_1", 2, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("XRT", 3, DEFAULT_MODEL_TRAINING_WEIGHT) ), new StepDefinition(Algo.GBM.name(), new Step("def_5", 1, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("def_2", 2, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("def_3", 2, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("def_4", 2, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("def_1", 3, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("grid_1", 4, 2*DEFAULT_GRID_TRAINING_WEIGHT), new Step("lr_annealing", 6, DEFAULT_MODEL_TRAINING_WEIGHT) ), new StepDefinition(Algo.DeepLearning.name(), new Step("def_1", 3, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("grid_1", 4, DEFAULT_GRID_TRAINING_WEIGHT), new Step("grid_2", 5, DEFAULT_GRID_TRAINING_WEIGHT), new Step("grid_3", 5, DEFAULT_GRID_TRAINING_WEIGHT) ), new StepDefinition("completion", new Step("resume_best_grids", 10, 2*DEFAULT_GRID_TRAINING_WEIGHT) ), // generates BoF and All SE for each group, but we prefer to customize instances and weights below // new StepDefinition(Algo.StackedEnsemble.name(), StepDefinition.Alias.defaults), new StepDefinition(Algo.StackedEnsemble.name(), Stream.of(new Step[][] { IntStream.rangeClosed(1, 5).mapToObj(group -> // BoF should be fast, giving it half-budget for optimization. new Step("best_of_family_"+group, group, DEFAULT_MODEL_TRAINING_WEIGHT/2) ).toArray(Step[]::new), IntStream.rangeClosed(2, 5).mapToObj(group -> // starts at 2 as we don't need an ALL SE for first group. new Step("all_"+group, group, DEFAULT_MODEL_TRAINING_WEIGHT) ).toArray(Step[]::new), { new Step("monotonic", 6, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("best_of_family_gbm", 6, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("all_gbm", 7, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("best_of_family_xglm", 8, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("all_xglm", 8, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("best_of_family", 10, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("best_N", 10, DEFAULT_MODEL_TRAINING_WEIGHT), } }).flatMap(Stream::of).toArray(Step[]::new)), }; final static StepDefinition[] REPRODUCIBLE = { // order of step definitions and steps defines the order of steps in the same priority group. new StepDefinition(Algo.XGBoost.name(), new Step("def_2", 1, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("def_1", 2, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("def_3", 3, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("grid_1", 4, 3*DEFAULT_GRID_TRAINING_WEIGHT), new Step("lr_search", 7, DEFAULT_GRID_TRAINING_WEIGHT) ), new StepDefinition(Algo.GLM.name(), new Step("def_1", 1, DEFAULT_MODEL_TRAINING_WEIGHT) ), new StepDefinition(Algo.DRF.name(), new Step("def_1", 2, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("XRT", 3, DEFAULT_MODEL_TRAINING_WEIGHT) ), new StepDefinition(Algo.GBM.name(), new Step("def_5", 1, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("def_2", 2, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("def_3", 2, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("def_4", 2, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("def_1", 3, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("grid_1", 4, 2*DEFAULT_GRID_TRAINING_WEIGHT), new Step("lr_annealing", 7, DEFAULT_MODEL_TRAINING_WEIGHT) ), new StepDefinition(Algo.DeepLearning.name(), new Step("def_1", 3, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("grid_1", 4, DEFAULT_GRID_TRAINING_WEIGHT), new Step("grid_2", 5, DEFAULT_GRID_TRAINING_WEIGHT), new Step("grid_3", 5, DEFAULT_GRID_TRAINING_WEIGHT) ), new StepDefinition("completion", new Step("resume_best_grids", 6, 2*DEFAULT_GRID_TRAINING_WEIGHT) ), new StepDefinition(Algo.StackedEnsemble.name(), new Step("monotonic", 9, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("best_of_family_xglm", 10, DEFAULT_MODEL_TRAINING_WEIGHT), new Step("all_xglm", 10, DEFAULT_MODEL_TRAINING_WEIGHT) ) }; public static StepDefinition[] defaultPlan() { return TEN_LAYERED; } private ModelingPlans() {} }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/ModelingStep.java
package ai.h2o.automl; import ai.h2o.automl.AutoMLBuildSpec.AutoMLCustomParameters; import ai.h2o.automl.ModelSelectionStrategies.LeaderboardHolder; import ai.h2o.automl.ModelSelectionStrategy.Selection; import ai.h2o.automl.StepResultState.ResultStatus; import ai.h2o.automl.WorkAllocations.JobType; import ai.h2o.automl.WorkAllocations.Work; import ai.h2o.automl.events.EventLog; import ai.h2o.automl.events.EventLogEntry; import ai.h2o.automl.events.EventLogEntry.Stage; import ai.h2o.automl.preprocessing.PreprocessingConfig; import ai.h2o.automl.preprocessing.PreprocessingStep; import hex.Model; import hex.Model.Parameters.FoldAssignmentScheme; import hex.ModelBuilder; import hex.ModelContainer; import hex.ScoreKeeper.StoppingMetric; import hex.genmodel.utils.DistributionFamily; import hex.grid.Grid; import hex.grid.GridSearch; import hex.grid.HyperSpaceSearchCriteria; import hex.grid.HyperSpaceSearchCriteria.RandomDiscreteValueSearchCriteria; import hex.grid.HyperSpaceWalker; import hex.leaderboard.Leaderboard; import jsr166y.CountedCompleter; import org.apache.commons.lang.builder.ToStringBuilder; import water.*; import water.exceptions.H2OIllegalArgumentException; import water.util.ArrayUtils; import water.util.Countdown; import water.util.EnumUtils; import water.util.Log; import java.util.*; import java.util.function.Consumer; import java.util.function.Predicate; /** * Parent class defining common properties and common logic for actual {@link AutoML} training steps. */ public abstract class ModelingStep<M extends Model> extends Iced<ModelingStep> { protected enum SeedPolicy { /** No seed will be used (= random). */ None, /** The global AutoML seed will be used. */ Global, /** The seed is incremented for each model, starting from the global seed if there is one. */ Incremental } static Predicate<Work> isDefaultModel = w -> w._type == JobType.ModelBuild; static Predicate<Work> isExplorationWork = w -> w._type == JobType.ModelBuild || w._type == JobType.HyperparamSearch; static Predicate<Work> isExploitationWork = w -> w._type == JobType.Selection; protected <MP extends Model.Parameters> Job<Grid> startSearch( final Key<Grid> resultKey, final MP baseParams, final Map<String, Object[]> hyperParams, final HyperSpaceSearchCriteria searchCriteria) { assert resultKey != null; assert baseParams != null; assert hyperParams.size() > 0; assert searchCriteria != null; applyPreprocessing(baseParams); aml().eventLog().info(Stage.ModelTraining, "AutoML: starting "+resultKey+" hyperparameter search") .setNamedValue("start_"+_provider+"_"+_id, new Date(), EventLogEntry.epochFormat.get()); return GridSearch.create( resultKey, HyperSpaceWalker.BaseWalker.WalkerFactory.create( baseParams, hyperParams, new GridSearch.SimpleParametersBuilderFactory<>(), searchCriteria )) .withParallelism(GridSearch.SEQUENTIAL_MODEL_BUILDING) .withMaxConsecutiveFailures(aml()._maxConsecutiveModelFailures) .start(); } @SuppressWarnings("unchecked") protected <MP extends Model.Parameters> Job<M> startModel( final Key<M> resultKey, final MP params ) { assert resultKey != null; assert params != null; Job<M> job = new Job<>(resultKey, ModelBuilder.javaName(_algo.urlName()), _description); applyPreprocessing(params); ModelBuilder builder = ModelBuilder.make(_algo.urlName(), job, (Key<Model>) resultKey); builder._parms = params; aml().eventLog().info(Stage.ModelTraining, "AutoML: starting "+resultKey+" model training") .setNamedValue("start_"+_provider+"_"+_id, new Date(), EventLogEntry.epochFormat.get()); builder.init(false); // validate parameters if (builder._messages.length > 0) { for (ModelBuilder.ValidationMessage vm : builder._messages) { if (vm.log_level() == Log.WARN) { aml().eventLog().warn(Stage.ModelTraining, vm.field()+" param, "+vm.message()); } else if (vm.log_level() == Log.ERRR) { aml().eventLog().error(Stage.ModelTraining, vm.field()+" param, "+vm.message()); } } } return builder.trainModelOnH2ONode(); } private boolean validParameters(Model.Parameters parms, String[] fields) { try { Model.Parameters params = parms.clone(); // some algos check if distribution has proper _nclass(es) so we need to set training frame and response etc setCommonModelBuilderParams(params); ModelBuilder mb = ModelBuilder.make(params); mb.init(false); return Arrays.stream(fields) .allMatch((field) -> mb.getMessagesByFieldAndSeverity(field, Log.ERRR).length == 0); } catch (H2OIllegalArgumentException e) { return false; } } protected void setDistributionParameters(Model.Parameters parms) { switch (aml().getDistributionFamily()) { case custom: parms._custom_distribution_func = aml().getBuildSpec().build_control.custom_distribution_func; break; case huber: parms._huber_alpha = aml().getBuildSpec().build_control.huber_alpha; break; case tweedie: parms._tweedie_power = aml().getBuildSpec().build_control.tweedie_power; break; case quantile: parms._quantile_alpha = aml().getBuildSpec().build_control.quantile_alpha; break; } try { parms.setDistributionFamily(aml().getDistributionFamily()); } catch (H2OIllegalArgumentException e) { parms.setDistributionFamily(DistributionFamily.AUTO); } if (!validParameters(parms, new String[]{"_distribution", "_family"})) parms.setDistributionFamily(DistributionFamily.AUTO); if (!aml().getDistributionFamily().equals(parms.getDistributionFamily())) { aml().eventLog().info(Stage.ModelTraining,"Algo " + parms.algoName() + " doesn't support " + _aml.getDistributionFamily().name() + " distribution. Using AUTO distribution instead."); } } private final transient AutoML _aml; protected final IAlgo _algo; protected final String _provider; protected final String _id; protected int _weight; protected int _priorityGroup; protected AutoML.Constraint[] _ignoredConstraints = new AutoML.Constraint[0]; // whether or not to ignore the max_models/max_runtime constraints protected String _description; protected Work _work; private final transient List<Consumer<Job>> _onDone = new ArrayList<>(); StepDefinition _fromDef; transient final Predicate<Work> _isSamePriorityGroup = w -> w._priorityGroup == _priorityGroup; protected ModelingStep(String provider, IAlgo algo, String id, int priorityGroup, int weight, AutoML autoML) { assert priorityGroup >= 0; _provider = provider; _algo = algo; _id = id; _priorityGroup = priorityGroup; _weight = weight; _aml = autoML; _description = provider+" "+id; } /** * Each provider (usually one class) defining a collection of steps must have a unique name. * @return the name of the provider (usually simply the name of an algo) defining this step. */ public String getProvider() { return _provider; } /** * @return the step identifier: should be unique inside its provider. */ public String getId() { return _id; } /** * @return a string that identifies the step uniquely among all steps defined by all providers. */ public String getGlobalId() { return _provider+":"+_id; } public IAlgo getAlgo() { return _algo; } public int getWeight() { return _weight; } public int getPriorityGroup() { return _priorityGroup; } public boolean isResumable() { return false; } public boolean ignores(AutoML.Constraint constraint) { return ArrayUtils.contains(_ignoredConstraints, constraint); } public boolean limitModelTrainingTime() { // if max_models is used, then the global time limit should have no impact on model training budget due to reproducibility concerns. return !ignores(AutoML.Constraint.TIMEOUT) && aml().getBuildSpec().build_control.stopping_criteria.max_models() == 0; } /** * @return true iff we can call {@link #run()} on this modeling step to start a new job. */ public boolean canRun() { Work work = getAllocatedWork(); return work != null && work._weight > 0; } /** * Execute this modeling step, returning the job associated to it if any. * @return */ public Job run() { Job job = startJob(); if (job != null && job._result != null) { register(job._result); if (isResumable()) aml().session().addResumableKey(job._result); } return job; } /** * @return an {@link Iterator} for the potential sub-steps provided by this modeling step. */ public Iterator<? extends ModelingStep> iterateSubSteps() { return Collections.emptyIterator(); } /** * @param id * @return the sub-step (if any) with the given identifier, or null if there's no sub-step */ protected Optional<? extends ModelingStep> getSubStep(String id) { return Optional.empty(); } protected abstract JobType getJobType(); /** * Starts a new {@link Job} as part of this step. * @return the newly started job. */ protected abstract Job startJob(); protected void onDone(Job job) { for (Consumer<Job> exec : _onDone) { exec.accept(job); } _onDone.clear(); } protected void register(Key key) { aml().session().registerKeySource(key, this); } protected AutoML aml() { return _aml; } /** * @return the total work allocated for this step. */ protected Work getAllocatedWork() { if (_work == null) { _work = getWorkAllocations().getAllocation(_id, _algo); } return _work; } /** * Creates the {@link Work} instance representing the total work handled by this step. * @return */ protected Work makeWork() { return new Work(getId(), getAlgo(), getJobType(), getPriorityGroup(), getWeight()); } protected Key makeKey(String name, boolean withCounter) { return aml().makeKey(name, null, withCounter); } protected WorkAllocations getWorkAllocations() { return aml()._workAllocations; } /** * @return the models trained until now, sorted by the default leaderboard metric. */ protected Model[] getTrainedModels() { return aml().leaderboard().getModels(); } protected Key<Model>[] getTrainedModelsKeys() { return aml().leaderboard().getModelKeys(); } protected boolean isCVEnabled() { return aml().isCVEnabled(); } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; ModelingStep<?> that = (ModelingStep<?>) o; return _provider.equals(that._provider) && _id.equals(that._id); } @Override public int hashCode() { return Objects.hash(_provider, _id); } /** * Assign common parameters to the model params before building the model or set of models. * This includes: * <ul> * <li>data-related parameters: frame/columns parameters, class distribution.</li> * <li>cross-validation parameters/</li> * <li>memory-optimization: if certain objects build during training should be kept after training or not/</li> * <li>model management: checkpoints.</li> * </ul> * @param params the model parameters to which the common parameters will be added. */ protected void setCommonModelBuilderParams(Model.Parameters params) { params._train = aml()._trainingFrame._key; if (null != aml()._validationFrame) params._valid = aml()._validationFrame._key; AutoMLBuildSpec buildSpec = aml().getBuildSpec(); params._response_column = buildSpec.input_spec.response_column; params._ignored_columns = buildSpec.input_spec.ignored_columns; setCrossValidationParams(params); setWeightingParams(params); setClassBalancingParams(params); params._custom_metric_func = buildSpec.build_control.custom_metric_func; params._keep_cross_validation_models = buildSpec.build_control.keep_cross_validation_models; params._keep_cross_validation_fold_assignment = buildSpec.build_control.nfolds != 0 && buildSpec.build_control.keep_cross_validation_fold_assignment; params._export_checkpoints_dir = buildSpec.build_control.export_checkpoints_dir; /** Using _main_model_time_budget_factor to determine if and how we should restrict the time for the main model. * Value 0 means do not use time constraint for the main model. * More details in {@link ModelBuilder#setMaxRuntimeSecsForMainModel()}. */ params._main_model_time_budget_factor = 2; } protected void setCrossValidationParams(Model.Parameters params) { AutoMLBuildSpec buildSpec = aml().getBuildSpec(); params._keep_cross_validation_predictions = aml().getBlendingFrame() == null || buildSpec.build_control.keep_cross_validation_predictions; params._fold_column = buildSpec.input_spec.fold_column; if (buildSpec.input_spec.fold_column == null) { params._nfolds = buildSpec.build_control.nfolds; if (buildSpec.build_control.nfolds > 1) { // TODO: below allow the user to specify this (vs Modulo) params._fold_assignment = FoldAssignmentScheme.Modulo; } } } protected void setWeightingParams(Model.Parameters params) { AutoMLBuildSpec buildSpec = aml().getBuildSpec(); params._weights_column = buildSpec.input_spec.weights_column; } protected void setClassBalancingParams(Model.Parameters params) { AutoMLBuildSpec buildSpec = aml().getBuildSpec(); if (buildSpec.build_control.balance_classes) { params._balance_classes = buildSpec.build_control.balance_classes; params._class_sampling_factors = buildSpec.build_control.class_sampling_factors; params._max_after_balance_size = buildSpec.build_control.max_after_balance_size; } } protected void setCustomParams(Model.Parameters params) { AutoMLCustomParameters customParams = aml().getBuildSpec().build_models.algo_parameters; if (customParams == null) return; customParams.applyCustomParameters(_algo, params); } protected void applyPreprocessing(Model.Parameters params) { if (aml().getPreprocessing() == null) return; for (PreprocessingStep preprocessingStep : aml().getPreprocessing()) { PreprocessingStep.Completer complete = preprocessingStep.apply(params, getPreprocessingConfig()); _onDone.add(j -> complete.run()); } } protected PreprocessingConfig getPreprocessingConfig() { return new PreprocessingConfig(); } /** * Configures early-stopping for the model or set of models to be built. * * @param parms the model parameters to which the stopping criteria will be added. * @param defaults the default parameters for the corresponding {@link ModelBuilder}. */ protected void setStoppingCriteria(Model.Parameters parms, Model.Parameters defaults) { // If the caller hasn't set ModelBuilder stopping criteria, set it from our global criteria. AutoMLBuildSpec buildSpec = aml().getBuildSpec(); //FIXME: Do we really need to compare with defaults before setting the buildSpec value instead? // This can create subtle bugs: e.g. if dev wanted to enforce a stopping criteria for a specific algo/model, // he wouldn't be able to enforce the default value, that would always be overridden by buildSpec. // We should instead provide hooks and ensure that properties are always set in the following order: // 1. defaults, 2. user defined, 3. internal logic/algo specific based on the previous state (esp. handling of AUTO properties). if (parms._stopping_metric == defaults._stopping_metric) parms._stopping_metric = buildSpec.build_control.stopping_criteria.stopping_metric(); if (parms._stopping_metric == StoppingMetric.AUTO) { parms._stopping_metric = aml().getResponseColumn().cardinality() == -1 ? StoppingMetric.deviance : StoppingMetric.logloss; } if (parms._stopping_rounds == defaults._stopping_rounds) parms._stopping_rounds = buildSpec.build_control.stopping_criteria.stopping_rounds(); if (parms._stopping_tolerance == defaults._stopping_tolerance) parms._stopping_tolerance = buildSpec.build_control.stopping_criteria.stopping_tolerance(); } /** * @param parms the model parameters to which the stopping criteria will be added. * @param defaults the default parameters for the corresponding {@link ModelBuilder}. * @param seedPolicy the policy defining how the seed will be assigned to the model parameters. */ protected void setSeed(Model.Parameters parms, Model.Parameters defaults, SeedPolicy seedPolicy) { AutoMLBuildSpec buildSpec = aml().getBuildSpec(); // Don't use the same exact seed so that, e.g., if we build two GBMs they don't do the same row and column sampling. if (parms._seed == defaults._seed) { switch (seedPolicy) { case Global: parms._seed = buildSpec.build_control.stopping_criteria.seed(); break; case Incremental: parms._seed = _aml._incrementalSeed.get() == defaults._seed ? defaults._seed : _aml._incrementalSeed.getAndIncrement(); break; default: break; } } } protected void initTimeConstraints(Model.Parameters parms, double upperLimit) { AutoMLBuildSpec buildSpec = aml().getBuildSpec(); if (parms._max_runtime_secs == 0) { double maxPerModel = buildSpec.build_control.stopping_criteria.max_runtime_secs_per_model(); parms._max_runtime_secs = upperLimit <= 0 ? maxPerModel : Math.min(maxPerModel, upperLimit); } } private String getSortMetric() { //ensures that the sort metric is always updated according to the defaults set by leaderboard Leaderboard leaderboard = aml().leaderboard(); return leaderboard == null ? null : leaderboard.getSortMetric(); } private static StoppingMetric metricValueOf(String name) { if (name == null) return StoppingMetric.AUTO; switch (name) { case "mean_residual_deviance": return StoppingMetric.deviance; default: try { return EnumUtils.valueOf(StoppingMetric.class, name); } catch (IllegalArgumentException ignored) { } return StoppingMetric.AUTO; } } /** * Step designed to build a single/default model. */ public static abstract class ModelStep<M extends Model> extends ModelingStep<M> { public static final int DEFAULT_MODEL_TRAINING_WEIGHT = 10; public static final int DEFAULT_MODEL_GROUP = 1; public ModelStep(String provider, IAlgo algo, String id, AutoML autoML) { this(provider, algo, id, DEFAULT_MODEL_GROUP, DEFAULT_MODEL_TRAINING_WEIGHT, autoML); } public ModelStep(String provider, IAlgo algo, String id, int priorityGroup, int weight, AutoML autoML) { super(provider, algo, id, priorityGroup, weight, autoML); } @Override protected JobType getJobType() { return JobType.ModelBuild; } public abstract Model.Parameters prepareModelParameters(); @Override protected Job<M> startJob() { return trainModel(prepareModelParameters()); } protected Job<M> trainModel(Model.Parameters parms) { return trainModel(null, parms); } /** * @param key (optional) model key. * @param parms the model builder params. * @return a started training model. */ protected Job<M> trainModel(Key<M> key, Model.Parameters parms) { String algoName = ModelBuilder.algoName(_algo.urlName()); if (null == key) key = makeKey(algoName, true); Model.Parameters defaults = ModelBuilder.make(_algo.urlName(), null, null)._parms; initTimeConstraints(parms, 0); setCommonModelBuilderParams(parms); setSeed(parms, defaults, SeedPolicy.Incremental); setStoppingCriteria(parms, defaults); setCustomParams(parms); setDistributionParameters(parms); // override model's max_runtime_secs to ensure that the total max_runtime doesn't exceed expectations if (limitModelTrainingTime()) { Work work = getAllocatedWork(); // double maxAssignedTimeSecs = aml().timeRemainingMs() / 1e3; // legacy // double maxAssignedTimeSecs = aml().timeRemainingMs() * getWorkAllocations().remainingWorkRatio(work) / 1e3; //including default models in the distribution of the time budget. // double maxAssignedTimeSecs = aml().timeRemainingMs() * getWorkAllocations().remainingWorkRatio(work, isDefaultModel) / 1e3; //PUBDEV-7595 double maxAssignedTimeSecs = aml().timeRemainingMs() * getWorkAllocations().remainingWorkRatio(work, _isSamePriorityGroup) / 1e3; // Models from a priority group + SEs parms._max_runtime_secs = parms._max_runtime_secs == 0 ? maxAssignedTimeSecs : Math.min(parms._max_runtime_secs, maxAssignedTimeSecs); } else { parms._max_runtime_secs = 0; } Log.debug("Training model: " + algoName + ", time remaining (ms): " + aml().timeRemainingMs()); aml().eventLog().debug(Stage.ModelTraining, parms._max_runtime_secs == 0 ? "No time limitation for "+key : "Time assigned for "+key+": "+parms._max_runtime_secs+"s"); return startModel(key, parms); } } /** * Step designed to build multiple models using a (random) grid search. */ public static abstract class GridStep<M extends Model> extends ModelingStep<M> { public static final int DEFAULT_GRID_TRAINING_WEIGHT = 30; public static final int DEFAULT_GRID_GROUP = 2; protected static final int GRID_STOPPING_ROUND_FACTOR = 2; public GridStep(String provider, IAlgo algo, String id, AutoML autoML) { this(provider, algo, id, DEFAULT_GRID_GROUP, DEFAULT_GRID_TRAINING_WEIGHT, autoML); } public GridStep(String provider, IAlgo algo, String id, int priorityGroup, int weight, AutoML autoML) { super(provider, algo, id, priorityGroup, weight, autoML); } @Override protected JobType getJobType() { return JobType.HyperparamSearch; } @Override public boolean isResumable() { return true; } public abstract Model.Parameters prepareModelParameters(); public abstract Map<String, Object[]> prepareSearchParameters(); @Override protected Job<Grid> startJob() { return hyperparameterSearch(prepareModelParameters(), prepareSearchParameters()); } @Override @SuppressWarnings("unchecked") protected Key<Grid> makeKey(String name, boolean withCounter) { return aml().makeKey(name, "grid", withCounter); } protected Job<Grid> hyperparameterSearch(Model.Parameters baseParms, Map<String, Object[]> searchParms) { return hyperparameterSearch(null, baseParms, searchParms); } /** * @param key optional grid key * @param baseParms ModelBuilder parameter values that are common across all models in the search. * @param searchParms hyperparameter search space, * @return the started hyperparameter search job. */ protected Job<Grid> hyperparameterSearch(Key<Grid> key, Model.Parameters baseParms, Map<String, Object[]> searchParms) { Model.Parameters defaults; try { defaults = baseParms.getClass().newInstance(); } catch (Exception e) { aml().eventLog().error(Stage.ModelTraining, "Internal error doing hyperparameter search"); throw new H2OIllegalArgumentException("Hyperparameter search can't create a new instance of Model.Parameters subclass: " + baseParms.getClass()); } initTimeConstraints(baseParms, 0); setCommonModelBuilderParams(baseParms); // grid seed is provided later through the searchCriteria setStoppingCriteria(baseParms, defaults); setCustomParams(baseParms); setDistributionParameters(baseParms); AutoMLBuildSpec buildSpec = aml().getBuildSpec(); RandomDiscreteValueSearchCriteria searchCriteria = (RandomDiscreteValueSearchCriteria) buildSpec.build_control.stopping_criteria.getSearchCriteria().clone(); setSearchCriteria(searchCriteria, baseParms); if (null == key) key = makeKey(_provider, true); aml().trackKeys(key); Log.debug("Hyperparameter search: " + _provider + ", time remaining (ms): " + aml().timeRemainingMs()); aml().eventLog().debug(Stage.ModelTraining, searchCriteria.max_runtime_secs() == 0 ? "No time limitation for " + key : "Time assigned for " + key + ": " + searchCriteria.max_runtime_secs() + "s"); return startSearch( key, baseParms, searchParms, searchCriteria ); } protected void setSearchCriteria(RandomDiscreteValueSearchCriteria searchCriteria, Model.Parameters baseParms) { Work work = getAllocatedWork(); // for time limit, this is allocated in proportion of the entire work budget. double maxAssignedTimeSecs = limitModelTrainingTime() ? aml().timeRemainingMs() * getWorkAllocations().remainingWorkRatio(work, _isSamePriorityGroup) / 1e3 : 0; // SE predicate can be removed if/when we decide to include SEs in the max_models limit // for models limit, this is not assigned in the same proportion as for time, // as the exploitation phase is not supposed to "add" models but just to replace some by better ones, // instead, allocation is done in proportion of the entire exploration budget. int maxAssignedModels = (int) Math.ceil(aml().remainingModels() * getWorkAllocations().remainingWorkRatio(work, isExplorationWork.and(w -> w._algo != Algo.StackedEnsemble))); searchCriteria.set_max_runtime_secs(searchCriteria.max_runtime_secs() == 0 ? maxAssignedTimeSecs : Math.min(searchCriteria.max_runtime_secs(), maxAssignedTimeSecs)); searchCriteria.set_max_models(searchCriteria.max_models() == 0 ? maxAssignedModels : Math.min(searchCriteria.max_models(), maxAssignedModels)); searchCriteria.set_stopping_rounds(baseParms._stopping_rounds * GRID_STOPPING_ROUND_FACTOR); } } /** * Step designed to train some models (or not) and then deciding to make a selection * and add and/or remove models to/from the current leaderboard. */ public static abstract class SelectionStep<M extends Model> extends ModelingStep<M> { public static final int DEFAULT_SELECTION_TRAINING_WEIGHT = 20; public static final int DEFAULT_SELECTION_GROUP = 3; public SelectionStep(String provider, IAlgo algo, String id, AutoML autoML) { this(provider, algo, id, DEFAULT_SELECTION_GROUP, DEFAULT_SELECTION_TRAINING_WEIGHT, autoML); } public SelectionStep(String provider, IAlgo algo, String id, int priorityGroup, int weight, AutoML autoML) { super(provider, algo, id, priorityGroup, weight, autoML); } @Override protected JobType getJobType() { return JobType.Selection; } @Override @SuppressWarnings("unchecked") protected Key<Models> makeKey(String name, boolean withCounter) { return aml().makeKey(name, "selection", withCounter); } private LeaderboardHolder makeLeaderboard(String name, EventLog eventLog) { Leaderboard amlLeaderboard = aml().leaderboard(); EventLog tmpEventLog = eventLog == null ? EventLog.getOrMake(Key.make(name)) : eventLog; Leaderboard tmpLeaderboard = Leaderboard.getOrMake( name, tmpEventLog.asLogger(Stage.ModelTraining), amlLeaderboard.leaderboardFrame(), amlLeaderboard.getSortMetric() ); return new LeaderboardHolder() { @Override public Leaderboard get() { return tmpLeaderboard; } @Override public void cleanup() { //by default, just empty the leaderboard and remove the container without touching anything model-related. tmpLeaderboard.removeModels(tmpLeaderboard.getModelKeys(), false); tmpLeaderboard.remove(false); if (eventLog == null) { tmpEventLog.remove(); } } }; } protected LeaderboardHolder makeTmpLeaderboard(String name) { return makeLeaderboard("tmp_"+name, null); } @Override protected Job<Models> startJob() { Key<Model>[] trainedModelKeys = getTrainedModelsKeys(); Key<Models> key = makeKey(_provider+"_"+_id, false); aml().trackKeys(key); Job<Models> job = new Job<>(key, Models.class.getName(), _description); Work work = getAllocatedWork(); double maxAssignedTimeSecs = limitModelTrainingTime() ? aml().timeRemainingMs() * getWorkAllocations().remainingWorkRatio(work) / 1e3 : 0; aml().eventLog().debug(Stage.ModelTraining, maxAssignedTimeSecs == 0 ? "No time limitation for "+key : "Time assigned for "+key+": "+maxAssignedTimeSecs+"s"); return job.start(new H2O.H2OCountedCompleter() { final Models result = new Models(key, Model.class, job); final Key<Models> selectionKey = Key.make(key+"_select"); final EventLog selectionEventLog = EventLog.getOrMake(selectionKey); // EventLog selectionEventLog = aml().eventLog(); final LeaderboardHolder selectionLeaderboard = makeLeaderboard(selectionKey.toString(), selectionEventLog); { result.delete_and_lock(job); } @Override public void compute2() { Countdown countdown = Countdown.fromSeconds(maxAssignedTimeSecs); Selection selection = null; try { ModelingStepsExecutor localExecutor = new ModelingStepsExecutor(selectionLeaderboard.get(), selectionEventLog, countdown); localExecutor.start(); Job<Models> innerTraining = startTraining(selectionKey, maxAssignedTimeSecs); StepResultState state = localExecutor.monitor(innerTraining, SelectionStep.this, job); if (state.is(ResultStatus.success)) { Log.debug("Selection leaderboard "+selectionLeaderboard.get()._key, selectionLeaderboard.get().toLogString()); selection = getSelectionStrategy().select(trainedModelKeys, selectionLeaderboard.get().getModelKeys()); Leaderboard lb = aml().leaderboard(); Log.debug("Selection result for job "+key, ToStringBuilder.reflectionToString(selection)); lb.removeModels(selection._remove, false); // do remove the model immediately from DKV: if it were part of a grid, it prevents the grid from being resumed. aml().trackKeys(selection._remove); lb.addModels(selection._add); } else if (state.is(ResultStatus.failed)) { throw (RuntimeException)state.error(); } else if (state.is(ResultStatus.cancelled)) { throw new Job.JobCancelledException(innerTraining); } } finally { result.unlock(job); if (selection != null) { result.addModels(selection._add); } } tryComplete(); } @Override public void onCompletion(CountedCompleter caller) { Keyed.remove(selectionKey, new Futures(), false); // don't cascade: tmp models removal is is done using the logic below. selectionLeaderboard.get().removeModels(trainedModelKeys, false); // if original models were added to selection leaderboard, just remove them. selectionLeaderboard.get().removeModels( // for newly trained models, fully remove those that don't appear in the result container. Arrays.stream(selectionLeaderboard.get().getModelKeys()).filter(k -> !ArrayUtils.contains(result.getModelKeys(), k)).toArray(Key[]::new), true ); selectionLeaderboard.cleanup(); if (!aml().eventLog()._key.equals(selectionEventLog._key)) selectionEventLog.remove(); super.onCompletion(caller); } @Override public boolean onExceptionalCompletion(Throwable ex, CountedCompleter caller) { result.unlock(job._key, false); Keyed.remove(selectionKey); selectionLeaderboard.get().remove(); if (!aml().eventLog()._key.equals(selectionEventLog._key)) selectionEventLog.remove(); return super.onExceptionalCompletion(ex, caller); } }, work._weight, maxAssignedTimeSecs); } protected abstract Job<Models> startTraining(Key<Models> result, double maxRuntimeSecs); protected abstract ModelSelectionStrategy getSelectionStrategy(); protected Job<Models> asModelsJob(Job job, Key<Models> result){ Job<Models> jModels = new Job<>(result, Models.class.getName(), job._description); // can use the same result key as original job, as it is dropped once its result is read return jModels.start(new H2O.H2OCountedCompleter() { final Models models = new Models(result, Model.class, jModels); { models.delete_and_lock(jModels); } @Override public void compute2() { ModelingStepsExecutor.ensureStopRequestPropagated(job, jModels, ModelingStepsExecutor.DEFAULT_POLLING_INTERVAL_IN_MILLIS); Keyed res = job.get(); models.unlock(jModels); if (res instanceof Model) { models.addModel(res.getKey()); } else if (res instanceof ModelContainer) { models.addModels(((ModelContainer) res).getModelKeys()); res.remove(false); } else if (res == null && jModels.stop_requested()) { // Do nothing - stop was requested before we managed to train any model } else { throw new H2OIllegalArgumentException("Can only convert jobs producing a single Model or ModelContainer."); } tryComplete(); } }, job._work, job._max_runtime_msecs); } } /** * Step designed to dynamically choose to train a model or another, a grid or anything else, * based on the current automl workflow history. */ public static abstract class DynamicStep<M extends Model> extends ModelingStep<M> { public static final int DEFAULT_DYNAMIC_TRAINING_WEIGHT = 20; public static final int DEFAULT_DYNAMIC_GROUP = 100; public static class VirtualAlgo implements IAlgo { public VirtualAlgo() {} @Override public String name() { return "virtual"; } } private transient Collection<ModelingStep> _subSteps; public DynamicStep(String provider, String id, AutoML autoML) { this(provider, id, DEFAULT_DYNAMIC_GROUP, DEFAULT_DYNAMIC_TRAINING_WEIGHT, autoML); } public DynamicStep(String provider, String id, int priorityGroup, int weight, AutoML autoML) { super(provider, new VirtualAlgo(), id, priorityGroup, weight, autoML); } @Override public boolean canRun() { // this step is designed to delegate its work to sub-steps by default, // so the parent step itself has nothing to run. return false; } @Override protected Job<M> startJob() { // see comment in canRun(). return null; } @Override protected JobType getJobType() { return JobType.Dynamic; } @Override @SuppressWarnings("unchecked") protected Key<Models> makeKey(String name, boolean withCounter) { return aml().makeKey(name, "decision", withCounter); } private void initSubSteps() { if (_subSteps == null) { _subSteps = prepareModelingSteps(); } } @Override public Iterator<? extends ModelingStep> iterateSubSteps() { initSubSteps(); return _subSteps.iterator(); } @Override protected Optional<? extends ModelingStep> getSubStep(String id) { initSubSteps(); return _subSteps.stream() .filter(step -> step._id.equals(id)) .findFirst(); } protected abstract Collection<ModelingStep> prepareModelingSteps(); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/ModelingSteps.java
package ai.h2o.automl; import ai.h2o.automl.StepDefinition.Alias; import ai.h2o.automl.StepDefinition.Step; import water.Iced; import water.util.ArrayUtils; import java.util.ArrayList; import java.util.List; import java.util.Optional; import java.util.stream.Stream; public abstract class ModelingSteps extends Iced<ModelingSteps> { private transient AutoML _aml; public ModelingSteps(AutoML autoML) { _aml = autoML; } protected AutoML aml() { return _aml; } public Optional<ModelingStep> getStep(String id) { return Stream.of(getAllSteps()) .map(step -> step._id.equals(id) ? Optional.of(step) : (Optional<ModelingStep>)step.getSubStep(id)) .filter(Optional::isPresent) .map(Optional::get) .findFirst(); } protected ModelingStep[] getSteps(Step[] steps) { List<ModelingStep> tSteps = new ArrayList<>(); for (Step step : steps) { getStep(step._id).ifPresent(tStep -> { if (step._weight != Step.DEFAULT_WEIGHT) { tStep._weight = step._weight; // override default weight } if (step._group!= Step.DEFAULT_GROUP) { tStep._priorityGroup = step._group; // override default priority } tSteps.add(tStep); }); } return tSteps.toArray(new ModelingStep[0]); } protected ModelingStep[] getSteps(Alias alias) { switch (alias) { case all: return getAllSteps(); case defaults: return getDefaultModels(); case grids: return getGrids(); case optionals: case exploitation: // old misleading alias, kept for backwards compatibility return getOptionals(); default: return new ModelingStep[0]; } } protected ModelingStep[] getAllSteps() { ModelingStep[] all = new ModelingStep[0]; // create a fresh array to avoid type issues in arraycopy all = ArrayUtils.append(all, getDefaultModels()); all = ArrayUtils.append(all, getGrids()); all = ArrayUtils.append(all, getOptionals()); return all; } /** * @return the list of all single model steps that should be executed by default when this provider is active. */ protected ModelingStep[] getDefaultModels() { return new ModelingStep[0]; } /** * @return the list of all grid steps that should be executed by default when this provider is active. */ protected ModelingStep[] getGrids() { return new ModelingStep[0]; } /** * @return the list of all steps that should be executed on-demand, i.e. requested by their id. */ protected ModelingStep[] getOptionals() { return new ModelingStep[0]; } public abstract String getProvider(); protected void cleanup() {} }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/ModelingStepsExecutor.java
package ai.h2o.automl; import ai.h2o.automl.AutoML.Constraint; import ai.h2o.automl.StepResultState.ResultStatus; import ai.h2o.automl.WorkAllocations.JobType; import ai.h2o.automl.WorkAllocations.Work; import ai.h2o.automl.events.EventLog; import ai.h2o.automl.events.EventLogEntry.Stage; import hex.Model; import hex.ModelContainer; import hex.leaderboard.Leaderboard; import water.Iced; import water.Job; import water.Key; import water.util.Countdown; import water.util.Log; import java.util.ArrayList; import java.util.Iterator; import java.util.List; import java.util.concurrent.atomic.AtomicInteger; /** * Class responsible for starting all the {@link ModelingStep}s and monitoring their associated {@link Job}, * i.e. polling jobs and adding their result model(s) to the {@link Leaderboard}. */ class ModelingStepsExecutor extends Iced<ModelingStepsExecutor> { static final int DEFAULT_POLLING_INTERVAL_IN_MILLIS = 1000; static final StepResultState.Resolution DEFAULT_STATE_RESOLUTION_STRATEGY = StepResultState.Resolution.optimistic; static void ensureStopRequestPropagated(Job job, Job parentJob, int pollingIntervalInMillis) { if (job == null || parentJob == null) return; while (job.isRunning()) { if (parentJob.stop_requested()) { job.stop(); } job.blockingWaitForDone(pollingIntervalInMillis); } } final Key<EventLog> _eventLogKey; final Key<Leaderboard> _leaderboardKey; final Countdown _runCountdown; private int _pollingIntervalInMillis; private StepResultState.Resolution _stateResolutionStrategy; private transient List<Job> _jobs; // subjobs private final AtomicInteger _modelCount = new AtomicInteger(); ModelingStepsExecutor(Leaderboard leaderboard, EventLog eventLog, Countdown runCountdown) { _leaderboardKey = leaderboard._key; _eventLogKey = eventLog._key; _runCountdown = runCountdown; } void setPollingInterval(int millis) { assert millis > 0; _pollingIntervalInMillis = millis; } void setStateResolutionStrategy(StepResultState.Resolution strategy) { assert strategy != null; _stateResolutionStrategy = strategy; } int modelCount() { return _modelCount.get(); } void start() { start(DEFAULT_POLLING_INTERVAL_IN_MILLIS, DEFAULT_STATE_RESOLUTION_STRATEGY); } void start(int pollingIntervalInMillis, StepResultState.Resolution strategy) { setPollingInterval(pollingIntervalInMillis); setStateResolutionStrategy(strategy); _jobs = new ArrayList<>(); _modelCount.set(0); _runCountdown.start(); } void stop() { _runCountdown.stop(); if (_jobs == null) return; // already stopped for (Job j : _jobs) j.stop(); for (Job j : _jobs) j.get(); // Hold until they all completely stop. _jobs = null; } @SuppressWarnings("unchecked") StepResultState submit(ModelingStep step, Job parentJob) { StepResultState resultState = new StepResultState(step.getGlobalId()); for (Iterator<ModelingStep> it = step.iterateSubSteps(); it.hasNext(); ) { resultState.addState(submit(it.next(), parentJob)); } if (step.canRun()) { Job job = null; try { job = step.run(); if (job == null) { resultState.addState(skip(step, parentJob)); } else { resultState.addState(monitor(job, step, parentJob)); } } catch (Exception e) { resultState.addState(new StepResultState(step.getGlobalId(), e)); } finally { step.onDone(job); } } else { resultState.addState(new StepResultState(step.getGlobalId(), ResultStatus.skipped)); if (step.getAllocatedWork() != null) { step.getAllocatedWork().consume(); } } resultState.resolveState(_stateResolutionStrategy); return resultState; } private StepResultState skip(ModelingStep step, Job parentJob) { if (null != parentJob) { String desc = step._description; Work work = step.getAllocatedWork(); parentJob.update(work.consume(), "SKIPPED: "+desc); Log.info("AutoML; skipping "+desc); } return new StepResultState(step.getGlobalId(), ResultStatus.skipped); } StepResultState monitor(Job job, ModelingStep step, Job parentJob) { EventLog eventLog = eventLog(); String jobDescription = job._result == null ? job._description : job._result+" ["+job._description+"]"; eventLog.debug(Stage.ModelTraining, jobDescription + " started"); _jobs.add(job); boolean ignoreTimeout = step.ignores(Constraint.TIMEOUT); Work work = step.getAllocatedWork(); long lastWorkedSoFar = 0; long lastTotalModelsBuilt = 0; try { while (job.isRunning()) { if (parentJob != null) { if (parentJob.stop_requested()) { eventLog.debug(Stage.ModelTraining, "AutoML job cancelled; skipping "+jobDescription); job.stop(); } if (!ignoreTimeout && _runCountdown.timedOut()) { eventLog.debug(Stage.ModelTraining, "AutoML: out of time; skipping "+jobDescription); job.stop(); } } long workedSoFar = Math.round(job.progress() * work._weight); if (parentJob != null) { parentJob.update(Math.round(workedSoFar - lastWorkedSoFar), jobDescription); } if (JobType.HyperparamSearch == work._type || JobType.Selection == work._type) { ModelContainer<?> container = (ModelContainer) job._result.get(); int totalModelsBuilt = container == null ? 0 : container.getModelCount(); if (totalModelsBuilt > lastTotalModelsBuilt) { eventLog.debug(Stage.ModelTraining, "Built: "+totalModelsBuilt+" models for "+work._type+" : "+jobDescription); this.addModels(container, step); lastTotalModelsBuilt = totalModelsBuilt; } } job.blockingWaitForDone(_pollingIntervalInMillis); lastWorkedSoFar = workedSoFar; } if (job.isCrashed()) { eventLog.error(Stage.ModelTraining, jobDescription+" failed: "+job.ex()); return new StepResultState(step.getGlobalId(), job.ex()); } else if (job.get() == null) { eventLog.info(Stage.ModelTraining, jobDescription+" cancelled"); return new StepResultState(step.getGlobalId(), ResultStatus.cancelled); } else { // pick up any stragglers: if (JobType.HyperparamSearch == work._type || JobType.Selection == work._type) { eventLog.debug(Stage.ModelTraining, jobDescription+" complete"); ModelContainer<?> container = (ModelContainer) job.get(); int totalModelsBuilt = container.getModelCount(); if (totalModelsBuilt > lastTotalModelsBuilt) { eventLog.debug(Stage.ModelTraining, "Built: "+totalModelsBuilt+" models for "+work._type+" : "+jobDescription); this.addModels(container, step); } } else if (JobType.ModelBuild == work._type) { eventLog.debug(Stage.ModelTraining, jobDescription+" complete"); this.addModel((Model) job.get(), step); } return new StepResultState(step.getGlobalId(), ResultStatus.success); } } finally { // add remaining work if (parentJob != null) { parentJob.update(work._weight - lastWorkedSoFar); } work.consume(); _jobs.remove(job); } } private void addModels(final ModelContainer container, ModelingStep step) { for (Key<Model> key : container.getModelKeys()) step.register(key); Leaderboard leaderboard = leaderboard(); int before = leaderboard.getModelCount(); leaderboard.addModels(container.getModelKeys()); int after = leaderboard.getModelCount(); _modelCount.addAndGet(after - before); } private void addModel(final Model model, ModelingStep step) { step.register(model._key); Leaderboard leaderboard = leaderboard(); int before = leaderboard.getModelCount(); leaderboard.addModel(model._key); int after = leaderboard.getModelCount(); if (!step.ignores(Constraint.MODEL_COUNT)) _modelCount.addAndGet(after - before); } private EventLog eventLog() { return _eventLogKey.get(); } private Leaderboard leaderboard() { return Leaderboard.getInstance(_leaderboardKey, eventLog().asLogger(Stage.ModelTraining)); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/ModelingStepsProvider.java
package ai.h2o.automl; /** * A simple class used by service discovery to register new {@link ModelingSteps} implementations. */ public interface ModelingStepsProvider<T extends ModelingSteps> { /** * @return the name of this provider: must be unique among all registered providers. */ String getName(); /** * Creates an instance of {@link ModelingSteps} associated to this provider's name, * or returns null to fully skip this provider. * * @param aml the {@link AutoML} instance needed to build the {@link ModelingSteps} * @return an instance of {@link ModelingSteps} listing all the various AutoML steps executable with this provider name. */ T newInstance(AutoML aml); }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/ModelingStepsRegistry.java
package ai.h2o.automl; import ai.h2o.automl.events.EventLogEntry.Stage; import ai.h2o.automl.StepDefinition.Alias; import ai.h2o.automl.StepDefinition.Step; import hex.Model; import water.Iced; import water.nbhm.NonBlockingHashMap; import water.util.ArrayUtils; import java.util.*; import java.util.stream.Collectors; import java.util.stream.Stream; /** * The registry responsible for loading all {@link ModelingStepsProvider} using service discovery, * and providing the list of {@link ModelingStep} to execute. */ public class ModelingStepsRegistry extends Iced<ModelingStepsRegistry> { static final NonBlockingHashMap<String, ModelingStepsProvider> stepsByName = new NonBlockingHashMap<>(); static final NonBlockingHashMap<String, ModelParametersProvider> parametersByName = new NonBlockingHashMap<>(); static { ServiceLoader<ModelingStepsProvider> trainingStepsProviders = ServiceLoader.load(ModelingStepsProvider.class); for (ModelingStepsProvider provider : trainingStepsProviders) { registerProvider(provider); } } public static void registerProvider(ModelingStepsProvider provider) { stepsByName.put(provider.getName(), provider); if (provider instanceof ModelParametersProvider) { // mainly for hardcoded providers in this module, that's why we can reuse the ModelingStepsProvider parametersByName.put(provider.getName(), (ModelParametersProvider)provider); } } public static Model.Parameters defaultParameters(String provider) { if (parametersByName.containsKey(provider)) { return parametersByName.get(provider).newDefaultParameters(); } return null; } /** * @param aml the AutoML instance responsible to execute the {@link ModelingStep}s. * @return the list of {@link ModelingStep}s to execute according to the given modeling plan. */ public ModelingStep[] getOrderedSteps(StepDefinition[] modelingPlan, AutoML aml) { modelingPlan = aml.selectModelingPlan(modelingPlan); aml.eventLog().info(Stage.Workflow, "Loading execution steps: "+Arrays.toString(modelingPlan)); List<ModelingStep> orderedSteps = new ArrayList<>(); for (StepDefinition def : modelingPlan) { ModelingSteps steps = aml.session().getModelingSteps(def._name); if (steps == null) continue; ModelingStep[] toAdd; if (def._alias != null) { toAdd = steps.getSteps(def._alias); } else if (def._steps != null) { toAdd = steps.getSteps(def._steps); if (toAdd.length < def._steps.length) { List<String> toAddIds = Stream.of(toAdd).map(s -> s._id).collect(Collectors.toList()); Stream.of(def._steps) .filter(s -> !toAddIds.contains(s._id)) .forEach(s -> aml.eventLog().warn(Stage.Workflow, "Step '"+s._id+"' not defined in provider '"+def._name+"': skipping it.")); } } else { // if name, but no alias or steps, put them all by default (support for simple syntax) toAdd = steps.getSteps(Alias.all); } if (toAdd != null) { for (ModelingStep ts : toAdd) { ts._fromDef = def; } orderedSteps.addAll(Arrays.asList(toAdd)); } } return orderedSteps.stream() .filter(step -> step.getPriorityGroup() > 0 && step.getWeight() != 0) // negative weights can be used for registration only to be loaded by a dynamic step. .sorted(Comparator.comparingInt(step -> step._priorityGroup)) .toArray(ModelingStep[]::new); } public StepDefinition[] createDefinitionPlanFromSteps(ModelingStep[] steps) { List<StepDefinition> definitions = new ArrayList<>(); for (ModelingStep step : steps) { Step stepDesc = new Step(step._id, step._priorityGroup, step._weight); if (definitions.size() > 0) { StepDefinition lastDef = definitions.get(definitions.size() - 1); if (lastDef._name.equals(step._fromDef._name)) { lastDef._steps = ArrayUtils.append(lastDef._steps, stepDesc); continue; } } definitions.add(new StepDefinition(step._fromDef._name, stepDesc)); } return definitions.toArray(new StepDefinition[0]); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/Models.java
package ai.h2o.automl; import hex.Model; import hex.ModelContainer; import water.*; import water.api.schemas3.KeyV3; import water.automl.api.schemas3.SchemaExtensions; import water.util.ArrayUtils; import java.lang.reflect.Array; import java.lang.reflect.Modifier; import java.util.Arrays; public class Models<M extends Model> extends Lockable<Models<M>> implements ModelContainer<M> { private final int _type_id; private final Job _job; private Key<M>[] _modelKeys = new Key[0]; public Models(Key<Models<M>> key, Class<M> clz) { this(key, clz, null); } public Models(Key<Models<M>> key, Class<M> clz, Job job) { super(key); _type_id = (clz != null && !Modifier.isAbstract(clz.getModifiers())) ? TypeMap.getIcedId(clz.getName()) : -1; _job = job; } @Override public Key<M>[] getModelKeys() { return _modelKeys.clone(); } @Override @SuppressWarnings("unchecked") public M[] getModels() { Arrays.stream(_modelKeys).forEach(DKV::prefetch); Class<M> clz = (Class<M>)(_type_id >= 0 ? TypeMap.theFreezable(_type_id).getClass(): Model.class); return Arrays.stream(_modelKeys) .map(k -> k == null ? null : k.get()) .toArray(l -> (M[])Array.newInstance(clz, l)); } @Override public int getModelCount() { return _modelKeys.length; } public void addModel(Key<M> key) { addModels(new Key[]{key}); } public void addModels(Key<M>[] keys) { write_lock(_job); _modelKeys = ArrayUtils.append(_modelKeys, keys); update(_job); unlock(_job); } @Override protected Futures remove_impl(final Futures fs, boolean cascade) { if (cascade) { for (Key<M> k : _modelKeys) Keyed.remove(k, fs, true); } _modelKeys = new Key[0]; return super.remove_impl(fs, cascade); } @Override public Class<SchemaExtensions.ModelsKeyV3> makeSchema() { return SchemaExtensions.ModelsKeyV3.class; } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/StepDefinition.java
package ai.h2o.automl; import water.Iced; import java.util.Arrays; import java.util.Collections; import java.util.List; import java.util.Objects; /** * Defines a step or a list of steps to be executed. * The steps implementations are provided by instances of (@link {@link ModelingStepsProvider}. */ public class StepDefinition extends Iced<StepDefinition> { public enum Alias { all, defaults, grids, exploitation, optionals } public static class Step extends Iced<Step> { public static final int DEFAULT_GROUP = -1; //step will use the default priority group as defined by the ModelingStep. public static final int DEFAULT_WEIGHT = -1; // means that the Step will use the default weight set by the ModelingStep. /** * The id of the step (must be unique per step provider). */ String _id; int _group = DEFAULT_GROUP; /** * The relative weight for the given step. * The higher the weight, the more time percentage it will be offered in a time-constrained context. * For hyperparameter search, the weight may also impact the number of models trained in a count-model-constrained context. */ int _weight = DEFAULT_WEIGHT; // share of time dedicated public Step() { /* for autofill from schema */ } public Step(String _id) { this._id = _id; } public Step(String id, int group, int weight) { assert group == DEFAULT_GROUP || group >= 0: "non-default group must be >= 0"; assert weight == DEFAULT_WEIGHT || weight >= 0: "non-default weight must be >= 0"; this._id = id; this._group = group; this._weight = weight; } public String getId() { return _id; } public int getGroup() { return _group; } public int getWeight() { return _weight; } @Override public String toString() { String s = _id; if (_group > DEFAULT_GROUP || _weight > DEFAULT_WEIGHT) { s += " ("; String sep = ""; if (_group > DEFAULT_GROUP) { s += (sep+ _group +"g"); sep = ", "; } if (_weight > DEFAULT_WEIGHT) { s += (sep+_weight+"w"); sep = ", "; } s += ")"; } return s; } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Step step = (Step) o; return _id.equals(step._id) && _group == step._group && _weight == step._weight; } @Override public int hashCode() { return Objects.hash(_id, _group, _weight); } } /** * The name of the step provider ({@link ModelingStepsProvider}): this is usually also the name of the algorithm. */ String _name; /** * An alias representing a predefined list of steps to be executed. */ Alias _alias; /** * The list of steps to be executed. */ Step[] _steps; public StepDefinition() { /* for autofill from schema */ } public StepDefinition(String name) { this(name, Alias.all); } public StepDefinition(String name, Alias alias) { _name = name; _alias = alias; } public StepDefinition(String name, String... ids) { _name = name; _steps = new Step[ids.length]; for (int i=0; i<ids.length; i++) _steps[i] = new Step(ids[i]); } public StepDefinition(String name, Step... steps) { _name = name; _steps = steps; } public String getName() { return _name; } public Alias getAlias() { return _alias; } public List<Step> getSteps() { return _steps == null ? Collections.emptyList() : Collections.unmodifiableList(Arrays.asList(_steps)); } @Override public String toString() { return "{"+_name+" : "+(_steps == null ? _alias : Arrays.toString(_steps))+"}"; } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; StepDefinition that = (StepDefinition) o; return _name.equals(that._name) && _alias == that._alias && Arrays.equals(_steps, that._steps); } @Override public int hashCode() { int result = Objects.hash(_name, _alias); result = 31 * result + Arrays.hashCode(_steps); return result; } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/StepResultState.java
package ai.h2o.automl; import water.util.IcedHashMap; import java.util.Collections; import java.util.Map; import static ai.h2o.automl.StepResultState.ResultStatus.*; final class StepResultState { enum ResultStatus { skipped, cancelled, failed, success, } enum Resolution { sameAsMain, // resolves to the same state as the main step (ignoring other sub-step states). optimistic, // success if any success, otherwise cancelled if any cancelled, otherwise failed if any failure, otherwise skipped. pessimistic, // failures if any failure, otherwise cancelled if any cancelled, otherwise success it any success, otherwise skipped. } private final String _id; private final IcedHashMap<String, StepResultState> _subStates = new IcedHashMap<>(); private ResultStatus _status; private Throwable _error; StepResultState(String id) { this(id, (ResultStatus) null); } StepResultState(String id, ResultStatus status) { this(id, status, null); } StepResultState(String id, Throwable error) { this(id, failed, error); } private StepResultState(String id, ResultStatus status, Throwable error) { _id = id; _status = status; _error = error; } void setStatus(ResultStatus status) { assert _status == null; _status = status; } void setStatus(Throwable error) { setStatus(failed); _error = error; } void addState(StepResultState state) { _subStates.put(state.id(), state); } boolean is(ResultStatus status) { return _status==status; } String id() { return _id; } ResultStatus status() { return _status; } Throwable error() { return _error; } StepResultState subState(String id) { return _subStates.get(id); } Map<String, StepResultState> subStates() { return Collections.unmodifiableMap(_subStates); } void resolveState(Resolution strategy) { if (_status != null) return; if (_subStates.size() == 0) { setStatus(skipped); } else if (_subStates.size() == 1 && _subStates.containsKey(id())) { StepResultState state = subState(id()); _status = state.status(); _error = state.error(); _subStates.clear(); _subStates.putAll(state.subStates()); } else { switch (strategy) { case sameAsMain: StepResultState state = subState(id()); if (state != null) { _status = state.status(); _error = state.error(); } else { _status = cancelled; } break; case optimistic: if (_subStates.values().stream().anyMatch(s -> s.is(success))) _status = success; else if (_subStates.values().stream().anyMatch(s -> s.is(cancelled))) _status = cancelled; else if (_subStates.values().stream().anyMatch(s -> s.is(failed))) _subStates.values().stream().filter(s -> s.is(failed)).limit(1).findFirst().ifPresent(s -> setStatus(s.error())); else _status = skipped; break; case pessimistic: if (_subStates.values().stream().anyMatch(s -> s.is(failed))) _subStates.values().stream().filter(s -> s.is(failed)).limit(1).findFirst().ifPresent(s -> setStatus(s.error())); else if (_subStates.values().stream().anyMatch(s -> s.is(cancelled))) _status = cancelled; else if (_subStates.values().stream().anyMatch(s -> s.is(success))) _status = success; else _status = skipped; break; } } } @Override public String toString() { final StringBuilder sb = new StringBuilder("StepResultState{"); sb.append("_id='").append(_id).append('\''); sb.append(", _status=").append(_status); if (_error != null) sb.append(", _error=").append(_error); if (_subStates.size() > 0) sb.append(", _subStates=").append(_subStates); sb.append('}'); return sb.toString(); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/TimedH2ORunnable.java
package ai.h2o.automl; public interface TimedH2ORunnable extends H2ORunnable { boolean keepRunning(); long timeRemainingMs(); }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/WorkAllocations.java
package ai.h2o.automl; import water.Iced; import water.util.ArrayUtils; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.function.Predicate; import java.util.stream.Stream; public class WorkAllocations extends Iced<WorkAllocations> { public enum JobType { Unknown, ModelBuild, HyperparamSearch, Selection, Dynamic, } public static class Work extends Iced<Work> { String _id; IAlgo _algo; JobType _type; int _priorityGroup; int _weight; Work(String id, IAlgo algo, JobType type, int priorityGroup, int weight) { this._algo = algo; this._type = type; this._id = id; this._priorityGroup = priorityGroup; this._weight = weight; } public int consume() { int consumed = _weight; _weight = 0; return consumed; } @Override public String toString() { final StringBuilder sb = new StringBuilder("Work{") .append(_id).append(", ") .append(_algo.name()).append(", ") .append(_type).append(", ") .append("group=").append(_priorityGroup).append(", ") .append("weight=").append(_weight) .append('}'); return sb.toString(); } } private boolean frozen; private Work[] allocations = new Work[0]; WorkAllocations allocate(Work work) { if (frozen) throw new IllegalStateException("Can not allocate new work."); allocations = ArrayUtils.append(allocations, work); return this; } WorkAllocations freeze() { frozen = true; return this; } void remove(IAlgo algo) { if (frozen) throw new IllegalStateException("Can not modify allocations."); List<Work> filtered = new ArrayList<>(allocations.length); for (Work alloc : allocations) { if (!algo.name().equals(alloc._algo.name())) { filtered.add(alloc); } } allocations = filtered.toArray(new Work[0]); } public Work getAllocation(String id, IAlgo algo) { for (Work alloc : allocations) { if (alloc._algo.name().equals(algo.name()) && alloc._id.equals(id)) return alloc; } return null; } public Work[] getAllocations(Predicate<Work> predicate) { return Stream.of(allocations) .filter(predicate) .toArray(Work[]::new); } private int sum(Work[] workItems) { int tot = 0; for (Work item : workItems) { if (item._weight > 0) tot += item._weight; } return tot; } int remainingWork() { return sum(allocations); } int remainingWork(Predicate<Work> predicate) { return sum(getAllocations(predicate)); } float remainingWorkRatio(Work work) { return (float) work._weight / remainingWork(); } float remainingWorkRatio(Work work, Predicate<Work> predicate) { return (float) work._weight / remainingWork(predicate); } @Override public String toString() { return Arrays.toString(allocations); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/events/EventLog.java
package ai.h2o.automl.events; import ai.h2o.automl.events.EventLogEntry.Stage; import water.DKV; import water.Futures; import water.Key; import water.Keyed; import water.logging.Logger; import water.logging.LoggerFactory; import water.logging.LoggingLevel; import water.util.TwoDimTable; import java.io.Serializable; import java.util.function.Predicate; import java.util.stream.Stream; /** * EventLog instances store significant events occurring during an AutoML run. * Events are formatted with the intent of rendering on client side. */ public class EventLog extends Keyed<EventLog> { private static final Logger log = LoggerFactory.getLogger(EventLog.class); public final Key _runner_id; public EventLogEntry[] _events; public EventLog(Key runKey) { _runner_id = runKey; _key = Key.make(idForRun(runKey)); _events = new EventLogEntry[0]; } public static EventLog getOrMake(Key runKey) { EventLog eventLog = DKV.getGet(Key.make(idForRun(runKey))); if (null == eventLog) { eventLog = new EventLog(runKey); } DKV.put(eventLog); return eventLog; } private static String idForRun(Key runKey) { if (null == runKey) return "Events_dummy"; return "Events_" + runKey; } /** Add a Debug EventLogEntry and log. */ public <V extends Serializable> EventLogEntry<V> debug(Stage stage, String message) { log.debug(stage+": "+message); return addEvent(LoggingLevel.DEBUG, stage, message); } /** Add a Info EventLogEntry and log. */ public <V extends Serializable> EventLogEntry<V> info(Stage stage, String message) { log.info(stage+": "+message); return addEvent(LoggingLevel.INFO, stage, message); } /** Add a Warn EventLogEntry and log. */ public <V extends Serializable> EventLogEntry<V> warn(Stage stage, String message) { log.warn(stage+": "+message); return addEvent(LoggingLevel.WARN, stage, message); } /** Add an Error EventLogEntry and log. */ public <V extends Serializable> EventLogEntry<V> error(Stage stage, String message) { log.error(stage+": "+message); return addEvent(LoggingLevel.ERROR, stage, message); } /** Add a EventLogEntry, but don't log. */ public <V extends Serializable> EventLogEntry<V> addEvent(LoggingLevel level, Stage stage, String message) { EventLogEntry<V> entry = new EventLogEntry<>(_runner_id, level, stage, message); addEvent(entry); return entry; } /** Add a EventLogEntry, but don't log. */ public void addEvent(EventLogEntry event) { EventLogEntry[] oldEvents = _events; EventLogEntry[] newEvents = new EventLogEntry[_events.length + 1]; System.arraycopy(oldEvents, 0, newEvents, 0, oldEvents.length); newEvents[oldEvents.length] = event; _events = newEvents; } // addEvent /** * Delete object and its dependencies from DKV, including models. */ @Override protected Futures remove_impl(Futures fs, boolean cascade) { _events = new EventLogEntry[0]; return super.remove_impl(fs, cascade); } public TwoDimTable toTwoDimTable() { return toTwoDimTable(null); } public TwoDimTable toTwoDimTable(Predicate<EventLogEntry> predicate) { String name = _runner_id == null ? "(new)" : _runner_id.toString(); return toTwoDimTable("Event Log for:" + name, predicate); } public TwoDimTable toTwoDimTable(String tableHeader, Predicate<EventLogEntry> predicate) { final EventLogEntry[] events = predicate == null ? _events.clone() : Stream.of(_events.clone()) .filter(predicate) .toArray(EventLogEntry[]::new); TwoDimTable table = EventLogEntry.makeTwoDimTable(tableHeader, events.length); for (int i = 0; i < events.length; i++) events[i].addTwoDimTableRow(table, i); return table; } @Override public String toString() { return this.toTwoDimTable().toString(); } public Logger asLogger(Stage stage) { final EventLog el = this; return new Logger() { @Override public void trace(String message) { el.debug(stage, message); } @Override public void debug(String message) { el.debug(stage, message); } @Override public void info(String message) { el.info(stage, message); } @Override public void warn(String message) { el.warn(stage, message); } @Override public void error(String message) { el.error(stage, message); } @Override public void fatal(String message) { el.error(stage, message); } @Override public boolean isTraceEnabled() { return true; } @Override public boolean isDebugEnabled() { return true; } @Override public boolean isInfoEnabled() { return true; } @Override public boolean isWarnEnabled() { return true; } @Override public boolean isErrorEnabled() { return true; } @Override public boolean isFatalEnabled() { return true; } }; } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/events/EventLogEntry.java
package ai.h2o.automl.events; import ai.h2o.automl.AutoML; import water.Iced; import water.Key; import water.logging.LoggingLevel; import water.util.TwoDimTable; import java.io.Serializable; import java.text.FieldPosition; import java.text.Format; import java.text.ParsePosition; import java.text.SimpleDateFormat; import java.util.Date; import java.util.Objects; public class EventLogEntry<V extends Serializable> extends Iced { public enum Stage { Validation, Workflow, DataImport, FeatureAnalysis, FeatureReduction, FeatureCreation, ModelTraining, ModelSelection, } static TwoDimTable makeTwoDimTable(String tableHeader, int length) { String[] rowHeaders = new String[length]; for (int i = 0; i < length; i++) rowHeaders[i] = "" + i; return new TwoDimTable( tableHeader, "Actions taken and discoveries made by AutoML", rowHeaders, EventLogEntry.colHeaders, EventLogEntry.colTypes, EventLogEntry.colFormats, "#" ); } static String nowStr() { return dateTimeFormat.get().format(new Date()); } static abstract class SimpleFormat<T> extends Format { @Override public StringBuffer format(Object obj, StringBuffer toAppendTo, FieldPosition pos) { pos.setBeginIndex(0); pos.setEndIndex(0); format((T)obj, toAppendTo); return toAppendTo; } public abstract StringBuffer format(T t, StringBuffer toAppendTo); @Override public Object parseObject(String source, ParsePosition pos) { return null; } } public static final ThreadLocal<Format> epochFormat = ThreadLocal.withInitial(() -> new SimpleFormat<Date>() { @Override public StringBuffer format(Date date, StringBuffer toAppendTo) { long epoch = Math.round(date.getTime() / 1e3); toAppendTo.append(epoch); return toAppendTo; } }); // uses local timezone public static final ThreadLocal<SimpleDateFormat> dateTimeISOFormat = ThreadLocal.withInitial(() -> new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSS")); // uses local timezone public static final ThreadLocal<SimpleDateFormat> dateTimeFormat = ThreadLocal.withInitial(() -> new SimpleDateFormat("yyyy.MM.dd HH:mm:ss.S")); // uses local timezone public static final ThreadLocal<SimpleDateFormat> timeFormat = ThreadLocal.withInitial(() ->new SimpleDateFormat("HH:mm:ss.S")); private static final String[] colHeaders = { "timestamp", "level", "stage", "message", "name", "value", }; private static final String[] colTypes= { "string", "string", "string", "string", "string", "string", }; private static final String[] colFormats= { "%s", "%s", "%s", "%s", "%s", "%s", }; private static <E extends Enum<E>> int longest(Class<E> enu) { int longest = -1; for (E v : enu.getEnumConstants()) longest = Math.max(longest, v.name().length()); return longest; } private final int longestLevel = longest(LoggingLevel.class); // for formatting private final int longestStage = longest(Stage.class); // for formatting private Key<AutoML> _automlKey; private long _timestamp; private LoggingLevel _level; private Stage _stage; private String _message; private String _name; private V _value; private Format _valueFormatter; public Key<AutoML> getAutomlKey() { return _automlKey; } public long getTimestamp() { return _timestamp; } public LoggingLevel getLevel() { return _level; } public Stage getStage() { return _stage; } public String getMessage() { return _message; } public String getName() { return _name; } public V getValue() { return _value; } public Format getValueFormatter() { return _valueFormatter; } public EventLogEntry(Key<AutoML> automlKey, LoggingLevel level, Stage stage, String message) { _automlKey = automlKey; _timestamp = System.currentTimeMillis(); _level = level; _stage = stage; _message = message; } public void setNamedValue(String name, V value) { setNamedValue(name, value, null); } public void setNamedValue(String name, V value, Format formatter) { _name = name; _value = value; _valueFormatter = formatter; } void addTwoDimTableRow(TwoDimTable table, int row) { int col = 0; table.set(row, col++, timeFormat.get().format(new Date(_timestamp))); table.set(row, col++, _level); table.set(row, col++, _stage); table.set(row, col++, _message); table.set(row, col++, _name); table.set(row, col++, _valueFormatter == null ? _value : _valueFormatter.format(_value)); } @Override public String toString() { return String.format("%-12s %-"+longestLevel+"s %-"+longestStage+"s %s %s %s", timeFormat.get().format(new Date(_timestamp)), _level, _stage, Objects.toString(_message, ""), Objects.toString(_name, ""), _valueFormatter == null ? Objects.toString(_value, "") : _valueFormatter.format(_value) ); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/leaderboard/ModelGroup.java
package ai.h2o.automl.leaderboard; import ai.h2o.automl.ModelingStep; import hex.Model; import hex.leaderboard.LeaderboardCell; import hex.leaderboard.LeaderboardColumn; import water.Iced; import water.Key; public class ModelGroup extends Iced<ModelGroup> implements LeaderboardCell<Integer, ModelGroup> { public static final LeaderboardColumn COLUMN = new LeaderboardColumn("group", "int", "%s", true); final Key<Model> _modelId; final int _priorityGroup; public ModelGroup(Model model, ModelingStep step) { _modelId = model._key; _priorityGroup = step == null ? -1 : step.getPriorityGroup(); } @Override public LeaderboardColumn getColumn() { return COLUMN; } @Override public Key<Model> getModelId() { return _modelId; } @Override public Integer getValue() { return _priorityGroup; } @Override public void setValue(Integer value) { throw new UnsupportedOperationException(); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/leaderboard/ModelProvider.java
package ai.h2o.automl.leaderboard; import ai.h2o.automl.ModelingStep; import hex.Model; import hex.leaderboard.LeaderboardCell; import hex.leaderboard.LeaderboardColumn; import water.Iced; import water.Key; public class ModelProvider extends Iced<ModelProvider> implements LeaderboardCell<String, ModelProvider> { public static final LeaderboardColumn COLUMN = new LeaderboardColumn("provider", "string", "%s", true); final Key<Model> _modelId; final String _provider; public ModelProvider(Model model, ModelingStep step) { _modelId = model._key; _provider = step == null ? "" : step.getProvider(); } @Override public LeaderboardColumn getColumn() { return COLUMN; } @Override public Key<Model> getModelId() { return _modelId; } @Override public String getValue() { return _provider; } @Override public void setValue(String value) { throw new UnsupportedOperationException(); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/leaderboard/ModelSize.java
package ai.h2o.automl.leaderboard; import hex.Model; import hex.leaderboard.LeaderboardCell; import hex.leaderboard.LeaderboardColumn; import water.Iced; import water.Key; /** * A cell computing lazily the size of a model. */ public class ModelSize extends Iced<ModelSize> implements LeaderboardCell<Long, ModelSize> { public static final LeaderboardColumn COLUMN = new LeaderboardColumn("model_size_bytes", "long", "%s"); private final Key<Model> _modelId; private Long _model_size; public ModelSize(Key<Model> modelId) { _modelId = modelId; } @Override public LeaderboardColumn getColumn() { return COLUMN; } @Override public Key<Model> getModelId() { return _modelId; } @Override public Long getValue() { return _model_size; } @Override public void setValue(Long value) { _model_size = value; } @Override public boolean isNA() { return getValue() == null || getValue() < 0; } @Override public Long fetch() { if (getValue() == null) { try { // PUBDEV-7124: // Model model = _modelId.get(); // export binary model to temp folder // read size // delete saved model } catch (Exception e) { setValue(-1L); } } return getValue(); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/leaderboard/ModelStep.java
package ai.h2o.automl.leaderboard; import ai.h2o.automl.ModelingStep; import hex.Model; import hex.leaderboard.LeaderboardCell; import hex.leaderboard.LeaderboardColumn; import water.Iced; import water.Key; public class ModelStep extends Iced<ModelStep> implements LeaderboardCell<String, ModelStep> { public static final LeaderboardColumn COLUMN = new LeaderboardColumn("step", "string", "%s", true); final Key<Model> _modelId; final String _stepId; public ModelStep(Model model, ModelingStep step) { _modelId = model._key; _stepId = step == null ? "" : step.getId(); } @Override public LeaderboardColumn getColumn() { return COLUMN; } @Override public Key<Model> getModelId() { return _modelId; } @Override public String getValue() { return _stepId; } @Override public void setValue(String value) { throw new UnsupportedOperationException(); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/modeling/CompletionStepsProvider.java
package ai.h2o.automl.modeling; import ai.h2o.automl.*; import ai.h2o.automl.ModelingStep.DynamicStep; import hex.Model; import hex.grid.Grid; import hex.grid.HyperSpaceSearchCriteria.RandomDiscreteValueSearchCriteria; import hex.leaderboard.Leaderboard; import water.Job; import water.Key; import java.util.*; import java.util.stream.Collectors; public class CompletionStepsProvider implements ModelingStepsProvider<CompletionStepsProvider.CompletionSteps> { public static class CompletionSteps extends ModelingSteps { static final String NAME = "completion"; static class ResumingGridStep extends ModelingStep.GridStep { private transient GridStep _step; public ResumingGridStep(GridStep step, int priorityGroup, int weight, AutoML aml) { super(NAME, step.getAlgo(), step.getProvider()+"_"+step.getId(), priorityGroup, weight, aml); _work = makeWork(); _step = step; } @Override public boolean canRun() { return _step != null && _weight > 0; } @Override public Model.Parameters prepareModelParameters() { return _step.prepareModelParameters(); } @Override public Map<String, Object[]> prepareSearchParameters() { return _step.prepareSearchParameters(); } @Override protected void setSearchCriteria(RandomDiscreteValueSearchCriteria searchCriteria, Model.Parameters baseParms) { super.setSearchCriteria(searchCriteria, baseParms); searchCriteria.set_stopping_rounds(0); } @Override @SuppressWarnings("unchecked") protected Job<Grid> startJob() { Key<Grid>[] resumedGrid = aml().session().getResumableKeys(_step.getProvider(), _step.getId()); if (resumedGrid.length == 0) return null; return hyperparameterSearch(resumedGrid[0], prepareModelParameters(), prepareSearchParameters()); } } static class ResumeBestNGridsStep extends DynamicStep<Model> { private final int _nGrids; public ResumeBestNGridsStep(String id, int nGrids, AutoML autoML) { super(NAME, id, autoML); _nGrids = nGrids; } private List<ModelingStep> sortModelingStepByPerf() { Map<ModelingStep, List<Double>> scoresBySource = new HashMap<>(); Model[] models = getTrainedModels(); double[] metrics = aml().leaderboard().getSortMetricValues(); if (metrics == null) return Collections.emptyList(); for (int i = 0; i < models.length; i++) { ModelingStep source = aml().session().getModelingStep(models[i]._key); if (!scoresBySource.containsKey(source)) { scoresBySource.put(source, new ArrayList<>()); } scoresBySource.get(source).add(metrics[i]); } Comparator<Map.Entry<ModelingStep, Double>> metricsComparator = Map.Entry.comparingByValue(); if (!Leaderboard.isLossFunction(aml().leaderboard().getSortMetric())) metricsComparator = metricsComparator.reversed(); return scoresBySource.entrySet().stream() .collect(Collectors.toMap( Map.Entry::getKey, e -> e.getValue().stream().mapToDouble(Double::doubleValue).average().orElse(-1) )) .entrySet().stream().sorted(metricsComparator) .filter(e -> e.getValue() >= 0) .map(Map.Entry::getKey) .collect(Collectors.toList()); } @Override protected Collection<ModelingStep> prepareModelingSteps() { List<ModelingStep> bestStep = sortModelingStepByPerf(); return bestStep.stream() .filter(ModelingStep::isResumable) .filter(GridStep.class::isInstance) // .map(s -> aml().getModelingStep(s.getProvider(), s.getId()+"_resume")) // .filter(Objects::nonNull) .limit(_nGrids) .map(s -> new ResumingGridStep((GridStep)s, _priorityGroup, _weight/_nGrids, aml())) .collect(Collectors.toList()); } } private final ModelingStep[] optionals = new ModelingStep[] { new ResumeBestNGridsStep("resume_best_grids", 2, aml()) }; public CompletionSteps(AutoML autoML) { super(autoML); } @Override public String getProvider() { return NAME; } @Override protected ModelingStep[] getOptionals() { return optionals; } } @Override public String getName() { return CompletionSteps.NAME; } @Override public CompletionSteps newInstance(AutoML aml) { return new CompletionSteps(aml); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/modeling/DRFStepsProvider.java
package ai.h2o.automl.modeling; import ai.h2o.automl.*; import hex.tree.SharedTreeModel.SharedTreeParameters.HistogramType; import hex.tree.drf.DRFModel; import hex.tree.drf.DRFModel.DRFParameters; import water.Job; import water.Key; public class DRFStepsProvider implements ModelingStepsProvider<DRFStepsProvider.DRFSteps> , ModelParametersProvider<DRFParameters> { public static class DRFSteps extends ModelingSteps { static final String NAME = Algo.DRF.name(); static abstract class DRFModelStep extends ModelingStep.ModelStep<DRFModel> { DRFModelStep(String id, AutoML autoML) { super(NAME, Algo.DRF, id, autoML); } public DRFParameters prepareModelParameters() { DRFParameters params = new DRFParameters(); params._score_tree_interval = 5; return params; } } private final ModelingStep[] defaults = new DRFModelStep[] { new DRFModelStep("def_1", aml()) {}, new DRFModelStep("XRT", aml()) { { _description = _description+" (Extremely Randomized Trees)"; } @Override public DRFParameters prepareModelParameters() { DRFParameters params = super.prepareModelParameters(); params._histogram_type = HistogramType.Random; return params; } @Override protected Job<DRFModel> startJob() { Key<DRFModel> key = makeKey("XRT", true); return trainModel(key, prepareModelParameters()); } }, }; public DRFSteps(AutoML autoML) { super(autoML); } @Override public String getProvider() { return NAME; } @Override protected ModelingStep[] getDefaultModels() { return defaults; } } @Override public String getName() { return DRFSteps.NAME; } @Override public DRFSteps newInstance(AutoML aml) { return new DRFSteps(aml); } @Override public DRFParameters newDefaultParameters() { return new DRFParameters(); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/modeling/DeepLearningStepsProvider.java
package ai.h2o.automl.modeling; import ai.h2o.automl.*; import ai.h2o.automl.preprocessing.PreprocessingConfig; import ai.h2o.automl.preprocessing.TargetEncoding; import hex.deeplearning.DeepLearningModel; import hex.deeplearning.DeepLearningModel.DeepLearningParameters; import java.util.HashMap; import java.util.Map; public class DeepLearningStepsProvider implements ModelingStepsProvider<DeepLearningStepsProvider.DeepLearningSteps> , ModelParametersProvider<DeepLearningParameters> { public static class DeepLearningSteps extends ModelingSteps { static final String NAME = Algo.DeepLearning.name(); static abstract class DeepLearningModelStep extends ModelingStep.ModelStep<DeepLearningModel> { public DeepLearningModelStep(String id, AutoML autoML) { super(NAME, Algo.DeepLearning, id, autoML); } @Override protected PreprocessingConfig getPreprocessingConfig() { //TE useless for DNN PreprocessingConfig config = super.getPreprocessingConfig(); config.put(TargetEncoding.CONFIG_PREPARE_CV_ONLY, aml().isCVEnabled()); return config; } } static abstract class DeepLearningGridStep extends ModelingStep.GridStep<DeepLearningModel> { DeepLearningGridStep(String id, AutoML autoML) { super(NAME, Algo.DeepLearning, id, autoML); } public DeepLearningParameters prepareModelParameters() { DeepLearningParameters params = new DeepLearningParameters(); params._epochs = 10000; // early stopping takes care of epochs - no need to tune! params._adaptive_rate = true; params._activation = DeepLearningParameters.Activation.RectifierWithDropout; return params; } @Override protected PreprocessingConfig getPreprocessingConfig() { //TE useless for DNN PreprocessingConfig config = super.getPreprocessingConfig(); config.put(TargetEncoding.CONFIG_PREPARE_CV_ONLY, aml().isCVEnabled()); return config; } public Map<String, Object[]> prepareSearchParameters() { Map<String, Object[]> searchParams = new HashMap<>(); searchParams.put("_rho", new Double[] { 0.9, 0.95, 0.99 }); searchParams.put("_epsilon", new Double[] { 1e-6, 1e-7, 1e-8, 1e-9 }); searchParams.put("_input_dropout_ratio", new Double[] { 0.0, 0.05, 0.1, 0.15, 0.2 }); return searchParams; } } private final ModelingStep[] defaults = new DeepLearningModelStep[] { new DeepLearningModelStep("def_1", aml()) { @Override public DeepLearningParameters prepareModelParameters() { DeepLearningParameters params = new DeepLearningParameters(); // don't use common params for default DL params._hidden = new int[]{ 10, 10, 10 }; return params; } }, }; private final ModelingStep[] grids = new DeepLearningGridStep[] { new DeepLearningGridStep("grid_1", aml()) { @Override public Map<String, Object[]> prepareSearchParameters() { Map<String, Object[]> searchParams = super.prepareSearchParameters(); searchParams.put("_hidden", new Integer[][] { { 20 }, { 50 }, { 100 } }); searchParams.put("_hidden_dropout_ratios", new Double[][] { { 0.0 }, { 0.1 }, { 0.2 }, { 0.3 }, { 0.4 }, { 0.5 } }); return searchParams; } }, new DeepLearningGridStep("grid_2", aml()) { @Override public Map<String, Object[]> prepareSearchParameters() { Map<String, Object[]> searchParams = super.prepareSearchParameters(); searchParams.put("_hidden", new Integer[][] { { 20, 20 }, { 50, 50 }, { 100, 100 } }); searchParams.put("_hidden_dropout_ratios", new Double[][] { { 0.0, 0.0 }, { 0.1, 0.1 }, { 0.2, 0.2 }, { 0.3, 0.3 }, { 0.4, 0.4 }, { 0.5, 0.5 } }); return searchParams; } }, new DeepLearningGridStep("grid_3", aml()) { @Override public Map<String, Object[]> prepareSearchParameters() { Map<String, Object[]> searchParams = super.prepareSearchParameters(); searchParams.put("_hidden", new Integer[][] { { 20, 20, 20 }, { 50, 50, 50 }, { 100, 100, 100 } }); searchParams.put("_hidden_dropout_ratios", new Double[][] { { 0.0, 0.0, 0.0 }, { 0.1, 0.1, 0.1 }, { 0.2, 0.2, 0.2 }, { 0.3, 0.3, 0.3 }, { 0.4, 0.4, 0.4 }, { 0.5, 0.5, 0.5 } }); return searchParams; } }, }; public DeepLearningSteps(AutoML autoML) { super(autoML); } @Override public String getProvider() { return NAME; } @Override protected ModelingStep[] getDefaultModels() { return defaults; } @Override protected ModelingStep[] getGrids() { return grids; } } @Override public String getName() { return DeepLearningSteps.NAME; } @Override public DeepLearningSteps newInstance(AutoML aml) { return new DeepLearningSteps(aml); } @Override public DeepLearningParameters newDefaultParameters() { return new DeepLearningParameters(); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/modeling/GBMStepsProvider.java
package ai.h2o.automl.modeling; import ai.h2o.automl.*; import ai.h2o.automl.ModelSelectionStrategies.KeepBestN; import ai.h2o.automl.events.EventLogEntry; import hex.Model; import hex.tree.SharedTreeModel; import hex.tree.gbm.GBMModel; import hex.tree.gbm.GBMModel.GBMParameters; import water.Job; import water.Key; import java.util.*; public class GBMStepsProvider implements ModelingStepsProvider<GBMStepsProvider.GBMSteps> , ModelParametersProvider<GBMParameters> { public static class GBMSteps extends ModelingSteps { static final String NAME = Algo.GBM.name(); static GBMParameters prepareModelParameters() { GBMParameters params = new GBMParameters(); params._score_tree_interval = 5; params._histogram_type = SharedTreeModel.SharedTreeParameters.HistogramType.AUTO; return params; } static abstract class GBMModelStep extends ModelingStep.ModelStep<GBMModel> { GBMModelStep(String id, AutoML autoML) { super(NAME, Algo.GBM, id, autoML); } public GBMParameters prepareModelParameters() { GBMParameters params = GBMSteps.prepareModelParameters(); params._ntrees = 10000; params._sample_rate = 0.8; params._col_sample_rate = 0.8; params._col_sample_rate_per_tree = 0.8; return params; } } static abstract class GBMGridStep extends ModelingStep.GridStep<GBMModel> { public GBMGridStep(String id, AutoML autoML) { super(NAME, Algo.GBM, id, autoML); } public GBMParameters prepareModelParameters() { GBMParameters params = GBMSteps.prepareModelParameters(); params._ntrees = 10000; return params; } } static abstract class GBMExploitationStep extends ModelingStep.SelectionStep<GBMModel> { protected GBMModel getBestGBM() { for (Model model : getTrainedModels()) { if (model instanceof GBMModel) { return (GBMModel) model; } } return null; } @Override public boolean canRun() { return super.canRun() && getBestGBM() != null; } public GBMExploitationStep(String id, AutoML autoML) { super(NAME, Algo.GBM, id, autoML); if (autoML.getBuildSpec().build_models.exploitation_ratio > 0) _ignoredConstraints = new AutoML.Constraint[] { AutoML.Constraint.MODEL_COUNT }; } } private final ModelingStep[] defaults = new GBMModelStep[] { new GBMModelStep("def_1", aml()) { @Override public GBMParameters prepareModelParameters() { GBMParameters params = super.prepareModelParameters(); params._max_depth = 6; params._min_rows = 1; return params; } }, new GBMModelStep("def_2", aml()) { @Override public GBMParameters prepareModelParameters() { GBMParameters params = super.prepareModelParameters(); params._max_depth = 7; params._min_rows = 10; return params; } }, new GBMModelStep("def_3", aml()) { @Override public GBMParameters prepareModelParameters() { GBMParameters params = super.prepareModelParameters(); params._max_depth = 8; params._min_rows = 10; return params; } }, new GBMModelStep("def_4", aml()) { @Override public GBMParameters prepareModelParameters() { GBMParameters params = super.prepareModelParameters(); params._max_depth = 10; params._min_rows = 10; return params; } }, new GBMModelStep("def_5", aml()) { @Override public GBMParameters prepareModelParameters() { GBMParameters params = super.prepareModelParameters(); params._max_depth = 15; params._min_rows = 100; return params; } }, }; static class DefaultGBMGridStep extends GBMGridStep { public DefaultGBMGridStep(String id, AutoML autoML) { super(id, autoML); } @Override public Map<String, Object[]> prepareSearchParameters() { Map<String, Object[]> searchParams = new HashMap<>(); searchParams.put("_max_depth", new Integer[]{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}); searchParams.put("_min_rows", new Integer[]{1, 5, 10, 15, 30, 100}); // searchParams.put("_learn_rate", new Double[]{0.001, 0.005, 0.008, 0.01, 0.05, 0.08, 0.1, 0.5, 0.8}); searchParams.put("_sample_rate", new Double[]{0.50, 0.60, 0.70, 0.80, 0.90, 1.00}); searchParams.put("_col_sample_rate", new Double[]{ 0.4, 0.7, 1.0}); searchParams.put("_col_sample_rate_per_tree", new Double[]{ 0.4, 0.7, 1.0}); searchParams.put("_min_split_improvement", new Double[]{1e-4, 1e-5}); return searchParams; } } private final ModelingStep[] grids = new GBMGridStep[] { new DefaultGBMGridStep("grid_1", aml()), /* new DefaultGBMGridStep("grid_1_resume", aml()) { @Override protected void setSearchCriteria(RandomDiscreteValueSearchCriteria searchCriteria, Model.Parameters baseParms) { super.setSearchCriteria(searchCriteria, baseParms); searchCriteria.set_stopping_rounds(0); } @Override @SuppressWarnings("unchecked") protected Job<Grid> startJob() { Key<Grid>[] resumedGrid = aml().getResumableKeys(_provider, "grid_1"); if (resumedGrid.length == 0) return null; return hyperparameterSearch(resumedGrid[0], prepareModelParameters(), prepareSearchParameters()); } } */ }; private final ModelingStep[] exploitation = new ModelingStep[] { new GBMExploitationStep("lr_annealing", aml()) { Key<Models> resultKey = null; @Override protected Job<Models> startTraining(Key result, double maxRuntimeSecs) { resultKey = result; GBMModel bestGBM = getBestGBM(); aml().eventLog().info(EventLogEntry.Stage.ModelSelection, "Retraining best GBM with learning rate annealing: "+bestGBM._key); GBMParameters params = (GBMParameters) bestGBM._input_parms.clone(); params._max_runtime_secs = 0; // reset max runtime params._learn_rate_annealing = 0.99; initTimeConstraints(params, maxRuntimeSecs); setStoppingCriteria(params, new GBMParameters()); return asModelsJob(startModel(Key.make(result+"_model"), params), result); } @Override protected ModelSelectionStrategy getSelectionStrategy() { return (originalModels, newModels) -> new KeepBestN<>(1, () -> makeTmpLeaderboard(Objects.toString(resultKey, _provider+"_"+_id))) .select(new Key[] { getBestGBM()._key }, newModels); } } }; public GBMSteps(AutoML autoML) { super(autoML); } @Override public String getProvider() { return NAME; } @Override protected ModelingStep[] getDefaultModels() { return defaults; } @Override protected ModelingStep[] getGrids() { return grids; } @Override protected ModelingStep[] getOptionals() { return exploitation; } } @Override public String getName() { return GBMSteps.NAME; } @Override public GBMSteps newInstance(AutoML aml) { return new GBMSteps(aml); } @Override public GBMParameters newDefaultParameters() { return new GBMParameters(); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/modeling/GLMStepsProvider.java
package ai.h2o.automl.modeling; import ai.h2o.automl.*; import ai.h2o.automl.preprocessing.PreprocessingConfig; import ai.h2o.automl.preprocessing.TargetEncoding; import hex.Model; import hex.genmodel.utils.DistributionFamily; import hex.glm.GLMModel; import hex.glm.GLMModel.GLMParameters; public class GLMStepsProvider implements ModelingStepsProvider<GLMStepsProvider.GLMSteps> , ModelParametersProvider<GLMParameters> { public static class GLMSteps extends ModelingSteps { static final String NAME = Algo.GLM.name(); static abstract class GLMModelStep extends ModelingStep.ModelStep<GLMModel> { GLMModelStep(String id, AutoML autoML) { super(NAME, Algo.GLM, id, autoML); } @Override protected void setStoppingCriteria(Model.Parameters parms, Model.Parameters defaults) { // disabled as we're using lambda search } public GLMParameters prepareModelParameters() { GLMParameters params = new GLMParameters(); params._lambda_search = true; return params; } @Override protected PreprocessingConfig getPreprocessingConfig() { //GLM (the exception as usual) doesn't support targetencoding if CV is enabled // because it is initializing its lambdas + other params before CV (preventing changes in train frame during CV). PreprocessingConfig config = super.getPreprocessingConfig(); config.put(TargetEncoding.CONFIG_PREPARE_CV_ONLY, aml().isCVEnabled()); return config; } } private final ModelingStep[] defaults = new GLMModelStep[] { new GLMModelStep("def_1", aml()) { @Override public GLMParameters prepareModelParameters() { GLMParameters params = super.prepareModelParameters(); params._alpha = new double[] {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}; params._missing_values_handling = GLMParameters.MissingValuesHandling.MeanImputation; return params; } }, }; public GLMSteps(AutoML autoML) { super(autoML); } @Override public String getProvider() { return NAME; } @Override protected ModelingStep[] getDefaultModels() { return defaults; } } @Override public String getName() { return GLMSteps.NAME; } @Override public GLMSteps newInstance(AutoML aml) { return new GLMSteps(aml); } @Override public GLMParameters newDefaultParameters() { return new GLMParameters(); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/modeling/StackedEnsembleStepsProvider.java
package ai.h2o.automl.modeling; import ai.h2o.automl.*; import ai.h2o.automl.WorkAllocations.Work; import ai.h2o.automl.events.EventLogEntry; import ai.h2o.automl.preprocessing.PreprocessingConfig; import ai.h2o.automl.preprocessing.TargetEncoding; import hex.KeyValue; import hex.Model; import hex.ensemble.Metalearner; import hex.ensemble.StackedEnsembleModel; import hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters; import hex.glm.GLMModel; import water.DKV; import water.Job; import water.Key; import water.util.PojoUtils; import java.util.*; import java.util.stream.Collectors; import java.util.stream.IntStream; import java.util.stream.Stream; public class StackedEnsembleStepsProvider implements ModelingStepsProvider<StackedEnsembleStepsProvider.StackedEnsembleSteps> , ModelParametersProvider<StackedEnsembleParameters> { public static class StackedEnsembleSteps extends ModelingSteps { @Override protected void cleanup() { super.cleanup(); Arrays.stream(aml().leaderboard().getModels()) .filter(model -> model instanceof StackedEnsembleModel) .forEach(model -> ((StackedEnsembleModel) model).deleteBaseModelPredictions()); } static final String NAME = Algo.StackedEnsemble.name(); static abstract class StackedEnsembleModelStep extends ModelingStep.ModelStep<StackedEnsembleModel> { protected final Metalearner.Algorithm _metalearnerAlgo; StackedEnsembleModelStep(String id, Metalearner.Algorithm algo, int priorityGroup, int weight, AutoML autoML) { super(NAME, Algo.StackedEnsemble, id, priorityGroup, weight, autoML); _metalearnerAlgo = algo; _ignoredConstraints = new AutoML.Constraint[] { AutoML.Constraint.MODEL_COUNT, // do not include SEs in model count (current contract: max_models = max_base_models). AutoML.Constraint.FAILURE_COUNT // do not increment failures on SEs (several issues can occur with SEs during reruns, we should still add the error to event log, but not fail AutoML). }; } @Override protected void setCrossValidationParams(Model.Parameters params) { //added in the stack: we could probably move this here. } @Override protected void setWeightingParams(Model.Parameters params) { //Disabled: StackedEnsemble doesn't support weights in score0? } @Override protected void setClassBalancingParams(Model.Parameters params) { //Disabled } @Override protected PreprocessingConfig getPreprocessingConfig() { //SE should not have TE applied, the base models already do it. PreprocessingConfig config = super.getPreprocessingConfig(); config.put(TargetEncoding.CONFIG_ENABLED, false); return config; } @Override @SuppressWarnings("unchecked") public boolean canRun() { Key<Model>[] keys = getBaseModels(); Work seWork = getAllocatedWork(); if (!super.canRun()) { aml().job().update(0, "Skipping this StackedEnsemble"); aml().eventLog().info(EventLogEntry.Stage.ModelTraining, String.format("Skipping StackedEnsemble '%s' due to the exclude_algos option or it is already trained.", _id)); return false; } else if (keys.length == 0) { aml().job().update(seWork.consume(), "No base models; skipping this StackedEnsemble"); aml().eventLog().info(EventLogEntry.Stage.ModelTraining, String.format("No base models, due to timeouts or the exclude_algos option. Skipping StackedEnsemble '%s'.", _id)); return false; } else if (keys.length == 1) { aml().job().update(seWork.consume(), "Only one base model; skipping this StackedEnsemble"); aml().eventLog().info(EventLogEntry.Stage.ModelTraining, String.format("Skipping StackedEnsemble '%s' since there is only one model to stack", _id)); return false; } else if (!isCVEnabled() && aml().getBlendingFrame() == null) { aml().job().update(seWork.consume(), "Cross-validation disabled by the user and no blending frame provided; Skipping this StackedEnsemble"); aml().eventLog().info(EventLogEntry.Stage.ModelTraining, String.format("Cross-validation is disabled by the user and no blending frame was provided; skipping StackedEnsemble '%s'.", _id)); return false; } return !hasDoppelganger(keys); } @SuppressWarnings("unchecked") protected boolean hasDoppelganger(Key<Model>[] baseModelsKeys) { Key<StackedEnsembleModel>[] seModels = Arrays .stream(getTrainedModelsKeys()) .filter(k -> isStackedEnsemble(k)) .toArray(Key[]::new); Set<Key> keySet = new HashSet<>(Arrays.asList(baseModelsKeys)); for (Key<StackedEnsembleModel> seKey: seModels) { StackedEnsembleModelStep seStep = (StackedEnsembleModelStep)aml().session().getModelingStep(seKey); if (seStep._metalearnerAlgo != _metalearnerAlgo) continue; final StackedEnsembleParameters seParams = seKey.get()._parms; final Key[] seBaseModels = seParams._base_models; if (seBaseModels.length != baseModelsKeys.length) continue; if (keySet.equals(new HashSet<>(Arrays.asList(seBaseModels)))) return true; // We already have a SE with the same base models } return false; } protected abstract Key<Model>[] getBaseModels(); protected String getModelType(Key<Model> key) { String keyStr = key.toString(); return keyStr.substring(0, keyStr.indexOf('_')); } protected boolean isStackedEnsemble(Key<Model> key) { ModelingStep step = aml().session().getModelingStep(key); return step != null && step.getAlgo() == Algo.StackedEnsemble; } @Override public StackedEnsembleParameters prepareModelParameters() { StackedEnsembleParameters params = new StackedEnsembleParameters(); params._valid = (aml().getValidationFrame() == null ? null : aml().getValidationFrame()._key); params._blending = (aml().getBlendingFrame() == null ? null : aml().getBlendingFrame()._key); params._keep_levelone_frame = true; //TODO Why is this true? Can be optionally turned off return params; } protected void setMetalearnerParameters(StackedEnsembleParameters params) { AutoMLBuildSpec buildSpec = aml().getBuildSpec(); params._metalearner_fold_column = buildSpec.input_spec.fold_column; params._metalearner_nfolds = buildSpec.build_control.nfolds; params.initMetalearnerParams(_metalearnerAlgo); params._metalearner_parameters._keep_cross_validation_models = buildSpec.build_control.keep_cross_validation_models; params._metalearner_parameters._keep_cross_validation_predictions = buildSpec.build_control.keep_cross_validation_predictions; } Job<StackedEnsembleModel> stack(String modelName, Key<Model>[] baseModels, boolean isLast) { StackedEnsembleParameters params = prepareModelParameters(); params._base_models = baseModels; params._keep_base_model_predictions = !isLast; //avoids recomputing some base predictions for each SE setMetalearnerParameters(params); if (_metalearnerAlgo == Metalearner.Algorithm.AUTO) setAutoMetalearnerSEParameters(params); return stack(modelName, params); } Job<StackedEnsembleModel> stack(String modelName, StackedEnsembleParameters stackedEnsembleParameters) { Key<StackedEnsembleModel> modelKey = makeKey(modelName, true); return trainModel(modelKey, stackedEnsembleParameters); } protected void setAutoMetalearnerSEParameters(StackedEnsembleParameters stackedEnsembleParameters) { // add custom alpha in GLM metalearner GLMModel.GLMParameters metalearnerParams = (GLMModel.GLMParameters)stackedEnsembleParameters._metalearner_parameters; metalearnerParams._alpha = new double[]{0.5, 1.0}; if (aml().getResponseColumn().isCategorical()) { // Add logit transform stackedEnsembleParameters._metalearner_transform = StackedEnsembleParameters.MetalearnerTransform.Logit; } } } static class BestOfFamilySEModelStep extends StackedEnsembleModelStep { public BestOfFamilySEModelStep(String id, int priorityGroup, AutoML autoML) { this(id, Metalearner.Algorithm.AUTO, priorityGroup, autoML); } public BestOfFamilySEModelStep(String id, Metalearner.Algorithm algo, int priorityGroup, AutoML autoML) { this(id, algo, priorityGroup, DEFAULT_MODEL_TRAINING_WEIGHT, autoML); } public BestOfFamilySEModelStep(String id, Metalearner.Algorithm algo, int priorityGroup, int weight, AutoML autoML) { super((id == null ? "best_of_family_"+algo.name() : id), algo, priorityGroup, weight, autoML); _description = _description+" (built with "+algo.name()+" metalearner, using top model from each algorithm type)"; } @Override @SuppressWarnings("unchecked") protected Key<Model>[] getBaseModels() { // Set aside List<Model> for best models per model type. Meaning best GLM, GBM, DRF, XRT, and DL (5 models). // This will give another ensemble that is smaller than the original which takes all models into consideration. List<Key<Model>> bestModelsOfEachType = new ArrayList<>(); Set<String> typesOfGatheredModels = new HashSet<>(); for (Key<Model> key : getTrainedModelsKeys()) { // trained models are sorted (taken from leaderboard), so we only need to pick the first of each type (excluding other StackedEnsembles) String type = getModelType(key); if (isStackedEnsemble(key) || typesOfGatheredModels.contains(type)) continue; typesOfGatheredModels.add(type); bestModelsOfEachType.add(key); } return bestModelsOfEachType.toArray(new Key[0]); } @Override protected Job<StackedEnsembleModel> startJob() { return stack(_provider+"_BestOfFamily", getBaseModels(), false); } } static class BestNModelsSEModelStep extends StackedEnsembleModelStep { private final int _N; public BestNModelsSEModelStep(String id, int N, int priorityGroup, AutoML autoML) { this(id, Metalearner.Algorithm.AUTO, N, priorityGroup, DEFAULT_MODEL_TRAINING_WEIGHT, autoML); } public BestNModelsSEModelStep(String id, Metalearner.Algorithm algo, int N, int priorityGroup, int weight, AutoML autoML) { super((id == null ? "best_"+N+"_"+algo.name() : id), algo, priorityGroup, weight, autoML); _N = N; _description = _description+" (built with "+algo.name()+" metalearner, using best "+N+" non-SE models)"; } @Override @SuppressWarnings("unchecked") protected Key<Model>[] getBaseModels() { return Stream.of(getTrainedModelsKeys()) .filter(k -> !isStackedEnsemble(k)) .limit(_N) .toArray(Key[]::new); } @Override protected Job<StackedEnsembleModel> startJob() { return stack(_provider+"_Best"+_N, getBaseModels(), false); } } static class AllSEModelStep extends StackedEnsembleModelStep { public AllSEModelStep(String id, int priorityGroup, AutoML autoML) { this(id, Metalearner.Algorithm.AUTO, priorityGroup, autoML); } public AllSEModelStep(String id, Metalearner.Algorithm algo, int priorityGroup, AutoML autoML) { this(id, algo, priorityGroup, DEFAULT_MODEL_TRAINING_WEIGHT, autoML); } public AllSEModelStep(String id, Metalearner.Algorithm algo, int priorityGroup, int weight, AutoML autoML) { super((id == null ? "all_"+algo.name() : id), algo, priorityGroup, weight, autoML); _description = _description+" (built with "+algo.name()+" metalearner, using all AutoML models)"; } @Override @SuppressWarnings("unchecked") protected Key<Model>[] getBaseModels() { return Stream.of(getTrainedModelsKeys()) .filter(k -> !isStackedEnsemble(k)) .toArray(Key[]::new); } @Override protected Job<StackedEnsembleModel> startJob() { return stack(_provider+"_AllModels", getBaseModels(), false); } } static class MonotonicSEModelStep extends StackedEnsembleModelStep { public MonotonicSEModelStep(String id, int priorityGroup, AutoML autoML) { this(id, Metalearner.Algorithm.AUTO, priorityGroup, DEFAULT_MODEL_TRAINING_WEIGHT, autoML); } public MonotonicSEModelStep(String id, Metalearner.Algorithm algo, int priorityGroup, int weight, AutoML autoML) { super((id == null ? "monotonic" : id), algo, priorityGroup, weight, autoML); _description = _description+" (built with "+algo.name()+" metalearner, using monotonically constrained AutoML models)"; } boolean hasMonotoneConstrains(Key<Model> modelKey) { Model model = DKV.getGet(modelKey); try { KeyValue[] mc = (KeyValue[]) PojoUtils.getFieldValue( model._parms, "_monotone_constraints", PojoUtils.FieldNaming.CONSISTENT); return mc != null && mc.length > 0; } catch (IllegalArgumentException e) { return false; } } @Override public boolean canRun() { boolean canRun = super.canRun(); if (!canRun) return false; int monotoneModels=0; for (Key<Model> modelKey: getTrainedModelsKeys()) { if (hasMonotoneConstrains(modelKey)) monotoneModels++; if (monotoneModels >= 2) return true; } if (monotoneModels == 1) { aml().job().update(getAllocatedWork().consume(), "Only one monotonic base model; skipping this StackedEnsemble"); aml().eventLog().info(EventLogEntry.Stage.ModelTraining, String.format("Skipping StackedEnsemble '%s' since there is only one monotonic model to stack", _id)); } else { aml().job().update(getAllocatedWork().consume(), "No monotonic base model; skipping this StackedEnsemble"); aml().eventLog().info(EventLogEntry.Stage.ModelTraining, String.format("Skipping StackedEnsemble '%s' since there is no monotonic model to stack", _id)); } return false; } @Override @SuppressWarnings("unchecked") protected Key<Model>[] getBaseModels() { return Stream.of(getTrainedModelsKeys()) .filter(k -> !isStackedEnsemble(k) && hasMonotoneConstrains(k)) .toArray(Key[]::new); } @Override protected Job<StackedEnsembleModel> startJob() { return stack(_provider + "_Monotonic", getBaseModels(), false); } } private final ModelingStep[] defaults; private final ModelingStep[] optionals; { // we're going to cheat a bit: ModelingSteps needs to instantiated by the AutoML instance // to convert each StepDefinition into one or more ModelingStep(s) // so at that time, we have access to the entire modeling plan // and we can dynamically generate the modeling steps that we're going to need. StepDefinition[] modelingPlan = aml().getBuildSpec().build_models.modeling_plan; if (Stream.of(modelingPlan).noneMatch(sd -> sd.getName().equals(NAME))) { defaults = new ModelingStep[0]; optionals = new ModelingStep[0]; } else { List<StackedEnsembleModelStep> defaultSeSteps = new ArrayList<>(); // starting to generate the SE for each "base" group // ie for each group with algo steps. Set<String> defaultAlgoProviders = Stream.of(Algo.values()) .filter(a -> a != Algo.StackedEnsemble) .map(Algo::name) .collect(Collectors.toSet()); int[] baseAlgoGroups = Stream.of(modelingPlan) .filter(sd -> defaultAlgoProviders.contains(sd.getName())) .flatMapToInt(sd -> sd.getAlias() == StepDefinition.Alias.defaults ? IntStream.of(ModelingStep.ModelStep.DEFAULT_MODEL_GROUP) : sd.getAlias() == StepDefinition.Alias.grids ? IntStream.of(ModelingStep.GridStep.DEFAULT_GRID_GROUP) : sd.getAlias() == StepDefinition.Alias.all ? IntStream.of(ModelingStep.ModelStep.DEFAULT_MODEL_GROUP, ModelingStep.GridStep.DEFAULT_GRID_GROUP) : sd.getSteps().stream().flatMapToInt(s -> s.getGroup() == StepDefinition.Step.DEFAULT_GROUP ? IntStream.of(ModelingStep.ModelStep.DEFAULT_MODEL_GROUP, ModelingStep.GridStep.DEFAULT_GRID_GROUP) : IntStream.of(s.getGroup()))) .distinct().sorted().toArray(); for (int group : baseAlgoGroups) { defaultSeSteps.add(new BestOfFamilySEModelStep("best_of_family_" + group, group, aml())); defaultSeSteps.add(new AllSEModelStep("all_" + group, group, aml())); // groups <=0 are ignored. } defaults = defaultSeSteps.toArray(new ModelingStep[0]); // now all the additional SEs are available as optionals (usually requested by id). int maxBaseGroup = IntStream.of(baseAlgoGroups).max().orElse(0); List<StackedEnsembleModelStep> optionalSeSteps = new ArrayList<>(); if (maxBaseGroup > 0) { int optionalGroup = maxBaseGroup+1; optionalSeSteps.add(new MonotonicSEModelStep("monotonic", optionalGroup, aml())); optionalSeSteps.add(new BestOfFamilySEModelStep("best_of_family", optionalGroup, aml())); optionalSeSteps.add(new AllSEModelStep("all", optionalGroup, aml())); if (Algo.XGBoost.enabled()) { optionalSeSteps.add(new BestOfFamilySEModelStep("best_of_family_xgboost", Metalearner.Algorithm.xgboost, optionalGroup, aml())); optionalSeSteps.add(new AllSEModelStep("all_xgboost", Metalearner.Algorithm.xgboost, optionalGroup, aml())); } optionalSeSteps.add(new BestOfFamilySEModelStep("best_of_family_gbm", Metalearner.Algorithm.gbm, optionalGroup, aml())); optionalSeSteps.add(new AllSEModelStep("all_gbm", Metalearner.Algorithm.gbm, optionalGroup, aml())); optionalSeSteps.add(new BestOfFamilySEModelStep("best_of_family_xglm", optionalGroup, aml()) { @Override protected boolean hasDoppelganger(Key<Model>[] baseModelsKeys) { return false; } @Override protected void setMetalearnerParameters(StackedEnsembleParameters params) { super.setMetalearnerParameters(params); GLMModel.GLMParameters metalearnerParams = (GLMModel.GLMParameters) params._metalearner_parameters; metalearnerParams._lambda_search = true; } }); optionalSeSteps.add(new AllSEModelStep("all_xglm", optionalGroup, aml()) { @Override protected boolean hasDoppelganger(Key<Model>[] baseModelsKeys) { Set<String> modelTypes = new HashSet<>(); for (Key<Model> key : baseModelsKeys) { String modelType = getModelType(key); if (modelTypes.contains(modelType)) return false; modelTypes.add(modelType); } return true; } @Override protected void setMetalearnerParameters(StackedEnsembleParameters params) { super.setMetalearnerParameters(params); GLMModel.GLMParameters metalearnerParams = (GLMModel.GLMParameters) params._metalearner_parameters; metalearnerParams._lambda_search = true; } }); // optionalSeSteps.add(new BestNModelsSEModelStep("best_20", 20, optionalGroup, aml())); int card = aml().getResponseColumn().cardinality(); int maxModels = card <= 2 ? 1_000 : Math.max(100, 1_000 / (card - 1)); optionalSeSteps.add(new BestNModelsSEModelStep("best_N", maxModels, optionalGroup, aml())); } optionals = optionalSeSteps.toArray(new ModelingStep[0]); } } public StackedEnsembleSteps(AutoML autoML) { super(autoML); } @Override public String getProvider() { return NAME; } @Override protected ModelingStep[] getDefaultModels() { return defaults; } @Override protected ModelingStep[] getOptionals() { return optionals; } } @Override public String getName() { return StackedEnsembleSteps.NAME; } @Override public StackedEnsembleSteps newInstance(AutoML aml) { return new StackedEnsembleSteps(aml); } @Override public StackedEnsembleParameters newDefaultParameters() { return new StackedEnsembleParameters(); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/modeling/XGBoostSteps.java
package ai.h2o.automl.modeling; import ai.h2o.automl.*; import ai.h2o.automl.ModelSelectionStrategies.KeepBestN; import ai.h2o.automl.events.EventLogEntry; import hex.Model; import hex.genmodel.utils.DistributionFamily; import hex.grid.GridSearch; import hex.grid.HyperSpaceSearchCriteria.SequentialSearchCriteria; import hex.grid.HyperSpaceSearchCriteria.StoppingCriteria; import hex.grid.SequentialWalker; import hex.tree.xgboost.XGBoostModel; import hex.tree.xgboost.XGBoostModel.XGBoostParameters; import water.Job; import water.Key; import java.util.*; import java.util.stream.IntStream; public class XGBoostSteps extends ModelingSteps { static final String NAME = Algo.XGBoost.name(); static XGBoostParameters prepareModelParameters(AutoML aml, boolean emulateLightGBM) { XGBoostParameters params = new XGBoostParameters(); if (emulateLightGBM) { params._tree_method = XGBoostParameters.TreeMethod.hist; params._grow_policy = XGBoostParameters.GrowPolicy.lossguide; } params._score_tree_interval = 5; params._ntrees = 10000; // params._min_split_improvement = 0.01f; return params; } static abstract class XGBoostModelStep extends ModelingStep.ModelStep<XGBoostModel> { boolean _emulateLightGBM; XGBoostModelStep(String id, AutoML autoML, boolean emulateLightGBM) { super(NAME, Algo.XGBoost, id, autoML); _emulateLightGBM = emulateLightGBM; } public XGBoostParameters prepareModelParameters() { XGBoostParameters params = XGBoostSteps.prepareModelParameters(aml(), _emulateLightGBM); if (aml().getBuildSpec().build_control.balance_classes && aml().getDistributionFamily().equals(DistributionFamily.bernoulli)) { double[] dist = aml().getClassDistribution(); params._scale_pos_weight = (float) (dist[0] / dist[1]); } return params; } } static abstract class XGBoostGridStep extends ModelingStep.GridStep<XGBoostModel> { boolean _emulateLightGBM; public XGBoostGridStep(String id, AutoML autoML, boolean emulateLightGBM) { super(NAME, Algo.XGBoost, id, autoML); _emulateLightGBM = emulateLightGBM; } public XGBoostParameters prepareModelParameters() { return XGBoostSteps.prepareModelParameters(aml(), _emulateLightGBM); } } static abstract class XGBoostExploitationStep extends ModelingStep.SelectionStep<XGBoostModel> { boolean _emulateLightGBM; protected XGBoostModel getBestXGB() { return getBestXGBs(1).get(0); } protected List<XGBoostModel> getBestXGBs(int topN) { List<XGBoostModel> xgbs = new ArrayList<>(); for (Model model : getTrainedModels()) { if (model instanceof XGBoostModel) { xgbs.add((XGBoostModel) model); } if (xgbs.size() == topN) break; } return xgbs; } @Override public boolean canRun() { return super.canRun() && getBestXGBs(1).size() > 0; } public XGBoostExploitationStep(String id, AutoML autoML, boolean emulateLightGBM) { super(NAME, Algo.XGBoost, id, autoML); _emulateLightGBM = emulateLightGBM; if (autoML.getBuildSpec().build_models.exploitation_ratio > 0) _ignoredConstraints = new AutoML.Constraint[] { AutoML.Constraint.MODEL_COUNT }; } } private final ModelingStep[] defaults = new XGBoostModelStep[] { new XGBoostModelStep("def_1", aml(), false) { @Override public XGBoostParameters prepareModelParameters() { //XGB 1 (medium depth) XGBoostParameters params = super.prepareModelParameters(); params._max_depth = 10; params._min_rows = 5; params._sample_rate = 0.6; params._col_sample_rate = 0.8; params._col_sample_rate_per_tree = 0.8; if (_emulateLightGBM) { params._max_leaves = 1 << params._max_depth; params._max_depth = params._max_depth * 2; } return params; } }, new XGBoostModelStep("def_2", aml(), false) { @Override public XGBoostParameters prepareModelParameters() { //XGB 2 (deep) XGBoostParameters params = super.prepareModelParameters(); params._max_depth = 15; params._min_rows = 10; params._sample_rate = 0.6; params._col_sample_rate = 0.8; params._col_sample_rate_per_tree = 0.8; if (_emulateLightGBM) { params._max_leaves = 1 << params._max_depth; params._max_depth = params._max_depth * 2; } return params; } }, new XGBoostModelStep("def_3", aml(), false) { @Override public XGBoostParameters prepareModelParameters() { //XGB 3 (shallow) XGBoostParameters params = super.prepareModelParameters(); params._max_depth = 5; params._min_rows = 3; params._sample_rate = 0.8; params._col_sample_rate = 0.8; params._col_sample_rate_per_tree = 0.8; if (_emulateLightGBM) { params._max_leaves = 1 << params._max_depth; params._max_depth = params._max_depth * 2; } return params; } }, }; static class DefaultXGBoostGridStep extends XGBoostGridStep { public DefaultXGBoostGridStep(String id, AutoML autoML) { super(id, autoML, false); } @Override public XGBoostParameters prepareModelParameters() { XGBoostParameters params = super.prepareModelParameters(); // Reset scale pos weight so we can grid search the parameter params._scale_pos_weight = (new XGBoostParameters())._scale_pos_weight; return params; } @Override public Map<String, Object[]> prepareSearchParameters() { Map<String, Object[]> searchParams = new HashMap<>(); // searchParams.put("_ntrees", new Integer[]{100, 1000, 10000}); // = _n_estimators if (_emulateLightGBM) { searchParams.put("_max_leaves", new Integer[]{1 << 5, 1 << 10, 1 << 15, 1 << 20}); searchParams.put("_max_depth", new Integer[]{10, 20, 50}); } else { searchParams.put("_max_depth", new Integer[]{3, 6, 9, 12, 15}); if (aml().getWeightsColumn() == null || aml().getWeightsColumn().isInt()) { searchParams.put("_min_rows", new Double[]{1.0, 3.0, 5.0, 10.0, 15.0, 20.0}); // = _min_child_weight } else { searchParams.put("_min_rows", new Double[]{0.01, 0.1, 1.0, 3.0, 5.0, 10.0, 15.0, 20.0}); // = _min_child_weight } } searchParams.put("_sample_rate", new Double[]{0.6, 0.8, 1.0}); // = _subsample searchParams.put("_col_sample_rate", new Double[]{0.6, 0.8, 1.0}); // = _colsample_bylevel" searchParams.put("_col_sample_rate_per_tree", new Double[]{0.7, 0.8, 0.9, 1.0}); // = _colsample_bytree: start higher to always use at least about 40% of columns // searchParams.put("_min_split_improvement", new Float[]{0.01f, 0.05f, 0.1f, 0.5f, 1f, 5f, 10f, 50f}); // = _gamma // searchParams.put("_tree_method", new XGBoostParameters.TreeMethod[]{XGBoostParameters.TreeMethod.auto}); searchParams.put("_booster", new XGBoostParameters.Booster[]{ // include gblinear? cf. https://github.com/h2oai/h2o-3/issues/8381 XGBoostParameters.Booster.gbtree, //default, let's use it more often: note that some combinations may be trained multiple time by the RGS then. XGBoostParameters.Booster.gbtree, XGBoostParameters.Booster.dart }); searchParams.put("_reg_lambda", new Float[]{0.001f, 0.01f, 0.1f, 1f, 10f, 100f}); searchParams.put("_reg_alpha", new Float[]{0.001f, 0.01f, 0.1f, 0.5f, 1f}); if (aml().getBuildSpec().build_control.balance_classes && aml().getDistributionFamily().equals(DistributionFamily.bernoulli)) { double[] dist = aml().getClassDistribution(); final float negPosRatio = (float)(dist[0] / dist[1]); final float imbalanceRatio = negPosRatio < 1 ? 1 / negPosRatio : negPosRatio; searchParams.put("_scale_pos_weight", new Float[]{1.f, negPosRatio}); searchParams.put("_max_delta_step", new Float[]{0f, Math.min(5f, imbalanceRatio / 2), Math.min(10f, imbalanceRatio)}); } return searchParams; } } static class XGBoostGBLinearGridStep extends XGBoostGridStep { public XGBoostGBLinearGridStep(String id, AutoML autoML) { super(id, autoML, false); } @Override public XGBoostParameters prepareModelParameters() { return XGBoostSteps.prepareModelParameters(aml(), false); } @Override public Map<String, Object[]> prepareSearchParameters() { Map<String, Object[]> searchParams = new HashMap<>(); /* // not supported/exposed in our xgboost yet if (aml().getBuildSpec().build_control.isReproducible()) { searchParams.put("_updater", new String[] {"coord_descent"}); searchParams.put("_feature_selector", new String[] {"cyclic", "greedy"}); // TODO: check if others are deterministic } else { searchParams.put("_updater", new String[] {"shotgun", "coord_descent"}); searchParams.put("_feature_selector", new String[] {"cyclic", "shuffle", "random", "greedy", "thrifty"}); } int ncols = aml().getTrainingFrame().numCols() - (aml().getBuildSpec().getNonPredictors().length + (aml().getBuildSpec().input_spec.ignored_columns != null ? aml().getBuildSpec().input_spec.ignored_columns.length : 0)); searchParams.put("_top_k", IntStream.range(0, ncols-1).boxed().toArray(Integer[]::new)); */ searchParams.put("_booster", new XGBoostParameters.Booster[]{ XGBoostParameters.Booster.gblinear }); searchParams.put("_reg_lambda", new Float[]{0.001f, 0.01f, 0.1f, 1f, 10f, 100f}); searchParams.put("_reg_alpha", new Float[]{0.001f, 0.01f, 0.1f, 0.5f, 1f}); return searchParams; } } private final ModelingStep[] grids = new XGBoostGridStep[] { new DefaultXGBoostGridStep("grid_1", aml()), new XGBoostGBLinearGridStep("grid_gblinear", aml()), /* new DefaultXGBoostGridStep("grid_1_resume", aml()) { @Override protected void setSearchCriteria(RandomDiscreteValueSearchCriteria searchCriteria, Model.Parameters baseParms) { super.setSearchCriteria(searchCriteria, baseParms); searchCriteria.set_stopping_rounds(0); } @Override @SuppressWarnings("unchecked") protected Job<Grid> startJob() { Key<Grid>[] resumedGrid = aml().getResumableKeys(_provider, "grid_1"); if (resumedGrid.length == 0) return null; return hyperparameterSearch(resumedGrid[0], prepareModelParameters(), prepareSearchParameters()); } } */ }; private final ModelingStep[] exploitation = new ModelingStep[] { new XGBoostExploitationStep("lr_annealing", aml(), false) { Key<Models> resultKey = null; @Override protected Job<Models> startTraining(Key result, double maxRuntimeSecs) { resultKey = result; XGBoostModel bestXGB = getBestXGB(); aml().eventLog().info(EventLogEntry.Stage.ModelSelection, "Retraining best XGBoost with learning rate annealing: "+bestXGB._key); XGBoostParameters params = (XGBoostParameters) bestXGB._input_parms.clone(); params._max_runtime_secs = 0; // reset max runtime params._learn_rate_annealing = 0.99; initTimeConstraints(params, maxRuntimeSecs); setStoppingCriteria(params, new XGBoostParameters()); return asModelsJob(startModel(Key.make(result+"_model"), params), result); } @Override protected ModelSelectionStrategy getSelectionStrategy() { return (originalModels, newModels) -> new KeepBestN<>(1, () -> makeTmpLeaderboard(Objects.toString(resultKey, _provider+"_"+_id))) .select(new Key[] { getBestXGB()._key }, newModels); } }, new XGBoostExploitationStep("lr_search", aml(), false) { Key resultKey = null; @Override protected ModelSelectionStrategy getSelectionStrategy() { return (originalModels, newModels) -> new KeepBestN<>(1, () -> makeTmpLeaderboard(Objects.toString(resultKey, _provider+"_"+_id))) .select(new Key[] { getBestXGB()._key }, newModels); } @Override protected Job<Models> startTraining(Key result, double maxRuntimeSecs) { resultKey = result; XGBoostModel bestXGB = getBestXGBs(1).get(0); aml().eventLog().info(EventLogEntry.Stage.ModelSelection, "Applying learning rate search on best XGBoost: "+bestXGB._key); XGBoostParameters params = (XGBoostParameters) bestXGB._input_parms.clone(); XGBoostParameters defaults = new XGBoostParameters(); params._max_runtime_secs = 0; // reset max runtime initTimeConstraints(params, 0); // ensure we have a max runtime per model in the grid setStoppingCriteria(params, defaults); // keep the same seed as the bestXGB // keep stopping_rounds fixed, but increases score_tree_interval when lowering learn rate int sti = params._score_tree_interval; Object[][] hyperParams = new Object[][] { new Object[] {"_learn_rate", "_score_tree_interval"}, new Object[] { 0.5 , sti }, new Object[] { 0.2 , 2*sti }, new Object[] { 0.1 , 3*sti }, new Object[] { 0.05 , 4*sti }, new Object[] { 0.02 , 5*sti }, new Object[] { 0.01 , 6*sti }, new Object[] { 0.005 , 7*sti }, new Object[] { 0.002 , 8*sti }, new Object[] { 0.001 , 9*sti }, new Object[] { 0.0005, 10*sti }, }; /* Object[][] hyperParams = new Object[][] { new Object[] {"_learn_rate", "_score_tree_interval"}, new Object[] { 0.5 , sti }, new Object[] { 0.2 , (1<<1)*sti }, new Object[] { 0.1 , (1<<2)*sti }, new Object[] { 0.05 , (1<<3)*sti }, new Object[] { 0.02 , (1<<4)*sti }, new Object[] { 0.01 , (1<<5)*sti }, new Object[] { 0.005 , (1<<6)*sti }, new Object[] { 0.002 , (1<<7)*sti }, new Object[] { 0.001 , (1<<8)*sti }, new Object[] { 0.0005, (1<<9)*sti }, }; */ aml().eventLog().info(EventLogEntry.Stage.ModelTraining, "AutoML: starting "+resultKey+" model training") .setNamedValue("start_"+_provider+"_"+_id, new Date(), EventLogEntry.epochFormat.get()); return asModelsJob(GridSearch.startGridSearch( Key.make(result+"_grid"), new SequentialWalker<>( params, hyperParams, new GridSearch.SimpleParametersBuilderFactory<>(), new SequentialSearchCriteria(StoppingCriteria.create() .maxRuntimeSecs((int)maxRuntimeSecs) .stoppingMetric(params._stopping_metric) .stoppingRounds(3) // enforcing this as we define the sequence and it is quite small. .stoppingTolerance(params._stopping_tolerance) .build()) ), GridSearch.SEQUENTIAL_MODEL_BUILDING ), result); } } }; public XGBoostSteps(AutoML autoML) { super(autoML); } @Override public String getProvider() { return NAME; } @Override protected ModelingStep[] getDefaultModels() { return defaults; } @Override protected ModelingStep[] getGrids() { return grids; } @Override protected ModelingStep[] getOptionals() { return exploitation; } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/modeling/XGBoostStepsProvider.java
package ai.h2o.automl.modeling; import ai.h2o.automl.*; import hex.Model; import hex.ModelBuilder; import water.util.Log; /** * This class is decoupled from the XGBoostSteps implementation to avoid having to load XGBoost classes * when the extension is not available. */ public class XGBoostStepsProvider implements ModelingStepsProvider<XGBoostSteps>, ModelParametersProvider<Model.Parameters> { @Override public String getName() { return XGBoostSteps.NAME; } @Override public XGBoostSteps newInstance(AutoML aml) { return Algo.XGBoost.enabled() ? new XGBoostSteps(aml) : null; } @Override public Model.Parameters newDefaultParameters() { return Algo.XGBoost.enabled() ? ModelBuilder.make(getName(), null, null)._parms : null; } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/preprocessing/PreprocessingConfig.java
package ai.h2o.automl.preprocessing; import java.util.HashMap; public class PreprocessingConfig extends HashMap<String, Object> { boolean get(String key, boolean defaultValue) { return (boolean) getOrDefault(key, defaultValue); } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/preprocessing/PreprocessingStep.java
package ai.h2o.automl.preprocessing; import ai.h2o.automl.ModelingStep; import hex.Model; public interface PreprocessingStep<T> { interface Completer extends Runnable {} String getType(); /** * preprocessing steps are prepared by default before the AutoML session starts training the first model. */ void prepare(); /** * applies this preprocessing step to the model parameters right before the model training starts. * @param params * @return a function used to "complete" the preprocessing step: it is called by default at the end of the job creating model(s) from the given parms. * This can mean for example cleaning the temporary artifacts that may have been created to apply the preprocessing step. */ Completer apply(Model.Parameters params, PreprocessingConfig config); /** * preprocessing steps are disposed by default at the end of the AutoML training session. * Note that disposing here doesn't mean being removed from the system, * the goal is mainly to clean resources that are not needed anymore for the current AutoML run. */ void dispose(); /** * Completely remove from the system */ void remove(); }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/preprocessing/PreprocessingStepDefinition.java
package ai.h2o.automl.preprocessing; import ai.h2o.automl.AutoML; import water.Iced; public class PreprocessingStepDefinition extends Iced<PreprocessingStepDefinition> { public enum Type { TargetEncoding } Type _type; public PreprocessingStepDefinition() { /* for reflection */ } public PreprocessingStepDefinition(Type type) { _type = type; } public PreprocessingStep newPreprocessingStep(AutoML aml) { switch (_type) { case TargetEncoding: return new TargetEncoding(aml); default: throw new IllegalStateException(); } } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/ai/h2o/automl/preprocessing/TargetEncoding.java
package ai.h2o.automl.preprocessing; import ai.h2o.automl.AutoML; import ai.h2o.automl.AutoMLBuildSpec.AutoMLBuildControl; import ai.h2o.automl.AutoMLBuildSpec.AutoMLInput; import ai.h2o.automl.events.EventLogEntry.Stage; import ai.h2o.targetencoding.TargetEncoder; import ai.h2o.targetencoding.TargetEncoderModel; import ai.h2o.targetencoding.TargetEncoderModel.DataLeakageHandlingStrategy; import ai.h2o.targetencoding.TargetEncoderModel.TargetEncoderParameters; import ai.h2o.targetencoding.TargetEncoderPreprocessor; import hex.Model; import hex.Model.Parameters.FoldAssignmentScheme; import hex.ModelPreprocessor; import water.DKV; import water.Key; import water.fvec.Frame; import water.fvec.Vec; import water.rapids.ast.prims.advmath.AstKFold; import water.util.ArrayUtils; import java.util.*; import java.util.function.Predicate; public class TargetEncoding implements PreprocessingStep { public static String CONFIG_ENABLED = "target_encoding_enabled"; public static String CONFIG_PREPARE_CV_ONLY = "target_encoding_prepare_cv_only"; static String TE_FOLD_COLUMN_SUFFIX = "_te_fold"; private static final Completer NOOP = () -> {}; private AutoML _aml; private TargetEncoderPreprocessor _tePreprocessor; private TargetEncoderModel _teModel; private final List<Completer> _disposables = new ArrayList<>(); private TargetEncoderParameters _defaultParams; private boolean _encodeAllColumns = false; // if true, bypass all restrictions in columns selection. private int _columnCardinalityThreshold = 25; // the minimal cardinality for a column to be TE encoded. public TargetEncoding(AutoML aml) { _aml = aml; } @Override public String getType() { return PreprocessingStepDefinition.Type.TargetEncoding.name(); } @Override public void prepare() { AutoMLInput amlInput = _aml.getBuildSpec().input_spec; AutoMLBuildControl amlBuild = _aml.getBuildSpec().build_control; Frame amlTrain = _aml.getTrainingFrame(); TargetEncoderParameters params = (TargetEncoderParameters) getDefaultParams().clone(); params._train = amlTrain._key; params._response_column = amlInput.response_column; params._seed = amlBuild.stopping_criteria.seed(); Set<String> teColumns = selectColumnsToEncode(amlTrain, params); if (teColumns.isEmpty()) return; _aml.eventLog().warn(Stage.FeatureCreation, "Target Encoding integration in AutoML is in an experimental stage, the models obtained with this feature can not yet be downloaded as MOJO for production."); if (_aml.isCVEnabled()) { params._data_leakage_handling = DataLeakageHandlingStrategy.KFold; params._fold_column = amlInput.fold_column; if (params._fold_column == null) { //generate fold column Frame train = new Frame(params.train()); Vec foldColumn = createFoldColumn( params.train(), FoldAssignmentScheme.Modulo, amlBuild.nfolds, params._response_column, params._seed ); DKV.put(foldColumn); params._fold_column = params._response_column+TE_FOLD_COLUMN_SUFFIX; train.add(params._fold_column, foldColumn); register(train, params._train.toString(), true); params._train = train._key; _disposables.add(() -> { foldColumn.remove(); DKV.remove(train._key); }); } } String[] keep = params.getNonPredictors(); params._ignored_columns = Arrays.stream(amlTrain.names()) .filter(col -> !teColumns.contains(col) && !ArrayUtils.contains(keep, col)) .toArray(String[]::new); TargetEncoder te = new TargetEncoder(params, _aml.makeKey(getType(), null, false)); _teModel = te.trainModel().get(); _tePreprocessor = new TargetEncoderPreprocessor(_teModel); } @Override public Completer apply(Model.Parameters params, PreprocessingConfig config) { if (_tePreprocessor == null || !config.get(CONFIG_ENABLED, true)) return NOOP; if (!config.get(CONFIG_PREPARE_CV_ONLY, false)) params._preprocessors = (Key<ModelPreprocessor>[])ArrayUtils.append(params._preprocessors, _tePreprocessor._key); Frame train = new Frame(params.train()); String foldColumn = _teModel._parms._fold_column; boolean addFoldColumn = foldColumn != null && train.find(foldColumn) < 0; if (addFoldColumn) { train.add(foldColumn, _teModel._parms._train.get().vec(foldColumn)); register(train, params._train.toString(), true); params._train = train._key; params._fold_column = foldColumn; params._nfolds = 0; // to avoid confusion or errors params._fold_assignment = FoldAssignmentScheme.AUTO; // to avoid confusion or errors } return () -> { //revert train changes if (addFoldColumn) { DKV.remove(train._key); } }; } @Override public void dispose() { for (Completer disposable : _disposables) disposable.run(); } @Override public void remove() { if (_tePreprocessor != null) { _tePreprocessor.remove(true); _tePreprocessor = null; _teModel = null; } } public void setDefaultParams(TargetEncoderParameters defaultParams) { _defaultParams = defaultParams; } public void setEncodeAllColumns(boolean encodeAllColumns) { _encodeAllColumns = encodeAllColumns; } public void setColumnCardinalityThreshold(int threshold) { _columnCardinalityThreshold = threshold; } private TargetEncoderParameters getDefaultParams() { if (_defaultParams != null) return _defaultParams; _defaultParams = new TargetEncoderParameters(); _defaultParams._keep_original_categorical_columns = false; _defaultParams._blending = true; _defaultParams._inflection_point = 5; _defaultParams._smoothing = 10; _defaultParams._noise = 0; return _defaultParams; } private Set<String> selectColumnsToEncode(Frame fr, TargetEncoderParameters params) { final Set<String> encode = new HashSet<>(); if (_encodeAllColumns) { encode.addAll(Arrays.asList(fr.names())); } else { Predicate<Vec> cardinalityLargeEnough = v -> v.cardinality() >= _columnCardinalityThreshold; Predicate<Vec> cardinalityNotTooLarge = params._blending ? v -> (double) fr.numRows() / v.cardinality() > params._inflection_point : v -> true; for (int i = 0; i < fr.names().length; i++) { Vec v = fr.vec(i); if (cardinalityLargeEnough.test(v) && cardinalityNotTooLarge.test(v)) encode.add(fr.name(i)); } } AutoMLInput amlInput = _aml.getBuildSpec().input_spec; List<String> nonPredictors = Arrays.asList( amlInput.weights_column, amlInput.fold_column, amlInput.response_column ); encode.removeAll(nonPredictors); return encode; } TargetEncoderPreprocessor getTEPreprocessor() { return _tePreprocessor; } TargetEncoderModel getTEModel() { return _teModel; } private static void register(Frame fr, String keyPrefix, boolean force) { Key<Frame> key = fr._key; if (key == null || force) fr._key = keyPrefix == null ? Key.make() : Key.make(keyPrefix+"_"+Key.rand()); if (force) DKV.remove(key); DKV.put(fr); } public static Vec createFoldColumn(Frame fr, FoldAssignmentScheme fold_assignment, int nfolds, String responseColumn, long seed) { Vec foldColumn; switch (fold_assignment) { default: case AUTO: case Random: foldColumn = AstKFold.kfoldColumn(fr.anyVec().makeZero(), nfolds, seed); break; case Modulo: foldColumn = AstKFold.moduloKfoldColumn(fr.anyVec().makeZero(), nfolds); break; case Stratified: foldColumn = AstKFold.stratifiedKFoldColumn(fr.vec(responseColumn), nfolds, seed); break; } return foldColumn; } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/water
java-sources/ai/h2o/h2o-automl/3.46.0.7/water/automl/RegisterRestApi.java
package water.automl; import water.api.AbstractRegister; import water.api.RestApiContext; import water.automl.api.AutoMLBuilderHandler; import water.automl.api.AutoMLHandler; import water.automl.api.LeaderboardsHandler; public class RegisterRestApi extends AbstractRegister { @Override public void registerEndPoints(RestApiContext context) { context.registerEndpoint("automl_build", "POST /99/AutoMLBuilder", AutoMLBuilderHandler.class, "build", "Start an AutoML build process."); context.registerEndpoint("automl", "GET /99/AutoML/{automl_id}", AutoMLHandler.class, "fetch", "Fetch the specified AutoML object."); context.registerEndpoint("leaderboards", "GET /99/Leaderboards", LeaderboardsHandler.class, "list", "Return all the AutoML leaderboards."); context.registerEndpoint("leaderboard", "GET /99/Leaderboards/{project_name}", LeaderboardsHandler.class, "fetch", "Return the AutoML leaderboard for the given project."); } @Override public String getName() { return "AutoML"; } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/water/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/water/automl/api/AutoMLBuilderHandler.java
package water.automl.api; import ai.h2o.automl.AutoML; import ai.h2o.automl.AutoMLBuildSpec; import water.api.Handler; import water.api.schemas3.JobV3; import water.automl.api.schemas3.AutoMLBuildSpecV99; public class AutoMLBuilderHandler extends Handler { @SuppressWarnings("unused") // called through reflection by RequestServer public AutoMLBuildSpecV99 build(int version, AutoMLBuildSpecV99 schema) { AutoMLBuildSpec buildSpec = schema.createAndFillImpl(); AutoML aml = AutoML.startAutoML(buildSpec); // update schema with changes during validation schema.fillFromImpl(buildSpec); schema.job = new JobV3().fillFromImpl(aml.job()); return schema; } }
0
java-sources/ai/h2o/h2o-automl/3.46.0.7/water/automl
java-sources/ai/h2o/h2o-automl/3.46.0.7/water/automl/api/AutoMLHandler.java
package water.automl.api; import ai.h2o.automl.AutoML; import water.*; import water.api.Handler; import water.automl.api.schemas3.AutoMLV99; import water.exceptions.H2OKeyNotFoundArgumentException; import java.util.stream.Stream; public class AutoMLHandler extends Handler { @SuppressWarnings("unused") // called through reflection by RequestServer /** Return an AutoML object by ID. */ public AutoMLV99 fetch(int version, AutoMLV99 autoMLV99) { AutoML autoML = DKV.getGet(autoMLV99.automl_id.name); if (autoML == null) { AutoML[] amls = fetchAllForProject(autoMLV99.automl_id.name); if (amls.length > 0) { autoML = Stream.of(amls).max(AutoML.byStartTime).get(); } } return autoMLV99.fillFromImpl(autoML); } private static AutoML[] fetchAllForProject(final String project_name) { final Key[] automlKeys = KeySnapshot.globalSnapshot().filter(new KeySnapshot.KVFilter() { @Override public boolean filter(KeySnapshot.KeyInfo k) { return Value.isSubclassOf(k._type, AutoML.class) && k._key.toString().startsWith(project_name+AutoML.keySeparator); } }).keys(); AutoML[] amls = new AutoML[automlKeys.length]; for (int i = 0; i < automlKeys.length; i++) { AutoML aml = getFromDKV(automlKeys[i]); amls[i] = aml; } return amls; } private static AutoML getFromDKV(Key key) { Value v = DKV.get(key); if (v == null) throw new H2OKeyNotFoundArgumentException(key.toString()); return (AutoML) v.get(); } }