index
int64
repo_id
string
file_path
string
content
string
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/FrameBaseV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class FrameBaseV3 extends RequestSchemaV3 { /** * Frame ID */ @SerializedName("frame_id") public FrameKeyV3 frameId; /** * Total data size in bytes */ @SerializedName("byte_size") public long byteSize; /** * Is this Frame raw unparsed data? */ @SerializedName("is_text") public boolean isText; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public FrameBaseV3() { byteSize = 0L; isText = false; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/FrameChunkV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class FrameChunkV3 extends SchemaV3 { /** * An identifier unique in scope of a given frame */ @SerializedName("chunk_id") public int chunkId; /** * Number of rows represented byt the chunk */ @SerializedName("row_count") public int rowCount; /** * Index of H2O node where the chunk is located in */ @SerializedName("node_idx") public int nodeIdx; /** * Public constructor */ public FrameChunkV3() { chunkId = 0; rowCount = 0; nodeIdx = 0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/FrameChunksV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class FrameChunksV3 extends SchemaV3 { /** * ID of a given frame */ @SerializedName("frame_id") public FrameKeyV3 frameId; /** * Description of particular chunks */ public FrameChunkV3[] chunks; /** * Public constructor */ public FrameChunksV3() { } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/FrameKeyV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class FrameKeyV3 extends KeyV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Name (string representation) for this Key. public String name; // Name (string representation) for the type of Keyed this Key points to. public String type; // URL for the resource that this Key points to, if one exists. public String url; */ /** * Public constructor */ public FrameKeyV3() { name = ""; type = ""; url = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/FrameLoadV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class FrameLoadV3 extends RequestSchemaV3 { /** * Import frame under given key into DKV. */ @SerializedName("frame_id") public FrameKeyV3 frameId; /** * Source directory (hdfs, s3, local) containing serialized frame */ public String dir; /** * Override existing frame in case it exists or throw exception if set to false */ public boolean force; /** * Job indicating progress */ public JobV3 job; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public FrameLoadV3() { dir = ""; force = true; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/FrameSaveV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class FrameSaveV3 extends RequestSchemaV3 { /** * Name of Frame of interest */ @SerializedName("frame_id") public FrameKeyV3 frameId; /** * Destination directory (hdfs, s3, local) */ public String dir; /** * Overwrite destination file in case it exists or throw exception if set to false. */ public boolean force; /** * Job indicating progress */ public JobV3 job; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public FrameSaveV3() { dir = ""; force = true; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/FrameSynopsisV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class FrameSynopsisV3 extends FrameBaseV3 { /** * Number of rows in the Frame */ public long rows; /** * Number of columns in the Frame */ public long columns; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Frame ID public FrameKeyV3 frameId; // Total data size in bytes public long byteSize; // Is this Frame raw unparsed data? public boolean isText; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public FrameSynopsisV3() { rows = 0L; columns = 0L; byteSize = 0L; isText = false; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/FrameV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class FrameV3 extends FrameBaseV3 { /** * Row offset to display */ @SerializedName("row_offset") public long rowOffset; /** * Number of rows to display */ @SerializedName("row_count") public int rowCount; /** * Column offset to return */ @SerializedName("column_offset") public int columnOffset; /** * Number of columns to return */ @SerializedName("column_count") public int columnCount; /** * Number of full columns to return. The columns between full_column_count and column_count will be returned without * the data */ @SerializedName("full_column_count") public int fullColumnCount; /** * Total number of columns in the Frame */ @SerializedName("total_column_count") public int totalColumnCount; /** * checksum */ public long checksum; /** * Number of rows in the Frame */ public long rows; /** * Number of columns in the Frame */ @SerializedName("num_columns") public long numColumns; /** * Default percentiles, from 0 to 1 */ @SerializedName("default_percentiles") public double[] defaultPercentiles; /** * Columns in the Frame */ public ColV3[] columns; /** * Compatible models, if requested */ @SerializedName("compatible_models") public String[] compatibleModels; /** * Chunk summary */ @SerializedName("chunk_summary") public TwoDimTableV3 chunkSummary; /** * Distribution summary */ @SerializedName("distribution_summary") public TwoDimTableV3 distributionSummary; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Frame ID public FrameKeyV3 frameId; // Total data size in bytes public long byteSize; // Is this Frame raw unparsed data? public boolean isText; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public FrameV3() { rowOffset = 0L; rowCount = 0; columnOffset = 0; columnCount = 0; fullColumnCount = 0; totalColumnCount = 0; checksum = 0L; rows = 0L; numColumns = 0L; byteSize = 0L; isText = false; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/FramesListV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class FramesListV3 extends RequestSchemaV3 { /** * Name of Frame of interest */ @SerializedName("frame_id") public FrameKeyV3 frameId; /** * Frames */ public FrameBaseV3[] frames; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public FramesListV3() { _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/FramesV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class FramesV3 extends RequestSchemaV3 { /** * Name of Frame of interest */ @SerializedName("frame_id") public FrameKeyV3 frameId; /** * Name of column of interest */ public String column; /** * Row offset to return */ @SerializedName("row_offset") public long rowOffset; /** * Number of rows to return */ @SerializedName("row_count") public int rowCount; /** * Column offset to return */ @SerializedName("column_offset") public int columnOffset; /** * Number of full columns to return. The columns between full_column_count and column_count will be returned without * the data */ @SerializedName("full_column_count") public int fullColumnCount; /** * Number of columns to return */ @SerializedName("column_count") public int columnCount; /** * Find and return compatible models? */ @SerializedName("find_compatible_models") public boolean findCompatibleModels; /** * File output path */ public String path; /** * Overwrite existing file */ public boolean force; /** * Number of part files to use (1=single file,-1=automatic) */ @SerializedName("num_parts") public int numParts; /** * Use parallel export to a single file (doesn't apply when num_parts != 1, creates temporary files in the * destination directory) */ public boolean parallel; /** * Output file format. Defaults to 'csv'. */ public UtilExportFileFormat format; /** * Compression method (default none; gzip, bzip2, zstd and snappy available depending on runtime environment) */ public String compression; /** * Specifies if checksum should be written next to data files on export (if supported by export format). */ @SerializedName("write_checksum") public boolean writeChecksum; /** * Specifies if the timezone should be adjusted from local to UTC timezone (parquet only). */ @SerializedName("tz_adjust_from_local") public boolean tzAdjustFromLocal; /** * Field separator (default ',') */ public byte separator; /** * Use header (default true) */ public boolean header; /** * Quote column names in header line (default true) */ @SerializedName("quote_header") public boolean quoteHeader; /** * Job for export file */ public JobV3 job; /** * Frames */ public FrameV3[] frames; /** * Compatible models */ @SerializedName("compatible_models") public ModelSchemaV3[] compatibleModels; /** * Domains */ public String[][] domain; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public FramesV3() { column = ""; rowOffset = 0L; rowCount = -1; columnOffset = 0; fullColumnCount = -1; columnCount = -1; findCompatibleModels = false; path = ""; force = false; numParts = 1; parallel = false; compression = ""; writeChecksum = true; tzAdjustFromLocal = false; separator = 44; header = true; quoteHeader = true; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/FriedmanPopescusHV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class FriedmanPopescusHV3 extends RequestSchemaV3 { /** * Model id of interest */ @SerializedName("model_id") public ModelKeyV3 modelId; /** * Frame the model has been fitted to */ public FrameV3 frame; /** * Variables of interest */ public String[] variables; /** * Value of H statistic */ public double h; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public FriedmanPopescusHV3() { h = 0.0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GAMModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GAMModelOutputV3 extends ModelOutputSchemaV3 { /** * Table of Coefficients */ @SerializedName("coefficients_table") public TwoDimTableV3 coefficientsTable; /** * Table of Coefficients without centering */ @SerializedName("coefficients_table_no_centering") public TwoDimTableV3 coefficientsTableNoCentering; /** * GLM scoring history */ @SerializedName("glm_scoring_history") public TwoDimTableV3 glmScoringHistory; /** * GLM model summary */ @SerializedName("glm_model_summary") public TwoDimTableV3 glmModelSummary; /** * Table of Standardized Coefficients Magnitudes */ @SerializedName("standardized_coefficient_magnitudes") public TwoDimTableV3 standardizedCoefficientMagnitudes; /** * Variable Importances */ @SerializedName("variable_importances") public TwoDimTableV3 variableImportances; /** * key storing gam columns and predictor columns. For debugging purposes only */ @SerializedName("gam_transformed_center_key") public String gamTransformedCenterKey; /** * GLM Z values. For debugging purposes only */ @SerializedName("glm_zvalues") public double[] glmZvalues; /** * GLM p values. For debugging purposes only */ @SerializedName("glm_pvalues") public double[] glmPvalues; /** * GLM standard error values. For debugging purposes only */ @SerializedName("glm_std_err") public double[] glmStdErr; /** * knot locations for all gam columns. */ @SerializedName("knot_locations") public double[][] knotLocations; /** * Gam column names for knots stored in knot_locations */ @SerializedName("gam_knot_column_names") public String[] gamKnotColumnNames; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public GAMModelOutputV3() { gamTransformedCenterKey = ""; status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GAMModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GAMModelV3 extends ModelSchemaV3<GAMParametersV3, GAMModelOutputV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public GAMParametersV3 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public GAMModelOutputV3 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public GAMModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GAMParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GAMParametersV3 extends ModelParametersSchemaV3 { /** * Seed for pseudo random number generator (if applicable) */ public long seed; /** * Family. Use binomial for classification with logistic regression, others are for regression problems. */ public GLMFamily family; /** * Tweedie variance power */ @SerializedName("tweedie_variance_power") public double tweedieVariancePower; /** * Tweedie link power */ @SerializedName("tweedie_link_power") public double tweedieLinkPower; /** * Theta */ public double theta; /** * AUTO will set the solver based on given data and the other parameters. IRLSM is fast on on problems with small * number of predictors and for lambda-search with L1 penalty, L_BFGS scales better for datasets with many columns. */ public GLMSolver solver; /** * Distribution of regularization between the L1 (Lasso) and L2 (Ridge) penalties. A value of 1 for alpha represents * Lasso regression, a value of 0 produces Ridge regression, and anything in between specifies the amount of mixing * between the two. Default value of alpha is 0 when SOLVER = 'L-BFGS'; 0.5 otherwise. */ public double[] alpha; /** * Regularization strength */ public double[] lambda; /** * double array to initialize coefficients for GAM. */ public double[] startval; /** * Use lambda search starting at lambda max, given lambda is then interpreted as lambda min */ @SerializedName("lambda_search") public boolean lambdaSearch; /** * Stop early when there is no more relative improvement on train or validation (if provided) */ @SerializedName("early_stopping") public boolean earlyStopping; /** * Number of lambdas to be used in a search. Default indicates: If alpha is zero, with lambda search set to True, * the value of nlamdas is set to 30 (fewer lambdas are needed for ridge regression) otherwise it is set to 100. */ public int nlambdas; /** * Standardize numeric columns to have zero mean and unit variance */ public boolean standardize; /** * Handling of missing values. Either MeanImputation, Skip or PlugValues. */ @SerializedName("missing_values_handling") public GLMMissingValuesHandling missingValuesHandling; /** * Plug Values (a single row frame containing values that will be used to impute missing values of the * training/validation frame, use with conjunction missing_values_handling = PlugValues) */ @SerializedName("plug_values") public FrameKeyV3 plugValues; /** * Restrict coefficients (not intercept) to be non-negative */ @SerializedName("non_negative") public boolean nonNegative; /** * Maximum number of iterations */ @SerializedName("max_iterations") public int maxIterations; /** * Converge if beta changes less (using L-infinity norm) than beta esilon, ONLY applies to IRLSM solver */ @SerializedName("beta_epsilon") public double betaEpsilon; /** * Converge if objective value changes less than this. Default indicates: If lambda_search is set to True the value * of objective_epsilon is set to .0001. If the lambda_search is set to False and lambda is equal to zero, the value * of objective_epsilon is set to .000001, for any other value of lambda the default value of objective_epsilon is * set to .0001. */ @SerializedName("objective_epsilon") public double objectiveEpsilon; /** * Converge if objective changes less (using L-infinity norm) than this, ONLY applies to L-BFGS solver. Default * indicates: If lambda_search is set to False and lambda is equal to zero, the default value of gradient_epsilon is * equal to .000001, otherwise the default value is .0001. If lambda_search is set to True, the conditional values * above are 1E-8 and 1E-6 respectively. */ @SerializedName("gradient_epsilon") public double gradientEpsilon; /** * Likelihood divider in objective value computation, default is 1/nobs */ @SerializedName("obj_reg") public double objReg; /** * Link function. */ public GLMLink link; /** * Include constant term in the model */ public boolean intercept; /** * Prior probability for y==1. To be used only for logistic regression iff the data has been sampled and the mean of * response does not reflect reality. */ public double prior; /** * Only applicable to multiple alpha/lambda values when calling GLM from GAM. If false, build the next model for * next set of alpha/lambda values starting from the values provided by current model. If true will start GLM model * from scratch. */ @SerializedName("cold_start") public boolean coldStart; /** * Minimum lambda used in lambda search, specified as a ratio of lambda_max (the smallest lambda that drives all * coefficients to zero). Default indicates: if the number of observations is greater than the number of variables, * then lambda_min_ratio is set to 0.0001; if the number of observations is less than the number of variables, then * lambda_min_ratio is set to 0.01. */ @SerializedName("lambda_min_ratio") public double lambdaMinRatio; /** * Beta constraints */ @SerializedName("beta_constraints") public FrameKeyV3 betaConstraints; /** * Maximum number of active predictors during computation. Use as a stopping criterion to prevent expensive model * building with many predictors. Default indicates: If the IRLSM solver is used, the value of max_active_predictors * is set to 5000 otherwise it is set to 100000000. */ @SerializedName("max_active_predictors") public int maxActivePredictors; /** * A list of predictor column indices to interact. All pairwise combinations will be computed for the list. */ public String[] interactions; /** * A list of pairwise (first order) column interactions. */ @SerializedName("interaction_pairs") public StringPairV3[] interactionPairs; /** * Balance training data class counts via over/under-sampling (for imbalanced data). */ @SerializedName("balance_classes") public boolean balanceClasses; /** * Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be * automatically computed to obtain class balance during training. Requires balance_classes. */ @SerializedName("class_sampling_factors") public float[] classSamplingFactors; /** * Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires * balance_classes. */ @SerializedName("max_after_balance_size") public float maxAfterBalanceSize; /** * [Deprecated] Maximum size (# classes) for confusion matrices to be printed in the Logs */ @SerializedName("max_confusion_matrix_size") public int maxConfusionMatrixSize; /** * Request p-values computation, p-values work only with IRLSM solver and no regularization */ @SerializedName("compute_p_values") public boolean computePValues; /** * In case of linearly dependent columns, remove some of the dependent columns */ @SerializedName("remove_collinear_columns") public boolean removeCollinearColumns; /** * If set to true, will return knot locations as double[][] array for gam column names found knots_for_gam. Default * to false. */ @SerializedName("store_knot_locations") public boolean storeKnotLocations; /** * Number of knots for gam predictors. If specified, must specify one for each gam predictor. For monotone * I-splines, mininum = 2, for cs spline, minimum = 3. For thin plate, minimum is size of polynomial basis + 2. */ @SerializedName("num_knots") public int[] numKnots; /** * Order of I-splines or NBSplineTypeI M-splines used for gam predictors. If specified, must be the same size as * gam_columns. For I-splines, the spline_orders will be the same as the polynomials used to generate the splines. * For M-splines, the polynomials used to generate the splines will be spline_order-1. Values for bs=0 or 1 will be * ignored. */ @SerializedName("spline_orders") public int[] splineOrders; /** * Valid for I-spline (bs=2) only. True if the I-splines are monotonically increasing (and monotonically non- * decreasing) and False if the I-splines are monotonically decreasing (and monotonically non-increasing). If * specified, must be the same size as gam_columns. Values for other spline types will be ignored. Default to * true. */ @SerializedName("splines_non_negative") public boolean[] splinesNonNegative; /** * Arrays of predictor column names for gam for smoothers using single or multiple predictors like * {{'c1'},{'c2','c3'},{'c4'},...} */ @SerializedName("gam_columns") public String[][] gamColumns; /** * Smoothing parameter for gam predictors. If specified, must be of the same length as gam_columns */ public double[] scale; /** * Basis function type for each gam predictors, 0 for cr, 1 for thin plate regression with knots, 2 for monotone * I-splines, 3 for NBSplineTypeI M-splines (refer to doc here: https://github.com/h2oai/h2o-3/issues/6926). If * specified, must be the same size as gam_columns */ public int[] bs; /** * Save keys of model matrix */ @SerializedName("keep_gam_cols") public boolean keepGamCols; /** * standardize tp (thin plate) predictor columns */ @SerializedName("standardize_tp_gam_cols") public boolean standardizeTpGamCols; /** * Scale penalty matrix for tp (thin plate) smoothers as in R */ @SerializedName("scale_tp_penalty_mat") public boolean scaleTpPenaltyMat; /** * Array storing frame keys of knots. One for each gam column set specified in gam_columns */ @SerializedName("knot_ids") public String[] knotIds; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public GAMParametersV3() { seed = -1L; family = GLMFamily.AUTO; tweedieVariancePower = 0.0; tweedieLinkPower = 0.0; theta = 0.0; solver = GLMSolver.AUTO; lambdaSearch = false; earlyStopping = true; nlambdas = -1; standardize = false; missingValuesHandling = GLMMissingValuesHandling.MeanImputation; nonNegative = false; maxIterations = -1; betaEpsilon = 0.0001; objectiveEpsilon = -1.0; gradientEpsilon = -1.0; objReg = -1.0; link = GLMLink.family_default; intercept = true; prior = -1.0; coldStart = false; lambdaMinRatio = -1.0; maxActivePredictors = -1; balanceClasses = false; maxAfterBalanceSize = 5.0f; maxConfusionMatrixSize = 20; computePValues = false; removeCollinearColumns = false; storeKnotLocations = false; keepGamCols = false; standardizeTpGamCols = false; scaleTpPenaltyMat = false; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GAMV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GAMV3 extends ModelBuilderSchema<GAMParametersV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public GAMParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public GAMV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GBMModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GBMModelOutputV3 extends SharedTreeModelOutputV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Variable Importances public TwoDimTableV3 variableImportances; // The Intercept term, the initial model function value to which trees make adjustments public double initF; // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public GBMModelOutputV3() { initF = 0.0; status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GBMModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GBMModelV3 extends SharedTreeModelV3<GBMParametersV3, GBMModelOutputV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public GBMParametersV3 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public GBMModelOutputV3 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public GBMModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GBMParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GBMParametersV3 extends SharedTreeParametersV3 { /** * Learning rate (from 0.0 to 1.0) */ @SerializedName("learn_rate") public double learnRate; /** * Scale the learning rate by this factor after each tree (e.g., 0.99 or 0.999) */ @SerializedName("learn_rate_annealing") public double learnRateAnnealing; /** * Row sample rate per tree (from 0.0 to 1.0) */ @SerializedName("sample_rate") public double sampleRate; /** * Column sample rate (from 0.0 to 1.0) */ @SerializedName("col_sample_rate") public double colSampleRate; /** * A mapping representing monotonic constraints. Use +1 to enforce an increasing constraint and -1 to specify a * decreasing constraint. */ @SerializedName("monotone_constraints") public KeyValueV3[] monotoneConstraints; /** * Maximum absolute value of a leaf node prediction */ @SerializedName("max_abs_leafnode_pred") public double maxAbsLeafnodePred; /** * Bandwidth (sigma) of Gaussian multiplicative noise ~N(1,sigma) for tree node predictions */ @SerializedName("pred_noise_bandwidth") public double predNoiseBandwidth; /** * A set of allowed column interactions. */ @SerializedName("interaction_constraints") public String[][] interactionConstraints; /** * Allow automatic rebalancing of training and validation datasets */ @SerializedName("auto_rebalance") public boolean autoRebalance; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Balance training data class counts via over/under-sampling (for imbalanced data). public boolean balanceClasses; // Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be // automatically computed to obtain class balance during training. Requires balance_classes. public float[] classSamplingFactors; // Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires // balance_classes. public float maxAfterBalanceSize; // [Deprecated] Maximum size (# classes) for confusion matrices to be printed in the Logs public int maxConfusionMatrixSize; // Number of trees. public int ntrees; // Maximum tree depth (0 for unlimited). public int maxDepth; // Fewest allowed (weighted) observations in a leaf. public double minRows; // For numerical columns (real/int), build a histogram of (at least) this many bins, then split at the best point public int nbins; // For numerical columns (real/int), build a histogram of (at most) this many bins at the root level, then decrease // by factor of two per level public int nbinsTopLevel; // For categorical columns (factors), build a histogram of this many bins, then split at the best point. Higher // values can lead to more overfitting. public int nbinsCats; // r2_stopping is no longer supported and will be ignored if set - please use stopping_rounds, stopping_metric and // stopping_tolerance instead. Previous version of H2O would stop making trees when the R^2 metric equals or exceeds // this public double r2Stopping; // Seed for pseudo random number generator (if applicable) public long seed; // Run on one node only; no network overhead but fewer cpus used. Suitable for small datasets. public boolean buildTreeOneNode; // A list of row sample rates per class (relative fraction for each class, from 0.0 to 1.0), for each tree public double[] sampleRatePerClass; // Column sample rate per tree (from 0.0 to 1.0) public double colSampleRatePerTree; // Relative change of the column sampling rate for every level (must be > 0.0 and <= 2.0) public double colSampleRateChangePerLevel; // Score the model after every so many trees. Disabled if set to 0. public int scoreTreeInterval; // Minimum relative improvement in squared error reduction for a split to happen public double minSplitImprovement; // What type of histogram to use for finding optimal split points public TreeSharedTreeModelSharedTreeParametersHistogramType histogramType; // Use Platt Scaling (default) or Isotonic Regression to calculate calibrated class probabilities. Calibration can // provide more accurate estimates of class probabilities. public boolean calibrateModel; // Data for model calibration public FrameKeyV3 calibrationFrame; // Calibration method to use public TreeCalibrationHelperCalibrationMethod calibrationMethod; // Check if response column is constant. If enabled, then an exception is thrown if the response column is a // constant value.If disabled, then model will train regardless of the response column being a constant value or // not. public boolean checkConstantResponse; // Create checkpoints into defined directory while training process is still running. In case of cluster shutdown, // this checkpoint can be used to restart training. public String inTrainingCheckpointsDir; // Checkpoint the model after every so many trees. Parameter is used only when in_training_checkpoints_dir is // defined public int inTrainingCheckpointsTreeInterval; // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public GBMParametersV3() { learnRate = 0.1; learnRateAnnealing = 1.0; sampleRate = 1.0; colSampleRate = 1.0; maxAbsLeafnodePred = 1.7976931348623157e+308; predNoiseBandwidth = 0.0; autoRebalance = true; balanceClasses = false; maxAfterBalanceSize = 5.0f; maxConfusionMatrixSize = 20; ntrees = 50; maxDepth = 5; minRows = 10.0; nbins = 20; nbinsTopLevel = 1024; nbinsCats = 1024; r2Stopping = 1.7976931348623157e+308; seed = -1L; buildTreeOneNode = false; colSampleRatePerTree = 1.0; colSampleRateChangePerLevel = 1.0; scoreTreeInterval = 0; minSplitImprovement = 1e-05; histogramType = TreeSharedTreeModelSharedTreeParametersHistogramType.AUTO; calibrateModel = false; calibrationMethod = TreeCalibrationHelperCalibrationMethod.AUTO; checkConstantResponse = true; inTrainingCheckpointsDir = ""; inTrainingCheckpointsTreeInterval = 1; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GBMV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GBMV3 extends SharedTreeV3<GBMParametersV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public GBMParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public GBMV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GLMDispersionMethod.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum GLMDispersionMethod { deviance, ml, pearson, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GLMFamily.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum GLMFamily { AUTO, binomial, fractionalbinomial, gamma, gaussian, multinomial, negativebinomial, ordinal, poisson, quasibinomial, tweedie, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GLMInfluence.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum GLMInfluence { dfbetas, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GLMLink.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum GLMLink { family_default, identity, inverse, log, logit, ologit, tweedie, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GLMMissingValuesHandling.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum GLMMissingValuesHandling { MeanImputation, PlugValues, Skip, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GLMModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GLMModelOutputV3 extends ModelOutputSchemaV3 { /** * Table of Coefficients */ @SerializedName("coefficients_table") public TwoDimTableV3 coefficientsTable; /** * Table of Coefficients with coefficients denoted with class names for GLM multinonimals only. */ @SerializedName("coefficients_table_multinomials_with_class_names") public TwoDimTableV3 coefficientsTableMultinomialsWithClassNames; /** * Standardized Coefficient Magnitudes */ @SerializedName("standardized_coefficient_magnitudes") public TwoDimTableV3 standardizedCoefficientMagnitudes; /** * Variable Importances */ @SerializedName("variable_importances") public TwoDimTableV3 variableImportances; /** * Lambda minimizing the objective value, only applicable with lambda search or when arrays of alpha and lambdas are * provided */ @SerializedName("lambda_best") public double lambdaBest; /** * Alpha minimizing the objective value, only applicable when arrays of alphas are given */ @SerializedName("alpha_best") public double alphaBest; /** * submodel index minimizing the objective value, only applicable for arrays of alphas/lambda */ @SerializedName("best_submodel_index") public int bestSubmodelIndex; /** * Lambda best + 1 standard error. Only applicable with lambda search and cross-validation */ @SerializedName("lambda_1se") public double lambda1se; /** * Minimum lambda value calculated that may be used for lambda search. Early-stop may happen and the minimum lambda * value will not be used in this case. */ @SerializedName("lambda_min") public double lambdaMin; /** * Starting lambda value used when lambda search is enabled. */ @SerializedName("lambda_max") public double lambdaMax; /** * Dispersion parameter, only applicable to Tweedie family (input/output) and fractional Binomial (output only) */ public double dispersion; /** * Predictor names where variable inflation factors are calculated. */ @SerializedName("vif_predictor_names") public String[] vifPredictorNames; /** * GLM model coefficients names. */ @SerializedName("coefficient_names") public String[] coefficientNames; /** * predictor variable inflation factors. */ @SerializedName("variable_inflation_factors") public double[] variableInflationFactors; /** * Beta (if exists) and linear constraints states */ @SerializedName("linear_constraint_states") public String[] linearConstraintStates; /** * Table of beta (if exists) and linear constraints values and status */ @SerializedName("linear_constraints_table") public TwoDimTableV3 linearConstraintsTable; /** * Contains the original dataset and the dfbetas calculated for each predictor. */ @SerializedName("regression_influence_diagnostics") public FrameKeyV3 regressionInfluenceDiagnostics; /** * True if all constraints conditions are satisfied. Otherwise, false. */ @SerializedName("all_constraints_satisfied") public boolean allConstraintsSatisfied; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public GLMModelOutputV3() { lambdaBest = -1.0; alphaBest = -1.0; bestSubmodelIndex = 0; lambda1se = -1.0; lambdaMin = -1.0; lambdaMax = -1.0; dispersion = 0.0; allConstraintsSatisfied = false; modelCategory = ModelCategory.Regression; status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.5; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GLMModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GLMModelV3 extends ModelSchemaV3<GLMParametersV3, GLMModelOutputV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public GLMParametersV3 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public GLMModelOutputV3 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public GLMModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GLMParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GLMParametersV3 extends ModelParametersSchemaV3 { /** * Seed for pseudo random number generator (if applicable). */ public long seed; /** * Family. Use binomial for classification with logistic regression, others are for regression problems. */ public GLMFamily family; /** * Tweedie variance power */ @SerializedName("tweedie_variance_power") public double tweedieVariancePower; /** * Dispersion learning rate is only valid for tweedie family dispersion parameter estimation using ml. It must be > * 0. This controls how much the dispersion parameter estimate is to be changed when the calculated loglikelihood * actually decreases with the new dispersion. In this case, instead of setting new dispersion = dispersion + * change, we set new dispersion = dispersion + dispersion_learning_rate * change. Defaults to 0.5. */ @SerializedName("dispersion_learning_rate") public double dispersionLearningRate; /** * Tweedie link power. */ @SerializedName("tweedie_link_power") public double tweedieLinkPower; /** * Theta */ public double theta; /** * AUTO will set the solver based on given data and the other parameters. IRLSM is fast on on problems with small * number of predictors and for lambda-search with L1 penalty, L_BFGS scales better for datasets with many columns. */ public GLMSolver solver; /** * Distribution of regularization between the L1 (Lasso) and L2 (Ridge) penalties. A value of 1 for alpha represents * Lasso regression, a value of 0 produces Ridge regression, and anything in between specifies the amount of mixing * between the two. Default value of alpha is 0 when SOLVER = 'L-BFGS'; 0.5 otherwise. */ public double[] alpha; /** * Regularization strength */ public double[] lambda; /** * Use lambda search starting at lambda max, given lambda is then interpreted as lambda min. */ @SerializedName("lambda_search") public boolean lambdaSearch; /** * Stop early when there is no more relative improvement on train or validation (if provided). */ @SerializedName("early_stopping") public boolean earlyStopping; /** * Number of lambdas to be used in a search. Default indicates: If alpha is zero, with lambda search set to True, * the value of nlamdas is set to 30 (fewer lambdas are needed for ridge regression) otherwise it is set to 100. */ public int nlambdas; /** * Perform scoring for every score_iteration_interval iterations. */ @SerializedName("score_iteration_interval") public int scoreIterationInterval; /** * Standardize numeric columns to have zero mean and unit variance. */ public boolean standardize; /** * Only applicable to multiple alpha/lambda values. If false, build the next model for next set of alpha/lambda * values starting from the values provided by current model. If true will start GLM model from scratch. */ @SerializedName("cold_start") public boolean coldStart; /** * Handling of missing values. Either MeanImputation, Skip or PlugValues. */ @SerializedName("missing_values_handling") public GLMMissingValuesHandling missingValuesHandling; /** * If set to dfbetas will calculate the difference in beta when a datarow is included and excluded in the dataset. */ public GLMInfluence influence; /** * Plug Values (a single row frame containing values that will be used to impute missing values of the * training/validation frame, use with conjunction missing_values_handling = PlugValues). */ @SerializedName("plug_values") public FrameKeyV3 plugValues; /** * Restrict coefficients (not intercept) to be non-negative. */ @SerializedName("non_negative") public boolean nonNegative; /** * Maximum number of iterations. Value should >=1. A value of 0 is only set when only the model coefficient names * and model coefficient dimensions are needed. */ @SerializedName("max_iterations") public int maxIterations; /** * Converge if beta changes less (using L-infinity norm) than beta esilon. ONLY applies to IRLSM solver. */ @SerializedName("beta_epsilon") public double betaEpsilon; /** * Converge if objective value changes less than this. Default (of -1.0) indicates: If lambda_search is set to True * the value of objective_epsilon is set to .0001. If the lambda_search is set to False and lambda is equal to zero, * the value of objective_epsilon is set to .000001, for any other value of lambda the default value of * objective_epsilon is set to .0001. */ @SerializedName("objective_epsilon") public double objectiveEpsilon; /** * Converge if objective changes less (using L-infinity norm) than this, ONLY applies to L-BFGS solver. Default (of * -1.0) indicates: If lambda_search is set to False and lambda is equal to zero, the default value of * gradient_epsilon is equal to .000001, otherwise the default value is .0001. If lambda_search is set to True, the * conditional values above are 1E-8 and 1E-6 respectively. */ @SerializedName("gradient_epsilon") public double gradientEpsilon; /** * Likelihood divider in objective value computation, default (of -1.0) will set it to 1/nobs. */ @SerializedName("obj_reg") public double objReg; /** * Link function. */ public GLMLink link; /** * Method used to estimate the dispersion parameter for Tweedie, Gamma and Negative Binomial only. */ @SerializedName("dispersion_parameter_method") public GLMDispersionMethod dispersionParameterMethod; /** * double array to initialize coefficients for GLM. If standardize is true, the standardized coefficients should be * used. Otherwise, use the regular coefficients. */ public double[] startval; /** * if true, will return likelihood function value. */ @SerializedName("calc_like") public boolean calcLike; /** * if true, will generate variable inflation factors for numerical predictors. Default to false. */ @SerializedName("generate_variable_inflation_factors") public boolean generateVariableInflationFactors; /** * Include constant term in the model */ public boolean intercept; /** * If set, will build a model with only the intercept. Default to false. */ @SerializedName("build_null_model") public boolean buildNullModel; /** * Only used for Tweedie, Gamma and Negative Binomial GLM. If set, will use the dispsersion parameter in * init_dispersion_parameter as the standard error and use it to calculate the p-values. Default to false. */ @SerializedName("fix_dispersion_parameter") public boolean fixDispersionParameter; /** * Only used for Tweedie, Gamma and Negative Binomial GLM. Store the initial value of dispersion parameter. If * fix_dispersion_parameter is set, this value will be used in the calculation of p-values. */ @SerializedName("init_dispersion_parameter") public double initDispersionParameter; /** * Prior probability for y==1. To be used only for logistic regression iff the data has been sampled and the mean of * response does not reflect reality. */ public double prior; /** * Minimum lambda used in lambda search, specified as a ratio of lambda_max (the smallest lambda that drives all * coefficients to zero). Default indicates: if the number of observations is greater than the number of variables, * then lambda_min_ratio is set to 0.0001; if the number of observations is less than the number of variables, then * lambda_min_ratio is set to 0.01. */ @SerializedName("lambda_min_ratio") public double lambdaMinRatio; /** * Beta constraints */ @SerializedName("beta_constraints") public FrameKeyV3 betaConstraints; /** * Linear constraints: used to specify linear constraints involving more than one coefficients in standard form. It * is only supported for solver IRLSM. It contains four columns: names (strings for coefficient names or constant), * values, types ( strings of 'Equal' or 'LessThanEqual'), constraint_numbers (0 for first linear constraint, 1 for * second linear constraint, ...). */ @SerializedName("linear_constraints") public FrameKeyV3 linearConstraints; /** * Maximum number of active predictors during computation. Use as a stopping criterion to prevent expensive model * building with many predictors. Default indicates: If the IRLSM solver is used, the value of max_active_predictors * is set to 5000 otherwise it is set to 100000000. */ @SerializedName("max_active_predictors") public int maxActivePredictors; /** * A list of predictor column indices to interact. All pairwise combinations will be computed for the list. */ public String[] interactions; /** * A list of pairwise (first order) column interactions. */ @SerializedName("interaction_pairs") public StringPairV3[] interactionPairs; /** * Balance training data class counts via over/under-sampling (for imbalanced data). */ @SerializedName("balance_classes") public boolean balanceClasses; /** * Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be * automatically computed to obtain class balance during training. Requires balance_classes. */ @SerializedName("class_sampling_factors") public float[] classSamplingFactors; /** * Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires * balance_classes. */ @SerializedName("max_after_balance_size") public float maxAfterBalanceSize; /** * [Deprecated] Maximum size (# classes) for confusion matrices to be printed in the Logs. */ @SerializedName("max_confusion_matrix_size") public int maxConfusionMatrixSize; /** * Request p-values computation, p-values work only with IRLSM solver. */ @SerializedName("compute_p_values") public boolean computePValues; /** * If true, will fix tweedie variance power value to the value set in tweedie_variance_power. */ @SerializedName("fix_tweedie_variance_power") public boolean fixTweedieVariancePower; /** * In case of linearly dependent columns, remove the dependent columns. */ @SerializedName("remove_collinear_columns") public boolean removeCollinearColumns; /** * If changes in dispersion parameter estimation or loglikelihood value is smaller than dispersion_epsilon, will * break out of the dispersion parameter estimation loop using maximum likelihood. */ @SerializedName("dispersion_epsilon") public double dispersionEpsilon; /** * In estimating tweedie dispersion parameter using maximum likelihood, this is used to choose the lower and upper * indices in the approximating of the infinite series summation. */ @SerializedName("tweedie_epsilon") public double tweedieEpsilon; /** * Control the maximum number of iterations in the dispersion parameter estimation loop using maximum likelihood. */ @SerializedName("max_iterations_dispersion") public int maxIterationsDispersion; /** * If set to true, will generate scoring history for GLM. This may significantly slow down the algo. */ @SerializedName("generate_scoring_history") public boolean generateScoringHistory; /** * If true, will initialize coefficients with values derived from GLM runs without linear constraints. Only * available for linear constraints. */ @SerializedName("init_optimal_glm") public boolean initOptimalGlm; /** * If true, will keep the beta constraints and linear constraints separate. After new coefficients are found, first * beta constraints will be applied followed by the application of linear constraints. Note that the beta * constraints in this case will not be part of the objective function. If false, will combine the beta and linear * constraints. */ @SerializedName("separate_linear_beta") public boolean separateLinearBeta; /** * For constrained GLM only. It affects the setting of eta_k+1=eta_0/power(ck+1, alpha). */ @SerializedName("constraint_eta0") public double constraintEta0; /** * For constrained GLM only. It affects the setting of c_k+1=tau*c_k. */ @SerializedName("constraint_tau") public double constraintTau; /** * For constrained GLM only. It affects the setting of eta_k = eta_0/pow(c_0, alpha). */ @SerializedName("constraint_alpha") public double constraintAlpha; /** * For constrained GLM only. It affects the setting of eta_k+1 = eta_k/pow(c_k, beta). */ @SerializedName("constraint_beta") public double constraintBeta; /** * For constrained GLM only. It affects the initial setting of epsilon_k = 1/c_0. */ @SerializedName("constraint_c0") public double constraintC0; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public GLMParametersV3() { seed = -1L; family = GLMFamily.AUTO; tweedieVariancePower = 0.0; dispersionLearningRate = 0.5; tweedieLinkPower = 1.0; theta = 1e-10; solver = GLMSolver.AUTO; lambdaSearch = false; earlyStopping = true; nlambdas = -1; scoreIterationInterval = -1; standardize = true; coldStart = false; missingValuesHandling = GLMMissingValuesHandling.MeanImputation; nonNegative = false; maxIterations = -1; betaEpsilon = 0.0001; objectiveEpsilon = -1.0; gradientEpsilon = -1.0; objReg = -1.0; link = GLMLink.family_default; dispersionParameterMethod = GLMDispersionMethod.pearson; calcLike = false; generateVariableInflationFactors = false; intercept = true; buildNullModel = false; fixDispersionParameter = false; initDispersionParameter = 1.0; prior = -1.0; lambdaMinRatio = -1.0; maxActivePredictors = -1; balanceClasses = false; maxAfterBalanceSize = 5.0f; maxConfusionMatrixSize = 20; computePValues = false; fixTweedieVariancePower = true; removeCollinearColumns = false; dispersionEpsilon = 0.0001; tweedieEpsilon = 8e-17; maxIterationsDispersion = 3000; generateScoringHistory = false; initOptimalGlm = false; separateLinearBeta = false; constraintEta0 = 0.1258925; constraintTau = 10.0; constraintAlpha = 0.1; constraintBeta = 0.9; constraintC0 = 10.0; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GLMRegularizationPathV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GLMRegularizationPathV3 extends SchemaV3 { /** * source model */ public ModelKeyV3 model; /** * Computed lambda values */ public double[] lambdas; /** * alpha values used in building submodels */ public double[] alphas; /** * explained deviance on the training set */ @SerializedName("explained_deviance_train") public double[] explainedDevianceTrain; /** * explained deviance on the validation set */ @SerializedName("explained_deviance_valid") public double[] explainedDevianceValid; /** * coefficients for all lambdas */ public double[][] coefficients; /** * standardized coefficients for all lambdas */ @SerializedName("coefficients_std") public double[][] coefficientsStd; /** * coefficient names */ @SerializedName("coefficient_names") public String[] coefficientNames; /** * z-values */ @SerializedName("z_values") public double[][] zValues; /** * p-values */ @SerializedName("p_values") public double[][] pValues; /** * standard error */ @SerializedName("std_errs") public double[][] stdErrs; /** * Public constructor */ public GLMRegularizationPathV3() { } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GLMSolver.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum GLMSolver { AUTO, COORDINATE_DESCENT, COORDINATE_DESCENT_NAIVE, GRADIENT_DESCENT_LH, GRADIENT_DESCENT_SQERR, IRLSM, L_BFGS, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GLMV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GLMV3 extends ModelBuilderSchema<GLMParametersV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public GLMParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public GLMV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GLRMModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GLRMModelOutputV3 extends ModelOutputSchemaV3 { /** * Number of iterations executed */ public int iterations; /** * Number of updates executed */ public int updates; /** * Current value of the objective function */ public double objective; /** * Average change in objective value on final iteration */ @SerializedName("avg_change_obj") public double avgChangeObj; /** * Final step size */ @SerializedName("step_size") public double stepSize; /** * Mapping from lower dimensional k-space to training features (Y) */ public TwoDimTableV3 archetypes; /** * Singular values of XY matrix */ @SerializedName("singular_vals") public double[] singularVals; /** * Eigenvectors of XY matrix */ public TwoDimTableV3 eigenvectors; /** * Frame key name for X matrix */ @SerializedName("representation_name") public String representationName; /** * Standard deviation and importance of each principal component */ public TwoDimTableV3 importance; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public GLRMModelOutputV3() { iterations = 0; updates = 0; objective = 0.0; avgChangeObj = 0.0; stepSize = 0.0; representationName = ""; status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GLRMModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GLRMModelV3 extends ModelSchemaV3<GLRMParametersV3, GLRMModelOutputV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public GLRMParametersV3 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public GLRMModelOutputV3 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public GLRMModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GLRMParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GLRMParametersV3 extends ModelParametersSchemaV3 { /** * Transformation of training data */ public DataInfoTransformType transform; /** * Rank of matrix approximation */ public int k; /** * Numeric loss function */ public GenmodelalgosglrmGlrmLoss loss; /** * Categorical loss function */ @SerializedName("multi_loss") public GenmodelalgosglrmGlrmLoss multiLoss; /** * Loss function by column (override) */ @SerializedName("loss_by_col") public GenmodelalgosglrmGlrmLoss[] lossByCol; /** * Loss function by column index (override) */ @SerializedName("loss_by_col_idx") public int[] lossByColIdx; /** * Length of period (only used with periodic loss function) */ public int period; /** * Regularization function for X matrix */ @SerializedName("regularization_x") public GenmodelalgosglrmGlrmRegularizer regularizationX; /** * Regularization function for Y matrix */ @SerializedName("regularization_y") public GenmodelalgosglrmGlrmRegularizer regularizationY; /** * Regularization weight on X matrix */ @SerializedName("gamma_x") public double gammaX; /** * Regularization weight on Y matrix */ @SerializedName("gamma_y") public double gammaY; /** * Maximum number of iterations */ @SerializedName("max_iterations") public int maxIterations; /** * Maximum number of updates, defaults to 2*max_iterations */ @SerializedName("max_updates") public int maxUpdates; /** * Initial step size */ @SerializedName("init_step_size") public double initStepSize; /** * Minimum step size */ @SerializedName("min_step_size") public double minStepSize; /** * RNG seed for initialization */ public long seed; /** * Initialization mode */ public GenmodelalgosglrmGlrmInitialization init; /** * Method for computing SVD during initialization (Caution: Randomized is currently experimental and unstable) */ @SerializedName("svd_method") public SVDMethod svdMethod; /** * User-specified initial Y */ @SerializedName("user_y") public FrameKeyV3 userY; /** * User-specified initial X */ @SerializedName("user_x") public FrameKeyV3 userX; /** * [Deprecated] Use representation_name instead. Frame key to save resulting X. */ @SerializedName("loading_name") public String loadingName; /** * Frame key to save resulting X */ @SerializedName("representation_name") public String representationName; /** * Expand categorical columns in user-specified initial Y */ @SerializedName("expand_user_y") public boolean expandUserY; /** * Reconstruct original training data by reversing transform */ @SerializedName("impute_original") public boolean imputeOriginal; /** * Recover singular values and eigenvectors of XY */ @SerializedName("recover_svd") public boolean recoverSvd; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public GLRMParametersV3() { transform = DataInfoTransformType.NONE; k = 1; loss = GenmodelalgosglrmGlrmLoss.Quadratic; multiLoss = GenmodelalgosglrmGlrmLoss.Categorical; period = 1; regularizationX = GenmodelalgosglrmGlrmRegularizer.None; regularizationY = GenmodelalgosglrmGlrmRegularizer.None; gammaX = 0.0; gammaY = 0.0; maxIterations = 1000; maxUpdates = 2000; initStepSize = 1.0; minStepSize = 0.0001; seed = -1L; init = GenmodelalgosglrmGlrmInitialization.PlusPlus; svdMethod = SVDMethod.Randomized; loadingName = ""; representationName = ""; expandUserY = true; imputeOriginal = false; recoverSvd = false; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GLRMV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GLRMV3 extends ModelBuilderSchema<GLRMParametersV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public GLRMParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public GLRMV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GarbageCollectV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GarbageCollectV3 extends SchemaV3 { /** * Public constructor */ public GarbageCollectV3() { } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GenericModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GenericModelOutputV3 extends ModelOutputSchemaV3 { /** * Variable Importances */ @SerializedName("variable_importances") public TwoDimTableV3 variableImportances; /** * Short identifier of the original algorithm name */ @SerializedName("original_model_identifier") public String originalModelIdentifier; /** * Full, potentially long name of the original agorithm */ @SerializedName("original_model_full_name") public String originalModelFullName; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public GenericModelOutputV3() { originalModelIdentifier = ""; originalModelFullName = ""; status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GenericModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GenericModelV3 extends ModelSchemaV3<GenericParametersV3, GenericModelOutputV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public GenericParametersV3 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public GenericModelOutputV3 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public GenericModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GenericParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GenericParametersV3 extends ModelParametersSchemaV3 { /** * Path to file with self-contained model archive. */ public String path; /** * Key to the self-contained model archive already uploaded to H2O. */ @SerializedName("model_key") public FrameKeyV3 modelKey; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public GenericParametersV3() { path = ""; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GenericV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GenericV3 extends ModelBuilderSchema<GenericParametersV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public GenericParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public GenericV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GenmodelalgosglrmGlrmInitialization.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum GenmodelalgosglrmGlrmInitialization { PlusPlus, Random, SVD, User, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GenmodelalgosglrmGlrmLoss.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum GenmodelalgosglrmGlrmLoss { Absolute, Categorical, Hinge, Huber, Logistic, Ordinal, Periodic, Poisson, Quadratic, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GenmodelalgosglrmGlrmRegularizer.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum GenmodelalgosglrmGlrmRegularizer { L1, L2, NonNegative, None, OneSparse, Quadratic, Simplex, UnitOneSparse, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GenmodelalgospsvmKernelType.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum GenmodelalgospsvmKernelType { gaussian, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GenmodelutilsDistributionFamily.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum GenmodelutilsDistributionFamily { AUTO, bernoulli, custom, gamma, gaussian, huber, laplace, multinomial, ordinal, poisson, quantile, quasibinomial, tweedie, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GramV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GramV3 { /** * source data */ @SerializedName("X") public FrameKeyV3 x; /** * weight vector */ @SerializedName("W") public ColSpecifierV3 w; /** * use all factor levels when doing 1-hot encoding */ @SerializedName("use_all_factor_levels") public boolean useAllFactorLevels; /** * standardize data */ public boolean standardize; /** * skip missing values */ @SerializedName("skip_missing") public boolean skipMissing; /** * Destination key for the resulting matrix. */ @SerializedName("destination_frame") public FrameKeyV3 destinationFrame; /** * Public constructor */ public GramV3() { useAllFactorLevels = false; standardize = false; skipMissing = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GrepModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GrepModelOutputV3 extends ModelOutputSchemaV3 { /** * Matching strings */ public String[] matches; /** * Byte offsets of matches */ public long[] offsets; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public GrepModelOutputV3() { status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GrepModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GrepModelV3 extends ModelSchemaV3<GrepParametersV3, GrepModelOutputV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public GrepParametersV3 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public GrepModelOutputV3 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public GrepModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GrepParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GrepParametersV3 extends ModelParametersSchemaV3 { /** * regex */ public String regex; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public GrepParametersV3() { regex = ""; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GrepV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GrepV3 extends ModelBuilderSchema<GrepParametersV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public GrepParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public GrepV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GridExportV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GridExportV3 extends SchemaV3 { /** * ID of the Grid to load from the directory */ @SerializedName("grid_id") public String gridId; /** * Path to the directory with saved Grid search */ @SerializedName("grid_directory") public String gridDirectory; /** * True if objects referenced by params should also be saved. */ @SerializedName("save_params_references") public boolean saveParamsReferences; /** * Flag indicating whether the exported model artifacts should also include CV Holdout Frame predictions */ @SerializedName("export_cross_validation_predictions") public boolean exportCrossValidationPredictions; /** * Public constructor */ public GridExportV3() { gridId = ""; gridDirectory = ""; saveParamsReferences = false; exportCrossValidationPredictions = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GridHyperSpaceSearchCriteriaStrategy.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum GridHyperSpaceSearchCriteriaStrategy { Cartesian, RandomDiscrete, Sequential, Unknown, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GridImportV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GridImportV3 extends SchemaV3 { /** * Full path to the file containing saved Grid */ @SerializedName("grid_path") public String gridPath; /** * If true will also load saved objects referenced by params. Will fail with an error if grid was saved without * objects referenced by params. */ @SerializedName("load_params_references") public boolean loadParamsReferences; /** * Public constructor */ public GridImportV3() { gridPath = ""; loadParamsReferences = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GridKeyV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GridKeyV3 extends KeyV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Name (string representation) for this Key. public String name; // Name (string representation) for the type of Keyed this Key points to. public String type; // URL for the resource that this Key points to, if one exists. public String url; */ /** * Public constructor */ public GridKeyV3() { name = ""; type = ""; url = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GridSchemaV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GridSchemaV99 extends SchemaV3 { /** * Grid id */ @SerializedName("grid_id") public GridKeyV3 gridId; /** * Model performance metric to sort by. Examples: logloss, residual_deviance, mse, rmse, mae,rmsle, auc, r2, f1, * recall, precision, accuracy, mcc, err, err_count, lift_top_group, max_per_class_error */ @SerializedName("sort_by") public String sortBy; /** * Specify whether sort order should be decreasing. */ public boolean decreasing; /** * Model IDs built by a grid search */ @SerializedName("model_ids") public ModelKeyV3[] modelIds; /** * Used hyper parameters. */ @SerializedName("hyper_names") public String[] hyperNames; /** * List of failed parameters */ @SerializedName("failed_params") public ModelParametersSchemaV3[] failedParams; /** * List of detailed warning messages */ @SerializedName("warning_details") public String[] warningDetails; /** * List of detailed failure messages */ @SerializedName("failure_details") public String[] failureDetails; /** * List of detailed failure stack traces */ @SerializedName("failure_stack_traces") public String[] failureStackTraces; /** * List of raw parameters causing model building failure */ @SerializedName("failed_raw_params") public String[][] failedRawParams; /** * Training model metrics for the returned models; only returned if sort_by is set */ @SerializedName("training_metrics") public ModelMetricsBaseV3[] trainingMetrics; /** * Validation model metrics for the returned models; only returned if sort_by is set */ @SerializedName("validation_metrics") public ModelMetricsBaseV3[] validationMetrics; /** * Cross validation model metrics for the returned models; only returned if sort_by is set */ @SerializedName("cross_validation_metrics") public ModelMetricsBaseV3[] crossValidationMetrics; /** * Cross validation model metrics summary for the returned models; only returned if sort_by is set */ @SerializedName("cross_validation_metrics_summary") public TwoDimTableV3[] crossValidationMetricsSummary; /** * Directory for Grid automatic checkpointing */ @SerializedName("export_checkpoints_dir") public String exportCheckpointsDir; /** * Summary */ @SerializedName("summary_table") public TwoDimTableV3 summaryTable; /** * Scoring history */ @SerializedName("scoring_history") public TwoDimTableV3 scoringHistory; /** * Public constructor */ public GridSchemaV99() { sortBy = ""; decreasing = false; exportCheckpointsDir = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GridSearchSchema.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; import java.util.Map; public class GridSearchSchema extends SchemaV3 { /** * Basic model builder parameters. */ public ModelParametersSchemaV3 parameters; /** * Grid search parameters. */ @SerializedName("hyper_parameters") public Map<Object,Object> hyperParameters; /** * Destination id for this grid; auto-generated if not specified. */ @SerializedName("grid_id") public GridKeyV3 gridId; /** * Hyperparameter search criteria, including strategy and early stopping directives. If it is not given, exhaustive * Cartesian is used. */ @SerializedName("search_criteria") public HyperSpaceSearchCriteriaV99 searchCriteria; /** * Level of parallelism during grid model building. 1 = sequential building (default). 0 for adaptive parallelism. * Any number > 1 sets the exact number of models built in parallel. */ public int parallelism; /** * Path to a directory where grid will save everything necessary to resume training after cluster crash. */ @SerializedName("recovery_dir") public String recoveryDir; /** * Key to use for the Job handling this GridSearch (internal use only). */ @SerializedName("job_id") public JobKeyV3 jobId; /** * Number of all models generated by grid search. */ @SerializedName("total_models") public int totalModels; /** * Job Key. */ public JobV3 job; /** * Public constructor */ public GridSearchSchema() { parallelism = 0; recoveryDir = ""; totalModels = 0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/GridsV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class GridsV99 extends SchemaV3 { /** * Grids */ public GridSchemaV99[] grids; /** * Public constructor */ public GridsV99() { } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/H2OErrorV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; import java.util.Map; public class H2OErrorV3 extends SchemaV3 { /** * Milliseconds since the epoch for the time that this H2OError instance was created. Generally this is a short * time since the underlying error ocurred. */ public long timestamp; /** * Error url */ @SerializedName("error_url") public String errorUrl; /** * Message intended for the end user (a data scientist). */ public String msg; /** * Potentially more detailed message intended for a developer (e.g. a front end engineer or someone designing a * language binding). */ @SerializedName("dev_msg") public String devMsg; /** * HTTP status code for this error. */ @SerializedName("http_status") public int httpStatus; /** * Any values that are relevant to reporting or handling this error. Examples are a key name if the error is on a * key, or a field name and object name if it's on a specific field. */ public Map<String,Object> values; /** * Exception type, if any. */ @SerializedName("exception_type") public String exceptionType; /** * Raw exception message, if any. */ @SerializedName("exception_msg") public String exceptionMsg; /** * Stacktrace, if any. */ public String[] stacktrace; /** * Public constructor */ public H2OErrorV3() { timestamp = 0L; errorUrl = ""; msg = ""; devMsg = ""; httpStatus = 0; exceptionType = ""; exceptionMsg = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/H2OModelBuilderErrorV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class H2OModelBuilderErrorV3 extends H2OErrorV3 { /** * Model builder parameters. */ public ModelParametersSchemaV3 parameters; /** * Parameter validation messages */ public ValidationMessageV3[] messages; /** * Count of parameter validation errors */ @SerializedName("error_count") public int errorCount; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Milliseconds since the epoch for the time that this H2OError instance was created. Generally this is a short // time since the underlying error ocurred. public long timestamp; // Error url public String errorUrl; // Message intended for the end user (a data scientist). public String msg; // Potentially more detailed message intended for a developer (e.g. a front end engineer or someone designing a // language binding). public String devMsg; // HTTP status code for this error. public int httpStatus; // Any values that are relevant to reporting or handling this error. Examples are a key name if the error is on a // key, or a field name and object name if it's on a specific field. public Map<String,Object> values; // Exception type, if any. public String exceptionType; // Raw exception message, if any. public String exceptionMsg; // Stacktrace, if any. public String[] stacktrace; */ /** * Public constructor */ public H2OModelBuilderErrorV3() { errorCount = 0; timestamp = 0L; errorUrl = ""; msg = ""; devMsg = ""; httpStatus = 0; exceptionType = ""; exceptionMsg = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/H2oautomlStepDefinitionAlias.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum H2oautomlStepDefinitionAlias { all, defaults, exploitation, grids, optionals, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/H2oautomleventsEventLogEntryStage.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum H2oautomleventsEventLogEntryStage { DataImport, FeatureAnalysis, FeatureCreation, FeatureReduction, ModelSelection, ModelTraining, Validation, Workflow, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/H2oautomlpreprocessingPreprocessingStepDefinitionType.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum H2oautomlpreprocessingPreprocessingStepDefinitionType { TargetEncoding, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/H2otargetencodingTargetEncoderModelDataLeakageHandlingStrategy.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum H2otargetencodingTargetEncoderModelDataLeakageHandlingStrategy { KFold, LeaveOneOut, None, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/HGLMMethod.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum HGLMMethod { EM, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/HGLMModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class HGLMModelOutputV3 extends ModelOutputSchemaV3 { /** * Table of Fixed Coefficients */ @SerializedName("coefficients_table") public TwoDimTableV3 coefficientsTable; /** * Table of Random Coefficients */ @SerializedName("random_coefficients_table") public TwoDimTableV3 randomCoefficientsTable; /** * Table of Scoring History for Validation Dataset */ @SerializedName("scoring_history_valid") public TwoDimTableV3 scoringHistoryValid; /** * Fixed Effects Coefficient Names */ @SerializedName("coefficient_names") public String[] coefficientNames; /** * Random Effects Coefficient Names */ @SerializedName("random_coefficient_names") public String[] randomCoefficientNames; /** * Level 2 Indice Names */ @SerializedName("group_column_names") public String[] groupColumnNames; /** * Fixed Effects Coefficients */ public double[] beta; /** * Random Effects Coefficients */ public double[][] ubeta; /** * Covariance Matrix for Random Effects (= Tj in section II.I of the doc */ public double[][] tmat; /** * Ratio of each random effect variance and (sum of all random effect variances plus the residual noise variance). */ public double[] icc; /** * Residual noise variance */ @SerializedName("residual_variance") public double residualVariance; /** * Mean residual error with fixed effect coefficients only */ @SerializedName("mean_residual_fixed") public double meanResidualFixed; /** * Mean residual error with fixed effect coefficients only */ @SerializedName("mean_residual_fixed_valid") public double meanResidualFixedValid; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public HGLMModelOutputV3() { residualVariance = 0.0; meanResidualFixed = 0.0; meanResidualFixedValid = 0.0; status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/HGLMModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class HGLMModelV3 extends ModelSchemaV3<HGLMParametersV3, HGLMModelOutputV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public HGLMParametersV3 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public HGLMModelOutputV3 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public HGLMModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/HGLMParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class HGLMParametersV3 extends ModelParametersSchemaV3 { /** * Perform scoring for every score_iteration_interval iterations. */ @SerializedName("score_iteration_interval") public int scoreIterationInterval; /** * Seed for pseudo random number generator (if applicable). */ public long seed; /** * Handling of missing values. Either MeanImputation, Skip or PlugValues. */ @SerializedName("missing_values_handling") public GLMMissingValuesHandling missingValuesHandling; /** * Plug Values (a single row frame containing values that will be used to impute missing values of the * training/validation frame, use with conjunction missing_values_handling = PlugValues). */ @SerializedName("plug_values") public FrameKeyV3 plugValues; /** * Family. Only gaussian is supported now. */ public GLMFamily family; /** * Set distribution of random effects. Only Gaussian is implemented now. */ @SerializedName("rand_family") public GLMFamily randFamily; /** * Maximum number of iterations. Value should >=1. A value of 0 is only set when only the model coefficient names * and model coefficient dimensions are needed. */ @SerializedName("max_iterations") public int maxIterations; /** * An array that contains initial values of the fixed effects coefficient. */ @SerializedName("initial_fixed_effects") public double[] initialFixedEffects; /** * A H2OFrame id that contains initial values of the random effects coefficient. The row names shouldbe the random * coefficient names. If you are not sure what the random coefficient names are, build HGLM model with * max_iterations = 0 and checkout the model output field random_coefficient_names. The number of rows of this * frame should be the number of level 2 units. Again, to figure this out, build HGLM model with max_iterations=0 * and check out the model output field group_column_names. The number of rows should equal the length of * thegroup_column_names. */ @SerializedName("initial_random_effects") public FrameKeyV3 initialRandomEffects; /** * A H2OFrame id that contains initial values of the T matrix. It should be a positive symmetric matrix. */ @SerializedName("initial_t_matrix") public FrameKeyV3 initialTMatrix; /** * Initial variance of random coefficient effects. If set, should provide a value > 0.0. If not set, will be * randomly set in the model building process. */ @SerializedName("tau_u_var_init") public double tauUVarInit; /** * Initial variance of random noise. If set, should provide a value > 0.0. If not set, will be randomly set in the * model building process. */ @SerializedName("tau_e_var_init") public double tauEVarInit; /** * Random columns indices for HGLM. */ @SerializedName("random_columns") public String[] randomColumns; /** * We only implemented EM as a method to obtain the fixed, random coefficients and the various variances. */ public HGLMMethod method; /** * Converge if beta/ubeta/tmat/tauEVar changes less (using L-infinity norm) than em esilon. ONLY applies to EM * method. */ @SerializedName("em_epsilon") public double emEpsilon; /** * If true, will allow random component to the GLM coefficients. */ @SerializedName("random_intercept") public boolean randomIntercept; /** * Group column is the column that is categorical and used to generate the groups in HGLM */ @SerializedName("group_column") public String groupColumn; /** * If true, add gaussian noise with variance specified in parms._tau_e_var_init. */ @SerializedName("gen_syn_data") public boolean genSynData; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public HGLMParametersV3() { scoreIterationInterval = 5; seed = -1L; missingValuesHandling = GLMMissingValuesHandling.MeanImputation; family = GLMFamily.gaussian; maxIterations = -1; tauUVarInit = 0.0; tauEVarInit = 0.0; method = HGLMMethod.EM; emEpsilon = 0.001; randomIntercept = true; groupColumn = ""; genSynData = false; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/HGLMV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class HGLMV3 extends ModelBuilderSchema<HGLMParametersV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public HGLMParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public HGLMV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/HeartBeatEvent.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class HeartBeatEvent extends EventV3 { /** * number of sent heartbeats */ public int sends; /** * number of received heartbeats */ public int recvs; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Time when the event was recorded. Format is hh:mm:ss:ms public String date; // Time in nanos public long nanos; // type of recorded event public TimelineEventEventType type; */ /** * Public constructor */ public HeartBeatEvent() { sends = -1; recvs = -1; date = ""; nanos = -1L; type = TimelineEventEventType.unknown; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/HyperSpaceSearchCriteriaV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class HyperSpaceSearchCriteriaV99 extends SchemaV3 { /** * Hyperparameter space search strategy. */ public GridHyperSpaceSearchCriteriaStrategy strategy; /** * Public constructor */ public HyperSpaceSearchCriteriaV99() { } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/IOEvent.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class IOEvent extends EventV3 { /** * flavor of the recorded io (ice/hdfs/...) */ @SerializedName("io_flavor") public String ioFlavor; /** * node where this io event happened */ public String node; /** * data info */ public String data; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Time when the event was recorded. Format is hh:mm:ss:ms public String date; // Time in nanos public long nanos; // type of recorded event public TimelineEventEventType type; */ /** * Public constructor */ public IOEvent() { ioFlavor = "unknown"; node = "unknown"; data = "unknown"; date = "23:59:59:999"; nanos = -1L; type = TimelineEventEventType.io; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ImportFilesMultiV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ImportFilesMultiV3 extends RequestSchemaV3 { /** * paths */ public String[] paths; /** * pattern */ public String pattern; /** * files */ public String[] files; /** * names */ @SerializedName("destination_frames") public String[] destinationFrames; /** * fails */ public String[] fails; /** * dels */ public String[] dels; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public ImportFilesMultiV3() { pattern = ""; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ImportFilesV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ImportFilesV3 extends RequestSchemaV3 { /** * path */ public String path; /** * pattern */ public String pattern; /** * files */ public String[] files; /** * names */ @SerializedName("destination_frames") public String[] destinationFrames; /** * fails */ public String[] fails; /** * dels */ public String[] dels; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public ImportFilesV3() { path = ""; pattern = ""; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ImportHiveTableV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ImportHiveTableV3 extends RequestSchemaV3 { /** * database */ public String database; /** * table */ public String table; /** * partitions */ public String[][] partitions; /** * partitions */ @SerializedName("allow_multi_format") public boolean allowMultiFormat; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public ImportHiveTableV3() { database = ""; table = ""; allowMultiFormat = false; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ImportSQLTableV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ImportSQLTableV99 extends RequestSchemaV3 { /** * connection_url */ @SerializedName("connection_url") public String connectionUrl; /** * table */ public String table; /** * select_query */ @SerializedName("select_query") public String selectQuery; /** * use_temp_table */ @SerializedName("use_temp_table") public String useTempTable; /** * temp_table_name */ @SerializedName("temp_table_name") public String tempTableName; /** * username */ public String username; /** * password */ public String password; /** * columns */ public String columns; /** * Mode for data loading. All modes may not be supported by all databases. */ @SerializedName("fetch_mode") public String fetchMode; /** * Desired number of chunks for the target Frame. Optional. */ @SerializedName("num_chunks_hint") public String numChunksHint; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public ImportSQLTableV99() { connectionUrl = ""; table = ""; selectQuery = ""; useTempTable = ""; tempTableName = ""; username = ""; password = ""; columns = "*"; fetchMode = ""; numChunksHint = ""; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/InfogramAlgorithm.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum InfogramAlgorithm { AUTO, deeplearning, drf, gbm, glm, xgboost, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/InfogramModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class InfogramModelOutputV3 extends ModelOutputSchemaV3 { /** * Array of conditional mutual information for admissible features normalized to 0.0 and 1.0 */ @SerializedName("admissible_cmi") public double[] admissibleCmi; /** * Array of conditional mutual information for admissible features raw and not normalized to 0.0 and 1.0 */ @SerializedName("admissible_cmi_raw") public double[] admissibleCmiRaw; /** * Array of variable importance for admissible features */ @SerializedName("admissible_relevance") public double[] admissibleRelevance; /** * Array containing names of admissible features for the user */ @SerializedName("admissible_features") public String[] admissibleFeatures; /** * Array containing names of admissible features for the user from the validation dataset. */ @SerializedName("admissible_features_valid") public String[] admissibleFeaturesValid; /** * Array containing names of admissible features for the user from cross-validation. */ @SerializedName("admissible_features_xval") public String[] admissibleFeaturesXval; /** * Array of raw conditional mutual information for all features excluding sensitive attributes if applicable */ @SerializedName("cmi_raw") public double[] cmiRaw; /** * Array of conditional mutual information for all features excluding sensitive attributes if applicable normalized * to 0.0 and 1.0 */ public double[] cmi; /** * Array containing names of all features excluding sensitive attributes if applicable corresponding to CMI and * relevance */ @SerializedName("all_predictor_names") public String[] allPredictorNames; /** * Array of variable importance for all features excluding sensitive attributes if applicable */ public double[] relevance; /** * Frame key that stores the predictor names, net CMI and relevance. */ @SerializedName("admissible_score_key") public FrameKeyV3 admissibleScoreKey; /** * Frame key that stores the predictor names, net CMI and relevance calculated from validation dataset. */ @SerializedName("admissible_score_key_valid") public FrameKeyV3 admissibleScoreKeyValid; /** * Frame key that stores the predictor names, net CMI and relevance from cross-validation. */ @SerializedName("admissible_score_key_xval") public FrameKeyV3 admissibleScoreKeyXval; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public InfogramModelOutputV3() { status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/InfogramModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class InfogramModelV3 extends ModelSchemaV3<InfogramParametersV3, InfogramModelOutputV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public InfogramParametersV3 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public InfogramModelOutputV3 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public InfogramModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/InfogramParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class InfogramParametersV3 extends ModelParametersSchemaV3 { /** * Seed for pseudo random number generator (if applicable). */ public long seed; /** * Standardize numeric columns to have zero mean and unit variance. */ public boolean standardize; /** * Plug Values (a single row frame containing values that will be used to impute missing values of the * training/validation frame, use with conjunction missing_values_handling = PlugValues). */ @SerializedName("plug_values") public FrameKeyV3 plugValues; /** * Maximum number of iterations. */ @SerializedName("max_iterations") public int maxIterations; /** * Prior probability for y==1. To be used only for logistic regression iff the data has been sampled and the mean of * response does not reflect reality. */ public double prior; /** * Balance training data class counts via over/under-sampling (for imbalanced data). */ @SerializedName("balance_classes") public boolean balanceClasses; /** * Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be * automatically computed to obtain class balance during training. Requires balance_classes. */ @SerializedName("class_sampling_factors") public float[] classSamplingFactors; /** * Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires * balance_classes. */ @SerializedName("max_after_balance_size") public float maxAfterBalanceSize; /** * Type of machine learning algorithm used to build the infogram. Options include 'AUTO' (gbm), 'deeplearning' (Deep * Learning with default parameters), 'drf' (Random Forest with default parameters), 'gbm' (GBM with default * parameters), 'glm' (GLM with default parameters), or 'xgboost' (if available, XGBoost with default parameters). */ public InfogramAlgorithm algorithm; /** * Customized parameters for the machine learning algorithm specified in the algorithm parameter. */ @SerializedName("algorithm_params") public String algorithmParams; /** * Columns that contain features that are sensitive and need to be protected (legally, or otherwise), if applicable. * These features (e.g. race, gender, etc) should not drive the prediction of the response. */ @SerializedName("protected_columns") public String[] protectedColumns; /** * A number between 0 and 1 representing a threshold for total information, defaulting to 0.1. For a specific * feature, if the total information is higher than this threshold, and the corresponding net information is also * higher than the threshold ``net_information_threshold``, that feature will be considered admissible. The total * information is the x-axis of the Core Infogram. Default is -1 which gets set to 0.1. */ @SerializedName("total_information_threshold") public double totalInformationThreshold; /** * A number between 0 and 1 representing a threshold for net information, defaulting to 0.1. For a specific * feature, if the net information is higher than this threshold, and the corresponding total information is also * higher than the total_information_threshold, that feature will be considered admissible. The net information is * the y-axis of the Core Infogram. Default is -1 which gets set to 0.1. */ @SerializedName("net_information_threshold") public double netInformationThreshold; /** * A number between 0 and 1 representing a threshold for the relevance index, defaulting to 0.1. This is only used * when ``protected_columns`` is set by the user. For a specific feature, if the relevance index value is higher * than this threshold, and the corresponding safety index is also higher than the safety_index_threshold``, that * feature will be considered admissible. The relevance index is the x-axis of the Fair Infogram. Default is -1 * which gets set to 0.1. */ @SerializedName("relevance_index_threshold") public double relevanceIndexThreshold; /** * A number between 0 and 1 representing a threshold for the safety index, defaulting to 0.1. This is only used * when protected_columns is set by the user. For a specific feature, if the safety index value is higher than this * threshold, and the corresponding relevance index is also higher than the relevance_index_threshold, that feature * will be considered admissible. The safety index is the y-axis of the Fair Infogram. Default is -1 which gets set * to 0.1. */ @SerializedName("safety_index_threshold") public double safetyIndexThreshold; /** * The fraction of training frame to use to build the infogram model. Defaults to 1.0, and any value greater than 0 * and less than or equal to 1.0 is acceptable. */ @SerializedName("data_fraction") public double dataFraction; /** * An integer specifying the number of columns to evaluate in the infogram. The columns are ranked by variable * importance, and the top N are evaluated. Defaults to 50. */ @SerializedName("top_n_features") public int topNFeatures; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public InfogramParametersV3() { seed = -1L; standardize = false; maxIterations = 0; prior = 0.0; balanceClasses = false; maxAfterBalanceSize = 5.0f; algorithm = InfogramAlgorithm.AUTO; algorithmParams = ""; totalInformationThreshold = -1.0; netInformationThreshold = -1.0; relevanceIndexThreshold = -1.0; safetyIndexThreshold = -1.0; dataFraction = 1.0; topNFeatures = 50; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/InfogramV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class InfogramV3 extends ModelBuilderSchema<InfogramParametersV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public InfogramParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public InfogramV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/InitIDV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class InitIDV3 extends RequestSchemaV3 { /** * Session ID */ @SerializedName("session_key") public String sessionKey; /** * Indicates whether users are allowed to set and modify session properties */ @SerializedName("session_properties_allowed") public boolean sessionPropertiesAllowed; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public InitIDV3() { sessionKey = ""; sessionPropertiesAllowed = false; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/InputSchemaV4.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class InputSchemaV4 { /** * Filter on the set of output fields: if you set _fields="foo,bar,baz", then only those fields will be included in * the output; or you can specify _fields="-goo,gee" to include all fields except goo and gee. If the result * contains nested data structures, then you can refer to the fields within those structures as well. For example if * you specify _fields="foo(oof),bar(-rab)", then only fields foo and bar will be included, and within foo there * will be only field oof, whereas within bar all fields except rab will be reported. */ public String _fields; /** * Public constructor */ public InputSchemaV4() { _fields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/InteractionV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class InteractionV3 extends RequestSchemaV3 { /** * destination key */ public FrameKeyV3 dest; /** * Input data frame */ @SerializedName("source_frame") public FrameKeyV3 sourceFrame; /** * Factor columns */ @SerializedName("factor_columns") public String[] factorColumns; /** * Whether to create pairwise quadratic interactions between factors (otherwise create one higher-order * interaction). Only applicable if there are 3 or more factors. */ public boolean pairwise; /** * Max. number of factor levels in pair-wise interaction terms (if enforced, one extra catch-all factor will be * made) */ @SerializedName("max_factors") public int maxFactors; /** * Min. occurrence threshold for factor levels in pair-wise interaction terms */ @SerializedName("min_occurrence") public int minOccurrence; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public InteractionV3() { pairwise = false; maxFactors = 100; minOccurrence = 1; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/IoStatsEntry.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class IoStatsEntry extends SchemaV3 { /** * Back end type */ public String backend; /** * Number of store events */ @SerializedName("store_count") public long storeCount; /** * Cumulative stored bytes */ @SerializedName("store_bytes") public long storeBytes; /** * Number of delete events */ @SerializedName("delete_count") public long deleteCount; /** * Number of load events */ @SerializedName("load_count") public long loadCount; /** * Cumulative loaded bytes */ @SerializedName("load_bytes") public long loadBytes; /** * Public constructor */ public IoStatsEntry() { backend = ""; storeCount = 0L; storeBytes = 0L; deleteCount = 0L; loadCount = 0L; loadBytes = 0L; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/IsolationForestModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class IsolationForestModelOutputV3 extends SharedTreeModelOutputV3 { /** * Variable Splits */ @SerializedName("variable_splits") public TwoDimTableV3 variableSplits; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Variable Importances public TwoDimTableV3 variableImportances; // The Intercept term, the initial model function value to which trees make adjustments public double initF; // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public IsolationForestModelOutputV3() { initF = 0.0; status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/IsolationForestModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class IsolationForestModelV3 extends SharedTreeModelV3<IsolationForestParametersV3, IsolationForestModelOutputV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public IsolationForestParametersV3 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public IsolationForestModelOutputV3 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public IsolationForestModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/IsolationForestParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class IsolationForestParametersV3 extends SharedTreeParametersV3 { /** * Number of randomly sampled observations used to train each Isolation Forest tree. Only one of parameters * sample_size and sample_rate should be defined. If sample_rate is defined, sample_size will be ignored. */ @SerializedName("sample_size") public long sampleSize; /** * Rate of randomly sampled observations used to train each Isolation Forest tree. Needs to be in range from 0.0 to * 1.0. If set to -1, sample_rate is disabled and sample_size will be used instead. */ @SerializedName("sample_rate") public double sampleRate; /** * Number of variables randomly sampled as candidates at each split. If set to -1, defaults (number of * predictors)/3. */ public int mtries; /** * Contamination ratio - the proportion of anomalies in the input dataset. If undefined (-1) the predict function * will not mark observations as anomalies and only anomaly score will be returned. Defaults to -1 (undefined). */ public double contamination; /** * (experimental) Name of the response column in the validation frame. Response column should be binary and indicate * not anomaly/anomaly. */ @SerializedName("validation_response_column") public ColSpecifierV3 validationResponseColumn; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Balance training data class counts via over/under-sampling (for imbalanced data). public boolean balanceClasses; // Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be // automatically computed to obtain class balance during training. Requires balance_classes. public float[] classSamplingFactors; // Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires // balance_classes. public float maxAfterBalanceSize; // [Deprecated] Maximum size (# classes) for confusion matrices to be printed in the Logs public int maxConfusionMatrixSize; // Number of trees. public int ntrees; // Maximum tree depth (0 for unlimited). public int maxDepth; // Fewest allowed (weighted) observations in a leaf. public double minRows; // For numerical columns (real/int), build a histogram of (at least) this many bins, then split at the best point public int nbins; // For numerical columns (real/int), build a histogram of (at most) this many bins at the root level, then decrease // by factor of two per level public int nbinsTopLevel; // For categorical columns (factors), build a histogram of this many bins, then split at the best point. Higher // values can lead to more overfitting. public int nbinsCats; // r2_stopping is no longer supported and will be ignored if set - please use stopping_rounds, stopping_metric and // stopping_tolerance instead. Previous version of H2O would stop making trees when the R^2 metric equals or exceeds // this public double r2Stopping; // Seed for pseudo random number generator (if applicable) public long seed; // Run on one node only; no network overhead but fewer cpus used. Suitable for small datasets. public boolean buildTreeOneNode; // A list of row sample rates per class (relative fraction for each class, from 0.0 to 1.0), for each tree public double[] sampleRatePerClass; // Column sample rate per tree (from 0.0 to 1.0) public double colSampleRatePerTree; // Relative change of the column sampling rate for every level (must be > 0.0 and <= 2.0) public double colSampleRateChangePerLevel; // Score the model after every so many trees. Disabled if set to 0. public int scoreTreeInterval; // Minimum relative improvement in squared error reduction for a split to happen public double minSplitImprovement; // What type of histogram to use for finding optimal split points public TreeSharedTreeModelSharedTreeParametersHistogramType histogramType; // Use Platt Scaling (default) or Isotonic Regression to calculate calibrated class probabilities. Calibration can // provide more accurate estimates of class probabilities. public boolean calibrateModel; // Data for model calibration public FrameKeyV3 calibrationFrame; // Calibration method to use public TreeCalibrationHelperCalibrationMethod calibrationMethod; // Check if response column is constant. If enabled, then an exception is thrown if the response column is a // constant value.If disabled, then model will train regardless of the response column being a constant value or // not. public boolean checkConstantResponse; // Create checkpoints into defined directory while training process is still running. In case of cluster shutdown, // this checkpoint can be used to restart training. public String inTrainingCheckpointsDir; // Checkpoint the model after every so many trees. Parameter is used only when in_training_checkpoints_dir is // defined public int inTrainingCheckpointsTreeInterval; // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public IsolationForestParametersV3() { sampleSize = 256L; sampleRate = -1.0; mtries = -1; contamination = -1.0; balanceClasses = false; maxAfterBalanceSize = 5.0f; maxConfusionMatrixSize = 20; ntrees = 50; maxDepth = 8; minRows = 1.0; nbins = 2; nbinsTopLevel = 1024; nbinsCats = 2; r2Stopping = 1.7976931348623157e+308; seed = -1L; buildTreeOneNode = false; colSampleRatePerTree = 1.0; colSampleRateChangePerLevel = 1.0; scoreTreeInterval = 0; minSplitImprovement = 0.0; histogramType = TreeSharedTreeModelSharedTreeParametersHistogramType.Random; calibrateModel = false; calibrationMethod = TreeCalibrationHelperCalibrationMethod.AUTO; checkConstantResponse = true; inTrainingCheckpointsDir = ""; inTrainingCheckpointsTreeInterval = 1; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.gaussian; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.01; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/IsolationForestV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class IsolationForestV3 extends SharedTreeV3<IsolationForestParametersV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public IsolationForestParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public IsolationForestV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/IsotonicRegressionModelOutOfBoundsHandling.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum IsotonicRegressionModelOutOfBoundsHandling { NA, clip, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/IsotonicRegressionModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class IsotonicRegressionModelOutputV3 extends ModelOutputSchemaV3 { /** * thresholds y */ @SerializedName("thresholds_y") public double[] thresholdsY; /** * thresholds X */ @SerializedName("thresholds_x") public double[] thresholdsX; /** * min X */ @SerializedName("min_x") public double minX; /** * max X */ @SerializedName("max_x") public double maxX; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public IsotonicRegressionModelOutputV3() { minX = 0.0; maxX = 0.0; status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/IsotonicRegressionModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class IsotonicRegressionModelV3 extends ModelSchemaV3<IsotonicRegressionParametersV3, IsotonicRegressionModelOutputV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public IsotonicRegressionParametersV3 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public IsotonicRegressionModelOutputV3 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public IsotonicRegressionModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/IsotonicRegressionParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class IsotonicRegressionParametersV3 extends ModelParametersSchemaV3 { /** * Method of handling values of X predictor that are outside of the bounds seen in training. */ @SerializedName("out_of_bounds") public IsotonicRegressionModelOutOfBoundsHandling outOfBounds; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public IsotonicRegressionParametersV3() { outOfBounds = IsotonicRegressionModelOutOfBoundsHandling.NA; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/IsotonicRegressionV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class IsotonicRegressionV3 extends ModelBuilderSchema<IsotonicRegressionParametersV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public IsotonicRegressionParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public IsotonicRegressionV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/JStackV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class JStackV3 extends RequestSchemaV3 { /** * Stacktraces */ public DStackTraceV3[] traces; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public JStackV3() { _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/JobIV4.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class JobIV4 extends InputSchemaV4 { /** * Id of the job to fetch. */ @SerializedName("job_id") public String jobId; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Filter on the set of output fields: if you set _fields="foo,bar,baz", then only those fields will be included in // the output; or you can specify _fields="-goo,gee" to include all fields except goo and gee. If the result // contains nested data structures, then you can refer to the fields within those structures as well. For example if // you specify _fields="foo(oof),bar(-rab)", then only fields foo and bar will be included, and within foo there // will be only field oof, whereas within bar all fields except rab will be reported. public String _fields; */ /** * Public constructor */ public JobIV4() { jobId = ""; _fields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/JobKeyV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class JobKeyV3 extends KeyV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Name (string representation) for this Key. public String name; // Name (string representation) for the type of Keyed this Key points to. public String type; // URL for the resource that this Key points to, if one exists. public String url; */ /** * Public constructor */ public JobKeyV3() { name = ""; type = ""; url = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/JobStatus.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum JobStatus { CANCELLED, DONE, FAILED, RUNNING, STOPPING, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/JobV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class JobV3 extends SchemaV3 { /** * Job Key */ public JobKeyV3 key; /** * Job description */ public String description; /** * job status */ public String status; /** * progress, from 0 to 1 */ public float progress; /** * current progress status description */ @SerializedName("progress_msg") public String progressMsg; /** * Start time */ @SerializedName("start_time") public long startTime; /** * Runtime in milliseconds */ public long msec; /** * destination key */ public KeyV3 dest; /** * exception */ public String[] warnings; /** * exception */ public String exception; /** * stacktrace */ public String stacktrace; /** * recoverable */ @SerializedName("auto_recoverable") public boolean autoRecoverable; /** * ready for view */ @SerializedName("ready_for_view") public boolean readyForView; /** * Public constructor */ public JobV3() { description = ""; status = ""; progress = 0.0f; progressMsg = ""; startTime = 0L; msec = 0L; exception = ""; stacktrace = ""; autoRecoverable = false; readyForView = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/JobV4.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class JobV4 extends OutputSchemaV4 { /** * Job id */ @SerializedName("job_id") public String jobId; /** * Job status */ public JobStatus status; /** * Current progress, a number going from 0 to 1 */ public float progress; /** * Current progress status description */ @SerializedName("progress_msg") public String progressMsg; /** * Start time */ @SerializedName("start_time") public long startTime; /** * Runtime in milliseconds */ public long duration; /** * Id of the target object (being created by this Job) */ @SerializedName("target_id") public String targetId; /** * Type of the target: Frame, Model, etc. */ @SerializedName("target_type") public String targetType; /** * Exception message, if an exception occurred */ public String exception; /** * Stacktrace */ public String stacktrace; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Url describing the schema of the current object. public String __schema; */ /** * Public constructor */ public JobV4() { jobId = ""; progress = 0.0f; progressMsg = ""; startTime = 0L; duration = 0L; targetId = ""; targetType = ""; exception = ""; stacktrace = ""; __schema = "/4/schemas/JobV4"; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/JobsV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class JobsV3 extends RequestSchemaV3 { /** * Optional Job identifier */ @SerializedName("job_id") public JobKeyV3 jobId; /** * jobs */ public JobV3[] jobs; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public JobsV3() { _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/KMeansInitialization.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum KMeansInitialization { Furthest, PlusPlus, Random, User, }