index
int64
repo_id
string
file_path
string
content
string
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ParseV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ParseV3 extends RequestSchemaV3 { /** * Final frame name */ @SerializedName("destination_frame") public FrameKeyV3 destinationFrame; /** * Source frames */ @SerializedName("source_frames") public FrameKeyV3[] sourceFrames; /** * Parser type */ @SerializedName("parse_type") public ApiParseTypeValuesProvider parseType; /** * Field separator */ public byte separator; /** * Single Quotes */ @SerializedName("single_quotes") public boolean singleQuotes; /** * Check header: 0 means guess, +1 means 1st line is header not data, -1 means 1st line is data not header */ @SerializedName("check_header") public int checkHeader; /** * Number of columns */ @SerializedName("number_columns") public int numberColumns; /** * Column names */ @SerializedName("column_names") public String[] columnNames; /** * Value types for columns */ @SerializedName("column_types") public String[] columnTypes; /** * Skipped columns indices */ @SerializedName("skipped_columns") public int[] skippedColumns; /** * If true, will force the column types to be either the ones in Parquet schema for Parquet files or the ones * specified in column_types. This parameter is used for numerical columns only. Other columnsettings will happen * without setting this parameter. Defaults to false. */ @SerializedName("force_col_types") public boolean forceColTypes; /** * Domains for categorical columns */ public String[][] domains; /** * NA strings for columns */ @SerializedName("na_strings") public String[][] naStrings; /** * Size of individual parse tasks */ @SerializedName("chunk_size") public int chunkSize; /** * Delete input key after parse */ @SerializedName("delete_on_done") public boolean deleteOnDone; /** * Block until the parse completes (as opposed to returning early and requiring polling */ public boolean blocking; /** * Key-reference to an initialized instance of a Decryption Tool */ @SerializedName("decrypt_tool") public DecryptionToolKeyV3 decryptTool; /** * Custom characters to be treated as non-data line markers */ @SerializedName("custom_non_data_line_markers") public String customNonDataLineMarkers; /** * Name of the column the persisted dataset has been partitioned by. */ @SerializedName("partition_by") public String[] partitionBy; /** * Parse job */ public JobV3 job; /** * Rows */ public long rows; /** * One ASCII character used to escape other characters. */ public byte escapechar; /** * Adjust the imported time from GMT timezone to cluster timezone. */ @SerializedName("tz_adjust_to_local") public boolean tzAdjustToLocal; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public ParseV3() { separator = 0; singleQuotes = false; checkHeader = 0; numberColumns = 0; forceColTypes = false; chunkSize = 0; deleteOnDone = false; blocking = false; customNonDataLineMarkers = ""; rows = 0L; escapechar = 0; tzAdjustToLocal = false; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/PartialDependenceKeyV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class PartialDependenceKeyV3 extends KeyV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Name (string representation) for this Key. public String name; // Name (string representation) for the type of Keyed this Key points to. public String type; // URL for the resource that this Key points to, if one exists. public String url; */ /** * Public constructor */ public PartialDependenceKeyV3() { name = ""; type = ""; url = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/PartialDependenceV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class PartialDependenceV3 extends SchemaV3 { /** * Model */ @SerializedName("model_id") public ModelKeyV3 modelId; /** * Frame */ @SerializedName("frame_id") public FrameKeyV3 frameId; /** * Row Index */ @SerializedName("row_index") public long rowIndex; /** * Column(s) */ public String[] cols; /** * weight_column_index */ @SerializedName("weight_column_index") public int weightColumnIndex; /** * add_missing_na */ @SerializedName("add_missing_na") public boolean addMissingNa; /** * Number of bins */ public int nbins; /** * User define split points */ @SerializedName("user_splits") public double[] userSplits; /** * Column(s) of user defined splits */ @SerializedName("user_cols") public String[] userCols; /** * Number of user defined splits per column */ @SerializedName("num_user_splits") public int[] numUserSplits; /** * Partial Dependence Data */ @SerializedName("partial_dependence_data") public TwoDimTableV3[] partialDependenceData; /** * lists of column name pairs to plot 2D pdp for */ @SerializedName("col_pairs_2dpdp") public String[][] colPairs2dpdp; /** * Key to store the destination */ @SerializedName("destination_key") public PartialDependenceKeyV3 destinationKey; /** * Target classes for multinomial classification */ public String[] targets; /** * Public constructor */ public PartialDependenceV3() { rowIndex = 0L; weightColumnIndex = 0; addMissingNa = false; nbins = 0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/PersistS3CredentialsV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class PersistS3CredentialsV3 extends SchemaV3 { /** * S3 Secret Key ID */ @SerializedName("secret_key_id") public String secretKeyId; /** * S3 Secret Key */ @SerializedName("secret_access_key") public String secretAccessKey; /** * S3 Session token */ @SerializedName("session_token") public String sessionToken; /** * Public constructor */ public PersistS3CredentialsV3() { secretKeyId = ""; secretAccessKey = ""; sessionToken = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/PingV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class PingV3 extends RequestSchemaV3 { /** * cloud_uptime_millis */ @SerializedName("cloud_uptime_millis") public long cloudUptimeMillis; /** * cloud_healthy */ @SerializedName("cloud_healthy") public boolean cloudHealthy; /** * nodes */ public NodeMemoryInfoV3[] nodes; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public PingV3() { cloudUptimeMillis = 0L; cloudHealthy = false; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/PreprocessingStepDefinitionV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class PreprocessingStepDefinitionV99 { /** * A type representing the preprocessing step to be executed. */ public H2oautomlpreprocessingPreprocessingStepDefinitionType type; /** * Public constructor */ public PreprocessingStepDefinitionV99() { } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ProfilerNodeEntryV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ProfilerNodeEntryV3 extends SchemaV3 { /** * Stack trace */ public String stacktrace; /** * Profile Count */ public int count; /** * Public constructor */ public ProfilerNodeEntryV3() { stacktrace = ""; count = 0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ProfilerNodeV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ProfilerNodeV3 extends SchemaV3 { /** * Node names */ @SerializedName("node_name") public String nodeName; /** * Timestamp (millis since epoch) */ public long timestamp; /** * Profile entry list */ public ProfilerNodeEntryV3[] entries; /** * Public constructor */ public ProfilerNodeV3() { nodeName = ""; timestamp = 0L; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ProfilerV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ProfilerV3 extends RequestSchemaV3 { /** * Stack trace depth */ public int depth; /** */ public ProfilerNodeV3[] nodes; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public ProfilerV3() { depth = 10; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/QuantileModelCombineMethod.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum QuantileModelCombineMethod { AVG, HI, INTERPOLATE, LO, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/QuantileParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class QuantileParametersV3 extends ModelParametersSchemaV3 { /** * Probabilities for quantiles */ public double[] probs; /** * How to combine quantiles for even sample sizes */ @SerializedName("combine_method") public QuantileModelCombineMethod combineMethod; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public QuantileParametersV3() { probs = new double[]{0.001, 0.01, 0.1, 0.25, 0.333, 0.5, 0.667, 0.75, 0.9, 0.99, 0.999}; combineMethod = QuantileModelCombineMethod.INTERPOLATE; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = false; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/QuantileV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class QuantileV3 extends ModelBuilderSchema<QuantileParametersV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public QuantileParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public QuantileV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RandomDiscreteValueSearchCriteriaV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RandomDiscreteValueSearchCriteriaV99 extends HyperSpaceSearchCriteriaV99 { /** * Seed for random number generator; set to a value other than -1 for reproducibility. */ public long seed; /** * Maximum number of models to build (optional). */ @SerializedName("max_models") public int maxModels; /** * Maximum time to spend building models (optional). */ @SerializedName("max_runtime_secs") public double maxRuntimeSecs; /** * Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the * stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) */ @SerializedName("stopping_rounds") public int stoppingRounds; /** * Metric to use for early stopping (AUTO: logloss for classification, deviance for regression) */ @SerializedName("stopping_metric") public ScoreKeeperStoppingMetric stoppingMetric; /** * Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) */ @SerializedName("stopping_tolerance") public double stoppingTolerance; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Hyperparameter space search strategy. public GridHyperSpaceSearchCriteriaStrategy strategy; */ /** * Public constructor */ public RandomDiscreteValueSearchCriteriaV99() { seed = -1L; maxModels = 0; maxRuntimeSecs = 0.0; stoppingRounds = 0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; strategy = GridHyperSpaceSearchCriteriaStrategy.RandomDiscrete; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RapidsExpressionV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RapidsExpressionV3 extends SchemaV3 { /** * (Class) name of the language construct */ public String name; /** * Code fragment pattern. */ public String pattern; /** * Description of the functionality provided by this language construct. */ public String description; /** * Public constructor */ public RapidsExpressionV3() { name = ""; pattern = ""; description = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RapidsFrameV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RapidsFrameV3 extends RapidsSchemaV3 { /** * Frame result */ public FrameKeyV3 key; /** * Rows in Frame result */ @SerializedName("num_rows") public long numRows; /** * Columns in Frame result */ @SerializedName("num_cols") public int numCols; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // A Rapids AstRoot expression public String ast; // Session key public String sessionId; // [DEPRECATED] Key name to assign Frame results public String id; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public RapidsFrameV3() { numRows = 0L; numCols = 0; ast = ""; sessionId = ""; id = ""; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RapidsFunctionV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RapidsFunctionV3 extends RapidsSchemaV3 { /** * Function result */ public String funstr; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // A Rapids AstRoot expression public String ast; // Session key public String sessionId; // [DEPRECATED] Key name to assign Frame results public String id; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public RapidsFunctionV3() { funstr = ""; ast = ""; sessionId = ""; id = ""; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RapidsHelpV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RapidsHelpV3 extends SchemaV3 { /** * Description of the rapids language. */ public RapidsExpressionV3[] expressions; /** * Public constructor */ public RapidsHelpV3() { } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RapidsMapFrameV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RapidsMapFrameV3 extends RapidsSchemaV3 { /** * Frames */ public RapidsFrameV3[] frames; /** * Keys of the map */ @SerializedName("map_keys") public RapidsStringsV3 mapKeys; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // A Rapids AstRoot expression public String ast; // Session key public String sessionId; // [DEPRECATED] Key name to assign Frame results public String id; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public RapidsMapFrameV3() { ast = ""; sessionId = ""; id = ""; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RapidsNumberV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RapidsNumberV3 extends RapidsSchemaV3 { /** * Number result */ public double scalar; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // A Rapids AstRoot expression public String ast; // Session key public String sessionId; // [DEPRECATED] Key name to assign Frame results public String id; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public RapidsNumberV3() { scalar = 0.0; ast = ""; sessionId = ""; id = ""; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RapidsNumbersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RapidsNumbersV3 extends RapidsSchemaV3 { /** * Number array result */ public double[] scalar; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // A Rapids AstRoot expression public String ast; // Session key public String sessionId; // [DEPRECATED] Key name to assign Frame results public String id; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public RapidsNumbersV3() { ast = ""; sessionId = ""; id = ""; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RapidsSchemaV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RapidsSchemaV3 extends RequestSchemaV3 { /** * A Rapids AstRoot expression */ public String ast; /** * Session key */ @SerializedName("session_id") public String sessionId; /** * [DEPRECATED] Key name to assign Frame results */ public String id; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public RapidsSchemaV3() { ast = ""; sessionId = ""; id = ""; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RapidsStringV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RapidsStringV3 extends RapidsSchemaV3 { /** * String result */ public String string; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // A Rapids AstRoot expression public String ast; // Session key public String sessionId; // [DEPRECATED] Key name to assign Frame results public String id; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public RapidsStringV3() { string = ""; ast = ""; sessionId = ""; id = ""; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RapidsStringsV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RapidsStringsV3 extends RapidsSchemaV3 { /** * String array result */ public String[] string; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // A Rapids AstRoot expression public String ast; // Session key public String sessionId; // [DEPRECATED] Key name to assign Frame results public String id; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public RapidsStringsV3() { ast = ""; sessionId = ""; id = ""; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RapidsV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RapidsV99 extends RequestSchemaV3 { /** * An Abstract Syntax Tree. */ public String ast; /** * Parsing error, if any */ public String error; /** * Scalar result */ public double scalar; /** * Function result */ public String funstr; /** * String result */ public String string; /** * Result key */ public FrameKeyV3 key; /** * Rows in Frame result */ @SerializedName("num_rows") public long numRows; /** * Columns in Frame result */ @SerializedName("num_cols") public int numCols; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public RapidsV99() { ast = ""; error = ""; scalar = 0.0; funstr = ""; string = ""; numRows = 0L; numCols = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RemoveAllV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RemoveAllV3 extends RequestSchemaV3 { /** * Keys of the models to retain */ @SerializedName("retained_keys") public KeyV3[] retainedKeys; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public RemoveAllV3() { _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RemoveV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RemoveV3 extends RequestSchemaV3 { /** * Object to be removed. */ public KeyV3 key; /** * If true, removal operation will cascade down the object tree. */ public boolean cascade; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public RemoveV3() { cascade = false; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RequestSchemaV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RequestSchemaV3 extends SchemaV3 { /** * Comma-separated list of JSON field paths to exclude from the result, used like: * "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" */ @SerializedName("_exclude_fields") public String _excludeFields; /** * Public constructor */ public RequestSchemaV3() { _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ResumeV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ResumeV3 extends SchemaV3 { /** * Full path to the directory with recovery data */ @SerializedName("recovery_dir") public String recoveryDir; /** * Public constructor */ public ResumeV3() { recoveryDir = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RouteV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RouteV3 extends SchemaV3 { /** */ @SerializedName("http_method") public String httpMethod; /** */ @SerializedName("url_pattern") public String urlPattern; /** */ public String summary; /** */ @SerializedName("api_name") public String apiName; /** */ @SerializedName("handler_class") public String handlerClass; /** */ @SerializedName("handler_method") public String handlerMethod; /** */ @SerializedName("input_schema") public String inputSchema; /** */ @SerializedName("output_schema") public String outputSchema; /** */ @SerializedName("path_params") public String[] pathParams; /** */ public String markdown; /** * Public constructor */ public RouteV3() { httpMethod = ""; urlPattern = ""; summary = ""; apiName = ""; handlerClass = ""; handlerMethod = ""; inputSchema = ""; outputSchema = ""; markdown = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RuleFitModelAlgorithm.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum RuleFitModelAlgorithm { AUTO, DRF, GBM, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RuleFitModelModelType.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum RuleFitModelModelType { LINEAR, RULES, RULES_AND_LINEAR, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RuleFitModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RuleFitModelOutputV3 extends ModelOutputSchemaV3 { /** * The estimated coefficients without language representations for each of the significant baselearners. */ @SerializedName("rule_importance") public TwoDimTableV3 ruleImportance; /** * Intercept. */ public double[] intercept; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public RuleFitModelOutputV3() { status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RuleFitModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RuleFitModelV3 extends ModelSchemaV3<RuleFitParametersV3, RuleFitModelOutputV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public RuleFitParametersV3 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public RuleFitModelOutputV3 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public RuleFitModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RuleFitParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RuleFitParametersV3 extends ModelParametersSchemaV3 { /** * Seed for pseudo random number generator (if applicable). */ public long seed; /** * The algorithm to use to generate rules. */ public RuleFitModelAlgorithm algorithm; /** * Minimum length of rules. Defaults to 3. */ @SerializedName("min_rule_length") public int minRuleLength; /** * Maximum length of rules. Defaults to 3. */ @SerializedName("max_rule_length") public int maxRuleLength; /** * The maximum number of rules to return. defaults to -1 which means the number of rules is selected * by diminishing returns in model deviance. */ @SerializedName("max_num_rules") public int maxNumRules; /** * Specifies type of base learners in the ensemble. */ @SerializedName("model_type") public RuleFitModelModelType modelType; /** * Specifies the number of trees to build in the tree model. Defaults to 50. */ @SerializedName("rule_generation_ntrees") public int ruleGenerationNtrees; /** * Whether to remove rules which are identical to an earlier rule. Defaults to true. */ @SerializedName("remove_duplicates") public boolean removeDuplicates; /** * Lambda for LASSO regressor. */ public double[] lambda; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public RuleFitParametersV3() { seed = -1L; algorithm = RuleFitModelAlgorithm.AUTO; minRuleLength = 3; maxRuleLength = 3; maxNumRules = -1; modelType = RuleFitModelModelType.RULES_AND_LINEAR; ruleGenerationNtrees = 50; removeDuplicates = true; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/RuleFitV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class RuleFitV3 extends ModelBuilderSchema<RuleFitParametersV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public RuleFitParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public RuleFitV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SVDMethod.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum SVDMethod { GramSVD, Power, Randomized, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SVDModelOutputV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SVDModelOutputV99 extends ModelOutputSchemaV3 { /** * Frame key of right singular vectors */ @SerializedName("v_key") public FrameKeyV3 vKey; /** * Singular values */ public double[] d; /** * Frame key of left singular vectors */ @SerializedName("u_key") public FrameKeyV3 uKey; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public SVDModelOutputV99() { status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SVDModelV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SVDModelV99 extends ModelSchemaV3<SVDParametersV99, SVDModelOutputV99> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public SVDParametersV99 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public SVDModelOutputV99 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public SVDModelV99() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SVDParametersV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SVDParametersV99 extends ModelParametersSchemaV3 { /** * Transformation of training data */ public DataInfoTransformType transform; /** * Method for computing SVD (Caution: Randomized is currently experimental and unstable) */ @SerializedName("svd_method") public SVDMethod svdMethod; /** * Number of right singular vectors */ public int nv; /** * Maximum iterations */ @SerializedName("max_iterations") public int maxIterations; /** * RNG seed for k-means++ initialization */ public long seed; /** * Save left singular vectors? */ @SerializedName("keep_u") public boolean keepU; /** * Frame key to save left singular vectors */ @SerializedName("u_name") public String uName; /** * Whether first factor level is included in each categorical expansion */ @SerializedName("use_all_factor_levels") public boolean useAllFactorLevels; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public SVDParametersV99() { transform = DataInfoTransformType.NONE; svdMethod = SVDMethod.GramSVD; nv = 1; maxIterations = 1000; seed = -1L; keepU = true; uName = ""; useAllFactorLevels = true; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SVDV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SVDV99 extends ModelBuilderSchema<SVDParametersV99> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public SVDParametersV99 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public SVDV99() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SaveToHiveTableV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SaveToHiveTableV3 extends RequestSchemaV3 { /** * H2O Frame ID */ @SerializedName("frame_id") public FrameKeyV3 frameId; /** * HIVE JDBC URL */ @SerializedName("jdbc_url") public String jdbcUrl; /** * Name of table to save data to. */ @SerializedName("table_name") public String tableName; /** * HDFS Path to where the table should be stored. */ @SerializedName("table_path") public String tablePath; /** * Storage format of the created table. */ public ApiSaveToHiveTableHandlerHiveFrameSaverFormat format; /** * HDFS Path where to store temporary data. */ @SerializedName("tmp_path") public String tmpPath; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public SaveToHiveTableV3() { jdbcUrl = ""; tableName = ""; tablePath = ""; tmpPath = ""; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SchemaMetadataV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SchemaMetadataV3 extends SchemaV3 { /** * Version number of the Schema. */ public int version; /** * Simple name of the Schema. NOTE: the schema_names form a single namespace. */ public String name; /** * [DEPRECATED] This field is always the same as name. */ public String label; /** * Simple name of the superclass of the Schema. NOTE: the schema_names form a single namespace. */ public String superclass; /** * Simple name of H2O type that this Schema represents. Must not be changed after creation (treat as final). */ public String type; /** * All the public fields of the schema */ public FieldMetadataV3[] fields; /** * Documentation for the schema in Markdown format with GitHub extensions */ public String markdown; /** * Public constructor */ public SchemaMetadataV3() { version = 0; name = ""; label = ""; superclass = ""; type = ""; fields = new FieldMetadataV3[]{}; markdown = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SchemaV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SchemaV3 { /** * Public constructor */ public SchemaV3() { } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ScoreKeeperStoppingMetric.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum ScoreKeeperStoppingMetric { ATC, ATE, ATT, AUC, AUCPR, AUTO, AUUC, MAE, MSE, RMSE, RMSLE, anomaly_score, custom, custom_increasing, deviance, lift_top_group, logloss, mean_per_class_error, misclassification, qini, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SegmentModelsKeyV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SegmentModelsKeyV3 extends KeyV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Name (string representation) for this Key. public String name; // Name (string representation) for the type of Keyed this Key points to. public String type; // URL for the resource that this Key points to, if one exists. public String url; */ /** * Public constructor */ public SegmentModelsKeyV3() { name = ""; type = ""; url = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SegmentModelsParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SegmentModelsParametersV3 extends SchemaV3 { /** * Uniquely identifies the collection of the segment models */ @SerializedName("segment_models_id") public SegmentModelsKeyV3 segmentModelsId; /** * Enumeration of all segments for which to build models for */ public FrameKeyV3 segments; /** * List of columns to segment-by, models will be built for all segments in the data */ @SerializedName("segment_columns") public String[] segmentColumns; /** * Level of parallelism of bulk model building, it is the maximum number of models each H2O node will be building in * parallel */ public int parallelism; /** * Public constructor */ public SegmentModelsParametersV3() { parallelism = 1; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SegmentModelsV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SegmentModelsV3 extends SchemaV3 { /** * Segment Models id */ @SerializedName("segment_models_id") public SegmentModelsKeyV3 segmentModelsId; /** * Public constructor */ public SegmentModelsV3() { } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SequentialSearchCriteriaV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SequentialSearchCriteriaV99 extends HyperSpaceSearchCriteriaV99 { /** * Maximum number of models to build (optional). */ @SerializedName("max_models") public int maxModels; /** * Maximum time to spend building models (optional). */ @SerializedName("max_runtime_secs") public double maxRuntimeSecs; /** * Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the * stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) */ @SerializedName("stopping_rounds") public int stoppingRounds; /** * Metric to use for early stopping (AUTO: logloss for classification, deviance for regression) */ @SerializedName("stopping_metric") public ScoreKeeperStoppingMetric stoppingMetric; /** * Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) */ @SerializedName("stopping_tolerance") public double stoppingTolerance; /** * Use early stopping */ @SerializedName("early_stopping") public boolean earlyStopping; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Hyperparameter space search strategy. public GridHyperSpaceSearchCriteriaStrategy strategy; */ /** * Public constructor */ public SequentialSearchCriteriaV99() { maxModels = 0; maxRuntimeSecs = 0.0; stoppingRounds = 0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; earlyStopping = true; strategy = GridHyperSpaceSearchCriteriaStrategy.Sequential; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SessionIdV4.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SessionIdV4 extends OutputSchemaV4 { /** * Session ID */ @SerializedName("session_key") public String sessionKey; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Url describing the schema of the current object. public String __schema; */ /** * Public constructor */ public SessionIdV4() { sessionKey = ""; __schema = "/4/schemas/SessionIdV4"; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SessionPropertyV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SessionPropertyV3 extends RequestSchemaV3 { /** * Session ID */ @SerializedName("session_key") public String sessionKey; /** * Property Key */ public String key; /** * Property Value */ public String value; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public SessionPropertyV3() { sessionKey = ""; key = ""; value = ""; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SharedTreeModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SharedTreeModelOutputV3 extends ModelOutputSchemaV3 { /** * Variable Importances */ @SerializedName("variable_importances") public TwoDimTableV3 variableImportances; /** * The Intercept term, the initial model function value to which trees make adjustments */ @SerializedName("init_f") public double initF; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public SharedTreeModelOutputV3() { initF = 0.0; status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SharedTreeModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SharedTreeModelV3<P extends ModelParametersSchemaV3, O extends ModelOutputSchemaV3> extends ModelSchemaV3<P, O> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public P parameters; // The build output for the model (e.g. the cluster centers for KMeans). public O output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public SharedTreeModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SharedTreeParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SharedTreeParametersV3 extends ModelParametersSchemaV3 { /** * Balance training data class counts via over/under-sampling (for imbalanced data). */ @SerializedName("balance_classes") public boolean balanceClasses; /** * Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be * automatically computed to obtain class balance during training. Requires balance_classes. */ @SerializedName("class_sampling_factors") public float[] classSamplingFactors; /** * Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires * balance_classes. */ @SerializedName("max_after_balance_size") public float maxAfterBalanceSize; /** * [Deprecated] Maximum size (# classes) for confusion matrices to be printed in the Logs */ @SerializedName("max_confusion_matrix_size") public int maxConfusionMatrixSize; /** * Number of trees. */ public int ntrees; /** * Maximum tree depth (0 for unlimited). */ @SerializedName("max_depth") public int maxDepth; /** * Fewest allowed (weighted) observations in a leaf. */ @SerializedName("min_rows") public double minRows; /** * For numerical columns (real/int), build a histogram of (at least) this many bins, then split at the best point */ public int nbins; /** * For numerical columns (real/int), build a histogram of (at most) this many bins at the root level, then decrease * by factor of two per level */ @SerializedName("nbins_top_level") public int nbinsTopLevel; /** * For categorical columns (factors), build a histogram of this many bins, then split at the best point. Higher * values can lead to more overfitting. */ @SerializedName("nbins_cats") public int nbinsCats; /** * r2_stopping is no longer supported and will be ignored if set - please use stopping_rounds, stopping_metric and * stopping_tolerance instead. Previous version of H2O would stop making trees when the R^2 metric equals or exceeds * this */ @SerializedName("r2_stopping") public double r2Stopping; /** * Seed for pseudo random number generator (if applicable) */ public long seed; /** * Run on one node only; no network overhead but fewer cpus used. Suitable for small datasets. */ @SerializedName("build_tree_one_node") public boolean buildTreeOneNode; /** * A list of row sample rates per class (relative fraction for each class, from 0.0 to 1.0), for each tree */ @SerializedName("sample_rate_per_class") public double[] sampleRatePerClass; /** * Column sample rate per tree (from 0.0 to 1.0) */ @SerializedName("col_sample_rate_per_tree") public double colSampleRatePerTree; /** * Relative change of the column sampling rate for every level (must be > 0.0 and <= 2.0) */ @SerializedName("col_sample_rate_change_per_level") public double colSampleRateChangePerLevel; /** * Score the model after every so many trees. Disabled if set to 0. */ @SerializedName("score_tree_interval") public int scoreTreeInterval; /** * Minimum relative improvement in squared error reduction for a split to happen */ @SerializedName("min_split_improvement") public double minSplitImprovement; /** * What type of histogram to use for finding optimal split points */ @SerializedName("histogram_type") public TreeSharedTreeModelSharedTreeParametersHistogramType histogramType; /** * Use Platt Scaling (default) or Isotonic Regression to calculate calibrated class probabilities. Calibration can * provide more accurate estimates of class probabilities. */ @SerializedName("calibrate_model") public boolean calibrateModel; /** * Data for model calibration */ @SerializedName("calibration_frame") public FrameKeyV3 calibrationFrame; /** * Calibration method to use */ @SerializedName("calibration_method") public TreeCalibrationHelperCalibrationMethod calibrationMethod; /** * Check if response column is constant. If enabled, then an exception is thrown if the response column is a * constant value.If disabled, then model will train regardless of the response column being a constant value or * not. */ @SerializedName("check_constant_response") public boolean checkConstantResponse; /** * Create checkpoints into defined directory while training process is still running. In case of cluster shutdown, * this checkpoint can be used to restart training. */ @SerializedName("in_training_checkpoints_dir") public String inTrainingCheckpointsDir; /** * Checkpoint the model after every so many trees. Parameter is used only when in_training_checkpoints_dir is * defined */ @SerializedName("in_training_checkpoints_tree_interval") public int inTrainingCheckpointsTreeInterval; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public SharedTreeParametersV3() { balanceClasses = false; maxAfterBalanceSize = 0.0f; maxConfusionMatrixSize = 0; ntrees = 0; maxDepth = 0; minRows = 0.0; nbins = 0; nbinsTopLevel = 0; nbinsCats = 0; r2Stopping = 0.0; seed = 0L; buildTreeOneNode = false; colSampleRatePerTree = 0.0; colSampleRateChangePerLevel = 0.0; scoreTreeInterval = 0; minSplitImprovement = 0.0; calibrateModel = false; checkConstantResponse = false; inTrainingCheckpointsDir = ""; inTrainingCheckpointsTreeInterval = 0; nfolds = 0; keepCrossValidationModels = false; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = false; tweediePower = 0.0; quantileAlpha = 0.0; huberAlpha = 0.0; maxCategoricalLevels = 0; ignoreConstCols = false; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingTolerance = 0.0; gainsliftBins = 0; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SharedTreeV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SharedTreeV3<P extends ModelParametersSchemaV3> extends ModelBuilderSchema<P> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public P parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public SharedTreeV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ShutdownV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ShutdownV3 extends RequestSchemaV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public ShutdownV3() { _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SignificantRulesV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SignificantRulesV3 extends RequestSchemaV3 { /** * Model id of interest */ @SerializedName("model_id") public ModelKeyV3 modelId; /** * The estimated coefficients and language representations (in case it is a rule) for each of the significant * baselearners. */ @SerializedName("significant_rules_table") public TwoDimTableV3 significantRulesTable; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public SignificantRulesV3() { _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SimpleRecipeResponseType.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum SimpleRecipeResponseType { BOOL, ENUM, INT, NONE, REAL, TIME, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SplitFrameV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SplitFrameV3 extends SchemaV3 { /** * Job Key */ public JobKeyV3 key; /** * Dataset */ public FrameKeyV3 dataset; /** * Split ratios - resulting number of split is ratios.length+1 */ public double[] ratios; /** * Destination keys for each output frame split. */ @SerializedName("destination_frames") public FrameKeyV3[] destinationFrames; /** * Public constructor */ public SplitFrameV3() { } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/StackedEnsembleModelOutputV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class StackedEnsembleModelOutputV99 extends ModelOutputSchemaV3 { /** * Model which combines the base_models into a stacked ensemble. */ public ModelKeyV3 metalearner; /** * Level one frame used for metalearner training. */ @SerializedName("levelone_frame_id") public FrameKeyV3 leveloneFrameId; /** * The stacking strategy used for training. */ @SerializedName("stacking_strategy") public EnsembleStackedEnsembleModelStackingStrategy stackingStrategy; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public StackedEnsembleModelOutputV99() { modelCategory = ModelCategory.Unknown; status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.5; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/StackedEnsembleModelV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class StackedEnsembleModelV99 extends ModelSchemaV3<StackedEnsembleParametersV99, StackedEnsembleModelOutputV99> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public StackedEnsembleParametersV99 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public StackedEnsembleModelOutputV99 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public StackedEnsembleModelV99() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/StackedEnsembleParametersV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class StackedEnsembleParametersV99 extends ModelParametersSchemaV3 { /** * List of models or grids (or their ids) to ensemble/stack together. Grids are expanded to individual models. If * not using blending frame, then models must have been cross-validated using nfolds > 1, and folds must be * identical across models. */ @SerializedName("base_models") public KeyV3[] baseModels; /** * Type of algorithm to use as the metalearner. Options include 'AUTO' (GLM with non negative weights; if * validation_frame is present, a lambda search is performed), 'deeplearning' (Deep Learning with default * parameters), 'drf' (Random Forest with default parameters), 'gbm' (GBM with default parameters), 'glm' (GLM with * default parameters), 'naivebayes' (NaiveBayes with default parameters), or 'xgboost' (if available, XGBoost with * default parameters). */ @SerializedName("metalearner_algorithm") public EnsembleMetalearnerAlgorithm metalearnerAlgorithm; /** * Number of folds for K-fold cross-validation of the metalearner algorithm (0 to disable or >= 2). */ @SerializedName("metalearner_nfolds") public int metalearnerNfolds; /** * Cross-validation fold assignment scheme for metalearner cross-validation. Defaults to AUTO (which is currently * set to Random). The 'Stratified' option will stratify the folds based on the response variable, for * classification problems. */ @SerializedName("metalearner_fold_assignment") public ModelParametersFoldAssignmentScheme metalearnerFoldAssignment; /** * Column with cross-validation fold index assignment per observation for cross-validation of the metalearner. */ @SerializedName("metalearner_fold_column") public ColSpecifierV3 metalearnerFoldColumn; /** * Transformation used for the level one frame. */ @SerializedName("metalearner_transform") public EnsembleStackedEnsembleModelStackedEnsembleParametersMetalearnerTransform metalearnerTransform; /** * Keep level one frame used for metalearner training. */ @SerializedName("keep_levelone_frame") public boolean keepLeveloneFrame; /** * Parameters for metalearner algorithm */ @SerializedName("metalearner_params") public String metalearnerParams; /** * Frame used to compute the predictions that serve as the training frame for the metalearner (triggers blending * mode if provided) */ @SerializedName("blending_frame") public FrameKeyV3 blendingFrame; /** * Seed for random numbers; passed through to the metalearner algorithm. Defaults to -1 (time-based random number) */ public long seed; /** * Specify the number of training set samples for scoring. The value must be >= 0. To use all training samples, * enter 0. */ @SerializedName("score_training_samples") public long scoreTrainingSamples; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public StackedEnsembleParametersV99() { baseModels = new KeyV3[]{}; metalearnerAlgorithm = EnsembleMetalearnerAlgorithm.AUTO; metalearnerNfolds = 0; metalearnerTransform = EnsembleStackedEnsembleModelStackedEnsembleParametersMetalearnerTransform.NONE; keepLeveloneFrame = false; metalearnerParams = ""; seed = -1L; scoreTrainingSamples = 10000L; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/StackedEnsembleV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class StackedEnsembleV99 extends ModelBuilderSchema<StackedEnsembleParametersV99> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public StackedEnsembleParametersV99 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public StackedEnsembleV99() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/SteamMetricsV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class SteamMetricsV3 extends RequestSchemaV3 { /** * Steam metrics API version */ public long version; /** * Number of milliseconds that the cluster has been idle */ @SerializedName("idle_millis") public long idleMillis; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public SteamMetricsV3() { version = 0L; idleMillis = 0L; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/StepDefinitionV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class StepDefinitionV99 { /** * Name of the step provider (usually, this is also the name of an algorithm). */ public String name; /** * An alias representing a predefined list of steps to be executed. */ public H2oautomlStepDefinitionAlias alias; /** * The list of steps to be executed (Mutually exclusive with alias). */ public StepV99[] steps; /** * Public constructor */ public StepDefinitionV99() { name = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/StepV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class StepV99 { /** * The id of the step (must be unique per step provider). */ public String id; /** * The group of execution of the given step (groups are executed in ascending order of priority).Steps with group=0 * are skipped. Defaults to -1 to use the default group assigned to the step id. */ public int group; /** * The relative weight for the given step (can impact time and/or number of models allocated for this step). Steps * with weight=0 are skipped. Defaults to -1 to use the default weight assigned to the step id. */ public int weight; /** * Public constructor */ public StepV99() { id = ""; group = -1; weight = -1; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/StreamingSchema.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class StreamingSchema extends SchemaV3 { /** * Public constructor */ public StreamingSchema() { } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/StringPairV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class StringPairV3 extends SchemaV3 { /** * Value A */ public String a; /** * Value B */ public String b; /** * Public constructor */ public StringPairV3() { a = ""; b = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TabulateV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class TabulateV3 extends SchemaV3 { /** * Dataset */ public FrameKeyV3 dataset; /** * Predictor */ public ColSpecifierV3 predictor; /** * Response */ public ColSpecifierV3 response; /** * Observation weights (optional) */ public ColSpecifierV3 weight; /** * Number of bins for predictor column */ @SerializedName("nbins_predictor") public int nbinsPredictor; /** * Number of bins for response column */ @SerializedName("nbins_response") public int nbinsResponse; /** * Counts table */ @SerializedName("count_table") public TwoDimTableV3 countTable; /** * Response table */ @SerializedName("response_table") public TwoDimTableV3 responseTable; /** * Public constructor */ public TabulateV3() { nbinsPredictor = 20; nbinsResponse = 10; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TargetEncoderModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class TargetEncoderModelOutputV3 extends ModelOutputSchemaV3 { /** * Mapping between input column(s) and their corresponding target encoded output column(s). Please note that there * can be multiple columns on the input/from side if columns grouping was used, and there can also be multiple * columns on the output/to side if the target was multiclass. */ @SerializedName("input_to_output_columns") public ColumnsMappingV3[] inputToOutputColumns; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public TargetEncoderModelOutputV3() { status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TargetEncoderModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class TargetEncoderModelV3 extends ModelSchemaV3<TargetEncoderParametersV3, TargetEncoderModelOutputV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public TargetEncoderParametersV3 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public TargetEncoderModelOutputV3 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public TargetEncoderModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TargetEncoderParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class TargetEncoderParametersV3 extends ModelParametersSchemaV3 { /** * List of categorical columns or groups of categorical columns to encode. When groups of columns are specified, * each group is encoded as a single column (interactions are created internally). */ @SerializedName("columns_to_encode") public String[][] columnsToEncode; /** * If true, the original non-encoded categorical features will remain in the result frame. */ @SerializedName("keep_original_categorical_columns") public boolean keepOriginalCategoricalColumns; /** * If true, enables blending of posterior probabilities (computed for a given categorical value) with prior * probabilities (computed on the entire set). This allows to mitigate the effect of categorical values with small * cardinality. The blending effect can be tuned using the `inflection_point` and `smoothing` parameters. */ public boolean blending; /** * Inflection point of the sigmoid used to blend probabilities (see `blending` parameter). For a given categorical * value, if it appears less that `inflection_point` in a data sample, then the influence of the posterior * probability will be smaller than the prior. */ @SerializedName("inflection_point") public double inflectionPoint; /** * Smoothing factor corresponds to the inverse of the slope at the inflection point on the sigmoid used to blend * probabilities (see `blending` parameter). If smoothing tends towards 0, then the sigmoid used for blending turns * into a Heaviside step function. */ public double smoothing; /** * Data leakage handling strategy used to generate the encoding. Supported options are: * 1) "none" (default) - no holdout, using the entire training frame. * 2) "leave_one_out" - current row's response value is subtracted from the per-level frequencies pre-calculated on * the entire training frame. * 3) "k_fold" - encodings for a fold are generated based on out-of-fold data. */ @SerializedName("data_leakage_handling") public H2otargetencodingTargetEncoderModelDataLeakageHandlingStrategy dataLeakageHandling; /** * The amount of noise to add to the encoded column. Use 0 to disable noise, and -1 (=AUTO) to let the algorithm * determine a reasonable amount of noise. */ public double noise; /** * Seed used to generate the noise. By default, the seed is chosen randomly. */ public long seed; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public TargetEncoderParametersV3() { keepOriginalCategoricalColumns = true; blending = false; inflectionPoint = 10.0; smoothing = 20.0; dataLeakageHandling = H2otargetencodingTargetEncoderModelDataLeakageHandlingStrategy.None; noise = 0.01; seed = -1L; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = false; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TargetEncoderTransformParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class TargetEncoderTransformParametersV3 extends SchemaV3 { /** * Target Encoder model to use. */ public ModelKeyV3 model; /** * Frame to transform. */ public FrameKeyV3 frame; /** * Force encoding mode for training data: when using a leakage handling strategy different from None, training data * should be transformed with this flag set to true (Defaults to false). */ @SerializedName("as_training") public boolean asTraining; /** * Enables or disables blending. Defaults to the value assigned at model creation. */ public boolean blending; /** * Inflection point. Defaults to the value assigned at model creation. */ @SerializedName("inflection_point") public double inflectionPoint; /** * Smoothing. Defaults to the value assigned at model creation. */ public double smoothing; /** * Noise. Defaults to the value assigned at model creation. */ public double noise; /** * Public constructor */ public TargetEncoderTransformParametersV3() { asTraining = false; blending = false; inflectionPoint = -1.0; smoothing = -1.0; noise = -2.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TargetEncoderV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class TargetEncoderV3 extends ModelBuilderSchema<TargetEncoderParametersV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public TargetEncoderParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public TargetEncoderV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TimelineEventEventType.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum TimelineEventEventType { heartbeat, io, network_msg, unknown, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TimelineV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class TimelineV3 extends RequestSchemaV3 { /** * Current time in millis. */ public long now; /** * This node */ public String self; /** * recorded timeline events */ public EventV3[] events; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public TimelineV3() { now = 0L; self = ""; events = new EventV3[]{}; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TreeCalibrationHelperCalibrationMethod.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum TreeCalibrationHelperCalibrationMethod { AUTO, IsotonicRegression, PlattScaling, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TreeHandlerPlainLanguageRules.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum TreeHandlerPlainLanguageRules { AUTO, FALSE, TRUE, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TreeSharedTreeModelSharedTreeParametersHistogramType.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum TreeSharedTreeModelSharedTreeParametersHistogramType { AUTO, QuantilesGlobal, Random, RoundRobin, UniformAdaptive, UniformRobust, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TreeStatsV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class TreeStatsV3 extends SchemaV3 { /** * minDepth */ @SerializedName("min_depth") public int minDepth; /** * maxDepth */ @SerializedName("max_depth") public int maxDepth; /** * meanDepth */ @SerializedName("mean_depth") public float meanDepth; /** * minLeaves */ @SerializedName("min_leaves") public int minLeaves; /** * maxLeaves */ @SerializedName("max_leaves") public int maxLeaves; /** * meanLeaves */ @SerializedName("mean_leaves") public float meanLeaves; /** * Public constructor */ public TreeStatsV3() { minDepth = 0; maxDepth = 0; meanDepth = 0.0f; minLeaves = 0; maxLeaves = 0; meanLeaves = 0.0f; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TreeV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class TreeV3 extends SchemaV3 { /** * Key of the model the desired tree belongs to */ public ModelKeyV3 model; /** * Index of the tree in the model. */ @SerializedName("tree_number") public int treeNumber; /** * Name of the class of the tree. Ignored for regression and binomial. */ @SerializedName("tree_class") public String treeClass; /** * Whether to generate plain language rules. */ @SerializedName("plain_language_rules") public TreeHandlerPlainLanguageRules plainLanguageRules; /** * Left child nodes in the tree */ @SerializedName("left_children") public int[] leftChildren; /** * Right child nodes in the tree */ @SerializedName("right_children") public int[] rightChildren; /** * Number of the root node */ @SerializedName("root_node_id") public int rootNodeId; /** * Split thresholds (numeric and possibly categorical columns) */ public float[] thresholds; /** * Names of the column of the split */ public String[] features; /** * Which way NA Splits (LEFT, RIGHT, NA) */ public String[] nas; /** * Description of the tree's nodes */ public String[] descriptions; /** * Categorical levels on the edge from the parent node */ public int[][] levels; /** * Prediction values on terminal nodes */ public float[] predictions; /** * Plain language rules representation of a trained decision tree */ @SerializedName("tree_decision_path") public String treeDecisionPath; /** * Plain language rules that were used in a particular prediction */ @SerializedName("decision_paths") public String[] decisionPaths; /** * Public constructor */ public TreeV3() { treeNumber = 0; treeClass = ""; rootNodeId = 0; treeDecisionPath = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TreeupliftUpliftDRFModelUpliftDRFParametersUpliftMetricType.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum TreeupliftUpliftDRFModelUpliftDRFParametersUpliftMetricType { AUTO, ChiSquared, Euclidean, KL, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TreexgboostXGBoostModelXGBoostParametersBackend.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum TreexgboostXGBoostModelXGBoostParametersBackend { auto, cpu, gpu, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TreexgboostXGBoostModelXGBoostParametersBooster.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum TreexgboostXGBoostModelXGBoostParametersBooster { dart, gblinear, gbtree, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TreexgboostXGBoostModelXGBoostParametersDMatrixType.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum TreexgboostXGBoostModelXGBoostParametersDMatrixType { auto, dense, sparse, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TreexgboostXGBoostModelXGBoostParametersDartNormalizeType.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum TreexgboostXGBoostModelXGBoostParametersDartNormalizeType { forest, tree, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TreexgboostXGBoostModelXGBoostParametersDartSampleType.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum TreexgboostXGBoostModelXGBoostParametersDartSampleType { uniform, weighted, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TreexgboostXGBoostModelXGBoostParametersGrowPolicy.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum TreexgboostXGBoostModelXGBoostParametersGrowPolicy { depthwise, lossguide, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TreexgboostXGBoostModelXGBoostParametersTreeMethod.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum TreexgboostXGBoostModelXGBoostParametersTreeMethod { approx, auto, exact, hist, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TwoDimTableV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class TwoDimTableV3 extends SchemaV3 { /** * Table Name */ public String name; /** * Table Description */ public String description; /** * Column Specification */ public ColumnSpecsBase[] columns; /** * Number of Rows */ public int rowcount; /** * Table Data (col-major) */ public Object[][] data; /** * Public constructor */ public TwoDimTableV3() { name = ""; description = ""; rowcount = 0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/TypeaheadV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class TypeaheadV3 extends RequestSchemaV3 { /** * training_frame */ public String src; /** * limit */ public int limit; /** * matches */ public String[] matches; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public TypeaheadV3() { src = ""; limit = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/UnlockKeysV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class UnlockKeysV3 extends RequestSchemaV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public UnlockKeysV3() { _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/UpliftDRFModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class UpliftDRFModelOutputV3 extends SharedTreeModelOutputV3 { /** * Default thresholds to calculate AUUC metric. If validation is enabled, thresholds from validation metrics is * saved here. Otherwise thresholds are from training metrics. */ @SerializedName("default_auuc_thresholds") public double[] defaultAuucThresholds; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Variable Importances public TwoDimTableV3 variableImportances; // The Intercept term, the initial model function value to which trees make adjustments public double initF; // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public UpliftDRFModelOutputV3() { initF = 0.0; status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/UpliftDRFModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class UpliftDRFModelV3 extends SharedTreeModelV3<UpliftDRFParametersV3, UpliftDRFModelOutputV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public UpliftDRFParametersV3 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public UpliftDRFModelOutputV3 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public UpliftDRFModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/UpliftDRFParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class UpliftDRFParametersV3 extends SharedTreeParametersV3 { /** * Number of variables randomly sampled as candidates at each split. If set to -1, defaults to sqrt{p} for * classification and p/3 for regression (where p is the # of predictors */ public int mtries; /** * Row sample rate per tree (from 0.0 to 1.0) */ @SerializedName("sample_rate") public double sampleRate; /** * Define the column which will be used for computing uplift gain to select best split for a tree. The column has to * divide the dataset into treatment (value 1) and control (value 0) groups. */ @SerializedName("treatment_column") public String treatmentColumn; /** * Divergence metric used to find best split when building an uplift tree. */ @SerializedName("uplift_metric") public TreeupliftUpliftDRFModelUpliftDRFParametersUpliftMetricType upliftMetric; /** * Metric used to calculate Area Under Uplift Curve. */ @SerializedName("auuc_type") public AUUCType auucType; /** * Number of bins to calculate Area Under Uplift Curve. */ @SerializedName("auuc_nbins") public int auucNbins; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Balance training data class counts via over/under-sampling (for imbalanced data). public boolean balanceClasses; // Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be // automatically computed to obtain class balance during training. Requires balance_classes. public float[] classSamplingFactors; // Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires // balance_classes. public float maxAfterBalanceSize; // [Deprecated] Maximum size (# classes) for confusion matrices to be printed in the Logs public int maxConfusionMatrixSize; // Number of trees. public int ntrees; // Maximum tree depth (0 for unlimited). public int maxDepth; // Fewest allowed (weighted) observations in a leaf. public double minRows; // For numerical columns (real/int), build a histogram of (at least) this many bins, then split at the best point public int nbins; // For numerical columns (real/int), build a histogram of (at most) this many bins at the root level, then decrease // by factor of two per level public int nbinsTopLevel; // For categorical columns (factors), build a histogram of this many bins, then split at the best point. Higher // values can lead to more overfitting. public int nbinsCats; // r2_stopping is no longer supported and will be ignored if set - please use stopping_rounds, stopping_metric and // stopping_tolerance instead. Previous version of H2O would stop making trees when the R^2 metric equals or exceeds // this public double r2Stopping; // Seed for pseudo random number generator (if applicable) public long seed; // Run on one node only; no network overhead but fewer cpus used. Suitable for small datasets. public boolean buildTreeOneNode; // A list of row sample rates per class (relative fraction for each class, from 0.0 to 1.0), for each tree public double[] sampleRatePerClass; // Column sample rate per tree (from 0.0 to 1.0) public double colSampleRatePerTree; // Relative change of the column sampling rate for every level (must be > 0.0 and <= 2.0) public double colSampleRateChangePerLevel; // Score the model after every so many trees. Disabled if set to 0. public int scoreTreeInterval; // Minimum relative improvement in squared error reduction for a split to happen public double minSplitImprovement; // What type of histogram to use for finding optimal split points public TreeSharedTreeModelSharedTreeParametersHistogramType histogramType; // Use Platt Scaling (default) or Isotonic Regression to calculate calibrated class probabilities. Calibration can // provide more accurate estimates of class probabilities. public boolean calibrateModel; // Data for model calibration public FrameKeyV3 calibrationFrame; // Calibration method to use public TreeCalibrationHelperCalibrationMethod calibrationMethod; // Check if response column is constant. If enabled, then an exception is thrown if the response column is a // constant value.If disabled, then model will train regardless of the response column being a constant value or // not. public boolean checkConstantResponse; // Create checkpoints into defined directory while training process is still running. In case of cluster shutdown, // this checkpoint can be used to restart training. public String inTrainingCheckpointsDir; // Checkpoint the model after every so many trees. Parameter is used only when in_training_checkpoints_dir is // defined public int inTrainingCheckpointsTreeInterval; // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public UpliftDRFParametersV3() { mtries = -2; sampleRate = 0.632; treatmentColumn = "treatment"; upliftMetric = TreeupliftUpliftDRFModelUpliftDRFParametersUpliftMetricType.AUTO; auucType = AUUCType.AUTO; auucNbins = -1; balanceClasses = false; maxAfterBalanceSize = 5.0f; maxConfusionMatrixSize = 20; ntrees = 50; maxDepth = 20; minRows = 1.0; nbins = 20; nbinsTopLevel = 1024; nbinsCats = 1024; r2Stopping = 1.7976931348623157e+308; seed = -1L; buildTreeOneNode = false; colSampleRatePerTree = 1.0; colSampleRateChangePerLevel = 1.0; scoreTreeInterval = 0; minSplitImprovement = 1e-05; histogramType = TreeSharedTreeModelSharedTreeParametersHistogramType.AUTO; calibrateModel = false; calibrationMethod = TreeCalibrationHelperCalibrationMethod.AUTO; checkConstantResponse = true; inTrainingCheckpointsDir = ""; inTrainingCheckpointsTreeInterval = 1; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/UpliftDRFV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class UpliftDRFV3 extends SharedTreeV3<UpliftDRFParametersV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public UpliftDRFParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public UpliftDRFV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/UtilExportFileFormat.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum UtilExportFileFormat { csv, parquet, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ValidationMessageV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ValidationMessageV3 extends SchemaV3 { /** * Type of validation message (ERROR, WARN, INFO, HIDE) */ @SerializedName("message_type") public String messageType; /** * Field to which the message applies */ @SerializedName("field_name") public String fieldName; /** * Message text */ public String message; /** * Public constructor */ public ValidationMessageV3() { messageType = ""; fieldName = ""; message = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/VarImpV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class VarImpV3 extends SchemaV3 { /** * Variable importance of individual variables */ public float[] varimp; /** * Names of variables */ public String[] names; /** * Public constructor */ public VarImpV3() { } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/WaterMeterCpuTicksV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class WaterMeterCpuTicksV3 extends RequestSchemaV3 { /** * Index of node to query ticks for (0-based) */ public int nodeidx; /** * array of tick counts per core */ @SerializedName("cpu_ticks") public long[][] cpuTicks; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public WaterMeterCpuTicksV3() { nodeidx = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/WaterMeterIoV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class WaterMeterIoV3 extends RequestSchemaV3 { /** * Index of node to query ticks for (0-based) */ public int nodeidx; /** * array of IO info */ @SerializedName("persist_stats") public IoStatsEntry[] persistStats; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public WaterMeterIoV3() { nodeidx = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }