index
int64
repo_id
string
file_path
string
content
string
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/preprocessing
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/preprocessing/parser/StringToSingleTextParser.java
package ai.knowly.langtorch.preprocessing.parser; import ai.knowly.langtorch.schema.text.SingleText; /** * The StringToSingleTextParser class is a Java parser that converts a string input into a * SingleText object. */ public class StringToSingleTextParser implements Parser<String, SingleText> { private StringToSingleTextParser() { super(); } public static StringToSingleTextParser create() { return new StringToSingleTextParser(); } @Override public SingleText parse(String input) { return SingleText.of(input); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/preprocessing/splitter
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/preprocessing/splitter/text/SplitterOption.java
package ai.knowly.langtorch.preprocessing.splitter.text; /** The SplitterOption class is an abstract class that represents a splitter option. */ public abstract class SplitterOption { String text; protected SplitterOption(String text) { this.text = text; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/preprocessing/splitter
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/preprocessing/splitter/text/TextSplitter.java
package ai.knowly.langtorch.preprocessing.splitter.text; import java.util.List; /** The TextSplitter interface is an interface that represents a text splitter. */ public interface TextSplitter<S extends SplitterOption> { List<String> splitText(S option); }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/preprocessing/splitter/text
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/preprocessing/splitter/text/word/WordSplitter.java
package ai.knowly.langtorch.preprocessing.splitter.text.word; import ai.knowly.langtorch.preprocessing.splitter.text.TextSplitter; import com.google.common.collect.ImmutableList; import com.google.common.collect.ImmutableList.Builder; import java.util.List; /** Splits text into chunks of words. */ public class WordSplitter implements TextSplitter<WordSplitterOption> { public static WordSplitter create() { return new WordSplitter(); } @Override public List<String> splitText(WordSplitterOption option) { int maxLengthPerChunk = option.getMaxLengthPerChunk(); String text = option.getText(); Builder<String> chunks = ImmutableList.builder(); // Validate the maxLengthPerChunk if (maxLengthPerChunk < 1) { throw new IllegalArgumentException("maxLengthPerChunk should be greater than 0"); } String[] words = text.split("\\s+"); int minLengthOfWord = words[0].length(); for (String word : words) { minLengthOfWord = Math.min(minLengthOfWord, word.length()); } if (maxLengthPerChunk < minLengthOfWord) { throw new IllegalArgumentException( "maxLengthPerChunk is smaller than the smallest word in the string"); } StringBuilder chunk = new StringBuilder(); int wordsLength = words.length; for (int i = 0; i < wordsLength; i++) { String word = words[i]; boolean isLastWord = i == wordsLength - 1; if ((chunk.length() + word.length() + (isLastWord ? 0 : 1)) <= maxLengthPerChunk) { // '+1' accounts for spaces, except for the last word chunk.append(word); if (!isLastWord) { chunk.append(" "); } } else { chunks.add(chunk.toString().trim()); chunk = new StringBuilder(); chunk.append(word).append(" "); } } // Add remaining chunk if any if (chunk.length() > 0) { chunks.add(chunk.toString().trim()); } return chunks.build(); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/preprocessing/splitter/text
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/preprocessing/splitter/text/word/WordSplitterOption.java
package ai.knowly.langtorch.preprocessing.splitter.text.word; import ai.knowly.langtorch.preprocessing.splitter.text.SplitterOption; import lombok.Builder; import lombok.Data; import lombok.EqualsAndHashCode; /** Options for {@link WordSplitter}. */ @EqualsAndHashCode(callSuper = true) @Data @Builder(toBuilder = true, setterPrefix = "set") public class WordSplitterOption extends SplitterOption { // Unprocessed text. private final String text; // The max length of a chunk. private final int maxLengthPerChunk; private WordSplitterOption(String text, int maxLengthPerChunk) { super(text); this.text = text; this.maxLengthPerChunk = maxLengthPerChunk; } public static WordSplitterOption of(String text, int totalLengthOfChunk) { return new WordSplitterOption(text, totalLengthOfChunk); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/EmbeddingProcessor.java
package ai.knowly.langtorch.processor; import ai.knowly.langtorch.schema.embeddings.EmbeddingInput; import ai.knowly.langtorch.schema.embeddings.EmbeddingOutput; /** EmbeddingsProcessor is a shared interface for embedding output. */ public interface EmbeddingProcessor extends Processor<EmbeddingInput, EmbeddingOutput> {}
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/Processor.java
package ai.knowly.langtorch.processor; import ai.knowly.langtorch.schema.io.Input; import ai.knowly.langtorch.schema.io.Output; import com.google.common.util.concurrent.ListenableFuture; /** * Processor is LLM model's capability of taking/generating data of different modalities or types. */ public interface Processor<I extends Input, O extends Output> { O run(I inputData); ListenableFuture<O> runAsync(I inputData); }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/ProcessorConfig.java
package ai.knowly.langtorch.processor; /** The ProcessorConfig interface is an interface that represents a processor config. */ public interface ProcessorConfig {}
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/ProcessorExecutionException.java
package ai.knowly.langtorch.processor; /** * The ProcessorExecutionException class is a class that represents a processor execution exception. */ public class ProcessorExecutionException extends RuntimeException { public ProcessorExecutionException(String message) { super(message); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/cohere/CohereProcessorModule.java
package ai.knowly.langtorch.processor.cohere; import ai.knowly.langtorch.llm.cohere.CohereAIService; import ai.knowly.langtorch.llm.cohere.schema.config.CohereAIServiceConfig; import ai.knowly.langtorch.processor.cohere.generate.CohereGenerateProcessorConfig; import ai.knowly.langtorch.utils.Environment; import ai.knowly.langtorch.utils.api.key.CohereKeyUtil; import com.google.common.flogger.FluentLogger; import com.google.inject.AbstractModule; import com.google.inject.Provides; public final class CohereProcessorModule extends AbstractModule { private static final FluentLogger logger = FluentLogger.forEnclosingClass(); @Provides public CohereAIService providesCohereAPI() { return new CohereAIService( CohereAIServiceConfig.builder() .setApiKey(CohereKeyUtil.getKey(logger, Environment.PRODUCTION)) .build()); } @Provides public CohereGenerateProcessorConfig providesCohereGenerateProcessorConfig() { return CohereGenerateProcessorConfig.builder().build(); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/cohere
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/cohere/generate/CohereGenerateProcessor.java
package ai.knowly.langtorch.processor.cohere.generate; import ai.knowly.langtorch.llm.cohere.CohereAIService; import ai.knowly.langtorch.llm.cohere.schema.CohereGenerateRequest; import ai.knowly.langtorch.llm.cohere.schema.CohereGenerateResponse; import ai.knowly.langtorch.processor.ProcessorExecutionException; import ai.knowly.langtorch.processor.Processor; import ai.knowly.langtorch.schema.text.SingleText; import com.google.common.util.concurrent.Futures; import com.google.common.util.concurrent.ListenableFuture; import javax.inject.Inject; import static com.google.common.util.concurrent.MoreExecutors.directExecutor; /** Processor for Cohere.ai text generation service. */ public class CohereGenerateProcessor implements Processor<SingleText, SingleText> { private final CohereAIService cohereAIService; @Inject CohereGenerateProcessor(CohereAIService cohereAIService) { this.cohereAIService = cohereAIService; } @Override public SingleText run(SingleText inputData) { CohereGenerateResponse response = cohereAIService.generate( CohereGenerateRequest.builder().prompt(inputData.getText()).build()); if (response.getGenerations().isEmpty()) { throw new ProcessorExecutionException("Receive empty generations from cohere.ai."); } return SingleText.of(response.getGenerations().get(0).getText()); } @Override public ListenableFuture<SingleText> runAsync(SingleText inputData) { ListenableFuture<CohereGenerateResponse> responseFuture = cohereAIService.generateAsync( CohereGenerateRequest.builder().prompt(inputData.getText()).build()); return Futures.transform( responseFuture, response -> { if (response.getGenerations().isEmpty()) { throw new ProcessorExecutionException("Receive empty generations from cohere.ai."); } return SingleText.of(response.getGenerations().get(0).getText()); }, directExecutor()); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/cohere
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/cohere/generate/CohereGenerateProcessorConfig.java
package ai.knowly.langtorch.processor.cohere.generate; import ai.knowly.langtorch.processor.ProcessorConfig; import com.google.auto.value.AutoValue; import com.google.common.collect.ImmutableList; import com.google.common.collect.ImmutableMap; import java.util.List; import java.util.Optional; @AutoValue public abstract class CohereGenerateProcessorConfig implements ProcessorConfig { private static final String DEFAULT_MODEL = "command"; public static Builder builder() { return new AutoValue_CohereGenerateProcessorConfig.Builder() .setModel(DEFAULT_MODEL) .setEndSequences(ImmutableList.of()) .setStopSequences(ImmutableList.of()) .setLogitBias(ImmutableMap.of()); } public abstract Builder toBuilder(); // Abstract methods for configuration properties public abstract String getModel(); public abstract Optional<String> getPresent(); public abstract Optional<Double> getTemperature(); public abstract Optional<Double> getP(); public abstract Optional<Integer> getK(); public abstract Optional<Integer> getMaxTokens(); public abstract Optional<Integer> getNumGenerations(); public abstract Optional<Double> getPresencePenalty(); public abstract Optional<Double> getFrequencyPenalty(); public abstract ImmutableMap<String, Float> getLogitBias(); public abstract List<String> getEndSequences(); public abstract List<String> getStopSequences(); public abstract Optional<CohereGenerateReturnLikelihoods> getReturnLikelihoods(); public abstract Optional<CohereGenerateTruncate> getTruncate(); @AutoValue.Builder public abstract static class Builder { public abstract Builder setModel(String newModel); public abstract Builder setPresent(String newPresent); public abstract Builder setTemperature(double newTemperature); public abstract Builder setP(double newP); public abstract Builder setK(int newK); public abstract Builder setMaxTokens(int newMaxTokens); public abstract Builder setNumGenerations(int newNumGenerations); public abstract Builder setPresencePenalty(double newPresencePenalty); public abstract Builder setFrequencyPenalty(double newFrequencyPenalty); public abstract Builder setLogitBias(ImmutableMap<String, Float> newLogitBias); public abstract Builder setEndSequences(List<String> newEndSequences); public abstract Builder setStopSequences(List<String> newStopSequences); public abstract Builder setReturnLikelihoods( CohereGenerateReturnLikelihoods newReturnLikelihoods); public abstract Builder setTruncate(CohereGenerateTruncate newTruncate); public abstract CohereGenerateProcessorConfig build(); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/cohere
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/cohere/generate/CohereGenerateRequestConverter.java
package ai.knowly.langtorch.processor.cohere.generate; import ai.knowly.langtorch.llm.cohere.schema.CohereGenerateRequest; public class CohereGenerateRequestConverter { private CohereGenerateRequestConverter() {} public static CohereGenerateRequest convert( String prompt, CohereGenerateProcessorConfig cohereGenerateProcessorConfig) { CohereGenerateRequest.Builder cohereGenerateRequestBuilder = CohereGenerateRequest.builder().prompt(prompt); // Set optional configuration properties cohereGenerateProcessorConfig .getTemperature() .ifPresent(cohereGenerateRequestBuilder::temperature); cohereGenerateProcessorConfig.getP().ifPresent(cohereGenerateRequestBuilder::p); cohereGenerateProcessorConfig.getK().ifPresent(cohereGenerateRequestBuilder::k); cohereGenerateProcessorConfig.getPresent().ifPresent(cohereGenerateRequestBuilder::preset); cohereGenerateProcessorConfig .getNumGenerations() .ifPresent(cohereGenerateRequestBuilder::numGenerations); if (!cohereGenerateProcessorConfig.getEndSequences().isEmpty()) { cohereGenerateRequestBuilder.endSequences(cohereGenerateProcessorConfig.getEndSequences()); } if (!cohereGenerateProcessorConfig.getStopSequences().isEmpty()) { cohereGenerateRequestBuilder.stopSequences(cohereGenerateProcessorConfig.getStopSequences()); } cohereGenerateProcessorConfig.getMaxTokens().ifPresent(cohereGenerateRequestBuilder::maxTokens); cohereGenerateProcessorConfig .getPresencePenalty() .ifPresent(cohereGenerateRequestBuilder::presencePenalty); cohereGenerateProcessorConfig .getFrequencyPenalty() .ifPresent(cohereGenerateRequestBuilder::frequencyPenalty); cohereGenerateRequestBuilder.logitBias(cohereGenerateProcessorConfig.getLogitBias()); cohereGenerateProcessorConfig .getReturnLikelihoods() .ifPresent( likelihoods -> cohereGenerateRequestBuilder.returnLikelihoods(likelihoods.toString())); cohereGenerateProcessorConfig .getTruncate() .ifPresent(truncate -> cohereGenerateRequestBuilder.truncate(truncate.toString())); return cohereGenerateRequestBuilder.build(); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/cohere
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/cohere/generate/CohereGenerateReturnLikelihoods.java
package ai.knowly.langtorch.processor.cohere.generate; /** Specifies how and if the token likelihoods are returned with the response. */ public enum CohereGenerateReturnLikelihoods { NONE("NONE"), ALL("ALL"), GENERATION("GENERATION"); private final String returnLikelihoods; CohereGenerateReturnLikelihoods(String returnLikelihoods) { this.returnLikelihoods = returnLikelihoods; } @Override public String toString() { return returnLikelihoods; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/cohere
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/cohere/generate/CohereGenerateTruncate.java
package ai.knowly.langtorch.processor.cohere.generate; /** Specifies how the API will handle inputs longer than the maximum token length. */ public enum CohereGenerateTruncate { NONE("NONE"), END("END"), START("START"); private final String truncate; CohereGenerateTruncate(String truncate) { this.truncate = truncate; } @Override public String toString() { return truncate; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/minimax/MiniMaxServiceProvider.java
package ai.knowly.langtorch.processor.minimax; import ai.knowly.langtorch.llm.minimax.MiniMaxService; import ai.knowly.langtorch.llm.minimax.schema.config.MiniMaxServiceConfig; import ai.knowly.langtorch.utils.Environment; import ai.knowly.langtorch.utils.api.key.MiniMaxKeyUtil; import com.google.common.flogger.FluentLogger; /** * @author maxiao * @date 2023/06/07 */ public final class MiniMaxServiceProvider { private static final FluentLogger logger = FluentLogger.forEnclosingClass(); private MiniMaxServiceProvider() {} public static MiniMaxService createMiniMaxService(String groupId, String apiKey) { return new MiniMaxService( MiniMaxServiceConfig.builder().setGroupId(groupId).setApiKey(apiKey).build()); } public static MiniMaxService createMiniMaxService() { return createMiniMaxService( MiniMaxKeyUtil.getGroupId(logger, Environment.PRODUCTION), MiniMaxKeyUtil.getKey(logger, Environment.PRODUCTION)); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/minimax
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/minimax/chat/MiniMaxChatProcessor.java
package ai.knowly.langtorch.processor.minimax.chat; import static com.google.common.util.concurrent.MoreExecutors.directExecutor; import ai.knowly.langtorch.llm.minimax.MiniMaxService; import ai.knowly.langtorch.llm.minimax.schema.dto.completion.ChatCompletionRequest; import ai.knowly.langtorch.llm.minimax.schema.dto.completion.ChatCompletionResult; import ai.knowly.langtorch.processor.Processor; import ai.knowly.langtorch.schema.chat.*; import ai.knowly.langtorch.schema.text.MultiChatMessage; import com.google.common.util.concurrent.FluentFuture; import com.google.common.util.concurrent.ListenableFuture; import java.util.List; import javax.inject.Inject; /** * MiniMax chat module implementation. Handles chat input and output for the MiniMax Language Model. * * @author maxiao * @date 2023/06/08 */ public class MiniMaxChatProcessor implements Processor<MultiChatMessage, ChatMessage> { // MiniMaxApi instance used for making requests private final MiniMaxService miniMaxService; // Configuration for the MiniMax Chat Processor private MiniMaxChatProcessorConfig miniMaxChatProcessorConfig; @Inject public MiniMaxChatProcessor( MiniMaxService miniMaxService, MiniMaxChatProcessorConfig miniMaxChatProcessorConfig) { this.miniMaxService = miniMaxService; this.miniMaxChatProcessorConfig = miniMaxChatProcessorConfig; } // Method to run the module with the given input and return the output chat message @Override public ChatMessage run(MultiChatMessage inputData) { ChatCompletionRequest chatCompletionRequest = MiniMaxChatProcessorRequestConverter.convert(miniMaxChatProcessorConfig, inputData); ChatCompletionResult chatCompletion = miniMaxService.createChatCompletion(chatCompletionRequest); List<ChatCompletionResult.Choices> choices = chatCompletion.getChoices(); ChatCompletionResult.Choices choicesResult = choices.get(0); return MiniMaxBotMessage.of(choicesResult.getText()); } @Override public ListenableFuture<ChatMessage> runAsync(MultiChatMessage inputData) { ChatCompletionRequest chatCompletionRequest = MiniMaxChatProcessorRequestConverter.convert(miniMaxChatProcessorConfig, inputData); ListenableFuture<ChatCompletionResult> chatCompletionAsync = miniMaxService.createChatCompletionAsync(chatCompletionRequest); return FluentFuture.from(chatCompletionAsync) .transform( chatCompletion -> { miniMaxService.checkResp(chatCompletion.getBaseResp()); List<ChatCompletionResult.Choices> choices = chatCompletion.getChoices(); ChatCompletionResult.Choices choicesResult = choices.get(0); return MiniMaxBotMessage.of(choicesResult.getText()); }, directExecutor()); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/minimax
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/minimax/chat/MiniMaxChatProcessorConfig.java
package ai.knowly.langtorch.processor.minimax.chat; import ai.knowly.langtorch.llm.minimax.schema.dto.completion.ChatCompletionRequest; import ai.knowly.langtorch.processor.ProcessorConfig; import com.google.auto.value.AutoValue; import java.util.Optional; /** * Configuration class for MiniMaxChatProcessor with various options * * @author maxiao * @date 2023/06/08 */ @AutoValue public abstract class MiniMaxChatProcessorConfig implements ProcessorConfig { private static final String DEFAULT_MODEL = "abab5-chat"; public static MiniMaxChatProcessorConfig getDefaultInstance() { return builder().build(); } public static Builder builder() { return new AutoValue_MiniMaxChatProcessorConfig.Builder().setModel(DEFAULT_MODEL); } // Method to create a builder from the current instance public abstract Builder toBuilder(); // Abstract methods for configuration properties public abstract String getModel(); public abstract Optional<Boolean> getWithEmotion(); public abstract Optional<Boolean> getStream(); public abstract Optional<Boolean> getUseStandardSse(); public abstract Optional<Integer> getBeamWidth(); public abstract Optional<String> getPrompt(); public abstract Optional<ChatCompletionRequest.RoleMeta> getRoleMeta(); public abstract Optional<Boolean> getContinueLastMessage(); public abstract Optional<Long> getTokensToGenerate(); public abstract Optional<Float> getTemperature(); public abstract Optional<Float> getTopP(); public abstract Optional<Boolean> getSkipInfoMask(); // Builder class for constructing MiniMaxChatProcessorConfig instances @AutoValue.Builder public abstract static class Builder { // Builder methods for setting configuration properties public abstract Builder setModel(String model); public abstract Builder setWithEmotion(Boolean withEmotion); public abstract Builder setStream(Boolean stream); public abstract Builder setUseStandardSse(Boolean useStandardSse); public abstract Builder setBeamWidth(Integer beamWidth); public abstract Builder setPrompt(String prompt); public abstract Builder setRoleMeta(ChatCompletionRequest.RoleMeta roleMeta); public abstract Builder setContinueLastMessage(Boolean continueLastMessage); public abstract Builder setTokensToGenerate(Long tokensToGenerate); public abstract Builder setTemperature(Float temperature); public abstract Builder setTopP(Float topP); public abstract Builder setSkipInfoMask(Boolean skipInfoMask); // Method to build an instance of MiniMaxChatProcessorConfig public abstract MiniMaxChatProcessorConfig build(); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/minimax
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/minimax/chat/MiniMaxChatProcessorRequestConverter.java
package ai.knowly.langtorch.processor.minimax.chat; import ai.knowly.langtorch.llm.minimax.schema.dto.completion.ChatCompletionRequest; import ai.knowly.langtorch.schema.text.MultiChatMessage; import java.util.List; import java.util.stream.Collectors; /** * Converter class to convert MiniMaxChatProcessorConfig and a list of chat messages to a * ChatCompletionRequest * * @author maxiao * @date 2023/06/08 */ public class MiniMaxChatProcessorRequestConverter { private MiniMaxChatProcessorRequestConverter() {} // Method to convert MiniMaxChatProcessorConfig and a list of chat messages // to a ChatCompletionRequest public static ChatCompletionRequest convert( MiniMaxChatProcessorConfig miniMaxChatProcessorConfig, MultiChatMessage messages) { List<ChatCompletionRequest.Message> messageList = messages.getMessages().stream() .map( message -> ChatCompletionRequest.Message.builder() .setSenderType(message.getRole().toString().toUpperCase()) .setText(message.getContent()) .build()) .collect(Collectors.toList()); ChatCompletionRequest.ChatCompletionRequestBuilder completionRequestBuilder = ChatCompletionRequest.builder() .setModel(miniMaxChatProcessorConfig.getModel()) .setMessages(messageList); // Set optional configuration properties miniMaxChatProcessorConfig.getWithEmotion().ifPresent(completionRequestBuilder::setWithEmotion); miniMaxChatProcessorConfig.getStream().ifPresent(completionRequestBuilder::setStream); miniMaxChatProcessorConfig .getUseStandardSse() .ifPresent(completionRequestBuilder::setUseStandardSse); miniMaxChatProcessorConfig.getBeamWidth().ifPresent(completionRequestBuilder::setBeamWidth); miniMaxChatProcessorConfig.getPrompt().ifPresent(completionRequestBuilder::setPrompt); miniMaxChatProcessorConfig.getRoleMeta().ifPresent(completionRequestBuilder::setRoleMeta); miniMaxChatProcessorConfig .getContinueLastMessage() .ifPresent(completionRequestBuilder::setContinueLastMessage); miniMaxChatProcessorConfig .getTokensToGenerate() .ifPresent(completionRequestBuilder::setTokensToGenerate); miniMaxChatProcessorConfig.getTemperature().ifPresent(completionRequestBuilder::setTemperature); miniMaxChatProcessorConfig.getTopP().ifPresent(completionRequestBuilder::setTopP); miniMaxChatProcessorConfig .getSkipInfoMask() .ifPresent(completionRequestBuilder::setSkipInfoMask); // Build and return the ChatCompletionRequest return completionRequestBuilder.build(); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/minimax
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/minimax/embeddings/MiniMaxEmbeddingsProcessor.java
package ai.knowly.langtorch.processor.minimax.embeddings; import static com.google.common.collect.ImmutableList.toImmutableList; import static com.google.common.util.concurrent.MoreExecutors.directExecutor; import ai.knowly.langtorch.llm.minimax.MiniMaxService; import ai.knowly.langtorch.llm.minimax.schema.dto.embedding.EmbeddingResult; import ai.knowly.langtorch.processor.EmbeddingProcessor; import ai.knowly.langtorch.schema.embeddings.*; import com.google.common.util.concurrent.Futures; import com.google.common.util.concurrent.ListenableFuture; public class MiniMaxEmbeddingsProcessor implements EmbeddingProcessor { private final MiniMaxService miniMaxService; private final MiniMaxEmbeddingsProcessorConfig miniMaxEmbeddingsProcessorConfig; public MiniMaxEmbeddingsProcessor( MiniMaxService miniMaxService, MiniMaxEmbeddingsProcessorConfig miniMaxEmbeddingsProcessorConfig) { this.miniMaxService = miniMaxService; this.miniMaxEmbeddingsProcessorConfig = miniMaxEmbeddingsProcessorConfig; } @Override public EmbeddingOutput run(EmbeddingInput inputData) { EmbeddingResult embeddingResult = miniMaxService.createEmbeddings( MiniMaxEmbeddingsProcessorRequestConverter.convert( inputData.getModel(), inputData.getInput(), MiniMaxEmbeddingTypeScene.DB.toString())); return EmbeddingOutput.of( EmbeddingType.MINI_MAX, embeddingResult.getVectors().stream() .map(Embedding::ofFloatVector) .collect(toImmutableList())); } @Override public ListenableFuture<EmbeddingOutput> runAsync(EmbeddingInput inputData) { ListenableFuture<EmbeddingResult> embeddingResult = miniMaxService.createEmbeddingsAsync( MiniMaxEmbeddingsProcessorRequestConverter.convert( inputData.getModel(), inputData.getInput(), MiniMaxEmbeddingTypeScene.DB.toString())); return Futures.transform( embeddingResult, result -> { miniMaxService.checkResp(result.getBaseResp()); return EmbeddingOutput.of( EmbeddingType.MINI_MAX, result.getVectors().stream() .map(Embedding::ofFloatVector) .collect(toImmutableList())); }, directExecutor()); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/minimax
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/minimax/embeddings/MiniMaxEmbeddingsProcessorConfig.java
package ai.knowly.langtorch.processor.minimax.embeddings; import ai.knowly.langtorch.processor.ProcessorConfig; import com.google.auto.value.AutoValue; @AutoValue public abstract class MiniMaxEmbeddingsProcessorConfig implements ProcessorConfig { public static MiniMaxEmbeddingsProcessorConfig getDefaultInstance() { return builder().build(); } public static MiniMaxEmbeddingsProcessorConfig.Builder builder() { return new AutoValue_MiniMaxEmbeddingsProcessorConfig.Builder(); } @AutoValue.Builder public abstract static class Builder { public abstract MiniMaxEmbeddingsProcessorConfig build(); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/minimax
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/minimax/embeddings/MiniMaxEmbeddingsProcessorRequestConverter.java
package ai.knowly.langtorch.processor.minimax.embeddings; import ai.knowly.langtorch.llm.minimax.schema.dto.embedding.EmbeddingRequest; import java.util.List; public final class MiniMaxEmbeddingsProcessorRequestConverter { private MiniMaxEmbeddingsProcessorRequestConverter() {} public static EmbeddingRequest convert(String model, List<String> texts, String type) { EmbeddingRequest embeddingRequest = new EmbeddingRequest(); embeddingRequest.setModel(model); embeddingRequest.setTexts(texts); embeddingRequest.setType(type); return embeddingRequest; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai/OpenAIServiceProvider.java
package ai.knowly.langtorch.processor.openai; import ai.knowly.langtorch.llm.openai.OpenAIService; import ai.knowly.langtorch.llm.openai.schema.config.OpenAIServiceConfig; import ai.knowly.langtorch.utils.Environment; import ai.knowly.langtorch.utils.api.key.OpenAIKeyUtil; import com.google.common.flogger.FluentLogger; public final class OpenAIServiceProvider { private static final FluentLogger logger = FluentLogger.forEnclosingClass(); private OpenAIServiceProvider() {} public static OpenAIService createOpenAIService(String apiKey) { return new OpenAIService(OpenAIServiceConfig.builder().setApiKey(apiKey).build()); } public static OpenAIService createOpenAIService() { return createOpenAIService(OpenAIKeyUtil.getKey(logger, Environment.PRODUCTION)); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai/chat/OpenAIChatProcessor.java
package ai.knowly.langtorch.processor.openai.chat; import static com.google.common.util.concurrent.MoreExecutors.directExecutor; import ai.knowly.langtorch.llm.openai.OpenAIService; import ai.knowly.langtorch.llm.openai.schema.dto.completion.chat.ChatCompletionRequest; import ai.knowly.langtorch.llm.openai.schema.dto.completion.chat.ChatCompletionResult; import ai.knowly.langtorch.processor.Processor; import ai.knowly.langtorch.schema.chat.AssistantMessage; import ai.knowly.langtorch.schema.chat.ChatMessage; import ai.knowly.langtorch.schema.chat.Role; import ai.knowly.langtorch.schema.chat.SystemMessage; import ai.knowly.langtorch.schema.chat.UserMessage; import ai.knowly.langtorch.schema.text.MultiChatMessage; import com.google.common.util.concurrent.FluentFuture; import com.google.common.util.concurrent.ListenableFuture; import javax.inject.Inject; /** * OpenAI chat module implementation. Handles chat input and output for the OpenAI Language Model. */ public class OpenAIChatProcessor implements Processor<MultiChatMessage, ChatMessage> { // OpenAiApi instance used for making requests private final OpenAIService openAIService; // Configuration for the OpenAI Chat Processor private final OpenAIChatProcessorConfig openAIChatProcessorConfig; @Inject public OpenAIChatProcessor( OpenAIService openAIService, OpenAIChatProcessorConfig openAIChatProcessorConfig) { this.openAIService = openAIService; this.openAIChatProcessorConfig = openAIChatProcessorConfig; } // Method to run the module with the given input and return the output chat message @Override public ChatMessage run(MultiChatMessage inputData) { ChatCompletionRequest chatCompletionRequest = OpenAIChatProcessorRequestConverter.convert( openAIChatProcessorConfig, inputData.getMessages()); ChatCompletionResult chatCompletion = openAIService.createChatCompletion(chatCompletionRequest); ChatMessage chatMessage = chatCompletion.getChoices().get(0).getMessage(); if (Role.USER == chatMessage.getRole()) { return UserMessage.of(chatMessage.getContent()); } if (Role.SYSTEM == chatMessage.getRole()) { return SystemMessage.of(chatMessage.getContent()); } if (Role.ASSISTANT == chatMessage.getRole()) { return AssistantMessage.of(chatMessage.getContent()); } throw new UnknownMessageException( String.format( "Unknown role %s with message: %s ", chatMessage.getRole(), chatMessage.getContent())); } @Override public ListenableFuture<ChatMessage> runAsync(MultiChatMessage inputData) { ChatCompletionRequest chatCompletionRequest = OpenAIChatProcessorRequestConverter.convert( openAIChatProcessorConfig, inputData.getMessages()); ListenableFuture<ChatCompletionResult> chatCompletionAsync = openAIService.createChatCompletionAsync(chatCompletionRequest); return FluentFuture.from(chatCompletionAsync) .transform( chatCompletion -> { ChatMessage chatMessage = chatCompletion.getChoices().get(0).getMessage(); if (chatMessage.getRole() == Role.USER) { return UserMessage.of(chatMessage.getContent()); } if (chatMessage.getRole() == Role.SYSTEM) { return SystemMessage.of(chatMessage.getContent()); } if (chatMessage.getRole() == Role.ASSISTANT) { return AssistantMessage.of(chatMessage.getContent()); } throw new UnknownMessageException( String.format( "Unknown role %s with message: %s ", chatMessage.getRole(), chatMessage.getContent())); }, directExecutor()); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai/chat/OpenAIChatProcessorConfig.java
package ai.knowly.langtorch.processor.openai.chat; import ai.knowly.langtorch.processor.ProcessorConfig; import com.google.auto.value.AutoValue; import com.google.common.collect.ImmutableList; import com.google.common.collect.ImmutableMap; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Optional; // Configuration class for OpenAIChatProcessor with various options @AutoValue public abstract class OpenAIChatProcessorConfig implements ProcessorConfig { private static final String DEFAULT_MODEL = "gpt-3.5-turbo"; private static final int DEFAULT_MAX_TOKEN = 2048; public static OpenAIChatProcessorConfig getDefaultInstance() { return builder().build(); } public static Builder builder() { return new AutoValue_OpenAIChatProcessorConfig.Builder() .setModel(DEFAULT_MODEL) .setMaxTokens(DEFAULT_MAX_TOKEN) .setStop(new ArrayList<>()) .setLogitBias(new HashMap<>()); } // Method to create a builder from the current instance public abstract Builder toBuilder(); // Abstract methods for configuration properties public abstract String getModel(); public abstract Optional<Double> getTemperature(); public abstract Optional<Double> getTopP(); public abstract Optional<Integer> getN(); public abstract Optional<Boolean> getStream(); public abstract ImmutableList<String> getStop(); public abstract Optional<Integer> getMaxTokens(); public abstract Optional<Double> getPresencePenalty(); public abstract Optional<Double> getFrequencyPenalty(); public abstract ImmutableMap<String, Integer> getLogitBias(); public abstract Optional<String> getUser(); // Builder class for constructing OpenAIChatProcessorConfig instances @AutoValue.Builder public abstract static class Builder { // Builder methods for setting configuration properties public abstract Builder setModel(String model); public abstract Builder setTemperature(Double temperature); public abstract Builder setTopP(Double topP); public abstract Builder setN(Integer n); public abstract Builder setStream(Boolean stream); public abstract Builder setStop(List<String> stop); public abstract Builder setMaxTokens(Integer maxTokens); public abstract Builder setPresencePenalty(Double presencePenalty); public abstract Builder setFrequencyPenalty(Double frequencyPenalty); public abstract Builder setLogitBias(Map<String, Integer> logitBias); public abstract Builder setUser(String user); // Method to build an instance of OpenAIChatProcessorConfig public abstract OpenAIChatProcessorConfig build(); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai/chat/OpenAIChatProcessorRequestConverter.java
package ai.knowly.langtorch.processor.openai.chat; import ai.knowly.langtorch.llm.openai.schema.dto.completion.chat.ChatCompletionRequest; import java.util.List; // Converter class to convert OpenAIChatProcessorConfig and a list of chat messages // to a ChatCompletionRequest public final class OpenAIChatProcessorRequestConverter { private OpenAIChatProcessorRequestConverter() {} // Method to convert OpenAIChatProcessorConfig and a list of chat messages // to a ChatCompletionRequest public static ChatCompletionRequest convert( OpenAIChatProcessorConfig openAIChatProcessorConfig, List<ai.knowly.langtorch.schema.chat.ChatMessage> messages) { ChatCompletionRequest.ChatCompletionRequestBuilder completionRequestBuilder = ChatCompletionRequest.builder() .setModel(openAIChatProcessorConfig.getModel()) .setMessages(messages); // Set optional configuration properties openAIChatProcessorConfig.getTemperature().ifPresent(completionRequestBuilder::setTemperature); openAIChatProcessorConfig.getTopP().ifPresent(completionRequestBuilder::setTopP); openAIChatProcessorConfig.getN().ifPresent(completionRequestBuilder::setN); openAIChatProcessorConfig.getStream().ifPresent(completionRequestBuilder::setStream); if (!openAIChatProcessorConfig.getStop().isEmpty()) { completionRequestBuilder.setStop(openAIChatProcessorConfig.getStop()); } openAIChatProcessorConfig.getMaxTokens().ifPresent(completionRequestBuilder::setMaxTokens); openAIChatProcessorConfig .getPresencePenalty() .ifPresent(completionRequestBuilder::setPresencePenalty); openAIChatProcessorConfig .getFrequencyPenalty() .ifPresent(completionRequestBuilder::setFrequencyPenalty); completionRequestBuilder.setLogitBias(openAIChatProcessorConfig.getLogitBias()); openAIChatProcessorConfig.getUser().ifPresent(completionRequestBuilder::setUser); // Build and return the ChatCompletionRequest return completionRequestBuilder.build(); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai/chat/UnknownMessageException.java
package ai.knowly.langtorch.processor.openai.chat; public class UnknownMessageException extends RuntimeException { public UnknownMessageException(String message) { super(message); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai/embedding/OpenAIEmbeddingProcessor.java
package ai.knowly.langtorch.processor.openai.embedding; import static com.google.common.collect.ImmutableList.toImmutableList; import static com.google.common.util.concurrent.MoreExecutors.directExecutor; import ai.knowly.langtorch.llm.openai.OpenAIService; import ai.knowly.langtorch.llm.openai.schema.dto.embedding.EmbeddingResult; import ai.knowly.langtorch.processor.EmbeddingProcessor; import ai.knowly.langtorch.schema.embeddings.Embedding; import ai.knowly.langtorch.schema.embeddings.EmbeddingInput; import ai.knowly.langtorch.schema.embeddings.EmbeddingOutput; import ai.knowly.langtorch.schema.embeddings.EmbeddingType; import com.google.common.util.concurrent.Futures; import com.google.common.util.concurrent.ListenableFuture; import javax.inject.Inject; /** Embeddings processor for OpenAI. */ public class OpenAIEmbeddingProcessor implements EmbeddingProcessor { private final OpenAIService openAIService; private final OpenAIEmbeddingsProcessorConfig openAIEmbeddingsProcessorConfig; @Inject public OpenAIEmbeddingProcessor( OpenAIService openAiApi, OpenAIEmbeddingsProcessorConfig openAIEmbeddingsProcessorConfig) { this.openAIService = openAiApi; this.openAIEmbeddingsProcessorConfig = openAIEmbeddingsProcessorConfig; } @Override public EmbeddingOutput run(EmbeddingInput inputData) { EmbeddingResult embeddingResult = openAIService.createEmbeddings( OpenAIEmbeddingsProcessorRequestConverter.convert( openAIEmbeddingsProcessorConfig, inputData.getModel(), inputData.getInput())); return EmbeddingOutput.of( EmbeddingType.OPEN_AI, embeddingResult.getData().stream() .map(embedding -> Embedding.of(embedding.getValue())) .collect(toImmutableList())); } @Override public ListenableFuture<EmbeddingOutput> runAsync(EmbeddingInput inputData) { ListenableFuture<EmbeddingResult> embeddingResult = openAIService.createEmbeddingsAsync( OpenAIEmbeddingsProcessorRequestConverter.convert( openAIEmbeddingsProcessorConfig, inputData.getModel(), inputData.getInput())); return Futures.transform( embeddingResult, result -> EmbeddingOutput.of( EmbeddingType.OPEN_AI, result.getData().stream() .map(embedding -> Embedding.of(embedding.getValue())) .collect(toImmutableList())), directExecutor()); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai/embedding/OpenAIEmbeddingsProcessorConfig.java
package ai.knowly.langtorch.processor.openai.embedding; import ai.knowly.langtorch.processor.ProcessorConfig; import com.google.auto.value.AutoValue; import java.util.Optional; @AutoValue public abstract class OpenAIEmbeddingsProcessorConfig implements ProcessorConfig { public static OpenAIEmbeddingsProcessorConfig getDefaultInstance() { return builder().build(); } public static OpenAIEmbeddingsProcessorConfig.Builder builder() { return new AutoValue_OpenAIEmbeddingsProcessorConfig.Builder(); } public abstract Optional<String> getUser(); @AutoValue.Builder public abstract static class Builder { public abstract OpenAIEmbeddingsProcessorConfig.Builder setUser(String user); public abstract OpenAIEmbeddingsProcessorConfig build(); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai/embedding/OpenAIEmbeddingsProcessorRequestConverter.java
package ai.knowly.langtorch.processor.openai.embedding; import ai.knowly.langtorch.llm.openai.schema.dto.embedding.EmbeddingRequest; import java.util.List; public final class OpenAIEmbeddingsProcessorRequestConverter { private OpenAIEmbeddingsProcessorRequestConverter() {} public static EmbeddingRequest convert( OpenAIEmbeddingsProcessorConfig openAIEmbeddingsProcessorConfig, String model, List<String> input) { EmbeddingRequest embeddingRequest = new EmbeddingRequest(); embeddingRequest.setModel(model); embeddingRequest.setInput(input); openAIEmbeddingsProcessorConfig.getUser().ifPresent(embeddingRequest::setUser); return embeddingRequest; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai/image/OpenAIImageProcessor.java
package ai.knowly.langtorch.processor.openai.image; import static com.google.common.collect.ImmutableList.toImmutableList; import static com.google.common.util.concurrent.MoreExecutors.directExecutor; import ai.knowly.langtorch.llm.openai.OpenAIService; import ai.knowly.langtorch.llm.openai.schema.dto.image.CreateImageRequest; import ai.knowly.langtorch.llm.openai.schema.dto.image.ImageResult; import ai.knowly.langtorch.processor.Processor; import ai.knowly.langtorch.schema.image.Image; import ai.knowly.langtorch.schema.image.Images; import ai.knowly.langtorch.schema.text.SingleText; import com.google.common.util.concurrent.FluentFuture; import com.google.common.util.concurrent.ListenableFuture; import javax.inject.Inject; public class OpenAIImageProcessor implements Processor<SingleText, Images> { private final OpenAIService openAIService; private final OpenAIImageProcessorConfig openAIImageProcessorConfig; @Inject public OpenAIImageProcessor( OpenAIService openAIService, OpenAIImageProcessorConfig openAIImageProcessorConfig) { this.openAIService = openAIService; this.openAIImageProcessorConfig = openAIImageProcessorConfig; } // Method to run the module with the given input and return the output text @Override public Images run(SingleText inputData) { CreateImageRequest createImageRequest = OpenAIImageProcessorRequestConverter.convert( openAIImageProcessorConfig, inputData.getText()); ImageResult result = openAIService.createImage(createImageRequest); return Images.of( result.getCreated(), result.getData().stream() .map(image -> Image.of(image.getUrl())) .collect(toImmutableList())); } @Override public ListenableFuture<Images> runAsync(SingleText inputData) { CreateImageRequest createImageRequest = OpenAIImageProcessorRequestConverter.convert( openAIImageProcessorConfig, inputData.getText()); return FluentFuture.from(openAIService.createImageAsync(createImageRequest)) .transform( result -> Images.of( result.getCreated(), result.getData().stream() .map(image -> Image.of(image.getUrl())) .collect(toImmutableList())), directExecutor()); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai/image/OpenAIImageProcessorConfig.java
package ai.knowly.langtorch.processor.openai.image; import ai.knowly.langtorch.processor.ProcessorConfig; import com.google.auto.value.AutoValue; import java.util.Optional; @AutoValue public abstract class OpenAIImageProcessorConfig implements ProcessorConfig { public static OpenAIImageProcessorConfig getDefaultInstance() { return builder().build(); } public static OpenAIImageProcessorConfig.Builder builder() { return new AutoValue_OpenAIImageProcessorConfig.Builder(); } // Method to create a builder from the current instance abstract OpenAIImageProcessorConfig.Builder toBuilder(); public abstract Optional<Integer> getN(); // The size of the generated images. Must be one of "256x256", "512x512", or "1024x1024". // Defaults to "1024x1024" public abstract Optional<String> getSize(); public abstract Optional<String> getUser(); @AutoValue.Builder public abstract static class Builder { public abstract OpenAIImageProcessorConfig.Builder setSize(String size); public abstract OpenAIImageProcessorConfig.Builder setN(Integer n); public abstract OpenAIImageProcessorConfig.Builder setUser(String user); public abstract OpenAIImageProcessorConfig build(); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai/image/OpenAIImageProcessorRequestConverter.java
package ai.knowly.langtorch.processor.openai.image; import ai.knowly.langtorch.llm.openai.schema.dto.image.CreateImageRequest; public final class OpenAIImageProcessorRequestConverter { private OpenAIImageProcessorRequestConverter() {} public static CreateImageRequest convert( OpenAIImageProcessorConfig openAIImageProcessorConfig, String prompt) { CreateImageRequest createImageRequest = new CreateImageRequest(); // Set required configuration properties createImageRequest.setPrompt(prompt); // Set optional configuration properties openAIImageProcessorConfig.getN().ifPresent(createImageRequest::setN); openAIImageProcessorConfig.getSize().ifPresent(createImageRequest::setSize); openAIImageProcessorConfig.getUser().ifPresent(createImageRequest::setUser); return createImageRequest; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai/text/OpenAITextProcessor.java
package ai.knowly.langtorch.processor.openai.text; import static com.google.common.util.concurrent.MoreExecutors.directExecutor; import ai.knowly.langtorch.llm.openai.OpenAIService; import ai.knowly.langtorch.llm.openai.schema.dto.completion.CompletionRequest; import ai.knowly.langtorch.llm.openai.schema.dto.completion.CompletionResult; import ai.knowly.langtorch.processor.Processor; import ai.knowly.langtorch.schema.text.SingleText; import com.google.common.util.concurrent.FluentFuture; import com.google.common.util.concurrent.ListenableFuture; import javax.inject.Inject; /** * OpenAI text module implementation. Handles single text input and output for the OpenAI Language * Model. */ public class OpenAITextProcessor implements Processor<SingleText, SingleText> { private final OpenAIService openAIService; // Configuration for the OpenAI Text Processor private final OpenAITextProcessorConfig openAITextProcessorConfig; @Inject public OpenAITextProcessor( OpenAIService openAIService, OpenAITextProcessorConfig openAITextProcessorConfig) { this.openAIService = openAIService; this.openAITextProcessorConfig = openAITextProcessorConfig; } @Override public SingleText run(SingleText inputData) { CompletionRequest completionRequest = OpenAITextProcessorRequestConverter.convert(openAITextProcessorConfig, inputData.getText()); CompletionResult completion = openAIService.createCompletion(completionRequest); return SingleText.of(completion.getChoices().get(0).getText()); } @Override public ListenableFuture<SingleText> runAsync(SingleText inputData) { CompletionRequest completionRequest = OpenAITextProcessorRequestConverter.convert(openAITextProcessorConfig, inputData.getText()); return FluentFuture.from(openAIService.createCompletionAsync(completionRequest)) .transform( (CompletionResult completion) -> SingleText.of(completion.getChoices().get(0).getText()), directExecutor()); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai/text/OpenAITextProcessorConfig.java
package ai.knowly.langtorch.processor.openai.text; import ai.knowly.langtorch.processor.ProcessorConfig; import com.google.auto.value.AutoValue; import com.google.common.annotations.VisibleForTesting; import com.google.common.collect.ImmutableList; import com.google.common.collect.ImmutableMap; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Optional; // Configuration class for OpenAITextProcessor with various options @AutoValue public abstract class OpenAITextProcessorConfig implements ProcessorConfig { @VisibleForTesting static final String DEFAULT_MODEL = "text-davinci-003"; private static final int DEFAULT_MAX_TOKENS = 2048; public static OpenAITextProcessorConfig getDefaultInstance() { return builder().build(); } public static Builder builder() { return new AutoValue_OpenAITextProcessorConfig.Builder() .setModel(DEFAULT_MODEL) .setMaxTokens(DEFAULT_MAX_TOKENS) .setLogitBias(new HashMap<>()) .setStop(new ArrayList<>()); } // Method to create a builder from the current instance abstract Builder toBuilder(); // Abstract methods for configuration properties public abstract String getModel(); public abstract Optional<String> getSuffix(); public abstract Optional<Integer> getMaxTokens(); public abstract Optional<Double> getTemperature(); public abstract Optional<Double> getTopP(); public abstract Optional<Integer> getN(); public abstract Optional<Boolean> getStream(); public abstract Optional<Integer> getLogprobs(); public abstract Optional<Boolean> getEcho(); public abstract ImmutableList<String> getStop(); public abstract Optional<Double> getPresencePenalty(); public abstract Optional<Double> getFrequencyPenalty(); public abstract Optional<Integer> getBestOf(); public abstract ImmutableMap<String, Integer> getLogitBias(); public abstract Optional<String> getUser(); // Builder class for constructing OpenAITextProcessorConfig instances @AutoValue.Builder public abstract static class Builder { public abstract Builder setModel(String model); public abstract Builder setSuffix(String suffix); public abstract Builder setMaxTokens(Integer maxTokens); public abstract Builder setTemperature(Double temperature); public abstract Builder setTopP(Double topP); public abstract Builder setN(Integer n); public abstract Builder setStream(Boolean stream); public abstract Builder setLogprobs(Integer logprobs); public abstract Builder setEcho(Boolean echo); public abstract Builder setStop(List<String> stop); public abstract Builder setPresencePenalty(Double presencePenalty); public abstract Builder setFrequencyPenalty(Double frequencyPenalty); public abstract Builder setBestOf(Integer bestOf); public abstract Builder setLogitBias(Map<String, Integer> logitBias); public abstract Builder setUser(String user); // Method to build an instance of OpenAITextProcessorConfig public abstract OpenAITextProcessorConfig build(); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/processor/openai/text/OpenAITextProcessorRequestConverter.java
package ai.knowly.langtorch.processor.openai.text; import ai.knowly.langtorch.llm.openai.schema.dto.completion.CompletionRequest; // Converter class to convert OpenAITextProcessorConfig and a prompt string // to a CompletionRequest public final class OpenAITextProcessorRequestConverter { private OpenAITextProcessorRequestConverter() {} // Method to convert OpenAITextProcessorConfig and a prompt string // to a CompletionRequest public static CompletionRequest convert( OpenAITextProcessorConfig openAITextProcessorConfig, String prompt) { CompletionRequest completionRequest = new CompletionRequest(); // Set required configuration properties completionRequest.setModel(openAITextProcessorConfig.getModel()); completionRequest.setPrompt(prompt); // Set optional configuration properties openAITextProcessorConfig.getSuffix().ifPresent(completionRequest::setSuffix); openAITextProcessorConfig.getMaxTokens().ifPresent(completionRequest::setMaxTokens); openAITextProcessorConfig.getTemperature().ifPresent(completionRequest::setTemperature); openAITextProcessorConfig.getTopP().ifPresent(completionRequest::setTopP); openAITextProcessorConfig.getN().ifPresent(completionRequest::setN); openAITextProcessorConfig.getStream().ifPresent(completionRequest::setStream); openAITextProcessorConfig.getLogprobs().ifPresent(completionRequest::setLogprobs); openAITextProcessorConfig.getEcho().ifPresent(completionRequest::setEcho); if (!openAITextProcessorConfig.getStop().isEmpty()) { completionRequest.setStop(openAITextProcessorConfig.getStop()); } openAITextProcessorConfig.getPresencePenalty().ifPresent(completionRequest::setPresencePenalty); openAITextProcessorConfig .getFrequencyPenalty() .ifPresent(completionRequest::setFrequencyPenalty); openAITextProcessorConfig.getBestOf().ifPresent(completionRequest::setBestOf); completionRequest.setLogitBias(openAITextProcessorConfig.getLogitBias()); openAITextProcessorConfig.getUser().ifPresent(completionRequest::setUser); return completionRequest; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt/annotation/Prompt.java
package ai.knowly.langtorch.prompt.annotation; import java.lang.annotation.ElementType; import java.lang.annotation.Repeatable; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target; /** * The Prompt annotation is used to define a prompt template with variables. It contains a template * string, an optional list of variable names, and an optional name for the prompt. */ @Retention(RetentionPolicy.RUNTIME) @Target(ElementType.TYPE) @Repeatable(Prompts.class) public @interface Prompt { String template(); String[] variables() default {}; // The name of the prompt. This is only required when there are multiple Prompt annotations on a // single class. String name() default ""; // The examples for the prompt. This is used for few-shot prompting. String[] examples() default {}; // The header for the examples. Optional. String exampleHeader() default ""; }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt/annotation/PromptProcessor.java
package ai.knowly.langtorch.prompt.annotation; import ai.knowly.langtorch.prompt.template.PromptTemplate; import java.lang.reflect.Field; import java.util.Arrays; import java.util.HashMap; import java.util.Map; /** * The PromptProcessor is responsible for processing Prompt and Prompts annotations on a class. It * can create a PromptTemplate based on the annotations and the fields of the annotated class. */ public class PromptProcessor { private PromptProcessor() {} /** * Create a PromptTemplate using the single Prompt annotation on the class. This method should be * used when there is only one Prompt annotation on the class. * * @param clazz The annotated class. * @param instance An instance of the annotated class. * @return A PromptTemplate based on the annotation and the fields of the class. */ public static PromptTemplate createPromptTemplate(Class<?> clazz, Object instance) { validateAnnotatedClass(clazz); if (clazz.isAnnotationPresent(Prompts.class) || clazz.getAnnotationsByType(Prompt.class).length > 1) { throw new IllegalArgumentException( "Ambiguous prompt annotations. Please specify a prompt name."); } Prompt promptAnnotation = clazz.getAnnotation(Prompt.class); return createPromptTemplateFromClassAndInstance(clazz, instance, promptAnnotation); } /** * Create a PromptTemplate using a specific Prompt annotation on the class. This method should be * used when there are multiple Prompt annotations on the class. * * @param clazz The annotated class. * @param instance An instance of the annotated class. * @param promptName The name of the Prompt annotation to use. * @return A PromptTemplate based on the specified annotation and the fields of the class. */ public static PromptTemplate createPromptTemplate( Class<?> clazz, Object instance, String promptName) { validateAnnotatedClass(clazz); Prompt[] prompts = getPrompts(clazz); Prompt promptAnnotation = findPromptByName(promptName, prompts); return createPromptTemplateFromClassAndInstance(clazz, instance, promptAnnotation); } private static PromptTemplate createPromptTemplateFromClassAndInstance( Class<?> clazz, Object instance, Prompt promptAnnotation) { String template = promptAnnotation.template(); String[] variableNames = promptAnnotation.variables(); String[] examples = promptAnnotation.examples(); String exampleHeader = promptAnnotation.exampleHeader(); Map<String, String> variableValues = extractVariableValues(clazz, instance, variableNames); PromptTemplate.Builder builder = PromptTemplate.builder().setTemplate(template).addAllVariableValuePairs(variableValues); if (examples.length > 0) { builder.setExamples(Arrays.asList(examples)); if (!exampleHeader.isEmpty()) { builder.setExampleHeader(exampleHeader); } } return builder.build(); } /** * Validates that the class has either a Prompt or Prompts annotation. * * @param clazz The class to validate. */ private static void validateAnnotatedClass(Class<?> clazz) { if (!clazz.isAnnotationPresent(Prompt.class) && !clazz.isAnnotationPresent(Prompts.class)) { throw new IllegalArgumentException("Class should be annotated with @Prompt or @Prompts"); } } /** * Retrieves an array of Prompt annotations from the class. If the class has a Prompts annotation, * it returns the array of Prompt annotations from it. If the class has a single Prompt * annotation, it returns an array containing that annotation. * * @param clazz The class to get the Prompt annotations from. * @return An array of Prompt annotations. */ private static Prompt[] getPrompts(Class<?> clazz) { if (clazz.isAnnotationPresent(Prompts.class)) { return clazz.getAnnotation(Prompts.class).value(); } else { return new Prompt[] {clazz.getAnnotation(Prompt.class)}; } } /** * Finds a Prompt annotation with the specified name in the array of Prompt annotations. * * @param promptName The name of the Prompt annotation to find. * @param prompts The array of Prompt annotations to search in. * @return The found Prompt annotation. * @throws IllegalArgumentException if no Prompt annotation with the specified name is found. */ private static Prompt findPromptByName(String promptName, Prompt[] prompts) { for (Prompt prompt : prompts) { if (prompt.name().equals(promptName)) { return prompt; } } throw new IllegalArgumentException("No prompt found with the specified name."); } /** * Extracts variable values from the fields of the class based on the variable names provided. * * @param clazz The class containing the fields. * @param instance An instance of the class. * @param variableNames An array of variable names to extract values for. * @return A map containing variable names and their corresponding values. * @throws IllegalArgumentException if a field with the specified name is not found or is * inaccessible. */ private static Map<String, String> extractVariableValues( Class<?> clazz, Object instance, String[] variableNames) { Map<String, String> variableValues = new HashMap<>(); for (String variableName : variableNames) { try { Field field = clazz.getDeclaredField(variableName); String fieldValue = (String) field.get(instance); variableValues.put(variableName, fieldValue); } catch (NoSuchFieldException | IllegalAccessException e) { throw new IllegalArgumentException("Unable to extract variable value", e); } } return variableValues; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt/annotation/Prompts.java
package ai.knowly.langtorch.prompt.annotation; import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target; /** The Prompts annotation is a container for multiple Prompt annotations. */ @Retention(RetentionPolicy.RUNTIME) @Target(ElementType.TYPE) public @interface Prompts { Prompt[] value(); }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt/manager/FileLoadingException.java
package ai.knowly.langtorch.prompt.manager; import java.io.IOException; public class FileLoadingException extends RuntimeException { public FileLoadingException(IOException e) { super(e); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt/manager/FileSaveException.java
package ai.knowly.langtorch.prompt.manager; public class FileSaveException extends RuntimeException { public FileSaveException(Exception e) { super(e); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt/manager/OptionalTypeAdapter.java
package ai.knowly.langtorch.prompt.manager; import com.google.gson.Gson; import com.google.gson.TypeAdapter; import com.google.gson.TypeAdapterFactory; import com.google.gson.reflect.TypeToken; import com.google.gson.stream.JsonReader; import com.google.gson.stream.JsonToken; import com.google.gson.stream.JsonWriter; import java.io.IOException; import java.lang.reflect.ParameterizedType; import java.lang.reflect.Type; import java.util.Optional; public class OptionalTypeAdapter<T> extends TypeAdapter<Optional<T>> { public static final TypeAdapterFactory FACTORY = new TypeAdapterFactory() { @SuppressWarnings("unchecked") @Override public <T> TypeAdapter<T> create(Gson gson, TypeToken<T> typeToken) { Class<T> rawType = (Class<T>) typeToken.getRawType(); if (rawType != Optional.class) { return null; } final Type[] typeArgs = ((ParameterizedType) typeToken.getType()).getActualTypeArguments(); TypeAdapter<?> adapter = gson.getAdapter(TypeToken.get(typeArgs[0])); return (TypeAdapter<T>) new OptionalTypeAdapter<>(adapter); } }; private final TypeAdapter<T> delegate; public OptionalTypeAdapter(TypeAdapter<T> delegate) { this.delegate = delegate; } @Override public Optional<T> read(JsonReader in) throws IOException { if (in.peek() == JsonToken.NULL) { in.nextNull(); return Optional.empty(); } T value = delegate.read(in); return Optional.ofNullable(value); } @Override public void write(JsonWriter out, Optional<T> value) throws IOException { if (value.isPresent()) { delegate.write(out, value.get()); } else { out.nullValue(); } } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt/manager/PromptManager.java
package ai.knowly.langtorch.prompt.manager; import ai.knowly.langtorch.prompt.template.PromptTemplate; import com.google.gson.Gson; import com.google.gson.GsonBuilder; import java.io.FileInputStream; import java.io.FileWriter; import java.io.IOException; import java.nio.charset.Charset; import java.util.HashMap; import java.util.Map; import org.apache.commons.io.IOUtils; /** A class to manage prompt templates with multiple versions. */ public final class PromptManager { private static final Gson gson = new GsonBuilder() .registerTypeAdapter(PromptTemplate.class, new PromptTemplateTypeAdapter()) .registerTypeAdapterFactory(OptionalTypeAdapter.FACTORY) .create(); private static final String DEFAULT_FILE_NAME = "prompt-manager.json"; private final Map<Long, PromptTemplate> promptTemplateVersions; /** * Private constructor for PromptManager. * * @param promptTemplateVersions A map containing prompt templates and their version numbers. */ private PromptManager(Map<Long, PromptTemplate> promptTemplateVersions) { this.promptTemplateVersions = promptTemplateVersions; } /** * Creates a new instance of PromptManager. * * @return A new instance of PromptManager. */ public static PromptManager create() { return new PromptManager(new HashMap<>()); } /** * Creates an instance of PromptManager from a JSON string. * * @param json The JSON string. * @return The instance of PromptManager. */ private static PromptManager fromJson(String json) { PromptManagerConfig config = gson.fromJson(json, PromptManagerConfig.class); return new PromptManager(config.getPromptTemplates()); } /** * Loads a PromptManager from a file with the default file name. * * @param folderName The folder name. * @return An instance of PromptManager. */ public static PromptManager fromFile(String folderName) { return fromFile(folderName, DEFAULT_FILE_NAME); } /** * Loads a PromptManager from a file with a specified file name. * * @param folderName The folder name. * @param fileName The file name. * @return An instance of PromptManager. */ public static PromptManager fromFile(String folderName, String fileName) { String path = String.format("%s/%s", folderName, fileName); try (FileInputStream inputStream = new FileInputStream(path)) { String json = IOUtils.toString(inputStream, Charset.defaultCharset()); return fromJson(json); } catch (IOException e) { throw new FileLoadingException(e); } } /** * Saves the PromptManager to a file with the default file name. * * @param folderName The folder name. */ public void toFile(String folderName) { toFile(folderName, DEFAULT_FILE_NAME); } /** * Saves the PromptManager to a file with a specified file name. * * @param folderName The folder name. * @param fileName The file name. */ public void toFile(String folderName, String fileName) { String toWriteFileName = fileName.contains(".json") ? fileName : (fileName + ".json"); try (FileWriter fileWriter = new FileWriter(folderName + "/" + toWriteFileName)) { fileWriter.write(toJson()); } catch (IOException e) { throw new FileSaveException(e); } } /** * Converts the PromptManager to a JSON string. * * @return The JSON string. */ private String toJson() { return gson.toJson(PromptManagerConfig.create(promptTemplateVersions)); } /** * Returns the prompt template for a specific version. * * @param version The version number. * @return The PromptTemplate. */ public PromptTemplate getPromptTemplate(long version) { return promptTemplateVersions.get(version); } /** * Checks if the PromptManager contains a specific version. * * @param version The version number. * @return A boolean indicating whether the version exists. */ public boolean containsVersion(long version) { return promptTemplateVersions.containsKey(version); } /** * Adds a new prompt template with the specified version. * * @param version The version number. * @param promptTemplate The PromptTemplate to add. * @return The updated PromptManager instance. */ public PromptManager addPromptTemplate(long version, PromptTemplate promptTemplate) { promptTemplateVersions.put(version, promptTemplate); return this; } /** * Removes a prompt template with the specified version. * * @param version The version number. */ public void removePromptTemplate(long version) { promptTemplateVersions.remove(version); } /** * Updates a prompt template with the specified version. * * @param version The version number. * @param promptTemplate The updated PromptTemplate. */ public void updatePromptTemplate(long version, PromptTemplate promptTemplate) { promptTemplateVersions.put(version, promptTemplate); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt/manager/PromptManagerConfig.java
package ai.knowly.langtorch.prompt.manager; import ai.knowly.langtorch.prompt.template.PromptTemplate; import com.google.gson.annotations.SerializedName; import java.util.Map; public class PromptManagerConfig { @SerializedName("promptTemplates") private Map<Long, PromptTemplate> promptTemplates; private PromptManagerConfig(Map<Long, PromptTemplate> promptTemplates) { this.promptTemplates = promptTemplates; } public static PromptManagerConfig create(Map<Long, PromptTemplate> promptTemplates) { return new PromptManagerConfig(promptTemplates); } public Map<Long, PromptTemplate> getPromptTemplates() { return promptTemplates; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt/manager/PromptTemplateTypeAdapter.java
package ai.knowly.langtorch.prompt.manager; import ai.knowly.langtorch.prompt.template.PromptTemplate; import com.google.gson.TypeAdapter; import com.google.gson.stream.JsonReader; import com.google.gson.stream.JsonWriter; import java.io.IOException; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; public class PromptTemplateTypeAdapter extends TypeAdapter<PromptTemplate> { @Override public void write(JsonWriter out, PromptTemplate promptTemplate) throws IOException { out.beginObject(); out.name("template").value(promptTemplate.template().orElse(null)); out.name("exampleHeader").value(promptTemplate.exampleHeader().orElse(null)); out.name("examples").beginArray(); for (String example : promptTemplate.examples()) { out.value(example); } out.endArray(); out.name("variables").beginObject(); for (Map.Entry<String, String> entry : promptTemplate.variables().entrySet()) { out.name(entry.getKey()).value(entry.getValue()); } out.endObject(); out.endObject(); } @Override public PromptTemplate read(JsonReader in) throws IOException { PromptTemplate.Builder builder = PromptTemplate.builder(); in.beginObject(); while (in.hasNext()) { String name = in.nextName(); switch (name) { case "template": builder.setTemplate(in.nextString()); break; case "exampleHeader": builder.setExampleHeader(in.nextString()); break; case "examples": in.beginArray(); List<String> examples = new ArrayList<>(); while (in.hasNext()) { examples.add(in.nextString()); } in.endArray(); builder.setExamples(examples); break; case "variables": in.beginObject(); Map<String, String> variables = new HashMap<>(); while (in.hasNext()) { String variableName = in.nextName(); String variableValue = in.nextString(); variables.put(variableName, variableValue); } in.endObject(); builder.addAllVariableValuePairs(variables); break; default: in.skipValue(); break; } } in.endObject(); return builder.build(); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/prompt/template/PromptTemplate.java
package ai.knowly.langtorch.prompt.template; import ai.knowly.langtorch.schema.io.Input; import ai.knowly.langtorch.schema.io.Output; import com.google.auto.value.AutoValue; import com.google.common.collect.ImmutableList; import com.google.common.collect.ImmutableMap; import java.util.List; import java.util.Map; import java.util.Optional; import java.util.regex.Matcher; import java.util.regex.Pattern; /** * A class representing a prompt template with variables. * * <p>The template is a string with variables in the form of {{$var}}. The variables are replaced * with the values in the variables map. * * <p>Note: variables must be one or more word characters (letters, digits, or underscores). */ @AutoValue public abstract class PromptTemplate implements Input, Output { public static final String VARIABLE_TEMPLATE_PATTERN = "\\{\\{\\$([a-zA-Z0-9_]+)\\}\\}"; private static final String DEFAULT_EXAMPLE_HEADER = "Here's examples:\n"; public static Builder builder() { return new AutoValue_PromptTemplate.Builder().setExamples(ImmutableList.of()); } public static ImmutableList<String> extractVariableNames(String template) { ImmutableList.Builder<String> builder = ImmutableList.builder(); Pattern compiledPattern = Pattern.compile(VARIABLE_TEMPLATE_PATTERN); Matcher matcher = compiledPattern.matcher(template); while (matcher.find()) { builder.add(matcher.group(1)); } return builder.build(); } private static Optional<String> formatExamples( List<String> examples, Optional<String> exampleHeader) { if (examples.isEmpty()) { return Optional.empty(); } StringBuilder builder = new StringBuilder(); if (exampleHeader.isPresent()) { if (!exampleHeader.get().endsWith("\n")) { builder.append(exampleHeader.get()).append("\n"); } else { builder.append(exampleHeader.get()); } } else { builder.append(DEFAULT_EXAMPLE_HEADER); } for (String example : examples) { builder.append(example).append("\n"); } return Optional.of(builder.toString()); } public abstract Builder toBuilder(); public abstract Optional<String> template(); // Example header is a string that can be used to describe the examples. public abstract Optional<String> exampleHeader(); // Examples are a list of strings that can be used for few-shot prompting by providing examples of // the prompt. public abstract ImmutableList<String> examples(); public abstract ImmutableMap<String, String> variables(); // Public methods /** * Validates the template and the variables map. <br> * 1. Template is not empty. <br> * 2. Number of variables in the template must match the number of variables in the map. <br> * 3. All variables in the template must be present in the variables map. */ private void validate() { if (!template().isPresent()) { throw new IllegalArgumentException("Template is not present."); } ImmutableList<String> variableNamesFromTemplate = extractVariableNames(template().get()); ImmutableMap<String, String> variablesInMap = variables(); if (variableNamesFromTemplate.size() != variablesInMap.size()) { throw new IllegalArgumentException( "Number of variables in the template must match the number of variables in the map."); } variableNamesFromTemplate.forEach( variableName -> { if (!variablesInMap.containsKey(variableName)) { throw new IllegalArgumentException( String.format("Variable %s is not present in the variables map.", variableName)); } }); } /** * Formats the template by replacing the variables with their values. * * @return The formatted template. */ public String format() { validate(); Optional<String> formattedExample = formatExamples(examples(), exampleHeader()); if (variables().isEmpty()) { if (formattedExample.isPresent()) { return String.format("%s\n%s", template().get(), formattedExample.get()); } return template().get(); } Pattern compiledPattern = Pattern.compile(VARIABLE_TEMPLATE_PATTERN); Matcher matcher = compiledPattern.matcher(template().get()); StringBuffer outputBuffer = new StringBuffer(); while (matcher.find()) { String variableName = matcher.group(1); String replacement = variables().getOrDefault(variableName, ""); matcher.appendReplacement(outputBuffer, Matcher.quoteReplacement(replacement)); } matcher.appendTail(outputBuffer); if (formattedExample.isPresent()) { return String.format("%s\n%s", outputBuffer.toString(), formattedExample.get()); } return outputBuffer.toString(); } @AutoValue.Builder public abstract static class Builder { public abstract Builder setTemplate(String template); public abstract Builder setExamples(List<String> examples); public abstract Builder setExampleHeader(String exampleHeader); abstract ImmutableMap.Builder<String, String> variablesBuilder(); public Builder addVariableValuePair(String variableName, String value) { variablesBuilder().put(variableName, value); return this; } public Builder addAllVariableValuePairs(Map<String, String> variables) { variablesBuilder().putAll(variables); return this; } public abstract PromptTemplate build(); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/chat/AssistantMessage.java
package ai.knowly.langtorch.schema.chat; /** A message from the assistant. */ public final class AssistantMessage { private AssistantMessage() {} public static ChatMessage of(String content) { return new ChatMessage(content, Role.ASSISTANT, null, null); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/chat/ChatMessage.java
package ai.knowly.langtorch.schema.chat; import ai.knowly.langtorch.llm.openai.schema.dto.completion.chat.FunctionCall; import ai.knowly.langtorch.store.memory.MemoryValue; import com.fasterxml.jackson.annotation.JsonCreator; import com.fasterxml.jackson.annotation.JsonProperty; public class ChatMessage extends Message implements MemoryValue { private final Role role; private String name; private FunctionCall functionCall; @JsonCreator public ChatMessage( @JsonProperty("content") String content, @JsonProperty("role") Role role, @JsonProperty("name") String name, @JsonProperty("function_call") FunctionCall functionCall) { super(content); this.role = role; this.name = name; this.functionCall = functionCall; } public Role getRole() { return role; } public String getName() { return name; } public FunctionCall getFunctionCall() { return functionCall; } @Override public String toString() { return String.format("%s: %s", getRole(), getContent()); } @Override public boolean equals(Object o) { if (this == o) return true; if (!(o instanceof ChatMessage)) return false; ChatMessage that = (ChatMessage) o; if (getRole() != that.getRole()) return false; return getContent() != null ? getContent().equals(that.getContent()) : that.getContent() == null; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/chat/Message.java
package ai.knowly.langtorch.schema.chat; import ai.knowly.langtorch.schema.io.Input; import ai.knowly.langtorch.schema.io.Output; import com.fasterxml.jackson.annotation.JsonCreator; import com.fasterxml.jackson.annotation.JsonProperty; public class Message implements Input, Output { private final String content; @JsonCreator public Message(@JsonProperty("content") String content) { this.content = content; } public String getContent() { return content; } @Override public String toString() { return String.format("Role: UNKNOWN(Base Message), Content: %s", getContent()); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/chat/MiniMaxBotMessage.java
package ai.knowly.langtorch.schema.chat; /** * @author maxiao * @date 2023/06/13 */ public class MiniMaxBotMessage { private MiniMaxBotMessage() {} public static ChatMessage of(String content) { return new ChatMessage(content, Role.MINIMAX_BOT, null, null); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/chat/MiniMaxUserMessage.java
package ai.knowly.langtorch.schema.chat; /** * @author maxiao * @date 2023/06/13 */ public class MiniMaxUserMessage { private MiniMaxUserMessage() {} public static ChatMessage of(String content) { return new ChatMessage(content, Role.MINIMAX_USER, null, null); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/chat/Role.java
package ai.knowly.langtorch.schema.chat; import com.fasterxml.jackson.annotation.JsonCreator; import com.fasterxml.jackson.annotation.JsonValue; import com.fasterxml.jackson.databind.annotation.JsonSerialize; import com.fasterxml.jackson.databind.ser.std.ToStringSerializer; /** A enum for the role of a message. */ public enum Role { /** openai role */ SYSTEM("system"), USER("user"), ASSISTANT("assistant"), FUNCTION("function"), /** minimax role */ MINIMAX_USER("USER"), MINIMAX_BOT("BOT"); @JsonValue @JsonSerialize(using = ToStringSerializer.class) private String value; Role(String value) { this.value = value; } @JsonCreator public static Role fromString(String value) { for (Role role : Role.values()) { if (role.value.equals(value)) { return role; } } throw new IllegalArgumentException("Invalid value: " + value); } @Override public String toString() { return value; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/chat/SystemMessage.java
package ai.knowly.langtorch.schema.chat; /** A message from the system. */ public final class SystemMessage { private SystemMessage() {} public static ChatMessage of(String content) { return new ChatMessage(content, Role.SYSTEM, null, null); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/chat/UserMessage.java
package ai.knowly.langtorch.schema.chat; /** A message from the user. */ public final class UserMessage { private UserMessage() {} public static ChatMessage of(String content) { return new ChatMessage(content, Role.USER, null, null); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/embeddings/Embedding.java
package ai.knowly.langtorch.schema.embeddings; import static java.util.Collections.emptyList; import ai.knowly.langtorch.schema.io.Output; import java.util.List; public class Embedding implements Output { private final List<Double> vector; private final List<Float> floatVector; private Embedding(List<Double> vector, List<Float> floatVector) { this.vector = vector; this.floatVector = floatVector; } public static Embedding of(List<Double> vector) { return new Embedding(vector, emptyList()); } public static Embedding ofFloatVector(List<Float> floatVector) { return new Embedding(emptyList(), floatVector); } public List<Double> getVector() { return vector; } public List<Float> getFloatVector() { return floatVector; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/embeddings/EmbeddingInput.java
package ai.knowly.langtorch.schema.embeddings; import ai.knowly.langtorch.schema.io.Input; import java.util.ArrayList; import java.util.List; import java.util.Optional; import lombok.Builder; import lombok.Data; import lombok.NonNull; @Data @Builder(toBuilder = true, setterPrefix = "set") public class EmbeddingInput implements Input { @Builder.Default private final List<String> input = new ArrayList<>(); @NonNull private String model; private String user; public Optional<String> getUser() { return Optional.ofNullable(user); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/embeddings/EmbeddingOutput.java
package ai.knowly.langtorch.schema.embeddings; import ai.knowly.langtorch.schema.io.Output; import java.util.List; public class EmbeddingOutput implements Output { private final EmbeddingType type; private final List<Embedding> value; private EmbeddingOutput(EmbeddingType type, List<Embedding> value) { this.type = type; this.value = value; } public static EmbeddingOutput of(EmbeddingType type, List<Embedding> embeddings) { return new EmbeddingOutput(type, embeddings); } public EmbeddingType getType() { return type; } public List<Embedding> getValue() { return value; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/embeddings/EmbeddingType.java
package ai.knowly.langtorch.schema.embeddings; public enum EmbeddingType { OPEN_AI, MINI_MAX }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/embeddings/MiniMaxEmbeddingTypeScene.java
package ai.knowly.langtorch.schema.embeddings; /** * @author maxiao * @date 2023/06/17 */ public enum MiniMaxEmbeddingTypeScene { /** Used to generate vectors for queries */ DB("db"), /** retrieving text */ QUERY("query"), ; private String value; MiniMaxEmbeddingTypeScene(String value) { this.value = value; } @Override public String toString() { return value; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/image/Image.java
package ai.knowly.langtorch.schema.image; import ai.knowly.langtorch.schema.io.Output; public class Image implements Output { private final String url; private Image(String url) { this.url = url; } public static Image of(String url) { return new Image(url); } public String getUrl() { return url; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/image/Images.java
package ai.knowly.langtorch.schema.image; import ai.knowly.langtorch.schema.io.Output; import java.util.List; public class Images implements Output { Long created; List<Image> imageData; private Images(Long created, List<Image> imageData) { this.created = created; this.imageData = imageData; } public static Images of(Long created, List<Image> images) { return new Images(created, images); } public Long getCreated() { return created; } public void setCreated(Long created) { this.created = created; } public List<Image> getImageData() { return imageData; } public void setImageData(List<Image> imageData) { this.imageData = imageData; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/io/DomainDocument.java
package ai.knowly.langtorch.schema.io; import java.util.Optional; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NonNull; @Data @Builder(toBuilder = true, setterPrefix = "set") @AllArgsConstructor(access = lombok.AccessLevel.PRIVATE) public class DomainDocument implements Input, Output { @NonNull private String pageContent; private Metadata metadata; private String id; private Optional<Double> similarityScore; public Optional<Metadata> getMetadata() { return Optional.ofNullable(metadata); } public Optional<String> getId() { return Optional.ofNullable(id); } public void setSimilarityScore(Optional<Double> similarityScore) { this.similarityScore = similarityScore; } public Optional<Double> getSimilarityScore() { return similarityScore; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/io/Input.java
package ai.knowly.langtorch.schema.io; /** Input data to a model. */ public interface Input {}
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/io/Metadata.java
package ai.knowly.langtorch.schema.io; import java.util.HashMap; import java.util.Map; import lombok.*; @Data @Builder(toBuilder = true, setterPrefix = "set") @AllArgsConstructor(access = AccessLevel.PRIVATE) public class Metadata { private static final Metadata DEFAULT_INSTANCE = Metadata.builder().build(); @Builder.Default private final Map<String, String> value = new HashMap<>(); public static Metadata getDefaultInstance() { return DEFAULT_INSTANCE; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/io/Output.java
package ai.knowly.langtorch.schema.io; /** Output data from a model. */ public interface Output {}
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/text/MiniMaxMultiChatMessage.java
package ai.knowly.langtorch.schema.text; import ai.knowly.langtorch.llm.minimax.schema.dto.completion.ChatCompletionRequest; import ai.knowly.langtorch.schema.io.Input; import ai.knowly.langtorch.schema.io.Output; import ai.knowly.langtorch.store.memory.MemoryValue; import com.google.common.collect.ImmutableList; import java.util.List; import java.util.stream.Collector; import java.util.stream.Collectors; /** * @author maxiao * @date 2023/06/11 */ public class MiniMaxMultiChatMessage implements Input, Output, MemoryValue { private final ImmutableList<ChatCompletionRequest.Message> messages; private MiniMaxMultiChatMessage(Iterable<ChatCompletionRequest.Message> messages) { this.messages = ImmutableList.copyOf(messages); } public static Collector<ChatCompletionRequest.Message, ?, MiniMaxMultiChatMessage> toMultiChatMessage() { return Collectors.collectingAndThen( Collectors.toList(), list -> new MiniMaxMultiChatMessage(ImmutableList.copyOf(list))); } public static MiniMaxMultiChatMessage of(ChatCompletionRequest.Message... messages) { return new MiniMaxMultiChatMessage(ImmutableList.copyOf(messages)); } public static MiniMaxMultiChatMessage of(Iterable<ChatCompletionRequest.Message> messages) { return new MiniMaxMultiChatMessage(ImmutableList.copyOf(messages)); } public List<ChatCompletionRequest.Message> getMessages() { return messages; } @Override public String toString() { return "MiniMaxMultiChatMessage{" + "messages=" + messages + '}'; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/text/MultiChatMessage.java
package ai.knowly.langtorch.schema.text; import ai.knowly.langtorch.schema.chat.ChatMessage; import ai.knowly.langtorch.schema.io.Input; import ai.knowly.langtorch.schema.io.Output; import ai.knowly.langtorch.store.memory.MemoryValue; import com.google.common.collect.ImmutableList; import java.util.List; import java.util.stream.Collector; import java.util.stream.Collectors; public class MultiChatMessage implements Input, Output, MemoryValue { private final ImmutableList<ChatMessage> messages; private MultiChatMessage(Iterable<ChatMessage> messages) { this.messages = ImmutableList.copyOf(messages); } public static Collector<ChatMessage, ?, MultiChatMessage> toMultiChatMessage() { return Collectors.collectingAndThen( Collectors.toList(), list -> new MultiChatMessage(ImmutableList.copyOf(list))); } public static MultiChatMessage copyOf(Iterable<ChatMessage> messages) { return new MultiChatMessage(messages); } public static MultiChatMessage of(ChatMessage... messages) { return new MultiChatMessage(ImmutableList.copyOf(messages)); } public static MultiChatMessage of(Iterable<ChatMessage> messages) { return new MultiChatMessage(ImmutableList.copyOf(messages)); } public List<ChatMessage> getMessages() { return messages; } @Override public String toString() { return "MultiChatMessage{" + "messages=" + messages + '}'; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/schema/text/SingleText.java
package ai.knowly.langtorch.schema.text; import ai.knowly.langtorch.schema.io.Input; import ai.knowly.langtorch.schema.io.Output; /** A model input/output that is a text string. */ public class SingleText implements Input, Output { private final String text; private SingleText(String text) { this.text = text; } public static SingleText of(String text) { return new SingleText(text); } public String getText() { return text; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/memory/Memory.java
package ai.knowly.langtorch.store.memory; import java.util.List; /** Interface for a generic memory structure. */ public interface Memory<V extends MemoryValue, C extends MemoryContext> { /** * Adds a value to the memory. * * @param value the value */ void add(V value); /** Retrieves all values added into the memory. */ List<V> getAll(); /** Removes all values from the memory. */ void clear(); /** Returns the context based on entries in the memory. */ C getMemoryContext(); }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/memory/MemoryContext.java
package ai.knowly.langtorch.store.memory; /** Interface for memory context generated by values stored in a {@link Memory}. */ public interface MemoryContext { String get(); }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/memory/MemoryValue.java
package ai.knowly.langtorch.store.memory; /** Interface for the value stored in a {@link Memory}. */ public interface MemoryValue {}
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/memory
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/memory/conversation/ConversationMemory.java
package ai.knowly.langtorch.store.memory.conversation; import ai.knowly.langtorch.schema.chat.ChatMessage; import ai.knowly.langtorch.store.memory.Memory; import java.util.ArrayList; import java.util.List; import lombok.Builder; import lombok.Data; /** Implementation of Memory for storing conversation-related key-value pairs. */ @Data @Builder(toBuilder = true, setterPrefix = "set") public class ConversationMemory implements Memory<ChatMessage, ConversationMemoryContext> { @Builder.Default private List<ChatMessage> chatMessages = new ArrayList<>(); public static ConversationMemory getDefaultInstance() { return ConversationMemory.builder().build(); } @Override public void add(ChatMessage value) { chatMessages.add(value); } @Override public List<ChatMessage> getAll() { return chatMessages; } @Override public void clear() { chatMessages.clear(); } @Override public ConversationMemoryContext getMemoryContext() { return ConversationMemoryContext.builder().setChatMessages(chatMessages).build(); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/memory
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/memory/conversation/ConversationMemoryContext.java
package ai.knowly.langtorch.store.memory.conversation; import ai.knowly.langtorch.schema.chat.ChatMessage; import ai.knowly.langtorch.store.memory.MemoryContext; import java.util.List; import lombok.Builder; import lombok.Data; /** Implementation of MemoryContext for storing chat messages inside one conversation. */ @Data @Builder(toBuilder = true, setterPrefix = "set") public class ConversationMemoryContext implements MemoryContext { private static final String DEFAULT_CONTEXT_HEADER = "Previous conversation:\n"; private static final String DEFAULT_FORMAT_FOR_EACH_MESSAGE = "%s: %s"; private final List<ChatMessage> chatMessages; @Builder.Default private String contextHeader = DEFAULT_CONTEXT_HEADER; @Builder.Default private String formatForEachMessage = DEFAULT_FORMAT_FOR_EACH_MESSAGE; @Override public String get() { if (chatMessages.isEmpty()) { return ""; } StringBuilder context = new StringBuilder(); context.append(contextHeader).append("\n"); chatMessages.forEach( chatMessage -> context .append( String.format( formatForEachMessage, chatMessage.getRole(), chatMessage.getContent())) .append("\n")); return context.toString(); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/PGVectorStore.java
package ai.knowly.langtorch.store.vectordb; import ai.knowly.langtorch.processor.EmbeddingProcessor; import ai.knowly.langtorch.schema.embeddings.EmbeddingInput; import ai.knowly.langtorch.schema.embeddings.EmbeddingOutput; import ai.knowly.langtorch.schema.io.DomainDocument; import ai.knowly.langtorch.schema.io.Metadata; import ai.knowly.langtorch.store.vectordb.integration.VectorStore; import ai.knowly.langtorch.store.vectordb.integration.pgvector.PGVectorService; import ai.knowly.langtorch.store.vectordb.integration.pgvector.SqlCommandProvider; import ai.knowly.langtorch.store.vectordb.integration.pgvector.schema.PGVectorQueryParameters; import ai.knowly.langtorch.store.vectordb.integration.pgvector.schema.PGVectorStoreSpec; import ai.knowly.langtorch.store.vectordb.integration.pgvector.schema.PGVectorValues; import ai.knowly.langtorch.store.vectordb.integration.pgvector.schema.distance.DistanceStrategy; import ai.knowly.langtorch.store.vectordb.integration.schema.SimilaritySearchQuery; import com.google.common.flogger.FluentLogger; import com.google.common.primitives.Floats; import com.google.inject.Inject; import com.pgvector.PGvector; import lombok.NonNull; import java.sql.PreparedStatement; import java.sql.ResultSet; import java.sql.SQLException; import java.util.*; /** A vector store implementation using PostgreSQL and PGVector for storing and querying vectors. */ public class PGVectorStore implements VectorStore { private static final int EMBEDDINGS_COLUMN_COUNT = 2; private static final int EMBEDDINGS_INDEX_ID = 0; private static final int EMBEDDINGS_INDEX_VECTOR = 1; private static final int METADATA_COLUMN_COUNT = 4; private static final int METADATA_INDEX_ID = 0; private static final int METADATA_INDEX_KEY = 1; private static final int METADATA_INDEX_VALUE = 2; private static final int METADATA_INDEX_VECTOR_ID = 3; private static final FluentLogger logger = FluentLogger.forEnclosingClass(); @NonNull private final EmbeddingProcessor embeddingsProcessor; private final PGVectorStoreSpec pgVectorStoreSpec; private final SqlCommandProvider sqlCommandProvider; @NonNull private final PGVectorService pgVectorService; private final DistanceStrategy distanceStrategy; @Inject public PGVectorStore( @NonNull EmbeddingProcessor embeddingsProcessor, PGVectorStoreSpec pgVectorStoreSpec, @NonNull PGVectorService pgVectorService, DistanceStrategy distanceStrategy) throws SQLException { this.distanceStrategy = distanceStrategy; this.pgVectorService = pgVectorService; this.embeddingsProcessor = embeddingsProcessor; this.pgVectorStoreSpec = pgVectorStoreSpec; sqlCommandProvider = new SqlCommandProvider( pgVectorStoreSpec.getDatabaseName(), pgVectorStoreSpec.isOverwriteExistingTables()); createNecessaryTables(); } private void createNecessaryTables() throws SQLException { createEmbeddingsTable(); createMetadataTable(); } /** * Adds a list of documents to the PGVector database. * * @return true if vectors added successfully, otherwise false */ @Override public boolean addDocuments(List<DomainDocument> documents) { if (documents.isEmpty()) { return true; } PGVectorQueryParameters pgVectorQueryParameters = getVectorQueryParameters(documents); List<PGVectorValues> vectorValues = pgVectorQueryParameters.getVectorValues(); PreparedStatement insertEmbeddingsStmt; PreparedStatement insertMetadataStmt; int result; int metadataResult; try { insertEmbeddingsStmt = pgVectorService.prepareStatement( sqlCommandProvider.getInsertEmbeddingsQuery( pgVectorQueryParameters.getVectorParameters())); insertMetadataStmt = pgVectorService.prepareStatement( sqlCommandProvider.getInsertMetadataQuery( pgVectorQueryParameters.getMetadataParameters())); setQueryParameters(vectorValues, insertEmbeddingsStmt, insertMetadataStmt); result = insertEmbeddingsStmt.executeUpdate(); metadataResult = insertMetadataStmt.executeUpdate(); } catch (SQLException e) { logger.atSevere().withCause(e).log("Error with SQL Exception"); return false; } return result == vectorValues.size() && metadataResult == pgVectorQueryParameters.getMetadataSize(); } /** * Performs a similarity search using a vector query and returns a list of pairs containing the * schema documents and their corresponding similarity scores. */ @Override public List<DomainDocument> similaritySearch(SimilaritySearchQuery similaritySearchQuery) { float[] queryVectorValuesAsFloats = getFloatVectorValues(similaritySearchQuery.getQuery()); double[] queryVectorValuesAsDoubles = getDoubleVectorValues(queryVectorValuesAsFloats); List<DomainDocument> documentsWithScores; Map<String, DomainDocument> documentsWithScoresMap = new LinkedHashMap<>(); try { PreparedStatement neighborStmt = pgVectorService.prepareStatement( sqlCommandProvider.getSelectEmbeddingsQuery( distanceStrategy.getSyntax(), similaritySearchQuery.getTopK())); neighborStmt.setObject(1, new PGvector(queryVectorValuesAsFloats)); ResultSet result = neighborStmt.executeQuery(); while (result.next()) { String vectorId = (String) result.getObject(1); PGvector pGvector = (PGvector) result.getObject(2); String key = (String) result.getObject(3); String value = (String) result.getObject(4); double[] currentVector = getDoubleVectorValues(pGvector.toArray()); double score = distanceStrategy.calculateDistance(queryVectorValuesAsDoubles, currentVector); documentsWithScoresMap.computeIfAbsent( vectorId, s -> { Metadata defaultMetadata = Metadata.builder().build(); return DomainDocument.builder() .setId(vectorId) .setPageContent("") .setSimilarityScore(Optional.of(score)) .setMetadata(defaultMetadata) .build(); }); DomainDocument documentWithScore = documentsWithScoresMap.get(vectorId); saveValueToMetadataIfPresent(documentWithScore, key, value); documentsWithScoresMap.put( vectorId, getDocumentWithScoreWithPageContent(documentWithScore, key, value)); } documentsWithScores = new ArrayList<>(documentsWithScoresMap.values()); } catch (SQLException e) { logger.atSevere().withCause(e).log("Error with SQL Exception"); return new ArrayList<>(documentsWithScoresMap.values()); } return documentsWithScores; } private void createEmbeddingsTable() throws SQLException { pgVectorService.executeUpdate( sqlCommandProvider.getCreateEmbeddingsTableQuery(pgVectorStoreSpec.getVectorDimensions())); } private void createMetadataTable() throws SQLException { pgVectorService.executeUpdate(sqlCommandProvider.getCreateMetadataTableQuery()); } private PGVectorQueryParameters getVectorQueryParameters(List<DomainDocument> documents) { List<PGVectorValues> vectorValues = new ArrayList<>(); StringBuilder vectorParameters = new StringBuilder(); StringBuilder metadataParameters = new StringBuilder(); int metadataSize = 0; for (DomainDocument document : documents) { List<Double> vector = createVector(document); String id = document.getId().orElse(UUID.randomUUID().toString()); vectorValues.add(buildPGVectorValues(id, vector, document.getMetadata())); vectorParameters.append(getVectorParameters()); metadataSize += processMetadata(metadataParameters, document.getMetadata()); } trimStringBuilder(vectorParameters); trimStringBuilder(metadataParameters); return buildPGVectorQueryParameters( vectorValues, vectorParameters.toString(), metadataParameters.toString(), metadataSize); } private PGVectorValues buildPGVectorValues( String id, List<Double> vector, Optional<Metadata> metadata) { return PGVectorValues.builder() .setId(id) .setValues(getFloatVectorValues(vector)) .setMetadata(metadata.orElse(Metadata.builder().build())) .build(); } private String getVectorParameters() { return "(?, ?), "; // document id and vector } private int processMetadata(StringBuilder metadataParameters, Optional<Metadata> metadata) { int metadataSize = 0; if (!metadata.isPresent()) { return metadataSize; } metadataSize += metadata.get().getValue().size(); for (int i = 0; i < metadata.get().getValue().entrySet().size(); i++) { metadataParameters.append("(?, ?, ?, ?), "); // id, key, value, and document id } return metadataSize; } private void trimStringBuilder(StringBuilder stringBuilder) { int index = stringBuilder.lastIndexOf(", "); if (index > 0) { stringBuilder.delete(index, stringBuilder.length()); } } private PGVectorQueryParameters buildPGVectorQueryParameters( List<PGVectorValues> vectorValues, String vectorParameters, String metadataParameters, int metadataSize) { return PGVectorQueryParameters.builder() .setVectorValues(vectorValues) .setVectorParameters(vectorParameters) .setMetadataParameters(metadataParameters) .setMetadataSize(metadataSize) .build(); } private List<Double> createVector(DomainDocument document) { EmbeddingOutput embeddingOutput = embeddingsProcessor.run( EmbeddingInput.builder() .setModel(pgVectorStoreSpec.getModel()) .setInput(Collections.singletonList(document.getPageContent())) .build()); return embeddingOutput.getValue().get(0).getVector(); } private int setMetadataQueryParameters( PGVectorValues values, int parameterIndex, PreparedStatement insertStmt) throws SQLException { for (Map.Entry<String, String> entry : values.getMetadata().getValue().entrySet()) { for (int j = 0; j < METADATA_COLUMN_COUNT; j++) { switch (j) { case METADATA_INDEX_ID: String id = values.getId() + entry.getKey(); insertStmt.setString(parameterIndex, id); break; case METADATA_INDEX_KEY: insertStmt.setString(parameterIndex, entry.getKey()); break; case METADATA_INDEX_VALUE: insertStmt.setString(parameterIndex, entry.getValue()); break; case METADATA_INDEX_VECTOR_ID: insertStmt.setString(parameterIndex, values.getId()); break; default: logger.atSevere().log("INVALID COLUM INDEX"); } parameterIndex++; } } return parameterIndex; } private int setVectorQueryParameters( PGVectorValues values, int parameterIndex, PreparedStatement insertStmt) throws SQLException { for (int i = 0; i < EMBEDDINGS_COLUMN_COUNT; i++) { if (i == EMBEDDINGS_INDEX_ID) { insertStmt.setString(parameterIndex, values.getId()); } else if (i == EMBEDDINGS_INDEX_VECTOR) { insertStmt.setObject(parameterIndex, new PGvector(values.getValues())); } parameterIndex++; } return parameterIndex; } private void setQueryParameters( List<PGVectorValues> vectorValues, PreparedStatement insertEmbeddingsStmt, PreparedStatement insertMetadataStmt) throws SQLException { int embeddingParameterIndex = 1; int metadataParameterIndex = 1; for (PGVectorValues values : vectorValues) { embeddingParameterIndex = setVectorQueryParameters(values, embeddingParameterIndex, insertEmbeddingsStmt); metadataParameterIndex = setMetadataQueryParameters(values, metadataParameterIndex, insertMetadataStmt); } } private void saveValueToMetadataIfPresent(DomainDocument document, String key, String value) { Optional<Metadata> metadata = document.getMetadata(); if (!metadata.isPresent() || key == null) return; metadata.get().getValue().put(key, value); } private DomainDocument getDocumentWithScoreWithPageContent( DomainDocument documentWithScore, String key, String value) { if (key == null) return documentWithScore; Optional<String> textKey = pgVectorStoreSpec.getTextKey(); if (!textKey.isPresent()) return documentWithScore; boolean isTextKey = key.equals(textKey.get()); if (!isTextKey) return documentWithScore; return documentWithScore.toBuilder().setPageContent(value).build(); } private float[] getFloatVectorValues(List<Double> vectorValues) { return Floats.toArray(vectorValues); } private double[] getDoubleVectorValues(float[] vectorValues) { double[] doubles = new double[vectorValues.length]; for (int i = 0; i < vectorValues.length; i++) { doubles[i] = vectorValues[i]; } return doubles; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/EmbeddingProcessorType.java
package ai.knowly.langtorch.store.vectordb.integration; /** The type of embedding processor to use */ public enum EmbeddingProcessorType { OPENAI, }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/EmbeddingProcessorTypeNotFound.java
package ai.knowly.langtorch.store.vectordb.integration; /** Thrown when the embedding processor type is not found. */ public class EmbeddingProcessorTypeNotFound extends RuntimeException { public EmbeddingProcessorTypeNotFound(String message) { super(message); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/VectorStore.java
package ai.knowly.langtorch.store.vectordb.integration; import ai.knowly.langtorch.schema.io.DomainDocument; import ai.knowly.langtorch.store.vectordb.integration.schema.SimilaritySearchQuery; import java.util.List; /** A shared interface for all Vector Store Databases */ public interface VectorStore { // TODO:: add updateDocuments and deleteDocuments methods boolean addDocuments(List<DomainDocument> documents); List<DomainDocument> similaritySearch(SimilaritySearchQuery similaritySearchQuery); }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector/PGVectorSQLException.java
package ai.knowly.langtorch.store.vectordb.integration.pgvector; import java.sql.SQLException; public class PGVectorSQLException extends RuntimeException { public PGVectorSQLException(SQLException e) { super(e); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector/PGVectorService.java
package ai.knowly.langtorch.store.vectordb.integration.pgvector; import com.google.common.flogger.FluentLogger; import com.pgvector.PGvector; import javax.inject.Inject; import java.sql.*; /** * The PGVectorService class provides methods for interacting with the PostgreSQL Vector extension. * It allows executing SQL statements, preparing statements, and querying the database. */ public class PGVectorService { private static final String CREATE_VECTOR_EXTENSION_QUERY = "CREATE EXTENSION IF NOT EXISTS vector"; private static final FluentLogger logger = FluentLogger.forEnclosingClass(); private final Connection connection; private final Statement defaultStatement; /** * Constructs a new PGVectorService instance with the provided database connection. * * @param connection the database connection */ @Inject public PGVectorService(Connection connection) { this.connection = connection; try { PGvector.addVectorType(connection); defaultStatement = connection.createStatement(); defaultStatement.executeUpdate(CREATE_VECTOR_EXTENSION_QUERY); } catch (SQLException e) { logger.atSevere().withCause(e).log("Error while initialising PGVectorService"); throw new PGVectorSQLException(e); } } /** * Executes the given SQL statement and returns the number of affected rows. * * @param sql the SQL statement to execute * @return the number of affected rows or 0 for SQL statements that return nothing * @throws SQLException if a database access error occurs or the SQL statement is invalid */ public int executeUpdate(String sql) throws SQLException { return defaultStatement.executeUpdate(sql); } /** * Creates a PreparedStatement object for sending parameterized SQL statements to the database. * * @param sql the SQL statement to prepare * @return a new PreparedStatement object * @throws SQLException if a database access error occurs or the SQL statement is invalid */ public PreparedStatement prepareStatement(String sql) throws SQLException { return connection.prepareStatement(sql); } /** * Executes the given SQL query and returns the ResultSet object generated by the query. * * @param sql the SQL query to execute * @return the ResultSet object generated by the query * @throws SQLException if a database access error occurs or the SQL statement is invalid */ public ResultSet query(String sql) throws SQLException { return defaultStatement.executeQuery(sql); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector/SqlCommandProvider.java
package ai.knowly.langtorch.store.vectordb.integration.pgvector; import lombok.AccessLevel; import lombok.AllArgsConstructor; import lombok.NonNull; /** * This class provides SQL commands for creating and querying the embeddings and metadata tables in * a PostgreSQL database. */ @AllArgsConstructor(access = AccessLevel.PUBLIC) public class SqlCommandProvider { /** The name of the database that the embeddings and metadata tables will be created in. */ @NonNull private final String databaseName; /** * Whether or not to overwrite the existing embeddings and metadata tables if they already exist. */ private final boolean overwrite; /** * Returns a SQL query that will create the embeddings table. * * @param vectorDimensions The number of dimensions in the embeddings. * @return The SQL query. */ public String getCreateEmbeddingsTableQuery(int vectorDimensions) { if (vectorDimensions <= 0) { throw new IllegalArgumentException( "vectorDimensions must be greater than 0, was " + vectorDimensions); } String query = ""; if (overwrite) { query += "DROP TABLE IF EXISTS " + getEmbeddingsTableName() + " CASCADE; "; } query += "CREATE TABLE IF NOT EXISTS "; query += getEmbeddingsTableName() + " (" + "id TEXT PRIMARY KEY, " + "embedding vector(" + vectorDimensions + ")" + ")"; return query; } /** * Returns a SQL query that will create the metadata table. * * @return The SQL query. */ public String getCreateMetadataTableQuery() { String query = ""; if (overwrite) { query += "DROP TABLE IF EXISTS " + getMetadataTableName() + "; "; } query += "CREATE TABLE IF NOT EXISTS "; query += getMetadataTableName() + " (" + "id TEXT PRIMARY KEY, " + // vectorId + key "key TEXT, " + "value TEXT ," + "vector_id TEXT ," + "FOREIGN KEY (vector_id) REFERENCES " + getEmbeddingsTableName() + "(id)" + ")"; return query; } /** * Returns a SQL query that will insert a new row into the embeddings table. * * @param parameters The parameters for the insert statement. * @return The SQL query. */ public String getInsertEmbeddingsQuery(String parameters) { return "INSERT INTO " + getEmbeddingsTableName() + " " + "(id, embedding) " + "VALUES " + parameters; } /** * Returns a SQL query that will insert a new row into the metadata table. * * @param parameters The parameters for the insert statement. * @return The SQL query. */ public String getInsertMetadataQuery(String parameters) { return "INSERT INTO " + getMetadataTableName() + " " + "(id, key, value, vector_id) " + "VALUES " + parameters; } /** * Returns a SQL query that will select a subset of the embeddings and metadata rows. * * @param distanceStrategy The distance strategy to use when ordering the results. * @param limit The maximum number of rows to return. * @return The SQL query. */ public String getSelectEmbeddingsQuery(String distanceStrategy, long limit) { return "SELECT " + getEmbeddingsTableName() + ".id, embedding, key, value FROM " + "(" + "SELECT " + getEmbeddingsTableName() + ".id, embedding " + "FROM " + getEmbeddingsTableName() + " " + "LIMIT " + limit + " " + ") AS " + getEmbeddingsTableName() + " " + "LEFT JOIN " + getMetadataTableName() + " ON " + getEmbeddingsTableName() + ".id = " + getMetadataTableName() + ".vector_id " + "ORDER BY embedding " + distanceStrategy + " ? "; } private String getEmbeddingsTableName() { return databaseName + "_embeddings"; } private String getMetadataTableName() { return getEmbeddingsTableName() + "_metadata"; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector/schema/PGVectorQueryParameters.java
package ai.knowly.langtorch.store.vectordb.integration.pgvector.schema; import lombok.*; import java.util.List; /** Represents the query parameters for executing a PGVector query. */ @Data @AllArgsConstructor(access = AccessLevel.PRIVATE) @Builder(toBuilder = true, setterPrefix = "set") public class PGVectorQueryParameters { @NonNull private final List<PGVectorValues> vectorValues; @NonNull private final String vectorParameters; @NonNull private final String metadataParameters; private final int metadataSize; }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector/schema/PGVectorStoreSpec.java
package ai.knowly.langtorch.store.vectordb.integration.pgvector.schema; import lombok.Builder; import lombok.Data; import lombok.NonNull; import java.util.Optional; /** Represents the specification for a PGVector store. */ @Data @Builder(toBuilder = true, setterPrefix = "set") public class PGVectorStoreSpec { @Builder.Default private final String model = "text-embedding-ada-002"; @NonNull private final String databaseName; private final String textKey; private final int vectorDimensions; private final boolean overwriteExistingTables; public Optional<String> getTextKey() { return Optional.ofNullable(textKey); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector/schema/PGVectorValues.java
package ai.knowly.langtorch.store.vectordb.integration.pgvector.schema; import ai.knowly.langtorch.schema.io.Metadata; import lombok.*; /** Represents the values of a PGVector. */ @Data @AllArgsConstructor(access = AccessLevel.PRIVATE) @Builder(toBuilder = true, setterPrefix = "set") public class PGVectorValues { @NonNull private final String id; private final float @NonNull [] values; private final Metadata metadata; }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector/schema/distance/CosineDistanceStrategy.java
package ai.knowly.langtorch.store.vectordb.integration.pgvector.schema.distance; import lombok.AccessLevel; import lombok.AllArgsConstructor; @AllArgsConstructor(access = AccessLevel.PACKAGE) public class CosineDistanceStrategy implements DistanceStrategy { @Override public String getSyntax() { return "<=>"; } @Override public double calculateDistance(double[] vector1, double[] vector2) { if (vector1.length != vector2.length) { throw new IllegalArgumentException("Vector dimensions do not match."); } double dotProduct = 0.0; double normA = 0.0; double normB = 0.0; for (int i = 0; i < vector1.length; i++) { dotProduct += vector1[i] * vector2[i]; normA += Math.pow(vector1[i], 2); normB += Math.pow(vector2[i], 2); } return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB)); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector/schema/distance/DistanceStrategies.java
package ai.knowly.langtorch.store.vectordb.integration.pgvector.schema.distance; import lombok.NonNull; import org.jetbrains.annotations.NotNull; /** Utility class to get instances for vector distance calculating strategies. */ public class DistanceStrategies { // Private constructor to hide the implicit public one private DistanceStrategies() { // Empty constructor } @NonNull public static DistanceStrategy euclidean() { return new EuclideanDistanceStrategy(); } @NotNull public static DistanceStrategy innerProduct() { return new InnerProductDistanceStrategy(); } @NotNull public static DistanceStrategy cosine() { return new CosineDistanceStrategy(); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector/schema/distance/DistanceStrategy.java
package ai.knowly.langtorch.store.vectordb.integration.pgvector.schema.distance; public interface DistanceStrategy { String getSyntax(); /** * Calculates the distance between two vectors based on the specified distance strategy. * * @param vector1 The first vector. * @param vector2 The second vector. * @return The calculated distance. * @throws IllegalArgumentException if the distance strategy is invalid or the vector dimensions * do not match. */ double calculateDistance(double[] vector1, double[] vector2); }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector/schema/distance/EuclideanDistanceStrategy.java
package ai.knowly.langtorch.store.vectordb.integration.pgvector.schema.distance; import lombok.AccessLevel; import lombok.AllArgsConstructor; @AllArgsConstructor(access = AccessLevel.PACKAGE) public class EuclideanDistanceStrategy implements DistanceStrategy { @Override public String getSyntax() { return "<->"; } @Override public double calculateDistance(double[] vector1, double[] vector2) { if (vector1.length != vector2.length) { throw new IllegalArgumentException("Vector dimensions do not match."); } double sumOfSquaredDifferences = 0.0; for (int i = 0; i < vector1.length; i++) { double difference = vector1[i] - vector2[i]; sumOfSquaredDifferences += difference * difference; } return Math.sqrt(sumOfSquaredDifferences); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pgvector/schema/distance/InnerProductDistanceStrategy.java
package ai.knowly.langtorch.store.vectordb.integration.pgvector.schema.distance; import lombok.AccessLevel; import lombok.AllArgsConstructor; @AllArgsConstructor(access = AccessLevel.PACKAGE) public class InnerProductDistanceStrategy implements DistanceStrategy { @Override public String getSyntax() { return "<#>"; } @Override public double calculateDistance(double[] vector1, double[] vector2) { if (vector1.length != vector2.length) { throw new IllegalArgumentException("Vector dimensions do not match."); } double innerProduct = 0; for (int i = 0; i < vector1.length; i++) { innerProduct += vector1[i] * vector2[i]; } return innerProduct; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone/PineconeAPI.java
package ai.knowly.langtorch.store.vectordb.integration.pinecone; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.delete.DeleteRequest; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.delete.DeleteResponse; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.fetch.FetchResponse; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.query.QueryRequest; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.query.QueryResponse; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.update.UpdateRequest; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.update.UpdateResponse; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.upsert.UpsertRequest; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.upsert.UpsertResponse; import com.google.common.util.concurrent.ListenableFuture; import java.util.List; import retrofit2.http.Body; import retrofit2.http.GET; import retrofit2.http.POST; import retrofit2.http.Query; public interface PineconeAPI { @POST("/vectors/upsert") ListenableFuture<UpsertResponse> upsert(@Body UpsertRequest request); @POST("/query") ListenableFuture<QueryResponse> query(@Body QueryRequest request); @POST("/vectors/delete") ListenableFuture<DeleteResponse> delete(@Body DeleteRequest request); @GET("/vectors/fetch") ListenableFuture<FetchResponse> fetch( @Query("namespace") String namespace, @Query("ids") List<String> ids); @POST("/vectors/update") ListenableFuture<UpdateResponse> update(@Body UpdateRequest request); }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone/PineconeAuthenticationInterceptor.java
package ai.knowly.langtorch.store.vectordb.integration.pinecone; import java.io.IOException; import java.util.Objects; import okhttp3.Interceptor; import okhttp3.Request; import okhttp3.Response; /** OkHttp Interceptor that adds an authorization header */ public class PineconeAuthenticationInterceptor implements Interceptor { private final String apiKey; PineconeAuthenticationInterceptor(String apiKey) { Objects.requireNonNull(apiKey, "Pinecone API required"); this.apiKey = apiKey; } @Override public Response intercept(Chain chain) throws IOException { Request request = chain .request() .newBuilder() .header("accept", "application/json") .header("content-type", "application/json") .header("Api-Key", apiKey) .build(); return chain.proceed(request); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone/PineconeService.java
package ai.knowly.langtorch.store.vectordb.integration.pinecone; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.PineconeApiExecutionException; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.PineconeHttpParseException; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.PineconeInterruptedException; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.PineconeServiceConfig; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.delete.DeleteRequest; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.delete.DeleteResponse; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.fetch.FetchRequest; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.fetch.FetchResponse; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.query.QueryRequest; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.query.QueryResponse; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.update.UpdateRequest; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.update.UpdateResponse; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.upsert.UpsertRequest; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.upsert.UpsertResponse; import com.fasterxml.jackson.annotation.JsonInclude; import com.fasterxml.jackson.databind.DeserializationFeature; import com.fasterxml.jackson.databind.ObjectMapper; import com.fasterxml.jackson.databind.PropertyNamingStrategy; import com.google.common.flogger.FluentLogger; import com.google.common.util.concurrent.ListenableFuture; import java.io.IOException; import java.util.concurrent.ExecutionException; import java.util.concurrent.TimeUnit; import okhttp3.*; import okhttp3.OkHttpClient.Builder; import okhttp3.logging.HttpLoggingInterceptor; import retrofit2.HttpException; import retrofit2.Retrofit; import retrofit2.adapter.guava.GuavaCallAdapterFactory; import retrofit2.converter.jackson.JacksonConverterFactory; /** Pinecone llm. */ public class PineconeService { private static final FluentLogger logger = FluentLogger.forEnclosingClass(); private final PineconeAPI api; private PineconeService(final PineconeServiceConfig pineconeServiceConfig) { ObjectMapper mapper = defaultObjectMapper(); OkHttpClient client = buildClient(pineconeServiceConfig); Retrofit retrofit = defaultRetrofit(pineconeServiceConfig.endpoint(), client, mapper); this.api = retrofit.create(PineconeAPI.class); } private PineconeService(final PineconeAPI api) { this.api = api; } public static PineconeService create(PineconeAPI api) { return new PineconeService(api); } public static PineconeService create(PineconeServiceConfig pineconeServiceConfig) { return new PineconeService(pineconeServiceConfig); } public static <T> T execute(ListenableFuture<T> apiCall) { try { return apiCall.get(); } catch (InterruptedException e) { // Restore the interrupt status Thread.currentThread().interrupt(); // Optionally, log or handle the exception here. logger.atSevere().withCause(e).log("Thread was interrupted during API call."); throw new PineconeInterruptedException(e); } catch (ExecutionException e) { if (e.getCause() instanceof HttpException) { HttpException httpException = (HttpException) e.getCause(); try { String errorBody = httpException.response().errorBody().string(); logger.atSevere().log("HTTP Error: %s", errorBody); throw new PineconeHttpParseException(errorBody); } catch (IOException ioException) { logger.atSevere().withCause(ioException).log("Error while reading errorBody"); } } throw new PineconeApiExecutionException(e); } } public static ObjectMapper defaultObjectMapper() { ObjectMapper mapper = new ObjectMapper(); mapper.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false); mapper.setSerializationInclusion(JsonInclude.Include.NON_NULL); mapper.setPropertyNamingStrategy(PropertyNamingStrategy.SNAKE_CASE); return mapper; } public static OkHttpClient buildClient(PineconeServiceConfig pineconeServiceConfig) { logger.atInfo().log("Pinecone:" + pineconeServiceConfig.apiKey()); Builder builder = new Builder() .addInterceptor(new PineconeAuthenticationInterceptor(pineconeServiceConfig.apiKey())) .connectionPool(new ConnectionPool(5, 1, TimeUnit.SECONDS)) .readTimeout(pineconeServiceConfig.timeoutDuration().toMillis(), TimeUnit.MILLISECONDS); if (pineconeServiceConfig.enableLogging()) { HttpLoggingInterceptor logging = new HttpLoggingInterceptor(); builder.addInterceptor(logging.setLevel(HttpLoggingInterceptor.Level.BODY)); } return builder.build(); } public static Retrofit defaultRetrofit( String endpoint, OkHttpClient client, ObjectMapper mapper) { return new Retrofit.Builder() .baseUrl(endpoint.startsWith("https://") ? endpoint : "https://" + endpoint) .client(client) .addConverterFactory(JacksonConverterFactory.create(mapper)) .addCallAdapterFactory(GuavaCallAdapterFactory.create()) .build(); } public UpsertResponse upsert(UpsertRequest request) { return execute(api.upsert(request)); } public ListenableFuture<UpsertResponse> upsertAsync(UpsertRequest request) { return api.upsert(request); } public QueryResponse query(QueryRequest request) { return execute(api.query(request)); } public ListenableFuture<QueryResponse> queryAsync(QueryRequest request) { return api.query(request); } public DeleteResponse delete(DeleteRequest request) { return execute(api.delete(request)); } public ListenableFuture<DeleteResponse> queryAsync(DeleteRequest request) { return api.delete(request); } public FetchResponse fetch(FetchRequest request) { return execute(api.fetch(request.getNamespace(), request.getIds())); } public ListenableFuture<FetchResponse> fetchAsync(FetchRequest request) { return api.fetch(request.getNamespace(), request.getIds()); } public UpdateResponse update(UpdateRequest request) { return execute(api.update(request)); } public ListenableFuture<UpdateResponse> updateAsync(UpdateRequest request) { return api.update(request); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone/PineconeVectorStore.java
package ai.knowly.langtorch.store.vectordb.integration.pinecone; import ai.knowly.langtorch.processor.EmbeddingProcessor; import ai.knowly.langtorch.schema.embeddings.EmbeddingInput; import ai.knowly.langtorch.schema.embeddings.EmbeddingOutput; import ai.knowly.langtorch.schema.io.DomainDocument; import ai.knowly.langtorch.schema.io.Metadata; import ai.knowly.langtorch.store.vectordb.integration.VectorStore; import ai.knowly.langtorch.store.vectordb.integration.schema.SimilaritySearchQuery; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.PineconeVectorStoreSpec; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.Vector; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.query.Match; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.query.QueryRequest; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.query.QueryResponse; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.upsert.UpsertRequest; import ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.upsert.UpsertResponse; import com.google.common.collect.ImmutableList; import java.util.*; import javax.inject.Inject; /** * The PineconeVectorStore class is an implementation of the VectorStore interface, which provides * integration with the Pinecone service for storing and querying vectors. */ public class PineconeVectorStore implements VectorStore { // Constants private final EmbeddingProcessor embeddingProcessor; private final PineconeVectorStoreSpec pineconeVectorStoreSpec; @Inject public PineconeVectorStore( EmbeddingProcessor embeddingProcessor, PineconeVectorStoreSpec pineconeVectorStoreSpec) { this.embeddingProcessor = embeddingProcessor; this.pineconeVectorStoreSpec = pineconeVectorStoreSpec; } /** * Adds the specified documents to the Pinecone vector store database. * * @return true if documents added successfully, otherwise false */ @Override public boolean addDocuments(List<DomainDocument> documents) { if (documents.isEmpty()) return true; return addVectors( documents.stream().map(this::createVector).collect(ImmutableList.toImmutableList())); } /** * Adds a list of vectors to the Pinecone vector store database. * * @return true if vectors added successfully, otherwise false */ private boolean addVectors(List<Vector> vectors) { UpsertRequest.UpsertRequestBuilder upsertRequestBuilder = UpsertRequest.builder().setVectors(vectors); this.pineconeVectorStoreSpec.getNamespace().ifPresent(upsertRequestBuilder::setNamespace); UpsertResponse response = this.pineconeVectorStoreSpec.getPineconeService().upsert(upsertRequestBuilder.build()); return response.getUpsertedCount() == vectors.size(); } /** * Creates an instance of Vector from given DomainDocument * * @param document the document from which a Vector will be created * @return an instance of {@link Vector} */ private Vector createVector(DomainDocument document) { EmbeddingOutput embeddingOutput = embeddingProcessor.run( EmbeddingInput.builder() .setModel(pineconeVectorStoreSpec.getModel()) .setInput(Collections.singletonList(document.getPageContent())) .build()); return Vector.builder() .setId(document.getId().orElse(UUID.randomUUID().toString())) .setMetadata(document.getMetadata().orElse(Metadata.getDefaultInstance()).getValue()) .setValues(embeddingOutput.getValue().get(0).getVector()) .build(); } /** * Performs a similarity search using a vector query and returns a list of pairs containing the * schema documents and their corresponding similarity scores. */ @Override public List<DomainDocument> similaritySearch(SimilaritySearchQuery similaritySearchQuery) { QueryRequest.QueryRequestBuilder requestBuilder = QueryRequest.builder() .setIncludeMetadata(true) .setTopK(similaritySearchQuery.getTopK()) .setVector(similaritySearchQuery.getQuery()) .setFilter(similaritySearchQuery.getFilter()); pineconeVectorStoreSpec.getNamespace().ifPresent(requestBuilder::setNamespace); QueryResponse response = pineconeVectorStoreSpec.getPineconeService().query(requestBuilder.build()); List<DomainDocument> result = new ArrayList<>(); // create mapping of PineCone metadata to schema meta data if (response.getMatches() != null) { for (Match match : response.getMatches()) { if (!pineconeVectorStoreSpec.getTextKey().isPresent()) { continue; } Metadata metadata = match.getMetadata() == null ? Metadata.getDefaultInstance() : Metadata.builder().setValue(match.getMetadata()).build(); if (match.getScore() != null) { result.add( DomainDocument.builder() .setPageContent( metadata.getValue().get(this.pineconeVectorStoreSpec.getTextKey().get())) .setMetadata(metadata) .setSimilarityScore(Optional.of(match.getScore())) .build()); } } } return result; } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone/schema/PineconeApiExecutionException.java
package ai.knowly.langtorch.store.vectordb.integration.pinecone.schema; import java.util.concurrent.ExecutionException; public class PineconeApiExecutionException extends RuntimeException { public PineconeApiExecutionException(ExecutionException e) { super(e); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone/schema/PineconeHttpParseException.java
package ai.knowly.langtorch.store.vectordb.integration.pinecone.schema; public class PineconeHttpParseException extends RuntimeException { public PineconeHttpParseException(String msg) { super(msg); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone/schema/PineconeInterruptedException.java
package ai.knowly.langtorch.store.vectordb.integration.pinecone.schema; public class PineconeInterruptedException extends RuntimeException { public PineconeInterruptedException(InterruptedException e) { super(e); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone/schema/PineconeServiceConfig.java
package ai.knowly.langtorch.store.vectordb.integration.pinecone.schema; import com.google.auto.value.AutoValue; import java.time.Duration; @AutoValue public abstract class PineconeServiceConfig { public static Builder builder() { return new AutoValue_PineconeServiceConfig.Builder() .setTimeoutDuration(Duration.ofSeconds(10)) .setEnableLogging(false); } public abstract String apiKey(); public abstract String endpoint(); public abstract Duration timeoutDuration(); public abstract boolean enableLogging(); @AutoValue.Builder public abstract static class Builder { public abstract Builder setEndpoint(String endpoint); public abstract Builder setApiKey(String newApiKey); public abstract Builder setTimeoutDuration(Duration timeoutDuration); public abstract Builder setEnableLogging(boolean enableLogging); public abstract PineconeServiceConfig build(); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone/schema/PineconeVectorStoreSpec.java
package ai.knowly.langtorch.store.vectordb.integration.pinecone.schema; import ai.knowly.langtorch.store.vectordb.integration.pinecone.PineconeService; import java.util.Optional; import lombok.Builder; import lombok.Data; import lombok.NonNull; @Data @Builder(toBuilder = true, setterPrefix = "set") public class PineconeVectorStoreSpec { @NonNull private final PineconeService pineconeService; private final String namespace; private final String textKey; @Builder.Default private final String model = "text-embedding-ada-002"; public Optional<String> getNamespace() { return Optional.ofNullable(namespace); } public Optional<String> getTextKey() { return Optional.ofNullable(textKey); } }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone/schema/dto/SparseValues.java
package ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto; import com.fasterxml.jackson.annotation.JsonProperty; import java.util.List; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; @Data @Builder(toBuilder = true, setterPrefix = "set") @NoArgsConstructor @AllArgsConstructor public class SparseValues { @JsonProperty("indices") private List<Integer> indices; @JsonProperty("values") private List<Double> values; }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone/schema
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone/schema/dto/Vector.java
package ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto; import com.fasterxml.jackson.annotation.JsonProperty; import java.util.List; import java.util.Map; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; @Data @Builder(toBuilder = true, setterPrefix = "set") @NoArgsConstructor @AllArgsConstructor public class Vector { @JsonProperty("id") private String id; @JsonProperty("values") private List<Double> values; @JsonProperty("sparseValues") private SparseValues sparseValues; @JsonProperty("metadata") private Map<String, String> metadata; }
0
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone/schema/dto
java-sources/ai/knowly/langtorch/0.0.17/ai/knowly/langtorch/store/vectordb/integration/pinecone/schema/dto/delete/DeleteRequest.java
package ai.knowly.langtorch.store.vectordb.integration.pinecone.schema.dto.delete; import com.fasterxml.jackson.annotation.JsonProperty; import java.util.List; import java.util.Map; import lombok.Builder; import lombok.Data; @Data @Builder(toBuilder = true, setterPrefix = "set") public class DeleteRequest { @JsonProperty("ids") private List<String> ids; @JsonProperty("deleteAll") private boolean deleteAll; @JsonProperty("namespace") private String namespace; @JsonProperty("filter") private Map<String, String> filter; }