index
int64
repo_id
string
file_path
string
content
string
0
java-sources/ai/kognition/pilecv4j/lib-tracking/1.0/ai/kognition/pilecv4j
java-sources/ai/kognition/pilecv4j/lib-tracking/1.0/ai/kognition/pilecv4j/tracking/CvKalmanFilter.java
/* * Copyright 2022 Jim Carroll * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package ai.kognition.pilecv4j.tracking; import static ai.kognition.pilecv4j.image.CvMat.TRACK_MEMORY_LEAKS; import java.io.PrintStream; import java.lang.reflect.InvocationTargetException; import java.lang.reflect.Method; import java.util.StringJoiner; import org.opencv.core.CvType; import org.opencv.core.Mat; import org.opencv.video.KalmanFilter; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import ai.kognition.pilecv4j.image.Closer; import ai.kognition.pilecv4j.image.CvMat; import ai.kognition.pilecv4j.image.Utils; /** * This represents a standard Kalman filter. The transition, control, and measurement matrices can be modified ({@link CvKalmanFilter#setTransitionMatrix(Mat)}, * {@link CvKalmanFilter#setControlMatrix(Mat)}, {@link CvKalmanFilter#setMeasurementMatrix(Mat)}, respectively) to get extended functionality. * * @see <a href="https://en.wikipedia.org/wiki/Kalman_filter">wikipedia: Kalman filter</a> */ public class CvKalmanFilter extends KalmanFilter implements AutoCloseable { private static final Logger LOGGER = LoggerFactory.getLogger(CvKalmanFilter.class); private static final Method nativeDelete; protected boolean deletedAlready = false; protected boolean skipOnceForDelete = false; protected final RuntimeException initTrace; protected RuntimeException deleteTrace = null; public final int dynamicParameters; public final int measureParameters; public final int controlParameters; public final KalmanDataType dataType; static { CvMat.initOpenCv(); try { nativeDelete = KalmanFilter.class.getDeclaredMethod("delete", long.class); nativeDelete.setAccessible(true); } catch(final NoSuchMethodException | SecurityException e) { throw new RuntimeException("Got an exception trying to access " + KalmanFilter.class.getSimpleName() + ".delete. Either the security model is too restrictive or the version of OpenCv can't be supported.", e); } } public enum KalmanDataType { CV_32F(CvType.CV_32F, float.class), CV_64F(CvType.CV_64F, double.class); public final int cvType; public final Class<? extends Number> javaType; KalmanDataType(final int cvType, final Class<? extends Number> javaType) { this.cvType = cvType; this.javaType = javaType; } } public CvKalmanFilter(final int dynamicParameters, final int measureParameters, final KalmanDataType type) { this(dynamicParameters, measureParameters, 0, type); } /** * TODO change this to a builder pattern. * * @param dynamicParameters Dimensionality of the state. Must be greater than 0. * @param measureParameters Dimensionality of the measurement. Must be greater than 0. * @param controlParameters Dimensionality of the control vector. Default value is 0. * @param type Numerical primitive type underlying all {@link Mat} generated by the Kalman Filter. */ public CvKalmanFilter(final int dynamicParameters, final int measureParameters, final int controlParameters, final KalmanDataType type) { super(dynamicParameters, measureParameters, controlParameters, type.cvType); this.dynamicParameters = dynamicParameters; this.measureParameters = measureParameters; this.controlParameters = controlParameters; this.dataType = type; initTrace = TRACK_MEMORY_LEAKS ? new RuntimeException("Here's where I was instantiated: ") : null; } /** * Updates the predicted state from the measurement and returns the posteriori state (as in {@link CvKalmanFilter#getCorrectedState()}). * * @return a new mat to be managed by the caller. * * @see CvKalmanFilter#getCorrectedState() */ @Override public CvMat correct(final Mat measurement) { return CvMat.move(super.correct(measurement)); } /** * @return a shallow copied Mat to be managed by the caller. */ @Override public CvMat predict(final Mat control) { return CvMat.move(super.predict(control)); } /** * @return a shallow copied Mat to be managed by the caller. */ @Override public CvMat predict() { return CvMat.move(super.predict()); } @Override public CvMat get_statePre() { return CvMat.move(super.get_statePre()); } /** * Predicted state: (x'(k)): x(k)=A*x(k-1)+B*u(k) * * @return a shallow copied Mat to be managed by the caller. */ public CvMat getPredictionState() { return this.get_statePre(); } public CvKalmanFilter setPredictionState(final Mat matrix) { if(notAllowSet(getPredictionState(), matrix)) throw new ArithmeticException("Cannot set prediction state: wrong size."); super.set_statePre(matrix); return this; } @Override public CvMat get_statePost() { return CvMat.move(super.get_statePost()); } /** * Corrected state: (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k)) * * @return a shallow copied Mat to be managed by the caller. */ public CvMat getCorrectedState() { return this.get_statePost(); } /** * @param matrix a Mat of size [{@link CvKalmanFilter#dynamicParameters},1]. */ public CvKalmanFilter setCorrectedState(final Mat matrix) { if(notAllowSet(getCorrectedState(), matrix)) throw new ArithmeticException("Cannot set corrected state: wrong size."); super.set_statePost(matrix); return this; } @Override public CvMat get_transitionMatrix() { return CvMat.move(super.get_transitionMatrix()); } /** * State transition matrix: (A) * * @return a shallow copied Mat to be managed by the caller. */ public CvMat getTransitionMatrix() { return get_transitionMatrix(); } public CvKalmanFilter setTransitionMatrix(final Mat transitionMatrix) { if(notAllowSet(getTransitionMatrix(), transitionMatrix)) throw new ArithmeticException("Cannot set transition matrix: wrong size."); super.set_transitionMatrix(transitionMatrix); return this; } @Override public CvMat get_controlMatrix() { return CvMat.move(super.get_controlMatrix()); } /** * Control matrix (B) * <p> * Unused if there is no control. * * @return a shallow copied Mat to be managed by the caller. */ public CvMat getControlMatrix() { return this.get_controlMatrix(); } public CvKalmanFilter setControlMatrix(final Mat controlMatrix) { if(controlParameters <= 0) throw new ArithmeticException("Cannot set control: no control parameters."); if(notAllowSet(getControlMatrix(), controlMatrix)) throw new ArithmeticException("Cannot set control: wrong size."); super.set_controlMatrix(controlMatrix); return this; } @Override public CvMat get_measurementMatrix() { return CvMat.move(super.get_measurementMatrix()); } /** * Measurement matrix (H) * * @return a shallow copied Mat to be managed by the caller. */ public CvMat getMeasurementMatrix() { return get_measurementMatrix(); } public CvKalmanFilter setMeasurementMatrix(final Mat measurementMatrix) { if(notAllowSet(getMeasurementMatrix(), measurementMatrix)) throw new ArithmeticException("Cannot set measurement: wrong size."); super.set_measurementMatrix(measurementMatrix); return this; } @Override public CvMat get_processNoiseCov() { return CvMat.move(super.get_processNoiseCov()); } /** * Process noise covariance matrix (Q). * * @return a shallow copied Mat to be managed by the caller. */ public CvMat getProcessNoiseCovariance() { return this.get_processNoiseCov(); } public CvKalmanFilter setProcessNoiseCovariance(final Mat processNoiseCov) { if(notAllowSet(getProcessNoiseCovariance(), processNoiseCov)) throw new ArithmeticException("Cannot set process noise covariance: wrong size."); super.set_processNoiseCov(processNoiseCov); return this; } @Override public CvMat get_measurementNoiseCov() { return CvMat.move(super.get_measurementNoiseCov()); } /** * Measurement noise covariance matrix (R) * * @return a shallow copied Mat to be managed by the caller. */ public CvMat getMeasurementNoiseCovariance() { return this.get_measurementNoiseCov(); } public CvKalmanFilter setMeasurementNoiseCovariance(final Mat measurementNoiseCovariance) { if(notAllowSet(getMeasurementNoiseCovariance(), measurementNoiseCovariance)) throw new ArithmeticException("Cannot set measurement error covariance: wrong size."); super.set_measurementNoiseCov(measurementNoiseCovariance); return this; } @Override public CvMat get_errorCovPre() { return CvMat.move(super.get_errorCovPre()); } /** * Priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q) * * @return a shallow copied Mat to be managed by the caller. */ public CvMat getPrioriErrorEstimateCovariance() { return this.get_errorCovPre(); } public CvKalmanFilter setPrioriErrorEstimateCovariance(final Mat errorCovPre) { if(notAllowSet(getPrioriErrorEstimateCovariance(), errorCovPre)) throw new ArithmeticException("Cannot set priori error covariance: wrong size."); super.set_errorCovPre(errorCovPre); return this; } @Override public CvMat get_gain() { return CvMat.move(super.get_gain()); } /** * Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R) * * @return a shallow copied Mat to be managed by the caller. */ public CvMat getGain() { return this.get_gain(); } public CvKalmanFilter setGain(final Mat gain) { if(notAllowSet(getGain(), gain)) throw new ArithmeticException("Cannot set Kalman gain: wrong size."); super.set_gain(gain); return this; } @Override public CvMat get_errorCovPost() { return CvMat.move(super.get_errorCovPost()); } /** * Posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k) * * @return a shallow copied Mat to be managed by the caller. */ public CvMat getPosterioriErrorEstimateCovariance() { return this.get_measurementNoiseCov(); } public CvKalmanFilter setPosterioriErrorEstimateCovariance(final Mat errorCovPost) { if(notAllowSet(getPosterioriErrorEstimateCovariance(), errorCovPost)) throw new ArithmeticException("Cannot set posteriori error covariance: wrong size."); super.set_errorCovPost(errorCovPost); return this; } protected void doNativeDelete() { try { nativeDelete.invoke(this, super.nativeObj); } catch(final IllegalAccessException | IllegalArgumentException | InvocationTargetException e) { throw new RuntimeException("Got an exception trying to call " + KalmanFilter.class.getSimpleName() + ".delete. Either the security model is too " + "restrictive or the version of OpenCV can't be supported.", e); } } public CvKalmanFilter skipOnceForReturn() { skipOnceForDelete = true; return this; } @Override public void close() { if(!skipOnceForDelete) { if(!deletedAlready) { doNativeDelete(); deletedAlready = true; if(TRACK_MEMORY_LEAKS) deleteTrace = new RuntimeException("Here's where I was closed."); } else if(TRACK_MEMORY_LEAKS) { LOGGER.warn("TRACKING: Deleting {} again at:", this.getClass() .getSimpleName(), new RuntimeException()); LOGGER.warn("TRACKING: Originally closed at:", deleteTrace); LOGGER.warn("TRACKING: Created at:", initTrace); } } else { skipOnceForDelete = false; } } @Override public void finalize() { if(!deletedAlready) { LOGGER.debug("Finalizing a {} that hasn't been closed.", this.getClass() .getSimpleName()); if(TRACK_MEMORY_LEAKS) LOGGER.debug("TRACKING: Here's where I was instantiated: ", initTrace); close(); } } @Override public String toString() { return new StringJoiner(", ", CvKalmanFilter.class.getSimpleName() + "[", "]").add("dataType=" + dataType) .add("dynamicParameters=" + dynamicParameters) .add("measureParameters=" + measureParameters) .add("controlParameters=" + controlParameters) .add("deletedAlready=" + deletedAlready) .add("nativeObj=" + nativeObj) .toString(); } /** * OpenCV's JNI wrappers do no error checking since the set methods directly assign to the underlying kalman.cpp's state. Rather than getting an illegal * argument exception, a runtime error is potentially, eventually returned instead. This preempts that problem by doing error checking at set time. */ private static boolean notAllowSet(final CvMat original, final Mat newMat) { try(original) { return original.rows() != newMat.rows() || original.cols() != newMat.cols() || original.channels() != newMat.channels(); } } /** * This is a convenience method for {@link CvKalmanFilter#dump(CvKalmanFilter, PrintStream)} that uses {@link System#out} as the {@link PrintStream} and * dumps all elements of every mat in the supplied filter. * <p> * This is an expensive operation. */ public static void dump(final CvKalmanFilter filter) { dump(filter, System.out); } /** * Dumps elements of every mat in the supplied filter to the supplied print stream. * <p> * This is an expensive operation. */ public static void dump(final CvKalmanFilter filter, final PrintStream out) { out.println(filter.toString()); if(filter.deletedAlready) return; try(Closer c = new Closer();) { dumpMat("Predicted state (x'(k))", c.add(filter.getPredictionState()), out); dumpMat("Corrected state (x(k))", c.add(filter.getCorrectedState()), out); dumpMat("Transition matrix (A)", c.add(filter.getTransitionMatrix()), out); dumpMat("Control matrix (B)", c.add(filter.getControlMatrix()), out); dumpMat("Measurement matrix (H)", c.add(filter.getMeasurementMatrix()), out); dumpMat("Kalman gain (K)", c.add(filter.getGain()), out); dumpMat("Process noise uncertainty/cov (Q)", c.add(filter.getProcessNoiseCovariance()), out); dumpMat("Measurement noise uncertainty/cov (R)", c.add(filter.getMeasurementNoiseCovariance()), out); dumpMat("Priori error estimate uncertainty/cov (P'(k))", c.add(filter.getPrioriErrorEstimateCovariance()), out); dumpMat("Posteriori error estimate uncertainty/cov (P(k))", c.add(filter.getPosterioriErrorEstimateCovariance()), out); } } private static void dumpMat(final String name, final CvMat mat, final PrintStream out) { try(mat) { out.print("- " + name + ": "); if(mat == null || mat.cols() == 0) { out.println("[]"); } else { Utils.dump(mat, out); } } } }
0
java-sources/ai/kognition/pilecv4j/lib-tracking/1.0/ai/kognition/pilecv4j
java-sources/ai/kognition/pilecv4j/lib-tracking/1.0/ai/kognition/pilecv4j/tracking/NaiveMultiTracker.java
/* * Copyright 2022 Jim Carroll * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package ai.kognition.pilecv4j.tracking; import java.util.ArrayList; import java.util.List; import org.opencv.core.Mat; import org.opencv.core.Rect2d; /** * This is a reimplementation of {@link org.opencv.tracking.MultiTracker} but written in Java for Java. * <p> * This works exactly in the same way that the C++ MultiTrackerAlt operates- naively- but allows the developer to have easy, underlying access to the internal * trackers, and to be able to remove them. */ public class NaiveMultiTracker { public final List<Tracker> trackers = new ArrayList<>(); /** * @param tracker any previously initialized tracker. * * @see Tracker#initialize(Mat, Rect2d) */ public NaiveMultiTracker addInitializedTracker(final Tracker tracker) { if(!tracker.isInitialized()) throw new IllegalStateException("Attempted to pass in a " + tracker.getClass() .getSimpleName() + " that was not initialized."); trackers.add(tracker); return this; } /** * For each tracker present in this, return where the tracked object is. */ public Rect2d[] update(final Mat newImage) { return trackers.stream() .map(tracker -> tracker.update(newImage)) .map(boundingBox -> boundingBox.orElse(null)) .toArray(Rect2d[]::new); } }
0
java-sources/ai/kognition/pilecv4j/lib-tracking/1.0/ai/kognition/pilecv4j
java-sources/ai/kognition/pilecv4j/lib-tracking/1.0/ai/kognition/pilecv4j/tracking/Tracker.java
/* * Copyright 2022 Jim Carroll * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package ai.kognition.pilecv4j.tracking; import java.util.Optional; import org.opencv.core.Mat; import org.opencv.core.Rect; import org.opencv.core.Rect2d; /** * Much like {@link ai.kognition.pilecv4j.image.CvMat}, this is an easier interface to OpenCV's tracking ({@link org.opencv.tracking.Tracker}) class. It has * simple memory management via the {@link AutoCloseable} interface and builder patterns. */ public interface Tracker extends AutoCloseable { boolean supportsMasking(); default Tracker setMask(final Mat mask) { throw new UnsupportedOperationException(this.getClass() .getSimpleName() + " does not support masking."); } boolean isInitialized(); /** * All trackers in OpenCV must be initialized by first stating "this is the object I wish to track." * <p> * Not all trackers will be able to understand what the underlying features are to be able to discriminate the difference between the object and the * background. The myriad of ways in which a tracker can fail to initialize are numerous but the end result is the same- a tracker that doesn't track. For * all trackers, <em>in the event that the tracker fails to initialize, the underlying memory will be automatically released via the {@link this#close()} * method.</em> * * @param image image from which the bounding box was pulled from * @param initialBoundingBox The object you wish to track * * @return {@link Optional#empty()} if the tracker fails to initialize. Otherwise, return this. */ Optional<Tracker> initialize(Mat image, Rect2d initialBoundingBox); default Optional<Tracker> initialize(final Mat image, final Rect initialBoundingBox) { return initialize(image, new Rect2d(initialBoundingBox.x, initialBoundingBox.y, initialBoundingBox.width, initialBoundingBox.height)); } /** * Update the tracker and find the new, most-likely bounding box for the target. * * @param image Current frame. * * @return {@link Optional#empty()} if the target was not located. Otherwise, return the bounding box. Note: an empty optional does not mean that the * tracker has failed but merely that the target was not found in the frame. This can happen if the target is out of sight. */ Optional<Rect2d> update(Mat image); /** * This method allows the developer to return a {@link Tracker} that's being managed by a <em>"try-with-resource"</em> without worrying about the resources * being freed. As an example: * * <pre> * <code> * try(final Tracker trackerToReturn = new Tracker()) { * // attempt initialization * return trackerToReturn.skipOnceForReturn(); * } * </code> * </pre> * * <p> * While it's possible to simply not use a try-with-resource and leave the {@link Tracker} unmanaged, you run the possibility of leaking it if an exception * is thrown prior to returning it. * * @return the tracker */ Tracker skipOnceForReturn(); }
0
java-sources/ai/kognition/pilecv4j/lib-tracking/1.0/ai/kognition/pilecv4j
java-sources/ai/kognition/pilecv4j/lib-tracking/1.0/ai/kognition/pilecv4j/tracking/TrackerImpl.java
/* * Copyright 2022 Jim Carroll * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package ai.kognition.pilecv4j.tracking; import java.util.function.Supplier; import ai.kognition.pilecv4j.tracking.tracker.TrackerCSRT; import ai.kognition.pilecv4j.tracking.tracker.TrackerKCF; import ai.kognition.pilecv4j.tracking.tracker.TrackerMOSSE; public enum TrackerImpl implements Supplier<Tracker> { CSRT { @Override public TrackerCSRT get() { return new TrackerCSRT(); } @Override public boolean supportsMasking() { return TrackerCSRT.SUPPORTS_MASKING; } }, KCF { @Override public TrackerKCF get() { return new TrackerKCF(); } @Override public boolean supportsMasking() { return TrackerKCF.SUPPORTS_MASKING; } }, MOSSE { @Override public TrackerMOSSE get() { return new TrackerMOSSE(); } @Override public boolean supportsMasking() { return TrackerMOSSE.SUPPORTS_MASKING; } }; @Override public abstract Tracker get(); public abstract boolean supportsMasking(); }
0
java-sources/ai/kognition/pilecv4j/lib-tracking/1.0/ai/kognition/pilecv4j/tracking
java-sources/ai/kognition/pilecv4j/lib-tracking/1.0/ai/kognition/pilecv4j/tracking/tracker/TrackerCSRT.java
/* * Copyright 2022 Jim Carroll * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package ai.kognition.pilecv4j.tracking.tracker; import static ai.kognition.pilecv4j.image.CvMat.TRACK_MEMORY_LEAKS; import java.lang.reflect.InvocationTargetException; import java.lang.reflect.Method; import java.util.Optional; import org.opencv.core.Mat; import org.opencv.core.Rect2d; import org.opencv.tracking.legacy_TrackerCSRT; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import ai.kognition.pilecv4j.image.CvMat; import ai.kognition.pilecv4j.tracking.Tracker; /** * Extension of OpenCV's implementation of the Discriminative Correlation Filter with Channel and Spatial Reliability to fit {@link Tracker}. * * @see <a href="https://arxiv.org/abs/1611.08461">arxiv: Discriminitive Correlation Filter with Channel and Spatial Reliability</a> */ public class TrackerCSRT extends legacy_TrackerCSRT implements Tracker { private static final Logger LOGGER = LoggerFactory.getLogger(TrackerCSRT.class); public static final boolean SUPPORTS_MASKING = true; private static final Method nativeCreate; private static final Method nativeDelete; protected boolean isInitialized = false; protected boolean deletedAlready = false; protected boolean skipOnceForDelete = false; protected final RuntimeException stackTrace; protected RuntimeException delStackTrace = null; static { CvMat.initOpenCv(); } static { try { nativeCreate = legacy_TrackerCSRT.class.getDeclaredMethod("create_0"); nativeCreate.setAccessible(true); nativeDelete = legacy_TrackerCSRT.class.getDeclaredMethod("delete", long.class); nativeDelete.setAccessible(true); } catch(final NoSuchMethodException | SecurityException e) { throw new RuntimeException("Got an exception trying to access " + TrackerCSRT.class.getSimpleName() + ".delete or .create_0. Either the security model is too restrictive or the version of OpenCv can't be supported.", e); } } public TrackerCSRT() { this(doNativeCreate()); } protected TrackerCSRT(final long nativeAddr) { super(nativeAddr); stackTrace = TRACK_MEMORY_LEAKS ? new RuntimeException("Here's where I was instantiated: ") : null; } @Override public boolean supportsMasking() { return SUPPORTS_MASKING; } @Override public Tracker setMask(final Mat mask) { super.setInitialMask(mask); return this; } @Override public Optional<Tracker> initialize(final Mat image, final Rect2d initialBoundingBox) { if(!super.init(image, initialBoundingBox)) { this.close(); return Optional.empty(); } isInitialized = true; return Optional.of(this); } @Override public boolean isInitialized() { return isInitialized; } @Override public Optional<Rect2d> update(final Mat image) { final Rect2d retval = new Rect2d(); if(!super.update(image, retval)) return Optional.empty(); return Optional.of(retval); } protected static long doNativeCreate() { try { return (Long)nativeCreate.invoke(null); } catch(final IllegalAccessException | InvocationTargetException e) { throw new RuntimeException("Got an exception trying to call Tracker.create_0. Either the security model is too restrictive or the version of " + "OpenCV can't be supported.", e); } } protected void doNativeDelete() { try { nativeDelete.invoke(this, super.nativeObj); } catch(final IllegalAccessException | IllegalArgumentException | InvocationTargetException e) { throw new RuntimeException("Got an exception trying to call Tracker.delete. Either the security model is too restrictive or the version of " + "OpenCV can't be supported.", e); } } @Override public TrackerCSRT skipOnceForReturn() { skipOnceForDelete = true; return this; } @Override public void close() { if(!skipOnceForDelete) { if(!deletedAlready) { doNativeDelete(); deletedAlready = true; if(TRACK_MEMORY_LEAKS) delStackTrace = new RuntimeException("Here's where I was closed"); } else if(TRACK_MEMORY_LEAKS) { LOGGER.warn("TRACKING: deleting {} again at:", this.getClass() .getSimpleName(), new RuntimeException()); LOGGER.warn("TRACKING: originally closed at:", delStackTrace); LOGGER.warn("TRACKING: create at: ", stackTrace); } } else { skipOnceForDelete = false; } } @Override public void finalize() { if(!deletedAlready) { LOGGER.debug("Finalizing a {} that hasn't been closed.", this.getClass() .getSimpleName()); if(TRACK_MEMORY_LEAKS) LOGGER.debug("TRACKING: here's where I was instantiated: ", stackTrace); close(); } } @Override public String toString() { return "TrackerCSRT{" + "isInitialized=" + isInitialized + ", deletedAlready=" + deletedAlready + '}'; } }
0
java-sources/ai/kognition/pilecv4j/lib-tracking/1.0/ai/kognition/pilecv4j/tracking
java-sources/ai/kognition/pilecv4j/lib-tracking/1.0/ai/kognition/pilecv4j/tracking/tracker/TrackerKCF.java
/* * Copyright 2022 Jim Carroll * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package ai.kognition.pilecv4j.tracking.tracker; import static ai.kognition.pilecv4j.image.CvMat.TRACK_MEMORY_LEAKS; import java.lang.reflect.InvocationTargetException; import java.lang.reflect.Method; import java.util.Optional; import org.opencv.core.Mat; import org.opencv.core.Rect2d; import org.opencv.tracking.legacy_TrackerKCF; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import ai.kognition.pilecv4j.image.CvMat; import ai.kognition.pilecv4j.tracking.Tracker; /** * Extension of OpenCV's implementation of the Kernelized Correlation Filter to fit {@link Tracker}. * * @see <a href="https://arxiv.org/abs/1404.7584">arxiv: High-Speed Tracking with Kernelized Correlation Filters</a> */ public class TrackerKCF extends legacy_TrackerKCF implements Tracker { private static final Logger LOGGER = LoggerFactory.getLogger(TrackerKCF.class); public static final boolean SUPPORTS_MASKING = false; private static final Method nativeCreate; private static final Method nativeDelete; protected boolean isInitialized = false; protected boolean deletedAlready = false; protected boolean skipOnceForDelete = false; protected final RuntimeException stackTrace; protected RuntimeException delStackTrace; static { CvMat.initOpenCv(); } static { try { nativeCreate = legacy_TrackerKCF.class.getDeclaredMethod("create_0"); nativeCreate.setAccessible(true); nativeDelete = legacy_TrackerKCF.class.getDeclaredMethod("delete", long.class); nativeDelete.setAccessible(true); } catch(final NoSuchMethodException | SecurityException e) { throw new RuntimeException("Got an exception trying to access " + TrackerKCF.class.getSimpleName() + ".delete or .create_0. Either the security model is too restrictive or the version of OpenCv can't be supported.", e); } } public TrackerKCF() { this(doNativeCreate()); } protected TrackerKCF(final long nativeAdr) { super(nativeAdr); stackTrace = TRACK_MEMORY_LEAKS ? new RuntimeException("Here's where I was instantiated: ") : null; } @Override public boolean supportsMasking() { return SUPPORTS_MASKING; } @Override public boolean isInitialized() { return isInitialized; } @Override public Optional<Tracker> initialize(final Mat image, final Rect2d initialBoundingBox) { if(!super.init(image, initialBoundingBox)) { this.close(); return Optional.empty(); } isInitialized = true; return Optional.of(this); } @Override public Optional<Rect2d> update(final Mat image) { final Rect2d predicted = new Rect2d(); if(!super.update(image, predicted)) return Optional.empty(); return Optional.of(predicted); } protected static long doNativeCreate() { try { return (Long)nativeCreate.invoke(null); } catch(final IllegalAccessException | InvocationTargetException e) { throw new RuntimeException("Got an exception trying to call Tracker.create_0. Either the security model is too restrictive or the version of " + "OpenCV can't be supported.", e); } } protected void doNativeDelete() { try { nativeDelete.invoke(this, super.nativeObj); } catch(final IllegalAccessException | IllegalArgumentException | InvocationTargetException e) { throw new RuntimeException("Got an exception trying to call Tracker.delete. Either the security model is too restrictive or the version of " + "OpenCV can't be supported.", e); } } @Override public TrackerKCF skipOnceForReturn() { skipOnceForDelete = true; return this; } @Override public void close() { if(!skipOnceForDelete) { if(!deletedAlready) { doNativeDelete(); deletedAlready = true; if(TRACK_MEMORY_LEAKS) delStackTrace = new RuntimeException("Here's where I was closed"); } else if(TRACK_MEMORY_LEAKS) { LOGGER.warn("TRACKING: deleting {} again at:", this.getClass() .getSimpleName(), new RuntimeException()); LOGGER.warn("TRACKING: originally closed at:", delStackTrace); LOGGER.warn("TRACKING: create at: ", stackTrace); } } else { skipOnceForDelete = false; } } @Override public void finalize() { if(!deletedAlready) { LOGGER.debug("Finalizing a {} that hasn't been closed.", this.getClass() .getSimpleName()); if(TRACK_MEMORY_LEAKS) LOGGER.debug("TRACKING: here's where I was instantiated: ", stackTrace); close(); } } @Override public String toString() { return "TrackerKCF{" + "isInitialized=" + isInitialized + ", deletedAlready=" + deletedAlready + '}'; } }
0
java-sources/ai/kognition/pilecv4j/lib-tracking/1.0/ai/kognition/pilecv4j/tracking
java-sources/ai/kognition/pilecv4j/lib-tracking/1.0/ai/kognition/pilecv4j/tracking/tracker/TrackerMOSSE.java
/* * Copyright 2022 Jim Carroll * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package ai.kognition.pilecv4j.tracking.tracker; import static ai.kognition.pilecv4j.image.CvMat.TRACK_MEMORY_LEAKS; import java.lang.reflect.InvocationTargetException; import java.lang.reflect.Method; import java.util.Optional; import org.opencv.core.Mat; import org.opencv.core.Rect2d; import org.opencv.tracking.legacy_TrackerMOSSE; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import ai.kognition.pilecv4j.image.CvMat; import ai.kognition.pilecv4j.tracking.Tracker; /** * Extension of OpenCV's implementation of the Minimum Output of Sum of Squard Error (MOSSE) filter to fit {@link Tracker}. * * @see <a href="https://www.cs.colostate.edu/~vision/publications/bolme_cvpr10.pdf">cs.colorado-state: Visual Object Tracking using Adaptive Correlation * Filters</a> */ public class TrackerMOSSE extends legacy_TrackerMOSSE implements Tracker { private static final Logger LOGGER = LoggerFactory.getLogger(TrackerMOSSE.class); public static final boolean SUPPORTS_MASKING = false; private static final Method nativeCreate; private static final Method nativeDelete; protected boolean isInitialized = false; protected boolean deletedAlready = false; protected boolean skipOnceForDelete = false; protected final RuntimeException stackTrace; protected RuntimeException delStackTrace = null; static { CvMat.initOpenCv(); } static { try { nativeCreate = legacy_TrackerMOSSE.class.getDeclaredMethod("create_0"); nativeCreate.setAccessible(true); nativeDelete = legacy_TrackerMOSSE.class.getDeclaredMethod("delete", long.class); nativeDelete.setAccessible(true); } catch(final NoSuchMethodException | SecurityException e) { throw new RuntimeException("Got an exception trying to access " + TrackerMOSSE.class.getSimpleName() + ".delete or .create_0. Either the security model is too restrictive or the version of OpenCv can't be supported.", e); } } public TrackerMOSSE() { this(doNativeCreate()); } protected TrackerMOSSE(final long nativeAddr) { super(nativeAddr); stackTrace = TRACK_MEMORY_LEAKS ? new RuntimeException("Here's where I was instantiated") : null; } @Override public boolean supportsMasking() { return SUPPORTS_MASKING; } @Override public boolean isInitialized() { return isInitialized; } @Override public Optional<Tracker> initialize(final Mat image, final Rect2d initialBoundingBox) { if(!super.init(image, initialBoundingBox)) { this.close(); return Optional.empty(); } isInitialized = true; return Optional.of(this); } @Override public Optional<Rect2d> update(final Mat image) { final Rect2d newBoundingBox = new Rect2d(); if(!super.update(image, newBoundingBox)) return Optional.empty(); return Optional.of(newBoundingBox); } protected static long doNativeCreate() { try { return (Long)nativeCreate.invoke(null); } catch(final IllegalAccessException | InvocationTargetException e) { throw new RuntimeException("Got an exception trying to call Tracker.create_0. Either the security model is too restrictive or the version of " + "OpenCV can't be supported.", e); } } protected void doNativeDelete() { try { nativeDelete.invoke(this, super.nativeObj); } catch(final IllegalAccessException | IllegalArgumentException | InvocationTargetException e) { throw new RuntimeException("Got an exception trying to call Tracker.delete. Either the security model is too restrictive or the version of " + "OpenCV can't be supported.", e); } } @Override public TrackerMOSSE skipOnceForReturn() { skipOnceForDelete = true; return this; } @Override public void close() { if(!skipOnceForDelete) { if(!deletedAlready) { doNativeDelete(); deletedAlready = true; if(TRACK_MEMORY_LEAKS) delStackTrace = new RuntimeException("Here's where I was closed"); } else if(TRACK_MEMORY_LEAKS) { LOGGER.warn("TRACKING: deleting {} again at:", this.getClass() .getSimpleName(), new RuntimeException()); LOGGER.warn("TRACKING: originally closed at:", delStackTrace); LOGGER.warn("TRACKING: create at: ", stackTrace); } } else { skipOnceForDelete = false; } } @Override public void finalize() { if(!deletedAlready) { LOGGER.debug("Finalizing a {} that hasn't been closed.", this.getClass() .getSimpleName()); if(TRACK_MEMORY_LEAKS) LOGGER.debug("TRACKING: here's where I was instantiated: ", stackTrace); close(); } } @Override public String toString() { return "TrackerMOSSE{" + "isInitialized=" + isInitialized + ", deletedAlready=" + deletedAlready + '}'; } }
0
java-sources/ai/kognition/pilecv4j/lib-util/1.0/ai/kognition/pilecv4j
java-sources/ai/kognition/pilecv4j/lib-util/1.0/ai/kognition/pilecv4j/util/NativeLibraryLoader.java
/* * Copyright 2022 Jim Carroll * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package ai.kognition.pilecv4j.util; import java.io.File; import java.io.IOException; import java.io.InputStream; import java.nio.charset.StandardCharsets; import java.util.ArrayList; import java.util.Arrays; import java.util.HashSet; import java.util.List; import java.util.Set; import java.util.stream.Collectors; import org.apache.commons.io.FileUtils; import org.apache.commons.io.IOUtils; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * <p> * This class will load native libraries from a jar file as long as they've been packaged appropriately. * </p> * * <p> * If you want to explicitly set a directory to load libraries from for debugging purposes you can * set the environment variable DEBUG_LIB_DIR and the loader will first try to load any library from * that directory. You can verify this was picked up because a WARN log message will be printed out * identifying the fact that a library is "Loading ... from the debug library directory." * </p> */ public class NativeLibraryLoader { private static final Logger LOGGER = LoggerFactory.getLogger(NativeLibraryLoader.class); private static Set<String> loaded = new HashSet<>(); private static PlatformDetection platform = new PlatformDetection(); private static final String DEBUG_LIB_DIR = System.getProperty("DEBUG_LIB_DIR"); public static class Loader { private final List<LibraryDefinition> libs = new ArrayList<>(); private final List<LibraryLoadCallback> preLoadCallbacks = new ArrayList<>(); private final List<LibraryLoadCallback> postLoadCallbacks = new ArrayList<>(); private File destinationDir = new File(System.getProperty("java.io.tmpdir")); private static class LibraryDefinition { final private boolean required; final private String libName; private LibraryDefinition(final boolean required, final String libName) { super(); this.required = required; this.libName = libName; } } public Loader library(final String... libNames) { Arrays.stream(libNames) .map(ln -> new LibraryDefinition(true, ln)) .forEach(libs::add); return this; } public Loader optional(final String... libNames) { Arrays.stream(libNames) .map(ln -> new LibraryDefinition(false, ln)) .forEach(libs::add); return this; } @FunctionalInterface public interface LibraryLoadCallback { public void loading(File directory, String libName, String fullLibName); } public Loader addPreLoadCallback(final LibraryLoadCallback ll) { preLoadCallbacks.add(ll); return this; } public Loader addPostLoadCallback(final LibraryLoadCallback ll) { postLoadCallbacks.add(ll); return this; } public Loader destinationDir(final String destinationDir) { this.destinationDir = new File(destinationDir); return this; } public void load() { if(!this.destinationDir.exists()) { if(!this.destinationDir.mkdirs()) LOGGER.warn("FAILED to create the destination directory \"{}\" for the libraries {}", this.destinationDir, libs.stream().map(l -> l.libName).collect(Collectors.toList())); } final File tmpDir = this.destinationDir; libs.stream() .filter(ld -> ld != null) .filter(ld -> ld.libName != null) .filter(ld -> { final boolean needsLoading = !loaded.contains(ld.libName); if(!needsLoading) LOGGER.debug("Native library \"" + ld.libName + "\" is already loaded."); return needsLoading; }) .forEach(ld -> { final String libFileName = System.mapLibraryName(ld.libName); final String libMD5FileName = libFileName + ".MD5"; LOGGER.trace("Native library \"" + ld.libName + "\" platform specific file name is \"" + libFileName + "\""); boolean loadMe = true; final File libFile; if(new File(DEBUG_LIB_DIR, libFileName).exists()) { LOGGER.warn("Loading \"{}\" from the debug library directory \"{}\"", libFileName, DEBUG_LIB_DIR); loadMe = true; libFile = new File(new File(DEBUG_LIB_DIR), libFileName); } else { libFile = new File(tmpDir, libFileName); final File libMD5File = new File(tmpDir, libMD5FileName); if(!libFile.exists()) loadMe = copyFromJar(ld, libFileName, libFile, libMD5FileName, libMD5File); else { final boolean copyMeFromJar; final String fileMD5 = rethrowIOException( () -> (libMD5File.exists()) ? FileUtils.readFileToString(libMD5File, StandardCharsets.UTF_8.name()) : (String)null, libMD5FileName); // if the file exists then fileMD5 is set. Otherwise it's null. if(fileMD5 != null) { // read the MD5 from the jar. final String jarMD5 = rethrowIOException(() -> { try(InputStream is = getInputStream(platform + "/" + libMD5FileName)) { if(is == null) { LOGGER.info("The library \"{}\" doesn't appear to have a coresponding MD5. Reloading from jar file.", libFileName); return null; } else return IOUtils.toString(is, StandardCharsets.UTF_8.name()); } }, platform + "/" + libMD5FileName); // if the fileMD5 contents doesn't equal the jarMD5 contents then we need to // re-copy the library from the jar file. copyMeFromJar = (!fileMD5.equals(jarMD5)); } else { // if there is not fileMD5 then we're just going to re-copy from the jar LOGGER.warn("Missing MD5 file for \"{}.\" This will result in recopying of the library file every startup." + " Consider generating an MD5 file for the library"); copyMeFromJar = true; } if(copyMeFromJar) loadMe = copyFromJar(ld, libFileName, libFile, libMD5FileName, libMD5File); else LOGGER.debug("Native library \"" + ld.libName + "\" is already on the filesystem. Not overwriting."); } } if(loadMe) { preLoadCallbacks.stream() .forEach(ll -> ll.loading(tmpDir, ld.libName, libFileName)); System.out.println("Loading: " + libFile.getAbsolutePath()); System.load(libFile.getAbsolutePath()); postLoadCallbacks.stream() .forEach(ll -> ll.loading(tmpDir, ld.libName, libFileName)); } loaded.add(ld.libName); }); } } private static boolean copyFromJar(final Loader.LibraryDefinition ld, final String libFileName, final File libFile, final String libMD5FileName, final File libMD5File) throws UnsatisfiedLinkError { final String libFilePath = platform + "/" + libFileName; final String libMD5FilePath = platform + "/" + libMD5FileName; LOGGER.debug("Copying native library \"" + libFilePath + "\" from the jar file."); final boolean loadMe = rethrowIOException(() -> { try(InputStream is = getInputStream(libFilePath)) { if(is == null) { if(ld.required) throw new UnsatisfiedLinkError( "Required native library \"" + ld.libName + "\" with platform representation \"" + libFilePath + "\" doesn't appear to exist in any jar file on the classpath"); else { // if we're not required and it's missing, we're fine LOGGER.debug("Requested but optional library \"" + ld.libName + "\" is not on the classpath."); return false; } } FileUtils.copyInputStreamToFile(is, libFile); return true; } }, libFilePath); if(loadMe) // loadMe is only set if the library was in the jar (and copied onto the disk). // otherwise we can just skip trying to load the MD5 rethrowIOException(() -> { try(InputStream is = getInputStream(libMD5FilePath)) { if(is == null) { LOGGER.info("The library \"{}\" doesn't appear to have a coresponding MD5. Reloading from jar file.", libFilePath); } else { FileUtils.copyInputStreamToFile(is, libMD5File); } } }, libMD5FilePath); return loadMe; } public static Loader loader() { return new Loader(); } private NativeLibraryLoader() {} @FunctionalInterface private static interface SupplierThrows<R, E extends Throwable> { public R get() throws E; } @FunctionalInterface private static interface Nothing<E extends Throwable> { public void doIt() throws E; } private static <R> R rethrowIOException(final SupplierThrows<R, IOException> suppl, final String libName) { try { return suppl.get(); } catch(final IOException ioe) { final String message = "Couldn't load the file from the jar (" + libName + "):"; LOGGER.error(message, ioe); throw new UnsatisfiedLinkError(message + ioe.getLocalizedMessage()); } } private static void rethrowIOException(final Nothing<IOException> suppl, final String libName) { try { suppl.doIt(); } catch(final IOException ioe) { final String message = "Couldn't load the file from the jar (" + libName + "):"; LOGGER.error(message, ioe); throw new UnsatisfiedLinkError(message + ioe.getLocalizedMessage()); } } private static InputStream getInputStream(final String resource) { // I need to find the library. Let's start with the "current" classloader. // see http://www.javaworld.com/javaworld/javaqa/2003-06/01-qa-0606-load.html // also see: http://www.javaworld.com/javaworld/javaqa/2003-03/01-qa-0314-forname.html InputStream is = getInputStreamFromClassLoader(NativeLibraryLoader.class.getClassLoader(), resource); if(is == null) // ok, now try the context classloader is = getInputStreamFromClassLoader(Thread.currentThread().getContextClassLoader(), resource); if(is == null) // finally try the system classloader though if we're here we're probably screwed is = getInputStreamFromClassLoader(ClassLoader.getSystemClassLoader(), resource); return is; } private static InputStream getInputStreamFromClassLoader(final ClassLoader loader, final String resource) { if(loader == null) return null; InputStream is = loader.getResourceAsStream(resource); if(is == null) is = loader.getResourceAsStream("/" + resource); return is; } }
0
java-sources/ai/kognition/pilecv4j/lib-util/1.0/ai/kognition/pilecv4j
java-sources/ai/kognition/pilecv4j/lib-util/1.0/ai/kognition/pilecv4j/util/NativePointerWrap.java
/* * Copyright 2022 Jim Carroll * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package ai.kognition.pilecv4j.util; import com.sun.jna.Native; import com.sun.jna.Pointer; /** * This class is a simple helper class that will automatically free native memory * pointed to by a JNA Pointer on close. It's basically a JNA Pointer guard class. */ public class NativePointerWrap implements AutoCloseable { public final Pointer ptr; public NativePointerWrap(final Pointer ptr) { this.ptr = ptr; } @Override public void close() { if(ptr != null) Native.free(Pointer.nativeValue(ptr)); } }
0
java-sources/ai/kognition/pilecv4j/lib-util/1.0/ai/kognition/pilecv4j
java-sources/ai/kognition/pilecv4j/lib-util/1.0/ai/kognition/pilecv4j/util/PlatformDetection.java
/* * Copyright 2022 Jim Carroll * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package ai.kognition.pilecv4j.util; import java.util.HashMap; import java.util.Map; import org.apache.commons.lang3.SystemUtils; public class PlatformDetection { public final String os; public final String arch; public static String OS_WINDOWS = "windows"; public static String OS_OSX = "osx"; public static String OS_SOLARIS = "solaris"; public static String OS_LINUX = "linux"; public static String ARCH_PPC = "ppc"; public static String ARCH_X86_32 = "x86_32"; public static String ARCH_X86_64 = "x86_64"; public PlatformDetection() { // resolve OS if(SystemUtils.IS_OS_WINDOWS) { this.os = OS_WINDOWS; } else if(SystemUtils.IS_OS_MAC_OSX) { this.os = OS_OSX; } else if(SystemUtils.IS_OS_SOLARIS) { this.os = OS_SOLARIS; } else if(SystemUtils.IS_OS_LINUX) { this.os = OS_LINUX; } else { throw new IllegalArgumentException("Unknown operating system " + SystemUtils.OS_NAME); } // resolve architecture final Map<String, String> archMap = new HashMap<String, String>(); archMap.put("x86", ARCH_X86_32); archMap.put("i386", ARCH_X86_32); archMap.put("i486", ARCH_X86_32); archMap.put("i586", ARCH_X86_32); archMap.put("i686", ARCH_X86_32); archMap.put("x86_64", ARCH_X86_64); archMap.put("amd64", ARCH_X86_64); archMap.put("powerpc", ARCH_PPC); this.arch = archMap.get(SystemUtils.OS_ARCH); if(this.arch == null) { throw new IllegalArgumentException("Unknown architecture " + SystemUtils.OS_ARCH); } } @Override public String toString() { return os + "-" + arch; } }
0
java-sources/ai/kognition/pilecv4j/lib-util/1.0/ai/kognition/pilecv4j
java-sources/ai/kognition/pilecv4j/lib-util/1.0/ai/kognition/pilecv4j/util/Timer.java
/* * Copyright 2022 Jim Carroll * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package ai.kognition.pilecv4j.util; public final class Timer { private long startTime; private long endTime; public static final long nanoSecondsPerSecond = 1000000000L; public static final double secondsPerNanosecond = 1.0D / nanoSecondsPerSecond; public final void start() { startTime = System.nanoTime(); } public final String stop() { endTime = System.nanoTime(); return toString(); } public final float getSeconds() { return (float)((endTime - startTime) * secondsPerNanosecond); } // public final int getTenthsOfSeconds() // { // return (int)(((double)(((endTime - startTime) % 1000)) / 100) + 0.5); // } @Override public final String toString() { return String.format("%.3f", getSeconds()); } }
0
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation/AnnotationUtils.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.annotation; import javax.annotation.processing.Filer; import javax.tools.FileObject; import javax.tools.StandardLocation; import java.io.*; import java.util.List; public class AnnotationUtils { private AnnotationUtils(){ } public static void writeFile(Filer filer, Class<?> c, List<String> lines) { writeFile(filer, c.getName(), lines); } public static void writeFile(Filer filer, String c, List<String> lines){ if(lines.isEmpty()) return; try { String outputFile = "META-INF/konduit-serving/" + c; FileObject file = filer.createResource(StandardLocation.CLASS_OUTPUT, "", outputFile); try (Writer w = file.openWriter()) { w.write(String.join("\n", lines)); } } catch (Throwable t) { throw new RuntimeException("Error in annotation processing", t); } } public static boolean existsAndContains(Filer filer, String c, List<String> lines){ String outputFile = "META-INF/konduit-serving/" + c; if(!fileExists(filer, c)) return false; String content = getContent(filer, c); for(String s : lines){ if(!content.contains(s)){ return false; } } return true; } public static boolean fileExists(Filer filer, String c){ String outputFile = "META-INF/konduit-serving/" + c; try { FileObject file = filer.getResource(StandardLocation.CLASS_OUTPUT, "", outputFile); return file != null; } catch (IOException e){ return false; } } public static String getContent(Filer filer, String c){ String outputFile = "META-INF/konduit-serving/" + c; try { FileObject file = filer.getResource(StandardLocation.CLASS_OUTPUT, "", outputFile); InputStream is = file.openInputStream(); StringBuilder sb = new StringBuilder(); try (Reader r = new BufferedReader(new InputStreamReader(is))) { int ch = 0; while ((ch = r.read()) != -1) { sb.append((char) ch); } } return sb.toString(); } catch (IOException e){ throw new RuntimeException("ERROR READING FILE", e); } } }
0
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation/json/JsonName.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.annotation.json; import java.lang.annotation.Inherited; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; @Retention(RetentionPolicy.RUNTIME) @Inherited public @interface JsonName { String value(); }
0
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation/json/JsonNameProcessor.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.annotation.json; import ai.konduit.serving.annotation.AnnotationUtils; import ai.konduit.serving.annotation.module.ModuleInfo; import com.google.auto.service.AutoService; import javax.annotation.processing.*; import javax.lang.model.SourceVersion; import javax.lang.model.element.Element; import javax.lang.model.element.TypeElement; import javax.lang.model.type.TypeMirror; import javax.lang.model.util.ElementFilter; import javax.tools.FileObject; import javax.tools.StandardLocation; import java.io.IOException; import java.io.Writer; import java.util.ArrayList; import java.util.Collection; import java.util.List; import java.util.Set; @SupportedAnnotationTypes({"ai.konduit.serving.annotation.json.JsonName", "ai.konduit.serving.annotation.module.ModuleInfo"}) @SupportedSourceVersion(SourceVersion.RELEASE_8) @AutoService(Processor.class) public class JsonNameProcessor extends AbstractProcessor { private static final String PIPELINE_STEP = "ai.konduit.serving.pipeline.api.step.PipelineStep"; private static final String SWITCH_FN = "ai.konduit.serving.pipeline.impl.pipeline.graph.SwitchFn"; private static final String GRAPH_STEP = "ai.konduit.serving.pipeline.impl.pipeline.graph.GraphStep"; private static final String TRIGGER = "ai.konduit.serving.pipeline.api.pipeline.Trigger"; private List<String> toWrite = new ArrayList<>(); private List<JsonSubType> subTypes = new ArrayList<>(); private String moduleName; private String moduleClass; @Override public boolean process(Set<? extends TypeElement> annotations, RoundEnvironment env) { if (env.processingOver()) { writeFile(); } else { //Get module name if(moduleName == null) { Collection<? extends Element> c = env.getElementsAnnotatedWith(ModuleInfo.class); List<TypeElement> types = ElementFilter.typesIn(c); for(TypeElement te : types){ moduleName = te.getAnnotation(ModuleInfo.class).value(); moduleClass = te.toString(); break; } } //Collect JSON subtype info for writing at end Collection<? extends Element> c = env.getElementsAnnotatedWith(JsonName.class); List<TypeElement> types = ElementFilter.typesIn(c); for (TypeElement annotation : types) { TypeMirror t = annotation.asType(); if(processingEnv.getElementUtils().getTypeElement(PIPELINE_STEP) == null) { throw new IllegalStateException("Processing environment did not find element " + PIPELINE_STEP + " with environment " + processingEnv.getElementUtils()); } TypeMirror pipelineStepTypeMirror = processingEnv.getElementUtils().getTypeElement(PIPELINE_STEP).asType(); if(processingEnv.getElementUtils().getTypeElement(SWITCH_FN) == null) { throw new IllegalStateException("Processing environment did not find element " + SWITCH_FN); } TypeMirror switchFnTypeMirror = processingEnv.getElementUtils().getTypeElement(SWITCH_FN).asType(); if(processingEnv.getElementUtils().getTypeElement(GRAPH_STEP) == null) { throw new IllegalStateException("Processing environment did not find element " + GRAPH_STEP); } TypeMirror graphStepTypeMirror = processingEnv.getElementUtils().getTypeElement(GRAPH_STEP).asType(); if(processingEnv.getElementUtils().getTypeElement(TRIGGER) == null) { throw new IllegalStateException("Processing environment did not find element " + TRIGGER); } TypeMirror triggerMirror = processingEnv.getElementUtils().getTypeElement(TRIGGER).asType(); boolean isPS = processingEnv.getTypeUtils().isAssignable(t, pipelineStepTypeMirror); boolean isSF = processingEnv.getTypeUtils().isAssignable(t, switchFnTypeMirror); boolean isGS = processingEnv.getTypeUtils().isAssignable(t, graphStepTypeMirror); boolean isT = processingEnv.getTypeUtils().isAssignable(t, triggerMirror); if(isPS || isSF || isGS || isT) { String str; if(isPS) { str = PIPELINE_STEP; } else if(isSF){ str = SWITCH_FN; } else if(isGS) { str = GRAPH_STEP; } else { str = TRIGGER; } String jn = annotation.getAnnotation(JsonName.class).value(); toWrite.add(jn + "," + annotation + "," + str); //Format: json_name,class_name,interface_name subTypes.add(new JsonSubType(jn, annotation.toString(), str)); } } } return true; } protected void writeFile() { Filer filer = processingEnv.getFiler(); if(filer == null) { System.err.println("No filer found. Returning."); return; } AnnotationUtils.writeFile(filer, JsonName.class, toWrite); //Also write the SubTypesMapping class (to get info via service loader) //TODO we have 2 redundant sources of the same info here. the AnnotationUtils txt file is good for collecting info // for project-wide aggregation, but is bad for use in service loader etc (non-unique names) //This is better than manual JSON subtype mapping, but still isn't ideal String name = className(); if(moduleClass == null) { return; } int idx = moduleClass.lastIndexOf("."); String fullName; String pkg = null; if (idx > 0) { pkg = moduleClass.substring(0, idx); fullName = pkg + "." + name; } else { fullName = name; } StringBuilder sb = new StringBuilder(); if(pkg != null){ sb.append("package ").append(pkg).append(";"); } sb.append("import ai.konduit.serving.pipeline.api.serde.JsonSubType;\n") .append("import ai.konduit.serving.pipeline.api.serde.JsonSubTypesMapping;\n") .append("import ai.konduit.serving.pipeline.api.serde.JsonSubType;\n") .append("\n") .append("import java.util.ArrayList;\n") .append("import java.util.List;\n"); sb.append("//GENERATED CLASS DO NOT EDIT\n"); sb.append("public class ").append(name).append(" implements JsonSubTypesMapping {") .append(" @Override\n") .append(" public List<JsonSubType> getSubTypesMapping() {\n") .append(" List<JsonSubType> l = new ArrayList<>();\n"); for(JsonSubType j : subTypes){ sb.append(" l.add(new JsonSubType(\"") .append(j.name).append("\", ") .append(j.className).append(".class, ") .append(j.subtypeOf).append(".class") .append("));\n"); } sb.append(" \n") .append(" return l;\n") .append(" }\n") .append("}"); String s = sb.toString(); try { FileObject fo = filer.createSourceFile(fullName); try (Writer w = fo.openWriter()) { w.write(s); } } catch (Throwable t){ t.printStackTrace(); } //Finally, also create the service loader file try { try{ //Delete if it already exists FileObject file = filer.getResource(StandardLocation.CLASS_OUTPUT, "", "META-INF/services/ai.konduit.serving.pipeline.api.serde.JsonSubTypesMapping"); file.delete(); } catch (IOException e){ } FileObject file = filer.createResource(StandardLocation.CLASS_OUTPUT, "", "META-INF/services/ai.konduit.serving.pipeline.api.serde.JsonSubTypesMapping"); try (Writer w = file.openWriter()) { w.write(fullName); } } catch (IOException e){ throw new RuntimeException("Error writing "); } } private static class JsonSubType { private String name; private String className; private String subtypeOf; public JsonSubType(String name, String className, String subtypeOf){ this.name = name; this.className = className; this.subtypeOf = subtypeOf; } } private String className(){ if(moduleName == null) { return ""; } String[] split = moduleName.split("-"); StringBuilder sb = new StringBuilder(); for(String s : split){ sb.append(Character.toUpperCase(s.charAt(0))).append(s.substring(1)); } sb.append("JsonMapping"); String s = sb.toString(); return s; } }
0
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation/module/Dependency.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.annotation.module; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; /** * gId = groupId - org.apache.commons, org.deeplearning4j, etc<br> * aId = artifactId - commons-lang3, deeplearning4j-core, etc<br> * ver = version - 3.6, 1.0.0-SNAPSHOT, etc<br> * classifier - may be null. Maven classifier, sometimes used for different hardware devices (linux-x86_64, etc)<br> * cReq - Only applies when multiple classifiers exist, at which point it specifies how those classifier dependencies * should be combined - i.e., do we need just ONE of them (i.e., ANY) or ALL of them? */ @Retention(RetentionPolicy.RUNTIME) public @interface Dependency { String gId(); String aId(); String ver(); String[] classifier() default {}; //None: means 'no classifier' Req cReq() default Req.ANY; }
0
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation/module/InheritRequiredDependencies.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.annotation.module; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; /** * Inherit the required dependencies from the specified module (by name, for example: konduit-serving-nd4j), instead of * defining the {@link RequiresDependenciesAll} section with the same content */ @Retention(RetentionPolicy.RUNTIME) public @interface InheritRequiredDependencies { String value(); }
0
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation/module/ModuleInfo.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.annotation.module; public @interface ModuleInfo { String value(); }
0
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation/module/Req.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.annotation.module; public enum Req { ALL, ANY }
0
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation/module/Requires.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.annotation.module; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; @Retention(RetentionPolicy.RUNTIME) public @interface Requires { Dependency[] value(); Req requires() default Req.ANY; @interface List { Requires[] value(); } }
0
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation/module/RequiresDependenciesAll.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.annotation.module; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; /** * Dependencies that are required by this module in order to execute * Note these are dependencies other than the ones already included in the module's Maven dependencies * For example, backends (CPU or GPU) for ND4J, CPU or GPU native dependencies for Tensorflow, etc. */ @Retention(RetentionPolicy.RUNTIME) public @interface RequiresDependenciesAll { Requires[] value(); }
0
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation/module/RequiresDependenciesAny.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.annotation.module; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; /** * Dependencies that are required by this module in order to execute * Note these are dependencies other than the ones already included in the module's Maven dependencies * For example, backends (CPU or GPU) for ND4J, CPU or GPU native dependencies for Tensorflow, etc. */ @Retention(RetentionPolicy.RUNTIME) public @interface RequiresDependenciesAny { Requires[] value(); }
0
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation/module/RequiresDependenciesProcessor.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.annotation.module; import ai.konduit.serving.annotation.AnnotationUtils; import ai.konduit.serving.annotation.runner.CanRun; import com.google.auto.service.AutoService; import javax.annotation.processing.*; import javax.lang.model.SourceVersion; import javax.lang.model.element.Element; import javax.lang.model.element.TypeElement; import javax.lang.model.util.ElementFilter; import java.util.ArrayList; import java.util.Collection; import java.util.List; import java.util.Set; @SupportedAnnotationTypes({"ai.konduit.serving.annotation.module.ModuleInfo", "ai.konduit.serving.annotation.module.RequiresDependenciesAny", "ai.konduit.serving.annotation.module.RequiresDependenciesAll", "ai.konduit.serving.annotation.module.InheritRequiredDependencies"}) @SupportedSourceVersion(SourceVersion.RELEASE_8) @AutoService(Processor.class) public class RequiresDependenciesProcessor extends AbstractProcessor { public static final String INHERIT_MODULE_PREFIX = "inherit:"; private String moduleName; private List<String> toWrite = new ArrayList<>(); @Override public boolean process(Set<? extends TypeElement> annotations, RoundEnvironment env) { if(env.processingOver()){ if(moduleName == null && !toWrite.isEmpty()){ //Handle incremental build situation: usually occurs in IDEs, where the class with the annotation //has been modified and gets recompiled in isolation (without any of the other classes) //In this case, the generated file probably already exists, and we don't need to do anything if(AnnotationUtils.existsAndContains(processingEnv.getFiler(), "ai.konduit.serving.annotation.module.RequiresDependencies", toWrite)) return false; Collection<? extends Element> c = env.getElementsAnnotatedWith(RequiresDependenciesAll.class); List<TypeElement> types1 = ElementFilter.typesIn(c); Collection<? extends Element> c2 = env.getElementsAnnotatedWith(RequiresDependenciesAny.class); List<TypeElement> types2 = ElementFilter.typesIn(c2); Collection<? extends Element> c3 = env.getElementsAnnotatedWith(InheritRequiredDependencies.class); List<TypeElement> types3 = ElementFilter.typesIn(c3); throw new IllegalStateException("No class in this module is annotated with @ModuleInfo - a class with " + "@ModuleInfo(\"your-module-name\") should be added to the module that has the @RequiresDependenciesAll or " + "@RequiresDependenciesAny or @InheritRequiredDependencies annotation: " + types1 + ", " + types2 + ", " + types3); } writeFile(); } else { //Get module name if(moduleName == null){ Collection<? extends Element> c = env.getElementsAnnotatedWith(ModuleInfo.class); List<TypeElement> types = ElementFilter.typesIn(c); for(TypeElement te : types){ moduleName = te.getAnnotation(ModuleInfo.class).value(); break; } } //Get the dependency requirements for the module from @RequiredDependenciesAll Collection<? extends Element> c = env.getElementsAnnotatedWith(RequiresDependenciesAll.class); List<TypeElement> l = ElementFilter.typesIn(c); for(TypeElement annotation : l){ Requires[] requires = annotation.getAnnotation(RequiresDependenciesAll.class).value(); for (Requires require : requires) { Dependency[] deps = require.value(); Req req = require.requires(); List<String> depsStrList = new ArrayList<>(); for(Dependency d : deps){ //g:a:v:(any or all of classifiers) String g = d.gId(); String a = d.aId(); String v = d.ver(); String[] cl = d.classifier(); Req r = d.cReq(); depsStrList.add(process(g,a,v,cl,r)); } String s; if(req == Req.ALL){ s = "[" + String.join(",", depsStrList) + "]"; } else { //Any s = "{" + String.join(",", depsStrList) + "}"; } toWrite.add(s); } } //Get the dependency requirements for the module from @RequiredDependenciesAny //Encode as module_name,{{Requires},{Requires},...} c = env.getElementsAnnotatedWith(RequiresDependenciesAny.class); l = ElementFilter.typesIn(c); for(TypeElement annotation : l){ Requires[] requires = annotation.getAnnotation(RequiresDependenciesAny.class).value(); StringBuilder sb = new StringBuilder(); sb.append("{"); boolean first = true; for (Requires require : requires) { if(!first) sb.append(","); Dependency[] deps = require.value(); Req req = require.requires(); List<String> depsStrList = new ArrayList<>(); for(Dependency d : deps){ //g:a:v:(any or all of classifiers) String g = d.gId(); String a = d.aId(); String v = d.ver(); String[] cl = d.classifier(); Req r = d.cReq(); depsStrList.add(process(g,a,v,cl,r)); } String s; if(req == Req.ALL){ s = "[" + String.join(",", depsStrList) + "]"; } else { //Any s = "{" + String.join(",", depsStrList) + "}"; } sb.append(s); first = false; } sb.append("}"); toWrite.add(sb.toString()); } //Get the inherited dependency requirements for the module from @InheritRequiredDependencies c = env.getElementsAnnotatedWith(InheritRequiredDependencies.class); l = ElementFilter.typesIn(c); for(TypeElement annotation : l) { String inheritFrom = annotation.getAnnotation(InheritRequiredDependencies.class).value(); toWrite.add(INHERIT_MODULE_PREFIX + inheritFrom); } } return false; //Allow other processors to process ModuleInfo } private static String process(String g, String a, String v, String[] cl, Req r){ StringBuilder sb = new StringBuilder(); sb.append("\""); sb.append(g).append(":").append(a).append(":").append(v); if(cl != null && cl.length == 1){ sb.append(":").append(cl[0]); } else if(cl != null && cl.length > 1){ sb.append(":"); if(r == Req.ALL){ sb.append("[").append(String.join(",", cl)).append("]"); } else { //Any of sb.append("{").append(String.join(",", cl)).append("}"); } } sb.append("\""); return sb.toString(); } protected void writeFile(){ if(toWrite.isEmpty()) //Can be empty if @ModuleInfo exists but no required dependencies toWrite.add("{}"); //Means "no requirements" Filer filer = processingEnv.getFiler(); List<String> toWrite2 = new ArrayList<>(); for(String s : toWrite){ toWrite2.add(moduleName + "," + s); } AnnotationUtils.writeFile(filer, "ai.konduit.serving.annotation.module.RequiresDependencies", toWrite2); } }
0
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation/runner/CanRun.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.annotation.runner; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; /** * Defines the PipelineStep instance(s) that this PipelineStepRunner can execute<br> * Also includes the name of the module that the */ @Retention(RetentionPolicy.RUNTIME) public @interface CanRun { Class<?>[] value(); }
0
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation
java-sources/ai/konduit/serving/konduit-serving-annotation/0.3.0/ai/konduit/serving/annotation/runner/CanRunProcessor.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.annotation.runner; import ai.konduit.serving.annotation.AnnotationUtils; import ai.konduit.serving.annotation.module.ModuleInfo; import com.google.auto.service.AutoService; import javax.annotation.processing.*; import javax.lang.model.SourceVersion; import javax.lang.model.element.*; import javax.lang.model.type.TypeMirror; import javax.lang.model.util.ElementFilter; import java.util.*; /** * Collect runner metadata: * {@code @CanRun(SomePipeline.class)} annotation on a PipelineStepRunner means that the specified PipelineStep can * be run by the annotated PipelineStepRunner class. Note that in some cases, a given PipelineStepRunner may not be * able to run a particular instance of this type of PipelineStep due to some configuration or versioning issue (but it * must be able to run _some_ of these types of PipelineStep instances) * <br> * During processing, this processor writes a "META-INF/konduit-serving/ai.konduit.serving.annotation.runner.CanRun" file * with content like: ai.konduit.serving.pipeline.impl.step.logging.LoggingPipelineStep,ai.konduit.serving.pipeline.impl.step.logging.LoggingPipelineStepRunner<br> * which should be interpreted as "LoggingPipelineStep can be run by LoggingPipelineStepRunner" * * @author Alex Black */ @SupportedAnnotationTypes({"ai.konduit.serving.annotation.runner.CanRun", "ai.konduit.serving.annotation.module.ModuleInfo"}) @SupportedSourceVersion(SourceVersion.RELEASE_8) @AutoService(Processor.class) public class CanRunProcessor extends AbstractProcessor { private List<String> toWrite = new ArrayList<>(); private String moduleName; @Override public boolean process(Set<? extends TypeElement> annotations, RoundEnvironment env) { if(env.processingOver()){ if(moduleName == null && !toWrite.isEmpty()){ //Handle incremental build situation: usually occurs in IDEs, where the class with the @CanRun annotation //has been modified and gets recompiled in isolation (without any of the other classes) //In this case, the generated file probably already exists, and we don't need to do anything if(AnnotationUtils.existsAndContains(processingEnv.getFiler(), CanRun.class.getName(), toWrite)) return false; Collection<? extends Element> c = env.getElementsAnnotatedWith(CanRun.class); List<TypeElement> types = ElementFilter.typesIn(c); throw new IllegalStateException("No class in this module is annotated with @ModuleInfo - a class with " + "@ModuleInfo(\"your-module-name\") should be added to the module that has the @CanRun(...) annotation: " + types + " - " + toWrite); } writeFile(); } else { if(moduleName == null){ Collection<? extends Element> c = env.getElementsAnnotatedWith(ModuleInfo.class); List<TypeElement> types = ElementFilter.typesIn(c); for(TypeElement te : types){ moduleName = te.getAnnotation(ModuleInfo.class).value(); break; } } //Collect info for writing at end Collection<? extends Element> c = env.getElementsAnnotatedWith(CanRun.class); List<TypeElement> types = ElementFilter.typesIn(c); Element canRunElement = processingEnv.getElementUtils().getTypeElement(CanRun.class.getName()); //Get the class values //See https://area-51.blog/2009/02/13/getting-class-values-from-annotations-in-an-annotationprocessor/ TypeMirror canRunType = canRunElement.asType(); for (TypeElement annotation : types) { List<? extends AnnotationMirror> l = annotation.getAnnotationMirrors(); String[] values = null; for (AnnotationMirror am : l) { if (am.getAnnotationType().equals(canRunType)) { for (Map.Entry<? extends ExecutableElement, ? extends AnnotationValue> entry : am.getElementValues().entrySet()) { if ("value".equals(entry.getKey().getSimpleName().toString())) { String s = entry.getValue().toString(); //ai.konduit.something.SomeClass.class s = s.replace("{", "").replace("}", ""); values = s.split(", ?"); for( int i=0; i<values.length; i++ ){ if(values[i].endsWith(".class")){ values[i] = values[i].substring(0, values[i].length()-6); } } break; } } } } if(values != null) { for (String s : values) { toWrite.add(s + "," + annotation.toString()); //Format: pipelineClass,runnerClass,module - i.e., "this type of pipeline step (in specified module) can be run by this type of runner" } } } } return false; //Allow other processors to process ModuleInfo } protected void writeFile(){ if(toWrite.isEmpty()) //Can be empty if @ModuleInfo exists but no runners return; Filer filer = processingEnv.getFiler(); List<String> toWrite2 = new ArrayList<>(); for(String s : toWrite){ toWrite2.add(s + "," + moduleName); } AnnotationUtils.writeFile(filer, CanRun.class, toWrite2); } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/config/MemMapConfig.java
/* * * * ****************************************************************************** * * * * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.config; import ai.konduit.serving.util.ObjectMappers; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; import java.io.Serializable; @Data @Builder @AllArgsConstructor @NoArgsConstructor /** * Configuration for managing serving of memory-mapped files. The goal is to mem-map * and serve a large array stored in "arrayPath" and get slices of this array on demand * by index. If an index is specified that does not match an index of the mem-mapped array, * an default or "unknown" vector is inserted into the slice instead, which is stored in * "unkVectorPath". * * For instance, let's say we want to mem-map [[1, 2, 3], [4, 5, 6]], a small array with two * valid slices. Our unknown vector is simply [0, 0, 0] in this example. Now, if we query for * the indices {-2, 1} we'd get [[0, 0, 0], [4, 5, 6]]. */ public class MemMapConfig implements Serializable, TextConfig { public final static String ARRAY_URL = "arrayPath"; public final static String INITIAL_MEM_MAP_SIZE = "initialMemmapSize"; public final static long DEFAULT_INITIAL_SIZE = 1000000000; public final static String WORKSPACE_NAME = "memMapWorkspace"; private String arrayPath, unkVectorPath; @Builder.Default private long initialMemmapSize = DEFAULT_INITIAL_SIZE; @Builder.Default private String workSpaceName = WORKSPACE_NAME; public static MemMapConfig fromJson(String json){ return ObjectMappers.fromJson(json, MemMapConfig.class); } public static MemMapConfig fromYaml(String yaml){ return ObjectMappers.fromYaml(yaml, MemMapConfig.class); } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/config/TextConfig.java
/* ****************************************************************************** * Copyright (c) 2022 Konduit K.K. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ package ai.konduit.serving.config; import ai.konduit.serving.util.ObjectMappers; import io.vertx.core.json.JsonObject; /** * TextConfig is an interface for any configuration in Konduit Serving that should be convertable to/from JSON and YAML * This interface does two things: * (a) Adds default toJson() and toYaml() methods to the class, using Jackson * (b) Is used in testing to provide coverage tracking for to/from JSON/YAML testing * * @author Alex Black */ public interface TextConfig { /** * Convert a configuration to a JSON string * * @return convert this object to a string */ default String toJson() { return ObjectMappers.toJson(this); } /** * Convert a configuration to a YAML string * * @return the yaml representation of this configuration */ default String toYaml() { return ObjectMappers.toYaml(this); } /** * Convert a configuration to a {@link JsonObject} * * @return the {@link JsonObject} representation of this configuration */ default JsonObject toJsonObject() { return new JsonObject(ObjectMappers.toJson(this)); } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/config
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/config/metrics/ColumnDistribution.java
/* * * * ****************************************************************************** * * * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.config.metrics; import ai.konduit.serving.config.TextConfig; import ai.konduit.serving.util.ObjectMappers; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; import org.nd4j.linalg.dataset.api.preprocessor.serializer.NormalizerType; import org.nd4j.shade.jackson.annotation.JsonTypeInfo; import static org.nd4j.shade.jackson.annotation.JsonTypeInfo.As.PROPERTY; import static org.nd4j.shade.jackson.annotation.JsonTypeInfo.Id.NAME; /** * Column distribution represents statistics and normalizer * information for how to transform or denormalize values * based on distribution information. * * @author Adam Gibson */ @Data @Builder @JsonTypeInfo(use = NAME, include = PROPERTY) @AllArgsConstructor @NoArgsConstructor public class ColumnDistribution implements TextConfig { private double mean,min,max,standardDeviation; private NormalizerType normalizerType; public static ColumnDistribution fromJson(String json) { return ObjectMappers.fromJson(json, ColumnDistribution.class); } public static ColumnDistribution fromYaml(String yaml) { return ObjectMappers.fromYaml(yaml, ColumnDistribution.class); } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/config
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/config/metrics/MetricsConfig.java
/* * * * ****************************************************************************** * * * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.config.metrics; import ai.konduit.serving.config.TextConfig; import ai.konduit.serving.config.metrics.impl.ClassificationMetricsConfig; import ai.konduit.serving.config.metrics.impl.RegressionMetricsConfig; import io.micrometer.core.instrument.binder.MeterBinder; import org.nd4j.shade.jackson.annotation.JsonSubTypes; import org.nd4j.shade.jackson.annotation.JsonTypeInfo; import java.util.Map; import static org.nd4j.shade.jackson.annotation.JsonTypeInfo.As.PROPERTY; import static org.nd4j.shade.jackson.annotation.JsonTypeInfo.Id.NAME; /** * An {@link TextConfig} associated with * {@link MeterBinder} implementations provided as part of konduit-serving * * @author Adam Gibson */ @JsonSubTypes({ @JsonSubTypes.Type(value = RegressionMetricsConfig.class, name = "RegressionMetricsConfig"), @JsonSubTypes.Type(value = NoOpMetricsConfig.class, name = "NoOpMetricsConfig"), @JsonSubTypes.Type(value = ClassificationMetricsConfig.class, name = "ClassificationMetricsConfig"), }) @JsonTypeInfo(use = NAME, include = PROPERTY) public interface MetricsConfig extends TextConfig { /** * {@link MeterBinder} implementation associated with this configuration * @return teh meter binder class associated with this configuration */ Class<? extends MeterBinder> metricsBinderImplementation(); /** * The configuration value separated by name * and value * @return */ Map<String,Object> configValues(); }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/config
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/config/metrics/MetricsRenderer.java
/* * * * ****************************************************************************** * * * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.config.metrics; import io.micrometer.core.instrument.Counter; import io.micrometer.core.instrument.MeterRegistry; import io.micrometer.core.instrument.binder.MeterBinder; /** * An updatedable {@link MeterBinder} that allows * updates of metrics beyond {@link MeterBinder#bindTo(MeterRegistry)} * * This allows encapsulation of logic for doing things like * calling {@link Counter#increment()} * * @author Adam Gibson */ public interface MetricsRenderer extends MeterBinder { /** * The configuration for the metrics * @return */ MetricsConfig config(); /** * Updates the metrics based on given arguments. * @param args */ void updateMetrics(Object...args); }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/config
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/config/metrics/NoOpMetricsConfig.java
/* * * * ****************************************************************************** * * * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.config.metrics; import ai.konduit.serving.config.metrics.impl.MetricsBinderRendererAdapter; import ai.konduit.serving.util.ObjectMappers; import io.micrometer.core.instrument.binder.MeterBinder; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; import java.util.Collections; import java.util.Map; /** * A no op {@link MetricsConfig} * for use with the {@link MetricsBinderRendererAdapter} * * @author Adam Gibson */ @Builder @NoArgsConstructor @Data public class NoOpMetricsConfig implements MetricsConfig { @Override public Class<? extends MeterBinder> metricsBinderImplementation() { return MetricsBinderRendererAdapter.class; } @Override public Map<String, Object> configValues() { return Collections.emptyMap(); } public static NoOpMetricsConfig fromJson(String json){ return ObjectMappers.fromJson(json, NoOpMetricsConfig.class); } public static NoOpMetricsConfig fromYaml(String yaml){ return ObjectMappers.fromYaml(yaml, NoOpMetricsConfig.class); } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/config/metrics
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/config/metrics/impl/ClassificationMetricsConfig.java
package ai.konduit.serving.config.metrics.impl; import ai.konduit.serving.config.metrics.MetricsConfig; import ai.konduit.serving.util.ObjectMappers; import io.micrometer.core.instrument.binder.MeterBinder; import lombok.*; import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.Map; /** * The configuration associated with {@link ClassificationMetrics} - * this class contains metadata needed for exposing metrics correctly for * {@link ClassificationMetrics} * * @author Adam Gibson */ @Data @Builder @AllArgsConstructor @NoArgsConstructor public class ClassificationMetricsConfig implements MetricsConfig { @Builder.Default private List<String> classificationLabels = new ArrayList<>(0); @Override @SneakyThrows public Class<? extends MeterBinder> metricsBinderImplementation() { return (Class<? extends MeterBinder>) Class.forName("ai.konduit.serving.metrics.ClassificationMetrics"); } @Override public Map<String, Object> configValues() { return Collections.singletonMap("classificationLabels",classificationLabels); } public static ClassificationMetricsConfig fromJson(String json) { return ObjectMappers.fromJson(json, ClassificationMetricsConfig.class); } public static ClassificationMetricsConfig fromYaml(String yaml) { return ObjectMappers.fromYaml(yaml, ClassificationMetricsConfig.class); } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/config/metrics
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/config/metrics/impl/MetricsBinderRendererAdapter.java
package ai.konduit.serving.config.metrics.impl; import ai.konduit.serving.config.metrics.MetricsConfig; import ai.konduit.serving.config.metrics.MetricsRenderer; import io.micrometer.core.instrument.MeterRegistry; import io.micrometer.core.instrument.binder.MeterBinder; import lombok.AllArgsConstructor; import lombok.NoArgsConstructor; /** * An {@link MeterBinder} wrapper that provides default no op * {@link MetricsRenderer} implementations. * * @author Adam Gibson */ @AllArgsConstructor @NoArgsConstructor public class MetricsBinderRendererAdapter implements MetricsRenderer { private MeterBinder meterBinder; @Override public MetricsConfig config() { return null; } @Override public void updateMetrics(Object... args) { } @Override public void bindTo(MeterRegistry registry) { meterBinder.bindTo(registry); } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/config/metrics
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/config/metrics/impl/MultiLabelMetricsConfig.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.config.metrics.impl; import ai.konduit.serving.config.metrics.MetricsConfig; import ai.konduit.serving.util.ObjectMappers; import io.micrometer.core.instrument.binder.MeterBinder; import lombok.*; import java.util.Collections; import java.util.List; import java.util.Map; /** * A metrics configuration for a metrics render * that, given a set of specified labels * takes in counts of columns to increment. * The input is either a matrix or a vector representing the columns * to increment the count by. The column counts should be the same order * as the specified labels for this configuration. * * @author Adam Gibson */ @Builder @NoArgsConstructor @AllArgsConstructor @EqualsAndHashCode public class MultiLabelMetricsConfig implements MetricsConfig { @Getter private List<String> labels; @SneakyThrows @Override public Class<? extends MeterBinder> metricsBinderImplementation() { return (Class<? extends MeterBinder>) Class.forName("ai.konduit.serving.metrics.MultiLabelMetrics"); } @Override public Map<String, Object> configValues() { return Collections.singletonMap("labels",labels); } public static MultiLabelMetricsConfig fromJson(String json) { return ObjectMappers.fromJson(json, MultiLabelMetricsConfig.class); } public static MultiLabelMetricsConfig fromYaml(String yaml) { return ObjectMappers.fromYaml(yaml, MultiLabelMetricsConfig.class); } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/config/metrics
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/config/metrics/impl/RegressionMetricsConfig.java
package ai.konduit.serving.config.metrics.impl; import ai.konduit.serving.config.metrics.ColumnDistribution; import ai.konduit.serving.config.metrics.MetricsConfig; import ai.konduit.serving.util.ObjectMappers; import io.micrometer.core.instrument.binder.MeterBinder; import lombok.*; import org.nd4j.linalg.dataset.api.preprocessor.serializer.NormalizerType; import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.Map; /** * The configuration associated with {@link ClassificationMetrics} - * this class contains metadata needed for exposing metrics correctly for * {@link ClassificationMetrics} * * @author Adam Gibson */ @Data @Builder @AllArgsConstructor @NoArgsConstructor public class RegressionMetricsConfig implements MetricsConfig { @Builder.Default private List<String> regressionColumnLabels = new ArrayList<>(0); @Builder.Default private List<SampleType> sampleTypes = new ArrayList<>(0); @Builder.Default private List<ColumnDistribution> columnDistributions = new ArrayList<>(0); @Override @SneakyThrows public Class<? extends MeterBinder> metricsBinderImplementation() { return (Class<? extends MeterBinder>) Class.forName("ai.konduit.serving.metrics.RegressionMetrics"); } @Override public Map<String, Object> configValues() { return Collections.singletonMap("regressionColumnLabels", regressionColumnLabels); } public enum SampleType { SUM, MEAN, VARIANCE_POP, VARIANCE_NOPOP, MAX, MIN, STDDEV_POP, STDDEV_NOPOP, } public static RegressionMetricsConfig fromJson(String json) { return ObjectMappers.fromJson(json, RegressionMetricsConfig.class); } public static RegressionMetricsConfig fromYaml(String yaml) { return ObjectMappers.fromYaml(yaml, RegressionMetricsConfig.class); } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/input
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/input/adapter/InputAdapter.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.input.adapter; import ai.konduit.serving.input.conversion.ConverterArgs; import java.io.IOException; import java.util.Map; /** * An input adapter covers converting input data of 1 * type to a suitable output type for use with * ETL pipeline components such as {@link org.datavec.api.transform.TransformProcess} * . Usually the input type is a raw {@link io.vertx.core.json.JsonArray} * or {@link io.vertx.core.buffer.Buffer} that is then mapped to some input * such as an ndarray or ArrowWritableRecordBatch * * @param <INPUT_TYPE> the input type (usually json objects or buffers coming in off the wire) * @param <OUTPUT_TYPE> the output type for use with internal ETL tooling and inference * by a verticle * @author Adam Gibson */ public interface InputAdapter<INPUT_TYPE, OUTPUT_TYPE> { /** * Convert the input type * to the desired output type * given the {@link ConverterArgs} * * @param input the input to convert * @param parameters the parameters relevant * for conversion of the output * @param contextData the routing context when converting * @return the desired output * @throws IOException I/O exception */ OUTPUT_TYPE convert(INPUT_TYPE input, ConverterArgs parameters, Map<String, Object> contextData) throws IOException; }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/input
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/input/conversion/BatchInputParser.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.input.conversion; import ai.konduit.serving.input.adapter.InputAdapter; import io.vertx.core.buffer.Buffer; import io.vertx.ext.web.FileUpload; import io.vertx.ext.web.RoutingContext; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; import lombok.extern.slf4j.Slf4j; import org.datavec.api.records.Record; import org.datavec.api.writable.Writable; import org.datavec.arrow.recordreader.ArrowWritableRecordBatch; import org.nd4j.common.base.Preconditions; import org.nd4j.common.primitives.Pair; import org.nd4j.linalg.api.ndarray.INDArray; import java.io.IOException; import java.util.*; /** * Parses a whole multi part upload buffer * and converts it to an {@link INDArray} * minibatch. * <p> * Uses {@link InputAdapter} specified by name * allowing conversion of each type of input file's * raw content to an {@link INDArray} * * @author Adam Gibson */ @Slf4j @Builder @NoArgsConstructor @AllArgsConstructor public class BatchInputParser { private Map<String, InputAdapter<Buffer, ?>> converters; private Map<String, ConverterArgs> converterArgs; private List<String> inputParts; /** * Create a batch from the {@link RoutingContext} * * @param routingContext the routing context to create the batch from * @return the proper ndarray batch with the ndarrays merged * with a batch per input * @throws IOException I/O Exception */ public Record[] createBatch(RoutingContext routingContext) throws IOException { //partition the input content by name Map<String, List<BatchPartInfo>> partInfo = partInfoForUploads(routingContext); if (partInfo.isEmpty()) { throw new IllegalArgumentException("No parts resolved for file uploads!"); } else if (!inputParts.containsAll(partInfo.keySet())) { throw new IllegalArgumentException("Illegal part info resolved. Part info keys were " + partInfo.keySet() + " while input parts were " + inputParts); } //batch size Record[] inputBatches = new Record[inputParts.size()]; for (int j = 0; j < inputBatches.length; j++) { inputBatches[j] = new org.datavec.api.records.impl.Record( new ArrayList<>(inputParts.size()), null); inputBatches[j].getRecord().add(null); } Map<Integer, List<List<Writable>>> missingIndices = new LinkedHashMap<>(); for (int i = 0; i < inputParts.size(); i++) { if (inputParts.get(i) == null || !partInfo.containsKey(inputParts.get(i))) { throw new IllegalStateException("No part found for part " + inputParts.get(i) + " available parts " + partInfo.keySet()); } List<BatchPartInfo> batch = partInfo.get(inputParts.get(i)); for (int j = 0; j < batch.size(); j++) { Pair<String, Integer> partNameAndIndex = partNameAndIndex(batch.get(j).getPartName()); Buffer buffer = loadBuffer(routingContext, batch.get(j).getFileUploadPath()); Object convert = convert(buffer, partNameAndIndex.getFirst(), null, routingContext); Preconditions.checkNotNull(convert, "Converted writable was null!"); //set the name if (convert instanceof Writable) { Writable writable = (Writable) convert; inputBatches[i].getRecord().set(j, writable); } else { ArrowWritableRecordBatch arrow = (ArrowWritableRecordBatch) convert; missingIndices.put(j, arrow); } } } if (!missingIndices.isEmpty()) { List<Record> newRetRecords = new ArrayList<>(); for (Map.Entry<Integer, List<List<Writable>>> entry : missingIndices.entrySet()) { for (List<Writable> record : entry.getValue()) { newRetRecords.add(new org.datavec.api.records.impl.Record(record, null)); } } return newRetRecords.toArray(new Record[newRetRecords.size()]); } return inputBatches; } /** * Returns a list of {@link BatchPartInfo} * for each part by name. * The "name" is meant to match 1 * name per input in to a computation graph * such that each part name is: * inputName[index] * * @param ctx the context to get the part info * from * @return a map indexing part name to a list of parts * for each input */ private Map<String, List<BatchPartInfo>> partInfoForUploads(RoutingContext ctx) { if (ctx.fileUploads().isEmpty()) { throw new IllegalStateException("No files found for part info!"); } else { log.debug("Found " + ctx.fileUploads().size() + " file uploads"); } Map<String, List<BatchPartInfo>> ret = new LinkedHashMap<>(); //parse each file upload all at once for (FileUpload upload : ctx.fileUploads()) { //the part name: inputName[index] String name = upload.name(); //likely a colon for a tensorflow name got passed in //verify against the name in the configuration and set it to that if (name.contains(" ")) { name = name.replace(" ", ":"); String inputName = name; if(inputName.contains("[")) { inputName = inputName.substring(0, name.lastIndexOf("[")); } if (!inputParts.contains(inputName)) { throw new IllegalStateException("Illegal name for multi part passed in " + upload.name()); } else { log.warn("Corrected input name " + upload.name() + " to " + name); } } //split the input name and the index Pair<String, Integer> partNameAndIndex = partNameAndIndex(name); //the part info for this particular file BatchPartInfo batchPartInfo = new BatchPartInfo( partNameAndIndex.getRight(), upload.uploadedFileName(), name); //add the input name and accumulate the part info for each input if (!ret.containsKey(partNameAndIndex.getFirst())) { ret.put(partNameAndIndex.getFirst(), new ArrayList<>()); } List<BatchPartInfo> batchPartInfos = ret.get(partNameAndIndex.getFirst()); batchPartInfos.add(batchPartInfo); } //sort based on index for (List<BatchPartInfo> info : ret.values()) { Collections.sort(info); } return ret; } /** * Use the converter specified * by name to convert a * raw {@link Buffer} * to a proper input for inference * * @param input the raw content * @param name the name of the input * converter to use * @param params the params to use where needed * @param routingContext RoutingContext * @return converted INDArray * @throws IOException I/O Exception */ public Object convert(Buffer input, String name, ConverterArgs params, RoutingContext routingContext) throws IOException { if (!converters.containsKey(name)) { throw new IllegalArgumentException("Illegal name for converter " + name + " not found!"); } return converters.get(name).convert(input, params, routingContext.data()); } /** * Load the buffer from each file * * @param ctx the context to load from * @param uploadedFileName the uploaded file path * @return the file contents for the file part */ private Buffer loadBuffer(RoutingContext ctx, String uploadedFileName) { return ctx.vertx().fileSystem().readFileBlocking(uploadedFileName); } private Pair<String, Integer> partNameAndIndex(String name) { //inputName[partIndex] //1 part only if (name.indexOf('[') < 0) { return Pair.of(name, 0); } String outputName = name.substring(0, name.indexOf('[')); int partIndex = Integer.parseInt(name.substring(name.indexOf('[') + 1, name.lastIndexOf(']'))); return Pair.of(outputName, partIndex); } @Data @AllArgsConstructor public static class BatchPartInfo implements Comparable<BatchPartInfo> { private int index; private String fileUploadPath; private String partName; @Override public int compareTo(BatchPartInfo batchPartInfo) { return Integer.compare(index, batchPartInfo.index); } } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/input
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/input/conversion/ConverterArgs.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.input.conversion; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; import org.datavec.api.transform.TransformProcess; import org.datavec.api.transform.schema.Schema; import org.datavec.image.transform.ImageTransformProcess; import java.io.Serializable; import java.util.ArrayList; import java.util.List; /** * The converter arguments * needed for input binary data. * example usage. * * @author Adam Gibson */ @Data @Builder @AllArgsConstructor @NoArgsConstructor public class ConverterArgs implements Serializable { private Schema schema; private TransformProcess transformProcess; private ImageTransformProcess imageTransformProcess; @Builder.Default private List<Integer> integers = new ArrayList<>(); @Builder.Default private List<Long> longs = new ArrayList<>(); @Builder.Default private List<Float> floats = new ArrayList<>(); @Builder.Default private List<Double> doubles = new ArrayList<>(); @Builder.Default private List<String> strings = new ArrayList<>(); @Builder.Default private String imageProcessingRequiredLayout = "NCHW"; @Builder.Default private String imageProcessingInitialLayout = "NCHW"; }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/metrics/MetricType.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.metrics; /** * Metric types for prometheus * * @author Adam Gibson */ public enum MetricType { CLASS_LOADER, JVM_MEMORY, JVM_GC, PROCESSOR, JVM_THREAD, LOGGING_METRICS, NATIVE, GPU, //note these are machine learning metrics, not system metrics //these are meant to analyze the output coming form the neural network when running //in production CLASSIFICATION, REGRESSION, CUSTOM_MULTI_LABEL }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/model/SavedModelConfig.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.model; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; import java.util.List; @Data @Builder @NoArgsConstructor @AllArgsConstructor public class SavedModelConfig { private String savedModelPath, modelTag, signatureKey; private List<String> savedModelInputOrder, saveModelOutputOrder; }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/model/TensorDataType.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.model; import org.nd4j.linalg.api.buffer.DataType; import org.nd4j.linalg.api.ndarray.INDArray; import org.nd4j.linalg.compression.CompressedDataBuffer; import org.nd4j.linalg.compression.CompressionDescriptor; /** * Possible data types for tensors. Comes with conversions from TensorFlow * and Python and between ND4J types. * @deprecated To be removed - see https://github.com/KonduitAI/konduit-serving/issues/298 */ @Deprecated public enum TensorDataType { INVALID, FLOAT, DOUBLE, INT32, UINT8, INT16, INT8, STRING, COMPLEX64, INT64, BOOL, QINT8, QUINT8, QINT32, BFLOAT16, QINT16, QUINT16, UINT16, COMPLEX128, HALF, RESOURCE, VARIANT, UINT32, UINT64; /** * Map a tensor data type to a proto value found in tensorflow. * Generally, this is just replacing DT_ with empty * and returning enum.valueOf(string) * * @param value the input string * @return the associated {@link TensorDataType} */ public static TensorDataType fromProtoValue(String value) { String valueReplace = value.replace("DT_", ""); return TensorDataType.valueOf(valueReplace); } /** * Get the python name for the given data type * * @param tensorDataType the python name for the given data type * @return float64 for double, float32 for double, float16 for half, otherwise * the type's name converted to lower case */ public static String toPythonName(TensorDataType tensorDataType) { switch (tensorDataType) { case DOUBLE: return "float64"; case FLOAT: return "float32"; case HALF: return "float16"; default: return tensorDataType.name().toLowerCase(); } } public static DataType toNd4jType(TensorDataType tensorDataType) { switch (tensorDataType) { case FLOAT: return DataType.FLOAT; case DOUBLE: return DataType.DOUBLE; case BOOL: return DataType.BOOL; case INT32: return DataType.INT32; case INT64: return DataType.INT64; case STRING: return DataType.UTF8; case HALF: return DataType.FLOAT16; default: throw new IllegalArgumentException("Unsupported type " + tensorDataType.name()); } } public static TensorDataType fromNd4jType(DataType dataType) { switch (dataType) { case FLOAT: return TensorDataType.FLOAT; case LONG: return TensorDataType.INT64; case INT: return TensorDataType.INT32; case BOOL: return TensorDataType.BOOL; case DOUBLE: return TensorDataType.DOUBLE; case HALF: return TensorDataType.HALF; case UTF8: return TensorDataType.STRING; case COMPRESSED: throw new IllegalStateException("Unable to work with compressed data type. Could be 1 or more types."); case SHORT: return TensorDataType.INT16; default: throw new IllegalArgumentException("Unknown data type " + dataType); } } public static TensorDataType fromNd4jType(INDArray array) { DataType dataType = array.dataType(); switch (dataType) { case COMPRESSED: CompressedDataBuffer compressedData = (CompressedDataBuffer) array.data(); CompressionDescriptor desc = compressedData.getCompressionDescriptor(); String algo = desc.getCompressionAlgorithm(); switch (algo) { case "FLOAT16": return HALF; case "INT8": return INT8; case "UINT8": return UINT8; case "INT16": return INT16; case "UINT16": return UINT16; default: throw new IllegalArgumentException("Unsupported compression algorithm: " + algo); } default: return fromNd4jType(dataType); } } public org.nd4j.tensorflow.conversion.TensorDataType toTFType(){ switch (this){ case INVALID: return org.nd4j.tensorflow.conversion.TensorDataType.INVALID; case FLOAT: return org.nd4j.tensorflow.conversion.TensorDataType.FLOAT; case DOUBLE: return org.nd4j.tensorflow.conversion.TensorDataType.DOUBLE; case INT32: return org.nd4j.tensorflow.conversion.TensorDataType.INT32; case UINT8: return org.nd4j.tensorflow.conversion.TensorDataType.UINT8; case INT16: return org.nd4j.tensorflow.conversion.TensorDataType.INT16; case INT8: return org.nd4j.tensorflow.conversion.TensorDataType.INT8; case STRING: return org.nd4j.tensorflow.conversion.TensorDataType.STRING; case COMPLEX64: return org.nd4j.tensorflow.conversion.TensorDataType.COMPLEX64; case INT64: return org.nd4j.tensorflow.conversion.TensorDataType.INT64; case BOOL: return org.nd4j.tensorflow.conversion.TensorDataType.BOOL; case QINT8: return org.nd4j.tensorflow.conversion.TensorDataType.QINT8; case QUINT8: return org.nd4j.tensorflow.conversion.TensorDataType.QUINT8; case QINT32: return org.nd4j.tensorflow.conversion.TensorDataType.QINT32; case BFLOAT16: return org.nd4j.tensorflow.conversion.TensorDataType.BFLOAT16; case QINT16: return org.nd4j.tensorflow.conversion.TensorDataType.QINT16; case QUINT16: return org.nd4j.tensorflow.conversion.TensorDataType.QUINT16; case UINT16: return org.nd4j.tensorflow.conversion.TensorDataType.UINT16; case COMPLEX128: return org.nd4j.tensorflow.conversion.TensorDataType.COMPLEX128; case HALF: return org.nd4j.tensorflow.conversion.TensorDataType.HALF; case RESOURCE: return org.nd4j.tensorflow.conversion.TensorDataType.RESOURCE; case VARIANT: return org.nd4j.tensorflow.conversion.TensorDataType.VARIANT; case UINT32: return org.nd4j.tensorflow.conversion.TensorDataType.UINT32; case UINT64: return org.nd4j.tensorflow.conversion.TensorDataType.UINT64; default: throw new IllegalStateException("Unknown tensor data type: " + this); } } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/model
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/model/loader/ModelLoader.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.model.loader; import io.vertx.core.buffer.Buffer; /** * Model loader. Given a path * knows how to load a model of a specified type from disk. * * @param <T> the type of the model * @author Adam Gibson */ public interface ModelLoader<T> { /** * Save a model as a buffer * * @param model the model to save * @return a buffer representing * the binary representation of the model */ Buffer saveModel(T model); /** * Load the model * * @return the loaded model * @throws Exception if an error occurs loading the model */ T loadModel() throws Exception; }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output/adapter/ClassificationMultiOutputAdapter.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.output.adapter; import ai.konduit.serving.output.types.BatchOutput; import io.vertx.ext.web.RoutingContext; import org.datavec.api.transform.schema.Schema; import org.nd4j.common.base.Preconditions; import org.nd4j.linalg.api.ndarray.INDArray; import java.util.Arrays; import java.util.LinkedHashMap; import java.util.List; import java.util.Map; /** * A {@link MultiOutputAdapter} for classification. * Internally it uses a cached {@link ClassifierOutputAdapter} * to generate the json needed for obtaining interpretable * results for classification. * * @author Adam Gibson */ public class ClassificationMultiOutputAdapter implements MultiOutputAdapter<INDArray[]> { private ClassifierOutputAdapter classifierOutputAdapter; @Override public Map<String, BatchOutput> adapt(INDArray[] array, List<String> outputNames, RoutingContext routingContext) { Map<String, BatchOutput> ret = new LinkedHashMap<>(); if (classifierOutputAdapter == null || classifierOutputAdapter.getLabels().length != outputNames.size()) { Schema.Builder schemaBuilder = new Schema.Builder(); Preconditions.checkNotNull(outputNames, "Output names not defined!"); for (int i = 0; i < outputNames.size(); i++) { schemaBuilder.addColumnDouble(outputNames.get(i)); } classifierOutputAdapter = new ClassifierOutputAdapter(schemaBuilder.build()); } ret.put(outputNames.get(0), classifierOutputAdapter.adapt(array[0], routingContext)); return ret; } @Override public List<Class<? extends OutputAdapter<?>>> outputAdapterTypes() { return Arrays.asList(ClassifierOutputAdapter.class); } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output/adapter/ClassifierOutputAdapter.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.output.adapter; import ai.konduit.serving.output.types.ClassifierOutput; import io.vertx.ext.web.RoutingContext; import lombok.NoArgsConstructor; import lombok.extern.slf4j.Slf4j; import org.datavec.api.transform.schema.Schema; import org.dmg.pmml.FieldName; import org.nd4j.linalg.api.ndarray.INDArray; import org.nd4j.linalg.factory.Nd4j; import java.util.ArrayList; import java.util.List; import java.util.Map; /** * An output adapter for displaying * {@link ClassifierOutput} * * @author Adam Gibson */ @NoArgsConstructor @Slf4j public class ClassifierOutputAdapter implements OutputAdapter<ClassifierOutput> { private Schema schema; private List<FieldName> fieldNames; public ClassifierOutputAdapter(Schema schema) { this.schema = schema; fieldNames = new ArrayList<>(schema.numColumns()); for (int i = 0; i < schema.numColumns(); i++) { fieldNames.add(FieldName.create(schema.getName(i))); } } @Override public ClassifierOutput adapt(INDArray array, RoutingContext routingContext) { INDArray argMax = Nd4j.argMax(array, -1); return ClassifierOutput.builder() .labels(getLabels()) .decisions(argMax.data().asInt()) .probabilities(array.isVector() ? new double[][]{array.toDoubleVector()} : array.toDoubleMatrix()) .build(); } @Override public ClassifierOutput adapt(List<? extends Map<FieldName, ?>> pmmlExamples, RoutingContext routingContext) { if (schema == null) { throw new IllegalStateException("No inputSchema found. A inputSchema is required in order to create results."); } int[] labelIndices = new int[pmmlExamples.size()]; double[][] values = new double[pmmlExamples.size()][schema.numColumns()]; for (int i = 0; i < pmmlExamples.size(); i++) { Map<FieldName, ?> example = pmmlExamples.get(i); int maxIdx = -1; double compare = Double.NEGATIVE_INFINITY; for (int j = 0; j < schema.numColumns(); j++) { Double result = (Double) example.get(FieldName.create("probability(" + schema.getName(j) + ")")); if (result == null) { throw new IllegalArgumentException("No label found for " + schema.getName(j)); } if (result > compare) { maxIdx = j; compare = maxIdx; } values[i][j] = result; } labelIndices[i] = maxIdx; } return ClassifierOutput.builder() .probabilities(values) .labels(getLabels()) .decisions(labelIndices) .build(); } @Override public ClassifierOutput adapt(Object input, RoutingContext routingContext) { if (input instanceof INDArray) { INDArray arr = (INDArray) input; return adapt(arr, routingContext); } else if (input instanceof List) { List<? extends Map<FieldName, ?>> pmmlExamples = (List<? extends Map<FieldName, ?>>) input; return adapt(pmmlExamples, routingContext); } throw new UnsupportedOperationException("Unable to convert input of type " + input); } @Override public Class<ClassifierOutput> outputAdapterType() { return ClassifierOutput.class; } public String[] getLabels() { String[] labels = new String[schema.numColumns()]; for (int i = 0; i < schema.numColumns(); i++) { labels[i] = schema.getName(i); } return labels; } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output/adapter/MultiOutputAdapter.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.output.adapter; import ai.konduit.serving.output.types.BatchOutput; import io.vertx.ext.web.RoutingContext; import org.nd4j.linalg.api.ndarray.INDArray; import java.util.List; import java.util.Map; /** * Convert one or more input {@link INDArray} * (one per output name) in to an appropriate * json object representing the domain to be interpreted. * * @author Adam Gibson * @deprecated To be removed - see https://github.com/KonduitAI/konduit-serving/issues/298 */ @Deprecated public interface MultiOutputAdapter<T> { /** * Adapt a pair of {@link INDArray} * and the output names, * with the array input ordered by the output name * * @param input the arrays to adapt * @param outputNames the output names to adapt * @param routingContext routing context * @return Adapted inputs */ Map<String, BatchOutput> adapt(T input, List<String> outputNames, RoutingContext routingContext); /** * Returns a map of the strings by output name * to the {@link OutputAdapter} * for each output * * @return the output adapter types for this multi output adapter */ List<Class<? extends OutputAdapter<?>>> outputAdapterTypes(); }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output/adapter/OutputAdapter.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.output.adapter; import ai.konduit.serving.output.types.BatchOutput; import io.vertx.ext.web.RoutingContext; import org.dmg.pmml.FieldName; import org.nd4j.linalg.api.ndarray.INDArray; import java.util.List; import java.util.Map; /** * Convert an input {@link INDArray} * or {@link FieldName} list map * from PMML to human readable json. * * @param <T> the type to convert to * @author Adam Gibson * @deprecated To be removed - see https://github.com/KonduitAI/konduit-serving/issues/298 */ @Deprecated public interface OutputAdapter<T extends BatchOutput> { /** * Given an input array, * output the desired type * * @param array the input array * @param routingContext Vert.x routing context * @return the desired output */ T adapt(INDArray array, RoutingContext routingContext); /** * Convert the pmml to * the desired type * * @param pmmlExamples the list of examples to convert * @param routingContext Vert.x routing context * @return the desired output type */ T adapt(List<? extends Map<FieldName, ?>> pmmlExamples, RoutingContext routingContext); /** * Adapt an arbitrary object. * This is for types that may be outside of pmml * or {@link INDArray} * * @param input the input to convert * @param routingContext routing context * @return the output type */ T adapt(Object input, RoutingContext routingContext); /** * Returns the output type of this * output adapter. * This metadata is used for documentation * generation * * @return adapter type */ Class<T> outputAdapterType(); }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output/adapter/RawMultiOutputAdapter.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.output.adapter; import ai.konduit.serving.output.types.BatchOutput; import io.vertx.ext.web.RoutingContext; import org.nd4j.linalg.api.ndarray.INDArray; import java.util.Arrays; import java.util.LinkedHashMap; import java.util.List; import java.util.Map; /** * A {@link MultiOutputAdapter} for classification. * Internally it uses a cached {@link ClassifierOutputAdapter} * to generate the json needed for obtaining interpretable * results for classification. * * @author Adam Gibson */ public class RawMultiOutputAdapter implements MultiOutputAdapter<INDArray[]> { private RawOutputAdapter rawOutputAdapter; @Override public Map<String, BatchOutput> adapt(INDArray[] array, List<String> outputNames, RoutingContext routingContext) { Map<String, BatchOutput> ret = new LinkedHashMap<>(); if (rawOutputAdapter == null) { rawOutputAdapter = new RawOutputAdapter(); } for (int i = 0; i < array.length; i++) { ret.put(outputNames.get(i), rawOutputAdapter.adapt(array[i], routingContext)); } return ret; } @Override public List<Class<? extends OutputAdapter<?>>> outputAdapterTypes() { return Arrays.asList(ClassifierOutputAdapter.class); } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output/adapter/RawOutputAdapter.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.output.adapter; import ai.konduit.serving.output.types.NDArrayOutput; import io.vertx.ext.web.RoutingContext; import org.dmg.pmml.FieldName; import org.nd4j.linalg.api.ndarray.INDArray; import java.util.List; import java.util.Map; public class RawOutputAdapter implements OutputAdapter<NDArrayOutput> { @Override public NDArrayOutput adapt(INDArray array, RoutingContext routingContext) { return NDArrayOutput.builder().ndArray(array).build(); } @Override public NDArrayOutput adapt(List<? extends Map<FieldName, ?>> pmmlExamples, RoutingContext routingContext) { throw new UnsupportedOperationException("Unable to convert pmml to ndarrays."); } @Override public NDArrayOutput adapt(Object input, RoutingContext routingContext) { if (input instanceof INDArray) { INDArray input2 = (INDArray) input; return adapt(input2, routingContext); } return null; } @Override public Class<NDArrayOutput> outputAdapterType() { return NDArrayOutput.class; } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output/adapter/RegressionMultiOutputAdapter.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.output.adapter; import ai.konduit.serving.output.types.BatchOutput; import io.vertx.ext.web.RoutingContext; import org.datavec.api.transform.schema.Schema; import org.nd4j.linalg.api.ndarray.INDArray; import java.util.Arrays; import java.util.LinkedHashMap; import java.util.List; import java.util.Map; /** * A {@link MultiOutputAdapter} for elnino. * Internally it uses a cached {@link RegressionOutputAdapter} * to generate the json needed for obtaining interpretable * results for elnino. * * @author Adam Gibson */ public class RegressionMultiOutputAdapter implements MultiOutputAdapter<INDArray[]> { private RegressionOutputAdapter regressionOutputAdapter; @Override public Map<String, BatchOutput> adapt(INDArray[] array, List<String> outputNames, RoutingContext routingContext) { Map<String, BatchOutput> ret = new LinkedHashMap<>(); if (regressionOutputAdapter == null) { Schema.Builder schemaBuilder = new Schema.Builder(); for (int i = 0; i < outputNames.size(); i++) { schemaBuilder.addColumnDouble(outputNames.get(i)); } regressionOutputAdapter = new RegressionOutputAdapter(schemaBuilder.build()); } ret.put(outputNames.get(0), regressionOutputAdapter.adapt(array[0], routingContext)); return ret; } @Override public List<Class<? extends OutputAdapter<?>>> outputAdapterTypes() { return Arrays.asList(RegressionOutputAdapter.class); } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output/adapter/RegressionOutputAdapter.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.output.adapter; import ai.konduit.serving.output.types.RegressionOutput; import io.vertx.ext.web.RoutingContext; import lombok.AllArgsConstructor; import lombok.NoArgsConstructor; import org.datavec.api.transform.schema.Schema; import org.dmg.pmml.FieldName; import org.nd4j.linalg.api.ndarray.INDArray; import java.util.ArrayList; import java.util.List; import java.util.Map; /** * Convert the input based on the input * {@link Schema} to {@link RegressionOutput} * representing real valued output. * * @author Adam Gibson */ @AllArgsConstructor @NoArgsConstructor public class RegressionOutputAdapter implements OutputAdapter<RegressionOutput> { private Schema schema; private List<FieldName> fieldNames; /** * Create the output adapter * with the output inputSchema * * @param schema the inputSchema of the output */ public RegressionOutputAdapter(Schema schema) { this.schema = schema; fieldNames = new ArrayList<>(schema.numColumns()); for (int i = 0; i < schema.numColumns(); i++) { fieldNames.add(FieldName.create(schema.getName(i))); } } @Override public RegressionOutput adapt(INDArray array, RoutingContext routingContext) { return RegressionOutput .builder() .values(array.toDoubleMatrix()) .build(); } @Override public RegressionOutput adapt(List<? extends Map<FieldName, ?>> pmmlExamples, RoutingContext routingContext) { if (schema == null) { throw new IllegalStateException("No inputSchema found. A inputSchema is required in order to create results."); } double[][] values = new double[pmmlExamples.size()][pmmlExamples.get(0).size()]; for (int i = 0; i < pmmlExamples.size(); i++) { Map<FieldName, ?> example = pmmlExamples.get(i); for (int j = 0; j < schema.numColumns(); j++) { Double result = (Double) example.get(fieldNames.get(j)); values[i][j] = result; } } return RegressionOutput.builder().values(values).build(); } @Override public RegressionOutput adapt(Object input, RoutingContext routingContext) { if (input instanceof INDArray) { INDArray arr = (INDArray) input; return adapt(arr, routingContext); } else if (input instanceof List) { List<? extends Map<FieldName, ?>> pmmlExamples = (List<? extends Map<FieldName, ?>>) input; return adapt(pmmlExamples, routingContext); } throw new UnsupportedOperationException("Unable to convert input of type " + input); } @Override public Class<RegressionOutput> outputAdapterType() { return RegressionOutput.class; } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output/adapter/SSDOutputAdapter.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.output.adapter; import ai.konduit.serving.output.types.BatchOutput; import ai.konduit.serving.output.types.DetectedObjectsBatch; import ai.konduit.serving.verticles.VerticleConstants; import io.vertx.ext.web.RoutingContext; import lombok.Getter; import org.deeplearning4j.zoo.util.BaseLabels; import org.deeplearning4j.zoo.util.Labels; import org.nd4j.linalg.api.ndarray.INDArray; import java.io.IOException; import java.io.InputStream; import java.net.URL; import java.util.*; /** * An input adapter for ssd in tensorflow. * * @author Adam Gibson */ public class SSDOutputAdapter implements MultiOutputAdapter<INDArray[]> { public final static String DEFAULT_LABELS_RESOURCE_NAME = "/mscoco_label_map.pbtxt"; private double threshold; private int[] inputShape; private Labels labels; private int numLabels; @Getter private String[] inputs = new String[]{"image_tensor"}; @Getter private String[] outputs = new String[]{"detection_boxes", "detection_scores", "detection_classes", "num_detections"}; public SSDOutputAdapter(double threshold, Labels labels, int numLabels) { this.threshold = threshold; inputShape = new int[]{3, 0, 0}; this.labels = labels; this.numLabels = numLabels; } public SSDOutputAdapter(double threshold, int numLabels) { this(threshold, getLabels(), numLabels); } public SSDOutputAdapter(double threshold, InputStream labels, int numLabels) { this(threshold, getLabels(labels, numLabels), numLabels); } public static Labels getLabels(InputStream is, int numLabels) { try { return new BaseLabels() { protected ArrayList<String> getLabels() { Scanner scanner = new Scanner(is); int id1 = -1; int count = 0; List<String> ret = new ArrayList<>(); String name = null; while (scanner.hasNext()) { String token = scanner.next(); if (token.equals("id:")) { id1 = scanner.nextInt(); } if (token.equals("display_name:")) { name = scanner.nextLine(); name = name.substring(2, name.length() - 1); } if (id1 > 0 && name != null) { ret.add(name); id1 = -1; name = null; } } return (ArrayList<String>) ret; } @Override protected URL getURL() { return null; } @Override protected String resourceName() { return null; } @Override protected String resourceMD5() { return null; } }; } catch (IOException e) { e.printStackTrace(); return null; } } public static Labels getLabels() { return getLabels(SSDOutputAdapter.class.getResourceAsStream(DEFAULT_LABELS_RESOURCE_NAME), 100); } @Override public Map<String, BatchOutput> adapt(INDArray[] input, List<String> outputNames, RoutingContext routingContext) { int originalHeight = (int) routingContext.data().get(VerticleConstants.ORIGINAL_IMAGE_HEIGHT); int originalWidth = (int) routingContext.data().get(VerticleConstants.ORIGINAL_IMAGE_WIDTH); DetectedObjectsBatch[] detectedObjects = getPredictedObjects(input, threshold, outputNames.toArray(new String[outputNames.size()]), originalHeight, originalWidth); Map<String, BatchOutput> ret = new HashMap<>(); for (int i = 0; i < outputNames.size(); i++) { ret.put(outputNames.get(i), detectedObjects[i]); } return ret; } @Override public List<Class<? extends OutputAdapter<?>>> outputAdapterTypes() { return null; } private DetectedObjectsBatch[] getPredictedObjects(INDArray[] outputs, double threshold, String[] outputNames, int originalHeight, int originalWidth) { INDArray boxes = null, classes = null, scores = null; for (int i = 0; i < outputs.length; i++) { if (outputNames[i].contains("box")) { boxes = outputs[i]; } else if (outputNames[i].contains("class")) { classes = outputs[i]; } else if (outputNames[i].contains("score")) { scores = outputs[i]; } } List<DetectedObjectsBatch> detectedObjects = new ArrayList<>(); for (int i = 0; i < scores.columns(); i++) { double score = scores.getDouble(0, i); if (score < threshold) { continue; } int n = classes.rank() >= 2 ? classes.getInt(0, i) : classes.getInt(i); String label = labels.getLabel(n); double y1 = boxes.getDouble(0, i, 0) * originalHeight; double x1 = boxes.getDouble(0, i, 1) * originalWidth; double y2 = boxes.getDouble(0, i, 2) * originalHeight; double x2 = boxes.getDouble(0, i, 3) * originalWidth; DetectedObjectsBatch d = new DetectedObjectsBatch(); d.setCenterX((float) (x1 + x2) / 2); d.setCenterY((float) (y1 + y2) / 2); d.setWidth((float) (x2 - x1)); d.setHeight((float) (y2 - y1)); d.setPredictedClassNumbers(new int[]{n}); d.setPredictedClasses(new String[]{label}); d.setConfidences(new float[]{(float) score}); detectedObjects.add(d); } return detectedObjects.toArray(new DetectedObjectsBatch[detectedObjects.size()]); } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output/adapter/YOLOOutputAdapter.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.output.adapter; import ai.konduit.serving.output.types.BatchOutput; import ai.konduit.serving.output.types.DetectedObjectsBatch; import ai.konduit.serving.output.types.ManyDetectedObjects; import ai.konduit.serving.verticles.VerticleConstants; import io.vertx.ext.web.RoutingContext; import lombok.Builder; import lombok.extern.slf4j.Slf4j; import org.deeplearning4j.nn.layers.objdetect.DetectedObject; import org.deeplearning4j.nn.layers.objdetect.YoloUtils; import org.deeplearning4j.zoo.model.YOLO2; import org.deeplearning4j.zoo.model.helper.DarknetHelper; import org.deeplearning4j.zoo.util.BaseLabels; import org.deeplearning4j.zoo.util.ClassPrediction; import org.deeplearning4j.zoo.util.Labels; import org.deeplearning4j.zoo.util.darknet.COCOLabels; import org.nd4j.linalg.api.buffer.DataType; import org.nd4j.linalg.api.ndarray.INDArray; import org.nd4j.linalg.factory.Nd4j; import java.io.IOException; import java.io.InputStream; import java.net.URL; import java.util.*; @Slf4j public class YOLOOutputAdapter implements MultiOutputAdapter<INDArray[]> { private double threshold; private int[] inputShape; private Labels labels; private INDArray boundingBoxPriors; private int gridWidth; private int gridHeight; private int numLabels; @Builder public YOLOOutputAdapter(double threshold, int[] inputShape, Labels labels, int numLabels, double[][] boundingBoxPriors) { this.labels = labels == null ? getLabels() : labels; if (threshold == 0.0) this.threshold = 0.5; else this.threshold = threshold; if (inputShape != null) this.inputShape = inputShape; else this.inputShape = new int[]{3, 608, 608}; this.labels = labels; this.numLabels = numLabels; if (boundingBoxPriors == null) this.boundingBoxPriors = Nd4j.create(YOLO2.DEFAULT_PRIOR_BOXES).castTo(DataType.FLOAT); else { this.boundingBoxPriors = Nd4j.create(boundingBoxPriors).castTo(DataType.FLOAT); } gridWidth = DarknetHelper.getGridWidth(inputShape); gridHeight = DarknetHelper.getGridHeight(inputShape); } public YOLOOutputAdapter(double threshold, Labels labels, int numLabels) { this.threshold = threshold; inputShape = new int[]{3, 608, 608}; this.labels = labels; this.numLabels = numLabels; boundingBoxPriors = Nd4j.create(YOLO2.DEFAULT_PRIOR_BOXES).castTo(DataType.FLOAT); gridWidth = DarknetHelper.getGridWidth(inputShape); gridHeight = DarknetHelper.getGridHeight(inputShape); } public YOLOOutputAdapter(double threshold, int numLabels) { this(threshold, getLabels(), numLabels); } public YOLOOutputAdapter(double threshold, InputStream labels, int numLabels) { this(threshold, labels == null ? getLabels() : getLabels(labels, numLabels), numLabels); } private static Labels getLabels(InputStream is, int numLabels) { try { return new BaseLabels() { protected ArrayList<String> getLabels() { Scanner scanner = new Scanner(is); int id1 = -1; int count = 0; List<String> ret = new ArrayList<>(); String name = null; while (scanner.hasNext()) { String token = scanner.next(); if (token.equals("id:")) { id1 = scanner.nextInt(); } if (token.equals("display_name:")) { name = scanner.nextLine(); name = name.substring(2, name.length() - 1); } if (id1 > 0 && name != null) { ret.add(name); id1 = -1; name = null; } } return (ArrayList<String>) ret; } @Override public List<List<ClassPrediction>> decodePredictions(INDArray predictions, int n) { return super.decodePredictions(predictions, n); } @Override protected URL getURL() { return null; } @Override protected String resourceName() { return null; } @Override protected String resourceMD5() { return null; } }; } catch (IOException e) { e.printStackTrace(); return null; } } private static Labels getLabels() { try { return new COCOLabels(); } catch (IOException e) { return null; } } @Override public Map<String, BatchOutput> adapt(INDArray[] input, List<String> outputNames, RoutingContext routingContext) { int originalHeight = (int) routingContext.data().get(VerticleConstants.ORIGINAL_IMAGE_HEIGHT); int originalWidth = (int) routingContext.data().get(VerticleConstants.ORIGINAL_IMAGE_WIDTH); DetectedObjectsBatch[] detectedObjects = getPredictedObjects(input, threshold, outputNames.toArray(new String[outputNames.size()]), originalHeight, originalWidth); Map<String, BatchOutput> ret = new HashMap<>(); ret.put(outputNames.get(0), ManyDetectedObjects.builder().detectedObjectsBatches(detectedObjects).build()); return ret; } @Override public List<Class<? extends OutputAdapter<?>>> outputAdapterTypes() { return null; } private DetectedObjectsBatch[] getPredictedObjects(INDArray[] outputs, double threshold, String[] outputNames, int originalHeight, int originalWidth) { // assuming "standard" output from TensorFlow using a "normal" YOLOv2 model //INDArray permuted = outputs[0].permute(0, 3, 1, 2); INDArray permuted = outputs[0]; INDArray activated = YoloUtils.activate(boundingBoxPriors, permuted); List<DetectedObject> predictedObjects1 = YoloUtils.getPredictedObjects(boundingBoxPriors, activated, threshold, 0.4); DetectedObjectsBatch[] detectedObjects = new DetectedObjectsBatch[predictedObjects1.size()]; int n = numLabels; // an arbitrary number of classes returned per object for (int i = 0; i < detectedObjects.length; i++) { DetectedObject detectedObject = predictedObjects1.get(i); long x = Math.round(originalWidth * predictedObjects1.get(i).getCenterX() / gridWidth); long y = Math.round(originalHeight * predictedObjects1.get(i).getCenterY() / gridHeight); long w = Math.round(originalWidth * predictedObjects1.get(i).getWidth() / gridWidth); long h = Math.round(originalHeight * predictedObjects1.get(i).getHeight() / gridHeight); detectedObjects[i] = new DetectedObjectsBatch(); detectedObjects[i].setCenterX(x); detectedObjects[i].setCenterY(y); detectedObjects[i].setWidth(w); detectedObjects[i].setHeight(h); detectedObjects[i].setPredictedClasses(new String[]{labels.getLabel(detectedObject.getPredictedClass())}); detectedObjects[i].setPredictedClassNumbers(new int[]{detectedObject.getPredictedClass()}); detectedObjects[i].setConfidences(new float[]{detectedObject.getClassPredictions().getFloat(detectedObject.getPredictedClass())}); } return detectedObjects; } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output/types/BatchOutput.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.output.types; import java.io.Serializable; /** * The Batch Output represents * the output from an output adapter. * This includes any common fields that the output * needs when returning data to the end user. * * @author Adam Gibson */ public interface BatchOutput extends Serializable { /** * Set the batch id for the batch output. * This batch id is used during retraining. * * @param batchId the batch id for the batch output */ void setBatchId(String batchId); /** * Return the batch id for this batch output. * The batch id used for retraining. * * @return batch id */ String batchId(); }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output/types/ClassifierOutput.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.output.types; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; @Data @Builder @NoArgsConstructor @AllArgsConstructor public class ClassifierOutput implements BatchOutput { private int[] decisions; private double[][] probabilities; private String[] labels; private String batchId; @Override public String batchId() { return batchId; } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output/types/DetectedObjectsBatch.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.output.types; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; @NoArgsConstructor @Data @Builder @AllArgsConstructor public class DetectedObjectsBatch implements BatchOutput { private float centerX; private float centerY; private float width; private float height; private int[] predictedClassNumbers; private String[] predictedClasses; private float[] confidences; private String batchId; @Override public void setBatchId(String batchId) { this.batchId = batchId; } @Override public String batchId() { return batchId; } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output/types/ManyDetectedObjects.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.output.types; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; @Data @Builder @NoArgsConstructor @AllArgsConstructor public class ManyDetectedObjects implements BatchOutput { private DetectedObjectsBatch[] detectedObjectsBatches; @Override public void setBatchId(String batchId) { for (DetectedObjectsBatch detectedObjectsBatch : detectedObjectsBatches) { detectedObjectsBatch.setBatchId(batchId); } } @Override public String batchId() { return detectedObjectsBatches[0].getBatchId(); } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output/types/NDArrayOutput.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.output.types; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; import org.nd4j.linalg.api.ndarray.INDArray; import org.nd4j.serde.jackson.shaded.NDArrayTextDeSerializer; import org.nd4j.serde.jackson.shaded.NDArrayTextSerializer; import org.nd4j.shade.jackson.databind.annotation.JsonDeserialize; import org.nd4j.shade.jackson.databind.annotation.JsonSerialize; @Data @Builder @NoArgsConstructor @AllArgsConstructor public class NDArrayOutput implements BatchOutput { private String batchId; @JsonSerialize(using = NDArrayTextSerializer.class) @JsonDeserialize(using = NDArrayTextDeSerializer.class) private INDArray ndArray; @Override public void setBatchId(String batchId) { this.batchId = batchId; } @Override public String batchId() { return batchId; } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/output/types/RegressionOutput.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.output.types; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; @Data @Builder @AllArgsConstructor @NoArgsConstructor public class RegressionOutput implements BatchOutput { private double[][] values; private String batchId; @Override public String batchId() { return batchId; } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/pipeline
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/pipeline/config/NormalizationConfig.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.pipeline.config; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; import java.io.Serializable; import java.util.HashMap; import java.util.Map; /** * Configuration for data normalization in the ETL part of your pipeline. */ @Data @AllArgsConstructor @NoArgsConstructor @Builder public class NormalizationConfig implements Serializable { @Builder.Default private Map<String, String> config = new HashMap<>(); public void put(String key, String value) { config.put(key, value); } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/pipeline
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/pipeline/config/ObjectDetectionConfig.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.pipeline.config; import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor; import java.io.Serializable; @Data /** * Configuration for object detection output of models. */ @AllArgsConstructor @Builder @NoArgsConstructor public class ObjectDetectionConfig implements Serializable { @Builder.Default private double threshold = 0.5; private int numLabels; private String labelsPath; public static final double[][] DEFAULT_PRIOR_BOXES = {{0.57273, 0.677385}, {1.87446, 2.06253}, {3.33843, 5.47434}, {7.88282, 3.52778}, {9.77052, 9.16828}}; @Builder.Default private double[][] priors = DEFAULT_PRIOR_BOXES; @Builder.Default private int[] inputShape = {3, 608, 608}; }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/settings
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/settings/constants/Constants.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.settings.constants; import lombok.AccessLevel; import lombok.NoArgsConstructor; /** * This class contains important keys for different operations inside konduit-serving * @deprecated To be removed - https://github.com/KonduitAI/konduit-serving/issues/298 */ @Deprecated @NoArgsConstructor(access = AccessLevel.PRIVATE) public class Constants { /** * The name of the default base name of the konduit-serving working directory. */ public static final String DEFAULT_WORKING_BASE_DIR_NAME = ".konduit-serving"; /** * Default base directory name for the endpoints log (/logs). */ public static final String DEFAULT_ENDPOINT_LOGS_DIR_NAME = "endpoint_logs"; /** * Default directory name for containing the command log files. */ public static final String DEFAULT_COMMAND_LOGS_DIR_NAME = "command_logs"; /** * Default directory name for containing the running server data. The files in * this directory usually contains the server configurations. The format of the files is * {@code <pid>.data} */ public static final String SERVERS_DATA_DIR_NAME = "servers"; /** * Name of the log file which contains the logging data for the {@code /logs} * endpoint. */ public static final String MAIN_ENDPOINT_LOGS_FILE = "main.log"; }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/settings
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/settings/constants/EnvironmentConstants.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.settings.constants; import io.vertx.ext.web.handler.BodyHandler; import lombok.AccessLevel; import lombok.NoArgsConstructor; /** * This class contains important constants for different environment variable settings * for konduit-serving. * @deprecated To be removed - https://github.com/KonduitAI/konduit-serving/issues/298 */ @Deprecated @NoArgsConstructor(access = AccessLevel.PRIVATE) public class EnvironmentConstants { /** * An environment variable for setting the working directory for konduit serving. * The working directory contains the runtime files generated by vertx or * konduit-serving itself. The runtime files could contain logs, * running process details, vertx cache files etc. */ public static final String WORKING_DIR = "KONDUIT_WORKING_DIR"; /** * This variable is responsible for setting the path where the log files for a konduit server * is kept for the `/logs` endpoint. */ public static final String ENDPOINT_LOGS_DIR = "KONDUIT_ENDPOINT_LOGS_DIR"; /** * Default directory for containing the command line logs for konduit-serving */ public static final String COMMAND_LOGS_DIR = "KONDUIT_COMMAND_LOGS_DIR"; /** * Sets the directory where the file uploads are kept for Vertx {@link BodyHandler} */ public static final String FILE_UPLOADS_DIR = "KONDUIT_FILE_UPLOADS_DIR"; }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/settings
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/settings/constants/PropertiesConstants.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.settings.constants; import io.vertx.ext.web.handler.BodyHandler; import lombok.AccessLevel; import lombok.NoArgsConstructor; /** * This class contains important constants for different system properties * for konduit-serving. * @deprecated To be removed - https://github.com/KonduitAI/konduit-serving/issues/298 */ @Deprecated @NoArgsConstructor(access = AccessLevel.PRIVATE) public class PropertiesConstants { /** * For setting the working directory for konduit serving. * The working directory contains the runtime files generated by vertx or * konduit-serving itself. The runtime files could contain logs, * running process details, vertx cache files etc. */ public static final String WORKING_DIR = "konduit.working.dir"; /** * This system property is responsible for setting the path where the log files for a konduit server * is kept for the `/logs` endpoint. */ public static final String ENDPOINT_LOGS_DIR = "konduit.endpoint.logs.dir"; /** * Default directory for containing the command line logs for konduit-serving */ public static final String COMMAND_LOGS_DIR = "konduit.command.logs.dir"; /** * Sets the directory where the file uploads are kept for Vertx {@link BodyHandler} */ public static final String FILE_UPLOADS_DIR = "konduit.file.uploads.dir"; }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/util/MetricRenderUtils.java
/* * * * ****************************************************************************** * * * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.util; import ai.konduit.serving.config.metrics.ColumnDistribution; import org.nd4j.common.base.Preconditions; /** * Util class for anything related to {@link ai.konduit.serving.config.metrics.MetricsRenderer} * * @author Adam Gibson */ public class MetricRenderUtils { /** * De normalize the given input based on the {@link ColumnDistribution} * @param input the input to de normalize * @param columnDistribution the column distribution to de normalized based on * @return the de normalized value */ public static double normalizeValue(double input, ColumnDistribution columnDistribution) { switch(columnDistribution.getNormalizerType()) { case MIN_MAX: return (input - columnDistribution.getMin()) / columnDistribution.getMax(); case STANDARDIZE: return (input - columnDistribution.getMean()) / columnDistribution.getStandardDeviation(); default: throw new IllegalArgumentException("Illegal normalization type for reverting." + columnDistribution.getNormalizerType()); } } /** * De normalize the given input based on the {@link ColumnDistribution} * @param input the input to de normalize * @param columnDistribution the column distribution to de normalized based on * @return the de normalized value */ public static double deNormalizeValue(double input, ColumnDistribution columnDistribution) { Preconditions.checkNotNull(columnDistribution,"Column distribution must not be null!"); Preconditions.checkNotNull(columnDistribution.getNormalizerType(),"Normalizer type is null!"); switch(columnDistribution.getNormalizerType()) { case MIN_MAX: return (input * columnDistribution.getMax()) + columnDistribution.getMin(); case STANDARDIZE: return (input * columnDistribution.getStandardDeviation()) + columnDistribution.getMean(); default: throw new IllegalArgumentException("Illegal normalization type for reverting." + columnDistribution.getNormalizerType()); } } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/util/ObjectMappers.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.util; import lombok.NonNull; import org.nd4j.shade.jackson.annotation.JsonAutoDetect; import org.nd4j.shade.jackson.annotation.JsonInclude; import org.nd4j.shade.jackson.annotation.PropertyAccessor; import org.nd4j.shade.jackson.core.JsonProcessingException; import org.nd4j.shade.jackson.databind.*; import org.nd4j.shade.jackson.dataformat.yaml.YAMLFactory; import org.nd4j.shade.jackson.dataformat.yaml.YAMLGenerator; import org.nd4j.shade.jackson.datatype.joda.JodaModule; import java.io.IOException; /** * A simple object mapper holder for using one single {@link ObjectMapper} across the whole project. */ public class ObjectMappers { private static final ObjectMapper jsonMapper = configureMapper(new ObjectMapper()); private static final ObjectMapper yamlMapper = configureMapper(new ObjectMapper(new YAMLFactory() .disable(YAMLGenerator.Feature.USE_NATIVE_TYPE_ID) // For preventing YAML from adding `!<TYPE>` with polymorphic objects // and use Jackson's type information mechanism. )); private ObjectMappers() { } /** * Get a single object mapper for use with reading and writing JSON * * @return JSON object mapper */ public static ObjectMapper json() { return jsonMapper; } /** * Get a single object mapper for use with reading and writing YAML * * @return YAML object mapper */ public static ObjectMapper yaml() { return yamlMapper; } private static ObjectMapper configureMapper(ObjectMapper ret) { ret.registerModule(new JodaModule()); ret.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false); ret.configure(SerializationFeature.FAIL_ON_EMPTY_BEANS, false); ret.configure(MapperFeature.SORT_PROPERTIES_ALPHABETICALLY, true); ret.enable(SerializationFeature.INDENT_OUTPUT); ret.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.NONE); ret.setVisibility(PropertyAccessor.FIELD, JsonAutoDetect.Visibility.ANY); ret.setVisibility(PropertyAccessor.CREATOR, JsonAutoDetect.Visibility.ANY); ret.setSerializationInclusion(JsonInclude.Include.NON_NULL); if(ret.getFactory() instanceof YAMLFactory) { ret.setPropertyNamingStrategy(PropertyNamingStrategy.SNAKE_CASE); } return ret; } /** * Convert the specified object to a YAML String, throwing an unchecked exception (RuntimeException) if conversion fails * * @param o Object * @return Object as YAML */ public static String toYaml(@NonNull Object o) { try { return yaml().writeValueAsString(o); } catch (JsonProcessingException e) { throw new RuntimeException("Error converting object of class " + o.getClass().getName() + " to YAML", e); } } /** * Convert the specified object to a JSON String, throwing an unchecked exception (RuntimeException) if conversion fails * * @param o Object * @return Object as JSON */ public static String toJson(@NonNull Object o) { try { return json().writeValueAsString(o); } catch (JsonProcessingException e) { throw new RuntimeException("Error converting object of class " + o.getClass().getName() + " to JSON", e); } } /** * Convert the specified YAML String to an object of the specified class, throwing an unchecked exception (RuntimeException) if conversion fails * * @param yaml YAML string * @param c Class for the object * @return Object from YAML */ public static <T> T fromYaml(@NonNull String yaml, @NonNull Class<T> c) { try { return yaml().readValue(yaml, c); } catch (IOException e) { throw new RuntimeException("Error deserializing YAML string to class " + c.getName(), e); } } /** * Convert the specified YAML String to an object of the specified class, throwing an unchecked exception (RuntimeException) if conversion fails * * @param json JSON string * @param c Class for the object * @return Object from JSON */ public static <T> T fromJson(@NonNull String json, @NonNull Class<T> c) { try { return json().readValue(json, c); } catch (IOException e) { throw new RuntimeException("Error deserializing JSON string to class " + c.getName(), e); } } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/util/PortUtils.java
/* ****************************************************************************** * Copyright (c) 2022 Konduit K.K. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ package ai.konduit.serving.util; import lombok.NoArgsConstructor; import java.io.IOException; import java.net.ServerSocket; @NoArgsConstructor public class PortUtils { /** * @return single available port number */ public static int getAvailablePort() { try (ServerSocket socket = new ServerSocket(0)) { return socket.getLocalPort(); } catch (IOException e) { throw new IllegalStateException("Cannot find available port: " + e.getMessage(), e); } } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/util/WritableValueRetriever.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.util; import org.datavec.api.writable.*; import org.nd4j.common.base.Preconditions; import org.nd4j.linalg.api.ndarray.INDArray; /** * Utilities for datavec's {@link Writable} * this just perform basic conversion * between unknown objects and {@link Writable} * types. * * @author Adam Gibson */ public class WritableValueRetriever { /** * Create a {@link Writable} * from the given value * If an input type is invalid, an * {@link IllegalArgumentException} * will be thrown * * @param input the input object * @return writable */ public static Writable writableFromValue(Object input) { Preconditions.checkNotNull(input, "Unable to convert null value!"); if (input instanceof Double) { return new DoubleWritable((Double) input); } else if (input instanceof Float) { return new FloatWritable((Float) input); } else if (input instanceof String) { return new Text(input.toString()); } else if (input instanceof Long) { return new LongWritable((Long) input); } else if (input instanceof INDArray) { return new NDArrayWritable((INDArray) input); } else if (input instanceof Integer) { return new IntWritable((Integer) input); } else if (input instanceof byte[]) { return new BytesWritable((byte[]) input); } else if (input instanceof Boolean) { return new BooleanWritable((Boolean) input); } else throw new IllegalArgumentException("Unsupported type " + input.getClass().getName()); } /** * Get the underlying value fro the given {@link Writable} * * @param writable the writable to get the value for * @return the underlying value represnted by the {@link Writable} */ public static Object getUnderlyingValue(Writable writable) { switch (writable.getType()) { case Float: return writable.toFloat(); case Double: return writable.toDouble(); case Int: return writable.toInt(); case Long: return writable.toLong(); case NDArray: NDArrayWritable ndArrayWritable = (NDArrayWritable) writable; return ndArrayWritable.get(); case Boolean: BooleanWritable booleanWritable = (BooleanWritable) writable; return booleanWritable.get(); case Byte: ByteWritable byteWritable = (ByteWritable) writable; return byteWritable.get(); case Bytes: BytesWritable bytesWritable = (BytesWritable) writable; return bytesWritable.getContent(); case Text: return writable.toString(); default: throw new UnsupportedOperationException(); } } }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/verticles/Routable.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.verticles; import io.vertx.core.Vertx; import io.vertx.ext.web.Router; /** * An interface representing an object * with a {@link Router} * instance and a {@link Vertx} * instance * * @author Adam Gibson */ public interface Routable { /** * Returns the {@link Router} * associated with this object * * @return router */ Router router(); /** * Returns the {@link Vertx} * instance associated with this object * * @return router */ Vertx vertx(); }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/verticles/VerticleConstants.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.verticles; /** * Constants for the config.json * for initializing verticles. * * @author Adam Gibson */ public class VerticleConstants { // General public final static String KONDUIT_SERVING_PORT = "KONDUIT_SERVING_PORT"; public final static String CONVERTED_INFERENCE_DATA = "convertedInferenceData"; public final static String HTTP_PORT_KEY = "httpPort"; public final static String TRANSACTION_ID = "transactionId"; //keys for the routing context when doing object recognition public final static String ORIGINAL_IMAGE_HEIGHT = "originalImageHeight"; public final static String ORIGINAL_IMAGE_WIDTH = "originalImageWidth"; // Mem map public final static String MEM_MAP_VECTOR_PATH = "memMapVectorPath"; }
0
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/verticles
java-sources/ai/konduit/serving/konduit-serving-api/0.3.0/ai/konduit/serving/verticles/base/BaseRoutableVerticle.java
/* * * * ****************************************************************************** * * * Copyright (c) 2015-2019 Skymind Inc. * * * Copyright (c) 2022 Konduit K.K. * * * * * * This program and the accompanying materials are made available under the * * * terms of the Apache License, Version 2.0 which is available at * * * https://www.apache.org/licenses/LICENSE-2.0. * * * * * * Unless required by applicable law or agreed to in writing, software * * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * * License for the specific language governing permissions and limitations * * * under the License. * * * * * * SPDX-License-Identifier: Apache-2.0 * * ***************************************************************************** * * */ package ai.konduit.serving.verticles.base; import ai.konduit.serving.verticles.Routable; import ai.konduit.serving.verticles.VerticleConstants; import io.vertx.core.AbstractVerticle; import io.vertx.core.Promise; import io.vertx.core.Vertx; import io.vertx.ext.web.Router; import io.vertx.ext.web.impl.RouterImpl; import lombok.Data; import lombok.EqualsAndHashCode; import lombok.extern.slf4j.Slf4j; /** * A super class containing a router * and boiler plate methods for managing * http interaction. * * @author Adam Gibson */ @EqualsAndHashCode(callSuper = true) @Slf4j @Data public abstract class BaseRoutableVerticle extends AbstractVerticle implements Routable { private final static int DEFAULT_HTTP_PORT = 0; // 0 will find an available port when running HttpServer#listen protected Router router; protected int port; public BaseRoutableVerticle() { super(); } /** * Start an http server the port with the value configured * as the httpPort key found in {@link #config()} */ protected void setupWebServer(Promise<Void> startPromise) { RouterImpl router = (RouterImpl) router(); if (context != null && config().containsKey(VerticleConstants.HTTP_PORT_KEY)) { String portKey = config().getValue(VerticleConstants.HTTP_PORT_KEY).toString(); port = Integer.parseInt(portKey); } else { port = DEFAULT_HTTP_PORT; log.warn("No port defined in configuration! Using default port = " + port); } vertx.createHttpServer() .requestHandler(router) .exceptionHandler(Throwable::printStackTrace) .listen(port, listenResult -> { if (listenResult.failed()) { log.error("Could not start HTTP server", listenResult.cause()); startPromise.fail(listenResult.cause()); } else { log.info("Server started on port {}", port); startPromise.complete(); } }); } @Override public void start(Promise<Void> startPromise) { setupWebServer(startPromise); } @Override public void stop(Promise<Void> stopPromise) { if (vertx != null) { vertx.close(handler -> { if(handler.succeeded()) { log.debug("Shut down server."); stopPromise.complete(); } else { stopPromise.fail(handler.cause()); } }); } else { stopPromise.complete(); } } @Override public Router router() { return router; } @Override public Vertx vertx() { return vertx; } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/build/GradleBuild.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.build; import ai.konduit.serving.build.config.Config; import ai.konduit.serving.build.config.Deployment; import ai.konduit.serving.build.config.Target; import ai.konduit.serving.build.dependencies.Dependency; import ai.konduit.serving.build.deployments.*; import org.apache.commons.io.FileUtils; import org.apache.commons.io.IOUtils; import org.apache.commons.lang3.StringUtils; import org.apache.commons.lang3.SystemUtils; import org.gradle.tooling.GradleConnector; import org.gradle.tooling.ProjectConnection; import org.nd4j.common.base.Preconditions; import java.io.*; import java.nio.charset.Charset; import java.util.ArrayList; import java.util.List; import java.util.regex.Matcher; import java.util.regex.Pattern; public class GradleBuild { private static String createCopyTask(String taskName, String fromDir, String toDir, String fileMask, String pluginOutput) { String built = (fromDir + File.separator + "build" + File.separator + pluginOutput). replace("\\","\\\\");; String deployed = (toDir.replace("\\","\\\\")); String retVal = "tasks.register<Copy>(\"" + taskName + "\") {\n" + "\t from(\"" + built + "\")\n" + "\t include(\"" + fileMask + "\")\n" + "\t into(\"" + deployed + "\")\n}\n"; return retVal; } public static void generateGradleBuildFiles(File outputDir, Config config) throws IOException { //TODO We need a proper solution for this! //For now - the problem with the creation of a manifest (only) JAR is that the "tasks.withType(Jar::class)" gets // put into the uber-jar. boolean uberjar = false; boolean classpathMF = false; for(Deployment d : config.deployments()){ uberjar |= d instanceof UberJarDeployment; classpathMF = (d instanceof ClassPathDeployment && ((ClassPathDeployment) d).type() == ClassPathDeployment.Type.JAR_MANIFEST); } Preconditions.checkState(uberjar != classpathMF || !uberjar, "Unable to create both a classpath manifest (ClassPathDeployment)" + " and uber-JAR deployment at once"); copyResource("/gradle/gradlew", new File(outputDir, "gradlew")); copyResource("/gradle/gradlew.bat", new File(outputDir, "gradlew.bat")); File dockerResource = new File(String.valueOf(GradleBuild.class.getClassLoader().getResource("Dockerfile"))); if (dockerResource.exists()) FileUtils.copyFileToDirectory(dockerResource, outputDir); //Generate build.gradle.kts (and gradle.properties if necessary) StringBuilder kts = new StringBuilder(); for(Deployment d : config.deployments()){ List<String> imports = d.gradleImports(); if(imports != null && !imports.isEmpty()){ for(String s : imports) { kts.append("import ").append(s).append("\n"); } } } // ----- Repositories Section ----- kts.append("repositories {\n\tmavenCentral()\n\tmavenLocal()\n\tjcenter()\n\tmaven(\"https://oss.sonatype.org/content/repositories/snapshots\")\n}\n"); // ----- Plugins Section ----- kts.append("plugins { java \n"); /* //Not yet released - uncomment this once gradle-javacpp-platform plugin is available //Set JavaCPP platforms - https://github.com/bytedeco/gradle-javacpp#the-platform-plugin kts.append("id(\"org.bytedeco.gradle-javacpp-platform\") version \"1.5.3\"\n"); //TODO THIS VERSION SHOULDN'T BE HARDCODED */ for(Deployment d : config.deployments()){ List<GradlePlugin> gi = d.gradlePlugins(); if(gi != null && !gi.isEmpty()){ for(GradlePlugin g : gi) { if (StringUtils.isNotEmpty(g.version())) kts.append("\t").append("id(\"").append(g.id()).append("\"").append(") version \"").append(g.version()).append("\"\n"); else kts.append("\t").append("id(\"").append(g.id()).append("\")\n"); } } } kts.append("\n}") .append("\n"); /* //Uncomment once gradle-javacpp-platform plugin available kts.append("ext {\n") .append("\tjavacppPlatorm = \"").append(config.target().toJavacppPlatform() + "\"\n") .append("}\n\n"); */ kts.append("group = \"ai.konduit\"\n"); //kts.append("version = \"1.0-SNAPSHOT\"\n"); List<Dependency> dependencies = config.resolveDependencies(); if (!dependencies.isEmpty()) { kts.append("dependencies {\n"); } for (Dependency dep : dependencies) { if (dep.classifier() == null) kts.append("\timplementation(\"" + dep.groupId() + ":" + dep.artifactId() + ":" + dep.version() + "\")"). append("\n"); else kts.append("\timplementation(\"" + dep.groupId() + ":" + dep.artifactId() + ":" + dep.version() + ":" + dep.classifier() + "\")"). append("\n"); } if (!dependencies.isEmpty()) { kts.append("}").append("\n"); } List<Deployment> deployments = config.deployments(); Preconditions.checkState(deployments != null, "No deployments (uberjar, docker, etc) were specified for the build"); for (Deployment deployment : deployments) { if (deployment instanceof UberJarDeployment) { String escaped = ((UberJarDeployment)deployment).outputDir().replace("\\","\\\\"); String jarName = ((UberJarDeployment)deployment).jarName(); if(jarName.endsWith(".jar")){ jarName = jarName.substring(0, jarName.length()-4); } addUberJarTask(kts, jarName, escaped); } else if (deployment instanceof RpmDeployment) { RpmDeployment r = (RpmDeployment)deployment; String escaped = r.outputDir().replace("\\","\\\\"); addUberJarTask(kts, "ks", escaped); String rpmName = r.rpmName(); kts.append("ospackage { \n"); if(rpmName.endsWith(".rpm")){ rpmName = rpmName.substring(0, rpmName.length()-4); } kts.append("\tfrom(\"" + escaped + "\")\n"); kts.append("\tpackageName = \"" + rpmName + "\"\n"); kts.append("\tsetArch( " + getRpmDebArch(config.target()) + ")\n"); kts.append("\tos = " + getRpmDebOs(config.target()) + "\n"); kts.append("}\n"); kts.append(createCopyTask("copyRpm", outputDir.getAbsolutePath(), r.outputDir(), "*.rpm", "distributions")); } else if (deployment instanceof DebDeployment) { String escaped = ((DebDeployment)deployment).outputDir().replace("\\","\\\\"); addUberJarTask(kts, "ks", escaped); String rpmName = ((DebDeployment)deployment).rpmName(); kts.append("ospackage {\n"); if(rpmName.endsWith(".deb")){ rpmName = rpmName.substring(0, rpmName.length()-4); } kts.append("\tfrom(\"" + escaped + "\")\n"); kts.append("\tpackageName = \"" + rpmName + "\"\n"); //kts.append("\tsetArch(" + ((DebDeployment)deployment).archName() + ")\n"); kts.append("\tos = " + getRpmDebOs(config.target()) + "\n"); kts.append("}").append("\n\n"); kts.append(createCopyTask("copyDeb", outputDir.getAbsolutePath(), ((DebDeployment)deployment).outputDir(), "*.deb", "distributions")); } else if(deployment instanceof ClassPathDeployment){ addClassPathTask(kts, (ClassPathDeployment) deployment); } else if (deployment instanceof ExeDeployment) { String exeName = ((ExeDeployment)deployment).exeName(); kts.append("tasks.withType<DefaultLaunch4jTask> {\n"); if(exeName.endsWith(".exe")){ exeName = exeName.substring(0, exeName.length()-4); } kts.append("\toutfile = \"" + exeName + ".exe\"\n"); //kts.append("destinationDirectory.set(file(\"" + escaped + "\"))\n"); kts.append("\tmainClassName = \"ai.konduit.serving.cli.launcher.KonduitServingLauncher\"\n"); kts.append("}\n"); kts.append(createCopyTask("copyExe", outputDir.getAbsolutePath(), ((ExeDeployment)deployment).outputDir(), "*.exe", "launch4j")); } else if (deployment instanceof DockerDeployment) { String escapedInputDir = StringUtils.EMPTY; DockerDeployment dd = (DockerDeployment)deployment; if (StringUtils.isEmpty(dd.inputDir())) { if (dockerResource != null) escapedInputDir = dockerResource.getParent().replace("\\","\\\\"); } else { escapedInputDir = dd.inputDir().replace("\\", "\\\\"); } kts.append("tasks.create(\"buildImage\", DockerBuildImage::class) {\n"); if (StringUtils.isNotEmpty(escapedInputDir)) kts.append("\tinputDir.set(file(\"" + escapedInputDir + "\"))\n"); else kts.append("\tval baseImage = FromInstruction(From(\"").append(dd.baseImage()).append("\n"); if(dd.imageName() != null){ //Note image names must be lower case kts.append("\timages.add(\"").append(dd.imageName().toLowerCase()).append("\")"); } kts.append("}\n"); } else if (deployment instanceof TarDeployment) { String escaped = ((TarDeployment)deployment).outputDir().replace("\\","\\\\"); addUberJarTask(kts, "ks", escaped); List<String> fromFiles = ((TarDeployment)deployment).files(); if (fromFiles.size() > 0) { String rpmName = ((TarDeployment) deployment).archiveName(); kts.append("distributions {\n"); kts.append("\tmain {\n"); kts.append("\t\tdistributionBaseName.set( \"" + rpmName + "\")\n"); kts.append("\t\t contents {\n"); for (String file : fromFiles) { String escapedFile = file.replace("\\","\\\\"); kts.append("\t\t\tfrom(\"" + escapedFile + "\")\n"); } kts.append("\t\t\tfrom(\"" + escaped + "\")\n"); kts.append("\t\t }\n"); kts.append("\t}\n"); kts.append("}").append("\n\n"); kts.append(createCopyTask("copyTar", outputDir.getAbsolutePath(), ((TarDeployment)deployment).outputDir(), "*.tar", "distributions")); } } } System.out.println(kts.toString()); Preconditions.checkState(!deployments.isEmpty(), "No deployments were specified"); System.out.println("Dependencies: " + dependencies); System.out.println("Deployments: " + deployments); File ktsFile = new File(outputDir, "build.gradle.kts"); FileUtils.writeStringToFile(ktsFile, kts.toString(), Charset.defaultCharset()); } public static void runGradleBuild(File directory, Config config) throws IOException { //Check for build.gradle.kts, properties //Check for gradlew/gradlew.bat File kts = new File(directory, "build.gradle.kts"); if (!kts.exists()) { throw new IllegalStateException("build.gradle.kts doesn't exist"); } File gradlew = new File(directory, "gradlew.bat"); if (!gradlew.exists()) { throw new IllegalStateException("gradlew.bat doesn't exist"); } //Execute gradlew ProjectConnection connection = GradleConnector.newConnector() .forProjectDirectory(directory) //.useGradleVersion("6.1") .connect(); List<String> tasks = new ArrayList<>(); tasks.add("wrapper"); for(Deployment d : config.deployments()){ for (String s : d.gradleTaskNames()) { if (!tasks.contains(s)) { tasks.add(s); } } } try(ByteArrayOutputStream baos = new ByteArrayOutputStream()) { connection.newBuild().setStandardOutput(baos).setStandardError(System.err).forTasks(tasks.toArray(new String[0])).run(); String output = baos.toString(); Pattern pattern = Pattern.compile("(Successfully built )(\\w)+"); Matcher matcher = pattern.matcher(output); String dockerId = StringUtils.EMPTY; while (matcher.find()){ String[] words = matcher.group(0).split(" "); if (words.length >= 3) { dockerId = words[2]; } } final String effDockerId = dockerId; System.out.println(output); if (StringUtils.isNotEmpty(dockerId)) { config.deployments().stream().forEach( d -> { if (d instanceof DockerDeployment) ((DockerDeployment) d).imageId(effDockerId); }); } } finally { connection.close(); } } public static String getRpmDebArch(Target t){ //https://github.com/craigwblake/redline/blob/master/src/main/java/org/redline_rpm/header/Architecture.java switch (t.arch()){ case x86: case x86_avx2: case x86_avx512: return "Architecture.X86_64"; case armhf: return "Architecture.ARM"; case arm64: return "Architecture.AARCH64"; case ppc64le: return "Architecture.PPC64"; default: throw new RuntimeException("Unknown arch for target: " + t); } } public static String getRpmDebOs(Target t){ //https://github.com/craigwblake/redline/blob/master/src/main/java/org/redline_rpm/header/Os.java switch (t.os()){ case LINUX: return "Os.LINUX"; case WINDOWS: return "Os.CYGWINNT"; case MACOSX: return "Os.MACOSX"; //case ANDROID: default: throw new RuntimeException("Unknown os for target: " + t); } } private static void addUberJarTask(StringBuilder kts, String fileName, String directoryName) { kts.append("tasks.withType<ShadowJar> {\n"); String jarName = fileName; kts.append("\tbaseName = \"" + jarName + "\"\n"); //needed for larger build files, shadowJar //extends Jar which extends Zip //a lot of documentation on the internet points to zip64 : true //as the way to set this, the only way I found to do it in the //kotlin dsl was to invoke the setter directly after a bit of reverse engineering kts.append("\tsetZip64(true)\n"); kts.append("\tdestinationDirectory.set(file(\"" + directoryName + "\"))\n"); kts.append("\tmergeServiceFiles()"); //For service loader files kts.append("}\n"); kts.append("//Add manifest - entry point\n") .append("tasks.withType(Jar::class) {\n") .append(" manifest {\n") .append(" attributes[\"Manifest-Version\"] = \"1.0\"\n") .append(" attributes[\"Main-Class\"] = \"ai.konduit.serving.cli.launcher.KonduitServingLauncher\"\n") .append(" }\n") .append("}\n\n"); } private static void addClassPathTask(StringBuilder kts, ClassPathDeployment cpd){ String filePrefix = "file:/" + (SystemUtils.IS_OS_WINDOWS ? "" : "/"); //Adapted from: https://stackoverflow.com/a/54159784 if(cpd.type() == ClassPathDeployment.Type.TEXT_FILE) { kts.append("//Task: ClassPathDeployment - writes the absolute path of all JAR files for the build to the specified text file, one per line\n") .append("task(\"writeClassPathToFile\"){\n") .append(" var spec2File: Map<String, File> = emptyMap()\n") .append(" configurations.compileClasspath {\n") .append(" val s2f: MutableMap<ResolvedModuleVersion, File> = mutableMapOf()\n") .append(" // https://discuss.gradle.org/t/map-dependency-instances-to-file-s-when-iterating-through-a-configuration/7158\n") .append(" resolvedConfiguration.resolvedArtifacts.forEach({ ra: ResolvedArtifact ->\n") .append(" s2f.put(ra.moduleVersion, ra.file)\n").append(" })\n") .append(" spec2File = s2f.mapKeys({\"${it.key.id.group}:${it.key.id.name}\"})\n") .append(" spec2File.keys.sorted().forEach({ it -> println(it.toString() + \" -> \" + spec2File.get(it))})\n") .append(" val sb = StringBuilder()\n") .append(" spec2File.keys.sorted().forEach({ it -> sb.append(spec2File.get(it)); sb.append(\"\\n\")})\n") .append(" File(\"").append(cpd.outputFile()).append("\").writeText(sb.toString())\n") .append(" }\n") .append("}\n"); } else { //Write a manifest JAR kts.append("//Write a JAR with a manifest containing the path of all dependencies, but no other content\n") .append("tasks.withType(Jar::class) {\n") .append(" manifest {\n") .append(" attributes[\"Manifest-Version\"] = \"1.0\"\n") .append(" attributes[\"Main-Class\"] = \"ai.konduit.serving.cli.launcher.KonduitServingLauncher\"\n") .append(" attributes[\"Class-Path\"] = \"" + filePrefix + "\" + configurations.runtimeClasspath.get().getFiles().joinToString(separator=\" " + filePrefix + "\")\n") .append(" }\n"); if(cpd.outputFile() != null){ String path = cpd.outputFile().replace("\\", "/"); kts.append("setProperty(\"archiveFileName\", \"").append(path).append("\")\n"); } kts.append("}"); } } protected static void copyResource(String resource, File to){ InputStream is = GradleBuild.class.getResourceAsStream(resource); Preconditions.checkState(is != null, "Could not find %s resource that should be available in konduit-serving-build JAR", resource); to.getParentFile().mkdirs(); try(InputStream bis = new BufferedInputStream(is); OutputStream os = new BufferedOutputStream(new FileOutputStream(to))){ IOUtils.copy(bis, os); } catch (IOException e){ throw new RuntimeException("Error copying resource " + resource + " to " + to, e); } } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/build/GradlePlugin.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.build; import lombok.AllArgsConstructor; import lombok.Data; import lombok.experimental.Accessors; @Data @Accessors(fluent = true) @AllArgsConstructor public class GradlePlugin { private String id; private String version; }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/cli/BuildCLI.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.cli; import ai.konduit.serving.build.build.GradleBuild; import ai.konduit.serving.build.config.Module; import ai.konduit.serving.build.config.Arch; import ai.konduit.serving.build.config.Target; import ai.konduit.serving.build.config.Deployment; import ai.konduit.serving.build.config.OS; import ai.konduit.serving.build.config.Config; import ai.konduit.serving.build.config.DeploymentValidation; import ai.konduit.serving.build.config.ComputeDevice; import ai.konduit.serving.build.config.Serving; import ai.konduit.serving.build.dependencies.Dependency; import ai.konduit.serving.build.dependencies.DependencyRequirement; import ai.konduit.serving.build.dependencies.ModuleRequirements; import ai.konduit.serving.build.deployments.ClassPathDeployment; import ai.konduit.serving.build.deployments.UberJarDeployment; import com.beust.jcommander.JCommander; import com.beust.jcommander.Parameter; import io.vertx.core.cli.CLIException; import io.vertx.core.cli.annotations.Description; import io.vertx.core.cli.annotations.Name; import io.vertx.core.cli.annotations.Option; import io.vertx.core.cli.annotations.Summary; import io.vertx.core.spi.launcher.DefaultCommand; import lombok.extern.slf4j.Slf4j; import org.apache.commons.io.FileUtils; import org.apache.commons.lang3.SystemUtils; import org.nd4j.shade.guava.collect.Streams; import java.io.File; import java.io.IOException; import java.util.*; import java.util.concurrent.atomic.AtomicReference; import java.util.stream.Collectors; /** * Command line interface for performing Konduit Serving builds * Allows the user to build a JAR or artifact such as a docker image suitable for performing inference on a given * pipeline on a given deployment target (defined as an operating system, CPU architecture and optionally compute device).<br> * <br> * For example, can be used to build for any of the following: * * HTTP (REST) server on x86 Windows (CPU), packaged as a stand-alone .exe<br> * * HTTP and GRPC server on CUDA 10.2 + Linux, packaged as a docker image<br> * And many more combinations * * * @author Alex black */ @Name("build") @Summary("Command line interface for performing Konduit Serving builds.") @Description("Allows the user to build a JAR or artifact such as a docker image suitable " + "for performing inference on a given pipeline on a given deployment target (defined " + "as an operating system, CPU architecture and optionally compute device). " + "For example, can be used to build for any of the following: \n" + "-> HTTP (REST) server on x86 Windows (CPU), packaged as a stand-alone .exe\n" + "-> HTTP and GRPC server on CUDA 10.2 + Linux, packaged as a docker image \n" + "And many more combinations\n\n" + "Example usages:\n" + "--------------\n" + "- Creates a deployment for classpath manifest jar for a CPU device:\n" + "$ konduit build -dt classpath -c classpath.outputFile=manifest.jar \n" + " classpath.type=jar_manifest -p pipeline.json -d CPU \n\n" + "- Creates a uber jar deployment for a CUDA 10.1 device:\n" + "$ konduit build -dt classpath -c jar.outputdir=build jar.name=uber.jar \n" + " -p pipeline.json -d CUDA_10.1 \n" + "--------------") @Slf4j public class BuildCLI extends DefaultCommand { public static final String HTTP = "HTTP"; public static final String GRPC = "GRPC"; public static final String PIPELINE_OPTION_DESCRIPTION = "Path to a pipeline json file"; public static final String OS_OPTION_DESCRIPTION = "Operating systems to build for. Valid values: {linux, windows, mac} (case insensitive).\n" + "If not set, the current system OS will be used"; public static final String ARCHITECTURE_OPTION_DESCRIPTION = "The target CPU architecture. Must be one of {x86, x86_avx2, x86_avx512, armhf, arm64, ppc64le}.\n " + "Note that most modern desktops can be built with x86_avx2, which is the default"; public static final String DEVICE_OPTION_DESCRIPTION = "Compute device to be used. If not set: artifacts are build for CPU only.\n" + "Valid values: CPU, CUDA_10.0, CUDA_10.1, CUDA_10.2 (case insensitive)"; public static final String MODULES_OPTION_DESCRIPTION = "Names of the Konduit Serving modules to include, as a comma-separated list of values.\nNote that " + "this is not necessary when a pipeline is included (via -p/--pipeline), as the modules will be inferred " + "automatically based on the pipeline contents"; public static final String DEPLOYMENT_TYPE_OPTION_DESCRIPTION = "The deployment types to use: JAR, DOCKER, EXE, WAR, RPM, DEB or TAR (case insensitive)"; public static final String SERVER_TYPE_OPTION_DESCRIPTION = "Type of server - HTTP or GRPC (case insensitive)"; public static final String ADDITIONAL_DEPENDENCIES_OPTION_DESCRIPTION = "Additional dependencies to include, in GAV(C) format: \"group_id:artifact_id:version\" / \"group_id:artifact_id:version:classifier\""; public static final String CONFIG_OPTION_DESCRIPTION = "Configuration for the deployment types specified via -dt/--deploymentType.\n" + "For example, \"-c jar.outputdir=/some/dir jar.name=my.jar\" etc.\n" + "Configuration keys:\n" + UberJarDeployment.CLI_KEYS + "\n" + ClassPathDeployment.CLI_KEYS + "\n"; @Parameter(names = {"-p", "--pipeline"}, description = PIPELINE_OPTION_DESCRIPTION) private String pipeline; @Parameter(names = {"-o", "--os"}, validateValueWith = CLIValidators.OSValueValidator.class, description = OS_OPTION_DESCRIPTION) private List<String> os; @Parameter(names = {"-a", "--arch"}, validateValueWith = CLIValidators.ArchValueValidator.class, description = ARCHITECTURE_OPTION_DESCRIPTION) private String arch = Arch.x86_avx2.toString(); @Parameter(names = {"-d", "--device"}, validateValueWith = CLIValidators.DeviceValidator.class, description = DEVICE_OPTION_DESCRIPTION) private String device; @Parameter(names = {"-m", "--modules"}, validateValueWith = CLIValidators.ModuleValueValidator.class, description = MODULES_OPTION_DESCRIPTION) private List<String> modules; @Parameter(names = {"-dt", "--deploymentType"}, validateValueWith = CLIValidators.DeploymentTypeValueValidator.class, description = DEPLOYMENT_TYPE_OPTION_DESCRIPTION) private List<String> deploymentTypes = Collections.singletonList(Deployment.JAR); @Parameter(names = {"-s", "--serverType"}, description = SERVER_TYPE_OPTION_DESCRIPTION, validateValueWith = CLIValidators.ServerTypeValidator.class) private List<String> serverTypes = Arrays.asList(HTTP, GRPC); @Parameter(names = {"-ad", "--addDep"}, description = ADDITIONAL_DEPENDENCIES_OPTION_DESCRIPTION, validateValueWith = CLIValidators.AdditionalDependenciesValidator.class) private List<String> additionalDependencies; @Parameter(names = {"-c", "--config"}, description = CONFIG_OPTION_DESCRIPTION, variableArity = true, validateValueWith = CLIValidators.ConfigValidator.class) private List<String> config; @Parameter(names = {"-h", "--help"}, help = true, arity = 0) private boolean help; @Option(shortName = "p", longName = "pipeline") @Description(PIPELINE_OPTION_DESCRIPTION) public void setPipeline(String pipeline) { this.pipeline = pipeline; } @Option(shortName = "o", longName = "os", acceptMultipleValues = true) @Description(OS_OPTION_DESCRIPTION) public void setOperatingSystem(List<String> operatingSystem) { try { operatingSystem = commandSeparatedListToExpandedList(operatingSystem); new CLIValidators.OSValueValidator().validate("os", operatingSystem); } catch (Exception e) { out.println("Error validating OS (-o/--os): " + e.getMessage()); System.exit(1); } this.os = operatingSystem; } @Option(shortName = "a", longName = "arch") @Description(ARCHITECTURE_OPTION_DESCRIPTION) public void setArchitecture(String architecture) { try { new CLIValidators.ArchValueValidator().validate("arch", architecture); } catch (Exception e) { out.println("Error validating architecture (-a/--arch): " + e.getMessage()); System.exit(1); } this.arch = architecture; } @Option(shortName = "d", longName = "device") @Description(DEVICE_OPTION_DESCRIPTION) public void setDevice(String device) { try { new CLIValidators.DeviceValidator().validate("device", device); } catch (Exception e) { out.println("Error validating device (-d/--device): " + e.getMessage()); System.exit(1); } this.device = device; } @Option(shortName = "m", longName = "modules", acceptMultipleValues = true) @Description(MODULES_OPTION_DESCRIPTION) public void setModules(List<String> modules) { try { modules = commandSeparatedListToExpandedList(modules); new CLIValidators.ModuleValueValidator().validate("modules", modules); } catch (Exception e) { out.println("Error validating modules (-m/--modules): " + e.getMessage()); System.exit(1); } this.modules = modules; } @Option(shortName = "dt", longName = "deploymentType", acceptMultipleValues = true) @Description(DEPLOYMENT_TYPE_OPTION_DESCRIPTION) public void setDeploymentTypes(List<String> deploymentTypes) { try { deploymentTypes = commandSeparatedListToExpandedList(deploymentTypes); new CLIValidators.DeploymentTypeValueValidator().validate("deploymentType", deploymentTypes); } catch (Exception e) { out.println("Error validating deployment type (-dt/--deploymentType): " + e.getMessage()); System.exit(1); } this.deploymentTypes = deploymentTypes; } @Option(shortName = "s", longName = "serverType", acceptMultipleValues = true) @Description(SERVER_TYPE_OPTION_DESCRIPTION) public void setServerTypes(List<String> serverTypes) { try { serverTypes = commandSeparatedListToExpandedList(serverTypes); new CLIValidators.ServerTypeValidator().validate("serverType", serverTypes); } catch (Exception e) { out.println("Error validating server type (-s/--serverType): " + e.getMessage()); System.exit(1); } this.serverTypes = serverTypes; } @Option(shortName = "ad", longName = "addDep", acceptMultipleValues = true) @Description(ADDITIONAL_DEPENDENCIES_OPTION_DESCRIPTION) public void setAdditionalDependencies(List<String> additionalDependencies) { try { additionalDependencies = commandSeparatedListToExpandedList(additionalDependencies); new CLIValidators.AdditionalDependenciesValidator().validate("additionalDependencies", additionalDependencies); } catch (Exception e) { out.println("Error validating additional dependencies (-a/--addDep): " + e.getMessage()); System.exit(1); } this.additionalDependencies = additionalDependencies; } @Option(shortName = "c", longName = "config", acceptMultipleValues = true) @Description(CONFIG_OPTION_DESCRIPTION) public void setConfig(List<String> config) { try { config = commandSeparatedListToExpandedList(config); new CLIValidators.ConfigValidator().validate("config", config); } catch (Exception e) { out.println("Error validating config (-c/--config): " + e.getMessage()); System.exit(1); } this.config = config; } public static void main(String... args) throws Exception { new BuildCLI().exec(args); } public void exec(String[] args) { JCommander jCommander = new JCommander(); jCommander.addObject(this); jCommander.parse(args); if(help) { jCommander.usage(); return; } run(); } @Override public void run() throws CLIException { if (out == null) { out = System.out; } //Infer OS if necessary if(os == null || os.isEmpty()) inferOS(); //------------------------------------- Build Configuration -------------------------------------- //Print out configuration / values int width = 96; int keyWidth = 30; out.println(padTo("Konduit Serving Build Tool", '=', width)); out.println(padTo("Build Configuration", '-', width)); out.println(padRight("Pipeline:", ' ', keyWidth) + (pipeline == null ? "<not specified>" : pipeline)); out.println(padRight("Target OS:", ' ', keyWidth) + (os.size() == 1 ? os.get(0) : os.toString())); out.println(padRight("Target CPU arch.:", ' ', keyWidth) + arch); out.println(padRight("Target Device:", ' ', keyWidth) + (device == null ? "CPU" : device)); if(modules != null){ out.println(padRight("Additional modules:", ' ', keyWidth) + String.join(", ", modules)); } out.println(padRight("Server type(s):", ' ', keyWidth) + String.join(", ", serverTypes)); out.println(padRight("Deployment type(s):", ' ', keyWidth) + String.join(", ", deploymentTypes)); if(additionalDependencies != null){ out.println(padRight("Additional dependencies:", ' ', keyWidth) + String.join(", ", additionalDependencies)); } out.println("\n"); Map<String,String> propsIn = new HashMap<>(); if(config != null){ for(String s : config){ String[] split = s.split("="); propsIn.put(split[0], split[1]); } } List<Deployment> deployments = parseDeployments(propsIn); for( int i=0; i<deployments.size(); i++ ){ Deployment d = deployments.get(i); if(deployments.size() > 1){ out.println("Deployment " + (i+1) + " of " + deployments.size() + " configuration: " + d.getClass().getSimpleName()); } else { out.println("Deployment configuration: " + d.getClass().getSimpleName()); } Map<String,String> props = d.asProperties(); for(Map.Entry<String,String> e : props.entrySet()){ out.println(padRight(" " + e.getKey() + ":", ' ', keyWidth) + e.getValue()); } } out.println("\n"); //--------------------------------------- Validating Build --------------------------------------- out.println(padTo("Validating Build", '-', width)); if((pipeline == null || pipeline.isEmpty()) && (modules == null || modules.isEmpty())){ String s = "BUILD FAILED: Either a path to a Pipeline (JSON or YAML) must be provided via -p/--pipeline" + " or a list of modules to include must be provided via -m/--modules." + " When a pipeline is provided via JSON or YAML, the required modules will be determined automatically."; out.println(wrapString(s, width)); System.exit(1); } ComputeDevice cd = device == null ? null : ComputeDevice.forName(device); Arch a = Arch.forName(arch); Target t = new Target(OS.forName(os.get(0)), a, cd); //Parse server type List<Serving> serving = new ArrayList<>(); for(String s : serverTypes){ serving.add(Serving.valueOf(s.toUpperCase())); } Config c = new Config() .pipelinePath(pipeline) .target(t) .deployments(deployments) .serving(serving) .additionalDependencies(additionalDependencies); int width2 = 36; if(pipeline != null){ out.println("Resolving modules required for pipeline execution..."); List<Module> resolvedModules = c.resolveModules(); for(Module m : resolvedModules){ out.println(" " + m.name()); } out.println(); if(modules != null && !modules.isEmpty()){ out.println("Additional modules specified:"); List<Module> toAdd = new ArrayList<>(); boolean anyFailed = false; List<String> failed = new ArrayList<>(); for(String s : modules){ boolean e1 = Module.moduleExistsForName(s, false); boolean e2 = Module.moduleExistsForName(s, true); if(e1 || e2){ Module m = e1 ? Module.forName(s) : Module.forShortName(s); if(resolvedModules.contains(m)){ //Already resolved this one continue; } else { out.println(" " + m.name()); toAdd.add(m); } } else { anyFailed = true; out.println(" " + s); failed.add(s); } } if(anyFailed){ out.println("Failed to resolve modules specified via -m/--modules: " + failed); if(failed.size() == 1){ out.println("No module is known with this name: " + failed.get(0) ); } else { out.println("No modules are known with these names: " + failed ); } System.exit(1); } c.addModules(toAdd); resolvedModules = c.modules(); out.println(); } List<Dependency> d = c.resolveDependencies(); out.println("Resolving module optional/configurable dependencies for deployment target: " + t); boolean anyFail = false; for(Module m : resolvedModules){ ModuleRequirements r = m.dependencyRequirements(); boolean satisfied = r == null || r.satisfiedBy(t, d); String s = padRight(" " + m.name() + ":", ' ', width2); out.println(s + (satisfied ? " OK" : " FAILED TO RESOLVE REQUIRED DEPENDENCY FOR OS + TARGET ARCHITECTURE")); if(!satisfied){ anyFail = true; List<DependencyRequirement> l = r.reqs(); for(DependencyRequirement dr : l){ if(dr.satisfiedBy(t, d)){ out.println(" OK: " + dr); } else { out.println(" FAILED: " + dr); } } } } if(anyFail){ out.println("BUILD FAILED: Unable to resolve optional dependencies for one or more modules"); out.println("This likely suggests the module dependencies do not support the target + architecture combination"); System.exit(1); } out.println(); if(!d.isEmpty()){ out.println("Resolved dependencies:"); for(Dependency dep : d){ out.println(" " + dep.gavString()); } } out.println(); out.println("Checking deployment configurations:"); boolean anyDeploymentsFailed = false; for(Deployment dep : deployments){ DeploymentValidation v = dep.validate(); String s = dep.getClass().getSimpleName(); String s2 = padRight(" " + s + ":", ' ', width2); out.println(s2 + (v.ok() ? "OK" : "FAILED")); if(!v.ok()){ anyDeploymentsFailed = true; for(String f : v.failureMessages()){ out.println(" " + f); } } } if(anyDeploymentsFailed){ out.println("BUILD FAILED: one or more deployment method configurations failed."); out.println("See failure messages above for details"); System.exit(1); } out.println("\n>> Validation Passed\n"); } //-------------------------------------------- Build --------------------------------------------- out.println(padTo("Build", '-', width)); File tempDir = new File(FileUtils.getTempDirectory(), UUID.randomUUID().toString()); out.println("Generating build files..."); try { GradleBuild.generateGradleBuildFiles(tempDir, c); } catch (IOException cause) { throw new CLIException("Failed to generate gradle build files.", cause); } out.println(">> Build file generation complete\n\n"); out.println("Starting build..."); long start = System.currentTimeMillis(); try { GradleBuild.runGradleBuild(tempDir, c); } catch (IOException cause) { throw new CLIException("Gradle build failed", cause); } long end = System.currentTimeMillis(); out.println(">> Build complete\n\n"); out.println(padTo("Build Summary", '-', width)); out.println(padRight("Build duration:", ' ', keyWidth) + (end-start)/1000 + " sec"); out.println(padRight("Output artifacts:", ' ', keyWidth) + deployments.size()); out.println(); for(Deployment d : deployments){ out.println(" ----- " + d.getClass().getSimpleName() + " -----"); out.println(d.outputString()); out.println(); } } private String padTo(String in, char padChar, int toLength){ if(in.length() + 2 >= toLength){ return in; } int toAdd = toLength - in.length() - 2; //-2 for spaces int before = toAdd / 2; int after = toAdd - before; StringBuilder sb = new StringBuilder(); for( int i=0; i<before; i++ ){ sb.append(padChar); } sb.append(" ").append(in).append(" "); for( int i=0; i<after; i++ ){ sb.append(padChar); } return sb.toString(); } private String padRight(String in, char padChar, int toLength){ if(in.length() >= toLength) return in; StringBuilder sb = new StringBuilder(); sb.append(in); for(int i=0; i<toLength-in.length(); i++ ){ sb.append(padChar); } return sb.toString(); } private String wrapString(String in, int maxLength){ if(in.length() <= maxLength) return in; StringBuilder sb = new StringBuilder(); String[] split = in.split(" "); int lengthCurrLine = 0; for(String s : split){ if(lengthCurrLine + s.length() + 1 >= maxLength){ sb.append("\n"); lengthCurrLine = 0; } if(lengthCurrLine > 0) { sb.append(" "); lengthCurrLine++; } sb.append(s); lengthCurrLine += s.length(); } return sb.toString(); } public List<Deployment> parseDeployments(Map<String, String> props){ List<Deployment> out = new ArrayList<>(); for(String s : deploymentTypes){ switch (s.toUpperCase()){ case Deployment.CLASSPATH: ClassPathDeployment classPathDeployment = new ClassPathDeployment().type(ClassPathDeployment.Type.JAR_MANIFEST).outputFile("manifest.jar"); classPathDeployment.fromProperties(props); out.add(classPathDeployment); break; case Deployment.JAR: case Deployment.UBERJAR: UberJarDeployment uberJarDeployment = new UberJarDeployment().outputDir(new File("").getAbsolutePath()); uberJarDeployment.fromProperties(props); out.add(uberJarDeployment); break; default: throw new RuntimeException("Deployment type not yet implemented: " + s); } } return out; } protected void inferOS(){ if(SystemUtils.IS_OS_LINUX) { os = Collections.singletonList(OS.LINUX.name()); } else if(SystemUtils.IS_OS_WINDOWS){ os = Collections.singletonList(OS.WINDOWS.name()); } else if(SystemUtils.IS_OS_MAC){ os = Collections.singletonList(OS.MACOSX.name()); } else { throw new IllegalStateException("No OS was provided and operating system could not be inferred"); } } private List<String> commandSeparatedListToExpandedList(List<String> commandSeparatedList) { AtomicReference<List<String>> output = new AtomicReference<>(new ArrayList<>()); commandSeparatedList.forEach(commaSeparatedString -> output .set(Streams .concat(output.get().stream(), commaSeparatedStringToList(commaSeparatedString).stream()) .collect(Collectors.toList()) ) ); return output.get(); } private List<String> commaSeparatedStringToList(String commaSeparatedString) { return Arrays.stream(commaSeparatedString.split(",")).collect(Collectors.toList()); } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/cli/CLIValidators.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.cli; import ai.konduit.serving.build.config.ComputeDevice; import ai.konduit.serving.build.config.Deployment; import ai.konduit.serving.build.config.Arch; import ai.konduit.serving.build.config.OS; import com.beust.jcommander.IValueValidator; import com.beust.jcommander.ParameterException; import org.nd4j.common.base.Preconditions; import java.util.Arrays; import java.util.List; public class CLIValidators { private CLIValidators(){ } public static class OSValueValidator implements IValueValidator<List<String>> { private static final String LINUX = OS.LINUX.toString(); private static final String WINDOWS = OS.WINDOWS.toString(); private static final String MAC = "MAC"; @Override public void validate(String name, List<String> value) throws ParameterException { if(value == null || value.isEmpty()) return; //Infer OS for(String s : value){ if(!LINUX.equalsIgnoreCase(s) && !WINDOWS.equalsIgnoreCase(s) && !MAC.equalsIgnoreCase(s)){ throw new ParameterException("Invalid operating system: got \"" + s + "\" but must be one or more of {" + LINUX + "," + WINDOWS + "," + MAC + "} (case insensitive)"); } } } } public static class ArchValueValidator implements IValueValidator<String> { private static final String X86 = Arch.x86.toString(); private static final String X86_AVX2 = Arch.x86_avx2.toString(); private static final String X86_AVX512 = Arch.x86_avx512.toString(); private static final String ARMHF = Arch.armhf.toString(); private static final String ARM64 = Arch.arm64.toString(); private static final String PPC64LE = Arch.ppc64le.toString(); @Override public void validate(String name, String s) throws ParameterException { if(!X86.equalsIgnoreCase(s) && !X86_AVX2.equalsIgnoreCase(s) && !X86_AVX512.equalsIgnoreCase(s) && !ARMHF.equalsIgnoreCase(s) && !ARM64.equalsIgnoreCase(s) && !PPC64LE.equalsIgnoreCase(s)){ throw new ParameterException("Invalid CPU architecture: Got \"" + s + "\" but must be one or more of {" + X86 + ", " + X86_AVX2 + ", " + X86_AVX512 + ", " + ARMHF + ", " + ARM64 + ", " + PPC64LE + "} (case insensitive)"); } } } public static class DeploymentTypeValueValidator implements IValueValidator<List<String>> { public static final List<String> VALUES = Arrays.asList(Deployment.CLASSPATH, Deployment.JAR, Deployment.UBERJAR, Deployment.DOCKER, Deployment.EXE, Deployment.WAR, Deployment.RPM, Deployment.DEB, Deployment.TAR); @Override public void validate(String name, List<String> value) throws ParameterException { if(value == null || value.isEmpty()){ throw new ParameterException("No deployment types were provided. Valid values are: " + VALUES + " (case insensitive)"); } for(String s : value){ boolean found = false; for(String s2 : VALUES){ if(s2.equalsIgnoreCase(s)){ found = true; break; } } if(!found) { throw new ParameterException("Invalid deployment type specified: \"" + s + "\" - valid values are: " + VALUES + " (case insensitive)"); } } } } public static class ModuleValueValidator implements IValueValidator<List<String>> { @Override public void validate(String name, List<String> value) throws ParameterException { } } public static class ServerTypeValidator implements IValueValidator<List<String>> { private static final List<String> VALUES = Arrays.asList(BuildCLI.HTTP, BuildCLI.GRPC); @Override public void validate(String name, List<String> value) throws ParameterException { if(value == null || value.isEmpty()){ throw new ParameterException("No server type were provided. Valid values are: " + VALUES + " (case insensitive)"); } for(String s : value){ boolean found = false; for(String s2 : VALUES){ if(s2.equalsIgnoreCase(s)){ found = true; break; } } if(!found) { throw new ParameterException("Invalid server type specified: \"" + s + "\" - valid values are: " + VALUES + " (case insensitive)"); } } } } public static class DeviceValidator implements IValueValidator<String> { @Override public void validate(String name, String value) throws ParameterException { if(value == null || value.isEmpty()) return; //EMPTY = CPU boolean ok = ComputeDevice.CPU.equalsIgnoreCase(value) || ComputeDevice.CUDA_100.equalsIgnoreCase(value) || ComputeDevice.CUDA_101.equalsIgnoreCase(value) || ComputeDevice.CUDA_102.equalsIgnoreCase(value) || ComputeDevice.CUDA_110.equalsIgnoreCase(value); if(!ok){ throw new ParameterException("Invalid device string: must be blank (not set = CPU), or have value " + ComputeDevice.CPU + ", " + ComputeDevice.CUDA_100 + ", " + ComputeDevice.CUDA_101 + ", " + ComputeDevice.CUDA_102); } } } public static class AdditionalDependenciesValidator implements IValueValidator<List<String>>{ @Override public void validate(String name, List<String> value) throws ParameterException { for(String s : value){ String[] split = s.split(":"); if(split.length != 3 && split.length != 4){ throw new ParameterException("Invalid additionalDependency setting: Dependencies must " + "be specified in \"group_id:artifact_id:version\" or \"group_id:artifact_id:version:classifier\" format. Got " + value); } } } } public static class ConfigValidator implements IValueValidator<List<String>>{ @Override public void validate(String name, List<String> value) throws ParameterException { for(String s : value){ String[] split = s.split("="); if(split.length != 2){ throw new ParameterException("Invalid config setting: Configuration for deployments " + "be specified in the format \"key=value\". Got " + "[\"" + String.join("\", \"", value + "\"]")); } } } } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/config/Arch.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.config; import org.nd4j.common.base.Preconditions; public enum Arch {x86, x86_avx2, x86_avx512, armhf, arm64, ppc64le; public static Arch forName(String s){ switch (s.toLowerCase()) { case "x86": case "x86_64": return Arch.x86; case "x86_avx2": case "x86-avx2": case "x86_64-avx2": return Arch.x86_avx2; case "x86_avx512": case "x86-avx512": case "x86_64-avx512": return Arch.x86_avx512; case "arm64": return Arch.arm64; case "armhf": return Arch.armhf; case "ppc64le": return Arch.ppc64le; default: return null; } } /** * What other architectures is this compatible with? * Mainly used for x86: i.e., can run x86 on x86-avx2 and x86-avx512 systems. * Note that this method also includes the original. * For example, x86 -> {x86, x86_avx2, x86_avx512} */ public Arch[] compatibleWith(){ switch (this){ case x86: return new Arch[]{Arch.x86, Arch.x86_avx2, Arch.x86_avx512}; case x86_avx2: return new Arch[]{Arch.x86_avx2, Arch.x86_avx512}; default: return new Arch[]{this}; } } /** * Returns true if the code for this arch can generally be run on the specified arch. * Mainly: x86 can be run on x86-avx2 and x86-avx512; x86-avx2 can be run on x86-avx512, * but x86-avx2 can NOT be run on x86, and so on. */ public boolean isCompatibleWith(Arch other){ return this == other || (this == Arch.x86 && (other == Arch.x86_avx2 || other == Arch.x86_avx512)) || (this == Arch.x86_avx2 && other == Arch.x86_avx512); } public boolean lowerThan(Arch other){ Preconditions.checkState(isCompatibleWith(other), "Unable to compare non-compatible archs: %s and %s", this, other); if(this == other) return false; if(this == Arch.x86 && other != Arch.x86) return true; if(this == Arch.x86_avx2 && other == Arch.x86_avx512) return true; return false; } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/config/ComputeDevice.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.config; import ai.konduit.serving.build.config.devices.CUDADevice; public interface ComputeDevice { String CPU = "CPU"; String CUDA_100 = "CUDA_10.0"; String CUDA_101 = "CUDA_10.1"; String CUDA_102 = "CUDA_10.2"; String CUDA_110 = "CUDA_11.0"; static ComputeDevice forName(String name){ if(name.equalsIgnoreCase(CPU)) { return null; } else if(name.toLowerCase().contains("cuda")){ return CUDADevice.forName(name); } throw new UnsupportedOperationException("Invalid, unknown, not supported or not yet implemented device type: " + name); } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/config/Config.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.config; import ai.konduit.serving.build.dependencies.Dependency; import ai.konduit.serving.build.dependencies.DependencyAddition; import ai.konduit.serving.build.dependencies.ModuleRequirements; import ai.konduit.serving.build.dependencies.nativedep.NativeDependency; import ai.konduit.serving.build.steps.RunnerInfo; import ai.konduit.serving.build.steps.StepId; import ai.konduit.serving.build.util.ModuleUtils; import ai.konduit.serving.build.validation.ValidationFailure; import ai.konduit.serving.build.validation.ValidationResult; import ai.konduit.serving.pipeline.util.ObjectMappers; import lombok.Getter; import lombok.NoArgsConstructor; import lombok.Setter; import lombok.experimental.Accessors; import lombok.extern.slf4j.Slf4j; import org.apache.commons.io.FileUtils; import org.nd4j.common.base.Preconditions; import org.nd4j.shade.jackson.annotation.JsonProperty; import java.io.File; import java.io.IOException; import java.nio.charset.StandardCharsets; import java.util.*; @Getter @Setter @Accessors(fluent = true) @NoArgsConstructor @Slf4j public class Config { private String pipelinePath; private String ksVersion; private Metadata metadata; //Target system(s) - "Linux x86_avx2 CPU", "Linux ARM64", etc) private Target target; //TODO this should allow (a) N independent artifacts (one per target), and (b) N targets within one artifact //Konduit serving modules to include - "konduit-serving-tensorflow" etc private List<Serving> serving = Collections.singletonList(Serving.HTTP); private List<Module> modules; //Additional dependencies, in GAV(C) format: "group_id:artifact_id:version" / "group_id:artifact_id:version:classifier" private List<String> additionalDependencies; private List<Deployment> deployments; public Config(@JsonProperty("pipelinePath") String pipelinePath, @JsonProperty("ksVersion") String ksVersion, @JsonProperty("metadata") Metadata metadata, @JsonProperty("target") Target target, @JsonProperty("serving") List<Serving> serving, @JsonProperty("modules") List<Module> modules, @JsonProperty("deployments") List<Deployment> deployments){ this.pipelinePath = pipelinePath; this.ksVersion = ksVersion; this.metadata = metadata; this.target = target; this.serving = serving; this.modules = modules; this.deployments = deployments; } public Config modules(List<Module> modules){ this.modules = modules; return this; } public Config modules(Module... modules){ this.modules = Arrays.asList(modules); return this; } public Config addModules(Module... modules){ return addModules(Arrays.asList(modules)); } public Config addModules(List<Module> modules){ if(this.modules == null){ this.modules = modules; } else { List<Module> newList = new ArrayList<>(this.modules); //In case currently w e have an immutable list newList.addAll(modules); this.modules = newList; } return this; } public Config serving(List<Serving> serving){ this.serving = serving; return this; } public Config serving(Serving... serving){ this.serving = Arrays.asList(serving); return this; } public Config deployments(List<Deployment> deployments){ this.deployments = deployments; return this; } public Config deployments(Deployment... deployments){ this.deployments = Arrays.asList(deployments); return this; } public List<Deployment> deployments(){ return deployments; } public ValidationResult validate(){ //First: check that we have a module for every step in the pipeline Map<StepId, List<RunnerInfo>> canRunWith = ModuleUtils.runnersForFile(new File(pipelinePath)); List<ValidationFailure> failures = new ArrayList<>(); //Check Target compatibility (OS/arch etc) return new ValidationResult(failures); } //Can't rely on lombok @Data or @EqualsAndHashCode due to bug: https://github.com/rzwitserloot/lombok/issues/2193 @Override public boolean equals(Object o){ if(!(o instanceof Config)) return false; Config c = (Config)o; return Objects.equals(pipelinePath, c.pipelinePath) && Objects.equals(ksVersion, c.ksVersion) && Objects.equals(metadata, c.metadata) && Objects.equals(target, c.target) && Objects.equals(serving, c.serving) && Objects.equals(modules, c.modules) && Objects.equals(deployments, c.deployments); } @Override public int hashCode(){ return Objects.hashCode(pipelinePath) ^ Objects.hashCode(ksVersion) ^ Objects.hashCode(metadata) ^ Objects.hashCode(target) ^ Objects.hashCode(serving) ^ Objects.hashCode(modules) ^ Objects.hashCode(deployments); } public String toJson(){ try { return ObjectMappers.json().writeValueAsString(this); } catch (IOException e){ throw new RuntimeException("Error converting Config to JSON", e); //Should never happen } } public String toYaml(){ try { return ObjectMappers.yaml().writeValueAsString(this); } catch (IOException e){ throw new RuntimeException("Error converting Config to JSON", e); //Should never happen } } public static Config fromJson(String json){ try { return ObjectMappers.json().readValue(json, Config.class); } catch (IOException e){ throw new RuntimeException("Error deserializing JSON configuration", e); } } public static Config fromYaml(String yaml){ try { return ObjectMappers.yaml().readValue(yaml, Config.class); } catch (IOException e){ throw new RuntimeException("Error deserializing YAML configuration", e); } } public static Config fromFileJson(File f){ try { return fromJson(FileUtils.readFileToString(f, StandardCharsets.UTF_8)); } catch (IOException e){ throw new RuntimeException("Error reading JSON file configuration: " + f.getAbsolutePath(), e); } } public static Config fromFileYaml(File f){ try { return fromYaml(FileUtils.readFileToString(f, StandardCharsets.UTF_8)); } catch (IOException e){ throw new RuntimeException("Error reading YAML file configuration: " + f.getAbsolutePath(), e); } } public List<Module> modules(){ return modules; } public List<Module> resolveModules(){ Preconditions.checkState(pipelinePath != null && !pipelinePath.isEmpty(), "Pipeline path must be set before attempting" + " to resolve required modules for it"); Set<Module> modules = new LinkedHashSet<>(); modules.add(Module.PIPELINE); //Always include core API modules.add(Module.VERTX); //Always include core Vert.x module for serving modules.add(Module.CLI); //Always include CLI for launching for(Serving s : serving){ switch (s){ case HTTP: modules.add(Module.HTTP); break; case GRPC: modules.add(Module.GRPC); break; case MQTT: modules.add(Module.MQTT); break; default: throw new IllegalStateException("Unknown or not supported serving type: " + s); } } Map<StepId, List<RunnerInfo>> m = ModuleUtils.runnersForFile(new File(pipelinePath)); for(Map.Entry<StepId, List<RunnerInfo>> e : m.entrySet()){ List<RunnerInfo> runners = e.getValue(); if(runners.size() > 1){ //TODO fix this - properly handle the case where one step can be executed by more than 1 runner log.warn("More than one possible runner, selecting first: {}, {}", e.getKey(), runners); } Module mod = runners.get(0).module(); modules.add(mod); } //TODO what if user has set modules already, and they want extra modules for some reason? this.modules = new ArrayList<>(modules); return this.modules; } public List<Dependency> resolveDependencies(){ Preconditions.checkState(target != null, "Cannot resolve dependencies: No target has been set"); if(modules == null || modules.isEmpty()) resolveModules(); Set<Dependency> deps = new LinkedHashSet<>(); //First: go through the modules needed to run this pipeline, and add those module dependencies for(Module m : modules){ deps.add(m.dependency()); } //Second: go through each module, and work out what optional dependencies (nd4j backends, etc) we must add for(Module m : modules){ ModuleRequirements req = m.dependencyRequirements(); if(req == null) //Module doesn't have any configurable required dependencies continue; if(!req.satisfiedBy(target, deps)){ List<DependencyAddition> l = req.suggestDependencies(target, deps); if(l != null){ for( DependencyAddition da : l){ if(da.type() == DependencyAddition.Type.ALL_OF){ deps.addAll(da.toAdd()); } else { //Any of List<Dependency> toAdd = da.toAdd(); if(toAdd.size() == 1) { deps.add(toAdd.get(0)); } else if(toAdd.size() > 1){ //Perhaps this is due to classifiers - both x86 and avx2 for example boolean allSameExClassifier = true; Dependency first = toAdd.get(0); for( int i=1; i<toAdd.size(); i++ ){ Dependency d = toAdd.get(1); allSameExClassifier = first.groupId().equals(d.groupId()) && first.artifactId().equals(d.artifactId()) && first.version().equals(d.version()) && (first.classifier() != null && d.classifier() != null); if(!allSameExClassifier){ break; } } boolean resolved = false; if(allSameExClassifier){ boolean allNative = true; for(Dependency d : toAdd){ if(!d.isNativeDependency()){ allNative = false; break; } } if(allNative){ //Now just select the dependency that matches our target... for(Dependency d : toAdd){ NativeDependency nd = d.getNativeDependency(); Set<Target> supported = nd.getSupportedTargets(); //Just because it SUPPORTS this target, doesn't mean it's optimal... boolean noneLower = true; for(Target t : supported){ Arch a = t.arch(); if(a.isCompatibleWith(target.arch()) && t.arch().lowerThan(target.arch())){ noneLower = false; break; } } if(noneLower){ deps.add(d); resolved = true; } } } } if(!resolved) { //TODO Currently both nd4j-native and nd4j-cuda-10.x can be recommended when the target is CUDA //TODO we'll work out a better solution to this in the future... for now, just warn log.warn("Multiple possible dependencies for requirement, picking first: {} - {}", req, toAdd); deps.add(toAdd.get(0)); } } } } } } } //Additional dependencies: if(additionalDependencies != null && !additionalDependencies.isEmpty()){ for(String s : additionalDependencies){ String[] split = s.split(":"); Preconditions.checkState(split.length == 3 || split.length == 4, "Invalid additionalDependency setting: Dependencies must " + "be specified in \"group_id:artifact_id:version\" or \"group_id:artifact_id:version:classifier\" format. Got %s", additionalDependencies); String c = split.length == 4 ? split[3] : null; Dependency d = new Dependency(split[0], split[1], split[2], c); deps.add(d); } } return new ArrayList<>(deps); } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/config/Deployment.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.config; import ai.konduit.serving.build.build.GradlePlugin; import ai.konduit.serving.build.deployments.UberJarDeployment; import org.nd4j.shade.jackson.annotation.JsonSubTypes; import org.nd4j.shade.jackson.annotation.JsonTypeInfo; import java.text.SimpleDateFormat; import java.util.Date; import java.util.List; import java.util.Map; import static org.nd4j.shade.jackson.annotation.JsonTypeInfo.Id.NAME; @JsonSubTypes({ @JsonSubTypes.Type(value = UberJarDeployment.class, name = "uberjar"), }) @JsonTypeInfo(use = NAME, include = JsonTypeInfo.As.WRAPPER_OBJECT) public interface Deployment { String CLASSPATH = "CLASSPATH"; String JAR = "JAR"; String UBERJAR = "UBERJAR"; String DOCKER = "DOCKER"; String EXE = "EXE"; String WAR = "WAR"; String RPM = "RPM"; String DEB = "DEB"; String TAR = "TAR"; List<String> propertyNames(); Map<String,String> asProperties(); void fromProperties(Map<String,String> props); /** * Validate the deployment configuration before the deployment build is attempted * Used to detect obvious problems such as "output location is not set" etc */ DeploymentValidation validate(); /** * Summary output string after the build completes * i.e., info about the output after the build has completed */ String outputString(); List<String> gradleImports(); List<GradlePlugin> gradlePlugins(); List<String> gradleTaskNames(); static String defaultVersion(){ long time = System.currentTimeMillis(); SimpleDateFormat sdf = new SimpleDateFormat("YYYYMMDD-HHmmss.SSS"); return sdf.format(new Date(time)); } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/config/DeploymentValidation.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.config; import java.util.List; public interface DeploymentValidation { /** * @return True if the deployment configuration is OK, false otherwise */ boolean ok(); /** * @return Null if ok() == true, or a list of failure messages (i.e., the reasons why the deployment configuration * is invalid) */ List<String> failureMessages(); }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/config/Metadata.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.config; import lombok.Data; import lombok.NoArgsConstructor; import lombok.experimental.Accessors; import org.nd4j.shade.jackson.annotation.JsonProperty; @Data @Accessors(fluent = true) @NoArgsConstructor public class Metadata { private String author; private String timestamp; private String buildVersion; public Metadata(@JsonProperty("author") String author, @JsonProperty("timestamp") String timestamp, @JsonProperty("buildVersion") String buildVersion){ this.author = author; this.timestamp = timestamp; this.buildVersion = buildVersion; } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/config/Module.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.config; import ai.konduit.serving.annotation.module.RequiresDependenciesProcessor; import ai.konduit.serving.build.dependencies.*; import lombok.AllArgsConstructor; import lombok.Data; import lombok.experimental.Accessors; import org.apache.commons.io.FileUtils; import org.nd4j.common.base.Preconditions; import org.nd4j.common.io.ClassPathResource; import org.nd4j.common.primitives.Pair; import org.nd4j.shade.jackson.annotation.JsonProperty; import java.io.File; import java.io.IOException; import java.nio.charset.StandardCharsets; import java.util.*; @Data @Accessors(fluent = true) public class Module { public static final String CURRENT_KS_VERSION = "0.1.0-SNAPSHOT"; //TODO auto infer - maybe from git.properties? private static final Map<String, Module> MODULES = loadModuleInfo(); public static final Module PIPELINE = forName("konduit-serving-pipeline"); public static final Module VERTX = forName("konduit-serving-vertx"); public static final Module HTTP = forName("konduit-serving-http"); public static final Module GRPC = forName("konduit-serving-grpc"); public static final Module MQTT = forName("konduit-serving-mqtt"); public static final Module DL4J = forName("konduit-serving-deeplearning4j"); public static final Module SAMEDIFF = forName("konduit-serving-samediff"); public static final Module TENSORFLOW = forName("konduit-serving-samediff"); public static final Module IMAGE = forName("konduit-serving-image"); //CLI module can't be defined using forName (from konduit-serving-metadata files) due to it not being in metadata module // (to avoid cyclical dependency: cli -> meta -> build -> cli public static final Module CLI = new Module("konduit-serving-cli", new Dependency("ai.konduit.serving", "konduit-serving-cli", CURRENT_KS_VERSION), null, null); private final String name; private final Dependency dependency; private final ModuleRequirements dependencyRequirements; private final ModuleRequirements dependencyOptional; public Module(@JsonProperty("name") String name, @JsonProperty("dependency") Dependency dependency, @JsonProperty("dependencyRequirements") ModuleRequirements dependencyRequirements, @JsonProperty("dependencyOptional") ModuleRequirements dependencyOptional) { this.name = name; this.dependency = dependency; this.dependencyRequirements = dependencyRequirements; this.dependencyOptional = dependencyOptional; } public Object dependenciesOptional() { return dependencyOptional; } /** * @param moduleName The full name of the module - for example "konduit-serving-tensorflow" * @return The module for that name; throws an exception if it does not exist */ public static Module forName(String moduleName) { Preconditions.checkState(MODULES.containsKey(moduleName), "No module with name \"%s\" is known", moduleName); return MODULES.get(moduleName); } /** * @param moduleShortName The full name of the module - for example "tensorflow" to get the "konduit-serving-tensorflow" module * @return The module for that name; throws an exception if it does not exist */ public static Module forShortName(String moduleShortName) { String name = "konduit-serving-" + moduleShortName; return forName(name); } /** * @param module Name of the module * @param shortName If true: the name is a short name (as per {@link #forShortName(String)} * @return True if a module with that name exists */ public static boolean moduleExistsForName(String module, boolean shortName) { if (shortName) { return MODULES.containsKey("konduit-serving-" + module); } else { return MODULES.containsKey(module); } } private static Map<String, Module> loadModuleInfo() { //Load module info String s; try { File f = new ClassPathResource("META-INF/konduit-serving/ModuleRequiresDependencies").getFile(); s = FileUtils.readFileToString(f, StandardCharsets.UTF_8); } catch (IOException e) { throw new RuntimeException(e); } Map<String, Module> modulesInner = new LinkedHashMap<>(); Map<String, Module> modules = Collections.unmodifiableMap(modulesInner); String[] lines = s.split("\n"); Map<String, String> inherit = new HashMap<>(); for (String line : lines) { int idx = line.indexOf(','); String module = line.substring(0, idx); String deps = line.substring(idx + 1); if (deps.startsWith(RequiresDependenciesProcessor.INHERIT_MODULE_PREFIX)) { String inheritFrom = deps.substring(RequiresDependenciesProcessor.INHERIT_MODULE_PREFIX.length()); inherit.put(module, inheritFrom); continue; } //First: need to work out if an "Any of" dependency, or just one instance of an ALL requirement //Note that ALL requirements are on separate lines, whereas ANY are on one line boolean isAny = deps.startsWith("{{") || deps.startsWith("{["); ModuleRequirements r = null; if (isAny) { //Example format: {["org.nd4j:nd4j-native:1.0.0-SNAPSHOT","org.nd4j:nd4j-native:1.0.0-SNAPSHOT:{linux-x86_64,...}"],["org.nd4j:nd4j-cuda-10.0:1.0.0-SNAPSHOT","org.nd4j:nd4j-cuda-10.0:1.0.0-SNAPSHOT:{linux-x86_64,...}"]} //This should be interpreted to mean: "We need ANY ONE of the [...] blocks, for which we need all of inner dependencies //In this instance, we need nd4j-native AND its classifier - OR - we need nd4j-cuda-10.x AND its classifier String before = deps; deps = deps.substring(1, deps.length() - 1); //Strip first/last bracket List<DependencyRequirement> toCombine = new ArrayList<>(); boolean thisAll = deps.startsWith("["); String[] reqSplit = deps.split("[]}],[\\[{]"); //Split on: "],[" or "],{" or "},[" or "},{; reqSplit[0] = reqSplit[0].substring(1); //Strip leading "[" reqSplit[reqSplit.length - 1] = reqSplit[reqSplit.length - 1].substring(0, reqSplit[reqSplit.length - 1].length() - 1); //Strip trainig "]" for (String req : reqSplit) { //req = req.substring(1); //Strip leading bracket; trailing bracket if (req.endsWith("]") || req.endsWith("}")) req = req.substring(0, req.length() - 1); if (req.isEmpty()) continue; //Shouldn't happen except for malformed annotation (no @Dependency in block) DependencyRequirement parse = parseDependenciesLine(req, !thisAll); toCombine.add(parse); } DependencyRequirement req = new CompositeRequirement(CompositeRequirement.Type.ANY, toCombine); r = new ModuleRequirements(Collections.singletonList(req)); } else { //Example format: "org.nd4j:nd4j-native:1.0.0-SNAPSHOT:{linux-x86_64,linux-x86_64-avx2,linux-x86_64-avx512,linux-ppc64le,linux-arm64,linux-armhf,windows-x86_64,windows-x86_64-avx2,macosx-x86_64,macosx-x86_64-avx2}","org.nd4j:nd4j-cuda-10.0:1.0.0-SNAPSHOT:{linux-x86_64,linux-ppc64le,linux-arm64,windows-x86_64}","org.nd4j:nd4j-cuda-10.1:1.0.0-SNAPSHOT:{linux-x86_64,linux-ppc64le,linux-arm64,windows-x86_64}","org.nd4j:nd4j-cuda-10.2:1.0.0-SNAPSHOT:{linux-x86_64,linux-ppc64le,linux-arm64,windows-x86_64}" //This should be interpreted as "any of the following" deps = deps.substring(1, deps.length() - 1); //Strip first/last bracket List<DependencyRequirement> reqs = new ArrayList<>(); List<Dependency> depsForReq = new ArrayList<>(); if (!deps.isEmpty()) { //Can be empty if there are no requirements for this module DependencyRequirement req = parseDependenciesLine(deps, true); reqs.add(req); } if (!reqs.isEmpty()) { r = new ModuleRequirements(reqs); } } if (modulesInner.containsKey(module)) { Module mod = modulesInner.get(module); List<DependencyRequirement> currReqs = mod.dependencyRequirements().reqs(); if (currReqs == null) { mod = new Module(module, ksModule(module), r, null); modulesInner.put(module, mod); } else if (r != null) { List<DependencyRequirement> newRews = mod.dependencyRequirements().reqs(); newRews.addAll(currReqs); mod = new Module(module, ksModule(module), r, null); modulesInner.put(module, mod); } } else { Module mod = new Module(module, ksModule(module), r, null); modulesInner.put(module, mod); } } //Handle dependency inheritence //Note that we need to ALSO take into account transitive: x -> y -> z if (!inherit.isEmpty()) { Set<Pair<String, String>> toProcess = new HashSet<>(); for (Map.Entry<String, String> e : inherit.entrySet()) { toProcess.add(Pair.of(e.getKey(), e.getValue())); } while (!toProcess.isEmpty()) { Iterator<Pair<String, String>> iter = toProcess.iterator(); boolean anyRemoved = false; while (iter.hasNext()) { Pair<String, String> next = iter.next(); if (modulesInner.containsKey(next.getSecond())) { //Already processed the module we want to inherit from String m = next.getFirst(); String from = next.getSecond(); Module fromM = modulesInner.get(from); Module mod = modulesInner.get(m); if (mod == null) { mod = new Module(m, ksModule(m), fromM.dependencyRequirements(), fromM.dependencyOptional()); modulesInner.put(m, mod); } else { ModuleRequirements reqs = mod.dependencyRequirements(); List<DependencyRequirement> toAdd = fromM.dependencyRequirements().reqs(); List<DependencyRequirement> l = reqs.reqs(); if (toAdd != null) { if (l == null) { reqs.reqs(toAdd); } else { //Add for (DependencyRequirement dr : toAdd) { if (!l.contains(dr)) { l.add(dr); } } } } } iter.remove(); anyRemoved = true; } } if (!anyRemoved) { throw new IllegalStateException("Unable to resolve inherited dependencies: unknown modules or cyclical" + "inheritance situation?\n" + toProcess); } } } return modules; } protected static DependencyRequirement parseDependenciesLine(String line, boolean any) { String[] depsSplit = line.split("\",\""); depsSplit[0] = depsSplit[0].substring(1); //Remove leading quote depsSplit[depsSplit.length - 1] = depsSplit[depsSplit.length - 1].substring(0, depsSplit[depsSplit.length - 1].length() - 1); //Remove training quote List<DepSet> set = new ArrayList<>(); for (String d : depsSplit) { String[] split = d.split(":"); if (split.length == 4) { String classifiers = split[3]; if (classifiers.startsWith("{") || classifiers.startsWith("[")) { boolean allClassifier = classifiers.startsWith("["); //{any} vs. [all] classifiers = classifiers.substring(1, classifiers.length() - 1); //Strip brackets String[] cs = classifiers.split(","); List<Dependency> dList = new ArrayList<>(); List<Dependency> classifierSet = new ArrayList<>(); for (String c : cs) { classifierSet.add(new Dependency(split[0], split[1], split[2], c)); } if (allClassifier) { //All classifiers are needed throw new UnsupportedOperationException("Not yet implemented"); } else { //Only one of the classifiers are needed (usual case) set.add(new DepSet(classifierSet)); } } else { //Single classifier set.add(new DepSet(Collections.singletonList(new Dependency(split[0], split[1], split[2])))); } } else { //GAV only set.add(new DepSet(Collections.singletonList(new Dependency(split[0], split[1], split[2])))); } } boolean allSingle = true; for (DepSet s : set) { allSingle = s.list.size() == 1; if (!allSingle) break; } if (allSingle) { //Combine into a single AllRequirement List<Dependency> finalDeps = new ArrayList<>(); for (DepSet s : set) { finalDeps.addAll(s.list); } return new AllRequirement("", finalDeps); } else { //Combine into a composite requirement List<DependencyRequirement> reqs = new ArrayList<>(); for (DepSet s : set) { if (s.list.size() == 1) { reqs.add(new AllRequirement("", s.list)); } else { //Multiple classifiers reqs.add(new AnyRequirement("", s.list)); } } return new CompositeRequirement(any ? CompositeRequirement.Type.ANY : CompositeRequirement.Type.ALL, reqs); } } @AllArgsConstructor @Data private static class DepSet { private List<Dependency> list; } protected static Dependency ksModule(String name) { //TODO don't hardcode versions return new Dependency("ai.konduit.serving", name, CURRENT_KS_VERSION, null); } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/config/OS.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.config; public enum OS {LINUX, WINDOWS, MACOSX, ANDROID; public static OS forName(String s){ if("MAC".equalsIgnoreCase(s) || "OSX".equalsIgnoreCase(s)){ return MACOSX; } return valueOf(s.toUpperCase()); } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/config/Serving.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.config; public enum Serving { HTTP, GRPC, MQTT }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/config/SimpleDeploymentValidation.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.config; import lombok.AllArgsConstructor; import java.util.Arrays; import java.util.List; @AllArgsConstructor public class SimpleDeploymentValidation implements DeploymentValidation { private List<String> failures; public SimpleDeploymentValidation(String... failures){ this.failures = (failures == null || failures.length == 0) ? null : Arrays.asList(failures); } @Override public boolean ok() { return failures == null || failures.isEmpty(); } @Override public List<String> failureMessages() { return failures; } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/config/Target.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.config; import ai.konduit.serving.build.config.devices.CUDADevice; import lombok.Data; import lombok.experimental.Accessors; import org.nd4j.shade.jackson.annotation.JsonProperty; /** * The Target class represents a deployment device/target - as defined in terms of an operatin system, CPU architecture, * and device (such as CPU vs. CUDA, etc). If no device is specified, it is assumed that CPU execution will be used. */ @Data @Accessors(fluent = true) public class Target { public static final Target LINUX_X86 = new Target(OS.LINUX, Arch.x86, null); public static final Target LINUX_X86_AVX2 = new Target(OS.LINUX, Arch.x86_avx2, null); public static final Target LINUX_X86_AVX512 = new Target(OS.LINUX, Arch.x86_avx512, null); public static final Target WINDOWS_X86 = new Target(OS.WINDOWS, Arch.x86, null); public static final Target WINDOWS_X86_AVX2 = new Target(OS.WINDOWS, Arch.x86_avx2, null); public static final Target MACOSX_X86 = new Target(OS.MACOSX, Arch.x86, null); public static final Target MACOSX_X86_AVX2 = new Target(OS.MACOSX, Arch.x86_avx2, null); public static final Target LINUX_CUDA_10_0 = new Target(OS.LINUX, Arch.x86, new CUDADevice("10.0")); public static final Target LINUX_CUDA_10_1 = new Target(OS.LINUX, Arch.x86, new CUDADevice("10.1")); public static final Target LINUX_CUDA_10_2 = new Target(OS.LINUX, Arch.x86, new CUDADevice("10.2")); public static final Target WINDOWS_CUDA_10_0 = new Target(OS.WINDOWS, Arch.x86, new CUDADevice("10.0")); public static final Target WINDOWS_CUDA_10_1 = new Target(OS.WINDOWS, Arch.x86, new CUDADevice("10.1")); public static final Target WINDOWS_CUDA_10_2 = new Target(OS.WINDOWS, Arch.x86, new CUDADevice("10.2")); /** Linux, Windows and Mac x86, x86 avx2 and avx512 */ public static final Target[] LWM_X86 = new Target[]{LINUX_X86, LINUX_X86_AVX2, LINUX_X86_AVX512, WINDOWS_X86, WINDOWS_X86_AVX2, MACOSX_X86, MACOSX_X86_AVX2}; private final OS os; private final Arch arch; private final ComputeDevice device; //If null: CPU public Target(@JsonProperty("os") OS os, @JsonProperty("arch") Arch arch, @JsonProperty("device") ComputeDevice device){ this.os = os; this.arch = arch; this.device = device; } @Override public String toString(){ return "Target(" + os + "," + arch + (device == null ? "" : "," + device.toString()) + ")"; } public String toJavacppPlatform(){ //https://github.com/bytedeco/javacpp/tree/master/src/main/resources/org/bytedeco/javacpp/properties return os.name() + "-" + arch.name(); } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/config
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/config/devices/CUDADevice.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.config.devices; import ai.konduit.serving.build.config.ComputeDevice; import lombok.AllArgsConstructor; import lombok.Data; @AllArgsConstructor @Data public class CUDADevice implements ComputeDevice { private String cudaVersion; public static CUDADevice forName(String s){ String str = s.toLowerCase(); if(str.contains("10.0")){ return new CUDADevice("10.0"); } else if(str.contains("10.1")){ return new CUDADevice("10.1"); } else if(str.contains("10.2")) { return new CUDADevice("10.2"); } else if(str.contains("11.0")){ return new CUDADevice("11.0"); } else { throw new UnsupportedOperationException("Invalid, unknown, not supported or not yet implemneted CUDA version: " + s); } } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/dependencies/AllAddition.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.dependencies; import lombok.AllArgsConstructor; import lombok.Data; import lombok.experimental.Accessors; import java.util.List; @AllArgsConstructor @Data @Accessors(fluent = true) public class AllAddition implements DependencyAddition { private List<Dependency> add; private DependencyRequirement forReq; @Override public Type type() { return Type.ALL_OF; } @Override public List<Dependency> toAdd() { return add; } @Override public DependencyRequirement forRequirement() { return forReq; } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/dependencies/AllRequirement.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.dependencies; import ai.konduit.serving.build.config.Target; import ai.konduit.serving.build.dependencies.nativedep.NativeDependency; import lombok.AllArgsConstructor; import lombok.Data; import lombok.experimental.Accessors; import java.util.*; @AllArgsConstructor @Data @Accessors(fluent = true) public class AllRequirement implements DependencyRequirement { private final String name; private Set<Dependency> set; public AllRequirement(String name, List<Dependency> dependencies) { this(name, new HashSet<>(dependencies)); } public AllRequirement(String name, Dependency... dependencies){ this.name = name; this.set = new HashSet<>(Arrays.asList(dependencies)); } @Override public String name() { return name; } @Override public boolean satisfiedBy(Target target, Collection<Dependency> currDeps) { //We need ALL of the requirements to be satisfied (considering native code + target) for (Dependency need : set) { boolean matchFound = false; for (Dependency d : currDeps) { if (need.equals(d)) { //GAV(C) match, but maybe it's a native dependency, and platform doesn't match if (need.isNativeDependency()) { NativeDependency nd = need.getNativeDependency(); if (nd.supports(target)) { matchFound = true; break; } } else { //Pure Java dependency matchFound = true; break; } } } if(!matchFound) return false; } return true; } @Override public List<DependencyAddition> suggestDependencies(Target target, Collection<Dependency> currDeps) { if(satisfiedBy(target, currDeps)) return null; //We need ALL of the requirements to be satisfied (considering native code + target) Set<Dependency> notFound = new HashSet<>(); for (Dependency need : set) { boolean matchFound = false; for (Dependency d : currDeps) { if (need.equals(d)) { //GAV(C) match, but maybe it's a native dependency, and platform doesn't match if (need.isNativeDependency()) { NativeDependency nd = need.getNativeDependency(); if (nd.supports(target)) { matchFound = true; break; } } else { //Pure Java dependency matchFound = true; break; } } } if(!matchFound){ if(need.isNativeDependency()){ //Don't suggest a native dependency that can't be run on this target, even if it's a requirement for // other targets that it _does_ run on NativeDependency nd = need.getNativeDependency(); if(nd.supports(target)){ notFound.add(need); } } else { notFound.add(need); } } } if(notFound.isEmpty()) return null; return Collections.singletonList(new AllAddition(new ArrayList<>(notFound), this)); } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/dependencies/AnyAddition.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.dependencies; import lombok.AllArgsConstructor; import lombok.Data; import lombok.experimental.Accessors; import java.util.List; @AllArgsConstructor @Data @Accessors(fluent = true) public class AnyAddition implements DependencyAddition { private List<Dependency> add; private DependencyRequirement forReq; @Override public Type type() { return Type.ONE_OF; } @Override public List<Dependency> toAdd() { return add; } @Override public DependencyRequirement forRequirement() { return forReq; } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/dependencies/AnyRequirement.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.dependencies; import ai.konduit.serving.build.config.Target; import ai.konduit.serving.build.dependencies.nativedep.NativeDependency; import lombok.AllArgsConstructor; import lombok.Data; import lombok.experimental.Accessors; import java.util.*; @AllArgsConstructor @Data @Accessors(fluent = true) public class AnyRequirement implements DependencyRequirement { private final String name; private final Set<Dependency> set; public AnyRequirement(String name, List<Dependency> dependencies) { this(name, new HashSet<>(dependencies)); } public AnyRequirement(String name, Dependency... dependencies) { this.name = name; set = new HashSet<>(Arrays.asList(dependencies)); } @Override public String name() { return name; } @Override public boolean satisfiedBy(Target target, Collection<Dependency> currDeps) { //Only need one of the requirements to be satisfied (considering native code + target) for (Dependency need : set) { for (Dependency d : currDeps) { if (need.equals(d)) { //GAV(C) match, but maybe it's a native dependency, and platform doesn't match if (need.isNativeDependency()) { NativeDependency nd = need.getNativeDependency(); if (nd.supports(target)) { return true; } } else { //Pure Java dependency return true; } } } } return false; } @Override public List<DependencyAddition> suggestDependencies(Target target, Collection<Dependency> currentDeps) { if(satisfiedBy(target, currentDeps)) return null; //If not already satisfied, it means that none of the dependencies are available //But we still have to filter by what can run on this target List<Dependency> out = new ArrayList<>(); for(Dependency d : set){ if(d.isNativeDependency()){ NativeDependency nd = d.getNativeDependency(); if(nd.supports(target)){ out.add(d); } } else { out.add(d); } } if(out.isEmpty()) return null; return Collections.singletonList(new AnyAddition(out, this)); } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/dependencies/CompositeRequirement.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.dependencies; import ai.konduit.serving.build.config.Target; import lombok.Data; import java.util.ArrayList; import java.util.Collection; import java.util.List; @Data public class CompositeRequirement implements DependencyRequirement { public enum Type {ANY, ALL} private final Type type; private DependencyRequirement[] reqs; public CompositeRequirement(Type type, List<DependencyRequirement> reqs){ this(type, reqs.toArray(new DependencyRequirement[0])); } public CompositeRequirement(Type type, DependencyRequirement... reqs){ this.type = type; this.reqs = reqs; } @Override public String name() { return ""; //TODO } @Override public boolean satisfiedBy(Target target, Collection<Dependency> currentDeps) { boolean anySatisfied = false; boolean allSatisfied = true; for(DependencyRequirement r : reqs){ boolean thisSat = r.satisfiedBy(target, currentDeps); anySatisfied |= thisSat; allSatisfied &= thisSat; } if(type == Type.ANY){ return anySatisfied; } else { return allSatisfied; } } @Override public List<DependencyAddition> suggestDependencies(Target target, Collection<Dependency> currentDeps) { //TODO this should be reconsidered - what if multiple sub-requirements make the same recommendation? List<DependencyAddition> l = new ArrayList<>(); for(DependencyRequirement r : reqs){ List<DependencyAddition> add = r.suggestDependencies(target, currentDeps); if(add != null) { l.addAll(add); } } return l; } @Override public String toString(){ StringBuilder sb = new StringBuilder(); sb.append(type.toString()).append("("); List<String> l = new ArrayList<>(); for(DependencyRequirement d : reqs) l.add(d.toString()); sb.append(String.join(",", l)); sb.append(")"); return sb.toString(); } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/dependencies/Dependency.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.dependencies; import ai.konduit.serving.build.dependencies.nativedep.NativeDependency; import ai.konduit.serving.build.dependencies.nativedep.NativeDependencyRegistry; import lombok.Data; import lombok.experimental.Accessors; import org.nd4j.common.base.Preconditions; import org.nd4j.shade.jackson.annotation.JsonProperty; @Data @Accessors(fluent = true) public class Dependency { private final String groupId; private final String artifactId; private final String version; private final String classifier; public Dependency(String groupId, String artifactId, String version){ this(groupId, artifactId, version, null); } public Dependency(@JsonProperty("groupId") String groupId, @JsonProperty("artifactId") String artifactId, @JsonProperty("version") String version, @JsonProperty("classifier") String classifier){ this.groupId = groupId; this.artifactId = artifactId; this.version = version; this.classifier = classifier; } public boolean isNativeDependency(){ return NativeDependencyRegistry.isNativeDependency(this); } public NativeDependency getNativeDependency(){ Preconditions.checkState(isNativeDependency(), "Can only get NativeDependency information if the depnedency has native code"); return NativeDependencyRegistry.getNativeDependency(this); } public String gavString(){ return groupId + ":" + artifactId + ":" + version + (classifier == null ? "" : ":" + classifier); } @Override public String toString(){ return "Dependency(" + gavString() + ")"; } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/dependencies/DependencyAddition.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.dependencies; import java.util.List; public interface DependencyAddition { enum Type {ALL_OF, ONE_OF} Type type(); List<Dependency> toAdd(); DependencyRequirement forRequirement(); }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/dependencies/DependencyRequirement.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.dependencies; import ai.konduit.serving.build.config.Target; import java.util.Arrays; import java.util.Collection; import java.util.Collections; import java.util.List; public interface DependencyRequirement { String name(); //TODO proper descriptions default String description(){ return name(); } boolean satisfiedBy(Target target, Collection<Dependency> currentDeps); List<DependencyAddition> suggestDependencies(Target target, Collection<Dependency> currentDeps); }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/dependencies/ModuleRequirements.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.dependencies; import ai.konduit.serving.build.config.Target; import lombok.AllArgsConstructor; import lombok.Data; import lombok.experimental.Accessors; import java.util.*; @Data @AllArgsConstructor @Accessors(fluent = true) public class ModuleRequirements { private List<DependencyRequirement> reqs; public boolean satisfiedBy(Target target, Collection<Dependency> currentDeps){ for(DependencyRequirement req : reqs){ if(!req.satisfiedBy(target, currentDeps)) return false; } return true; } public List<DependencyAddition> suggestDependencies(Target target, Collection<Dependency> currentDeps){ if(satisfiedBy(target, currentDeps)) return null; List<DependencyAddition> l = new ArrayList<>(); for(DependencyRequirement r : reqs ){ if(r.satisfiedBy(target, currentDeps)) continue; //This requirement is not satisfied... l.addAll(r.suggestDependencies(target, currentDeps)); } //TODO we should filter for duplicates return l; } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/dependencies
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/dependencies/nativedep/NativeDependency.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.dependencies.nativedep; import ai.konduit.serving.build.config.Target; import ai.konduit.serving.build.dependencies.Dependency; import lombok.AllArgsConstructor; import lombok.Data; import java.util.Set; @AllArgsConstructor @Data public class NativeDependency { private final Dependency dependency; private final Set<Target> supportedTargets; public boolean supports(Target target){ return supportedTargets.contains(target); } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/dependencies
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/dependencies/nativedep/NativeDependencyRegistry.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.dependencies.nativedep; import ai.konduit.serving.build.config.ComputeDevice; import ai.konduit.serving.build.config.Arch; import ai.konduit.serving.build.config.OS; import ai.konduit.serving.build.config.Target; import ai.konduit.serving.build.config.devices.CUDADevice; import ai.konduit.serving.build.dependencies.Dependency; import org.nd4j.common.base.Preconditions; import java.util.*; /** * This is a PLACEHOLDER implementation... this native metadata will probably be redesigned (different collection * method, different storage method, etc) */ public class NativeDependencyRegistry { public static final String LINUX = "linux"; public static final String WINDOWS = "windows"; public static final String MACOSX = "macosx"; public static final String X86_64 = "x86_64"; public static final String X86_64_AVX2 = "x86_64-avx2"; public static final String X86_64_AVX512 = "x86_64-avx512"; public static final String ARM64 = "arm64"; public static final String ARMHF = "armhf"; public static final String PPC64LE = "ppc64le"; public static final String LINUX_X86_64 = LINUX + "-" + X86_64; public static final String LINUX_X86_AVX2 = LINUX + "-" + X86_64_AVX2; public static final String LINUX_X86_AVX512 = LINUX + "-" + X86_64_AVX512; public static final String WINDOWS_X86_64 = WINDOWS + "-" + X86_64; public static final String WINDOWS_X86_AVX2 = WINDOWS + "-" + X86_64_AVX2; public static final String MACOSX_X86_64 = MACOSX + "-" + X86_64; public static final String MACOSX_X86_AVX2 = MACOSX + "-" + X86_64_AVX2; private static final Map<Dependency, NativeDependency> map = new HashMap<>(); private static void put(Dependency d, Target... targets){ map.put(d, new NativeDependency(d, new HashSet<>(Arrays.asList(targets)))); } static { //These are dependencies that can only run on a specific target //TODO - TF, ONNX, etc //ND4J native put(new Dependency("org.nd4j", "nd4j-native", "1.0.0-SNAPSHOT", null), Target.LWM_X86); //CUDA put(new Dependency("org.nd4j", "nd4j-cuda-10.0", "1.0.0-SNAPSHOT", null), Target.LINUX_CUDA_10_0, Target.WINDOWS_CUDA_10_0); put(new Dependency("org.nd4j", "nd4j-cuda-10.1", "1.0.0-SNAPSHOT", null), Target.LINUX_CUDA_10_1, Target.WINDOWS_CUDA_10_1); put(new Dependency("org.nd4j", "nd4j-cuda-10.2", "1.0.0-SNAPSHOT", null), Target.LINUX_CUDA_10_2, Target.WINDOWS_CUDA_10_2); //CUDA classifiers put(new Dependency("org.nd4j", "nd4j-cuda-10.0", "1.0.0-SNAPSHOT", LINUX_X86_64), Target.LINUX_CUDA_10_0); put(new Dependency("org.nd4j", "nd4j-cuda-10.1", "1.0.0-SNAPSHOT", LINUX_X86_64), Target.LINUX_CUDA_10_1); put(new Dependency("org.nd4j", "nd4j-cuda-10.2", "1.0.0-SNAPSHOT", LINUX_X86_64), Target.LINUX_CUDA_10_2); put(new Dependency("org.nd4j", "nd4j-cuda-10.0", "1.0.0-SNAPSHOT", WINDOWS_X86_64), Target.WINDOWS_CUDA_10_0); put(new Dependency("org.nd4j", "nd4j-cuda-10.1", "1.0.0-SNAPSHOT", WINDOWS_X86_64), Target.WINDOWS_CUDA_10_1); put(new Dependency("org.nd4j", "nd4j-cuda-10.2", "1.0.0-SNAPSHOT", WINDOWS_X86_64), Target.WINDOWS_CUDA_10_2); } public static boolean isNativeDependency(Dependency d){ if(d.classifier() != null){ String c = d.classifier(); if(c.startsWith(LINUX) || c.startsWith(WINDOWS) || c.startsWith(MACOSX)){ //JavaCPP and ND4J etc dependencies return true; } } return map.containsKey(d); } public static NativeDependency getNativeDependency(Dependency d){ Preconditions.checkState(isNativeDependency(d), "Not a native dependency"); if(d.classifier() != null){ String c = d.classifier(); if(c.startsWith(LINUX + "-") || c.startsWith(WINDOWS + "-") || c.startsWith(MACOSX + "-")){ //JavaCPP and ND4J etc dependencies int idx = c.indexOf("-"); String osStr = c.substring(0,idx); String archStr = c.substring(idx+1); OS os = OS.forName(osStr); Arch arch = Arch.forName(archStr); ComputeDevice device = deviceFor(d); Preconditions.checkState(arch != null, "Could not infer target architecture for %s", d); Arch[] compatibleWith = arch.compatibleWith(); Set<Target> supported = new HashSet<>(); for(Arch a : compatibleWith){ supported.add(new Target(os, a, device)); } return new NativeDependency(d, supported); } } return map.get(d); } public static ComputeDevice deviceFor(Dependency d){ //TODO this won't work for things like CUDA! And isn't robust to new versions... Need a more robust approach to this... String a = d.artifactId().toLowerCase(); if(a.contains("cuda-10.0") || (a.contains("cuda") && d.version().contains("10.0"))){ //Second condition - for example: org.bytedeco:cuda:10.2-7.6-1.5.3:linux-x86_64 return new CUDADevice("10.0"); } else if(a.contains("cuda-10.1") || (a.contains("cuda") && d.version().contains("10.1"))){ return new CUDADevice("10.1"); } else if(a.contains("cuda-10.2") || (a.contains("cuda") && d.version().contains("10.2"))){ return new CUDADevice("10.2"); } return null; } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/deployments/ClassPathDeployment.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.deployments; import ai.konduit.serving.build.build.GradlePlugin; import ai.konduit.serving.build.config.Deployment; import ai.konduit.serving.build.config.DeploymentValidation; import ai.konduit.serving.build.config.SimpleDeploymentValidation; import lombok.Data; import lombok.experimental.Accessors; import lombok.extern.slf4j.Slf4j; import org.apache.commons.io.FileUtils; import java.io.File; import java.io.IOException; import java.nio.charset.StandardCharsets; import java.util.*; @Slf4j @Data @Accessors(fluent = true) public class ClassPathDeployment implements Deployment { public enum Type { TEXT_FILE, JAR_MANIFEST } public static final String OUTPUT_FILE_PROP = "classpath.outputFile"; public static final String TYPE_PROP = "classpath.type"; public static final String CLI_KEYS = "ClassPathDeployment config keys: " + OUTPUT_FILE_PROP + ", " + TYPE_PROP; private String outputFile; private Type type; @Override public List<String> propertyNames() { return Arrays.asList(OUTPUT_FILE_PROP, TYPE_PROP); } @Override public Map<String, String> asProperties() { Map<String,String> map = new HashMap<>(); map.put(OUTPUT_FILE_PROP, outputFile); map.put(TYPE_PROP, type == null ? null : type.toString()); return map; } @Override public void fromProperties(Map<String, String> props) { outputFile = props.getOrDefault(OUTPUT_FILE_PROP, outputFile); if(props.containsKey(TYPE_PROP)){ type = Type.valueOf(props.get(TYPE_PROP).toUpperCase()); } } @Override public DeploymentValidation validate() { if (outputFile != null && !outputFile.isEmpty() && type != null) { return new SimpleDeploymentValidation(); } List<String> errs = new ArrayList<>(); if(outputFile == null || outputFile.isEmpty()){ errs.add("Output classpath file (" + OUTPUT_FILE_PROP + " property) is not set"); } if(type == null){ errs.add("Output classpath file type - " + Type.TEXT_FILE + " or " + Type.JAR_MANIFEST + " (" + TYPE_PROP + " property) is not set"); } else if(type == Type.JAR_MANIFEST && outputFile != null && !outputFile.endsWith(".jar")){ errs.add("Output classpath file (JAR_MANIFEST type) output file name (" + TYPE_PROP + " property) must end with .jar, got \"" + outputFile + "\""); } return new SimpleDeploymentValidation(errs); } @Override public String outputString() { File f = new File(outputFile); StringBuilder sb = new StringBuilder(); sb.append("Classpath file location: ").append(f.getAbsolutePath()).append("\n"); String nLines; if (f.exists()) { try { nLines = String.valueOf(FileUtils.readLines(f, StandardCharsets.UTF_8).size()); } catch (IOException e) { nLines = "<Error reading generated classpath file>"; log.warn("Error reading generated classpath file", e); } } else { nLines = "<output file not found>"; } sb.append("Number of classpath entries: ").append(nLines).append("\n"); return sb.toString(); } @Override public List<String> gradleImports() { return Collections.emptyList(); } @Override public List<GradlePlugin> gradlePlugins() { return Collections.emptyList(); } @Override public List<String> gradleTaskNames() { return Collections.singletonList("build"); } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/deployments/DebDeployment.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.deployments; import ai.konduit.serving.build.build.GradlePlugin; import ai.konduit.serving.build.config.Deployment; import ai.konduit.serving.build.config.DeploymentValidation; import lombok.Data; import lombok.NoArgsConstructor; import lombok.experimental.Accessors; import org.nd4j.shade.jackson.annotation.JsonProperty; import java.io.File; import java.util.*; @Data @Accessors(fluent = true) @NoArgsConstructor public class DebDeployment implements Deployment { public static final String DEFAULT_EXE_NAME = "konduit-serving-deployment.deb"; public static final String PROP_OUTPUTDIR = "deb.outputdir"; public static final String PROP_RPMNAME = "deb.name"; private String outputDir; private String rpmName; private String version; private String archName; public DebDeployment(String outputDir) { this(outputDir, "ks", Deployment.defaultVersion()); } public DebDeployment(@JsonProperty("outputDir") String outputDir, @JsonProperty("rpmName") String rpmName, @JsonProperty("version") String version){ this.outputDir = outputDir; this.rpmName = rpmName; this.version = version; } @Override public List<String> propertyNames() { return Arrays.asList(PROP_OUTPUTDIR, PROP_RPMNAME); } @Override public Map<String, String> asProperties() { Map<String,String> m = new LinkedHashMap<>(); m.put(PROP_OUTPUTDIR, outputDir); m.put(PROP_RPMNAME, rpmName); return m; } @Override public void fromProperties(Map<String, String> props) { outputDir = props.getOrDefault(PROP_OUTPUTDIR, outputDir); rpmName = props.getOrDefault(PROP_RPMNAME, rpmName); } @Override public DeploymentValidation validate() { return null; } @Override public String outputString() { File outFile = new File(outputDir, rpmName); StringBuilder sb = new StringBuilder(); sb.append("DEB location: ").append(outFile.getAbsolutePath()).append("\n"); String size; if(outFile.exists()){ long bytes = outFile.length(); double bytesPerMB = 1024 * 1024; double mb = bytes / bytesPerMB; size = String.format("%.2f", mb) + " MB"; } else { size = "<DEB not found>"; } sb.append("DEB size: ").append(size); return sb.toString(); } @Override public List<String> gradleImports() { List<String> retVal = new ArrayList<>(); retVal.add("org.redline_rpm.header.Os"); retVal.add("org.redline_rpm.header.Architecture"); retVal.add("com.github.jengelman.gradle.plugins.shadow.tasks.ShadowJar"); return retVal; } @Override public List<GradlePlugin> gradlePlugins() { List<GradlePlugin> retVal = new ArrayList<>(); retVal.add(new GradlePlugin("nebula.ospackage", "8.3.0")); retVal.add(new GradlePlugin("com.github.johnrengelman.shadow", "2.0.4")); return retVal; } @Override public List<String> gradleTaskNames() { List<String> ret = new ArrayList<>(); ret.add("shadowJar"); ret.add("buildDeb"); ret.add("copyDeb"); return ret; } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/deployments/DockerDeployment.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.deployments; import ai.konduit.serving.build.build.GradlePlugin; import ai.konduit.serving.build.config.Deployment; import ai.konduit.serving.build.config.DeploymentValidation; import ai.konduit.serving.build.config.SimpleDeploymentValidation; import lombok.Data; import lombok.NoArgsConstructor; import lombok.experimental.Accessors; import org.nd4j.shade.jackson.annotation.JsonProperty; import java.util.*; @Data @Accessors(fluent = true) public class DockerDeployment implements Deployment { public static final String DEFAULT_BASE_IMAGE = "openjdk:8-jre"; public static final String DEFAULT_IMAGE_NAME = "ks"; public static final String PROP_BASE_IMG = "docker.baseimage"; public static final String PROP_NAME = "docker.name"; private String baseImage; private String inputDir; private String imageName; private String version; private String imageId; //Should be in form: "somerepo:version" public DockerDeployment() { this(DEFAULT_BASE_IMAGE, "ks", Deployment.defaultVersion()); } public DockerDeployment(@JsonProperty("baseImage") String baseImage, @JsonProperty("rpmName") String imageName, @JsonProperty("version") String version){ this.baseImage = baseImage; this.imageName = imageName; this.version = version; } @Override public List<String> propertyNames() { return Arrays.asList(PROP_BASE_IMG, PROP_NAME); } @Override public Map<String, String> asProperties() { Map<String,String> m = new LinkedHashMap<>(); m.put(PROP_BASE_IMG, baseImage); m.put(PROP_NAME, imageName); return m; } @Override public void fromProperties(Map<String, String> props) { baseImage = props.getOrDefault(PROP_BASE_IMG, baseImage); imageName = props.getOrDefault(PROP_NAME, imageName); } @Override public DeploymentValidation validate() { if(baseImage == null || baseImage.isEmpty()){ return new SimpleDeploymentValidation("No base image name is set (property: " + PROP_BASE_IMG + ")"); } return new SimpleDeploymentValidation(); } @Override public String outputString() { StringBuilder sb = new StringBuilder(); sb.append("JAR location: "); sb.append("Docker image name: ").append(imageName).append("\n"); sb.append("Docker base image: ").append(baseImage).append("\n"); sb.append("Docker image id: ").append(imageId).append("\n"); return sb.toString(); } @Override public List<String> gradleImports() { return Collections.singletonList("com.bmuschko.gradle.docker.tasks.image.*"); } @Override public List<GradlePlugin> gradlePlugins() { return Collections.singletonList(new GradlePlugin("com.bmuschko.docker-remote-api", "6.4.0")); } @Override public List<String> gradleTaskNames() { return Collections.singletonList("buildImage"); } }
0
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build
java-sources/ai/konduit/serving/konduit-serving-build/0.3.0/ai/konduit/serving/build/deployments/ExeDeployment.java
/* * ****************************************************************************** * * Copyright (c) 2022 Konduit K.K. * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ package ai.konduit.serving.build.deployments; import ai.konduit.serving.build.build.GradlePlugin; import ai.konduit.serving.build.config.Deployment; import ai.konduit.serving.build.config.DeploymentValidation; import lombok.Data; import lombok.NoArgsConstructor; import lombok.experimental.Accessors; import org.nd4j.shade.jackson.annotation.JsonProperty; import java.io.File; import java.util.*; @Data @Accessors(fluent = true) @NoArgsConstructor public class ExeDeployment implements Deployment { public static final String DEFAULT_EXE_NAME = "konduit-serving-deployment.exe"; public static final String PROP_OUTPUTDIR = "exe.outputdir"; public static final String PROP_EXENAME = "exe.name"; private String outputDir; private String exeName; private String version; public ExeDeployment(String outputDir) { this(outputDir, "ks", Deployment.defaultVersion()); } public ExeDeployment(@JsonProperty("outputDir") String outputDir, @JsonProperty("exeName") String exeName, @JsonProperty("version") String version){ this.outputDir = outputDir; this.exeName = exeName; this.version = version; } @Override public List<String> propertyNames() { return Arrays.asList(PROP_OUTPUTDIR, PROP_EXENAME); } @Override public Map<String, String> asProperties() { Map<String,String> m = new LinkedHashMap<>(); m.put(PROP_OUTPUTDIR, outputDir); m.put(PROP_EXENAME, exeName); return m; } @Override public void fromProperties(Map<String, String> props) { outputDir = props.getOrDefault(PROP_OUTPUTDIR, outputDir); exeName = props.getOrDefault(PROP_EXENAME, exeName); } @Override public DeploymentValidation validate() { return null; } @Override public String outputString() { File outFile = new File(outputDir, exeName); StringBuilder sb = new StringBuilder(); sb.append("EXE location: ").append(outFile.getAbsolutePath()).append("\n"); String size; if(outFile.exists()){ long bytes = outFile.length(); double bytesPerMB = 1024 * 1024; double mb = bytes / bytesPerMB; size = String.format("%.2f", mb) + " MB"; } else { size = "<EXE not found>"; } sb.append("EXE size: ").append(size); return sb.toString(); } @Override public List<String> gradleImports() { List<String> retVal = new ArrayList<>(); retVal.add("edu.sc.seis.launch4j.tasks.DefaultLaunch4jTask"); retVal.add("com.github.jengelman.gradle.plugins.shadow.tasks.ShadowJar"); return retVal; } @Override public List<GradlePlugin> gradlePlugins() { List<GradlePlugin> retVal = new ArrayList<>(); retVal.add(new GradlePlugin("nebula.ospackage", "8.3.0")); retVal.add(new GradlePlugin("com.github.johnrengelman.shadow", "2.0.4")); retVal.add(new GradlePlugin("edu.sc.seis.launch4j", "2.4.6")); return retVal; } @Override public List<String> gradleTaskNames() { List<String> ret = new ArrayList<>(); ret.add("shadowJar"); ret.add("createExe"); ret.add("copyExe"); return ret; } }